
SEGMENTATION OF KIDNEYS
FROM MR-IMAGES

Eirik Roald Ree
Bergen 16. June 2005

Department of Computer and Information Science Department of Clinical Engineering





PREFACE

This is the final thesis of my education at the Norwegian University of Science and 
Technology (NTNU). The education has lasted 5 years and results in a Master of Science 
degree.

This work has been made from January 2005 until June 2005 in cooperation with the 
Department of Clinical Engineering at Haukeland University Hospital in Bergen, 
Norway.

I would like to thank Erling Andersen and Stig Frode Samnøy at Haukeland University 
Hospital for an interesting and challenging assignment, a desk in their office, and 
guidance during the project.

I would also like to thank Richard Blake at the Norwegian University of Science and 
Technology for his guidance.

Finally, I would like to thank Berit Hellan and Bård Kjos at the Norwegian University of 
Science and Technology for their assistance when doing the project away from the 
university.





ABSTRACT

Haukeland University Hospital are currently running a project for developing renal 
examinations using MR imaging. For many of the tasks they wish to do, i.e. 
visualization and volume estimation, a good segmentation of the kidneys is absolutely 
necessary. Most methods available today are time-consuming and labor intensive.

In this paper, we have studied several possible methods for automatic or semi-
automatic segmentation of the kidneys. A method has been implemented by combining 
watershed segmentation with active contours.

The watershed algorithm is a watershed-from-markers using an Image Foresting 
Transform as described in [20][21]. This is simple to initialize by just setting a few 
marker points inside and outside of the desired region. We have simplified this 
initialization further, so the user only has to draw a rectangle around the kidney.

The results from the watershed algorithm are used for initializing the active contours. 
Because watershed may result in several regions in each image, while the desired 
result from the active contours should be a single region, the contour is initialized as a 
rectangle that bounds the watershed result. This contour then shrinks until it is a 
smooth outline that contains the result from the watershed.

The implemented algorithm has been tested with real MR images, and the results show 
that the method gives a good solution to the problem.
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CHAPTER 1: INTRODUCTION

The use of image technology plays a vital role in modern medicine. Methods such as 
magnetic resonance imaging (MRI) allow for the acquisition of 3-dimensional images of 
the body, from which a radiologist can inspect the interior anatomy and function 
without surgery. Medical imaging is used in all steps of a medical treatment [1]:

• For diagnosis; medical images can be used to see cancer tumors, misaligned joints, 
blood clots, internal bleeding, damaged tissue and a number of other factors that 
can assist in making a faster and better diagnosis.

• For treatment; medical images can be used to guide minimum-invasive methods 
such as peephole surgery where the operation is performed using only a thin tube 
that penetrates the body. This means that it is not necessary to open the patient 
with a scalpel, which greatly reduces the risk of the operation and makes recovery 
faster and less troublesome.

• For evaluation of a treatment; medical images can be used for monitoring the 
effect of the treatment. It is desirable to discover as early as possible if a 
treatment is working or not, so that it can be changed if necessary to improve the 
effect.

At Haukeland University Hospital a project has been started where they want to 
measure kidney function using MR imaging. This can be used for diagnosis, planning of 
treatment and monitoring of kidney disease as well as other diseases that influence 
kidney function [2].

The responsibility of the kidneys is to filter our blood. Excess water, salt and waste 
materials is extracted through the urine too keep the amount of fluid and salt in the 
body, as well as the blood pressure, at a constant level. At the same time, all plasma 
proteins should remain in the blood.

A general sign of kidney disease is that the filtration is reduced, and that proteins leak 
out into the urine. This can be measured to some extent by evaluation of urine and 
blood samples, but the sensitivity is low and it is impossible to separate the two 
kidneys. There are some methods today that measure kidney function using medical 
imaging, but these require radioactive isotopes to be injected in the blood and/or 
radiation in the form of x-rays, which is dangerous to the patient, especially with 
repeated examinations.
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1.1 MR-IMAGING

Magnetic Resonance Imaging was developed in the 1970s, and was put into active work 
in 1984. Compared to all other imaging techniques, such as x-ray, computed 
tomography, nuclear medicine and ultrasound, it provides superior anatomical images, 
especially of soft tissue. Unlike most of the other methods, it is also believed not to be 
harmful to the patient [3].

The human body is made of billions of atoms. The nuclei of these spin on it’s axis. To 
create an MR image, the patient is placed inside an extremely powerful magnetic field 
which forces most of the atoms to line up with it’s direction. When a pulse of a certain 
radio frequency is sent through the patient, it makes some of the atoms absorb the 
energy and turn away from this alignment. When the pulse is finished the atoms fall 
back into alignment, and their energy is echoed out of the body as radio waves and 
measured. This data can be used to generate an image of the internal anatomy of the 
patient.

The kinds of atoms that are influenced by the radio pulse, and thus what is shown on 
the image, is determined by the frequency. Hydrogen is most commonly used, but by 
changing the frequency it is possible to view most atoms. The reason why hydrogen is 
used is that it is a major component in both water and fat, which are both common in 
human tissue and provide useful information. In fact, 63% of the body consists of 
hydrogen atoms [4]. The fact that hydrogen atoms have a single proton in it’s nucleus 
also makes them align better with the magnetic field.

Figure 1-1: The 3T MR machine at Haukeland University Hospital
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The big advantage of MR imaging compared to other methods, besides the fact that it 
is not harmful to the patient, is that it can give very good contrast even between 
different tissues of similar density. It is very easy to see blood vessels, which with 
other kinds of imaging are only visible if a contrast media is injected in the blood 
stream. The resolution is also very good, and unlike CT, which can only create images 
in the transverse (horizontal) plane, it can create images as slices in any direction
.

Figure 1-2 shows an anatomical MR image of the abdomen. The spatial resolution of 
this image is 0.74mm. It is easy to see the liver in the upper left-hand corner. On the 
other side of the spline, the spleen is visible, and the two kidneys are positioned below 
these. The contrast is quite good, and it is easy for the human eye to separate 
different tissue.

Most MR machines that are used today have a magnetic field of 1.5 Tesla, but at 
Haukeland University Hospital they just installed a new 3 Tesla machine, which is 
shown in Figure 1-1. This stronger magnet can give better resolution and signal-to-
noise ratio, and improve the image in other ways.

Figure 1-2: MR image
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By using different kinds of contrast fluids that are either swallowed or injected into 
the blood stream, it is possible to visualize the function of some organs. For example, 
it can be seen how the contrast follows the blood to the kidneys, and how much of it is 
filtered out into the urine.

1.2 PROBLEM DESCRIPTION

The task of this project is to segment the kidneys from MR volumes. This should be 
used to estimate volumes, and to guide image registration of different volumes and 
segmentation of different tissues inside the kidney, such as the cortex, medulla and 
renal pelvis. This can again be used to evaluate the function of the kidney by 
measuring filtration of different contrast fluids.

Different segmentation methods will be evaluated, and the best method implemented 
and tested. The resulting algorithm should be semi-automatic and require as little user 
interaction as possible.

The implementation should be done using Java and Java Advanced Imaging, and 
independent of a certain GUI, because it will be used as part of a larger workstation 
that will be developed at Haukeland University Hospital, using these technologies.

1.3 ORGANIZATION OF THIS DOCUMENT

Chapter 1 gives a brief introduction to the problem, and describes the relevance of the 
research.
Chapter 2 gives a description of some existing segmentation algorithms.
Chapter 3 evaluates the segmentation algorithms according to the problem at hand, 
and the algorithm for implementation is selected.
Chapter 4 describes the implementation in detail.
Chapter 5 describes and evaluates the results of the implemented algorithm for 
different problems.
Chapter 6 draws conclusions about the methods, and provides ideas for future work.
Appendix A provides background information on the anatomy and function of the 
kidneys.



CHAPTER 2: PREVIOUS WORK

Several algorithms exist for the segmentation of images in 2D as well as 3D. This 
chapter will give a description of algorithms that may be relevant for the 3-
dimensional segmentation of kidneys.

2.1 MANUAL DRAWING

The method that is most commonly used for segmentation of medical images today is 
manual drawing. An expert user, most commonly a radiologist, draws the contour 
around the desired structure in each of the image slices. As of today, this method gives 
accurate results, and it is the “gold standard” that automatic segmentation methods 
are compared against.

The biggest problem with manual segmentation is that it is very time consuming. 
Manual segmentation of the kidneys from an MRI volume requires approximately 2-3 
hours [5]. The result will also generally be different every time because the user is not 
able to accurately copy his or her own work.

If there is little need for accuracy, it is possible to simplify the manual drawing by 
using rectangles, ellipses or other simple shapes. This is very fast, but the results are 
so inaccurate that it is of little use except as a pre-processing step for placement of a 
deformable model, or to reduce the data size for automatic algorithms.

2.2 THRESHOLDING

Thresholding is the simplest automatic segmentation algorithm, and it is extremely 
fast. A threshold value Tmin is set, and every pixel (or voxel) with a gray level above 
this value are considered part of the region of interest (ROI). If the object has a 
medium gray level, with background pixels being both darker and brighter, a maximum 
threshold Tmax can be added so that only pixels with a gray level between Tmin and 
Tmax are included in the ROI. This has little effect on the speed of the algorithm, but 
provides a lot of extra flexibility.
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Figure 2-1 shows the result of thresholding of a coin on a dark background using two 
different values for Tmin. In b), the threshold is set too low, causing part of the 
background to be included in the ROI, but c) provides a perfect result with a correctly 
set threshold value.

One of the problems with thresholding is that of setting the correct threshold values. 
Except from in extremely controlled environments, the threshold will vary depending 
on the lighting or other factors that influence the image acquisition. Setting the values 
manually can be quite labor intensive, thus removing much of the advantage of the 
algorithm. Several methods are developed for setting the threshold values 
automatically. Most of these work by analyzing the histogram of the gray scale values 
of the image [6].

In some cases, i.e. when segmenting text from a sheet of paper, it can be known that 
the object covers approximately a certain percentage of the image. It is then simple to 
split the histogram according to this percentage to find the best threshold value.

a) Coin on dark background b) Thresholding with Tmin too 
low

c) Good thresholding

Figure 2-1: Segmentation by simple thresholding

Figure 2-2: Bi-modal histogram with suggested threshold
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Other methods analyze the shape of the histogram. If the desired object has an 
approximate gray-level, and the background has another, the histogram will be bi-
modal, meaning that it has two peaks. It then makes intuitive sense to set the 
threshold at the gray-level that has the minimum histogram value between these two 
peaks. This is illustrated in Figure 2-2. If the histogram is multi-modal (with more than 
two peaks), a threshold value can be set between each of the peaks to separate 
several objects.

With optimal thresholding, it is approximated that the histogram is created by a 
weighted sum of two or more probability densities with normal distribution. The 
threshold is set to get the minimum error segmentation according to this 
approximation. This will usually give a threshold that is close to, but not the same as, 
the conventional histogram analysis. The optimal threshold value can be calculated 
iteratively in less than ten iterations as described in [6].

In many cases it is impossible to get a good segmentation using the same threshold 
level on the entire image. This happens because of uneven illumination and other 
imaging factors. Adaptive thresholding tries to correct this by dividing the image into 
several smaller parts. A separate threshold value is then selected for each part of the 
image [7].

In most real cases, it is very difficult to get a good segmentation using thresholding. 
Usually, the segmented region will have holes in it, or areas outside of the desired 
structure will be incorrectly labelled. With multi-spectral images, results are usually 
better because it is less likely that other structures will satisfy the threshold levels for 
all the bands.

2.3 EDGE-BASED SEGMENTATION

Edge-based segmentation algorithms attempt to locate the desired structures in 
images by locating and linking discontinuities in gray level or color that represent the 
borders around the structures.

2.3.1 Edge Detection

Several methods exist for detecting edges in the image, and thus borders around the 
desired structures.
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Convolution With Edge Detecting Operators
As edges are defined by changes in the gray levels of the image, they can be found by 
locating pixels where the gradient (the first derivative) of the image gray levels is 
large. Several convolution masks have been created for this purpose, but the most 
common are the Roberts, Prewitt and Sobel masks, which are shown in Table 2-1.

