
Abstract
This report gives a short introduction of the Norwegian wireless electronics company
Chipcon AS, and goes on to account for the state of the art of small IP processor cores. It
then describes the NanoRisc, a powerful processor developed in this project to replace
hardware logic modules in future Chipcon designs. The architecture and a VHDL
implementation of the NanoRisc is described and discussed, as well as an assembler and
instruction set simulator developed for the NanoRisc. The results of this development
work are promising; synthesis shows that the NanoRisc is capable of powerful 16-bit data
moving and processing at 50 MHz in an 18nm process while requiring less than 4500
gates. The report concludes that the NanoRisc, and none of the existing IP cores studied,
satisfies the requirements for hardware logic replacement in Chipcon transceivers.

 2

Preface
This report and the NanoRisc development work was made as part of a master’s thesis for
the Norwegian University of Science and Technology (NTNU). The project proposal was
given by Chipcon AS, and the work has been performed in their offices.

Acknowledgements
I would like to thank my mentors Jørgen Langfeldt, Robin Osa Hoel and Dag-Sverre
Skjelbreid at Chipcon for their many hours of help and great inspiration.

I would like to thank Chipcon AS for supporting me and providing me with a desk,
computer and all necessary tools.

I would like to thank Lasse Natvig and Morten Hartmann of NTNU for helpful guidance
in writing this report.

Outline
This report consists of three parts. Part I is an introduction to the project and accounts for
the state of the art. An introduction to Chipcon and the motivation behind this project is
given in chapter 2 followed by the requirements specification in chapter 3. An overview
and discussion of available IP cores is given in chapter 4. Part I describes the NanoRisc
and its tools. An overview of the NanoRisc architecture is given in chapter 5 followed by
a description of its implementation in chapter 6. Chapter 7 describes the tools developed
for NanoRisc. Part III contains the results and discussion. Chapter 8 describes the testing
performed on the NanoRisc and chapter 9 describes the results achieved in synthesis.
Chapter 10 is a discussion on some of the more interesting trade-offs made during the
development of the NanoRisc.

 3

 4

Table of Contents
Abstract ... 1
Preface... 3

Acknowledgements... 3
Outline... 3

Table of Contents.. 5
Table of Figures .. 7
Table of Tables ... 7
Part I.. 9
1 Introduction... 10

1.1 Project Description.. 10
2 Chipcon and NanoRisc ... 12

2.1 Corporate and Organization.. 12
2.2 Products... 12
2.3 Motivation behind the NanoRisc Project.. 12

3 Requirement Specification.. 15
4 State of the Art .. 16

4.1 Design Reuse .. 16
4.2 Comparison of IP Processor Cores ... 17

Part II .. 21
5 Architecture Specification .. 22

5.1 Nomenclature.. 23
5.2 Address Space Overview .. 24
5.3 Instruction Addressing Modes .. 26
5.4 Constants... 26
5.5 Instruction Fetch ... 26
5.6 General Registers .. 26
5.7 Special registers .. 26
5.8 Data Processing... 28
5.9 I/O ... 31
5.10 Memory... 32
5.11 Program Flow.. 34
5.12 Interrupt... 35
5.13 Halt.. 37
5.14 Reset.. 37
5.15 Interface .. 38
5.16 Instruction Set ... 40
5.17 The NanoRisc Assembly Language.. 43

6 Implementation ... 44
6.1 Top .. 46
6.2 ALU .. 46
6.3 Fetch.. 48
6.4 I/O ... 48
6.5 Mem .. 48
6.6 Mul.. 48

 5

6.7 PCU... 48
6.8 Reg .. 50
6.9 Shift... 50
6.10 Src ... 52

7 Tools ... 53
7.1 Assembler ... 53
7.2 ISS... 57

Part III ... 61
8 Test.. 62

8.1 Test Bench .. 62
8.2 Coverage program... 64
8.3 Quicksort Program.. 65
8.4 CRC Program.. 65
8.5 16-bit Multiplication ... 66
8.6 SPI... 66

9 Results... 67
9.1 Synthesis ... 67
9.2 Performance .. 69

10 Discussion... 72
10.1 Instruction set.. 72
10.2 Architecture... 75
10.3 Tools ... 79
10.4 Testing... 79
10.5 Future Work .. 79
10.6 Summary of Requirements Conformity.. 81

11 Conclusion .. 83
Bibliography ... 85

 6

Table of Figures
Figure 1 - Code hierarchy ... 19
Figure 2 - NanoRisc simple overview .. 23
Figure 3 - Logical register layout.. 25
Figure 4 - Stack use... 27
Figure 5 - Status register ... 28
Figure 6 - Program address ... 28
Figure 7 – Negate.. 29
Figure 8 - Clear register .. 30
Figure 9 - I/O port layout .. 31
Figure 10 - Single memory solution ... 32
Figure 11 - Separate memories solution ... 32
Figure 12 - Memory wait timing diagram... 34
Figure 13 - Interrupt sequence .. 36
Figure 14 - External interrupt module .. 37
Figure 15 - Top-level interface ... 38
Figure 16 - Instruction Encoding .. 42
Figure 17 - Data flow diagram.. 45
Figure 18 - Module overview ... 46
Figure 19 - ALU overview.. 47
Figure 20 - Branch control unit... 49
Figure 21 - Left shifter.. 51
Figure 22 - Label definition syntax... 53
Figure 23 - Define syntax ... 53
Figure 24 - Include syntax .. 54
Figure 25 - Comment syntax... 55
Figure 26 - Assembler command-line syntax ... 57
Figure 28 – ISS screenshot during execution of quicksort ... 58
Figure 29 - Testbench overview ... 62
Figure 30 – Interrupt simulation ... 63
Figure 31 – Sleep functionality... 64
Figure 32 - Example instruction test... 65

Table of Tables
Table 1 - IP processor cores... 17
Table 2 - Stack instructions... 27
Table 3 - Arithmetic instructions .. 29
Table 4 - Logical instructions ... 29
Table 5 - Multiplication instructions... 30
Table 6 - Shift and rotate instructions... 30
Table 7 - I/O instructions .. 31
Table 8 - Memory instructions.. 34
Table 9 - Change-of-flow instructions... 35
Table 10 - Top-level interface signal descriptions.. 38
Table 11 - Instruction set summary .. 40

 7

Table 12 – Results overview... 67
Table 13 - Area ... 68

 8

Part I

 9

1 Introduction
This chapter gives a short introduction to the project. Chipcon is a Norwegian company
who designs low-cost, low-power wireless transceivers. The increasing complexity of the
chips designed by Chipcon reveals a need for new design methods on their systems on
chip (SoCs). One way to achieve this is through the use of an on-chip firmware
processor. Contrary to the processors integrated in the Chipcon designs of today, an on-
chip firmware processor would not be user programmable, but handle only internal
control and data processing tasks.

The NanoRisc processor was developed for Chipcon as a part of this thesis. It is a
compact and effective microcontroller core which can control complex processes and
move and process data. It features 13 general 16-bit registers, a full 16-bit ALU, an 8x8
multiplier, a 16-bit barrel-shifter, and a load/store unit with auto-increment/decrement. Its
up to 32 addressable I/O ports and interrupt handling contribute to its easy integration
into any design. It is controlled by a compact and comprehensive set of 16-bit
instructions, but is still capable of immediate 16-bit memory addressing without the use
of paging. A complete implementation of the core requires less than 5K gates.

This report will show that the NanoRisc is more suited to Chipcon’s firmware processor
needs than the available intellectual property (IP) processor cores.

1.1 Project Description
The task as given by Chipcon is cited below:

Develop an ultra-low-complexity CPU core aimed at replacing hardwired finite state
machines (FSMs) and custom logic in ASIC designs. A typical application is packet
processing and protocol handling. A suggestion for CPU core features is:

• Ultra-low complexity (2-5 kgates maximum)
• 8/16-bit ALU/register width (e.g. sixteen 8-bit registers which can also be

addressed as eight 16-bit registers)
• Simple, orthogonal, high-density instruction set. (preferably fixed size

instructions)
• Common address space for code and data (12-16 bit). Separate memory

busses for code and data allow the two to map to disjoint parts of the
address space and be accessed simultaneously. All memory busses are
compatible with synchronous SRAMs (synchronous read and write).

• Load/store architecture.
• Simple integrated interrupt controller.
• Parameterizable number of input/output ports.
• Low power consumption (< 25 uW/MHz in a 0.18 um process)

The goals of the thesis are:

• Detailed specification of CPU architecture / instruction set

 10

• Develop cycle-accurate instruction set simulator (ISS) in C/C++
(preferably GUI-based).

• Develop assembler for the instruction set (Bison/Flex & C/C++).
• Implement core in synthesizable VHDL.
• Perform exhaustive testing of VHDL core against ISS.
• Perform test synthesis for a TSMC 0.18 um process to determine accurate

gate count and power consumption.

 11

2 Chipcon and NanoRisc
This chapter gives a brief overview of Chipcon, and accounts for the motivation behind
the NanoRisc project. Chipcon is a Norwegian microelectronics company which
specializes in the design of wireless transceivers. They operate in an international market,
selling chips for applications ranging from wireless game pads and security systems to
industrial systems.

2.1 Corporate and Organization
Chipcon started out as a specialized Application Specific Integrated Circuits (ASICs)
design center in 1996, and has since changed strategy to become a leading international
‘fabless’ semiconductor company. It has a total of 103 employees where 17 are located in
San Diego and 7 in sales offices around the world. The remaining 79 employees make up
the headquarter and design center in Oslo where this project was undertaken [Chipcon].

The design center in Oslo handles

• Design of new chips

• Testing

• Support and applications development

• Development tools (HW/SW)

This thesis was written in close cooperation with the digital signal processing (DSP) and
system-on-chip (SoC) groups.

Chipcon’s largest owners today are Four Seasons Venture and the founders Geir Førre,
Sverre Dale Moen and Svein Anders Tunheim.

2.2 Products
Today, most of Chipcon’s revenue comes from Application Specific Standard Products
(ASSPs) for short-range wireless communication. The application which represents the
largest portion of the orders is game pads for systems such as Sony PlayStation [Sony]
and Microsoft Xbox [Microsoft]. One of it’s main competitors in the wireless game
controllers and other wireless applications is Nordic Semiconductor [Nordic] located in
Trondheim.

Currently, Chipcon works to promote the ZigBee standard which is a low power
consumption and low bandwidth protocol for wireless communication between
potentially a large number of devices. It is based on the IEEE802.15.4, and requires a
software Media Access Control (MAC) module. See [ZigBee] for details.

2.3 Motivation behind the NanoRisc Project
While Chipcon maintains a range of cheap and simple wireless transceivers, they are also
developing complex SoCs for wireless applications. Future Chipcon chips will require

 12

rather complex protocol handling, packet processing and buffer control, which is what the
motivation for the NanoRisc project springs from. The NanoRisc will be a general-
purpose embedded processor providing a specific service in an application as described in
[WongVa2004].

The task of designing a processor core as described in the original task had the aim of
producing a controller that could replace some of the larger finite state machines (FSMs)
currently used for hardware sequencing and protocol control in the Chipcon transceivers.
Microprocessors and hardware modules both have the capability to implement most any
digital logic function. There are, however, unique advantages and disadvantages to either
approach.

• Ease of implementation – It was thought that it would be easier to program an
FSM as software rather than in a hardware description language (HDL). In terms
of testing, it is not necessarily more work to verify a processor running a program
than to verify the FSM implementing the same logic.

• Size – When evaluating the implementation size of a processor versus a hardware
module, it is important to count the memory requirements of microcontroller
which grows with complexity. On the other hand, a processor re-uses its logic
resources, while the need for logic resources in a hardware implementation
increases with complexity. A processor with memory is not expected to be
smaller than the hardware state-machine implementing the same logic.

• Performance – The sequential execution of instructions in a processor entails a
degradation of performance with increased complexity. A hardware module will
not necessarily in the same way experience performance degradation with
increased complexity because algorithms can be implemented in parallel. This
leads to a faster but more expensive implementation. To counterpart to this in a
software implementation would be to use several microcontrollers working in
parallel to increase performance.

• Flexibilty – A microcontroller implementation is more flexible and makes it
easier to make changes and fix bugs after initial production. An error in a large
hardware FSM causing incorrect behavior discovered after initial production can
be very expensive. Fixing it would demand several man-months of work plus the
full set of masks to be remade at considerable cost. Alternatively, a manual
manipulation of the routing could be performed in some cases, but it is very
difficult work. The advantage of using a processor is that its program memory can
be changed by changing only one of the masks. Errors in its behavior can thus be
changed easily and one can in some cases use the processor to make workarounds
for errors elsewhere on the chip. In a larger perspective, a software program is
easier to upgrade and to differentiate from a previous design.

An ideal approach is usually to have a microcontroller embedded on a chip where the
complex, non-timing crucial control functions can be implemented on the
microcontroller, while timing critical or data path functions are implemented in
hardwired logic [Xilinx2004].

 13

There are several processor cores on the market today designed for SoC integration, and
re-use of such a module would have to be considered for an application such as those
mentioned above. The Chipcon engineering group is familiar with design reuse. Both an
implementation of the 8051 microcontroller and the Cambridge Consultants Xap1
processor has successfully been used as IP cores in Chipcon designs. The 8051 is found
as a user programmable microcontroller chips such as CC1010 and CC2420, while the
Xap1 processor was used as a controller in an ASIC project. A discussion of possible
integration of a processor IP core is found in chapter 4.

 14

3 Requirement Specification
The requirements specification is based on the original task and a series of meetings with
Chipcon representatives in January 2005. They represent what Chipcon believes the
processor should be for it to be suitable for integration into a future Chipcon transceiver.

1. Load/store architecture. This requirement arose from the original task. It implies
that data processing should only be done on data in registers.

2. Simple, orthogonal, high density instruction set. This requirement arose from
the original task. It is understood that the instruction set can not be entirely
orthogonal due to its load/store nature, but consistency should be strived for.
Fixed size instructions are wanted, but other solutions could be explored.

3. Data processing capabilities. This requirement arose from the meetings. The
processor should include an ALU with logical and arithmetic operations and
should support some shift and rotate scheme.

4. 8x8 Multiplier. This requirement arose from the meetings. An 8x8 hardware
multiplier should be implemented.

5. Stack. This requirement arose from the meetings. A stack should be implemented
in hardware or software to allow nested function calls and facilitate a C compiler.

6. 16-bit memory interface, no paging. This requirement, decided in the meetings,
is an extension of a requirement in the original task. The processor should be able
to interface a 16-bit memory bus, and have a shared, byte addressable address
space for data and program. Paging should not be used, as it complicates
programming.

7. A parameterizeable sized I/O space with bit-operations. This requirement
arose partly from the original task and was extended in the meetings. It is
important the processor should be able to interface with peripherals without
having to memory map these. This is to be implemented by the use of I/O ports,
and the number and width of these ports should be parametrizeable. Efficient bit-
operations such as “set”, “clear” and “test” should be able to operate on these
ports.

8. Simple integrated interrupt controller. This requirement arose from the original
task. The processor should be able to respond promptly to external events by the
use of interrupts.

9. Small footprint (2K-5K). Perhaps the most important requirement arose from the
original task. As size directly influences production cost, the size of the controller
should be kept at a minimum to keep it attractive compared to dedicated hardware
solutions.

10. Power consumption of < 25 uW/MHz in the 0.18 um process excluding
memories. This requirement arose from the original task.

 15

4 State of the Art
This chapter will give an overview of the current small embedded processor in the market
today. The discussion of examples will be limited to architectures available as intellectual
property (IP) modules that can be licensed for use in ASIC/ASSP production.

4.1 Design Reuse
Reuse of hardware cores has become increasingly popular over the last few years. The
need to close the gap between design sizes and engineer productivity has lead the ASIC
industry to adopt the concept of design reuse from software development. A multitude of
vendors selling intellectual IP modules for system integration has emerged.

The reuse of processor IP cores is well known and has been available for years through
established vendors as ARM [ARM] and MIPS [MIPS] [Rosenberg1999]. Perhaps one of
the main reasons behind the success of processor IP cores is the availability of tools.
Developing a processor architecture from scratch requires that one also builds up an
arsenal of tools for programming and debugging to make the processor usable in practice.
Many processor IP vendors have avoided this by providing IP cores that are functionally
equivalent to well known and established processor architectures, enabling the tools such
as compilers, assemblers and simulators available for these architectures to be reused.
Important in this respect is also the fact that the competency of the programmers can be
reused when such an approach is chosen.

