
Abstract

Software development is rapidly changing and software systems are increasing in size and
expected lifetime. To cope with this, several new languages and development processes
have emerged, as has stronger focus on design and software architecture and development
with consideration for evolution and future change in requirements.

There is a clear need for improvements, research shows that the portion of develop-
ment cost used for maintenance is increasing and can be as high as 50 %. We also see
many software systems that grow into uncontrollable complexity where large parts of the
system cannot be touched because of risks for unforeseeable consequence. Therefore a
clearer understanding of the evolution of software is needed in order to prevent decay of
the systems structure.

This thesis approaches the field of software evolution through an empirical study on
the open source project Portage from the Gentoo Linux project. Data is gathered, ratified
and analysed to study the evolutionary trends of the system.

These findings are seen in the context of Lehman’s laws on the inevitability of growth
and increasement of complexity through the lifetime of software systems. A set of research
question and hypotheses are formulated and tested.

Also, experience from using open source software for data mining is presented.

Keywords: Software evolution, software metrics, empirical study, open source.

ii

Preface

This thesis is written as part of my master degree at the Department of Computer and
Information Service at the Norwegian University of Science and Technology in Trondheim.

This thesis builds on earlier work where I explored the research field of software
evolution and perform a small empirical study on the evolution of the architecture of
Portage from the Gentoo Project. For this study the same system is examined more closely
using different metrics.

By writing this report, the author hopes to get a better insight of software evolution
and empirical study.

I would like to thank my supervisors, Reidar Conradi and Thomas Østerlie for valuable
feedback and support and the developers of Portage for the work that have provided me
with data for my analysis.

————————————————–
Andreas Tørå Hagli
16. June, 2005
Trondheim, Norway

iii

iv

Contents

1 Introduction 1

2 Background 3
2.1 Software evolution . 3
2.2 Why changes occur . 5
2.3 Laws of Program Evolution Dynamics . 5
2.4 Goal-Question-Metric . 6
2.5 Software metric . 7
2.6 Researching on open source project . 8
2.7 Prior research by the author . 8

3 Research context 10
3.1 Study objects . 10

3.1.1 Gentoo Linux . 11
3.1.2 Portage . 11

3.2 Releases . 13
3.3 Data sources in open source projects . 14

3.3.1 ChangeLog . 16
3.3.2 CVS . 17
3.3.3 Bugzilla . 17
3.3.4 IRC, mailing lists, blogs . 18
3.3.5 Statistics . 18

3.4 Supporting tools . 18
3.4.1 Maven . 18
3.4.2 XRadar . 19
3.4.3 Pythius . 19
3.4.4 Pythonmetric . 19
3.4.5 Spreadsheet application . 20
3.4.6 Database . 20
3.4.7 Other . 20

4 Research questions and hypotheses 21
4.1 Software metrics for software evolution . 21
4.2 Origins for data . 22
4.3 Metrics used in this report . 23

4.3.1 Cyclomatic Complexity . 23
4.3.2 Lack of Cohesion in Methods . 24
4.3.3 Other metrics used . 26

4.4 Research questions . 26

v

4.5 Hypotheses . 27

5 Results 29
5.1 Research question and hypotheses . 29
5.2 Laws of Program Evolution Dynamics . 38

5.2.1 Law of continuing change . 38
5.2.2 Law of increasing entropy . 38
5.2.3 Law of statistically smooth growth 39

6 Discussion 40
6.1 Validity . 40

6.1.1 Conclusion validity . 40
6.1.2 Internal validity . 40
6.1.3 Construct validity . 41
6.1.4 External validity . 41

6.2 Experience with open source . 42
6.2.1 Understanding development history 42
6.2.2 Dialog with developers . 42
6.2.3 Generalisation . 42
6.2.4 Data sources and tools . 43

6.3 Thesis process . 43

7 Conclusion 45
7.1 Further work . 45

Bibliography 47

vi

Chapter 1

Introduction

Most computer systems experience some form of software evolution over time. Lehman’s
first law of software evolution [Lehm74] states that software systems that address
problems in the real world must be continually adapted and changed if it is to offer
satisfactory service. Functionality is added and quality attributes improved. Efforts
are made to maintain control over the system, and one of them is to plan an overall
architecture of the system and have its basic structure intact. But, the architecture also
has to evolve to accommodate for unforeseeable events and to adapt to changes in its
purpose and focus.

In the software industry today, maintenance is becoming a larger and larger part
of the cost of software development. Evans says in [Evan01] that “evolving and
maintaining computer systems is expensive. This cost can be anywhere from 50 % of
total programming effort [Lien80] to 75 % of total available effort [McKe84]. In addition,
the proportion of effort devoted to maintenance has been increasing: from 35-40 % in the
1970s, through 40-60 % in the ’80s up to 70-80 % in the 1990s [Pfle91]”. In order prevent
such high maintenance cost and rather focus on business issues, we must therefore explore
the nature of these changes and learn how to foresee and handle them better.

There are various definitions of what activities are included in software evolution. The
definition adopted in this paper is all activities and phenomena associated with adding
functional and improving non-functional requirements that cause physical and conceptual
changes to the structure of the software system. It is important to note that although evo-
lution is often a negative side-effect of a wanted change, it can also be, and is often, a
necessity for the system.

This thesis describes the research field of software evolution perform an empirical
study related to earlier findings on the inevitability of growth and increasement in
complexity [Bela76]. A set of research question and hypotheses are formulated and to
see whether the same trends can be found in a system developed almost thirty years later.

The thesis uses an open source project call Portage from the Gentoo Project and tries
to provide experience from using an open source project for data material. The system
uses the same tools commonly used in most open source projects.

The remainder of this thesis is organized as follows. Chapter 2 describes the
background of software evolution as a research field and research done by the author
prior to this thesis. Chapter 3 describes the context for the data used in an empirical
study to answer the research questions and test the hypotheses in chapter 4. Chapter
4 formulates a number of research questions and hypotheses about software evolution

1

CHAPTER 1. INTRODUCTION

and describes the metrics used. Chapter 5 presents the results from the empirical study.
Chapter 6 discusses there results. Chapter 7 concludes the report and gives suggestion for
further work.

2

Chapter 2

Background

2.1 Software evolution

Although discussion of software evolution has existed for a long time, it’s only recently
that it has become a well known phenomenon in mainstream research. As Lehman states
in [Lehm01b] “the software evolution phenomenon was first identified as such in early
70s. It is reflected in an intrinsic need for continuing maintenance and development of
software use to address an application or solve problem in real world domains. Until
recently, however, it did not arouse general interest”.

The definition of software evolution is debated, different authors have different ideas
on what should be considered as evolution. Some consider evolution to be something
that happens during the whole lifetime of the software system while some limits it only
to a certain development phase [Rajl01]. Some consider software evolution to be the
phenomena behind all changes in the software system, while others consider it to involve
only abstract changes and thus not include things like correction of earlier mistakes and
porting to a new platform. Also, some limit software evolution to the software system
itself, while others includes the development process and organizational structure.

Lehman et. al. says in [Lehm01a] that “the more common approach sees the
most important evolution issues as those concerning the methods and means whereby a
software system may be implemented from ab initio conception to operational realisation.
The focus of this approach is the how of software evolution”. A less frequent approach
“is concerned with the what and the why of evolution. It addresses the issues of the
nature of the evolution phenomenon, its drivers and impact.” Yet another view on software
evolution is used by some authors, “they regard it as being limited to software change and
implicitly exclude, for example, defect fixing, functional extension, restructuring.” Still
others consider it “a stage in the operational lifetime of a software system, intermediate
between initial implementation and servicing”.

A central issue in defining software evolution is whether to differ between software
evolution and software maintenance. Software maintenance includes the minimum set
of activities required in order to keep the software system running as it is with the
functionality it currently holds. This includes fixing bugs and security updates and making
sure the software system works on new hardware and platforms. If not maintained, the
software will be considered outdated and possibly useless after some time. Software
maintenance is important and numerous scientific studies of large-scale software systems
have shown that the bulk of the total software-development cost is devoted to software
maintenance [Mens01]. Even when software maintenance is not considered part of the
software evolution, it is a tightly related phenomenon. Another related term is software

3

2.1. SOFTWARE EVOLUTION CHAPTER 2. BACKGROUND

decay, which is defined as decreasement in the "quality" of the system from a developers
perspective, this includes lack of documentation and understanding of the system and low
correlation between the actual and the ideal architecture.

Software systems are developed in different phases, e.g. making requirement
specification, initial design, writing code, testing and installing. But execution of these
is rarely sequential, errors are uncovered and underlying assumptions are changed after
installation of the system. The process is one of successive transformation. “It is driven
by human creative and analytic power as influenced and modified by developing insight
and understanding, but feedback from later steps that leads to iteration over earlier steps,
together with changes in the external world that must be reflected in the system, also play
a role” [Lehm01a]. Different areas on the development are in constant interaction, e.g.
the process affects the physical software system which again affects the releases and so
fourth.

Lehman describes five areas of software related evolution [Lehm01a], each of them
interact with, impacts and affect the others. “If software evolution is to be mastered, they
must be understood and mastered individually and collectively. They must be planned,
driven and controlled.” The five areas are:

1. Implementation of a software system from an initial functional concept to the
final, released, installed version. Often the relative benefits of alternatives can’t
be established beforehand, and need realistic trials. This evolution is thus driven by
feedback mechanisms and evaluation of changes made to the system.

2. At the next level up, there is a sequence of versions, releases and upgrades of a
software system. Driven by a release process where changes are made to remove
defects and implement improvements and extensions. This is usually referred to as
"maintenance".

3. Applications, or activities, to support the development of software systems that
address problems in the real world. There is an unending process to meet new
functionality, procedures, need, opportunities and so forth when dealing with a loose
user community.

4. The process of software development is the aggregate of all activities the implement
one or other of the above levels of evolution. An estimated 60 % to 80 % of
lifetime expenditure on a software system in incurred after first release [Pigo96].
It is therefore important to make improvements that produce gains in quality, cost,
and reduced development time.

5. Modeling, using a variety of approaches is an essential tool for study, control and
improvement of the process. The models facilitate reasoning about it, to explore
alternatives or assess the impact of change, for example. The process evolves. So
must the model of it.