The simplest way of implementing a first-order derivative of an image is to use the 
Roberts operators, but because it is a 2x2 mask, it has no clearly defined center point, 
which makes it awkward to use. The Prewitt operator solves this by using a 3x3 mask, 
where the pixels on one side of the mask are subtracted from the pixels on the other 
side. By giving more importance to the center point, the Sobel operator achieves some 
smoothing, which gives it slightly better noise-suppression characteristics than the 
Prewitt operator.

The Prewitt and Sobel masks shown in Table 2-1 work best with horizontal and vertical 
edges, but they can be rotated to also find diagonal edges. Rotated Prewitt and Sobel 
masks are provided in Table 2-2.

Operator Mask 1 Mask 2

Roberts

Prewitt

Sobel

Table 2-1: First-order derivative gradient operators

h 1– 0
0 1

= h 0 1–
1 0

=

h
1– 1– 1–

0 0 0
1 1 1

= h
1– 0 1
1– 0 1
1– 0 1

=

h
1– 2– 1–

0 0 0
1 2 1

= h
1– 0 1
2– 0 2
1– 0 1

=
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As can be seen in Figure 2-3, application of gradient operators result in thick edges 
where the precise location of the edge is difficult or impossible to determine. It also 
provides no information about which side of the border an edge point is located. By 
using the second-order derivatives, double edges are created instead with negative 
values on the bright side of the border, and positive values on the dark side. By placing 
edges where the double derivative crosses zero, a thin border with a precisely defined 
position is created.
 

The second-order derivative of an image can be estimated using the Laplace operator 
shown in Table 2-3.

Operator Diagonal mask 1 Diagonal mask 2

Prewitt

Sobel

Table 2-2: Diagonal Prewitt and Sobel operators

a) Gray-level profile of edge b) First-order derivative c) Second-order derivative

Figure 2-3: Edge, with first- and second-order derivatives

Operator 4-neighborhood 8-neighborhood

Laplace

Table 2-3: Second-order derivative Laplace operator

h
0 1 1
1– 0 1
1– 1– 0

= h
1– 1– 0
1– 0 1

0 1 1
=

h
0 1 2
1– 0 1
2– 1– 0

= h
2– 1– 0
1– 0 1

0 1 2
=

∇2f
0 1– 0
1– 4 1–

0 1– 0
= ∇2f

1– 1– 1–
1– 8 1–
1– 1– 1–

=
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These operators are not commonly used because the second-order derivatives are 
extremely sensitive to noise and give no information about edge direction. But the 
Laplace operators are valuable for estimating precise edge location by finding the 
zero-crossings of the result. To reduce the effect of noise, it is combined with a 
blurring mask resulting in the Laplacian of Gaussian (LoG) operator. This operator can 
be made of different sizes depending on how much blurring is applied. The 5x5 LoG is 
shown in Table 2-4. 

Morphological Edge Detection
Morphology has two basic operations; erosion and dilation [8]. Both use a structuring 
element, which is simply a small set of pixels, and for each pixel x of the image, a new 
value is calculated depending only on the pixels covered by the structuring element 
centered at x.

Erosion is defined by 

where  is the original image, and  is the structuring element. This means that 
each pixel, x, in the eroded image is assigned the smallest value of the pixels of the 
image covered by  when  is centered on x.

Dilation is defined by 

which means that each pixel, x, in the dilated image is assigned the value of the 
largest pixel of the image covered by  when  is centered on x.

Three combinations of these operations are used for finding three different gradients 
of an image [8]:

Operator 5x5 mask

Laplacian of Gaussian

Table 2-4: Laplacian of Gaussian

∇2f

0 0 1– 0 0
0 1– 2– 1– 0
1– 2– 16 2– 1–

0 1– 2– 1– 0
0 0 1– 0 0

=

εB f( )[ ] x( )
min
b B∈

f x b+( )=

⎧ ⎨ ⎩

f x( ) B

B B

δB f( )[ ] x( )
max
b B∈

f x b+( )=

⎧ ⎨ ⎩

B B
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1. Arithmetic difference between the dilation and the erosion, called the Beucher 
gradient

2. Arithmetic difference between the dilation and the original image, called the 
external gradient

3. Arithmetic difference between the original image and the erosion, called the 
internal gradient

The Beucher gradient is the basic morphological gradient, but it results in edges that 
are two pixels thick. Therefore the other alternatives are often used. The internal 
gradient enhances internal boundaries of bright objects, and external boundaries of 
dark objects, and the external gradient does the opposite.

Normally the morphological gradients provide no information about edge direction, but 
edges of a certain direction can be found by using a structuring element for the erosion 
and dilation that is a line perpendicular to the desired edge.

2.3.2 Boundary Detection

To find the desired structures of the image, unique borders must be found that 
surround these structures. Ideally, the methods described in the previous section 
should provide these borders, and nothing else, but this is almost never the case. 
Image noise, non-uniform illumination and a number of other factors result in random 
undesired edges as well as gaps in the desired borders. Numerous methods are used for 
linking the edges into likely borders.

The simplest methods look at a small neighborhood around each pixel with a significant 
edge. If a pixel with similar magnitude and direction of it’s gradient is found, a border 
is created between them. If not, the edge is removed. In [9], Canny describes a 
method for thresholding edges based on their magnitude and neighboring pixels.

Hough Transform
If the desired structure has a known shape that can be described by a mathematical 
formula, like a line or a circle, the Hough transform [10] can find the positions in an 
edge image where this structure is most likely to be located.

Straight lines can be described in their normal representation as

x θcos y θsin+ ρ=
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To find these lines, a 2-dimensional Hough image, where the axes represent  and , 
is created. Then the edge image is scanned for every pixel . When an edge is 
found, all the corresponding pixels  in the Hough image are increased. The 
brightest pixels in the Hough image will then correspond to the most likely lines in the 
original image.

A similar approach can be used for locating circles. These are represented by

where  is the radius of the circle and  is the location of the circle center. In this 
case, a 3-dimensional Hough volume must be created with axes representing ,  and 

. Then the process continues in the same way. Because there are three unknowns in 
the equation, the processing time and memory required can be quite substantial, but 
this can be reduced if the radius or position is known exactly or approximately.

Graph Theoretic Methods
If a start and end pixel of the border is known, it is possible to use graph theory to find 
the best border between these points. A large graph is created with a node for every 
pixel, and costs are created between each node. This cost can be a combination of 
several functions [6]:

• It is likely that a border consist of pixels with high gradient values. Thus the cost 
 can be used for adding pixel  to the border, where the 

magnitude of the pixel in the gradient image is subtracted from the maximum 
gradient value.

• In many cases, borders with small curvature are preferred, so that a cost of 
, where  is the gradient direction of pixel , can be 

used for creating a border between pixels  and .

• Sometimes there can be an estimate of where the border should be. In these cases 
the distance from the pixel to the estimated border can be used as a cost.

• Other cost functions may be used as well when other higher level information about 
the desired structure is known. A number of different cost functions can be found 
in [11].

When the graph is created, finding the minimum-cost path is still a complex memory- 
and computationally demanding task because of the size of the graph. Several methods 
exist for making the method useful. Some of these are described in [6].
When 3-dimensional data exist in the form of several image slices, the complexity of 
the graph search is further increased. Not only is the graph bigger, but the search must 
be for a surface instead of a border. In [12], Frank describes a surface growing 
algorithm that is computationally efficient and fast, but it does not guarantee optimal 
results.

θ ρ
x y,( )

θ ρ,( )

x a–( )2 y b–( )2+ r2=

r a b,( )
a b

r

ci max ∇ xk( ){ }( ) ∇ xi( )–= xi

ci j, abs φ xi( ) φ xj( )–[ ]= φ xr( ) xr
xi xj
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2.4 REGION-BASED SEGMENTATION

Because it is difficult to detect edges properly, especially in noisy images, it is common 
to create regions directly instead. The basic idea of region-based segmentation is to 
divide the image into regions of maximum homogeneity. When the algorithm finishes, 
the result should be a set of regions so that each region complies with a homogeneity 
criterion, which could be an average gray level, certain multi-spectral properties, 
texture, etc. It should also not be possible to merge two adjacent regions without 
violating the homogeneity criterion. Four basic methods of region-based segmentation 
exist.

Region Merging
With region merging, each pixel of the image is initially considered as a separate 
region. A region merging criterion is created based on the homogeneity criterion. 
Adjacent regions are then iteratively merged if they satisfy the merging criterion. The 
algorithm finishes when it is impossible to merge any adjacent regions without 
violating homogeneity.

The result of region merging may differ depending on the order in which regions are 
merged. Consider the case where three regions, R1, R2 and R3 exist, where R1 may be 
merged with both R2 and R3. If R1 and R2 are merged creating (R1/R2), it may then be 
impossible to merge this region with R3, so that the end result is (R1/R2) and R3. But if 
R1 is initially merged with R3, the end result may be (R1/R3) and R2 instead.

Region Growing
Region growing is very similar to region merging, but instead of initially considering 
each pixel to be a separate region, one or more seed-regions are created. These 
regions are allowed to grow by adding neighboring pixels as long as the homogeneity 
criterion is not violated.

Region Splitting
With region splitting, the entire image is initially considered to be a single region. This 
will in most cases not satisfy the homogeneity criterion. Regions are then iteratively 
split until each region satisfies the criterion. A quadtree is usually used for keeping 
track of all the regions (or an oct-tree in a 3-dimensional implementation).

The problem with region splitting is that parts of the image that should have been one 
region is often split into many because the dividing lines of the quadtree cut right 
through them. The result will usually be heavily over-segmented.
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Region Split-And-Merge
Split-and-merge combines the best properties of splitting and merging [13]. A region 
splitting is first performed creating an over-segmented image. Then region merging is 
performed to merge together homogenous regions that have been split into more 
parts. The results are usually better than with region merging because the initial 
regions for the merging process are larger than single pixels, so that noise has less 
effect on the result.

2.5 WATERSHED SEGMENTATION

Watershed segmentation is a method that comes from mathematical morphology [8]. 
Images are thought of as 3-dimensional topographic maps (with x and y corresponding 
to east and north, and gray level corresponding to altitude). If a drop of water is 
placed at a pixel, it will flow downstream to a local minimum of the image surface.The 
set of pixels that all end up in the same minimum is called a catchment basin, and the 
borders between catchment basins are called watersheds. When used on a gradient 
image, the watersheds will form closed regions that surround areas of similar gray 
levels [14].

In some cases, where the topographic map has a flat plateau, the flow direction at a 
given pixel is not determined. Because of this, and for better performance, a slightly 
different analogy is used when implementing watershed segmentation. Instead of 
dropping water from above, the model is immersed in water so that each catchment 
basin is flooded from it’s local minima [15]. When the water from two catchment 
basins meet, a dam is created to separate the basins. At the end of the flooding 
process, each local minima will be surrounded by dams representing the watersheds. 

a) Watershed segmentation with flooding at an 
early stage.

b) At a later stage, the two catchment basins 
have met, and a watershed has been created.

Figure 2-4: Watershed Segmentation by immersion simulations
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Figure 2-4 illustrates the flooding process at two different stages. In a), the flooding 
process has just begun, and water is filled from the bottom into two separated 
catchment basins. In b), the water is so high that the two catchment basins meet, and 
a watershed has been created separating them. This watershed will represent the 
border between the two segmented regions.

In more formal terms, the flooding process proceeds as follows [8]:

The lowest value of the gray scale image is denoted by , and it’s highest value is 

. The catchment basin that is associated with a local minimum  is known as 

, and the points of this catchment basin with an altitude that is less than or 
equal to  are denoted by 

where  indicates thresholding of the image with a maximum threshold level 

of .

The subset of all catchment basins with a gray scale value less than or equal to  is

The set of points belonging to the local minima of elevation  are denoted by 
.

When the flooding process is running, the first points to be reached are the regional 
minima at level , which is equivalent to . The algorithm proceeds recursively 

by flooding the catchment basins to level . This is done by creating one or more 
connected components  of . Each of these connected components can have 

one of three relations to :

1. If ,  must be a new regional minimum, so  is added to  and 

a  is created.