As hardware systems grow increasingly in complexity, the need to increase engineer
productivity grows with it. [Bouldin] suggests that design reuse might save 70% of the
design effort compared to the original development. This is a great motivation for design
reuse.

Another motivation for design reuse is the brand-name recognition and consumer trust
that has been built up by major IP vendors. It is harder to convince an engineer that his
application would be easy to write, debug and run on your unknown processor than on
the newest ARC supporting the Thumb2 instruction set for example. For Chipcon this
becomes a big issue if the processor should ever be targeted for user programming. As
long as it is an internal integrated firmware processor, the Chipcon-internal recognition of
the processor is all that counts.

There are, however, certain pitfalls associated with hardware design reuse. One of the
more obvious is to choose a design that does not turn out to satisfy specifications and
constraints [Bolado2003]. Public information on IP cores, however is limited, and it can
be difficult to find a processor that fulfills all requirements [Salminen2004]. An
alternative is to modify an IP which is almost suited to fulfill all requirements. Most
processor core IP’s are delivered as soft IP cores, that is, they are described in a hardware
definition language. As opposed to physical design, netlists or RTL models, this is the
most easily modifiable IP format. The problem, however, is that according to
[McCorquodale] verification represents at least 50% of the design cycle for IP
components, and if modifications are made, the design will have to be re-verified. In this

 16

respect, modified IP is not suited to close the gap between the vast amount of logic that
can be put on a chip and the amount of logic an engineer can design [Rosenberg1999].

4.2 Comparison of IP Processor Cores
This section describes and evaluates a number of processor IP cores available in the
market today. The cores selected for study are generally their vendor’s smallest cores
with an emphasis on low power consumption. As stated by [Salminen2004], however, IP
comparisons are hard and tedious because public information is limited and product
briefs are inaccurate and unclear. The IP cores to evaluate were found through
conversations with engineers at Chipcon, using the search at design-reuse.com and
searches on general-purpose search engines on the internet. Key numbers on these
processors are summarized in Table 1.

Table 1 - IP processor cores
Core Data

Width
Area
[kilogates]

Max.
Freq.
[MHz]

Power
Consumption
[mW/MHz]

Performance
[MIPS/MHz]

Arc Classic86
[ARCx86]

16b 22 80 - 0.08

ArcLite [ArcLite] 8b 3,5 160 - -
ARM Cortex-M3
[ARMCortex-M3]

32b 33 100 0.12 1.2 (DMIPS)

MC8051
[Salminen2004]

8b 10 100 - -

OpenRISC 1200
[Salminen2004]

32b 25 150 - -

PicoBlaze
[PicoBlaze]

8b - - - -

Xap1 [Xap1] 16b 3 - ~0.45 0.18 (DMIPS)
Xap2 [Xap2] 16b 12 100 > 0.45 0.37 (DMIPS)

4.2.1 Performance
Most of these processors use pipelining to some extent. Pipelining is the splitting of
instructions into steps that are executed on one clock cycle each. It enables the processor
to greatly increase its throughput because it can run at higher clock speeds and in most
cases complete one instruction each cycle. Several instructions are being executed at one
time, and it requires logic to handle precise interrupts, minimize branch penalties, data
dependency stalls etc. In addition it requires registers to store results between each stage
of the pipeline [Hennesy1996]. This logic may account much of the area consumed by
some of these processors, but on the other hand it is what enables for example the
OpenRISC to obtain such high operating frequencies.

The measure of relative performance of microprocessors is difficult. Measures like MHz,
MIPS or benchmarks do not necessarily reflect how a processor would perform doing
your task. The user is referred to [Hennesy1996] for a thorough discussion on the metrics

 17

of processor performance. In practice, however, for small processor cores, the Dhrystone
benchmark is the most commonly used measurement of performance. The Dhrystone
benchmark is a synthetic benchmark, invented in 1984 which contains no floating point
operations. The output from the benchmark is the number of Dhrystones per second
(number of iterations of the main code loop per second), but the most frequently used
metric is the Dhrystone MIPS (DMIPS). It is a measure of the Dhrystone processor
relative to the Dhrystone performance of a DEC VAX processor [Weiss2002]. DMIPS
are generally seen as being proportional to the clock speed, and the more useful measure
of DMIPS/MHz is usually reported. There were, however, no specific requirements as to
performance for this project, so no processors are excluded based on it.

4.2.2 Area
Based on the requirements put forth in the task for this thesis, most of the above
mentioned processors can be ruled out for this application based on simple metrics. One
of the requirements is that an implementation of the processor core should be less than
5000 gates. This requirement has a great impact on the cost of the solution, as the gate
count is directly proportional to die area and the die area to the fourth power is
proportional to the cost of the chip [Hennesy1996]. Even though the ARM Coretex-M
processor can compete with many 8-bit architectures in terms of size, the stringent size
requirement for this project rules out all the 32-bit processors [Wong2004]. The Xilinx
PicoBlaze is a small 8-bit controller especially designed to achieve a small footprint in
the Xilinx field programmable gate arrays (FPGA), but its size when implemented in a
18nm ASIC process has not been found. This leaves the 8-bit ArcLite and the 16-bit
Xap1 for consideration.

When considering the area consumed by a particular processor, it is also important to
consider the size of the required program memory i.e. the code size. Small code size has
been an important selling point for the AVR architecture for example. The size of each
instruction word and the number of instruction words to implement a program is
important. The size of the instruction word is usually bounded from below by the number
of instructions needed and the size of the immediate values necessary. Many CISC
architectures use a variable-size instruction word to allow large immediate values while
avoiding a general increase in instruction word size. The RISC architecture of the Xap2,
however, uses a “PREFIX” instruction to load a part of an immediate value into a
temporary register which is used to extend the immediate field of the next instruction. Its
effect is similar to that of a variable-size instruction word, but with a simpler instruction
set.

4.2.3 Power Consumption
Power consumption is very important in Chipcon products. Due to their wireless nature,
they are often used in battery driven applications. Power consumption is measured in
watts, but it is highly dependent on the frequency of operation, so it is common to find
the power consumption of a processor in mW/MHz. The requirement for power
consumption of < 25 uW/MHz given in the task is for the processor core without
memory. In practice, however, for an architecture which demands large amounts of
memory or frequent memory accesses, the power consumption of the memory surpasses

 18

that of the core. It is therefore important that a low-power design also has sufficient
registers to avoid frequent memory accesses. The power consumption of an architecture
varies with the process in which it is implemented. For the processors where the power
consumption was reported, the process was not always mentioned, and it will be assumed
that the numbers are for the popular 18um process. The power consumption of the Xap1
processor is reported as 2.25 mW [Xap1]. Interestingly enough, the frequency of
operation is not reported, and assuming a frequency of operation of 50 MHz, this gives
45 uW/MHz, which exceeds the specified value. In addition, the Xap1 only has 4 16-bit
registers available in an accumulator architecture, which requires frequent memory
accesses. The Xap1 must therefore be ruled out based on power consumption.

4.2.4 Ease of Programming
An important but unspecific criteria for a processor is that that it is easy to program. The
availability of good compilers for high-level languages as for example “C” is important
when writing large programs. All the above mentioned processors except the PicoBlaze
implement architectures for which “C” compilers are available. For small control
applications where code-size and speed is crucial, it is often necessary to program the
processor in assembly language. Assembly language is a programming language in which
each instruction generally corresponds to one machine language instruction on the
architecture which the assembly language is for. In contrast to higher level languages, an
assembly language reflects all the particularities of the ISA of the target machine.
Assemblers are available for all the above mentioned architectures. The assembler is a
computer program which translates a program written in assembly language to machine
language. It is intended to close the semantic gap between the expressions that are close
to the human way of representing statements, and the primitive operations of a processor
[Clements]. The relationship between the above mentioned entities is described in Figure
1.

High Level Language -> Assembly Language -> Machine Language
 Compiler Assembler

Figure 1 - Code hierarchy

When programming a processor in assembly, it is important for the ease of coding that
the architecture bit-width is greater or equal to the size of the data types being operated
on. If the bit-width of the architecture is less than the size of the data, several instructions
have to be used to perform an operation on the data, and the assembly programming
becomes a complex task. This is a great disadvantage of the 8-bit architectures, and
especially the PicoBlaze, as it has no high-level language compiler to hide this
complexity.

Perhaps the greatest advantage of buying an IP core as opposed to developing a new
solution is the availability of tools. In addition to the compilers, many of the above
mentioned architectures have editors, debuggers and instruction set simulators available,
which simplifies programming and debugging.

 19

4.2.5 Architecture
One of the greatest disadvantages of the ArcLite is its interrupt handling. It implements
interrupts by inserting an interrupt instruction into it’s pipeline. The interrupt handling
routine latency is the time from an external interrupt signal change until the first useful
instruction of the interrupt routine is executed. For the ArcLite this time is 12 cycles in
the worst case. In addition to this, high priority interrupts can not interrupt lower priority
interrupt routines in so-called nested interrupts. This means that the worst case interrupt
service routine latency for a high priority interrupt is in fact 12 cycles plus the time it
takes to finish a lower priority interrupt routine. This makes implementing control
applications with any degree of real-time demands very difficult [ArcSupport].

One of the major disadvantages of the PicoBlaze is that it is only capable of addressing
1024 bytes of program memory, while a typical application for a firmware processor
could easily be 4Kbytes in size. This rules out the PicoBlaze.

 20

Part II

 21

5 Architecture Specification
This chapter describes the processor from the perspective of the user, or the
“Architecture” as described by Blaauw and Brooks [Blaauw1997]. This architecture
specification was developed as a part of this project based on the requirements given in
the task description (see section 1.1) and the subsequently developed requirements
specification (see chapter 3). A discussion on many of the aspects of the NanoRisc design
described in this chapter is found in chapter 10. The NanoRisc name was given as part of
the task description and has become, as the name imposes, a relatively simple RISC
processor. It features 13 16-bit general registers, a dedicated stack pointer, up to 32 I/O
ports and a 16-bit memory interface. It features single cycle execution of all instructions
that do not read from memory. It is a load/store architecture which means that logical and
arithmetic operations can only be performed on data stored in the registers, however,
efficient load/store and stack instructions makes moving data between memory and
registers fast. A simple overview of the architecture is given in Figure 2.

 22

Figure 2 - NanoRisc simple overview

Before going into detail on the functionality of the processor, an overview of the
nomenclature used will be given.

5.1 Nomenclature
Special registers:
SR: Status Register

• Halt: Halt Flag
• IRQ: Interrupt Request Flag
• IE: Interrupt Enabled Flag
• V: Two’s complement overflow indicator
• N: Negative Flag
• Z: Zero Flag
• C: Carry Flag

 23

PC: Program Counter
SP: Stack Pointer

General 16-bit registers:
R0-R12: General registers

Memory spaces
M: Data memory
IO: I/O ports

Bit change indications:
“-“: Not changed
“*”: Changed
“1”: Set
“0”: Cleared

Instruction registers and operands:
Rd: Destination (and source) register in the Register File
Rs Source register in the Register File
K: Constant data
k: Constant address

Bytes
LSB: Least significant byte
MSB: Most significant byte

5.2 Address Space Overview
There are three different memory spaces in the NanoRisc. The first memory space is the
register memory space. There are 16 addressable registers. The first 13 are general
registers, followed by the 16-bit stack pointer, the 7-bit status register, and the up to 15-
bit program counter (see Figure 3).

 24

R2

R3

R4

R5

General 16-bit
registers

R6

R7

Special function
registers SR

PC

R0

R1

SP

R8

R9

R10

R11

R12

Figure 3 - Logical register layout

The second address space is the I/O address space. It is a 5-bit address space where the
first 16 addresses are for input ports, and the last 16 addresses are for output ports.
The third address space is the combined program and data memory space. It is a 16-bit
memory space of which the user decides its composition of RAM and ROM. It is
implemented in a manner that is impartial to the big endian/little endian problem. Only
aligned word-accesses are allowed, and for byte operations, the byte read or written is
read or written to and from the LSB of the register. The correct arrangement of bytes
must be handled in an external module.

 25

5.3 Instruction Addressing Modes
Due to the load/store nature of the architecture, the NanoRisc instruction set is not
orthogonal when it comes to addressing modes. Each instruction supports only one
addressing mode, and they are described for each instruction in Appendix A.

5.4 Constants
The constant field of the immediate instructions of the NanoRisc ranges from 2 to 8 bits
while the architecture is 16-bits. To allow 16-bit immediate values in the branch, logical,
arithmetic and load/store instructions, the “pre” instruction is included in the instruction
set (see Appendix A). When the “pre” instruction precedes any of the above mentioned
instructions that take a “pre” instruction, the constant field of the “pre” instruction is
concatenated with the constant field of the instruction being executed to form a 16-bit
constant field. The least significant bits of the “pre” instruction form the most significant
bits of the constant being used in the instruction. The least significant bits of this constant
is the immediate field of the instruction word of the current instruction.

5.5 Instruction Fetch
Instructions are fetched on each clock cycle with the exception of the first cycle of an
instruction that reads from memory, or when waiting for a busy data memory. The
instruction read from the instruction memory is executed in that same cycle. Which
address to be loaded next is calculated and selected on each cycle, which voids the need
for branch prediction.

5.6 General Registers
The NanoRisc contains 13 16-bit general registers without any dedicated role. These
registers can be used in all operations where a source or destination register is required.
There is no dedicated accumulator. The general registers are referenced in the assembler
as R0 through R12, but aliases can be created for better clarity of code (see section
7.1.1.2).

5.7 Special registers
The special registers of the NanoRisc each have a dedicated role in the processor. They
comprise the stack pointer (SP), status register (SR) and program counter (PC) and are
referenced respectively as R13 through R15. These registers can be used in all operations
where a source register is required, and with the exception of the program counter, they
can also be used as destination registers. When a special register is used as destination
register for an operation, this will override any other attempt to modify the contents of the
register in that cycle. Note that for the registers that are not 16-bits, when used as a
destination register, the result will be truncated.

5.7.1 SP
The stack pointer is a 16-bit register which points to the top of the top of the system stack
located in the data memory. The stack pointer must be initialized to the desired address of
the stack before it is used. Note that all stack operations are word operations, and that the
stack pointer should then be initialized to an even address. Stack operations employ a

 26

pre-decrement, post-increment scheme in which the stack pointer is decremented before
writing a data object to its location (push) and incremented after reading an item from its
location (pop). The operations that influence the stack are the following push/pop pairs:

• “push”/”pop”
• “call”/”ret”
• interrupt/”reti”

The instructions that operate on the stack pointer are summarized in Table 2.

Table 2 - Stack instructions
Mnemonic Description
call Indirect Call
calli Push PC on the stack, jump to relative
pop Pop a value from the stack and put it in Rd
push Push the contents of Rd onto the stack
ret Jump to the PC popped from the stack + 2 bytes
reti Jump to the PC popped from the stack

The stack can also be manipulated manually by using the stack pointer as the destination
register of an operation, but it is then important to remember that the stack pointer should
only point to even addresses. Figure 4 shows an example of stack use. The contents of the
register R0 is pushed onto the stack, and then popped to register R1.

push R0 pop R1

0x0F8

0x0F9

0x0FA

0x0FB

0x0FC

0x0FD

0x0FE

0x0FF SP
0xCAFE

0x0F8

0x0F9

0x0FA

0x0FB

0x0FC

0x0FD

0x0FE

0x0FF

SP 0xCAFE

0x0F8

0x0F9

0x0FA

0x0FB

0x0FC

0x0FD

0x0FE

0x0FF SP

0xCAFER0

R1

0xCAFER0

R1

0xCAFE

0xCAFE

R0

R1

Figure 4 - Stack use

5.7.2 SR
The 8-bit status register contains the flags and status bits of the NanoRisc. The high
nibble contains the bits that control various aspects of the processor while the lower
nibble contains the flags that are set based on the result of a logical, arithmetic or shift
operation. Which bits are affected by the different instruction is shown in Appendix A.
Using the status register as destination register in an operation which writes to register

 27

takes priority over the automatic updating of flags by the operation being executed. The
register layout is shown in Figure 5, and the individual bits and their behavior when not
written to as a register are described below.