This rapport, a wide definition is used for software evolution. It includes the changes to
a software system from the design to the end. It involves changes in the software system,
in business requirements and the process of development and organizational structure.
Of the five areas defined above, this rapport has special emphasis on the first and second
level; the physical software system and its releases.

4

CHAPTER 2. BACKGROUND 2.2. WHY CHANGES OCCUR

2.2 Why changes occur

Ideally, at the beginning of software development, when creating an architecture, all con-
cerns for future changes in the systems requirements are considered and accounted for.
However, this is rarely the case. The reason for this is that future requirements are not al-
ways known, unpredicted new requirement, tight deadlines and changes in the goals and
purpose of the software system is common. Software evolution is considered unavoidable
and often important, like when the business model is extended and a new marked is met.
Although software evolution is often considered unwanted, it should often be considered
natural and a necessity.

We distinguish between changes intended to add new functionality and changes
intended to improve quality attributes. New functionality can be to add supporting
payment with credit card, adding print support, a new graph that provide some
information or similar. Improved quality can be to improve the overall performance,
increase the uptime of a system, increase the security or similar.

But changes can’t merely be tracked back to a specific action; often it is important
to consider the environment. Obviously the development process and practices plays an
important role in preventing or encouraging changes to the software system. Andy Hunt
et al. [Venn03] note the importance of fixing small unknown errors. His point is that if a
development team does not pay careful attention to sustaining a stable high quality, they
will "technical debt", meaning that a known technical problem is not fixed. Postpone fixing
these errors often leads to more technical debt and often abdication of responsibility. The
software therefore ends up in a spiral of increased technical debt and decay.

The background for Hunts opinions is a theory called the Broken Window Theory based
on an experiment done to see what cause neighborhoods with similar demography to
evolve in different direction with respect to crime. Hunt explains the study like this: "The
researchers did a test. They took a nice car, like a Jaguar, and parked it in the South Bronx
in New York. They retreated back to a duck blind, and watched to see what would happen.
They left the car parked there for something like four days, and nothing happened. It was
not touched. So they went up and broke a little window on the side, and went back to
the blind. In something like four hours, the car was turned upside down, torched, and
stripped–the whole works."

From this a theory was developed that says that one broken windows lead to more
broken windows and further worse criminal act in and exponential fashion.

2.3 Laws of Program Evolution Dynamics

In [Bela76], Belady and Lehman describes finding from an analysis of a large software
system. They discovered an upward trend in size, complexity and cost of maintenance.
These and more detailed observations encouraged the search for models that represented
laws in software evolution.

Three laws where formulated:

1. Law of continuing change: A system that is used undergoes continuing changes
until it is judged more cost effective to freeze and recreate it.

2. Law of increasing entropy: The entropy of a system (its unstructuredness)
increases with time, unless specific work is executed to maintain or reduce it.

5

2.4. GOAL-QUESTION-METRIC CHAPTER 2. BACKGROUND

3. Law of statistically smooth growth: Growth trend measures of global system
attributes may appear to be stochastic locally in time and space, but, statistically,
they are cyclically self-regulating, with well-defined long-range trends.

These laws have been used in many papers and formulated in different ways usually
reffered to Lehman’s laws of software evolution. In this thesis these three laws will be
described as Lehman’s first, second and third law respectively.

These findings where presented almost thirty year ago, but are still subject to
discussion. Especially the second law is subject to a lot of controversy on the subject
of software evolution. This thesis will look at the same issues to test it on the Portage
system from the Gentoo Project and see whether the laws are still are relevant.

Especially the second law will be considered. While Lehman’s first law deals with
the inevitability of change, this deals with the consequence of that. This comes from the
addition of functionality like more configurations, handling of special cases, adding user
styles and supporting more languages. This done in the original design of the system
degrades it and results in reduction of manageability [Lehm80].

Stated by Lehman, “The accumulation of gradual degradation ultimately leads to the
point where the system can no longer be cost-effectively maintained and enhanced.” Not
only functional maintenance becomes necessary, but in addition structural maintenance is
needed. Clean-up and re-engineering efforts are needed.

The rationale given by Lehman is that “if one tries to do the necessary changes to a
system in a cost-effective way, this is what happens. If there are multiple objectives, one
cannot fulfill all of them optimally”. The design can’t change for every change. Also over
time, original design ideas becomes forgotten.

2.4 Goal-Question-Metric

The background for the research questions and hypotheses is the ideas from the
Goal-Question-Metric (GQM) paradigm [Basi94]. GQM is a method used to define
measurement on the software project, process, and product used to define and evaluate a
project. It defines a measurement model on three levels:

Conceptual level (goal): A goal is defined, for a variety of reasons, with a model of
quality, a point of view, and for a particular environment.

Operational level (question): A set of questions is used to describe the object studied
in a manner that relates to achieving a specific goal.

Quantitative level (metric): A set of metrics is associated with every question in order
to answer it in a measurable way.

GQM states that data collection should proceed in a top-down rather than a bottom-up
fashion. However, [Moha04] gives three reasons for why bottom-up studies are useful.
Firstly, most data is collected in repositories with the goal of providing a service, not data
for a GQM paradigm. Secondly, companies that start to use GQM might want to use older
data and relate this data to goals (reverse GQM). Thirdly, although a company might
measure according to defined goal, the measuring practice itself needs improvement from
bottom-up studies.

6

CHAPTER 2. BACKGROUND 2.5. SOFTWARE METRIC

Figure 2.1: A Goal-Question-Metric hierarchy

2.5 Software metric

A software metric is a measure of some attribute of software or its specification. Example
of software metrics are lines of source code and bugs per line of source code. They
have long been studied as a way to assess the quality of large software systems [Fent97].
Software metrics are used when a certain property of a software system is of interest, a
set of one or more attributes are then considered to represent that property and a metric
used to extract values for the attributes.

Figure 2.2: Software metric

Figure 2.2 describes the term metric. When an attribute is measured, you get a
measure/value. In this process, a metric is defined as the attribute and the applied way
of performing the measurement. The metrics describes what the attribute is suppose to
be measured as, like a scale or a set of values, and how the measuring is performed, e.g.
manually or automatically. Metrics can be used in a number of ways to support software
evolution and software engineering in general. It is simple, precise, general and scalable
and provides quantitative results and the results can be duplicated and compared.

Mens says in [Mens01] that “improving software quality, performance and productivity
is a key objective for any organisation that develops software. Quantitative measurements
and software metrics in particular can help with this, since they provide a formal means

to estimate software quality and complexity”.
When using metrics to understand the software system and evolution better it is

7

2.6. RESEARCHING ON OPEN SOURCE PROJECT CHAPTER 2. BACKGROUND

important to know what you are looking for. Mens says in [Mens01] that “initial
experiments have indicated that metrics can detect different types of evolution, such as
restructuring and extension. Nevertheless, it remains an open question which types of
software evolution can be identified by which metrics. A related question is whether it is
possible to reconstruct the motivation behind an evolution step (e.g., why was a certain
change made between two successive releases)?” Therefore although metrics might be
easy to use, the issue of actually making sense of the output can be harder.

Gall et al. separate between the use of software metrics before the evolution has
occurred (i.e., predictive), and the after the evolution had occurred (i.e., retrospective)
[Gall98].

2.6 Researching on open source project

Research has been done on open source before, e.g. [Mont04]. In [Mont04] Monteiro et
al. uses Gentoo Linux to describe the process of decition making in Open Source based on
qualitative study of IRC-log and mailing lists.

The reason for choosing to use open source and the Gentoo Project in this thesis was
because it was used in the authors previous work and it was therefore found valuable to
draw from this experience and take a closer look it.

Approaching an open source project for analysis is in several ways different from
approaching an industrial software project. Important characteristics are openness around
development and related information and homogeny in technology used in different open
source projects.

Open source projects, at least those involving geographically spread developers, are
in need of keeping development related information publicly available. This is useful
for attracting developers and coordinate development. For a researcher, this means that
information, although possibly incomplete, is available and there is no need for clearance
and help from project participants.

Another tendency in open source project is that they tend to use the same tools and
often similar practices for development. This includes the use of CVS and Bugzilla to
manage the code and IRC, mailing list and blogs for discussions.

Shortcoming may include problems of generalization and lack of stable development
and release practice caused by a lot of the work being voluntary. Voluntary involvement
also makes the motivation different from most industrial projects and consequently also
development focus.

This thesis will use an open source project for data analysis and testing of research
questions and hypothesis and will try to document experience and challenges related to
the characteristics described above.

2.7 Prior research by the author

In earlier work by the author, Portage from the Gentoo projects (same source as in this
thesis) was used to answer and test the following research questions and hypotheses:

RQ1: What evolution trend happens in the lifetime of a software system?

RQ2: What is the share of different change types?

8

CHAPTER 2. BACKGROUND 2.7. PRIOR RESEARCH BY THE AUTHOR

H1: Preventive changes modify more files than corrective and adaptive changes.
[Accepted]

H2: In absence of restructuring focus, the share of preventive changes increases during
the lifecycle of software systems. [Accepted]

H3: The effort of changes is stable independently of file size. [Not accepted]

Too little conclusive results where found on RQ1 and so this thesis will make an
attempt at answering related questions.

Also, analysis was done on data describing changes on files for different months. This
thesis will try to analyze using data describing changes on modules, classes and function
for different logical interval instead since it can be considered a better measure.

For details on data used and results, see [Hagl04].

9

Chapter 3

Research context

A lot of data is collected during the development of a software system. In order for
developers to cooperate smoothly, information is collected to prevent them from stepping
on each others toes and to communicate and monitor activities.

Portage, the project used in this study contains about 16,000 lines of Python code in
about 50 files. In addition there are several shell scripts that wraps various system tools.
Data for about three year of development between October 2001 and October 2004 have
been used.

The development of Portage is similar to the development found in other open source
projects and the tools used and described later in this chapter are de facto standards for
open source development.

Portage is a central piece of the Gentoo Linux system and has therefore been subject to
a lot of changes to accommodate the constant need for new functionality. Therefore not
only has the size continually increased, but due to constant change in requirements as well
as quick updates, no strict attention has been made on structural maintenance and so the
design is more or less the same as is was at the initial stage with a tenth of the size in code
lines. Portage is therefore particular suited for testing Lehman’s second law of increased
complexity is absence of structural maintenance (described in section 2.3).