2. If  is a single connected region,  is an expansion of an existing catchment 

basin , and  set equal to .

3. If  is two or more unconnected regions,  is an expansion of two or more 
catchment basins. Watersheds are created in the middle between these basins, and 
the basins expand so that they combined fill .

When , all catchment basins are filled, and the segmentation is finished.

f hmin
hmax M

CB M( )
h

CBh M( ) p CB M( )∈ f p( ) h≤( ){ } CB M( ) Tt h≤ f( )∩= =

Tt h≤ f( ) f

h

h

Xh CBh Mi( )
i
∪=

h
RMINh f( )
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Watershed With Markers
One problem with watershed segmentation is that the results are usually over-
segmented because of spurious local minima in the image. Several methods can help 
this. The simplest is to use smoothing of the image before processing to reduce the 
number of local minima, but this rarely gives good enough results. It may also weaken 
desired edges between regions. In [16], an over-segmenting watershed segmentation is 
followed by region merging. But the most common way of solving the problem of over-
segmentation is to use watershed-by-markers where minima are imposed in the image 
for each desired region, thus removing all undesired local minima [17].

Minima imposition is a two step process. All gray levels in the original image are 
increased by one, and a marker image is created where the imposed minima are 0 and 
all other pixels have the maximum gray level. The point-wise minima of these two 
images is calculated. The second step is a morphological reconstruction by erosion of 
this result from the marker image [8][18].

In [19], Meyer proposed an algorithm that combines minima imposition and watershed 
segmentation based on a priority queue. The flooding process is initiated from each 
minima by inserting into the queue the neighboring pixels of the minima. Pixels with 
the smallest gray level in the queue are removed and marked, and it’s neighbors are 
added to the queue. This was further improved with the Image Foresting Transform in 
[20][21].

2.6 MODEL-BASED SEGMENTATION

Model-based segmentation methods are used to find the contour of structures in 
images based on image information such as the gradient. Higher level information 
about the desired structures is used to create closed contours that fall along the most 
likely borders of the sought structures.

2.6.1 Traditional Snakes

Snakes, or active contour models, are energy-minimizing splines that are controlled by 
external and internal energy [22][23]. The snake behaves according to image features, 
and tries to lock on to nearby edges while keeping a regular shape.
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The snake is usually represented parametrically by . The energy 
function that controls the movement of the snake is

where  represents the internal energy of the spline due to bending and stretching, 

and  is the image forces that pull the spline towards edges.  gives external 
constraint forces which can be provided by the user interactively, but these are 
normally not used with traditional snakes [22].

The energy of the internal forces in a point  is given by

where  is the magnitude of vector ,  controls the elasticity/stretching of the 
snake, and  controls rigidity/bending of the snake. If  is set to 0, the snake 
can be second-order discontinuous (have sharp corners), but with larger values it will 
try to maintain a smooth outline.

 can be provided by many different functions, but some of the most common are

where  is the original image,  is the gradient of the image, and  implies blurring 

with a gaussian filter of size .

The snake will move around the image while changing shape and size, until it comes to 
rest at a local minima of the energy function.
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Snakes have many advantages compared to other segmentation methods. Even if edge 
information in the image varies, or is completely missing at some points, the snake will 
automatically fill the gaps to make a single continuos contour. By setting  high, the 
snake can be forced to prefer smooth outlines which is often desired, i.e. in medical 
imaging because the human body has few sharp corners. But by setting  to a lower 
value, sharp corners can also be accommodated by the same algorithm. By setting 

 to a high value, the snake can be set to prefer short paths. This helps to make an 
intuitive shape when edge information is missing.

A problem with active contours is that  usually has a short capture range. If the 
snake is not initialized close to the desired border, it will not lock on and be pulled 
towards the correct edge. Several methods are used to help this problem. The simplest 
is to use one of the last two versions of  described above, where the edge is 
smoothed. This increases the reach of the edge somewhat, but also reduces the 
accuracy because the precise location of the boundary may be lost.

In [22], the authors developed a user interface where a user could insert “volcanoes” 
and “springs” that would push and pull the snake. This adds to  and can be used 
to move the snake towards a desired edge if the initialization is not close enough. The 
downside is that it requires user interaction.

2.6.2 Discrete Contour Models

The original definition of snakes is difficult to implement directly. When the snake is 
given as a continuos function , there is no way to do pointwise local 
deformation according to external forces because the snake must be deformed as a 
whole.

A solution to this was suggested in [24] where the snake is defined as a set of vertices 
connected by edges. Each vertex has a cost that should be minimized. This is evaluated 
as 

where  is an image term that uses simple thresholding to indicate if the current 
position is likely to be inside the desired structure,  is a potential field that 
causes the contour to either grow or shrink,  is a linear function that grows with 
the distance to the neighboring vertex, and  maintains the shape of the model by 
adding a cost if the angle between the two edges connected to the vertex is too far 
from . This model is discrete because, unlike with traditional snakes, the energy 
function is evaluated only at the vertices, and not for the connecting edges.
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In [25], the discrete dynamic contour model was introduced. This uses the same kind of 
discrete model with vertices connected by edges, but the dynamic process that 
controls the contour is different. Instead of each individual vertex trying to minimize 
it’s energy function, they are exposed to forces and force fields. Each vertex is given a 
mass and velocity, and it’s movement is simulated according to the laws of physics.

At discrete steps, a force is applied to each vertex as a weighted sum of internal and 
external forces which will cause acceleration, which again will change the velocity of 
the vertex as it moves through the image.

Internal Forces
The internal forces are used with discrete dynamic contour models to minimize local 
curvature. This will counterbalance the external forces that try to shape the model 
according to all the variations in the image feature landscape, as with traditional 
active contours.

Local curvature at a vertex  is defined as the difference in directions between the 

two edges that meet at . This means that local curvature  at  is given by

where  is the unit vector of the edge segment  going from  to . This is 
illustrated in Figure 2-5a).

a) Local curvature.  b) Tangential and radial directions

Figure 2-5: Local curvature, tangent and radial direction at vertex  [17]
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The tangential direction  at a given vertex  can be found as 

and radial direction  by rotating  by  radians:

The resulting vectors  and  are shown in Figure 2-5b). They represent a local 

coordinate system for vertex  which is used for evaluating both internal and external 
forces.

The local curvature vector  will always be pointing in the same, or opposite, 

direction of . By looking at  in the local (r,t) coordinate system, it can be given a 
positive or negative length along the r-axis as

Curvature vectors for some typical situations can be seen in Figure 2-6 for both 
Cartesian representation and in (r,t)-coordinates.

Figure 2-6: Curvature vectors in Cartesian representation and (r,t) coordinates [25].
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Figure 2-6 shows that the curvature vectors can not be used directly as internal forces. 
If the contour is exposed to no external forces, it will form a circle of constant 
curvature (which is the best estimate of a smooth outline), but this circle will shrink 
until it disappears. Because  can be represented as a positive or negative length 

along the r-axis, this can be fixed by simple convolution. The internal force  for 

 is evaluated as 

where 

The value 1 applies to position , and the values -1/2 to positions  and .

The resulting internal forces are shown in Figure 2-7. It is obvious that these will try to 
create a region of constant curvature, but have no effect on the contour when this is 
accomplished. 

When the contour models are used on 3-dimensional data, each vertex may have edges 
to more than two vertices. All of these edges should be included when calculating 
internal forces to get the best possible result.

Figure 2-7: Internal forces calculated from curvature vectors in Figure 2-6 [25].
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External Forces
Any of the energy functions described in section 2.6.1 can be used to produce the 
energy distribution . The user is also allowed to add external energy  by for 
example setting points that attract or reject the contour. The external energy is

The force expression for external energy for vertex  is

This causes problems because the force is free to act in any direction; tangential as 
well as radial. This may cause vertices to cluster in local minima of the image because 
a force along the contour can push the vertices towards each other. The problem can 
be solved by decomposing the force into a locally radial and a locally tangential 
component, and using only the radial component. The resulting force is

Deformation
The force  acting on a vertex  is a weighted combination of external and 
internal forces. A damping force is also used to help the contour come to rest. The 
resulting force is 

where  is the current velocity of the vertex. The weighting factor  is negative 
and determines the amount of damping.

The model is deformed according to the rules of physics. Each vertex has a mass . At 

discrete points in time, spaced  apart, the position  of vertex  is updated 
according to the following scheme:
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Resampling
If two neighboring vertices move too far apart, the resolution of the result will suffer. 
If many vertices are spaced very close, processing time is wasted because all of these 
vertices give a higher resolution than what is of practical use. A resampling scheme is 
therefore used to control the resolution of the model, where a control parameter  
governs the length of each edge segment. This is used to calculate 

The resampling is implemented as a two-pass process:

1. The entire contour is examined to see if any edge segment has become shorter than 
the minimum length . If this is the case, the edge segment is removed by 
replacing the two vertices on each side of the edge with one single vertex 
positioned between the replaced vertices.

2. The entire contour is examined again to see if any edge segment has become longer 
than the maximum length . If this is the case, the edge segment is divided into 
two shorter segments by adding a vertex in the middle.

2.6.3 Additional External Forces

The discrete dynamic contour model has proven to give very good results in many 
situations [25], but like the traditional active contours it requires a close initialization. 
This is obvious because the discrete model is only an implementation of the traditional 
snake principles introduced in [22]. An advantage is that it is easier to add new 
external forces that can be used to help the problem.

Balloon Forces
Balloon forces [26][27][28] are external forces that either expand (inflating a balloon) 
or shrink the snake (deflating a balloon). This will make the contour change it’s size 
until it is stopped by the image forces when it has locked on to a sufficiently strong 
edge. With an inflating force, it is absolutely essential that the initial contour is 
entirely within the desired structure, and similarly with an deflating force, it must be 
initialized outside the structure. If this is not the case, the shape may expand forever 
or shrink into nothingness.

Setting the strength of the force correctly is critically important. If the force is too 
weak, the contour may lock on to weaker incorrect edges before it reaches the desired 
border, and if the force is too strong it may move past it.
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Another problem occurs when a piece of the edge is missing or too weak. The resulting 
shape will have a dent at those positions because the balloon forces will push it 
outwards or inwards, and the internal forces can not prevent this completely.

Gradient Vector Flow
Gradient Vector Flow (GVF) was introduced by Xu and Price in [29][30] as a static 
external force, used as the image force, that helps the problem with the capture 
range, as well as a problem with poor convergence to boundary concavities.

The GVF is computed as a diffusion of the gradient vectors of an edge-map derived 
from the image. The gradient vector flow field is defined to be the vector field 

 that minimizes the energy functional 

From this it can be seen that when  is small, the energy is dominated by the sum of 
squares of the partial derivatives of the vector field, which results in a slowly varying 
field. When  is large, the second term takes over, and is minimized by setting 

. The effect from this is that  is kept nearly equal to the gradient of the edge 
map when it is large, but forced to be slowly-varying in homogenous regions.

 is a regularization parameter that governs the trade-off between the two terms. If 
there is a lot of noise in the image,  should be increased to give a smoother vector 
field.

Numerically, the GVF can be evaluated iteratively using
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Figure 2-8 shows the vectors of a traditional potential field used with active shapes, as 
well as the gradient vector field of the same shape. It can easily be seen that the GVF 
has a much longer capture range while the exact position of the edges remain clear. It 
also helps the contour move into border concavities which is a problem with normal 
image forces.

Calculating the Gradient Vector Flow is time consuming, but the results from it are 
very good [31].

a) Standard potential field. This requires very 
close initialization.

b) GVF potential field. This has very long 
capture range while the original edge is still 
clear.

Figure 2-8: Gradient Vector Flow versus standard potential forces [29].





CHAPTER 3: ALGORITHM SELECTION

Selection of the segmentation algorithm to use is the most important part of the 
project. Using the wrong algorithms it will be impossible to accomplish good results. 
This chapter will describe factors that must be taken into account when selecting the 
algorithm, and discuss the different algorithms described in Chapter 2 according to 
these.