Z CIRQ VIE NHALT

Figure 5 - Status register

• HALT – Halt execution. This bit is set when the processor should halt execution.

No instructions are executed while this bit is set.
• IRQ – Interrupt request. This bit is set on every clock cycle when the interrupt

request line is held high, and cleared when it is low.
• IE – Interrupt enable. When this bit is set, it masks out any interrupt request

causing it not to be acknowledged.
• V – Overflow. This bit is set when the result of an arithmetic operation overflows

the signed variable range.
• N – Negative. This bit is set whenever the result of an operation is negative.
• Z – Zero. This bit is set whenever the result of an operation is zero.
• C – Carry. This bit is set whenever an operation produces a carry.

5.7.3 PC
The program counter contains the program memory word address of the instruction
currently being executed. Its width is fully configurable depending of the program
memory size in the implementation. A zero is concatenated with the PC to make up the
program memory byte address of the instruction (see Figure 6).

PC 0

Figure 6 - Program address

The PC can not be more than 15-bits wide which would make a 16-bit byte address. A
program memory address of 11-bits for example, enables the NanoRisc to address 2K
instruction words, or 4K bytes of program memory. The PC is by default reset to -1, but
the reset value can be changed by the user before synthesis and set to the address of the
first instruction in the program minus one. The PC is written on each cycle of execution
except when waiting for a memory operation (see 5.10). A manual write to PC by using it
as the destination register of an operation is not allowed, however the “jmp” instruction
provides much of the same functionality (see Appendix A).

5.8 Data Processing
The NanoRisc implements a comprehensive set of data processing instructions enabling
the user to efficiently process data in the registers. In keeping with the load/store
architecture philosophy, the data processing instructions all operate on values stored in
the registers.

 28

5.8.1 Arithmetic
The arithmetic instructions are provided to enable calculations on both signed and
unsigned quantities stored in the registers. All arithmetic instructions set the flags in the
status register as if a signed operation was performed. However, due to the principles of
two’s complement arithmetic, the same instruction can be used to calculate a valid result
for both a signed operation and an unsigned operation. The distinction between signed
and unsigned operations is made with the conditional branch instructions (see section
5.11). Table 3 gives an overview of the arithmetic instructions implemented in the
NanoRisc.

Table 3 - Arithmetic instructions
Mnemonic Description
add Add
addc Add with Carry
addci Add Immediate with Carry
addi Add Immediate
cmp Compare
cmpi Compare Immediate
sub Subtract
subc Subtract with Borrow
subci Subtract Immediate with Carry
sxt Sign-extend LSB into MSB
zxt Zero-extend LSB into MSB

There is no instruction implemented to negate a register in one cycle, because it would
require another multiplexer on the input to the ALU in addition to the control logic.
Figure 7 shows how this can instead be done in two cycles employing the principle of
two’s complement.

inv R0
addi R0, 1

Figure 7 – Negate

5.8.2 Logical
The logical instructions perform logical bitwise operations between the contents of two
registers. They enable amongst other things the setting, clearing and toggling of
individual bits. Table 4 gives an overview of the logical instructions of the NanoRisc.

Table 4 - Logical instructions
Mnemonic Description
and Logic AND
andi Logic AND Immediate
inv Invert Rd
mov Copy register content
or Logic OR
ori Logic OR Immediate

 29

tst Logic Test
tsti Logic Test Immediate
xor Logic XOR
xori Logic XOR Immediate

The architecture does not have a dedicated function to clear the contents of a register. The
same result can, however be produced by xor’ing the register with itself as shown in
Figure 8. This will correctly set the zero flag of the status register.

xor R0, R0

Figure 8 - Clear register

5.8.3 Multiplication
The architecture is capable of single cycle 8x8 unsigned multiplication. The result is
stored in one of the 16-bit registers. To achieve signed multiplication, the user must give
the result the sign indicated by the xor of the sign bits of the multiplier and multiplicand.
An overview of the NanoRisc multiplication instructions is given in Table 5.

Table 5 - Multiplication instructions
Mnemonic Description
mul Unsigned Multiplication of LSB
muli Unsigned Multiplication Immediate of LSB

5.8.4 Shift and Rotate
The NanoRisc processor provides full shift and rotate functionality. Between 0 and 15
shifts can be performed in either direction in a single cycle, shifting in ‘0’s, ‘1’s, the
value of the carry bit or the bits shifted out. A summary of the shift and rotate instructions
is given in Table 6.

Table 6 - Shift and rotate instructions
Mnemonic Description
rol Rotate left
ror Rotate Right
slc Carry Shift Left
sll Logic Shift Left
sra Arithmetic Shift Right
src Carry Shift Right
srl Logic Shift Right

The NanoRisc does not include a specific instruction to swap the LSB with the MSB of a
register. This effect can instead be achieved by rotating the register 8 places to the left or
to the right.

 30

5.9 I/O
The NanoRisc Input/Output ports allow connection to peripherals or other NanoRisc
processors, and resemble the external ports of the 8051 architecture. The advantage of
keeping a separate set of I/O ports as opposed to memory mapped I/O is the possibility to
perform single cycle bit-operations on output which is important when implementing bit-
banging or timing critical control functions. Bit-banging is the action of transmitting data
by emulating the protocol in software without the use of a task-specific hardware
controller.

The processor contains a configurable number of addressable I/O ports. The width of the
I/O ports is configurable from 1 to 16 bits. There are always equally many input ports as
there are output ports with a maximum of 16 of each. The port layout with the maximum
number of ports is described in Figure 9.

0x00

0x01

0x0E

0x0F

0x10

0x11

0x1E

0x1F

Input
Ports

Output
Ports

Figure 9 - I/O port layout

Read operations can be performed on either input or output ports. If the width of the I/O
port is less than 16-bit, the value is zero-extended when read into a register. Operations
that change the value of a port can only be performed on output ports. An attempt to
change the value of an input port will be ignored by the processor. The NanoRisc I/O
instructions are summarized in Table 7.

Table 7 - I/O instructions
Mnemonic Description
iobc Clear bit in I/O out register
iobs Set bit in I/O out register
iosc Set bit in I/O out register to value of carry flag
iotg Toggle bit in I/O in register
iots Test bit in I/O in register
rdio Read from I/O port
rdioi Read from I/O port immediate address

 31

wrio Write to I/O port
wrioi Write to I/O port immediate address

5.10 Memory
The program and data memories of the NanoRisc share address space, however they each
have a separate memory bus going out of the NanoRisc (see 5.15). This enables the user
to choose the most sensible solution for memory implementation depending of the
demands of the application. A sensible solution in an application where the NanoRisc
functions as a coprocessor to another microcontroller could be to implement the program
and data memories in the same memory. This would require an arbiter between the
program and data memory busses, the CPU and potentially other units using the same
RAM (Random Access Memory) (see Figure 10). The CPU would then load the program
data for the NanoRisc into it’s RAM on startup. It is important that the NanoRisc
program memory read would always be prioritized in such a setting.

NanoRisc
Program and
data memory

(RAM)
Arbiter

CPU

Figure 10 - Single memory solution

When the NanoRisc is used as a standalone implementation of a control function, it will
in most cases be simpler and more economical to implement the program memory as a
separate ROM (Read Only Memory) (see Figure 11). This configuration, however, does
not allow the NanoRisc to read constants from its own program memory without an
arbiter on the data bus with access to the ROM.

NanoRisc

Program
memory
(ROM)

Data
memory
(RAM)

Figure 11 - Separate memories solution

 32

Other configurations are along the same lines are of course possible. It should be noted,
however, that the NanoRisc reads from program memory on practically every cycle and
that these reads have to be prioritized.

5.10.1 Program Memory
The program memory contains the instruction words of the program. After a reset, the
NanoRisc will always start reading from the “PC_RESET_VAL” address plus one word,
so the program data should always be placed at this address. The memory is byte-
addressed, and instruction words are always read from even addresses. Because a read
instruction word is not registered internally before it is used, there are certain
requirements as to the delivery of the program data. The program data must be a
synchronous RAM or ROM. The access time (time after a rising clock edge before data is
ready on the lines) should be relatively low in order to achieve a high operating
frequency. If the program memory receives a read request from the NanoRisc which it
can not fulfill on the next cylcle, it should deassert the “clk_enable” signal to stall the
processor for one cycle.

5.10.2 Data Memory
The data memory should be implemented in a synchronous RAM. The memory is byte
addressed and there are operations to read and write both bytes and words. The LSB of a
word is always on an even address. When reading a byte, the MSB of the result is ignored
which gives freedom when implementing the memory. The physical memory unit in
which the data memory is implemented can be shared with the program memory of the
NanoRisc or other units. If, due to contention, a data memory request from the NanoRisc
cannot be fulfilled on the next clock cycle, the memory wait signal (see section 5.15)
should be asserted by the memory. This will cause the processor to wait until the signal is
deasserted and the request has been fulfilled. The timing diagram in Figure 12 shows the
sequence of events when the NanoRisc receives the memory wait signal at a load
operation.

 33

clk

reg_w_w_en

mem_wait

mem_r_w_en

The memory receives
a request from
another unit and
raises the mem_wait
signal of the
NanoRisc

The NanoRisc
attempts to perform a
load operation in the
next cycle.

The other unit's
memory operation is
performed.

The memory indicates
that it is ready to
perform a memory
operation for the
NanoRisc.

The NanoRisc's load
operation is
performed and it
deasserts its request.

The NanoRisc writes
the result to register.

mem_r_data

Data is ready on the
memory data lines

mem_addr

Figure 12 - Memory wait timing diagram

The instructions that operate on the data memory are summarized in Table 8.

Table 8 - Memory instructions
Mnemonic Description
ld Load byte/word
lda Load byte/word with inc/dec
ldo Load byte/word with offset
st Store byte/word
sta Store byte/word with inc/dec
sto Store byte/word with offset

In addition to these, the stack operations described in 5.7.1 also operate on the data
memory.

5.11 Program Flow
The default program flow is to execute next the instruction located after the current
instruction in the program memory. This default flow can be overridden by either of two
separate events; acknowledging an interrupt or change of flow by an instruction, where

 34

the interrupt takes priority. A description of the interrupt handling is given in section
5.12. Change of flow by instruction is a single cycle operation, and this voids the need for
branch prediction. Table 9 describes the instructions that potentially change the flow of
the program execution.

Table 9 - Change-of-flow instructions
Mnemonic Description
beq Branch if zero flag is set
bges Branch if greater than or equal signed
bgeu Branch if greater than or equal unsigned
blts Branch if less than signed
bltu Branch if less than unsigned
bn Branch if negative
bne Branch if zero flag is not set
call Indirect Call
calli Push PC on the stack, jump to relative
jmp Indirect jump
jmpi Unconditional branch
ret Jump to the PC popped from the stack + 2 bytes
reti Jump to the PC popped from the stack

5.12 Interrupt
The interrupt functionality allows the NanoRisc to respond promptly to external
asynchronous events without having to poll continuously for them. This means that the
processor is free to perform other useful work while it is waiting for an external event.
An interrupt is triggered by an interrupt request (IRQ) signaled by the assertion of the
“irq” input line on the NanoRisc (see section 5.15). This signal is sampled on each rising
clock to set the “IRQ” flag in the status register. The interrupt will be considered for
acknowledgement if the “interrupt enable” (IE) flag of the status register is set. There is
no rollback functionality in the NanoRisc, so all instructions have to be executed
atomically. This means that an interrupt will neither be acknowledged while a load
instruction is waiting for the result, nor between the execution of a “pre” instruction and
the instruction that is to use the “pre” value.
When an interrupt is acknowledged, the instruction read from memory on that cycle is
not executed, instead the PC is pushed onto the stack and the next instruction to be loaded
is the instruction at address of the interrupt vector (see Figure 13). The interrupt vector is
an input to the NanoRisc(see section 5.15).

 35

0x43

0x44

0x45

0x46

0x47

0x48

0x49

0x4A

0x4B

int_vector

int_vector+1

int_vector+2

int_vector+3

int_vector+4

int_vector+5

int_vector+6

0x0B [reti]

0x4C

0x4D

0x4E

0x4F

0x50

Interrupt
Acknowledged

IRQ

Program
Flow

IRQ_ACK [push PC, di]

Figure 13 - Interrupt sequence

The maximum time between the rise of the IRQ line and the execution of the first
instruction of the interrupt handler is two cycles. Usually the first instruction of the
interrupt handler should be to push the status register to the stack in order to preserve the
state at which the interrupt was acknowledged. When an interrupt is acknowledged, the
“irq_ack” signal is set high for one clock cycle, and the interrupt enable (IE) flag of the
status register is cleared to avoid unwanted nesting of interrupts. To enable nested
interrupts, the “ie” instruction should be run by the interrupt handler. Nested interrupts
means that an interrupt handling routine can be interrupted to start another interrupt
handling routine. The “reti” instruction will atomically return to the instruction which
was about to be executed when the interrupt was acknowledged and enable interrupts by
setting the IE flag of the status register. In some rare cases one might want to use an
interrupt routine to disable interrupts. In this case one can replace the “reti” instruction by
a decrement of the PC on the stack followed by a “ret” instruction which does not enable
interrupts.

Two levels of priorities for interrupts may be achieved in the NanoRisc by the use of the
“ie” instruction. The nature of the interrupt should be determined by software, and if it is
a low priority interrupt, the “ie” instruction should be run to enable a high priority
interrupt to interrupt the routine. This simple interrupt handling will be insufficient for
some applications. In those cases, an external interrupt module such as a programmable
interrupt controller (PIC) [Bolado2003] can be used to provide extended interrupt
functionality as described in Figure 14.

 36

Interrupt Module

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

NanoRisc

IRQ

I/O port 0x10

I/O port 0x0

int_vector

Figure 14 - External interrupt module

Several interrupt request lines may be connected to the interrupt module. The module
prioritizes the interrupts and forwards an IRQ to the NanoRisc. The NanoRisc will, as
one of the first operations of the interrupt handler, read the identity of the current
interrupt from the I/O lines. Interrupt priorities may be changed dynamically by the
NanoRisc by communicating with the interrupt module over the I/O lines. Alternatively,
the interrupt module can dynamically set the interrupt vector depending on the identity of
the interrupt.

The architecture of the NanoRisc also allows software interrupts or “traps”. A trap can be
implemented by manually setting the “IRQ” flag of the status register, for example by
using the emulated raise interrupt (“ri”) instruction (see Appendix A). Please note that the
NanoRisc does not make a distinction between software and hardware interrupts, and that
a software interrupt is also acknowledged using the external “irq_ack” line.

5.13 Halt
The halt functionality of the NanoRisc enables it to be entered into a power-saving mode.
The “sleep” input line (see 5.13) is sampled on every rising clock edge into the “halt” bit
of the status register. When the halt bit is set, the state of the processor is frozen, and no
more instructions are performed. The “halt” bit also drives the “is_sleeping” output line.
When the “is_sleeping” signal goes hight, the “clk_en” signal can be driven low, causing
the registers of the NanoRisc to stop sampling, further reducing the power consumption.
To wake the NanoRisc, the “clk_en” signal must be driven high, and an IRQ must be
signaled. The processor will then continue execution where it left off or handle the
interrupt if the interrupt enable bit of the status register is set. Another alternative for
waking the processor is to reset it, in which case the state of the processor is reset and
execution starts from address 0 (see section 5.14).

5.14 Reset
A reset of the processor is performed by holding the “reset_n” line low for at least one
clock cycle (see section 5.15). A reset will set the status register to 0, which means
among other things that interrupt is initially disabled. The PC is by default reset to -1, but
the reset value can be changed by the user before synthesis and set to the address of the
first instruction in the program minus one. The program memory read lines “p_rdata”
should be reset to 0. The I/O output registers are reset to 0. The other registers of the
NanoRisc are not affected by a reset.

 37

5.15 Interface

Program
Memory

Interrupt
Controller

mem_rdata[15:0]
mem_wait

p_rd_en

p_address[10:0]

mem_wdata[15:0]
mem_addr[15:0]

irq_ack

irq

clk

reset_n

io_out_ports[n-1:0][7:0]

io_in_ports[n-1:0][7:0]

Data Memory

Peripherals

clk_en

sleep

is_sleeping
p_data[15:0]

mem_r_b_en
mem_r_w_en
mem_w_b_en
mem_w_w_en

NanoRisc

int_vector

Figure 15 - Top-level interface

An overview of the top-level interface signals to the NanoRisc is shown in Figure 15. A
detailed description of each signal is given in Table 10.