3.1 Study objects

Portage, the package management system for the Linux distribution Gentoo Linux is used.
Characteristic for this system is the target users are developer and it should therefore have
more and better feedback from its users. It is based on voluntary work and consequently it
is cantered around a few stable core developer assisted by a larger developer base. Portage
performs critical tasks for the operating system (Gentoo Linux) and therefore it has a high
demand for stability and quick updates in case of faults.

The development history is special in that public development has lasted three year
without large restructuring of the code (although a major restructuring is under work
separately from development studied here). Also a simple fundamental architecture of the
process for the system exists and has been stable since development stated, but there has
never been any architecture for the internal part of the system. Neither has there been any
formal architecture through documentation, diagram or similar.

10

CHAPTER 3. RESEARCH CONTEXT 3.1. STUDY OBJECTS

3.1.1 Gentoo Linux

Gentoo Linux is a Linux distribution based on voluntary effort. It is a collection of several
open source programs packed together to form a fully working operating system. It is
unique in that it does not distribute compiled binary-version of the system components,
but instead makes each system compile and build the programs itself optimized the
hardware and with user-specified parameters.

The vast majority of the development is done by third-party developers while about
200 Gentoo developers makes sure all the programs gets integrated with the system. A
large part of this work is done by writing ebuilds, which is a script with instruction on how
to find the newest version of the software, build it and finally merge (integrate) it with the
system. A major part of the development focus on making new and improving the ebuilds.

An important characteristic of the Gentoo project is that it is focused on being highly
developer friendly to attract highly skilled developers as users to help improving the
system. The system is therefore driven by the open source philosophy of "scratching where
it itches", meaning that developers fix and improve the part where they themselves see a
need as a user.

Combined with having highly skilled developers, this creates a strong community for
improving the system.

3.1.2 Portage

The Gentoo web page states that “Portage is the heart of Gentoo Linux, and performs
many key functions.” [Gent]. It is where most of the in-house development in Gentoo
takes place, excluding ebuilds.

It is the program that takes care of distributing, building and keeping track of all the
"packages" of the programs that makes up the Gentoo Linux operating system.

Portage contains about 16kloc of Python code and several utilities written is shell script
and consists of about 5-10 main developers. It has a recorded public development history
stating August 2001.

The process of merging (integrating) a new program using Portage can be described
as follows:

1. Search PortDB for the newest ebuild or a given version for a specified package. An
ebuild is a script with guidelines for emerge on how to perform the installation.

2. Parse ebuild to determine dependencies; that is required packages needed before
installing this particular ebuils.

3. Download source code need for the package from a remote server over HTTP and if
necessary download and apply associated patched.

4. Build the source code in temporary location with the specified values from
make.conf.

5. Perform post-build actions.

6. Merge the newly build package with the existing system.

7. Create new entry in VarDB with the ebuild, parameters from make.conf and list of
files added to the system.

11

3.1. STUDY OBJECTS CHAPTER 3. RESEARCH CONTEXT

Figure 3.1: Architecture of Portage and the process of installing a package

12

CHAPTER 3. RESEARCH CONTEXT 3.2. RELEASES

Ebuilds are central in the Gentoo project. They are ordered in a three level hierarchy
of category, package and version. A number of categories are defined, each containing
several packages. For each package, there are also specified different versions. Usually the
newest version is preferred, but occasionally an older version of a package is needed, so
different versions of a package are available to the system administrator.

The PortDB is a database of ebuilds for packages available to the user, either installed
or with the potential for been installed or upgraded. In these scripts are instructions for
how to build the content of the package, usually a program. The PortDB is updated via
a remote database manually be the user to make sure the system know of updates and
security fixes.

When a system administrator wants to upgrade a part of the system or install a new
package, he or she runs the emerge program that checks PortDB to find and run the
necessary ebuild(s). It downloads associated source code for that package from a remote
server.

Next emerge compiles the source code for the package in a temporary location based
on the configurations in the files make.globals and make.conf and perform any specified
post-build task, like adding users, to the system.

Further emerge merges the package with the system by copying the files from the
temporary location to the correct location. Finally emerge copy the script and a list of the
new files just copied for the package to VarDB to keep track of the state of the system.

3.2 Releases

One improvement for analysis in this thesis over previous work [Hagl04] done on Gentoo
Linux by the author is to use compare logical instead of monthly code samples. This
makes it safer to balance out periods of bugs fixing and periods of development of new
functionality. It also limits the effects of special events skewing the data, e.g. in the
development of Portage a module was temporary added to work as backup, thus causing
a temporary increase followed by a similar decrease in size.

The possibility of using software releases as a way to compare logical changes is highly
dependent on the project. Industrial development projects often have a timeline for when
the software should be released for the customer, both for shrink-wrapped or custom-made
software. This timeline is affected by technical, business and organizational concerns. For
open source projects, business concerns are usually much less important which means
more focus on the others. Also, open source projects are often in strong growth in size of
the system and amount of developers involved at the beginning and organizational issues
are often an adapting process, therefore open source projects can be said to be more likely
to change development practices over time and more dependent in technical issues.

Releases of open source are as well suited for logical analysis as releases of other
projects, if not better, but only if the development is stable. At a pre-stable level, open
source projects are mainly focused on development and makes releases with the aim of
using the users as tester for the program. Thus, a new release does not occur when the
system is stable enough for end users, but when it is stable enough for testers and early
adopters. Open source software might be better at a stable state because it is not as
affected of a companies unique business concerns that makes it hard to generalize the
findings.

The development of Portage, used for analysis in this thesis, is an example where
initial development had frequent releases and where releases was slowed down later. Also

13

3.3. DATA SOURCES IN OPEN SOURCE PROJECTS CHAPTER 3. RESEARCH CONTEXT

the routine for releases and release number changed during development. This makes it
harder to establish a clear understanding of logical releases to be used for comparison. A
more careful look at development history is needed, an interpretation of logical releases
is shown in figure 3.2. At a more mature stage however, Portage has begun to follow a
common release cycle for open source projects described in figure 3.3. Even though this
is the formal practices it should be noted that most of the development in Portage is still
done in small increments.

The timeline in figure 3.2 shows the overview of the releases recorded in the projects
ChangeLog that are considered to be the most important ones. They where considered
important mostly based on their release number and the time between them. There several
releases between 2.0 and 2.0.47 (2.0.1, 2.0.2, ... ,2.0.46), but they where so frequent that
they should not be considered important because they only represents small incremental
releases.

Figure 3.2: Timeline of important Portage releases. Red ones not used in this thesis.

Figure 3.3: Common open source release cycle, currently used by Portage

Open source projects release cycle and release routine is very important if it is
necessary to look at difference in logical releases. Several large and mature projects follow
a clear release cycle and often has time based releases, e.g. every 6 month.

For this thesis, source for the releases in figure 3.2 was attempted extracted, however
only 1.8.0, 2.0.47, 2.0.48, 2.0.49, 2.0.50 and 2.0.51 where found. Although not the
complete set of important releases, these do represent regular releases for at three-year
time period.

3.3 Data sources in open source projects

The Portage system uses the same development technology as the majority of open source
projects. The figure below describes this system. There are two main parts, Bugzilla and
CVS. Bugzilla keeps track of the state of the system (like reported faults) while CVS keeps
track of changes to the code base.

As shown in figure 3.4 a change request is reported by a user to Bugzilla, a web-
based system that keeps track of the state of bugs. If the bug report is accepted by the
responsible Bugzilla administrator, it is published as an open task ready to be performed
by an unassigned or assigned developer. A developer, either the developer responsible for
that part of the system or a voluntary developer, makes the necessary modification to a

14

CHAPTER 3. RESEARCH CONTEXT 3.3. DATA SOURCES IN OPEN SOURCE PROJECTS

Figure 3.4: The process of a fault being reported and fixed

15

3.3. DATA SOURCES IN OPEN SOURCE PROJECTS CHAPTER 3. RESEARCH CONTEXT

local version of the code recently updates from CVS. When the developer is done, the code
with modification is submitted to CVS, a code repository that keeps track of changes to
the code. For any modification, the developer is asked to make a description about the
change. Although not forced by the system, the developer also reports the changes made
with a description in a file called ChangeLog at the root of the project.

Although Bugzilla is created for the purpose described above, it is also commonly used
for tracking request for new features the same way as requests for bug fixing. The process
for this is the same as described above.

This gives two sources for data mining of the Portage system, the ChangeLog-file which
is a historical log with comments on all changes made to the system and the CVS-logs
which logs all changes made to a single file in a more detailed form than the ChangeLog.
The Bugzilla system also provides valuable data for empirical studies, but is not used here.

3.3.1 ChangeLog

A changelog is a log of recorded changes made to a project. Commonly used in open
source projects with the intention of keeping an overview of changes so that developers
can follow what has been done by others.

In Portage, and most open source projects, it comes in the form of a single text file.
Although there are no formal standard for the layout of a ChangeLog-file, a change done
by a developer to a file in a project is usually supplemented, possibly automatically, by
adding a paragraph to the top of the file with the date of the change, the person that made
the change, the files effected and a description of the change. When the maintainer makes
a release, he or she adds a new line at the top of the file saying that a new release has
been made public. Therefore it is also possible to track the version a given change was
included in.

Following is a sample text from the ChangeLog-file in the Portage project:

* portage-2.0.51 (20 Oct 2004): Everyone loves stable!

20 Oct 2004; Jason Stubbs <jstubbs@gentoo.org> repoman: Added
check for digest entries that aren’t used within the
corresponding ebuild’s SRC_URI.

20 Oct 2004; Jason Stubbs <jstubbs@gentoo.org> emerge: Added
support for EMERGE_WARNING_DELAY defaulting it to 10. Changed
all the hardcoded delays to use it. Needed for the catalyst
guys as it includes a number of unmerges of system packages.

19 Oct 2004; Nicholas Jones <carpaski@gentoo.org> portage.5:
patch included to fix a few typos.

This data is provided in a structured way in the ChangeLog-file, therefore, it can be
extracted automatically. Date of change, developer, files affected and description can eas-
ily be extracted. The description can further be used to classify what kind of change was
made and categorize them. Mockus outline a good description on how to label these char-
acteristics automatically [Mock00].

The suitability of data from ChangeLog-files have been questioned, certain research
have shown that the correctness of it varies from 5 to 75 %.