3.1 RELEVANT INFORMATION

Many factors must be considered when choosing the right segmentation algorithm. The 
algorithm must be suitable for the data sets it will be working on, and the structure 
that should be segmented. It should also be as fast as possible, at least faster than 
manual segmentation, and require as little user interaction as possible.

3.1.1 The Data Sets

This thesis will be used as part of a large project at Haukeland University Hospital 
where they are developing MR-examinations of the kidneys. At this early stage of the 
project, very few data sets are available, making it difficult to create statistical 
models for assisting segmentation. Two different MR-machines (one with 1.5 Tesla and 
one with 3 Tesla) are being used, and different physical methods for getting the best 
images with these machines are tested. This means that the images currently available 
are of highly variable quality. The final image acquisition method will not be developed 
until after the end of this thesis, so the algorithm must be somewhat flexible. 
Examples of the current images are shown in Figure 3-1.

Figure 3-1: Examples of images
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The first image is clearly of poor quality. The signal-to-noise ratio is low, and there are 
large defects in the image due to poor acquisition parameters. The second image is 
much better, but it is near impossible to locate the border between the right kidney (to 
the left in the image) and the liver. The third image is probably best for segmentation 
because of fairly good contrast around the kidneys.

Several image volumes are taken of each patient. These include anatomical image 
series and several dynamic image series taken at different time steps after contrast 
injection. The anatomical images provide the best signal-to-noise ratio and image 
quality, but the dynamic images provide extra information because different parts of 
the anatomy are highlighted at different times as the contrast moves through the body. 
This may help in segmentation of the kidneys, as:

• After 15-20 seconds the contrast highlights the cortex and arteries

• After 1 minute the contrast highlights the cortex and medulla

• After 5 minutes the contrast highlights the renal pelvis and towards the bladder.

The different image series are not registered at this time, so the structures in the 
images will move and change size between series as the patient moves and breathes. 
The image slices of each data volume should be fairly well registered by themselves 
because they are obtained in a very short time frame.

Registration of the different image volumes is a separate part of the project that will 
be performed at Haukeland University Hospital. They plan on using the segmentation 
as an aid in registration, so the segmentation algorithm should work on unregistered 
images. This makes multi-spectral segmentation algorithms, where more than one 
image series is used, difficult and inaccurate. Some work on multi-spectral 
segmentation algorithms for kidneys is presented in [32][33].

Each of the data volumes consist of approximately 22 image slices with 512x512 pixels 
each. The spacial resolution is approximately 0.75mm, and the spacing between slices 
is approximately 3mm. All of these factors vary as different methods of image 
acquisition are tested.

The full series of the last image in Figure 3-1 is shown in Figure 3-2. Even though the 
parameters for image acquisition are changing as the kidney project progresses, there 
should always be images of this quality. 
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Figure 3-2: An example image series
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Some important factors should be noted:

• In the first 5-6 images it is nearly impossible even for the human observer to see 
where the kidneys are located or if they even stretch to those image slices at all. 
The dark shape that looks like the kidney in the first three slices is actually the 
duodenum.

• In images 5-7 and 20, the right kidney (to the left in the image) is divided into two 
parts in the images.

• In images 7-13 the medial parts of the kidneys (towards the middle) have gaps in 
them because the renal pelvis in the kidney, which are in fact just a hollow room, 
gives a similar signal as the surrounding tissue.

• The interior of the kidneys has variable gray levels because the medulla gives a 
slightly different signal from the cortex.

3.1.2 Programming Environment

The program and algorithm that is developed will be part of a larger Java workstation 
that is being developed at Haukeland University Hospital. It is therefore a requirement 
that the program should be developed in Java using Java Advanced Imaging (JAI). This 
requires more work for the programming than if for example Matlab could be used, 
where a lot of basic algorithms are already implemented.

3.2 THE ALGORITHMS

Chapter 2 provides information about several possible algorithms for segmentation of 
the kidneys. The selection of which algorithm to use is extremely important as the 
performance of each of the algorithms varies depending on the images they are used 
on and the problem to be solved.

Figure 3-2: An example image series
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3.2.1 Discussions About the Algorithms

Each of the methods in Chapter 2 have advantages and disadvantages that that should 
be considered in the selection of which algorithm to use. This section provides some 
relevant information for this project about each of the algorithms.

Manual Drawing
Manual drawing is commonly used for segmentation in medical images, also with 
renography [34]. It is used as the “gold standard” that other segmentation methods are 
compared against because it gives accurate results where correctness is confirmed by 
the expert user who performed the segmentation.

There are unfortunately several drawbacks as well. Manual drawing is very slow, and 
requires the constant attention of an expert user who is then prevented from doing 
other work. It also does not provide reproducible results because the user may not 
draw the exact same regions if he or she is to do the same segmentation again.

Thresholding
Thresholding is the fastest segmentation algorithm, but it puts a lot of requirements on 
the data to be examined. As can be seen in the image series in Figure 3-2, the kidneys 
share gray levels with several anatomical structures nearby. Different parts of the 
kidney also have different, and variable, gray levels.

Better results could be obtained by using multi-spectral thresholding where thresholds 
in different image series are combined. This requires careful registration of the image 
series, and it is likely that structures that give similar signals in image series also will 
do wo in others. The results are therefore questionable at best.

Thresholding uses no spatial information, so there will almost always be random pixels 
that are incorrectly considered to be part of or not part of the desired structures. This 
also means that information found in one image slice can not be used to help 
segmentation of neighboring slices, except as a guide.

In [35], a multi-spectral thresholding is used for segmentation of kidneys, but because 
of problems with respiration-induced motion of the kidneys between image series, it 
only works with renal transplants with an unchanging position.
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Edge-Based Algorithms
The edge-based segmentation algorithms require that good edges can be found that 
surround the desired structures. Figure 3-3 shows the result of Sobel edge detection on 
the last image in Figure 3-1. 

The edges around the kidneys are fairly good, but where the right kidney meets the 
liver, there is a large gap in the edge information. Because the renal pelvises of the 
kidneys are similar to the background, there will also be edge information missing 
here. This will usually be the case, and makes edge-based segmentation difficult. It 
can be possible to help edge detection by using information from neighboring image 
slices, but gaps like the one between the kidney and liver are usually present in several 
adjacent slices.

There is unfortunately no mathematical formulation of a general “kidney-shape” as 
individual kidneys are slightly different, so the Hough transform is not available.

Region-Based Algorithms
Region-based segmentation algorithms are based on finding homogenous regions. As 
can be seen in the images in Figure 3-2, the kidney is not really that homogenous as 
different internal structures of the kidneys have different gray-levels. This means that 
the homogeneity criterion can not be too strict. With region merging and region 
growing, this can cause the region to grow into the liver or other nearby tissue which 
has a similar gray level.

Figure 3-3: Sobel edge detection of MR image
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It is possible to use multi-spectral data from several image series, but again the 
different internal structures of the kidneys give different signals which makes it 
difficult to find a good homogeneity criterion. This also requires the image series to be 
registered.

A multi-spectral region-growing is used in [36] for segmentation of kidneys in rats with 
good results. But because of the registration problem, the rats have to be 
anaesthetized so that they are completely still during the MR examination.

Watershed
Watershed segmentation has the benefit that it can use both regional information 
about gray levels etc. and edge information. If markers are used, it can be determined 
the number of regions, and how these should be situated according to each other. It 
can also benefit 3-dimensional data by making regions grow between image slices.

In Figure 3-2 it is seen that the renal pelvises of the kidneys have similar gray levels as 
the surrounding tissue, even though they should be considered part of the kidneys. It 
will be very difficult for the watershed algorithm to classify these as kidney without 
also growing into the surrounding tissue.

In [37], watershed segmentation has been used for segmentation of kidneys with good 
results.

Model-Based Algorithms
The model-based algorithms have many benefits. They always result in closed 
contours, and they give a good boundary estimation where edge information is missing 
because the internal forces maintain a smooth outline in those regions. They are 
commonly used in medical imaging [38][41], and also specifically for kidney 
segmentation [42].

The problem with model-based segmentation is that a very close initialization is 
required [39]. If not, the active contours will not find edges to lock on to, or lock on to 
incorrect edges. Usually, a statistical model of the desired structure is created by 
analyzing several manually segmented structures as in [42][43].

3.2.2 Selection of algorithm

From the discussion above it is clear that a model-based segmentation should be used 
because it provides a smooth and accurate outline of the segmented structures even 
when edge information is missing or weak as it is around the renal pelvis and between 
the kidney and liver.
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But at this time, there is not enough data available to make a good statistical model of 
the kidneys that can be used for initialization. Therefore, a watershed segmentation 
will be performed as an initial step, and this result is used to initialize the active 
contours. This will also make the algorithm very general so it can easily be applied to 
other segmentation problems.

A similar approach has been used in [40] with some success.



CHAPTER 4: IMPLEMENTATION

The algorithm that was selected in section 3.2.2 has been implemented for 
segmentation of kidneys from MR images. The algorithm first performs watershed 
segmentation to create an initial region which is used for initializing a model-based 
segmentation method.

This chapter will describe the implementation in detail.

4.1 USER INTERFACE

The user interface for the application is based on the one developed in [44] using Java 
and Java Advanced Imaging, and looks something like Figure 4-1. 

Figure 4-1: The implemented graphical user interface
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The user can open and view different image series. He has the option of viewing a 
series one image at a time, or all images at once. It is also simple to interact with the 
algorithm by pointing and dragging with the mouse.

When the algorithm is put into clinical use, a different GUI will be used, so it’s 
implementation has not been a priority.

4.2 WATERSHED SEGMENTATION

The implemented watershed algorithm is based on watershed-from-markers using the 
Image Foresting Transform (IFT) [20][21].

4.2.1 Description of the Algorithm

The algorithm given in the original papers works as follows:

1. Initialization
a) for all voxels p do

flag(p) = TEMP;
b) for all non-marker voxels p do

C(p) = infinity;
c) for all marker voxels p do

C(p) = 0;
EnQueue(p, 0);

2. Propagation
a) v = DeQueueMin;
b) flag(v) = DONE;
c) for each p neighbor of v with flag(p) == TEMP do

if max{C(v), w(v,p)} < C(p) then
A) C(p) = max{C(v), w(v,p)};
   L(p) = L(v);
B) if IsInQueue(p) then

DeQueue(p);
C) EnQueue(p, C(p));

A priority queue is used for keeping track of the voxels as they are examined. The 
voxels are sorted according to a given cost, with an internal FIFO restriction for each 
cost. The FIFO ordering makes sure that the best possible border is created even on 
plateaus where the gray levels are constant. EnQueue(p, c) will place voxel p in 
the queue behind all voxels with a cost c or less. DeQueueMin will remove the voxel 
with the lowest cost from the queue and return it, and DeQueue(p) will remove voxel 
p from the queue.
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Each vertex has:

• a cost C that is initialized to 0 for the marker voxels and infinity for all other 
voxels,

• a label L that is initialized to a given value for the marker voxels,

• a flag that is initialized to TEMP, and updated to DONE when a label has been 
permanently assigned to it.

The algorithm starts by adding all marker voxels to the queue. Then, as long as the 
queue is not empty, the first voxel, v, is removed and flagged as DONE. For each of v’s 
neighbors, p, that is not already marked as DONE, a weight w(v,p) is calculated as 
the cost of giving p the same label as v. In the original paper  is 
used which is a simple approximation of the image gradient, but any w(p,v) can be 
used that works for the given segmentation task.

If the maximum of C(v) and w(v,p) is lower than the cost currently assigned to p, 
voxel p will be assigned the new cost of the maximum of C(v) and w(v,p) and the 
same label as v. To keep the queue from growing more than necessary, p will be 
removed from the queue if it is already in it, before it is added again with it’s new 
cost.

4.2.2 The Implementation

The algorithm starts with the user drawing a rectangular frame around the kidney. This 
frame only has to be drawn in one image slice, but should have the position and size 
such as to frame the kidney in all the slices. This frame is used to give an initial 
position of the kidney, as well as reducing the required memory because only the 
voxels inside the drawn rectangle are used in the calculations.