Table 10 - Top-level interface signal descriptions
io_in_ports
[n-1:0][7-0]

in I/O input ports. It consists of n ports of byte width. Valid
data should be present on these lines when reading from the
corresponding I/O port.

irq in Interrupt request line. Sampled on each rising clock to set
the IRQ flag in the status register. Should be deasserted as
soon as the “irq_ack” is asserted.

int_vector in Interrupt vector. These lines contain the address of the
interrupt handler.

clk in Clock input. All elements of the NanoRisc CPU are
clocked from the rising edge of this signal.

clk_en in Clock enable signal. This signal gates the clock signal to
all registers and should be deasserted when the processor is
sleeping to save power.

reset_n in Reset. This signal is active low and should be deasserted for
at least one clock cycle. It resets the CPU to the state
described in section 5.14.

sleep in Sleep. This signal will when asserted for at least one clock

 38

cycle cause the “halt” flag of the status register to be
asserted and the processor to enter the sleep state.

p_rdata[15:0] in Program data. The valid instruction word corresponding to
the address on the “p_address” lines should be present on
these lines after each positive clock edge where “p_rd_en”
has been asserted. See section 5.2 for maximum allowable
delay.

mem_wait in Memory wait. This signal should be asserted whenever the
data memory is busy and will be unable to fulfill a request
from the NanoRisc processor on the next clock cycle.

mem_rdata[15:0] in Data memory read data. This signal should contain the
data as indicated by the address on the “mem_addr” on the
cycle after one of the “mem_r_b_en” or “mem_r_w_en”
signals are asserted.

irq_ack out Interrupt request acknowledge. This signal is asserted as
soon as an interrupt request has been acknowledged. See
section 5.12 for a description of the event sequence.

io_out_ports
[n-1:0][7:0]

out I/O output ports. It consists of n ports of byte width. These
ports always reflect the contents of the output registers of
the processor, and can be read at any time.

p_rd_en out Program memory read enable. This signal is asserted
whenever a word should be read from the program memory.

p_address[10:0] out Program memory address. This byte address indicates
which word which is to be read from the program memory.

mem_r_b_en out Data memory read byte enable. This signal is asserted
whenever a byte should be read from the data memory.

mem_r_w_en out Data memory read word enable. This signal is asserted
whenever a word should be read from the data memory.

mem_w_b_en out Data memory write byte enable. This signal is asserted
whenever the LSB should be written from the
“mem_wdata” lines to the data memory.

mem_w_w_en out Data memory write word enable. This signal is asserted
whenever a word should be written from the “mem_wdata”
lines to the data memory.

mem_addr[15:0] out Data memory address. This byte address indicates which
part of the data memory should be read or written.

mem_wdata[15:0] out Data memory write data. This signal contains valid data to
be written to memory whenever the “mem_w_b_en” or the
“mem_w_w_en” signals are asserted.

is_sleeping out Is sleeping. When this signal is asserted, the processor has
entered the sleep mode and will not execute any new
instructions until an interrupt request is received.

 39

5.16 Instruction Set
The machine code instruction set of the NanoRisc consists of 63 16-bit instructions. A
summary of the instruction set showing how many cycles of execution is required for
each instruction and a brief description of each is given in Table 11.

Table 11 - Instruction set summary
Mnemonic Cycles Description
add 1 Add
addc 1 Add with Carry
addci 1 Add Immediate with Carry
addi 1 Add Immediate
and 1 Logic AND
andi 1 Logic AND Immediate
beq 1 Branch if zero flag is set
bges 1 Branch if greater than or equal signed
bgeu 1 Branch if greater than or equal unsigned
blts 1 Branch if less than signed
bltu 1 Branch if less than unsigned
bn 1 Branch if negative
bne 1 Branch if zero flag is not set
call 1 Indirect Call
calli 1 Push PC on the stack, jump to relative
cmp 1 Compare
cmpi 1 Compare Immediate
inv 1 Invert Rd
iobc 1 Clear bit in I/O out register
iobs 1 Set bit in I/O out register
iosc 1 Set bit in I/O out register to value of carry flag
iotg 1 Toggle bit in I/O in register
iots 1 Test bit in I/O in register
jmp 1 Indirect jump
jmpi 1 Unconditional branch
ld 2 Load byte/word
lda 2 Load byte/word with inc/dec
ldi 1 Load Immediate
ldo 2 Load byte/word with offset
mov 1 Copy register content
mul 1 Unsigned Multiplication of LSB
muli 1 Unsigned Multiplication Immediate of LSB
nop 1 No-operation
or 1 Logic OR
ori 1 Logic OR Immediate
pop 2 Pop a value from the stack and put it in Rd
pre 1 Load 10-bit PRE register
push 1 Push the contents of Rd onto the stack
rdio 1 Input
rdioi 1 Read from I/O port
ret 2 Jump to the PC popped from the stack
reti 2 Jump to the PC popped from the stack

 40

rol 1 Rotate left
ror 1 Rotate Right
slc 1 Carry Shift Left
sll 1 Logic Shift Left
sra 1 Arithmetic Shift Right
src 1 Carry Shift Right
srl 1 Logic Shift Right
st 1 Store byte/word
sta 1 Store byte/word with inc/dec
sto 1 Store byte/word with offset
sub 1 Subtract
subc 1 Subtract with Borrow
subci 1 Subtract Immediate with Carry
sxt 1 Sign-extend LSB into MSB
tst 1 Logic Test
tsti 1 Logic Test Immediate
wrio 1 Output
wrioi 1 Write to I/O port
xor 1 Logic XOR
xori 1 Logic XOR Immediate
zxt 1 Zero-extend LSB into MSB

The encoding of the instruction words is shown in Figure 16.

 41

Bits
Mnemonic 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
nop 0 0 0 0 0 0 0 0 0 0 0 0 RESERVED
ret 0 0 0 0 0 0 0 0 0 0 0 1 RESERVED
reti 0 0 0 0 0 0 0 0 0 0 1 0 RESERVED
push 0 0 0 0 0 0 0 0 0 0 1 1 Rd
pop 0 0 0 0 0 0 0 0 0 1 0 0 Rd
zxt 0 0 0 0 0 0 0 0 0 1 0 1 Rd
sxt 0 0 0 0 0 0 0 0 0 1 1 0 Rd
inv 0 0 0 0 0 0 0 0 0 1 1 1 Rd
jmp 0 0 0 0 0 0 0 0 1 0 0 1 Rd
call 0 0 0 0 0 0 0 0 1 0 1 0 Rd
rdio 0 0 0 0 0 0 0 1 Rs Rd
wrio 0 0 0 0 0 0 1 0 Rs Rd
mov 0 0 0 0 0 0 1 1 Rs Rd
or 0 0 0 0 0 1 0 0 Rs Rd
xor 0 0 0 0 0 1 0 1 Rs Rd
and 0 0 0 0 0 1 1 0 Rs Rd
tst 0 0 0 0 0 1 1 1 Rs Rd
mul 0 0 0 0 1 0 0 0 Rs Rd
muli 0 0 0 0 1 0 0 1 U4 Rd
add 0 0 0 0 1 0 1 0 Rs Rd
sub 0 0 0 0 1 0 1 1 Rs Rd
addc 0 0 0 0 1 1 0 0 Rs Rd
subc 0 0 0 0 1 1 0 1 Rs Rd
cmp 0 0 0 0 1 1 1 0 Rs Rd
calli 0 0 0 0 1 1 1 1 U8
rdioi 0 0 0 1 0 0 0 U5 Rd
wrioi 0 0 0 1 0 0 1 U5 Rd
iosc 0 0 0 1 0 1 1 U5 Bitnum
iobs 0 0 0 1 1 0 0 U5 Bitnum
iobc 0 0 0 1 1 0 1 U5 Bitnum
iots 0 0 0 1 1 1 0 U5 Bitnum
iotg 0 0 0 1 1 1 1 U5 Bitnum
pre 0 0 1 0 0 0 U10
sta 0 0 1 0 0 1 size d/i Rs Rd
lda 0 0 1 0 1 s/z size d/i Rs Rd
sto 0 0 1 1 0 size U2 Rs Rd
sll 0 0 1 1 1 0 0 0 K4 Rd
srl 0 0 1 1 1 0 0 1 K4 Rd
sra 0 0 1 1 1 0 1 1 K4 Rd
slc 0 0 1 1 1 1 0 0 K4 Rd
src 0 0 1 1 1 1 0 1 K4 Rd
rol 0 0 1 1 1 1 1 0 K4 Rd
ror 0 0 1 1 1 1 1 1 K4 Rd
beq 0 1 0 0 0 0 0 0 S8
bne 0 1 0 0 0 0 0 1 S8
blts 0 1 0 0 0 0 1 0 S8
bges 0 1 0 0 0 0 1 1 S8
bltu 0 1 0 0 0 1 0 0 S8
bgeu 0 1 0 0 0 1 0 1 S8
bn 0 1 0 0 0 1 1 0 S8
jmpi 0 1 0 0 0 1 1 1 S8
st 0 1 0 0 1 size U6 Rd
ld 0 1 0 1 s/z size U6 Rd
ldo 0 1 1 0 s/z size U2 Rs Rd
ldi 0 1 1 1 S8 Rd
ori 1 0 0 0 S8 Rd
xori 1 0 0 1 S8 Rd
andi 1 0 1 0 S8 Rd
tsti 1 0 1 1 S8 Rd
addi 1 1 0 0 S8 Rd
addci 1 1 0 1 S8 Rd
subci 1 1 1 0 S8 Rd
cmpi 1 1 1 1 S8 Rd

Figure 16 - Instruction Encoding

 42

5.17 The NanoRisc Assembly Language
The NanoRisc specific assembly language is based closely on the NanoRisc instruction
set. It consists of a set of assembly instructions enabling the user to produce all possible
machine code instructions in the NanoRisc instruction set. Each assembly instruction
consists of a mnemonic followed by a possibly empty comma separated list of arguments.

Certain machine code instructions are so frequently used in combination with a fixed set
of arguments that though they are not implemented as separate instructions in hardware,
they are given a separate assembly instruction. While most instructions in the NanoRisc
assembly language correspond directly to a machine code instruction, these pseudo
instructions are emulated by machine code instructions with fixed values for one or more
of the arguments. The purpose of these instructions is to ease programming and improve
readability of a program.

Other features of the assembly language and the functionality of the assembler are
described in section 7.1.

 43

6 Implementation
This chapter describes the implementation of the NanoRisc processor. Implementation is
defined by Blaauw and Brooks [Blaauw1997] to be the aspects of a design the user does
not see. The data flow diagram shown in Figure 17 shows the data flow between the main
entities of the design, and also indicates which module they are implemented in. Many of
the features shown in this diagram will be discussed below, but the reader is referred to
the source code in Appendix B for the details on the implementation.

The implementation of the NanoRisc is based on a centralized principle where the
instruction is decoded and all control signals are set in the processor control unit (PCU)
module. The multiplexers and registers that implement a unit, however, are implemented
in their respective modules.

Multiplexers are generally described as “case” expressions and their control signals are of
a specific type defined in the “pkg” package. This is done to improve readability both of
code and of simulation results.

 44

REG

REG

REG

MULSHIFTIO

SRC

MEM ALU

REG

PCU

FETCH

Register File

PC

ALU

Rd

src

Instruction Fetch

Load/Store

Status Reg

pc_next

src

K16

Shifter

Rd

Rd

I/O

Rs

K

PC

PREK

Concat

Multiplier

Rd

stackptr

STACKPTR

pc_next

bra_resb0

Sign Ext

Control

src

+ +/-

Rd

Int_vector

Rd

Rs

0x0001

0x0000

0x0001

mem_d_
mux

mem_a_
mux

io_d_mux
alu_mux_

0
alu_mux_

1

src_mux

shift_mux

sr_mux

Figure 17 - Data flow diagram

An overview of the modules of the NanoRisc is given in Figure 18.

 45

alu fetch io mem

pcu reg shift

top

src

mul

Figure 18 - Module overview

They are implemented as VHDL modules with entity and architecture in separate files.
The source code for these modules is found in Appendix B, and a short description of
each module follows below in alphabetical order.

6.1 Top
The main function of this module is to connect the signals of its sub-modules internally
and the external interface as described in section 5.15. It also implements the wake-on-
interrupt functionality as described in section 5.13.

6.2 ALU
The arithmetic logical unit is the main unit for data processing in the NanoRisc. An
overview of the ALU structure is given in Figure 19.

 46

+

inv

and or xor

input 0

result

= 0?

zero
negativestatus register

pass

carry in input 1

Figure 19 - ALU overview

It has two 16-bit operand inputs of which the second can be inverted. It contains a 16-bit
carry propagate adder with optional carry-in to perform addition and subtraction
operations. The result of the adder also sets the carry and overflow signals to the status
register module. The overflow signal is asserted when the carry-in of the msb xor the
carry-out of the msb is 1 as explained in [Hennesy1996]. It contains 16-bit logical
modules to perform and, or and xor operations. In addition to the results from the adder
and logical units, the multiplexer which chooses the final result also has the possibility of
choosing the inverted or not inverted input 1. The zero and negative signals to the status
register are calculated from the result chosen by this multiplexer.

The adder was written manually from “and”, “or” and “xor” gates. The reason why a
Design Ware component instantiated by the “+” operator was not used, is that the carry
out from the second most significant bit is needed for the calculation of the overflow bit.
An alternative would have been to directly instantiate full-adder elements from the
standard cell library, but this would tie the adder to a specific library. On the other hand,
using the “+” operator would when used with a good Design Ware library allow the
synthesis tool to choose between different adder implementation. Although a simple
ripple-carry adder will always be smaller than a carry-look-ahead adder at low speeds, a
carry-look-ahead adder might be preferable at high speeds [Smith1999]. Another

 47

implementation of the adder should then be considered when synthesizing the NanoRisc
for high speeds.

6.3 Fetch
This unit generates the address of the next instruction to be executed. This can be one of
five main choices:

• The current PC + 1
• The current PC offset by an immediate amount
• The current PC offset by the result from the “src” module (see section 6.10)
• A value read from memory optionally incremented by one.
• The interrupt vector input port value

The choice of what calculation is to be used to determine the next instruction to be
executed is decided by the PCU (see section 6.7). It bases its decision on the type of the
current instruction, the content of the status register and any interrupt requests. The
“fetch” module also calculates the program memory address as described in section 5.7.3.

6.4 I/O
This module contains the I/O output registers and controls the reading and writing of I/O
ports. There is only one set of I/O address lines, so an output register can be both read
and written on the same cycle, but one can not read one port and write another on the
same cycle. Bit operations on I/O output registers are performed by passing the current
value of the register through the ALU and writing it back on the same cycle. The result of
a read from an I/O port is always zero-extended to a 16-bit word.

6.5 Mem
The memory module controls the reading and writing of the data memory. It selects the
address at which to read or write and the data to be written.

6.6 Mul
This module contains the 8x8 multiplication unit of the NanoRisc. It is generated by
using the infix operator ‘*’ which produces a multiplier from the Synopsys DesignWare
library at synthesis. Chipcon currently only has a license for the most basic of the Design
Ware libraries which does not include fast multipliers. As with the adder, a different
implementation of the multiplier such as the Booth multiplier should be considered when
synthesizing the NanoRisc for high speeds [Smith1999].

6.7 PCU
The control unit (PCU) sets the control signals for all modules in the design. It decodes
the instruction, sets the control signals and selects the correct address and constant fields
from the instruction word.

6.7.1 Instruction Decoding
The type of the instructions is identified by a set of nested “case” clauses who evaluate
the variable length op-codes of the instructions. For the purpose of instruction decoding,
all shift and branch instructions are grouped into the types “iShift” and “iBranch”

 48

respectively. The decoding into specific shift and branch instructions is delayed to reduce
code size. When an instruction word does not correspond to any of the instructions in the
instruction set, it is given the type “iUnknown”, and is executed as a “nop” instruction.