16

CHAPTER 3. RESEARCH CONTEXT 3.3. DATA SOURCES IN OPEN SOURCE PROJECTS

3.3.2 CVS

CVS is a commonly used and simple version control system. It tracks the history of files by
logging differences (added and removed lines) between the files before and after a change
with comments from the developer. It stores information about what lines are added
where and what lines are removed, the time at which the change was made, whom made
it and comments. It stores information of each file separately and thus does not contain
information on which files where changed at the same time as part of a single submitted
change to the system. An important strength of using CVS and similar systems for data
mining is that it provides consistent data over the duration of development regardless of
changes in the development process or active developers.

Data from the CVS can be presented through a web-based interface listing a summary
of each change. Following is a sample of a change summary displayed in a web-based
CVS- interface:

Revision 1.530 - (download), view (text) (markup) (annotate) - [select for diffs]
Mon Oct 25 11:20:46 2004 UTC (4 days ago) by jstubbs
Branch: MAIN
Changes since 1.529: +16 -8 lines
Diff to previous 1.529
Converted config.pkeywordsdict from {atom:[keyword]} to
{cp:{atom:[keyword]}} to prevent a lot of unnecessary calculation.

On the first line show the revision number for a file. This is generated automatically
by CVS and has no relevance to any release number. The second line shows the date
and time and the username of the developer that committed the change. The third line
shows the branch used in case it is necessary to keep track of two separate version of the
same file at the same time. The fourth line shows from what revision the changes where
committed and the number of lines added and the number of lines removed. At the end
of the summary a textual description of the change is shown.

Although CVS does a good job of managing the history of single files, it merely provide
data on removing and adding files and removing and adding lines. If a file in moved or
renamed it is simply considered removed and a new file is considered added. Also if code
is moved around inside a single file or from one file to another, this is also registered as
deletion and addition. Therefore, in contrast to some other code repositories, there are
no simple ways to find data on moving of code and splitting or merging of files. This is a
clear weakness for using CVS in data mining. Another limitation is the lack of data on the
project as whole due to the fact that history scope is limited to single files.

3.3.3 Bugzilla

Bugzilla is a bug managing system where users and developers reports bugs which are
than publicly viewable. Several properties can be set for the bug, like version number,
severity and related component. Also the maintainer can change the status of the bugs,
close it or post comments.

Bugzilla provides a web-based user interface for handling and viewing bugs for the
system. This interface provides several ways for presenting the data to the user. However,
the author found no trivial way to extract the history of bugs for data analysis. Instead a
script had to be used in order to make several queries automatically and put together data
collected.

17

3.4. SUPPORTING TOOLS CHAPTER 3. RESEARCH CONTEXT

Another limitation with using Bugzilla for data mining is that there are no direct
connection between Bugzilla and code repositories like CVS. Thus, it is hard to connect
data on bugs to data on change. The only possibility the author found is the mentioning
of a bug number in the ChangeLog-file the a bug was resolved. However, there are several
uncertainties on this connection.

3.3.4 IRC, mailing lists, blogs

The social process is important for all non-trivial software process done by a group of
developers. In industrial projects, this is often seen in the form of the well known “water
cooler talk” or brainstorming on white boards. This is obviously suited for coworkers
working physically collocated. In contrast open source projects have a tradition of working
through mailing lists and IRC. Recently the use of blog for discussion has become popular,
especially for large projects.

There forms of discussion is public and often archived and makes it much easier to
understand the human side of software development than e.g. using an observer at a
workplace and can provide valuable qualitative data.

Example of research on the open source project using these sources can be found
[Mont04] which looks at the development process behind Gentoo Linux. Such research is
not done in this thesis.

3.3.5 Statistics

Since open source projects often use similar tools and the development is public, is rather
easy to get data from any give project and to compare them. A good example is the
development repository called SourceForge, which hosts about 100,000 projects providing
them with services like code repository, mailing lists, web space and so on. It automatically
provides statistics over activity and downloads for each project. SourceForge has been used
in research to provide data on open source projects like how many projects survives the
first month and how many projects has only one or two developers.

3.4 Supporting tools

A number of projects where found when looking for tools to support metrics. They where
not all relevant for this thesis because only tools supporting Python was used. Here are
some of the best suited tools for different platform and purpose presented.

3.4.1 Maven

Maven [Mave] is “a software project management and comprehension tool” developed by
the Apache Foundation. It provides a central way to handle builds, documentation and
provide information of the code base. Although it is not directly a tool for metrics, it has
a large set of components and plug-ins that provide several metrics of the code with little
effort. These metrics are intended to be used for seeing weaknesses in the code base, but
it should be possible to use this for analysis. Maven only supports code written in Java.

18

CHAPTER 3. RESEARCH CONTEXT 3.4. SUPPORTING TOOLS

3.4.2 XRadar

XRadar [Xrad] is a code reporting tool that produces “HTML/SVG reports of the systems
current state and the development over time - all presented in sexy tables and graphs”. An
example is shown is figure 3.5.

Figure 3.5: Output of XRadar

Originally designed to support the need of large reengineering initiatives at Telenor
it gives “measurements on standard software metrics such as package metrics and
dependencies, code size and complexity, code duplications, coding violations and code-
style violations.” Data from unit test metrics and code coverage are also integrated.

It only supports Java-based systems but plans to support other languages.

3.4.3 Pythius

Pythius [Pyth] is a simple open source tool that measures some basic metrics on Python
source code.

Pythius provides data for the size (lines of code) for classes and not just files. It also
distinguish between commented, blank and ordinary code lines. This made it possible to
look for logical changes (changes in class size) and not just physical changes (changes in
file size).

Pythius was modified and used in this thesis to store the results in a MySQL-database
instead of printing it on the screen. A sample of the source code was analyzed for every
month of development since public development stated July 2001.

Most of the data was later replaced by data from Pythonmetric [Pyme] (released 5.
May 2005) because it provided more advance data. However data on comment and non-
comment lines was extracted by Pythius.

3.4.4 Pythonmetric

Pythonmetric is the result of a student project at NTNU, it "will calculate and output
metrics on code written in Python. Reports can be generated in text- or XML-files" [Pyme].
Metrics used includes cyclomatic complexity (see section 4.3.1) and lack of cohesion (see
section 4.3.2) in addition to basic metric like lines of code and number of classes. It can
be extended with new metrics through a plug-in system. The results can be generated for
any number of files inside a folder.

Pythonmetric was used to generate most of the data used in this thesis.

19

3.4. SUPPORTING TOOLS CHAPTER 3. RESEARCH CONTEXT

3.4.5 Spreadsheet application

Spreadsheet applications like OpenOffice and Excel are useful for handling the data
produced by other tools and make figures for graphically representing the results.

3.4.6 Database

Spreadsheet applications are limited for making selective use of data. It can summaries
data and present them, but not suited for sort and restructure them. A database can store
data, extract a selection based on a criterion and combine more easily using SQL.

For extra large data store for a general purpose, it might be useful to use a data
warehouse to increase speed and get a better overview.

3.4.7 Other

There are several general purpose tools for “washing” data and testing metrics usually
through the use of regular expressions and structure analysis. They include Biff/Yacc, lex
and perl.

20

Chapter 4

Research questions and hypotheses

The goal of this thesis is to look at what factors can explain evolution in software
architecture and whether it is possible to foresee that evolution will occur.

The research questions and hypotheses described in this chapter is constructed for
usage in the context of an open source project called Portage described in chapter 3.

This chapter formulates research questions and hypotheses in order to look further at
issues relevant to this report in the context of Portage.

4.1 Software metrics for software evolution

Evolution proneness A term suggested by Mens in [Mens01] is evolution-prone parts, which
are parts of the software that are likely to be evolved. The reason is not necessarily
because of poor structure or quality, but because the software requirements can change
or disappear quickly. A way to detect this in a quantitative manner is to investigate the
release history of the software on earlier releases and identify which parts of the software
has been most frequently changed. To keep track of the changes, most large software
projects use some form of version control system that can be used for analyzing changes
between releases.

Metrics can be used to give a measure of the amount of change made to a part of the
system at a specified granularity, like module, file, class and methods. When deciding
granularity, it is important to know the limitation of the tools being used, measuring
changes on a class is probably more demanding that measuring changes on a file. Two
factors are important for this measuring. Firstly the size of the parts analyzed matters
because the relative amount of change is important. Also, the time at which the change
was made is important, recent changes are more important for the current status of the
system.

Different visualization techniques might help dealing with scalability issues to adapt
to the cognitive limitations of humans. As Mens writes: “to cope with the scalability issue,
typical examples of this approach visualise the measurements. For example, Ball and Eick
notate code views with colours showing code age [Ball96], and Jazayeri et al. use a
three-dimensional visual representation for examining a systems software release history
[Jaza99]. Lanza combines software visualisation and software metrics as a simple and
effective way to recover the evolution of object-oriented software systems” [Lanz01].

Evolution sensitivity Another useful term used by Mens is evolution-sensitive parts,
which are parts of the software that can cause problems upon evolution or where the
estimated effort of managing the impact of changes is very high. This typically happens

21

4.2. ORIGINS FOR DATA CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES

where the important design goals of loose coupling and high cohesion is not met. When
different parts of the software are tightly interwoven, changes to one part might have a
high impact on other related parts.

A type of metrics are used to detect evolution-sensitive parts, is coupling metrics. There
are some suggestions for coupling metrics, including coupling between object classes
(CBO) [Chid94], coupling factor [Brit95] and response set for a class (PFC) [Chid94].

Another possibility is to use cohesion metrics. However, Kabaili et al. investigated
whether they could used as changeability indicators, and concluded that this is not the
case, at least not with the cohesion metrics present at that time [Kaba01].

More research remains necessary to find out whether other metrics than cohesion and
coupling can be used to detect evolution-sensitive parts of the software.

Retrospective analysis of software By comparing two releases of the same software
system, Mens states that it is possible to extract information about how the software system
has evolved and see what kind of evolution has occurred.

As an example, he mentions an retrospective empirical study by Gall et al. where
coupling metrics where used on multiple releases of a large telecommunication switching
system [Gall98]. The results could successfully be used to more accurately predict future
expected maintenance activities.