Markers for the kidney are created using a binary image that is read from disk. This is a 
black image with a very rough “kidney shape” drawn in white. The image is scaled so 
that it is the same size as the initialization rectangle. Every ten pixels in both 
directions are sampled. If the pixel is 1, a marker is created at that point in the middle 
image in the MR-series. If the series consists of more than 6 images, markers are also 
created in the images that are located two slices away from the middle.
This simple initialization also makes the algorithm extremely flexible. To use the same 
algorithm in another segmentation problem, the only change that needs to be done is 
to create a new binary image that looks roughly like the desired shape.

For the background, markers are created from all voxels on the border of the 
rectangle, in all slices. Because the kidney should be fully included in the data volume, 
the first and last slices should not contain kidney, and are also used as background 
markers.

w v p,( ) f p( ) f v( )–=
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The algorithm works very similar to that described in the previous section. The queue 
is created with an array of Vectors (linked lists). One Vector is available for every 
possible voxel cost. Ordering the queue in this manner makes queue operations, such 
as add and remove, faster because there is random access to the voxels of a certain 
cost. The use of Vectors makes the memory required by the queue dynamic so that it is 
not necessary to reserve space for all voxels at the same time.

The queue has methods for removing and returning the first voxel, adding new voxels, 
and moving voxels in the queue when it’s cost changes. The latter method is used to 
simplify steps 2.c.B and 2.c.C in the algorithm.

Each voxel keeps track of it’s label, cost and flag, as in the original algorithm, but it 
also has a list of all it’s neighbors that are flagged as DONE. This is used to weight the 
cost that is assigned to it in step 2.c.A. If many of it’s neighbors are permanently 
assigned to the same label as this voxel, it’s weighted cost is low, but if many of it’s 
neighbors are permanently assigned to other labels, it’s weighted cost is higher. The 
queue is sorted according to this weighted cost. This is done to keep the regions as 
compact as possible while they are growing, and reduce the risk of having a region 
grow out of it’s desired borders through a small hole in the edge information.

The cost that is given to a voxel is calculated in the same way as in the original 
algorithm using . But because the distance between image slices 
is much greater than the distance between pixels in each image, arc weights across 
image slices are penalized. C(p) is

The reason for this is that the size of the kidney can change substantially between two 
image slices. This increases the risk that voxels on the edge of the kidney in one slice 
can grow into nearby structures with similar gray levels in a neighboring slice where 
the kidney is smaller.

w v p,( ) f p( ) f v( )–=

C p( )
w v p,( ) if v and p are in the same image slice,
1 1 w× v p,( ) if v and p are in different slices, ,⎝
⎛=
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4.3 ACTIVE CONTOUR

The implemented algorithm is based on the discrete dynamic contour model 
[25][31][45] which was described in section 2.6.2.

4.3.1 Implementation

The implementation is similar to the implementation in [44]. A separate contour is 
created for each of the image slices, with links between them. Each contour is a linked 
list of vertices. Each vertex keeps track of it’s position, velocity, acceleration, next 
and previous neighboring vertices in the same contour, it’s nearest vertices in the 
neighboring image slices, and it’s last five positions. It is influenced by internal and 
external forces similar to the ones described in section 2.6.2.

Internal Forces
For each vertex  in one image slice, the local curvature  is calculated as the vector 

describing the edge from  to , subtracted from the vector from  to .

When the algorithm works in 3D data, a vector  is calculated as the sum of the edges 

from  to it’s nearest vertices in the two neighboring image slices. This vector is then 

scaled and added to . This helps to maintain a similar shape and size between image 
slices.

The curvature vector is then evaluated to a positive or negative length  along the 

radial direction . When the local curvatures are evaluated for all the vertices, the 

strength  of the internal force  for each vertex is calculated as

This is equivalent to the convolution described in section 2.6.2.

The internal force is then easily created along the radial direction using the dot 
product

Vi ci
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li
Vi

ci

ci r,
r̂i

sin i, fin i,

sin i, ci r,
1
2
---ci 1 r,–– 1

2
---ci 1 r,+–=

fin i, sin i, r̂i=



40     IMPLEMENTATION

External Forces
The image forces are based on the gradient of each image. The gradient magnitude of 
the image is created using the horizontal and vertical Sobel operators. The resulting 
edge image is then blurred heavily to increase the capture range of the image forces. 
Because this also softens the edges and makes results less accurate, the original 
gradient image is added to the blurred image to make the precise edges stand out.

From this enhanced gradient image, eight gradient images are created for the 
directions north, north-east, east, south-east, south, south-west, west and north-west. 
The magnitude of these images give the strength of the image force in each of these 
directions. These are created as vectors and stored in a 3-dimensional array of vectors.

When the image force for a given point is requested, an interpolation scheme is used 
to find the best force field as a combination of the vectors in the four closest voxels in 
the same slice.

Gradient Vector Flow (GVF) was considered as the image force to get longer capture 
range, but was rejected. One of the benefits from GVF is that it better pulls the 
contour into boundary concavities, but because the image of the kidneys may have 
incorrect concavities, i.e. in the renal pelvis, it is better that the contour prefers a 
straight path in these cases.

A deflating balloon force (see section 2.6.3) is also used in the initialization phase of 
the algorithm. This is created as a scaled version of the radial vectors at each vertex.

Resampling
Resampling is mainly done as a two-step process:

1. All vertices of the snake are examined. If the distance between two vertices is 
more than three pixels, a new vertex is added between them.

2. All vertices of the snake are examined again. If the distance between two vertices 
is less than one pixel, these two vertices are replaced by one new vertex positioned 
directly between them.

At the end of the resampling, several vertices have been added and removed, so many 
links to vertices in neighboring slices are lost. These are therefore created again using 
a simple process. For the first vertex in each contour, the entire neighboring contours 
are searched for the closest vertices which are used. When the neighboring vertices for 
the first vertex have been found, a local search in the 20 vertices closest to the 
neighbor is used to find the nearest neighbor to the next vertex. This process continues 
around the contour.

Because of the computational demands in the resampling step, the contours are only 
resampled once every ten iterations.
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Self-intersection Avoidance
A problem with active contours is that the contours may intersect with themselves 
forming loops. This is clearly undesirable. To guarantee that there can be no self-
intersections adds very high computational demands [46][47] to the contours and is 
usually not done.

A simple method has been implemented that greatly reduces this problem. Every 300 
iteration steps, a binary image is created with 1 for every pixel inside the contour, and 
0 for all the others. Determining if a pixel is inside or outside is a simple matter of 
counting intersections with the contour. By doing this, the pixels inside of a loop are 
considered to be inside the contour even if though they are on the “outside” side of 
the active contour.

When this binary image has been created, the contour is recreated by tracing around 
the connected region of value 1 and adding a vertex at every step. This removes all 
loops without putting restraints on the movement of the vertices.

User Interaction
In some cases the contours may lock on to incorrect edges in the images, which will 
give an incorrect result. To prevent this, the user can interact with the contour by 
dragging directly on it’s vertices. If a single vertex  is moved, it will have little 
effect, because the internal forces working on the vertex will be very large and pull it 
back to it’s original position. By moving only one vertex at a time, a large number of 
user interactions are required for moving just a small part of the contour. To prevent 
this, the 10 closest vertices to  in both directions are also moved a distance

where  is the distance  was dragged by the user, and  is the number of 

vertices between  and . This gives a wider “grasp” on the contour, which also 
feels more natural to the user.

4.3.2 Initialization

The results from the watershed step are usually fairly good, but in some instances the 
regions are split into two or more parts, sometimes with with very small regions where 
the watershed region has grown from one slice to another incorrectly.

To help the second problem, and make the borders of the regions smoother, a 
morphological opening is performed on the result of the watershed. This is an erosion 
by a structuring element, followed by a dilation of the same structuring element. The 
causes all parts of the region that can not contain the structuring element to be 
removed, while the rest of the region remains unchanged.
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The results from this opening may still have two or more regions in some of the slices. 
This is a problem for initialization of the active contour, because there should be only 
one contour for each image slice.

The contour is therefore initialized as a rectangle in each image slice given by the 
bounding rectangle of the opening result of the watershed segmentation. This contour 
is then placed under the influence of internal forces and the deflating balloon force 
described in the last section. No image forces are used, but the vertices are locked in 
position when they enter the watershed regions. This makes the contours shrink until 
they make a natural border that contains all large regions that were produced from the 
watershed segmentation.

To determine when the contours have converged to this result may be difficult. It is 
obvious that they have converged when they stop moving, but when the vertices are 
close to their local minima, they will often oscillate around it. To separate this small 
movement from a movement towards the edge, the distance  is calculated as the 

difference between the current position of vertex  and it’s position 5 iteration steps 
ago:

If this distance is large, it is likely that the vertex is moving towards it’s best position, 
but if it is small, it has probably found it’s local minima and is at rest or oscillating 
around it.

When the maximum distance  is below a given threshold, it is assumed that 
the contour has found a good initial shape, and the initialization is finished.

4.3.3 Progression

After the initialization phase is finished, the algorithm continues in a similar fashion. 
But now image forces are used instead of the deflating balloon forces. This makes the 
contours move towards edges in the images.

When the user is satisfied with the fit of the contours, he or she may stop the 
algorithm. If he does not, a similar convergence criterion as that described in the 
previous section is used based on the maximum distance  that any vertex has moved 
in the last five iterations. But instead of stopping the contour when  is below a 
threshold, the weights for the internal and external forces are reduced slowly when 
the movement is below the threshold. This will gradually reduce any oscillating 
movement and help the contour come to a complete rest with each vertex at it’s best 
possible position.
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CHAPTER 5: RESULTS

This chapter will show the results of different segmentation tasks using the 
implemented model described in Chapter 4. All the images used are real MR-images, 
and equivalent to the images the application will face in daily use.

The processing times reported here are obtained using a 1.5MHz Pentium-M laptop 
with 1024MB memory.

5.1 CASE 1 - RIGHT KIDNEY FROM ONE SLICE WITH CONTRAST

The first test is to segment the right kidney (to the left in the image) on the single 
image shown in Figure 5-1. This image is in fact a 7.8mm thick volume that is 
compressed into a single image. The use of a contrast fluid and a long acquisition time 
makes the kidneys stand out, together with the aorta and other major blood vessels.

Because the contrast around the kidney is good, segmentation should not be too 
difficult. Possible problem areas would be the blood vessel entering the kidney, and 
some poor contrast along the renal pelvis.

Figure 5-1: Case 1 source image
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Segmentation result
The watershed algorithm finished in 0,89 seconds and gave the result in Figure 5-2a). 
This is a close segmentation with only a few small flaws. At several points results seem 
to lie slightly inside the desired contour. Where the major blood vessel enters the 
kidney in the upper right-hand corner, the segmentation has moved slightly into the 
vessel, which has a similar gray-level to the kidney.

After the morphological opening is performed, the results are slightly better, as shown 
in Figure 5-2b). The region is still slightly inside the desired contour, but the dent in 
the blood vessel is removed, and the outline is a bit smoother. The opening took 1,12 
seconds.

The active contour also works relatively quickly. The initialization phase finished in 
1025 iterations and 2,11 seconds, and the contour came to a complete rest as shown in  
Figure 5-2c) after only 139 more iterations. The fact that this was so fast proves that 
the watershed segmentation gave a very good initialization for the contour.

The resulting contour falls very closely along the borders of the kidneys and has a 
smoother outline than the previous results because of the internal forces. The 
complete time from drawing the rectangle around the kidney until the snake had 
finished was 6,069 seconds. Manual segmentation of this kidney takes 2-3 minutes.

a) Watershed result b) Opening result c) Active contour result

Figure 5-2: Close up on the results for Case 1
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Discussion
Table 5-1 summarizes the results at the different steps of Case 1.
 

In this fairly simple case, the watershed algorithm alone provided almost sufficient 
results, but each step of the algorithm improved the segmentation further. In the final 
result after the active contour, there is virtually no difference between the automatic 
segmentation and the manually drawn region. When this takes only 6 seconds and 
requires no user interaction, it is clearly a very good result.