6.7.2 Interrupt Handling
An interrupt will be acknowledged if all of the following conditions are met:

• The interrupt request and interrupt enable flags of the status register are set
• The “pre” bit is not set
• The processor is not in the load cycle state (see section 6.7.5).

When an interrupt is acknowledged, the PCU will set control signals to push the SP to the
stack, clear the interrupt enable flag of the status register and load the instruction at the
address indicated by the interrupt vector input port. The instruction read from memory on
this cycle is decoded, but its execution is overridden by the setting of signals to
acknowledge the interrupt.

6.7.3 Branch Control Unit
The branch control unit is implemented as a function that takes the status register and the
condition code as an argument and returns whether or not to branch. The condition code
is taken from the three lowest bits (PD0-2) of the relative branch instruction word. The
decoding is shown in Figure 20.

Z CV N PD0PD1PD2

1b

XOR

b_taken

Figure 20 - Branch control unit

6.7.4 PRE register
The “pre” instruction is implemented by loading its constant value into a 10-bit PRE
register located in the PCU module and setting the “pre” bit of the PCU module. Two sets
of constants are generated for each constant type; one where the constant field of the
executing instruction is sign or zero extended to 16-bit, and one where the PRE register is
concatenated with the constant field to form a 16-bit constant. An instruction which takes
a “pre” value will determine which of these constants to use based on the status of the
“pre” bit. Any such instruction will also clear the “pre” bit.

 49

6.7.5 Load Cycle
The control unit contains a 1-bit state machine used to extend any memory load operation
to two cycles. In the first cycle, the memory address is calculated and set up, and in the
second cycle, called the load cycle, the result is written to register and a new instruction
is loaded.

6.7.6 Setting Control Signals
The control signals controlling the multiplexers and registers of the design are all set in
this module. The default values of the control signals correspond to a “nop” instruction.
For all other instructions, the control signals are set to produce the signal path which will
give the desired result.

6.8 Reg
This module implements the special and general registers of the NanoRisc. They are
implemented as flip-flops. The only flip-flops that have reset functionality are the ones
that implement the program counter and status register. The general registers are
implemented as an array of 16-bit registers.
The module has two read ports and one write port, but only two address lines, so when
reading two register any register to be written must be one of those who are also read. In
addition, all special registers can be updated on each clock cycle. Writing to a general
register is done by addressing the register and asserting “reg_w_w_en”. A special register
can also be written in this way, and this will override any other update of the register on
that clock cycle. Reading a register is done by addressing it on one of the two sets of
address lines, which will put its value on the corresponding read port. In addition, the
values of the special registers are out ports on the module.

6.9 Shift
The shifter is implemented as one signal path for shifting to the left and one signal path
for shifting to the right. The data flow for the left shifter is shown in Figure 21. It consists
of four levels of shifting. The first level shifts by 8, the second by 4, the third by 2 and
the fourth by 1. What is shifted in depends on the values of the rotate enable (“rot_en”)
and carry enable (“carry_en”) signals as shown in the diagram. The “rot_en” signal is
asserted if the shift type as set by the PCU is “sRot”, and the “carry_en” signal is asserted
if the shift type is “sC” and the carry flag of the status register is asserted. For each level,
a multiplexer chooses between the output from the previous level and the most significant
bits of the output from the previous level concatenated with the bits to be shifted in. The
multiplexer chooses the first input when the corresponding bit of the shift amount is ‘0’
and the second input when it is ‘1’. The right shifter is similar to the left shifter, but also
includes the possibility of arithmetic shift.

 50

input[15:0]

input

input[7:0]

cat

input[15:8]

rot_en carry_en

cat

level1[15:0]

level1[15:12]

level1[11:0]

cat

level2[15:0]

level2[15:14]

level2[13:0]

cat

level3[15:15]

level3[15:0]
level3[14:0]

result

amt0amt1amt2amt3

Figure 21 - Left shifter

 51

The shift module is used as a mask and constant generator for the ALU. For bit-
operations on I/O registers, the bit-number is used as the amount, and the input is set to 1,
thereby generating a mask which can be used by the ALU. It is similarly used to generate
constants for incrementing the stack pointer and memory address by 1 or 2.

6.10 Src
This small module contains only one multiplexer which chooses the source operand “src”
for many of the functional units. It chooses between the immediate value, the “Rd”
register value or the “Rs” register value.

 52

7 Tools
The existence of a comprehensive set of tools is crucial to the success of any
microcontroller core. The task specified two tools to be made; an assembler and an
instruction set simulator (ISS). Several toolsets for processor tools generation exist such
as LisaTek by Coware [LisaTek], and CGEN [CGEN]. The cost of LisaTek starts at
$50,000 which is too much for this project’s $0 budget. CGEN is free, but is still in a sort
of beta stage, and as the developer in this project is unfamiliar with SCEME
programming, it was considered too much of a risk. The tools were therefore developed
without the use of such a toolset.

7.1 Assembler
The NanoRisc assembler translates a program written in the NanoRisc assembly language
into NanoRisc machine code. This section will first describe the prominent features of the
assembler, and go on to describe their implementation. Finally, a brief introduction to its
command line interface is given.

7.1.1 Features
In addition to direct translation between assembly language and machine code, the
assembler includes a number of features to improve programmability.

7.1.1.1 Labels
To ease the use of the immediate branch and call instructions, the possibility of defining
and referencing labels is included in the assembler. A label is defined by a line in the
assembly code with a label name followed by a colon (see Figure 22).

labelname:

Figure 22 - Label definition syntax

A label represents the address of the first instruction that follows it. To refer to a label,
the label name can be inserted for any immediate branch offset argument whether it is
relative or absolute.

7.1.1.2 Defines
Allowing the programmer to define aliases for registers and constants greatly improves
programmability and readability. In the NanoRisc assembler, this is implemented by the
“.def” directive (see Figure 23).

.def alias value

Figure 23 - Define syntax

 53

The value part of this directive can be either a constant value or a register name. A
register alias can be used in the place of any register name as an argument to an
instruction. A value alias can be used in the place of any immediate value. The alias must
be defined prior to its use. An attempt to use a value alias in the place of a register name
in the argument list of an instruction or vice versa will produce an error.

7.1.1.3 Includes
The possibility to include assembly source code from several files in a program is very
helpful for larger programs or when using library functions. The “.include” directive is a
simple way to include code from other files without the need for a full linker application.
In contrast to a linker, however, it features only a flat scope which may produce conflicts
between labels and alias definitions. The include directive can be used at any point in the
program, and allows 10 levels of nesting. The syntax is described in Figure 24.

.include “filename”

Figure 24 - Include syntax

The filename is the relative path and filename of the file to be included. When the
assembler encounters an “.include” directive, it will immediately start parsing the
contents of the included file. Once the included file is parsed to the end, parsing of the
including file will resume from the point of the include directive.

7.1.1.4 Logical and Arithmetic Operations
To improve programmability and readability, the capability of evaluating constant
expressions containing constant numbers and aliases was implemented. The following
operators are supported:

• Plus “+”
• Minus “-“
• Multiply “*”
• Divide “/”
• Unary minus “-“
• And “&”
• Or “|”
• Not “~”

Parentheses are used to group expressions.

7.1.1.5 Constant Interpretation and Automatic “pre” Insertion
The assembler accepts constants on the decimal form such as 79 and hexadecimal form
such as 0x4F. All constants entered in the assembler are interpreted to be signed 16-bit
words. Thus the hexadecimal value 0xFF will be interpreted as 255 while 0xFFFF will be
interpreted as -1. If the programmer enters constant values as an argument to an
instruction that are too large to be represented in the instructions constant field, the
assembler will attempt to split the value up by inserting a “pre” instruction containing the

 54

most significant bits before the instruction. If the type of instruction does not support the
use of preceding “pre” instructions or if there is already an immediately preceding “pre”
instruction, an error will be generated. Hence, if the programmer attempts to enter a value
that is too large to be represented by the instruction and a preceding “pre” instruction, the
assembler will first insert the first “pre” instruction, and then attempt to insert another
which will cause it to report an error stating that a “pre” instruction already precedes the
instruction.

7.1.1.6 Comments
The ability to include comments in the source code greatly increases the programmer’s
possibilities for making the program easier to read and understand. All text following a
semicolon up to the end of the line will be interpreted by the NanoRisc assembler as
comments, and will not be parsed (see Figure 25). C-style line comments (“//”) are also
supported.

 ; comment

Figure 25 - Comment syntax

7.1.2 Implementation
The assembler program is written in Microsoft Visual C++ using the lexer generator Flex
and parser generator Bison to generate the lexer and parser. The plug-in integrating Flex
and Bison into Visual C++ was made by FG-Soup. Though Flex and Bison do not make
up a state of the art assembler generator, they were chosen because the developer was
familiar with their use. The full source code for the assembler can be found in Appendix
D.

7.1.2.1 Lexer
The lexer reads the input stream searching for sequences of characters matching the
patterns accepted in the programming language it is reading (tokens). The lexer is called
by the parser (see below) and returns a token with corresponding value, an error or end of
file (EOF). The NanoRisc assembler lexer recognizes all instruction mnemonics,
directives, register names, alias identifiers, constant values and operators as tokens. It
skips all white space and comments.

The most complex feature of the lexer is the handling of the “.include” directive. When
an “.include” directive is recognized by the lexer, the first thing it does is to create an
object representing the state of the file currently being read, and pushing it to the 10 items
deep include file stack. It then takes the filename to be included and calculates its relative
path with respect to the current directory. It opens the file, creates a new input stream,
and starts reading from the new file. When EOF is encountered, if there are more files in
the include stack, it pops the file information from the stack and continues reading from
the point where it encountered the “.include” directive. If there are no more files in the
include stack, this means that the end of the program has been encountered, and the
parsing is terminated.

 55

7.1.2.2 Parser
The parser uses a description of the syntax of the programming language to identify
constructs of the language that give meaning. The parser in the NanoRisc assembler sees
a program as a sequence of program lines. Each program line can be an instruction, a
label definition or a directive.

An instruction line is identified as an instruction mnemonic followed by a list of
arguments of the correct type. The arguments to instructions are register names or aliases,
constant expressions or labels. Register and constant aliases are immediately resolved by
looking them up in the symbol table. If they are not already defined, an error is generated.
With labels, however, this approach would cause forward references to labels to produce
an error. Instead, when a label name is encountered as an argument to an instruction, if
the label is not already in the symbol table, the symbol table entry is created but marked
as undefined and the instruction created will point to the symbol table entry. If the label is
already in the symbol table, the created instruction will point to the corresponding symbol
table entry. When an instruction has been correctly identified, the parser uses the
“addInstr” method of the global “NrProgram” object “thisProgram” to add an instruction
of the appropriate type with the appropriate values for its arguments. The current
filename and line number is also stored with the added instruction.

When a program line has been identified as a label definition, if the label already exists in
the symbol table and is not already marked as defined, it is marked as defined and the
current program address is stored with it. If the label is not already defined in the symbol
table, the symbol table entry is created, marked as defined and the program address is
stored with it.

When a “.def” directive is identified, a symbol table entry is created describing whether it
is a register or a constant alias, and what its value is.

Constant expression evaluation in the parser is done by parsing the expression, evaluating
it, and replacing it with the resulting constant value. The operations for evaluating the
sub-expressions are implemented using the corresponding standard “C” integer
operations on the constant values.

7.1.2.3 Symbol Table
The symbol table is a class which holds a list of entries connecting an identifier used in
the program to a type and a value. It is used by the parser who adds new entries and looks
up the types and values of existing entries. The symbol table class also ensures that no
duplicate entries are allowed.

7.1.2.4 Program Class
The program class is the class that holds all the instructions in the programs after they
have been parsed. It contains methods to add instructions and generate code. The process
of generating code starts by resolving the label references. The symbol table entries for
each label contains the address of the instruction they are pointing to, and after resolving
the label reference, the symbol table entry contains a pointer to the “NrInstruction” object

 56

it is pointing at. When the label references have been resolved, the branch offset values of
all branch immediate instructions are calculated. The assembler then goes on to check if
all constant values can be represented by the constant fields in their instruction. Where it
is found not to be the case, a “pre” instruction is inserted before the instruction containing
the most significant bits of the value. When a “pre” instruction is inserted, two things
happen: all branch immediate offsets have to be recalculated because the relative address
of the target instruction might have changed, and then it follows that the branch
immediate value of some instruction might have become so large or small as to require a
“pre” instruction. Thus, after having inserted one or more “pre” instructions, the
assembler recalculates the branch offsets and checks again if any “pre” instructions are
needed. This process continues until no “pre” instructions are needed.
When no more “pre” instructions are needed, the assembler goes on to calculate the
instruction word for each instruction. All opcodes are stored in an array indexed by the
instruction type. For each instruction, the corresponding opcode is or’ed with the values
of the variable fields to form the instruction word.

The program class is also responsible for writing the program to file. The method
“writeProgram” writes information about the program to file depending on the desired
format. Currently, the only supported format prints one line for each instruction
containing the instruction word in hexadecimal ASCII character format followed by the
word address of the instruction, the originating filename and line number.

7.1.3 Program Use
The program is implemented as a Windows command-line executable with syntax as seen
in Figure 26.

nr_asm input_file [output_file]

Figure 26 - Assembler command-line syntax

If the “output_file” argument is not supplied, it defaults to the name of the input file with
its extension changed to “.hex”. When no arguments are supplied, a short text describing
the syntax of the program is displayed.

7.2 ISS
The instruction set simulator (ISS) simulates the behavior of the NanoRisc processor at
an instruction accurate level. That is to say, after the execution of any one instruction in a
program, its status is the same as that of the processor running with the same input.
Because the instructions of the NanoRisc with few exceptions are single cycle, the ISS is
very close to cycle accurate. The NanoRisc ISS was written as a debugging tool for
programmers that can also be useful for optimization of code.

7.2.1 Features
Perhaps the greatest feature of the NanoRisc ISS is its speed. In comparison with an RTL
simulation, running a program on the ISS consumes negligible amounts of time. Its

 57

graphical user interface (GUI) also provides the programmer with a simple way to
supervise and control the simulation. Below is an overview of the ISS features and Figure
27 is a screenshot of the application.

• Hexadecimal view of the data memory with the target of the stack pointer
highlighted

• Possibility to load data memory contents

• Reload button to quickly restart simulation

• I/O view with the possibility of setting I/O input ports

• IRQ checkbox

• Register overview

• Cycle counter, program counter and current instruction word clearly displayed

• Full disassembler

• Code view showing instruction word, program address, filename, line number,
assembly code and the number of times it has been executed for each instruction
in the program

• Highlighting of current instruction and color coding of most visited instructions

• “Run”, “Step” and “Run to cursor” modes with possibility to break execution at
any point.

Figure 27 – ISS screenshot during execution of quicksort

 58

7.2.2 Implementation
The NanoRisc ISS is written in MS Visual C++ using the Microsoft Foundation Class
(MFC) library for window handling. The simulator itself is implemented in the
“NrSimulator” class, which is controlled by a GUI class called “SimulatorDlg” (see
Appendix E for the source code). Both the GUI and simulator classes also use the
disassembler for the NanoRisc assembly language implemented in the “NrDisassembler”
class. The “CListCtrlEx” control is a list control developed by Chipcon and should not be
considered as a part of the work done for this thesis.

7.2.2.1 Simulator
The simulator class “NrSimulator” contains the entire state of the processor core, the data
memory and the program memory. It has methods to execute instructions, and set and
retrieve processor state. It keeps the contents of the program and data memories in arrays
of words. The values of the registers and I/O ports are stored similarly. It also keeps an
array of unsigned integers the size of the number of words in the program memory where
each integer signifies how many times the corresponding instruction word has been
executed.

When an instruction is executed, the simulator first checks the status register for interrupt
request or if the execution has been halted. If neither is the case, it uses the
“findInstrType” method of the disassembler to determine what type of instruction it is.
Depending on the type of instruction, a sequence of operations is performed on the
variables containing the state of the processor to reflect the changes of the executed
instruction. Typically it will involve a change to the program counter and an arithmetic
operation whose result is reflected in the status register and destination register, or a
memory or I/O operation.

7.2.2.2 GUI
The GUI class contains the controls that display information to the user and receives
input from the user. It also implements functions to load a new program or memory file.
The functions handling the pushing of the buttons “Run” or “Run to cursor” start new
threads from where the simulator methods to execute instructions are called. This is to
allow the thread which runs the GUI window to continue to receive user input while the
simulation is running. This enables the “Break” button to function as intended.