Another study performed by Demeyer et al. where various size and inheritance metrics
where used on three releases of a medium-sized object-oriented framework [Deme99].
"From the framework documentation one can deduce that the transition from the first
release (1.0) to the second release (2.0) was mostly restructuring, while the transition
from the second (2.0) to the third release (2.5) was mainly extension. This restructuring
and extension was confirmed by the measurements. During the restructuring phase, a
substantial number of classes changed their hierarchy nesting level (i.e. the number of
super classes) and the number of methods defined. This implies that most of the changes
were in the middle of a class hierarchy which is indeed typical for a major restructuring.
Yet, during the extension phase none of the classes changed their hierarchy nesting level,
but a significant amount increased or decreased the number of children. Thus, all changes
were made to the leaves of the inheritance hierarchy which is indeed typical for extensions.
Consequently, the 1.0 2.0 restructuring did improve the inheritance structure since the
subsequent 2.0 2.5 transition really exploited the inheritance hierarchy" [Mens01].

Comparing two releases in can give information like classes added, classes removed,
increase and decrease in number of methods and changes in the class hierarchy. This
can provide significant help in under standing the evolution that took place. For example
can a stable number of classes and an increase in methods mean that there has been
an extension in the form of added functionality. Also, new functionality usually means
changes in classes at the leafs of the class hierarchy. On the other hand, if changes happens
in the middle or top of the class hierarchy it is more likely that restructuring have been
done.

4.2 Origins for data

Before data can be analyzed and hypotheses tested, data has to found. This can be trivial
and it can be tricky. It is important to find a software system that is relevant for the
research question or hypothesis in mind and it is important to know the context of the
data to be analyzed.

With permission, using a commercial software system can be a good source. Com-
mercial development usually has a relatively stable workforce, well-defined development

22

CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES4.3. METRICS USED IN THIS REPORT

strategy and clear business goals. Although a good and defined source for answering
questions, companies are often reluctant to give away data on the development of their
software system since it is critical to their business. It can be hard to find a suitable com-
mercial software system where the company is willing to share its data.

In this case, open source projects can be of great value. There are a large number
of open source projects available with a lot of data collected during development to
choose from. However they often hold a large number of undocumented and uncontrolled
variables. Varying number of developers, lack of schedules and differing or unclear goals
are common. Requiring a formal project can limit the suitability of using open source
projects, although they do exist.

Whatever data origin chosen, it is important to make sure it is generalizable enough to
cover the questions of interest and that relevant data is or have been collected during
development. Interesting data from a software system can be extracted from several
data origins. There are two important sources of interest for software evolution, change
requests and the change reports. Also various attributes of the source code is usually very
useful.

There is a large number different system, standards and routines used in the process
of creating the data. Change requests can be reported using a physical paper form or
through a separate software system design to manage a vast number of requests. For
archiving the changes, there are several different configuration management and version
control systems. Some provide easy extraction of data, other require manual work.

4.3 Metrics used in this report

4.3.1 Cyclomatic Complexity

Cyclomatic complexity (CC) was introduced by McCabe in 1976 [McCa76], and is often
reffered to simply as program complexity or McCabe’s complexity. It was construct to
meet the challenge of how to modularize a software system to be more testable and
maintainable. At the time this was usually done by limiting the programs physical size.
However McCabe states that several properties of the graph-theoretic complexity shows
that complexity is independent on physical size [McCa76].

It is one of the more widely accepted software metrics and can be considered a
board measure for soundness and confidence [VanD00], it also indicates the psychological
complexity of a program and the number of necessary test. It measures the number of
linear-independent paths through a programs source code and results in a single ordinal
number that can be used for comparison.

Cyclomatic complexity is computed using a graph that describes the control flow of the
program. The nodes of the graph correspond to a block of code where flow in sequential
and the arcs corresponds to branches taken in the program. By definition,

CC = E − N + P

where

CC = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components

23

4.3. METRICS USED IN THIS REPORTCHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES

Figure 4.1: Connected Graph of a Simple Program [VanD00]

The cyclomatic complexity of a section of a source code is the number of paths through
it. A method with no branches has a cyclomatic complexity of one. The complexity is
increased by one for every occurrence of a branch, i.e statements like ’if’, ’for’, ’while’,
’case’ and ’catch’ or operators like ’and’, ’or’, ’&&’ and ’||’ or other variants used by various
languages. For instance a section with a single if-statement would have a cyclomatic
complexity of two since there are two paths through the code, one path for true and one
for false. Inserting or deleting functional statements does not affect the codes cyclomatic
complexity. Cyclomatic complexity is a procedural rather than an object-oriented metric
but still gives meaning in object-oriented development at method. It is independent of
language of platform.

A problem with the reliability of cyclomatic complexity might be that certain parts of
a program would expect to have high complexity. This would include UI modules, certain
code for data validation and error recovery. In these cases comparing them to other classes
might give a wrong picture of where complexity problems are the biggest.

4.3.2 Lack of Cohesion in Methods

Cohesion is central concept in object-oriented programming and can loosely be described
as the "togetherness" of a class. It gives an indication on whether a class represents a
single abstraction or multiple. Classes that represent more than one abstraction should be
refactored to multiple classes representing multiple abstractions.

High cohesion means that strong separation of different abstractions, thus lack of
cohesion usually indicates poor code where abstractions are unclear. Low cohesion of

24

CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES4.3. METRICS USED IN THIS REPORT

methods implies a large likelihood of errors during the development process, because of
the increasing complexity.

Although a relatively easy concept to understand by humans, it is difficult to define
a clear concrete definition that can be measured by a metric. Even so, some measures
exists e.g. that of Chidamber and Kemerer and that of Henderson and Sellers. These two
measure lack of cohesion in methods, so a low score is considered better than a higher
score.

There are certain problems in measuring cohesion for some languages. E.g. in Java
classes with getters and setters (like getProperty() and setProperty()) get high lack of
cohesion using the methods described bellow although this is not an indication of a
problem.

Chidamber-Kemerer

Chidamber and Kemerer define Lack of Cohesion in Methods as the number of pairs of
methods in a class that don’t have at least one field in common minus the number of pairs
of methods in the class that do share at least one field. When this value is negative, the
metric value is set to 0 [Chid93].

It is defined as follows:

Let C be a class with n methods M1, M2, ..., Mn
Let Ik = the set of instance variables used by method Mk
Let P = (Ii,Ij) | Ii joined with Ij = 0
Let Q = (Ii,Ij) | Ii joined with Ij <> 0

then,

Lack of cohesion = |P|-|Q| (or 0 if |P|>|Q|)

Henderson-Sellers

Henderson-Sellers [Hend95] defines Lack of Cohesion in Methods as follows:

Lack of Cohesion in Methods = <r>−|M|
1−|M|

where

M is the set of methods defined by the class
F is the set of fields defined by the class
r(f) is the number of methods that access field f, where f is a member of F
<r> is the mean of r(f) over F

For some programming languages, it can be useful to make small modifications to the
metric to prevent undesirable results. For instance excluding methods that do not access
any fields since these are often used in polymorphic languages to call a method on the
super class or exclude fields that are not accessed by any methods, since most compilers
will inform the developer of this.

25

4.4. RESEARCH QUESTIONS CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES

4.3.3 Other metrics used

The following metrics where also used in the research questions or for the hypotheses:

Size: Non-comments lines of code (NLOC) are used for size measure. Alternatively bytes
or all lines of code (LOC) could be use, but NLOC is considered better since it relates
to the amount of statements used.

Critical development: Changes in status for bugs in Bugzilla marked as blocker or
critical. (Compare with general development defined as changes in status for any
bug.)

Fault density: Faults are defined as the amount of bugs reported to and accepted in
Bugzilla minus the amount of closed bugs. Fault densitiy is the amount of fault per
thousand lines of non-comment code (KNLOC).

4.4 Research questions

RQ1 What is the size and cyclomatic complexity of the largest modules?

Motivation for RQ1: Motivation for RQ1: The intention of this question is to get a
better understanding of the data and trends for the system. The three largest mod-
ules are measured to enable comparison and show local growth.

Metric for RQ1: Metric for RQ1: Size (lines of non-comment code) and cyclomatic
complexity will be measured for the three largest modules (portage, emerge and
repoman) and the results for each release will be compared.

RQ2: Does the file structure change and if so what are those changes and reasons for
them?

Motivation for RQ2: In theory, there is no need for attention on the file structure for
application written in Python. Changes to the file structure are only done to get a
better overview and better coordination of work. Therefore looking at how it evolves
over time, we can get an idea of the situation of a project. It’s expected that to grad-
ually see an increase in files as part of a strategy for improving maintainability.

Metric for RQ2: Samples of the file structure for each release will be analyzed.
The amount of folders and files and the distribution of files will be measured and
compared.

RQ3: How does the number of files, classes, functions and code lines change over time?

Motivation for RQ3: Previous research by the author showed a linear increase of the
number of code lines of the two largest files for the project. Does the same apply
across the all files in the project? Also does the number of files, classes and functions
increase in similar fashion?

Metric for RQ3: Data from every month will be collected. The number of files,
classes, functions and non-comment code lines will be measured for each release
and compared.

26

CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES 4.5. HYPOTHESES

RQ4: How does the distribution of class sizes change between releases?

Motivation for RQ4: In previous research, it became clear that the size of the two
major files increased linearly. However no data was analyzed on the size classes.
This research question tries to answer the question on whether all classes increase in
size like the two major files did or whether only certain classes increase while others
do not.

Metric for RQ4: The size of different classes will be measured for each release and
seperated into three categories. Classes with 30 or less non-commented lines of code
will be classified as small classes, classes with more than 30 and less than 100 will be
classified as medium and thus with 100 or more as large. The result from different
releases will be compared.

4.5 Hypotheses

H1: The share of commented lines of code is independent of file size.

Motivation for H1: When measuring the size of source code, the number of code lines
is usually used. However, there is no clear consent on whether this should include
commented lines or not. This hypothesis looks at the difference in these two mea-
sures. If the hypothesis is true, the difference is only relative, but if false, including
comments or not when measuring size might give different results.

Metric for H1: Data on total lines of code and lines of commented code will be ex-
tracted for every month and compared. It should not vary more than 10 % from
average during the three year development of Portage.

H2: Critical development is more stable than general development in open source
projects.