5.2 CASE 2 - RIGHT KIDNEY FROM 22 SLICES WITHOUT CONTRAST

The second case study was performed on the image series shown in Figure 3-2. This is 
an anatomical series of 22 image slices. The spatial resolution is 0.74mm, and the 
slices are spaced 3mm apart. The right kidney (on the left in the image) was to be 
segmented.

Some factors that may cause difficulties when segmenting the right kidney from this 
image series are:

• In the first 5 images, it is difficult to determine the location of this kidney, or if it is 
even present at all.

• In images 6-10, the renal pelvis makes it very difficult to separate parts the medial 
side of the kidney from the surrounding tissue.

• In some image slices, especially 11-16, the edges separating the kidney from the 
liver on the upper left-hand side, and from the muscle tissue on the lower right-
hand side, are fairly weak.

This section will describe the results of the segmentation for all the different steps of 
the algorithm.

Segmentation 
method

Time from 
start

Size in 
voxels

Over-
segmented

Under-
segmented

Manual ~2 min 6482 0 0

Watershed ~1 sec 6423 0,61 % 1,52 %

Opening ~2 sec 6402 0,35 % 1,58 %

Active 
Contour

~6 sec 6482 0,16 % 0,16 %

Table 5-1: Result summary for Case 1
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Watershed Segmentation
Figure 5-3 shows close-ups of the results from the watershed segmentation for images 
2-21. The first and last images are not included because the initialization does not 
allow them to contain kidney. The size of the images was determined by the frame the 
user drew to initialize the algorithm.
  

These results were obtained in 43 seconds, which is less than 2 seconds per image 
slice.

Figure 5-3: Watershed segmentation for Case 2
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• In images 1-2, the watershed segmentation has only spread to a few small and 
unconnected regions. This is actually not a bad result because the kidney is not 
present in these slices. The dark region that looks like it is the duodenum.

• In image 3, the watershed has made a rough outline of the lower part of the kidney, 
but there is a large hole in the middle that has not been included. A single pixel has 
spread from the neighboring slice to the upper part of the kidney.

• In images 4-5, most of the kidney that is clearly visible has been marked by the 
algorithm, except from the bottom part. These regions are in several unconnected 
parts. On the right side, two narrow rays have grown towards the muscle tissue.

• Images 6-8 are segmented fairly well except for the bottom part which has not 
been found, and some dents in the renal pelvis.

• In images 9-14, all of the kidney seems to be included, but because of weak edges 
on the right side, the watershed has grown towards the muscle tissue here.

• In images 15-18, the segmentation seems good, but it has not stretched all the way 
to the border at all points. In image 18, there is also a small region below the 
kidney that has incorrectly been marked as kidney. This could cause problems for 
initialization of the active contour as it will stop when it hits this point.

• In image 19, the watershed is not present, even though the kidney is present in two 
small separate regions.

• In image 20, there watershed is correctly not present.
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Morphological Opening
The morphological opening of the watershed regions took 33 seconds using a 7x7 
structuring element and gave the result shown in Figure 5-4. 

This result seems slightly better than after the watershed segmentation.

Figure 5-4: Opening of watershed result for Case 2
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• In image 1, the small regions that were incorrectly present after the watershed 
have been completely removed.

• In image 2, some of the incorrect regions have been removed, but not all.

• In images 3-4, the small regions that were present in the upper parts of the kidney 
have been incorrectly removed by the opening. This may cause problems for the 
active contour as it will be initialized far from it’s desired border in these images. 
The hole in image 3 has been opened so it now forms a substantial dent in the 
region instead.

• In images 4-5, the two rays going towards the muscle tissue have been completely 
removed.

• In image 18, the small incorrect region that could cause problems for the active 
contour has been completely removed.

• In the rest of the images, there is not a big difference from the watershed result, 
but the outlines are somewhat smoother, and the parts that have grown towards 
the muscle tissue have been reduced.
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Active Contours Without User Interaction
The active contour did not come to a rest by itself, but after two minutes it had 
stabilized as shown in Figure 5-5 without any user interaction. 

All of these contours are much smoother than the previous results, which is more 
consistent with the kidneys. They are also single contours and not unconnected 
regions.

Figure 5-5: Active contours for Case 2 without user interaction
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• In image 1, there was no initialization for the active contour after the 
morphological opening, so there was correctly no kidney found.

• In image 2, there has not been much change from the opening, but the two regions 
that were present have been merged into one.

• In image 3, the dent that was present in the lower part has been completely, and 
correctly, removed. This indicates that the internal forces do a good job in the 
initialization so that the contour keeps a smooth outline, which is consistent with 
the kidney.

• In images 4-7, the active contour has not been able to move to the bottom edge of 
the kidney, but the borders are much smoother, and narrow dents that were present 
after the opening have been removed.

• In image 8, the contour has moved to the bottom edge of the kidney.

• In images 9-13, there is little difference from the opening, but larger parts of the 
border have moved to the nearby edge of the muscle tissue. This is because that 
edge has a higher gradient than the edge of the kidney, causing the contour to be 
pulled towards it..

• In images 14-18, the resulting contours are smoother and moved closer to the 
border of the kidney, giving a very good segmentation.
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Active Contours With User Interaction
With some user interaction, the segmentation can be further improved. The results 
shown in Figure 5-6 were obtained after 34 interactions, in the form of pulling on the 
contour, which took about two minutes to complete.

The user performing the interaction is not a trained radiologist, and thus had some 
problems locating the kidney in the first slices. The results are still very good.

Figure 5-6: Active contours of Case 2 with user interaction
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• In image 2, the size of the incorrectly segmented region has been reduced greatly, 
but it is not completely removed.

• In image 3, the contour follows the kidney much better than the previous results, 
but the contour has not been pulled to the top part of the kidney, because the user 
did not recognize this as kidney.

• In images 4-6, the contour follows the edge of the kidney closely. A few places 
where there are dents in the visible kidney, this has resulted in dents in the 
segmented region as well.

• In images 7-18, the results are very close to the correct borders of the kidney. 
Where the contour had moved to the incorrect border of the muscle tissue, it has 
been pulled back to the correct edge and remained there.



54     RESULTS

Discussion
Table 5-2 shows the percentage of over-segmentation (voxels that have incorrectly 
been included in the region) and under-segmentation (voxels that have incorrectly not 
been included) in the segmentation for each of the images and for the volume as a 
whole. This provides information on how close the segmentation was to the manual 
segmentation which is assumed to be correct.

Image Manual size Watershed Opening Contour 
automatic

Contour with 
interaction

0 0 0 / 0 0 / 0 0 / 0 0 / 0

1 0 134 / 0 0 / 0 0 / 0 0 / 0

2 0 471/ 0 310 / 0 521 / 0 298 / 0

3 2171 34,2%/38,8% 28,2%/41,7% 41,7%/22,1% 9,67%/22,7%

4 3158 7,47%/32,9% 0,41%/36,0% 0,50%/30,4% 7,47%/4,14%

5 4020 5,47%/19,9% 3,00%/24,4% 5,02%/9,84% 7,38%/4,72%

6 5265 1,55%/19,4% 1,46%/20,3% 1,91%/13,6% 2,48%/4,93%

7 6223 0,65%/15,3% 0,48%/16,6% 0,51%/7,19% 0,61%/0,25%

8 6742 2,59%/9,27% 2,07%/10,6% 3,11%/0,25% 0,47%/0,17%

9 6888 6,27%/3,15% 5,40%/3,36% 9,10%/0,21% 1,66%/0,31%

10 7107 7,11%/3,09% 6,65%/3,29% 11,5%/1,47% 0,57%/2,04%

11 7050 7,57%/1,63% 6,62%/1,64% 9,63%/0,34% 0,34%/0,69%

12 7161 6,36%/3,03% 5,69%/3,14% 8,67%/1,38% 0,64%/0,48%

13 6893 5,15%/4,09% 4,20%/4,25% 13,5%/1,47% 0,39%/0,43%

14 6383 1,34%/5,84% 0,76%/5,93% 0,10%/1,89% 0,32%/0,20%

15 6390 0,52%/6,67% 0,70%/6,97% 0,25%/1,83% 0,37%/1,16%

16 4502 0,64%/7,50% 0,64%/7,52% 0,84%/0,33% 0,71%/0,33%

17 3100 1,16%/7,25% 1,16%/7,29% 1,51%/0,93% 1,32%/0,90%

18 1781 1,51%/18,24% 0,50%/18,24% 0,72%/5,55% 0,67%/5,67%

19 315 0 / 315 0 / 315 0 / 315 0 / 315

20 0 0 / 0 0 / 0 0 / 0 0 / 0

21 0 0 / 0 0 / 0 0 / 0 0 / 0

Volume 85153 5,45%/9,82% 4,12%/10,4% 6,86%/4,71% 1,92%/2,28%

Table 5-2: Summary table of results



5.3 CASE 3 - LEFT KIDNEY FROM 22 SLICES WITHOUT CONTRAST     55

From this it can be seen that the watershed algorithm quite heavily under-segments 
the kidney, especially in images 3-8. This happens because certain parts, especially the 
renal pelvis, have a gray level that is closer to the surrounding tissue than the rest of 
the kidney. Over-segmentation is also substantial because of incorrectly marked 
voxels, especially in the first slices where the kidney is not present.

The morphological opening reduces the over-segmentation because random voxels are 
removed, but the under-segmentation is even higher because some of these random 
voxels were actually correct, especially in images 4-7.

The active contours drastically reduce the under-segmentation. This happens because 
the internal forces make a more or less straight line even where edge information is 
missing, and this more closely resembles the actual shape of the kidney. This illustrates 
that the watershed segmentation can provide a good initialization for the active 
contours even though the watershed segmentation itself is heavily under-segmented. 
Over-segmentation increases slightly because the contours a few places are pulled 
towards the edges of nearby tissue instead of the edge of the kidney.

With user interaction, the results were naturally much better. To get these results, 
only a minimum of interaction was required, and the total time from beginning to end 
was less than 7 minutes. Manual segmentation took approximately one hour for the 
same data set.

From this, it is obvious that the algorithm works well also in 3-dimensional data with 
several image slices. Very little user interaction is required to obtain a very good 
segmentation much faster than with manual drawing.

5.3 CASE 3 - LEFT KIDNEY FROM 22 SLICES WITHOUT CONTRAST

The third case study was performed on the same image series as Case 2, but this time 
the left kidney (to the right in the image) was the target of the segmentation. This 
seems like a simpler problem than Case 2 because it is easier to see where the kidney 
disappears in the first images. The left kidney is also further away from other tissue of 
similar gray level. But the same problems exist with the renal pelvis.
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Watershed Segmentation
For this case, the watershed segmentation took 47 seconds to complete. With 22 image 
slices, this is still just over 2 seconds per image. The results were as shown in  
Figure 5-7. 

This seems to be a very good initial segmentation segmentation, but there are a few 
problems.

Figure 5-7: Watershed segmentation for Case 3
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• In images 1-2, there is no kidney present, so the watershed should not have entered 
these images.

• In images 3-5, a fairly good outline of the kidney has been found, but there are also 
some smaller regions that are incorrectly segmented.

• Images 6-17 are segmented very well with the watershed algorithm, except for 
small irregularities on the left side of the kidney, and a few places where the 
watershed has grown to the border of the spleen in the upper right-hand corner.

• In image 18, there is a small segmented region, but this has completely missed it’s 
correct position, and is placed well below the kidney.

• In images 19-20, there is correctly no kidney found.
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Morphological Opening
The morphological opening of the result from the watershed segmentation finished in 
40 seconds. The results are shown in Figure 5-8. 

Here the results have been improved a great deal from the watershed segmentation. 
The outlines are much smoother, and most of the small irregularities have been 
removed.

Figure 5-8: Opening of watershed result for Case 3
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• In image 1, the incorrectly segmented regions from the watershed segmentation 
have been completely removed.

• In image2, most of the incorrect regions have been removed, but there is still one 
small part left.

• In images 3-17, the results are very good. The noise on the left part of the kidney 
has been removed, but the segmentation still follows the border of the spleen 
instead of the kidney in a few places.