7.2.2.3 Disassembler
The disassembler performs the opposite job of the assembler. It takes the instruction
words as input and produces assembly code. This simple disassembler performs a direct
translation of each instruction word individually. It will not necessarily reproduce the
assembly code that produced the instruction word in the first place because it does not
generate labels, aliases, macros or emulated instructions. The purpose is simply to be able
to view the instruction word in a more human readable form.

 59

 60

Part III

 61

8 Test
The testing of the NanoRisc was performed in RTL simulation using ModelSim 6.0 by
Mentor. The goal of the testing was twofold:

• Ensure correct functionality of the processor
• Make sure no logical errors were made in the design of the instruction set

To meet the first goal, a VHDL test bench and a NanoRisc program designed to cover the
full functionality of the processor were made. To ensure that the second goal was met, a
set of real-life applications were made and run on the processor.

8.1 Test Bench
The test bench was written in non-synthesizable VHDL, and simulates a typical system
surrounding the NanoRisc. It is implemented by a top module which instantiates the
NanoRisc, a program RAM, a data RAM, an I/O input queue and an I/O output queue
(see Figure 28 and Appendix C for source code).

: tb_top

program_ram
:ram

data_ram
:ram

io_in_queue
:fifo_ram

io_out_queue
:fifo_ramNanoRisc

Figure 28 - Testbench overview

The test bench can load content into the RAMs on startup, and dump their contents to file
when the simulation ends. The path of the program to run is thus specified in the
“P_LOAD_NAME” generic. The VHDL functions to read data from file into a bit-array
were re-used from a previous Chipcon project and should not be considered as a part of
this project. The test bench has functions to halt and wake the processor, to simulate data-
ram contention, to implement a data transfer handshake protocol over the I/O lines and to
generate interrupts. Each simulation starts by resetting the processor, but which of the
above mentioned functions are run subsequently is determined by the values of the
corresponding boolean generics with a “_PROC” suffix. An example of an interrupt is
shown in Figure 29 where the interrupt is acknowledged at the yellow line, and the
interrupt vector is 0x0004.

 62

Figure 29 – Interrupt simulation

An example of the sleep functionality is shown in Figure 30. The NanoRisc enters the
sleep mode when the “is_sleeping” signal goes high. The red bar represents a time-gap
while the yellow bar is where the processor is wakened from the sleep mode by an
interrupt.

 63

Figure 30 – Sleep functionality

8.2 Coverage program
The coverage program was written systematically with the intent to cover as much of the
NanoRisc functionality as possible in one program. It sets up and implements self-
checking tests of each instruction in the instruction set. The example in Figure 31 shows a
test of the “sto” and “ldo” instructions with preceding “pre” instructions.

 64

 ;; Sto with PRE and Ldo with PRE
 ldi R5, 0x0004
 ldi R6, 0xFFDE
 sto.b R6, 30(R5)
 ldo.bz R7, 30(R5)
 ldo.bs R8, 30(R5)
 cmp R8, R6
 bne ERROR
 zxt R6
 cmp R7, R6
 bne ERROR

Figure 31 - Example instruction test

In addition to checking the functionality of each instruction, the test bench simulates
data-memory contention, interrupts and halt/wake events during the execution of the
program. The self-checking functionality is implemented by testing the results of the
operation and jumping to the “ERROR” label if the result was not as expected. The
results have also undergone manual inspection. The program consists of approximately
500 lines of assembly code and achieved 98.84% statement coverage. The remaining 10
uncovered statements have been thoroughly inspected and deemed not to contain any
errors.

8.3 Quicksort Program
The quicksort program sorts an array of words in the data RAM using the quicksort
algorithm as described in [Cormen2001]. The quicksort algorithm was implemented as a
part of the testing because it tests recursive function calls, conditional branches and
load/store functionality in a real-life application. The results of the testing were uplifting.

8.4 CRC Program
The cyclic redundancy check algorithm (CRC) is an algorithm used to generate
checksums used to detect error in transmission or storage of data. The CRC-16 variant
implemented here produces a 16-bit checksum to be appended to its data. It is used for
example in the Universal Serial Bus (USB) protocol. The CRC program implemented
reads the data from which to generate the checksum as bytes from an I/O port using a
handshake protocol. The checksum is calculated upon the reception of each byte. When it
is told that all data has been received, it starts transmitting the two generated CRC bytes
over the I/O lines using the same handshake protocol as when receiving the data. This
program tests the I/O functionality and data processing. An interesting property of the
CRC algorithm is that a CRC checksum calculated from data with its checksum appended
to it will give a zero checksum. This property was used to verify the correctness of the
algorithm implemented. Performance wise, it would have been much more effective had
the I/O port width been 16-bit. Still, it calculates and transfers 16-bit CRC from 40-bits of
data in 500 cycles.

 65

8.5 16-bit Multiplication
A “multiply16” function was implemented which performs a software shift-add
multiplication of two 16-bit numbers and stores the result in two general registers. It tests
the code size for the NanoRisc. The NanoRisc is able to perform a 16x16 unsigned
multiplication in 112 cycles and with a code size of 12 words, while the AVR for
example, uses more than 153 cycles with a code size of 14 words [AVR1997]. In terms of
speed, however, the NanoRisc is capable of performing a 16x16 multiplication in 19
cycles using 19 words of code size by the use of four 8x8 multiplications, shifting and
adding.

8.6 SPI
To test the bit-banging capabilities of the NanoRisc, a set of functions to implement the
Serial Peripheral Interface (SPI) master were written. SPI is a loose standard for a full-
duplex serial bus that is slow but cheap. It uses four lines:

• “sck” – clock
• “miso” – master in slave out data line
• “mosi” – master out slave in data line
• “nss” – not slave select

For details on the protocol, the reader is referred to [Kalinsky2002].

The implementation for the NanoRisc has a clock signal with 50% duty cycle, and still
achieves a throughput of 454 KB/s at 10 MHz each way while the AVR for example
achieves only 444KB/s at the same speed with a skewed duty cycle [Atmel2002]. The
great advantage of the NanoRisc is the shift into carry and set I/O bit to the value of carry
(“iosc”) instructions in combination to implement efficient bit-banging, and testing
showed that this worked flawlessly.

 66

9 Results
This chapter describes the results achieved when synthesizing and testing the NanoRisc.
The results are summarized in Table 12.

Table 12 – Results overview
Area 4362 gates
Power Consumption 0.04 mW/MHz
Performance 0.9 MIPS/MHz
Max Frequency of Operation with
minimum area

50 MHz

9.1 Synthesis
The synthesis of the design was done using the Synopsys Design Compiler with the
Virage Logic TSMC 0.18um FSG DUS Standard Cell Library. The synthesis was done at
two clock speeds: 25 MHz for low power applications and 100 MHz for high
performance applications. The results below are reported for these two frequencies
separately, however, in keeping with [Salminen2004], both power and performance are
reported for each frequency. The synthesis scripts were constructed by modifying
standard Chipcon synthesis scripts.

Due to the lack of an instruction register, the timing of the arrival of program data is
crucial to the design. To get a timing model for the program memory, a high-speed
single-port synchronous diffusion ROM of 2048x16 bits was generated by an Artisan
ROM generator. In a typical process with typical conditions, it has an address setup time
of 0.31 ns and an access time of 1.29 ns. The address setup time is the time the program
address has to be stable on the lines before the rising clock edge, and the access time is
the time from the rising clock until the read data is stable on the data lines. These
constraints were conveyed to the synthesis tool using the “set_output_delay” and
“set_input_delay” statements respectively.

The design compiled is the NanoRisc core with 13 general registers, 2 8-bit I/O ports in
each direction and an 8x8 multiplier and a 10-bit program counter. The synthesis was
optimized for speed.

9.1.1.1 Area
Clock gating is first and foremost a power-saving technique which consists of gating out
the clock of a unit which is not used. In this design, it consists of turning off the clock for
arrays of registers that are not to sample new data. This approach can save power while
minimizing clock skew [Wakerly2000]. Design Vision studies of the registry control unit
revealed that instead of gating away the clock to the last 8-bits of each register when
writing just a byte, the synthesis had inserted a 2-multiplexer in on the input of these 8-
bits. This multiplexer chose between current flip-flop output value and the new input
value. Gating the clock would simply be an “and” gate in comparison. The clock gating

 67

was inserted using parameters to the synthesis tool, and it turned out not only to save
power, but also area in the register module.

In the register module, the reading of the registers is currently implemented by a 16-bit
multiplexed bus. An implementation using a tri-state read bus could have used a smaller
area. A tri-state bus is a bus where an output connected to the bus can be either in a low,
high or high impedance (Hi-Z) state. In the Hi-Z state, the output behaves like it is not
connected to the bus. It is thus very important that only one output on a line is in one of
its non-Hi-Z states at one time [Wakerly2000]. The advantage is that a tri-state bus read
solution takes less space, but on the other hand it uses more power and is harder to debug
than a multiplexed bus. It is due to this last point that Chipcon has a strict policy against
the use of internal tri-state buses, and hence, it has not been used in this design.

Another possibility for reducing the size of the register module would be to use latches in
stead of flip-flops to implement the registers. A latch is typically less than one half the
size of a flip-flop. While a D flip-flop only updates its value on the rising edge of a clock,
the D latch will change its value as long as its control signal is asserted [Wakerly2000].
The main problem with a latch implementation is the lack of possibility for scan testing.
The idea of scan testing is to be able to drive the registers data input while a scan enable
signal is asserted. By doing this, the contents of the registers can be changed by the user
by shifting in a test pattern, the clock is then run for one edge, and we shift out the result
and compare against the expected. The contents of the registers are then read out and
compared to expected results. This is one of the main test methods at Chipcon, and
therefore all registers have scan capabilities and the latch implementation was ruled out.

The area of a design will often become greater if it is to be run at greater speeds. This is
due to timing constraints that need to be met, and the drive strengths of the components
have to be increased to reduce propagation delays. A unit with greater drive strength
takes more space in silicon. This explains the rather significant increase in area by some
modules when going from 25 MHz to 100 MHz operating frequency as shown in Table
13.

Table 13 - Area
Module 25MHz Area 100MHz Area
alu 5069 6886
fetch 1071 1084
io 1853 1864
mem 1152 1014
mul 3626 5337
pcu 7389 12719
reg 13380 13788
shift 4055 4619
src 711 1390
Total Area 38306 48701
Gatecount 4 362 5 546

 68

The synthesis for 100 MHz gave a significant increase in the size of the ALU and
multiplier modules. It is probable that one would be able to achieve a smaller design at
100 MHz by using for example a carry look-ahead adder (CLA) or Booth multiplier
[Smith1999]. These are larger modules in terms of the number of logic elements used, but
they have shorter critical paths, and hence, the drive strengths of the logic elements might
not have to be as great. This might in turn reduce the area consumed by the modules. At
25 MHz, the simple adder and multiplier used are fast enough and should be kept as they
use a minimum amount of area.

9.1.2 Timing
Slack is the difference between the maximum amount of time a signal can use to be
propagated along a signal path for the signal to still arrive on time and the actual amount
of time it takes. If the slack for a path is positive, it means that the timing goal for that
path is met, while if it is negative, the goals have not been met [Synopsys2004].

At 25 MHz, the path with the lowest slack is a path where the data is required after 40.42
ns and arrives after 20 ns giving a slack of 20.42 ns. This path is from a program memory
data line, through the PCU, through the I/O unit, through the ALU and into a general
register. This is a fairly large slack, and shows that the frequency of operation could be
increased significantly without having to make changes to the drive strengths. In fact,
further synthesis showed that the NanoRisc could operate at 50 MHz without increasing
the area (see synthesis report summary in Appendix F).

At 100 MHz, the design was optimized and drive strengths increased until the critical
path had a slack of zero. This path is from a program memory line, through the PCU,
through the shifter, through the ALU and to the status register. Any further increase in the
operating frequency would lead to a larger area for the design.

9.1.3 Power
An estimate of power consumption in running mode, excluding memories, was calculated
using Power Compiler by Synopsys. The Power Compiler estimate is based on an
estimate of the switching activity in the processor, and should therefore only be
considered as ballpark figure. The switching activity was estimated to 50% except for the
clock which switches every cycle and the clock enable signal which is always high.
When running at 25 MHz and 1.98V, the power consumption of the processor is in the
order of 0.9 mW. When running at 125MHz, the power consumption of the NanoRisc is
the order of 4.8 mW.

In the halted mode, no signals are toggling, and the power consumption is deemed only to
be the leakage power [Salminen2004]. The Power Compiler estimate for the NanoRisc
design is a leak power of 5.5*106 pW at 25 MHz and 7.5*106 pW at 100 MHz.

9.2 Performance
As shown thoroughly by John L. Hennessy and David A. Patterson in “Computer
Architecture: A Quantitative Approach”, the measurement of relative performance of two
processors is difficult. A direct comparison of clock speeds does not take into account the

 69

effective number of instructions being completed in those clock cycles. The number of
million instructions per second (MIPS) is a popular metric that can be very misleading
when comparing processors running different instruction sets because some architectures
have instructions that perform in on instruction what another architecture would use
several instructions to do [Hennesy1996]. An example of this is the “decrement and
branch” instruction found in many architectures which performs in one instruction what
another architecture would use both a decrement and a branch instruction to do.
However, when comparing load/store RISC instruction set architectures, they are more
comparable with respect to the amount of work being performed per instruction, and
hence, the MIPS measurement becomes more indicative of performance than when
comparing a RISC architecture to a CISC architecture for example.

The NanoRisc 25 MHz version is chosen for the calculation of MIPS because it has low
size, reasonable power consumption and is the frequency at which it most probably will
be implemented. MIPS can be expressed as:

66 10CyclesClock CPU
RateClock Count n Instructio

10 TimeExecution
Countn InstructioMIPS

×
×

=
×

=

The cycles per instruction (CPI) is a measure of how effective the cycles of a computer
are. It is given as:

Countn Instructio
CyclesClock CPU CPI =

This gives:

610×
=

CPI
ClockRateMIPS

There are two reasons why the Instruction Count deviates from the number of CPU Clock
Cycles in the NanoRisc and gives a CPI greater than 1:

• Memory reads take two cycles
• “pre” instructions are not counted as instructions

The CPI can be calculated by running a program in the ISS and using the values for
“Cycle” and “Instructions”. The test programs for CRC calculation and Quicksort sorting
(see chapter 0) were used as representative programs for the calculation of CPI. A
normal run of the CRC calculation of 4 bytes of data gave a CPI of 1.004 while the
memory intensive quicksort program gave a CPI of 1.226. Weighting the two
applications equally, this gives an average CPI of 1.115. At 25 MHz, this gives a MIPS
value of 22.42. This again gives 0.9 MIPS/MHz.

The performance of a microcontroller core, however, is much more than speed. It is
usually a function of speed, size and power consumption. These factors should be

 70

weighted according to the application when deciding which microcontroller core to use
[Vogelin2002]. A common measure of microcontroller performance is how fast it is
compared with its power consumption. The NanoRisc will give approximately 0.05 mW
per MIPS, 20000 MIPS/Watt or 0.04 mW/MHz.

 71

10 Discussion
This chapter discusses some of the more interesting problems encountered in the design
and implementation of the NanoRisc processor and its tools.

10.1 Instruction set
The instruction set of the NanoRisc is the result of over a month of intense work. The
instruction set is the aspect of a processor that is most visible to the user, and hence it is
important to bring the user in on decisions concerning its design. Through deliberation
and meetings with the potential users of the processor, the NanoRisc instruction set was
defined. Some of Van de Goor’s [VanDeGoor1989] fundamental characteristics of a
good architecture used as a basis for the first part of the discussion: consistency,
completeness and open-endedness.