Motivation for H2: Previous research [Hagl04] showed that development activity in
the Gentoo project decreased in May and November and increased in August and
February, a pattern assumed to be affected by school and vacations. The intention of
this hypothesis is to see how open source development might be affected by fluctua-
tion in development activity. The assumption is that security and severely important
bugs have a high priority and are fixed first, thus making critical development more
stable than development in general.

Metric for H2: Data on resolved bugs will be collected from Bugzilla containing
bugs from the whole Gentoo Linux operating system. Activity on bugs marked with
severity blocker or critical will be considered critical while those marked with severity
major, normal, minor, trivial or enhancement will be considered non-critical. It is
expected that the number of resolved critical issues will be more stable than the
resolved non-critical issues.

27

4.5. HYPOTHESES CHAPTER 4. RESEARCH QUESTIONS AND HYPOTHESES

H3: Cyclomatic complexity increase in an evolving system increases its complexity unless
work is done to reduce it.

Motivation for H3: The intention of this hypothesis is to prove hypothesis H5.

Metric for H3: A calculation of McCabe’s cyclomatic complexity will be done for
different releases of Portage. The result for each release will be compared to look
for a trend of increasement.

H4: Cohesion decrease in an evolving system unless work is done to reduce it.

Motivation for H4: The intention of this hypothesis is to prove hypothesis H5.

Metric for H4: A calculation of lack of cohesion using metrics by Chidamber-Kemerer
og by Henderson-Sellers will be done for different releases of Portage and divided by
the total lines of non-commented code. The result for each release will be compared.
There should be a clear increase for both metrics for lack of cohesion.

H5: An evolving system increases its complexity unless work is done to reduce it.

Motivation for H5: A widely debated statement. The goal here is to see whether this
can be considered true in the context of Portage.

Metric for H5: The hypothesis will be accepted if H3 and H4 are accepted.

H6: Fault density increase with complexity.

Motivation for H6: Intuitively, the number of error should increase when the size of
a program increases. But increasement in the density of errors is not given. This hy-
pothesis will see whether there is a connection between complexity and the density
of errors.

Metric for H6: Fault density will be defined as described earlier in this chapter and
increase in complexity will be considered true if hypothesis H5 is accepted.

28

Chapter 5

Results

5.1 Research question and hypotheses

RQ1 What is the size and cyclomatic complexity of the largest modules?

Figure 5.1 shows how the size (non-comment lines of code) of the three largest
modules (portage, emerge and repoman) for different releases. This corresponds
the observation in previous work by the author [Hagl04].

Figure 5.1: The size of the three largest modules

Figure 5.2 shows difference in size between releases. We see that although there is
a clear trend of increase in size shown in figure 5.1, local changes are more erratic.

Figure 5.3 shows the total cyclomatic complexity for all function in the largest three
modules. We see a general increase similar to the growth in lines of code, except for
emerge in release 2.0.50 that has a significant temporary growth.

From these figures we see that the relative difference in lines of code and cyclomatic
complexity seems to be larger for the larger modules. There are several possible

29

5.1. RESEARCH QUESTION AND HYPOTHESES CHAPTER 5. RESULTS

Figure 5.2: Changes in size from previous release for three largest modules

explanations; one might be that the modules receiving the most development activity
tend to increase cyclomatic complexity per lines of code.

RQ2: Does the file structure change and if so what are those changes and reasons for
them?

Figure 5.4 shows in which releases different source files exist. It does not seem to
be any large change in structure. Instead changes are focused around the addition
of new tools and the extension of functionality from existing files to a new. The pym
folder is an example of the latter where functionality from portage.py is extracted
to new files and portagedb.py is removed and split to several new files. The bin
folder is an example where new files are added when new tools are added. In both
examples, changes are largely limited to the introduction of new files, in the case of
the pym folder the new files contains functionality used by existing files and in the
bin folder new files are new functionality used multiple places.

Changes in file structure seems to be largely a matter of organizing functionality in
an increasing number of files.

RQ3: How does the number of files, classes, functions and code lines change over time?

In figure 5.5, the increase in the number of files, classes, functions and code lines is
shown, and can largely be considered linear over time. A notable exception is the
big increase in classes for the last release (2.0.51). This is due to the introduction of
exception handling in Portage which resulted in 21 new trivial classes.

Figure 5.6 show the same increase as above, but weighted so that it can be compared
relatively. Intuitively, in a system with no structural changes, we might expect to
see the highest increase in lines of code and less increase in measures of higher
conceptual level, with the lowest increase on modular level. The reason is that

30

CHAPTER 5. RESULTS 5.1. RESEARCH QUESTION AND HYPOTHESES

Figure 5.3: The cyclomatic complexity of the three largest modules

we might expect the average size of function to increase (which results in higher
increase in code lines than functions), the average number of functions in classes to
increase (which results in higher increase in functions than classes) and the average
number of classes in modules to increase (which results in higher increase in classes
than modules). Although this is almost true, there is an exception for modules.
Instead of having the lowest increase, it has the highest.

The reasons for the high increase in modules is possibly that new functionality, like
using database, help or exception handling, is added as a new module or extracted
from an excisting one. The structuring of this is mostly a matter of maintainability
and separation is more encuraged here than in e.g. classes.

The conclusion is that the number of files, classes, functions and code lines increase
linearly with exception when certain functionality is introduced that skew the results
(like the introduction of 21 trivial classes when exception handling was added).
Also, the relative increase in share is smaller for "higher level" measures with the
exception of modules.

RQ4: How does the distribution of class sizes change between releases?

With the exception of the last Portage release (2.0.51), figure 5.7 shows how the
number of large classes clearly increase linearly while the number of medium
classes is relatively stable. The number of small classes is unstable between two
releases, but fairly stable over time. The notably increase in the number of small
classes in the last Portage release (2.0.51) is due to the introduction on the module
portage_exception containing 21 5-line classes skewing the data. Ignoring this
data the number of small classes would be five for release 2.0.51.

Figure 5.8 shows how the share of the different class sizes change between
releases. We see (with the exception of the skewed data from the introduction of
portage_exception explained above) that the share of large classes clearly increase

31

5.1. RESEARCH QUESTION AND HYPOTHESES CHAPTER 5. RESULTS

Figure 5.4: Changes in file structure

32

CHAPTER 5. RESULTS 5.1. RESEARCH QUESTION AND HYPOTHESES

Figure 5.5: Increase in modules, classes, functions and lines of code between releases

Figure 5.6: Increase in modules, classes, functions and lines of code between releases
weighted and compared

33

5.1. RESEARCH QUESTION AND HYPOTHESES CHAPTER 5. RESULTS

Figure 5.7: Distribution of small, medium and large classes

to more than 50 % for release 2.0.50.

The data seems to show two things. Firstly, not only do the largest classes increase
in size, but the amount and share of large classes increases too.

Secondly, special events (in this case the introduction of the portage_exception
module) has significant effect on the share of class sizes.

The conclusion should be that there seems to be an increase in large classes over
time, either by splitting one large class into two large classes or by increase in size
of a non-large class. Also, occasionally the introduction of new functionality (in this
case exception handling) introduce several new classes that can skew results.

H1: The share of commented lines of code is independent of file size. [Rejected]

Figure 5.9 shows how the share of commented lines in portage.py changes over
time. It does not appear to be stable and the variation is more than 10 %. The
hypothesis is therefore rejected.

Therefore the question of including comments or not when measuring lines of code
can have an affect on the results.

H2: Critical development is more stable than general development in open source
projects. [Rejected]

Figure 5.10 shows how critical development (critical bugs resolved) compare to total
development (bugs resolved) throughout 2004. No conclusion can be drawn from
this.

A closer look at the data by measuring the standard deviation against the average
number of bugs resolved is needed. We then get that the standard deviation is 10,74
% of the average for critical development and 10,90 % for total development. These
numbers are so similar that the hypothesis is rejected based on this case.

34

CHAPTER 5. RESULTS 5.1. RESEARCH QUESTION AND HYPOTHESES

Figure 5.8: Share of distribution of small, medium and large classes

Figure 5.9: Share of comment lines in portage.py

35

5.1. RESEARCH QUESTION AND HYPOTHESES CHAPTER 5. RESULTS

Figure 5.10: Critical development compared to total development

H3: Cyclomatic complexity increase in an evolving system increases its complexity unless
work is done to reduce it. [Accepted]

Figure 5.11 shows the accumulated cyclomatic complexity for different releases of
Portage. It clearly increases for each release.

Since Gentoo Portage is considered a case where work to reduce complexity is not
done and cyclomatic complexity increase, H3 can be accepted.

H4: Cohesion decrease in an evolving system increases its complexity unless work is done
to reduce it. [Accepted]

Figure 5.12 shows the accumulated lack of cohesion (using metric by Chidamber-
Kemerer) for different releases of Portage. It clearly increases for each release.

Figure 5.13 shows the accumulated lack of cohesion (using metric by Henderson-
Sellers) for different releases of Portage. It clearly increases for each release.

Since Gentoo Portage is considered a case where work to reduce complexity is not
done and lack of cohesion using both Chidamber-Kemerer and Henderson-Sellers
increase, H4 can be accepted.

H5: An evolving system increases its complexity unless work is done to reduce it
(Lehman’s 2nd law). [Accepted]

By considering lack of cohesion and cyclomatic complexity as measures of
complexity, H3 and H4 concludes that the complexity in Portage increases and H5
can be accepted.

H6: Fault density increase with complexity. [Accepted]

36

CHAPTER 5. RESULTS 5.1. RESEARCH QUESTION AND HYPOTHESES

Figure 5.11: Cyclomatic complexity in Portage releases

Figure 5.12: Lack of Cohesion in Portage releases (Chidamber-Kemerer)

37

5.2. LAWS OF PROGRAM EVOLUTION DYNAMICS CHAPTER 5. RESULTS

Figure 5.13: Lack of Cohesion in Portage releases (Henderson-Sellers)

Figure 5.14 shows that the fault density clearly increases between releases. From
H5, we know that complexity increases and we can therefore accept the hypothesis.
(This is however no proof that the complexity is the cause of increasement in fault
density.)

5.2 Laws of Program Evolution Dynamics

We see how the same laws of trends and software decay found by Belady and Lehman
[Bela76] apply to a system developed about 30 years later. This section attempts to
describe how the findings in this thesis relates to them.