• In images 18-20, there is no significant change from the watershed result.
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Active Contours Without User Interaction
As in Case 2, the active contours did not converge and stop by themselves, but after 
only one minute they were almost at rest as shown in Figure 5-9 without any user 
interaction. 

In this case, the opened results from the watershed segmentation were already very 
good, but the active contours give smoother regions.

Figure 5-9: Active contours for Case 3 without user interaction
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• In image 2, the contour has shrunk to an almost insignificant size. This is good since 
there is actually no kidney present in this image.

• In image 3, the contour has found the boundary of the kidney and placed itself 
around this. After the opening, this region was a little too big.

• Images 4-17 provide very similar results to the opening of the watershed, but a bit 
more of the contour has been pulled to the edge of the spleen, as well as a strong 
edge in the upper left in images 11-14.

• In image 18, the segmented region has disappeared completely. This was in a way 
correct because there was no kidney where the contour was located, but there was 
a part of the kidney higher in the image that had not been found, and it could have 
been desirable to pull this contour to that area.
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Active Contours With User Interaction
With some user interaction, the segmentation can be made as good as perfect. After 
only 15 user interactions in the form of pulling on the contours, the segmentation 
result was as shown in Figure 5-10. 

This contour follows the borders of the kidney almost perfectly. In image 2, the small 
region that was left after the previous step has now been completely removed. Since 
there was no active contour in image 18 when the user interaction began, it was 
impossible in the current implementation to include the small part of the kidney which 
is present there.

Figure 5-10: Active contours for Case 3 with user interaction
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Discussion
No manual segmentation was available for this kidney to compare the results against, 
but from visual observations it is clear that the watershed segmentation did a good job 
of segmenting this kidney. Each of the steps improved the results further, and the end 
result, which was obtained in less than 6 minutes with a minimum of user interaction, 
seems near perfect.

5.4 SUMMARY

The implemented algorithm has been tested with segmentation of three different 
kidneys, one from a 2-dimensional image, and two from 3-dimensional data volumes. 
In all tests, the final results were close to perfect with a minimum of user interaction 
required. In the 2-dimensional case, the final result was acquired after 6 seconds. In 
the 3-dimensional cases, the complete segmentation took 15-20 seconds per image 
slice, which is about 10 times faster than manual drawing.

The segmentation algorithm begins with a watershed segmentation. This does a fairly 
good job, but there tend to be some holes in the kidney, as well as some incorrectly 
labelled voxels. These incorrect voxels are usually gathered in small clusters that have 
grown from a neighboring image slice. To reduce this problem, a morphological 
opening of the watershed result is performed. This removes many of the incorrectly 
labelled regions, and smoothens the outline of the segmented region somewhat.

The watershed and opening tends to under-segment the kidneys, especially in the 
renal pelvis area which is difficult to separate from the background. The active 
contours use the segmented regions after opening of the watershed result for 
initialization, but the internal forces reduce the effect of the under-segmentation in 
this step because straight lines are created where there are holes in the watershed 
result.

When the active contours are free to move on their own, they occasionally lock on to 
strong, but incorrect, edges that are near the kidney. But in many cases they also move 
to the correct edges, which improves the result further.

By interacting with the snake, the user can shape the contours as he or she wants, and 
drag them from incorrect edges to the right ones. But because the initialization from 
the previous steps is so good, very little user interaction is required to get near perfect 
results.





CHAPTER 6: CONCLUSIONS AND FUTURE 
WORK

The task of this project has been to implement a semi-automatic segmentation of 
kidneys from magnetic resonance images. The implementation will be used in a larger 
workstation developed at Haukeland University Hospital for kidney examinations. In 
this setting, the segmentation will be used for volume estimation, image registration 
and visualization of the kidneys.

The segmentation was implemented as a two step-process. Active contours are used to 
get the final result, but these require a very close initialization if they are to find the 
right borders. To accomplish this, a watershed segmentation is performed using 
markers that separate the kidney from the background. The initial contours are 
created from the watershed result.

Testing has been performed on real data sets containing slice images of the abdomen 
and kidneys in particular.

In the following section conclusions will be made for different stages of the algorithm. 
The chapter also includes suggestions for future work.

6.1 CONCLUSIONS

6.1.1 Watershed Segmentation

A watershed-from-markers algorithm has been implemented to provide an 
initialization for the active contours. All the user has to do is to draw a frame around 
the kidney in one of the image slices. A binary image that is read from disk is used to 
create markers. This image is currently a very rough drawing that resembles a kidney 
shape. This is one of the strengths of the algorithm. If it is desirable to use the 
algorithm for segmentation of another body part, or any other structure for that 
matter, all that is necessary is to make a binary image that roughly resembles the 
desired structure. The watershed segmentation is very flexible, and the rest of the 
algorithm follows it’s result.

The watershed segmentation works fast, using approximately two seconds per image 
slice in 3-dimensional data, and gives fairly good results.
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6.1.2 Translation from Watershed to Active Contour

A problem with the watershed segmentation is that the result often has more than one 
region in each image slice. This makes it impossible to simply trace around the 
watershed result to get the active contour since there should be only one contour per 
image.

To get rid of the smallest regions, which are usually the result of noise or other 
imperfections in the images, a morphological opening is performed on the 
segmentation results. This improves the results significantly because the small regions 
may sometimes be placed far from the kidney in some slices, which would cause 
problems for initialization of the active contours.

But even after the opening, there may still be more regions left in each image. A 
solution to this problem has been developed where the contours are initialized as 
rectangles that bound all the remaining regions. The contours are then put under the 
influence of internal forces and a deflating balloon force that makes them shrink. 
When vertices reach the segmented regions from the opened watershed segmentation, 
they are locked in position. The result is that the contours follow the regions that are 
used for initialization closely, but where the regions are missing, the internal forces 
make sure the contours get a natural border that binds the regions together.

6.1.3 Active Contour

The active contour is based on the discrete dynamic contour that was presented by 
Lobregt and Viergever in [25]. It works with one contour for each image slice, but 
edges to vertices in neighboring slices are used when creating the internal forces. This 
makes the contours less likely to move away from their correct position.

Because the watershed segmentation provides a good initialization for the active 
contour, it locates the edges of the kidneys quickly, but in some cases, stronger edges 
along nearby tissue such as the liver, may attract the contours and pull them away 
from the desired edge. The user can then interact with the model by dragging the 
contour back to the correct border.

Some user interaction is usually required to get perfect results, but on average, about 
two interactions per image slice are enough.
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6.1.4 Overall

The implemented model is of great help for the segmentation of kidneys. Manual 
segmentation requires hours of intense concentration from the user, and can cause 
health problems because it is very static work. With this algorithm, the user only has to 
supervise to process while the computer does the work. Instead of painstakingly 
drawing the exact contours, he or she just has to perform a few operations with the 
mouse. In addition to being easier, the automatic segmentation is also about 10 times 
faster than manual drawing.

A similar approach of using watershed segmentation to initialize active contours has 
been presented by Lapeer, Tan and Aldridge in [40]. In their model, the user had to 
place a number of markers both inside and outside of the desired structure to initialize 
the watershed. With this implementation, it is enough to draw a rectangle in one 
image that frames the kidney. Their method for converting the watershed result into 
active contours was also different from the one implemented here.

6.2 FUTURE WORK

Some suggestions that may improve the system further are:

• Using multi-spectral data. Both the watershed segmentation and the active contour 
can probably work better if data from more image series are used. This requires 
that the different series are registered, which is a difficult problem in itself.

• 3-dimensional implementation of active contours. If the active contours work 
directly in 3D, it would be easier to find the globally best solutions which could give 
better results.

• Use of statistical information. When more MR-examinations have been performed, 
and kidneys have been segmented from these, information about expected shape, 
gray level, texture, etc. should be extracted and used to guide the segmentation.

• Automatic placement of kidney. If the algorithm can locate the area of the kidney 
automatically, more user interaction can be saved because the user will no longer 
have to draw the initial framing rectangle. This automatic placement could be done 
using statistical information as described above.





APPENDIX A: KIDNEY ANATOMY AND 
FUNCTION

The kidneys are two bean-shaped organs that are responsible for cleansing the blood 
and keeping the conditions in the body stable. The following is based on [48][49][50].

A.1 PLACEMENT

The two kidneys are located near the middle of the back, just below the rib cage. The 
right kidney is usually slightly lower than the left because of pressure from the liver.

Figure A-1 shows the placement of the kidneys on either side of the descending artery 
and inferior vein. The ureters go from the kidneys to the urinary bladder in the bottom 
of the figure.

Figure A-1: Kidney placement [51]
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A.2 ANATOMY

Each kidney is approximately 11cm long, 5.5cm wide and 3.5cm thick, weighing 
150grams. The internal structure is shown in Figure A-2. 

The cortex is the outermost part of the kidney. More towards the center is the 
medulla, which contains 10-15 pyramids that consist of 100 000 nephrons each that are 
used for filtering the blood. Each nephron consists of a glomerulus which is located in 
the top of the pyramids, and a complex tube system that goes from the glomerulus to 
the loop of Henley in the bottom of the pyramids. It then goes back to the top, before 
ending up in the renal pelvis through collecting ducts.

Figure A-2: Kidney anatomy [52]
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A.3 FUNCTION

Every minute, 20% of the blood passes through the kidneys. In the glomeruli, all of the 
blood plasma except for the plasma proteins is filtered into the tube system. This 
means that every day, 180 liters of fluids are filtered out of the blood together with 
waste materials as well as useful substances. In the tubes of the nephrons, 178.5 liters 
of water and most of the useful substances are reabsorbed by the blood. The rest 
gathers in the renal pelvis and follows the ureter to the bladder. To get rid of all the 
waste materials that build up, the body needs to extract at least 0.5 liters of urine 
every day, even if no water is introduced.





APPENDIX B: REFERENCES

 1. O. Haraldsen. MR. Lecture in Medicine for Non-Medical Students. Norwegian 
University of Science and Technology (2004).

 2. Prosjektplan: MR nyrer med funksjonell avbildning - en tverrfaglig satsning. 
Haukeland University Hospital (2004).

 3. H.J. Smith and K.I. Gjesdal. Magnetisk resonans - historikk og teoretisk 
grunnlag. Tidsskrift for Den Norske Lægeforening. Vol. 120 (2000) pp. 931-935.

 4. J.P. Hornak. The Basics of MRI. http://www.cis.rit.edu/htbooks/mri/ (june 2005)

 5. V.S. Lee, H. Rusinek, M.E. Noz, P. Lee, M. Raghavan and E.L. Kramer. Dynamic 
Three-dimensional MR Renography for the Measurement of Single Kidney 
Function: Initial Experience. Radiology. Vol. 227 (2003) pp. 289-294

 6. M. Sonka, V. Hlavak and R. Boyle. Image Processing, Analysis, and Machine 
Vision. 2nd edition. Brooks/Cole Publishing Company (1999). ISBN 0-534-95393-
X.

 7. J.D. Yang, Y.S. Chan and W.H. Hsu. Adaptive Thresholding Algorithm and its 
Hardware Implementation. Pattern Recognition Letters. Vol. 15 (1994) pp. 141-
150.

 8. P. Soille. Morphological Image Analysis. 2nd edition. Springer (2002). ISBN 3-540-
42988-3.

 9. J.F. Canny. A Computational Approach to Edge Detection. IEEE transactions on 
pattern analysis and machine intelligence. Vol. 8 (1986) pp. 679-698.

 10. P.V.C. Hough. Methods and Means for Recognizing Complex Patterns. US Patent 
3,069,654 (1962).

 11. A.X. Falcao, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsh and R.D.A. 
Lotufo. User-Steered Image Segmentation Paradigms: Live Wire and Live 
Lane. Graphical Models and Image Processing. Vol. 60 (1998) pp. 233-260.

 12. R.J. Frank. Optimal Surface Detection Using Multi-Dimensional Graph Search: 
Applications to Intravascular Ultrasound. Master thesis, University of Iowa 
(1996).