10.1.1 Consistency
The following quote from Carney's Introduction to Symbolic Logic as quoted in
[Dorp1994] can be inspiring for the designer of an ISA: “Consistency is essential;
soundness is needed; completeness is most desirable, though not always obtainable;
independence is obtainable, aesthetically pleasing, and can reduce one's labors in
metalogic"

The instruction set of the NanoRisc is not as orthogonal and “aesthetically pleasing” as
one could have hoped. It contains 13 different instruction formats, and different
instructions for all three address spaces. By consistency Van de Goor means freedom
from irregularity and that a system is consistent if partial knowledge of the system
permits you to predict other things about the system [Clements2004]. The NanoRisc
instruction set is despite all efforts, however, not as consistent as could be desirable for
an instruction set. It is, however, highly optimized for code compactness and only 909
out of 65536 possibilities are not exhausted. The high number of instruction formats is
reflected in that the PCU represents about 20% of the total design area. This was found to
be acceptable, as a more orthogonal and consistent design would mean that certain
instructions take up more space than necessary, leaving less room for large immediate
values. According to numbers for the Vax architecture found in [Hennesy1996], 35% of
all instructions in integer programs are immediate instructions. Integer programs are the
type of programs meant to be run on the NanoRisc. For the integer program/benchmark
“gcc”, an immediate field of 4-bits would be sufficient to represent the immediate value
in 50% of the immediate instructions, while an immediate field of 7-bits is sufficient in
70% of the immediate instructions. This means that 20% more of the immediate
instructions would need “pre” instructions if the immediate field was 4-bits instead of 8-
bits. This would further result in an approximately 7% decrease in code size by having 8-
bit immediate values instead of 4-bits. Such an decrease in code size probably makes up
for the any reduction in the size of the PCU one would see as a result of a more
orthogonal instruction set with 4-bit immediate values. As [Clements2004] stated it:
“maximizing the bang-per-buck runs counter to consistency”. Though there are many
instruction formats, the immediate values are to the largest extent possible aligned to
avoid extra multiplexers which would further increase the size of the PCU. While the

 72

instruction set is clearly not orthogonal in terms of addressing modes, it is orthogonal in
the sense that there are not many combinations of instructions with which to achieve a
specific result.

The architecture could be called orthogonal in register addressing, however as none of the
general registers have special functions. Features like R0 = 0 is better for separate
operand and destination register ISAs because it would enable one to load an immediate
by running “addi R1, 0, value”. The special registers of the NanoRisc are, however,
mapped to the same address space as the general registers. This is done to avoid separate
“move special register” instructions.

10.1.2 Completeness
The term “completeness” as used by Van de Goor with respect to instruction sets is that a
class of instruction contains all its members. The NanoRisc ISA includes all primitive
arithmetic operations except division and “subtract immediate”. Division is not included
because it is rarely useful in the control-oriented applications that are to be implemented
in the NanoRisc, and requires a large amount of area. The “subtract immediate”
instruction is not included because it can be emulated by an “add immediate” using the
negative value of the immediate constant, thus saving space in the instruction set. The
branch conditions used are the same as in the Texas Instruments MSP430 and are
“complete” in the sense that they allow all useful comparisons on integer numbers.

10.1.3 Open-endedness
The criteria of open-endedness means that the architecture is capable of future expansion
and development. This criteria is not immediately fulfilled by the NanoRisc as only 909
possibilities are left unused in the instruction set. It is, however, readily modifiable. The
I/O functionaliy can be removed in applications where one, for example is forced to use
memory-mapped I/O, and the freed up space in the instruction set could be used for new
instructions. The drawback, however, is that the design would have to be verified and the
tools would have to be modified accordingly.

10.1.4 Portability
Portability of existing programs is often an important issue when designing new
instruction sets as exemplified by Intels x86 architecture1. This, however, was not an
issue for Chipcon, as the NanoRisc will not replace another processor for which the
programs are already written, but hardware. The design of the NanoRisc is therefore free
of compatibility compromises.

10.1.5 I/O Addressing
The addressing of the I/O ports was a difficult issue to conclude on. The simplest aspect
would be to interpret the address as an input port for read operations and interpret it as an

1 Intel has built each new architecture on top of the old architecture to maintain compatibility (8086, 80286,
80386, 80486, Pentium) [Clements]. This compatibility has not come without cost, and many would argue
that Intel should have scrapped compatibility years ago to rid itself of past mistakes. More about the
architecture can be found at http://en.wikipedia.org/wiki/X86.

 73

output port for write operations. The complicating aspect is that the output ports should
be readable in order to be able to be able to perform arithmetic operations on its contents
without having to mirror the contents elsewhere. This means that one either has to have
separate instructions for reading the output register or one would have to add an extra bit
to the address of the port to indicate if it is an input port or output port. A separate
instruction for reading an output port would have saved a bit in each I/O instruction but it
would add two instructions to the instruction set by introducing separate versions of
“rdio” and “iots”. In terms of space in the instruction set, the separate instructions would
have been more economical, but in the spirit of simplicity, the extended address approach
was chosen. Any write operation to an input port is now ignored.

10.1.6 Decrement and Branch
An instruction that was considered for inclusion in the instruction set is the “decrement
and branch” instruction. It would decrement a register and branch if the result of the
decrement operation is not zero. This operation is perhaps not entirely in keeping with the
RISC philosophy, but it would save one instruction in many loops, and could make a
significant difference on performance. It turned out, however, that it would not be
possible to include this instruction as it would have to include a branch target, and a
register address which would consume 4096 possibilities, and would not fit in the
instruction set. Load and store with auto-increment/decrement are perhaps not entirely in
keeping with the RISC philosophy either, but were included because they have a great
potential for reducing the number of instructions needed in a loop and fit in the
instruction set.

10.1.7 Status Flags
The overflow, carry, zero and negative flags of the status register and the corresponding
condition codes are similar to the schemes used in the MSP430, the AVR and many other
architectures. It was chosen mainly because it defers the decision on whether an
arithmetic operation was signed or unsigned until the conditional branch evaluation. It
means that the condition code has one extra bit to indicate if it should evaluate the result
of the previous arithmetic operation as signed or unsigned. This adds one non-opcode bit
to 8 branch instructions of 11 non-opcode bits. Setting the signed/unsigned value for each
arithmetic operation would demand 1 extra non-opcode bit on 8 instructions of 12 non-
opcode bits and 8 instructions of 8 non-opcode bits which would use far more space in
the instruction set.

10.1.8 Byte Operations
The instruction set provides byte versions of load and store instructions to allow one byte
to be changed in memory and allow any one byte read from memory to be correctly
placed in a register by one instruction. There are, however, no byte versions of arithmetic,
logical and shift instructions. This is partly because it would increase the complexity of
the architecture but mostly because it would take up too much space in the instruction set
as data processing of bytes can be easily implemented by sign or zero extending them to
words.

 74

10.1.9 Immediate Memory Addressing
Paging as discussed in the requirements specification refers to the technique of specifying
a current “page” or portion of memory by storing the current most significant bits of the
address in a special register. By using paging, one only has to specify the least significant
bits for each memory access within the same page. The disadvantage is that it
complicates programming because the programmer constantly needs to consider the
contents of the paging register and when to change it. As paging was not an option,
another scheme had to be used to allow direct addressing of the full 16-bit memory space.
One option is to use variable size instructions, which means in this case that a memory
access instruction with direct addressing would be a 32-bit instruction with a 16-bit
immediate field. The disadvantage of this is that the most significant bits of the address
would have to be repeated for each access to the memory even when they are within the
same page. The prefix instruction approach chosen in the NanoRisc is very similar, and
has the same disadvantage. However, it simplifies the instruction set as the “pre”
instruction can be applied to all instructions with an immediate value without having to
use different opcodes for long instructions.

10.1.10 General
The impression of the NanoRisc after using it to implement the programs as discussed in
chapter 0, is that it is complete and efficient. It is complete because it implements the
necessary primitive arithmetic and logical and branch operations. It is efficient in terms
of code compactness because it allows variable sized immediate values while limiting the
need for “pre” instructions. Its efficiency in terms of speed is not so much defined by the
instruction set because it is a RISC instruction set. However, the powerful load/store with
increment/decrement will enable the user to save valuable cycles in a tight loop.

10.2 Architecture
During the development of the architecture of the NanoRisc, many difficult decisions and
trade-offs had to be made. It was sometimes difficult to predict the exact implications of a
decision on the performance, programmability and area of the NanoRisc, but they were
all analyzed thoroughly, and some of those analyses follow in this section.

10.2.1 Bit-width
One of the most important dilemmas encountered in the design of the NanoRisc was to
decide the bit-width of the architecture. A wider bit width enables more data to be
processed or moved in one operation and simplifies programming, while a narrower bit-
width reduces the size of the design and may potentially increase the frequency of
operation. Early gate-count estimations without taking into account control logic showed
that an 8-bit implementation would take around 2900 gates, a 16-bit implementation
would take 3300 gates and a 32-bit implementation would take 4200 gates. It was
decided that a 16-bit architecture would be sufficient to handle most data types used in
the intended applications such as 16-bit memory addresses, packet lengths and 16-bit
CRC while still staying comfortably within the required gate-count limits.

 75

10.2.2 Instruction Read
One of the less common solutions in the NanoRisc is the complete absence of pipelining
and the lack of an instruction register. The instruction word is executed directly from the
data lines on the program memory bus. The idea for this spurred from reading the data
sheet for the ROM to be used. Access times indicated that the program data would always
be stable on the lines well in time to propagate through the NanoRisc before the next
positive clock edge. The advantage of this is that by using a synchronous ROM, there
will be no need for prefetching logic, and hence there will be no branch penalties. The
downside is that the design will have to run with an about 2 ns longer clock cycle than it
if the instruction had been prefetched. The first application of the NanoRisc will be a
packet control function in an upcoming Chipcon transceiver which is specified to run at a
36 MHz clock, while the NanoRisc can run at up to 50 MHz with minimum area. This
means that in the foreseeable future, the speed of the NanoRisc will be adequate without
an instruction register.

10.2.3 ROM
There are mainly three different types of ROM available for an implementation of the
NanoRisc processor:

• Diffusion ROM – This is a very cheap ROM in terms of bit-density. It is located in
one of the lower layers of the wafer so that it is rather expensive and time-
consuming to change its contents in production.

• Metallic ROM – This is still relatively cheap, but not as cheap as diffusion ROM.
It is located on the top layer of the wafer, and its contents can be changed even in
the late stages of production.

• One-Time Programmable (OTP) ROM – This is expensive in terms of area, but
can be programmed once after production. Allows user programming of ROM.

A diffusion ROM was chosen as a model when determining constraints for the synthesis
as this was believed to be the most probable ROM type to be chosen for an
implementation.

10.2.4 Memory Space
The NanoRisc has a possibility of sharing memory space between the program and data
memories as discussed in section 5.10. The Von Neumann architecture is an architecture
in which a single storage unit is used to hold both program and data. In a predominantly
single-cycle execution processor like the NanoRisc, the memory becomes a true
bottleneck because the processor will attempt to fetch an instruction word from the
memory on almost every cycle, leaving little vacant capacity for memory data operations.
This speaks to the advantage of a Harvard architecture with separate memory busses and
physically separate memories for program and data [Arnold2001]. In addition to this,
ROM is cheaper and consumes less power than RAM, and since data memory has to be
implemented in RAM, it would be better to have program memory separate so that it can
be implemented in a ROM.

 76

10.2.5 Load Data Hazard
A potential data and structural hazard is introduced when reading from data memory.
When setting up the address in one cycle, the data will not be ready before the next cycle.
The affected instructions are the load instructions, the return instructions and the pop
instruction. For the load instructions, for example, if one allowed a new instruction to
start executing in this second cycle, one would have a data hazard because it may attempt
to read the destination register of the memory read which has not yet been updated. A
structural hazard arises because the instruction might attempt to use the register file write
port that the read from memory needs to write the result of the read. Possible solutions to
these hazards are:

• The compiler (or assembler) inserts “nop”s after memory reads where necessary.
This might save cycles where there are no hazards.

• The processor always executes a “nop” after a memory read while the result is
being stored. This will save program memory compared to the above mentioned
solution, but will stall the processor for one cycle for each memory read.

• A bit in the memory read instruction sets whether or not it should use two cycles.
This saves program memory, but uses instruction set space. Hazards are
dependent on the nature of the following instruction, and will have to be analyzed
by the assembler.

• A register locking mechanism will avoid data hazards by locking a register for
reads when before the contents have been updated. This will require complicated
logic and 1 extra bit per register. A separate register write port will have to be
used to avoid the structural hazard.

• Perform any auto-increment/decrement on first cycle, and write load result in
second cycle. The disadvantage is that a memory read always uses two cycles, and
that a 1-bit state machine is required to avoid loading a new instruction on the
second cycle. It does, however, avoid both hazards.

The latter approach was chosen for the NanoRisc because it requires a minimum of logic,
does not increase program size and does not complicate the instruction set or assembler.
It will always use two cycles for a load, but there are no stringent requirements on speed
for the NanoRisc. A data memory cache could reduce most memory reads to one cycle,
but it is not considered for the NanoRisc because it will be too expensive.

10.2.6 Stack
The call stack, where the program counter is stored on a call to a function, could be
implemented either as registers in the processor, or in memory. An implementation in
registers is faster as each return instruction would only take one cycle, but it would be
more expensive due to the registers used. In addition, the depth of the stack would be
limited by the depth chosen at synthesis, while its depth could be modified in software if
it were implemented memory. Following this argumentation, the stack is implemented in
memory in the NanoRisc with a dedicated stack pointer register.

 77

10.2.7 Shifter
A full barrel shifter with rotate and “shift in from carry” capabilities has been
implemented in the NanoRisc. This shifter takes 460 gates. Many small microprocessors
implement shifters that can only shift one place in either direction. Given the rather large
cost of the full barrel shifter, this would probably also have been the case with the
NanoRisc had it not been for the I/O bit operations. The I/O bit operations use the shifter
to generate bit-masks. An advantage of a full barrel shifter that is very useful for some of
the intended applications of the NanoRisc is that it can shift a bit field from anywhere in
a word to the least significant bits of the word in only one clock cycle. This can save
many cycles in packet processing applications. A couple of things are sub-optimal in the
way the shift instructions are implemented in the NanoRisc. Shifting in from carry can be
useful, especially when implementing shift registers. However, shifting in from carry will
in most cases only make sense when shifting by only one place. In the instruction set,
consistency is chosen over instruction space in this case. Another option would of course
be to implement a 16-bit carry register, allowing fast shifting of bits in two registers to
handle word-misaligned bit-fields. This was, however, deemed too expensive compared
to its usefulness. It should be noted as well that rotate right or left is only differentiated
by the value the carry bit is set to, and it could be argued that one of the instructions
could be dropped, however this would impair the functionality of rotating through a bit in
the I/O space.

10.2.8 Registers
The general registers of the NanoRisc could either be implemented in a register file or as
flip-flops. The general registers would only need one write port as there is only one
destination register in each operation and the loads with auto-increment/decrement are
implemented over two cycles. Such a single-port register file will in most cases be
smaller than the corresponding dual-port register file. It turned out, however that for the
relatively small register file needed for the NanoRisc, the single-port register file
generated by the Artisan register file generator was actually larger than the dual-port
register file. According to Chipcon engineers, this is a symptom of inefficient
arrangement of the bit-arrays in such small register files. Due to the overhead of reading
and writing logic, the area consumed by the register file surpassed the area needed to
implement the registers with flip-flops. Had the register needs of the NanoRisc been
twice as high, however, the register file would have been significantly smaller.

10.2.9 Interrupt
The interrupt scheme of the NanoRisc is as required “simple” but it is also highly flexible
and extendible. An alternative scheme that was considered was to not automatically
acknowledge interrupts, but rather implementing an interrupt acknowledge instruction. In
this scheme, low priority interrupts would acknowledge the interrupt in the beginning of
its handling routine, and high priority interrupts would not acknowledge the interrupt
before it was done with the interrupt handler. However, this requires an extra instruction
and an extra cycle for each interrupt handler, so it was not implemented. It could be
argued that the status register should be pushed to the stack automatically similarly to the
PC. This would require one more cycle to acknowledge interrupts and another state
machine in the PCU. It was therefore not implemented.

 78

The decision of big- or little-endian memory organization and handling of misaligned
word accesses are the responsibilities of an external module as it is dependent on the
memory being used. For most Chipcon applications, however, a simple module which
ignores the lowest bit of the address on word access and uses a big-endian scheme would
be suitable.

10.2.10 General
Due to the requirement of low gate-count, the NanoRisc architecture implements a very
limited functionality in some areas. However, it can perform all register-register and I/O
operations in a single cycle, branch without penalty and write to memory in a single cycle
while still running at 50 MHz.