5.2.1 Law of continuing change

Research question RQ3 and RQ4 showed the inevitability of growth. RQ3 showed the
system growth for different levels (files, classes, functions and code lines) and how they all
increased over time in order for the system to meet constant requirement for functionality.
RQ4 showed how this growth also results in an increasing share of larger classes.

This is assumed to be a result of constant need for new functionality. This is supported
by the results in RQ2 which shows that new files/modules are added as a result of
introducing new functionality.

5.2.2 Law of increasing entropy

Hypotheses H3, H4 and H5 showed how the systems complexity increased by different
complexity measures. This relates to the second law described by Belady and Lehman
in section 2.3 that deals the consequence of growth, namely increasement in complexity
unless effort is made to prevent it.

38

CHAPTER 5. RESULTS 5.2. LAWS OF PROGRAM EVOLUTION DYNAMICS

Figure 5.14: Fault density of Portage

5.2.3 Law of statistically smooth growth

Research question RQ1 and partly RQ2 supplements the findings in RQ3 and RQ4 to show
that even though there are local non-linear growth, there are smooth long-term trends.

39

Chapter 6

Discussion

6.1 Validity

The four threats to validity - conclusion, internal, construct and external - outlined in
[Cook79] is used in this section to describe the validity of the study.

6.1.1 Conclusion validity

Conclusion validity concerns issues that affect the ability to draw the correct conclusion
about relations between the treatment and the outcome. Whether there is a strong enough
statistical significance.

No statistical tests on significance where used for the questions and hypotheses in this
thesis. However, the data is collected from almost three year of Portage development
between December 2001 and October 2004. There are about 50 classes and over 16 000
lines of code in the last release.

Also, most of the trends found have clear visual proof.

6.1.2 Internal validity

Internal validity concerns issues that may indicate a casual relationship, although there is
none. How factors unaccounted for can have affected the results.

In RQ3 and RQ4, where lines, functions, classes and modules where counted and
measured, relatively small adjustments can skew the results. For instance, in RQ4 for
release 2.0.51 exception handling was introduced and caused the share of small classes to
increase dramatically. Similar events might affect other results.

In hypothesis H2, critical development activity was defined as the number of bugs
resolved that are marked blocker or critical (the two most sever categories) in Bugzilla.
This data might be skewed by inaccurateness when classifying a bug. Different users and
developers might have different opinions on the criteria for a bug being critical. Also a
rather large portion of the bugs (more that 50 %) are marked normal, probably since this
is "safe" and since it is the default option when reporting a bug. Also, depending on the
practices used in the project, some bugs might not be public but instead just fixed directly
with a patch. This might cause the data to show either more or less critical development.
On the other hand in hypothesis H2, it was the stability of the development and not
amount than was compared. For this case the results is not biased.

40

CHAPTER 6. DISCUSSION 6.1. VALIDITY

In hypothesis H6, the number of bugs where counted and each bugs was considered
an error. However in addition to managing bugs, Bugzilla is used for managing
feature requests. These feature requests are usually represented as a "bug" with severity
enhancement. Although they do not represent a large portion of the "bugs" these feature
requests are included as faults is H6 which skew the data somewhat.

6.1.3 Construct validity

Construct validity refers to the extent to which the setting actually reflects the construct
under study. Whether poor measures have been used.

The research questions mostly use simple concrete measures and so has strong
construct validity.

Measuring critical development, complexity and cohesion is harder. Measuring critical
development by looking at the severity in Bugzilla might at best measure development
perceived as critical by the developers.

Evaluation on using cyclomatic complexity as a measure for complexity is widely
debated and has certain weaknesses as described in section 4.3.1.

For cohesion, metrics for lack of cohesion by both Henderson and Sellers and
Chidamber and Kemerer where used. Evaluation of there are described in section 4.3.2.

This thesis tried to compare logical changes and samples and not just physical, it used
compared releases instead of a time-based measure. Since the development of the system
used is largely incremental, the actual difference in these two measures might not be
significant.

A larger concern for the construct validity is the fact that even though the results
showed increase in a number of measures, it is not certain to what extend this was a
simple result of the fact that the system increased in number of lines or not. For instance
the complexity increase, but this is intuitively expected when code lines increase. It can
be debated whether this increase is due to more lines of code or due to consequences of
continuous change.

6.1.4 External validity

External validity concerns the ability to generalize results outside the settings used. The
correct subject, environment and timing is necessary.

The research questions are largely not generalizable, although similar projects might
give the same results as in RQ2. Also one might expect to see the same trends on
increasement other places.

Hypothesis H1 might be generalizable for open source project with the same
complexity and number of developers.

In hypothesis H2 should be generalizable for all open source project, since it collected
bugs from the whole Gentoo Linux operating system consisting of a large amount of
diverse open source projects. Usually what happens is that the bug is reported for Gentoo
Linux and sent to the specific external project and fixed there before an update is sent
back.

Hypotheses H3, H4 and H5 concerning complexity can be generalized to other project
where complexity and structure have not been considered.

41

6.2. EXPERIENCE WITH OPEN SOURCE CHAPTER 6. DISCUSSION

Hypothesis H6 should be generalizable for all software projects, although the results
from this thesis do not support this assumption and further study is needed.

6.2 Experience with open source

Part of the goal of this thesis was to look at how open source projects can be used when
doing empirical research on software system. It should be noted that the author has
no experience with using non-open source project for data analysis and so this is not a
comparison.

6.2.1 Understanding development history

For reasons of data interpretation and generalization, it is not enough to consider only the
data. To be able to make reasonable interpretation of data collected from a project, it is
necessary to see it in context. What development method was used? What concerns where
in focus at a certain time? Are there any significant events? And so forth.

Characteristic for open source development is public archived discussion and more
adaptable development (rarely follows a “textbook”). Common for open source projects is
the use of mailing lists to coordinate activities and discuss solutions. An archive of these
mailing lists is usually publicly available on the web. Although it is usually too big and
contain too much irrelevant email for getting a decent overview, it can give an idea of what
happened around a specific event and can be an easily accessible source for understanding
development history. Alternatively IRC, blogs or other sources are used.

Open source development is less of a planed effort and more opportunistic than
industrial project. The development process is largely formed around the developers and
naturally evolves, either to adapt to new circumstance or end with development stop. A
certain event might attract a several new contributors and change how things get done.

One might say that open source projects do not have much reflection, risk
consideration and requirement for strict business consideration and lack milestones and
other events to explain development history.

6.2.2 Dialog with developers

In addition to just analyzing data, it is useful to get in a dialog with the developers to clear
up the understanding of development, like social interaction and motivation.

An obvious difference here between open source and other projects is that open source
projects most open source projects consists of voluntary developers. This simplifies the
barrier by not having to go through a superior or other formal channels to the developers.
Also open source developers are usually more open to questions and, unless to busy,
usually answer questions from the users. Also project discussion is public and it is easy
for an outside person to participate, like on a mailing list. Chances are there is a person
capable of answering a question.

6.2.3 Generalisation

When doing empirical study on open source project the question of relevance to
other software project arises. A lot of the research on software development is done
around different development practices like unit testing, uml, agile development, pair
programming and release frequency. It is important to note that open source is not a

42

CHAPTER 6. DISCUSSION 6.3. THESIS PROCESS

development practices like the once mentioned, but can include all of them. In fact, open
source project has a lot in common with agile development since agile development is
inspired by open source.

Even tough agile development might be a good starting point for generalisation, it
might be hard to conclude on details and general understanding of development process
for individual project. Often there is no authority or a single person with complete
understanding. And the development process itself is evolving.

Differences exist however on the issue of motivation. Open source project is largely
driven by to things; fun and search for knowledge. Although this is a common motivation
in non-open source projects, for many open source projects it is the driving force.

6.2.4 Data sources and tools

Section 3.3 describes common data sources used in open source development and how
they can by utilized for data mining. Section 3.4 describes some of the tools used and
other tools evaluated.

Experience with data mining was positive. A main strength was the fact that most
of the data was publicly available and easy to access. The tools where essential, since
the repositories themselves provided little useful data themselves. For instance, the data
from the source used to compare different releases where all extracted by Pythonmetrics
analysis. The data from Bugzilla had to be extracted by a script. The data was analyzed in
a database and in spreadsheet applications before presented.

The conclusion is that open source provides good repositories for data mining, but
some effort and the right tools are necessary to get useful data. Combining some of the
data found might be difficult since common repositories like CVS and Bugzilla (managing
files and bugs respectively) have no direct connection and there are therefore no trivial
way to combine bug activity and source code activity.

6.3 Thesis process

GQM, as explained in section 2.4, starts by establishing a set of goal, then a set of questions
whose answers will help achieving the goal and lastly a set of metrics to answer those
questions. This rational process works when there is a clear goal and the means to answer
this goal is available. This is not the case for this thesis. The goal is not concrete and the
means to answer the most interesting ones is not necessary available because there is no
control over data used, since it is already collected during development. This is in contrast
to common GQM usage where wanted data is decided before development.

A modified approach was therefore needed; a bottom up-approach was used in
addition to a top down-approach. For practical reasons, instead of just looking at what
should be answered, it was also considered what could be answered. The author therefore
had to construct research questions and hypothesis and at the same time construct
measurable general data to see what was possible and whether there where data to answer
these questions.

This approach requires focus on prioritizing; it is a wasted effort to formulate ques-
tions and hypothesis that can’t be answered and to generate data that do not answer any
question of interest. Also, there should be a focus on prioritizing issues that gives the most
results for the least effort; traditional cost and benefit evaluation.

43

6.3. THESIS PROCESS CHAPTER 6. DISCUSSION

There is also the issue of capacity. Any hypothesis that proves to be too hard to test
fully should be excluded. As should any data that answers uninteresting or incomplete
questions.

44

Chapter 7

Conclusion

The goal of this thesis was two folded. Firstly this thesis performed and empirical study
to answer research question and test hypothesis related to the laws on software evolution
outlines by Belady and Lehman, described in section 2.3. Secondarily this thesis used an
open source project as data source and tried to take a closer look at tools and data sources
used and experience from this.