10.3 Tools
As mentioned previously, the availability of high quality tools is very important to the
success of a microprocessor. Even though the NanoRisc is only intended for in-house
use, the existence of good tools for programming and debugging is an important criterion
when project managers decide whether or not to use the controller. Programming and
debugging tools are also very helpful in the testing of the microcontroller core design
itself.

The assembler and the instruction set simulator are in most cases sufficient for writing
small and simple applications. This describes most of the target applications of the
NanoRisc. However, there is little in the NanoRisc architecture that would make it
difficult to use it for more complex applications. One such application could perhaps be
an on-chip implementation of the Zig-Bee MAC. It is currently being run on the Chipcon
development boards using an AVR ATMega128 using about 24k of program memory.
For such an application, other development tools would be needed as will be discussed in
section 10.5.

10.4 Testing
The testing of the NanoRisc was limited to conceptual testing on the ISS and RTL
simulation. Though these tests allowed for verification of much of the functionality of the
NanoRisc, it would also have been useful to test the NanoRisc in hardware. An FPGA
implementation of the NanoRisc with memories and peripherals was deemed too time
consuming for this project. There is little to suggest that hardware testing of the
NanoRisc should prove difficult:

• It has scan-enabled registers for debugging.
• It is fully synchronous to one clock edge (except resets).
• It contains no internal tri-states as they are difficult to debug.

10.5 Future Work
At the end of this project, there is still a lot of work to be done both on the processor and
the tools before the NanoRisc could be included in one of Chipcon’s projects.

 79

10.5.1 Processor
The design should be verified and tested in hardware. This could be done in an FPGA. A
debug interface should be designed for the NanoRisc. This could be as simple as allowing
instructions to be run from a debug module without incrementing the program counter.

All branches and calls are implemented as PC relative jumps. This was done for
consistency and to avoid an extra multiplexer in the “fetch” unit. In using the instruction
set, it has, however, been found that when the relative indirect branches and calls are not
handled by the compiler, it is in some cases rather difficult to maintain consistent values
for them. Indirect branches and calls should probably be absolute in future
implementations of the NanoRisc.

There is an inconsitency in the instruction set of the NanoRisc. As argued previously, the
subtract immediate (“subi”) instruction was not included because it could be emulated by
the add immediate instruction (“addi”). However, the subtract immediate with borrow
(“subci”) instruction was included even though it could be emulated by the add
immediate with carry (“addci”) instruction by inverting the second input. Removing the
“subci” instruction from the instruction set could free up space for future expansions of
the instruction set.

The NanoRisc does not implement exceptions. This is mainly because were deemed not
very useful when there was no operating system. However, for debugging of programs, it
would be useful to be informed about any undefined instructions, stack pointer overflows,
or unaligned memory accesses. This could be implemented as some sort of exception
which would halt execution at least in simulation. With the instruction set being as
compact as it is, however, the probability of a random word being an unknown
instruction rather than being interpreted as a valid instruction is only 3.3%.

The data on the program memory data lines now give the state of the processor. This may
potentially cause problems during the load cycles and on the cycle after a reset. A one-bit
state machine should be implemented which indicates if the data on the program lines are
valid or not. This would ensure correct behavior of the processor more independently of
the behavior of the program memory module.

10.5.2 Tools
For assembly programming to be effective also for larger programs, the NanoRisc
assembler should probably be expanded to include support for macros. Macros is a set of
rules for text replacement. In assembly languages they are usually simple and often
implemented by a preprocessor. They can be used to simplify assembly programming by
simplifying the syntax of commonly used constructions. They can also be expanded to
include conditional and loop statements to enable more powerful generation of code. The
Gnu assembly pre-processor (“gasp”) is now deprecated, but could be used to implement
powerful macros [Pesch1994]. The assembler should also be expanded to use the GNU
BFD library. This library provides a canonical interface to virtually all widely used
output file formats such as “a.out”, COFF, ELF etc. [BFD]. This would provide
compatibility with linkers, debuggers etc.

 80

The instruction set simulator does not today include any support for simulating the
processor’s interaction with peripherals other than memory. When using the simulator to
debug an application which includes the NanoRisc, it is necessary to be able to make
software modules to emulate peripherals. A system for connecting plug-ins should be
implemented, perhaps using the Microsoft COM or .Net interfaces for flexibility. It
should be possible to connect peripheral modules to both I/O ports and as memory-
mapped modules. They should also be able to raise interrupts and set the processor in the
sleep mode. Such a system would be a great help in verifying systems on a high level.

One of the first things that should be done for the NanoRisc is to write a “C” compiler.
“C” is the de-facto standard for writing high level language programs for small
microprocessors. The NanoRisc architecture is very “C” compiler friendly with a large
number of general registers, and stack functionality. A frame pointer can be implemented
in one of the general registers. The writing of a “C”-compiler was considered done as a
part of this project, but writing it from scratch would then not be an alternative due to the
time-limitation. Several toolsets for generating compilers were considered. The most
widespread open-source compiler framework today is GCC (http://gcc.gnu.org). It is a
framework for writing compilers who output assembly code. However, [Bolado2003]
estimates a port of GCC to the OpenRISC architecture, for example, to 4 man-months.
This would clearly not be possible within the time frame of this project, but is has been
proposed as a project for a student at NTNU for this fall. See [Stallman1998] for an
introduction to how to make a successful GCC port. The free, retargetable “C” compiler
LCC (http://www.cs.princeton.edu/software/lcc/) was also considered, but it would also
be too time-consuming to get operational. A C-- (http://www.cminusminus.org/)
compiler vas also considered for the NanoRisc, but the project does not seem to have
made much progress lately, and it is doubtful that this will ever become a standard.

10.6 Summary of Requirements Conformity
This section sums up how the NanoRisc conforms to the requirements specification (see
chapter 3).

1. Load/store architecture. The NanoRisc implements a load/store architecture.

2. Simple, orthogonal, high density instruction set. It turns out that orthogonality
and high density are rather conflicting properties of an instruction set. The
NanoRisc instruction set is relatively simple and of high density, but it is not
orthogonal.

3. Data processing capabilities. The NanoRisc implements a relatively complete
set of primitive arithmetic and logical functions.

4. 8x8 Multiplier. An 8x8 hardware multiplier and corresponding instructions are
included in the NanoRisc.

5. Stack. The NanoRisc implements a stack in memory with corresponding
instructions and a dedicated stack pointer register.

6. 16-bit memory interface, no paging. The NanoRisc has a flexible interface to
two 16-bit memory busses, and has a shared, byte addressable address space for

 81

data and program. The entire address space can be addressed with immediate
instructions without the use of paging.

7. A parameterizeable sized I/O space with bit-operations. The NanoRisc
implements a parametrizable set of I/O ports of parametrizable width. Its
instruction set includes powerful single-cycle bit-operations on these ports.

8. Simple integrated interrupt controller. The simple interrupt controller of the
NanoRisc enables it to respond promptly to external events. It is flexible, but
requires an external interrupt controller in most cases.

9. Small footprint (2K-5K). The minimum area implementation of a NanoRisc with
a typical configuration takes about 4.5 Kgates.

10. Power consumption of < 25 uW/MHz in the 0.18 um process excluding
memories. The power consumption of the NanoRisc is estimated to 4 uW/MHz in
the 0.18 um process.

 82

11 Conclusion
The study of the IP processor cores available in the market today revealed that existing
cores did not provide the combination of size and performance required by Chipcon in
this application. The NanoRisc turned out to be a well-performing processor who satisfies
all the requirements. The design is less than 4500 gates and runs at 50 MHz, but its most
impressive feature is that it performs all register to register and branch instructions in a
single clock cycle without branch penalties. It will be able to provide Chipcon with the
processing capabilities they need to run firmware in their future designs. The tools
developed are stable and provides sufficient features for the writing and debugging of
small programs. Though it needs some further work and testing, it was decided by
Chipcon that the NanoRisc should be included as a firmware processor in an upcoming
Chipcon transceiver.

 83

 84

Bibliography

[ArcLite]
ArcLite 8-bit RISC Core
Accessed 21.04.2005
http://www.arc.com/upload/download/F1220.0_ARClite_4-4-03_FINAL.pdf

[ArcSupport]
Interrupt Latency
Accessed 29.04.2005
https://support.arc.com/techres/ArcSolveview.asp?id=262&product=43&release=&categ
ory=&keyword=&

[Arcx86]
x86 Series
Accessed 21.04.2005
http://www.arc.com/configurablecores/legacy/x86.html

[ARM]
www.arm.com

[ARMCortex-M3]
ARM Cortex-M3
Accessed 22.04.2005
http://www.arm.com/products/CPUs/ARM_Cortex-M3.html

[Arnold2001]
Ken Arnold
Embedded controller hardware design
LLH Technology Publishing, 2001

[AVR1997]
Multiply and Divide Routines
Application Note AVR200, 04.07.1997
Accessed 14.4.2005
http://www.people.cornell.edu/pages/mlk24/boom/code/avr200.asm

[Atmel2002]
Software SPI Master
Accessed 12.4.2005
http://www.atmel.com/dyn/resources/prod_documents/DOC3041.PDF

[BFD]
BFD
Accessed 14.05.2005
http://sourceware.org/binutils/docs-2.16/bfd/index.html

 85

[Blaauw1997]
Gerrit A. Blaauw, Frederick P. Brooks, Jr.
Computer Architecture Concepts and Evolution
Addison Wesley 1997

[Bolado2003]
M. Bolado, J. Castillo, H. Posadas, P. Sánchez, E. Villar, C. Sánchez, P. Blasco, H.
Fouren
Using Open Source Cores in Real Applications
Accessed 17.04.2005
http://www.escet.urjc.es/~jcastillo/paperdcis.pdf

[Bouldin]
http://microsys6.engr.utk.edu/ece/nasa03-bouldin.pdf

[CGEN]
http://sources.redhat.com/cgen

[Chipcon]
Chipcon
http://www.chipcon.com

[Clements2004]
Alan Clements
What is Computer Architecture?
Accessed 5.4.2004
http://www-scm.tees.ac.uk/users/a.clements/arch/arch1a.htm

[Cormen2001]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
Introduction to Algorithms, 2nd edition
The MIT Press, 2001

[Dorp1994]
Hendrik Dick van Dorp
On an Extension of Functional Languages for Use in Prototyping, 22 december 1994
Accessed 5.4.2004
http://doc.utwente.nl/fid/1372

[Hennesy1996]
John L. Hennessy and David A. Patterson
Computer Architecture: A Quantitative Approach
Morgan Kaufman 1996

[Kalinsky2002]

 86

David Kalinsky and Roee Kalinsky
Introduction to Serial Peripheral Interface
http://www.embedded.com/story/OEG20020124S0116

[LisaTek]
http://www.coware.com/products/lisatek.php

[McCorquodale]
Michael S. McCorquodale, Eric D. Marsman, Robert M. Senger, Fadi H. Gebara,
Matthew R. Guthaus, Daniel J. Burke, and Richard B. Brown
Microsystem and SoC Design with UMIPS
Accessed 21.04.2005
http://www.eecs.umich.edu/~mmccorq/research/mccorquodaleVLSI03.pdf

[Microsoft]
Microsoft
http://www.microsoft.com

[MIPS]
www.mips.com

[Nordic]
Nordic Semiconductor
http://www.nvlsi.no/

[Pesch1994]
Roland Pesch
GASP, an assembly preprocessor
http://www.ugcs.caltech.edu/info/binutils/gasp_toc.html

[Rosenberg1999]
Larry Rosenberg
What"IP"really means, 8/5/1999
Accessed 21.04.2005
http://www.edn.com/article/CA46033.html

[Salminen2004]
E. Salminen, K.Kuusilinna, and T.D. Hämäläínen
Comparison of Hardware IP Components for System-on-Chip
International Symposium on System-on-Chip, November 2004, Tampere, Finland, pp.
69-73

[Smith1999]
Douglas J. Smith
HDL Chip Design
Doone Publications

 87

[Sony]
Sony PlayStation
http://www.playstation.com/

[Stallman1998]
Richard M. Stallman
Using and Porting GNU CC, 28 February 1998
Accessed 12.1.2005
http://hal.csd.auth.gr/thelug/faqs/gcc/gcc.html

[Synopsys2004]
Design Compiler Tutorial Using Design Vision
Synopsys Online Documentation (SOLD), 2004
Available at "http://mediadocs.synopsys.com"

[VanDeGoor1989]
A. J. van de Goor
Computer architecture and design
Addison-Wesley Longman Publishing Co., Inc., 1989

 [Vogelin2002]
Stephen A. Voegelin
Early power estimates guide IP selection, 06.05.2002
Accessed 15.4.2005
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleId=16505177&k
c=4235

[Wakerly2000]
John F. Wakerly
Digital Design: Principles & Practices, Third edition
Prentice Hall, 2000

[Weiss2002]
Alan R. Weiss
Dhrystone Benchmark, 01.09.2002
Accessed 22.04.2005
http://ebenchmarks.com/download/ECLDhrystoneWhitePaper2.pdf

 [Wong2004]
William Wong
32-Bit Architecture Challenges 8-Bit Processors, 18.09.2004
Accessed 17.04.2005
http://www.elecdesign.com/Articles/ArticleID/8903/8903.html

[WongVa2004]

 88

Stephan Wong, Stamatis Vassiliadis, and Sorin Cotofana
Embedded Processors: Characteristics and Trends, 03.2004
Accessed 5.4.2004
http://ce.et.tudelft.nl/publicationfiles/884_14_EP-CE-TR-2004-03.pdf

[Xap1]
Xap1 ASIC Processor
http://www.cambridgeconsultants.com/PDFs/asic/ASICs-SB-007.pdf

[Xap2]
Xap2 ASIC Processor
http://www.cambridgeconsultants.com/PDFs/asic/ASICs-SB-009.pdf

[Xilinx2004]
PicoBlaze 8-bit Embedded Microcontroller User Guide
June 10th 2004
Accessed 05.01.05
http://www.xilinx.com/bvdocs/userguides/ug129.pdf

[ZigBee]
The ZigBee Alliance
www.zigbee.org

 89

	Abstract
	Preface
	Acknowledgements
	Outline

	Table of Contents
	Part I
	Introduction
	Project Description

	Chipcon and NanoRisc
	Corporate and Organization
	Products
	Motivation behind the NanoRisc Project

	Requirement Specification
	State of the Art
	Design Reuse
	Comparison of IP Processor Cores
	Performance
	Area
	Power Consumption
	Ease of Programming
	Architecture

	Part II
	Architecture Specification
	Nomenclature
	Address Space Overview
	Instruction Addressing Modes
	Constants
	Instruction Fetch
	General Registers
	Special registers
	SP
	SR
	PC

	Data Processing
	Arithmetic
	Logical
	Multiplication
	Shift and Rotate

	I/O
	Memory
	Program Memory
	Data Memory

	Program Flow
	Interrupt
	Halt
	Reset
	Interface
	Instruction Set
	The NanoRisc Assembly Language

	Implementation
	Top
	ALU
	Fetch
	I/O
	Mem
	Mul
	PCU
	Instruction Decoding
	Interrupt Handling
	Branch Control Unit
	PRE register
	Load Cycle
	Setting Control Signals

	Reg
	Shift
	Src

	Tools
	Assembler
	Features
	Labels
	Defines
	Includes
	Logical and Arithmetic Operations
	Constant Interpretation and Automatic “pre” Insertion
	Comments

	Implementation
	Lexer
	Parser
	Symbol Table
	Program Class

	Program Use

	ISS
	Features
	Implementation
	Simulator
	GUI
	Disassembler

	Part III
	Test
	Test Bench
	Coverage program
	Quicksort Program
	CRC Program
	16-bit Multiplication
	SPI

	Results
	Synthesis
	Area
	Timing
	Power

	Performance

	Discussion
	Instruction set
	Consistency
	Completeness
	Open-endedness
	Portability
	I/O Addressing
	Decrement and Branch
	Status Flags
	Byte Operations
	Immediate Memory Addressing
	General

	Architecture
	Bit-width
	Instruction Read
	ROM
	Memory Space
	Load Data Hazard
	Stack
	Shifter
	Registers
	Interrupt
	General

	Tools
	Testing
	Future Work
	Processor
	Tools

	Summary of Requirements Conformity

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