The research questions and hypothesis showed that the same laws formulated by
Belady and Lehman in 1976 still apply to software systems today. Portage was used as
an example of a system where there has been constant pressure for new functionality and
little has been done on structural maintenance. The results showed how there was an
trend of constant increasement in size as a results of constant change to adapt for changes
in requirements (Lehman’s first law). It showed how the systems complexity increases
over time where no effort is made to prevent it (Lehman’s second law). Lastly it showed
how the system has a long-ranged statistical smooth growth even though there are local
stochastic growth, e.g. when certain functionality is added (Lehman’s third law).

Finally, we can also saw how the increasement in complexity has lead to and increase-
ment in error density and decrease in maintainability making it more difficult to reach a
stable release.

This thesis also looked at how open source can be used for data mining. It showed
how common tools and practices used in open source development (CVS, Bugzilla and
ChangeLog) can be used as data sources for different purposes and how public repositories
and development makes the data easily available. It also show limitations related to how
CVS does not provide data on moving of code and files, practical limitation on extracting
data from Bugzilla and the difficulties in combining data from different sources.

7.1 Further work

Several paths can be taken to extend on this work.
The hypotheses can be tried on other projects to see whether the same results are

found. Also it would be interesting to look at a project where effort has been made to
control the complexity and see whether there are notable differences from the findings
here. Lack of notable difference would not disprove Lehman’s second law, but undermine
the rational behind it. A notable difference would strengthen the case for focus on
structural maintenance in addition to functional maintenance.

45

7.1. FURTHER WORK CHAPTER 7. CONCLUSION

In would also be interesting to use a case where the size of the project (in terms of
code lines) has been relatively stable and see how complexity increase or decrease over
time for other environmental factors.

Additional metrics can be used, especially for a metric for measuring coupling would be
useful since it, together with cohesion, is a central way to evaluate good structural design.
Also other object-oriented metric that looks at the class hierarchy could be considered.

Additional tools (see section 3.4) could be considered Maven and XRadar provide
several out-of-the-box metrics with graphical outputs for java-based programs. A closer
look at Bugzilla might also provide useful, trying to extract better data. Also it is currently
popular for open source projects to move away from CVS as code repository and over
to more advanced alternative. Some of these code repositories might provide data one
changes across multiple files.

The work done in this thesis is largely qualitative and could be followed up with a
qualitatively study. I could be interesting to see what factors forced an increase in size and
consequently and increase in complexity and what the consequence of the complexity on
the development process and on the usage of the system.

46

Bibliography

[Ball96] Ball, T. and S. G. Eiek. Software visualization in the large. IEEE Computer, 29(4),
April 1996.

[Basi94] Basili, V.R., Calidiera, G., Rombach, H.D., Goal Question Metric Paradigm, In:
Maraciniak, J.J. (ed.): Eccyclopaedia of Software Engineering. New York Wiley
1994, pp. 528-532.

[Bela76] Belady, B. and M. Lehman (1976), "A Model of Large Program Development," IBM
Systems Journal 15 , 3, 225–252.

[Brit95] Brito, F. Abreu, M. Goulao, and R. Esteves. Toward the design quality evaluation
of object-oriented software systems. In Proc. 5th lnt 7 Conf. Software Quality, pages
44-57, October 1995.

[Chid93] Chidamber and Kemerer, 1993, A Metric Suite for Object-Oriented Design,
Working Paper #249, MIT Center for Information Systems, Cambridge, MA, 40 pp

[Chid94] Chidamber, S. R. and C. E Kemerer. A metrics suite for object-oriented design.
IEEE Trans. Software Engineering, 20(6):476-493, June 1994.

[Cook79] Cook, T.D. and Campbell, D.T., Quasi-Experimentation Design and Analysis
Issues for Field Settings, Houghton Mifflin Company, 1979.

[Deme99] Demeyer, S. and S. Dueasse. Mettles: Do they really help? In Proc. Languages
et ModUles d Objets, pages 69-82. Hermes Science Publications, 1999.

[Deme01] Demeyer, S., Mens, T., Wermelinget, M., Towards a Software Evolution
Benchmark, Proceedings of the 4th international workshop on Principles of software
evolution, September 10-11, 2001, Vienna, Austria

[Eick01] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., Mockus, A., Does Code
Decay? Assessing the evidence from Change Management Data (.pdf). See does code
decay. http://csdl2.computer.org/dl/trans/ts/2001/01/e0001.pdf. IEEE Trans. on
Software Engineering, 27(1):1-12, Jan. 2001.

[Evan01] Evans, H., Why Is Distributed System Evolution Not Better Supported?, Proceed-
ings of the 4th international workshop on Principles of software evolution, Septem-
ber 10-11, 2001, Vienna, Austria

[Fent97] Fenton, N. and S. L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, UK, second edition,
1997.

47

BIBLIOGRAPHY BIBLIOGRAPHY

[Gall98] Gall, H., K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In International Conference on Software Maintenance (1CSM
’98). IEEE Computer Society Press, November 1998.

[Gent] Gentoo Foundation, 2005. Gentoo Project Homepage, http://www.gentoo.org.

[Hagl04] Hagli, Andreas Tørå, 2004. Observed Changes in Software Evolution.

[Hend95] Henderson-Sellers, 1995, A BOOK of Object-Oriented Knowledge, 2nd Ed.,
Prentice Hall

[Jaza99] Jazayeri, M., C. Riva, and H. Gall. Visualizing software release histories: The
use of color and third dimension. In H. Yang and L. White, editors, Proc. lnt’l Conf.
Software Maintenance (ICSM ’99). IEEE Computer Society, 1999.

[Kaba01] Kabaili, H., R. K. Keller, and E Lustman. Cohesion as changeability indicator in
object-oriented systems. In P. Sousa and J. Ebert, editors, Proc. 5th European Conf.
SoJtware Maintenance and Reengineering, pages 39-46. IEEE Computer Society Press,
2001.

[Lanz01] Lanza, M.. The evolution matrix: Recovering software evolution using software
visualization techniques. In Proc. lnt’l Workshop on Principles of Software Evolution
(1WPSE2OO1), 2001.

[Lehm74] Lehman, M. M., Programs, Cities, Students–Limits to Growth, Imp. Col. 1974,
Inaug. Lect. Series, Vol.9, 1970-1974, pp. 211 - 229; also in Gries, 1978

[Lehm80] Lehman, M.M. Programs, Life Cycles, and Laws of Software Evolution. Proceed-
ings of the IEEE, vol 68, no 9, 1980.

[Lehm01a] Lehman, M. M. , J. F. Ramil, Evolution in software and related areas,
Proceedings of the 4th international workshop on Principles of software evolution,
September 10-11, 2001, Vienna, Austria

[Lehm01b] Lehman, M. M., An Approach to a Theory of Software Evolution, Proceedings
of the 4th international workshop on Principles of software evolution, September
10-11, 2001, Vienna, Austria

[Lien80] Lientz, B. P., Swanson, E. B., Software Maintenance Management, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, 1980

[Mave] Maven Homepage, 2005. http://maven.apache.org/.

[McCa76] McCabe, T. J., "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. SE-2, Dec. 1976.

[McKe84] McKee, J. R.. Maintenance as a function of design. In Proc. 1984 AIPS national
Computer Conference, pages 187-93, 1984.

[Mens01] Mens, T. and Demeyer, S., Evolution Metrics, Proceedings of the 4th interna-
tional workshop on Principles of software evolution, September 10-11, 2001, Vienna,
Austria

[Mock00] Mockus, A. and Votta, L. G., Identifying Reasons for Software Changes using
Historic Databases, From International Conference on Software Maintenance, pages
120-130, San Jose, California, October 11-14 2000

48

BIBLIOGRAPHY BIBLIOGRAPHY

[Moha04] Mohagheghi, Parastoo and Conradi, Reidar: "Exploring Industrial Data
Repositories: Where Software Development Approaches Meet", Proc. of the
8th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE’04), 15 June 2004, Olso, Norway, Coral Calero, Fernando
Brito e Abreu, Geert Poels and Houari A. Sahraoui (Eds.), pp. 61-77. Affiliated with
18th European Conference on Object-Oriented Programming (ECOOP 2004), 14-18
June 2004, Oslo.

[Mont04] Monteiro, Eric; Østerlie, Thomas; Rolland, Knut and Røyrvik, Emil. Keeping it
going: The everyday practices of open source software, 2004, submitted for reviewing.

[Pfle91] Pfleeger, S. L.. Software Engineering: The Production of Quality Software.
Macmillan Publishing Company, 2 edition, 1991.

[Pigo96] Pigoski, T. M., Practical Software Maintenance, Wiley, 1996, pp. 384

[Pyme] Pythonmetric Homepage, 2005. http://sourceforge.net/projects/pythonmetric/.

[Pyth] Pythius Homepage, 2005. http://www.gentoo.org.

[Rajl01] Rajlich, V., Role of Concepts in Software Evolution, Proceedings of the 4th
international workshop on Principles of software evolution, September 10-11, 2001,
Vienna, Austria

[VanD00] VanDoren, E., Sciences, K. and Springs, C. Cyclomatic Complexity,
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html, Carnegie Mellom Uni-
versity, 2000.

[Venn03] Venners, B., Don’t Live with Broken Windows, Interview with Andy Hunt and
Dave Thomas, http://www.artima.com/intv/fixitP.html, 2003.

[Xrad] XRadar Homepage, 2005. http://xradar.sourceforge.net/.

49

	Introduction
	Background
	Software evolution
	Why changes occur
	Laws of Program Evolution Dynamics
	Goal-Question-Metric
	Software metric
	Researching on open source project
	Prior research by the author

	Research context
	Study objects
	Gentoo Linux
	Portage

	Releases
	Data sources in open source projects
	ChangeLog
	CVS
	Bugzilla
	IRC, mailing lists, blogs
	Statistics

	Supporting tools
	Maven
	XRadar
	Pythius
	Pythonmetric
	Spreadsheet application
	Database
	Other

	Research questions and hypotheses
	Software metrics for software evolution
	Origins for data
	Metrics used in this report
	Cyclomatic Complexity
	Lack of Cohesion in Methods
	Other metrics used

	Research questions
	Hypotheses

	Results
	Research question and hypotheses
	Laws of Program Evolution Dynamics
	Law of continuing change
	Law of increasing entropy
	Law of statistically smooth growth

	Discussion
	Validity
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Experience with open source
	Understanding development history
	Dialog with developers
	Generalisation
	Data sources and tools

	Thesis process

	Conclusion
	Further work

	Bibliography