 13. S.L. Horowitz and T. Pavlidis. A Graph-Theoretic Approach to Picture 
Processing. Computer Graphics and Image Processing. Vol. 7 (1978) pp. 282-291.



74     REFERENCES

 14. J.B.M. Roerdink and A. Meijster. The Watershed Transform: Definitions, 
Algorithms and Parallelization Strategies. Fundamenta Informaticae. Vol. 41 
(2001) pp. 187-228.

 15. P. Soille and L. Vincent. Watersheds in Digital Spaces: An Effective Algorithm 
Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and 
Machine Intelligence. Vol. 13 (1991) pp. 583-598.

 16. G. Lin, U. Adiga, K. Olson, J.F. Guzowski, C.A. Barnes and B. Roysam. A Hybrid 3D 
Watershed Algorithm Incorporating Gradient Cues and Object Models for 
Automatic Segmentation of Nuclei in Confocal Image Stacks. Cytometry Part 
A. 56A(2003) pp. 23-36.

 17. F. Meyer and S. Beucher. Morphological Segmentation. Journal of Visual 
Communication and Image Representation. Vol. 1 (1990) pp. 21-46.

 18. L. Vincent. Morphological Grayscale Reconstruction in Image Analysis: 
Applications and Efficient Algorithms. IEEE Transactions on Image Processing. 
Vol. 2 (1993) pp. 176-201.

 19. F. Meyer. Un algorithme optimal de ligne de partage des eaux. Reconnaissance 
des Formes et Intelligence Artificelle, 8e congrés. Vol. 2 (1991) AFCET pp. 847-
857.

 20. R. Lotufo and A. Falcao. The Ordered Queue and the Optimality of the 
Watershed Approaches. Mathematical Morphology and Its Applications to Image 
and Signal Processing (J. Goutsias, L.Vincent and D.S. Bloomberg, eds.), Kluwer 
Academic Publishers (2000).

 21. P. Felkel, M. Bruckschwaiger and R. Wegenkittl. Implementation and Complexity 
of the Watershed-from-Markers Algorithm Computed as a Minimal Cost 
Forest. Computer Graphics Forum, Vol. 20 (2001) pp. 26-35.

 22. M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active Contour Models. Internal 
Journal of Computer Vision. Vol. 1 (1987) pp. 321-331.

 23. T. McInerney and D. Terzopoulos. Deformable Models. Chapter in Handbook of 
Medical Imaging: Processing and Analysis (I. Bankman ed.), Academic Press 
(2000).

 24. J.V. Miller, D.E. Breen and M.J. Wozny. Extracting Geometric Models Through 
Constraint Minimization. Proceedings to the First IEEE Conference on 
Visualization (Visualization ‘90), (1990) pp. 74-82.

 25. S. Lobregt and M. Viergever. A Discrete Dynamic Contour Model. IEEE 
Transactions on Medical Imaging. Vol. 14 (1995) pp. 12-24.



      75

 26. L.D. Cohen. On Active Contour Models and Balloons. Computer Vision, Graphics, 
and Image Processing: Image Understanding. Vol. 53 (1991) pp. 211-218.

 27. L.D. Cohen and I. Cohen. Finite-Element Methods for Active Contour Models 
and Balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence. Vol. 15 (1993) pp. 1131-1147.

 28. L.D. Cohen. Deformable Surfaces and Parametric Models to Fit and Track 3D 
Data. IEEE International Conference on Systems, Man, and Cybernetics. Vol. 4 
(1996) pp. 2451-2456.

 29. C. Xu and J.L. Price. Snakes, Shapes, and Gradient Vector Flow. IEEE 
Transactions on Image Processing. Vol. 7 (1998) pp. 359-369.

 30. C. Xu and J.L. Price. Gradient Vector Flow Deformable Models. Chapter in 
Handbook of Medical Imaging (I. Bankman ed.), Academic Press (2000) pp. 159-
169.

 31. H. Heuch. Segmentation of the Liver from MR and CT images. Master Thesis, 
Norwegian University of Science and Technology (2003).

 32. Y. Boykov, V.S. Lee, H. Rusinek and R. Bansal. Segmentation of Dynamic N-D Data 
Sets via Graph Cuts using Markov Models. Medical Image Computing and 
Computer-Assisted Intervention (MICCAI), LNCS 2208 (2001) pp. 1058-1066.

 33. Y. Sun, M.P. Jolly and J.M.F. Moura. Integrated Registration of Dynamic Renal 
Perfusion MR Images. IEEE International Symposium on Image Processing, 
Singapore. (2004).

 34. A.J. Huang, V.S. Lee and H. Rusinek. Functional Renal MR Imaging. Magnetic 
Resonance Imaging Clinics of North America. Vol. 12 (2004) pp. 469-486.

 35. J.A. de Priester, A.G.H. Kessels, E.L.W. Giele, J.A. den Boer, M.H.L. Christiaans, 
A. Hasman and J.M.A. van Engelshoven. MR Renography by Semiautomated 
Image Analysis: Performance in Renal Transplant Recipients. Journal of 
Magnetic Resonance Imaging. Vol. 14 (2001) pp. 134-140.

 36. Y. Sun, J.M.F. Moura, D. Yang, Q. Ye and C. Ho. Kidney Segmentation In MRI 
Sequences Using Temporal Dynamics. Proceedings to 2002 IEEE International 
Symposium on Biomedical Imaging. (2002) pp. 98-101.

 37. R.M. Summers, C.M.L. Agcaoili, M.J. McAuliffe, S.S. Dalai, P.J. Yim, P.L. Choyke, 
M.M. Walther and W.M. Linehan. Helical CT of von Hippel-Lindau: Semi-
Automated Segmentation of Renal Lesions. Proceedings to 2001 International 
Conference on Image Processing. Vol. 2 (2001) pp. 293-296.



76     REFERENCES

 38. D. Freedman, R.J. Radke, T. Zhang, Y. Jeong, D.M. Lovelock and G.T.Y. Chen. 
Model-Based Segmentation of Medical Imagery by Matching Distributions. 
IEEE Transactions on Medical Imaging. Vol. 24 (2005) pp. 281-292.

 39. D.C. Barber and D.R. Hose. Automatic Segmentation of Medical Images Using 
Image Registration: Diagnostic and Simulation Applications. Journal of 
Medical Engineering & Technology. Vol. 29 (2005) pp. 53-63.

 40. R.J. Lapeer, A.C. Tan and R. Aldridge. Active Watersheds: Combining 3D 
Watershed Segmentation and Active Contours to Extract Abdominal Organs 
from MR Images. Proceedings to 5th International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Vol. 2499 (2002) pp. 596-603.

 41. R. Boscolo, M.S. Brown, M.F. McNitt-Gray. Medical Image Segmentation with 
Knowledge-Guided Robust Active Contours. RadioGraphics. Vol. 22 (2002) pp. 
437-448.

 42. B. Tsagaan, A. Shimizu, H. Kobatake and K. Miyakawa. An Automated 
Segmentation Method of Kidney Using Statistical Information. Proceedings of 
Medical Image Computing and Computer Assisted Intervention. Part I (2002) pp. 
556-563.

 43. F. Gibou, D. Levy, C. Càrdenas, P. Liu and A. Boyer. Partial Differential Equations 
Based Segmentation for Radiotherapy Treatment Planning. Mathematical 
Biosciences and Engineering. Vol. 2 (2005) pp. 209-226.

 44. E.R. Ree. ROI Manager. Thesis, research project at Norwegian University of 
Science and Technology, Department of Computer and Information Science. 
(2004).

 45. S. Johannessen and P.M. Joyce. Model Based Segmentation, Applications to CT 
and MR Images of the Liver. Master Thesis, Norwegian University of Science and 
Technology. (2004).

 46. D. MacDonald, N. Kabani, D. Avis and A.C. Evans. Automated 3-D Extraction of 
Inner and Outer Surfaces of Cerebral Cortex from MRI. NeuroImage. Vol. 12 
(2000) pp. 340-356.

 47. X. Han, C. Xu and J.L. Prince. A Topology Preserving Level Set Method for 
Geometric Deformable Models. IEEE Transactions on Pattern Analysis and 
Machine Intelligence. Vol. 25 (2003) pp. 755-768.

 48. J.G. Bjålie, E. Haug, O. Sand, Ø.V. Sjaastad and K.C. Toverud. Menneskekroppen, 
Fysiologi og Anatomi. 5.opplag. Gyldendal Norsk Forlag (2003). ISBN 82-00-
41831-6



      77

 49. L. Bjørnsen and P. Hermansen. Nyrenes sirkulasjon, morfologi og funksjon 
visualisert med MR. Særoppgave ved Radiologisk seksjon, Institutt for kirurgiske 
fag, Haukeland Universitetssykehus (2004).

 50. National Kidney and Urologic Diseases Information Clearinghouse. Your Kidneys 
and How They Work. http://kidney.niddk.nih.gov/kudiseases/pubs/
yourkidneys/ (february 2005).

 51. Fox River Watch. PCBs and Kidney, Bladder and Urothelial Cancers. http://
www.foxriverwatch.com/kidney_cancer_PCBs_menu.html (february 2005).

 52. J.H. Southard. Experimental Organ Preservation. http://
research.surgery.wisc.edu/southard/ (february 2005).


	Preface
	Abstract
	Table of Contents
	Chapter 1: Introduction
	1.1 MR-Imaging
	Figure 1-1: The 3T MR machine at Haukeland University Hospital
	Figure 1-2: MR image

	1.2 Problem Description
	1.3 Organization of this Document

	Chapter 2: Previous Work
	2.1 Manual Drawing
	2.2 Thresholding
	Figure 2-1: Segmentation by simple thresholding
	Figure 2-2: Bi-modal histogram with suggested threshold

	2.3 Edge-Based Segmentation
	2.3.1 Edge Detection
	Table 2-1: First-order derivative gradient operators
	Table 2-2: Diagonal Prewitt and Sobel operators
	Figure 2-3: Edge, with first- and second-order derivatives
	Table 2-3: Second-order derivative Laplace operator
	Table 2-4: Laplacian of Gaussian

	2.3.2 Boundary Detection

	2.4 Region-Based Segmentation
	2.5 Watershed Segmentation
	Figure 2-4: Watershed Segmentation by immersion simulations

	2.6 Model-Based Segmentation
	2.6.1 Traditional Snakes
	2.6.2 Discrete Contour Models
	Figure 2-5: Local curvature, tangent and radial direction at vertex [17]
	Figure 2-6: Curvature vectors in Cartesian representation and (r,t) coordinates [25].
	Figure 2-7: Internal forces calculated from curvature vectors in Figure�2-6 [25].

	2.6.3 Additional External Forces
	Figure 2-8: Gradient Vector Flow versus standard potential forces [29].



	Chapter 3: Algorithm Selection
	3.1 Relevant Information
	3.1.1 The Data Sets
	Figure 3-1: Examples of images
	Figure 3-2: An example image series

	3.1.2 Programming Environment

	3.2 The Algorithms
	3.2.1 Discussions About the Algorithms
	Figure 3-3: Sobel edge detection of MR image

	3.2.2 Selection of algorithm


	Chapter 4: Implementation
	4.1 User Interface
	Figure 4-1: The implemented graphical user interface

	4.2 Watershed Segmentation
	4.2.1 Description of the Algorithm
	4.2.2 The Implementation

	4.3 Active Contour
	4.3.1 Implementation
	4.3.2 Initialization
	4.3.3 Progression


	Chapter 5: Results
	5.1 Case 1 - Right Kidney from One Slice With Contrast
	Figure 5-1: Case 1 source image
	Figure 5-2: Close up on the results for Case 1
	Table 5-1: Result summary for Case 1

	5.2 Case 2 - Right Kidney from 22 Slices Without Contrast
	Figure 5-3: Watershed segmentation for Case 2
	Figure 5-4: Opening of watershed result for Case 2
	Figure 5-5: Active contours for Case 2 without user interaction
	Figure 5-6: Active contours of Case 2 with user interaction
	Table 5-2: Summary table of results

	5.3 Case 3 - Left Kidney from 22 Slices Without Contrast
	Figure 5-7: Watershed segmentation for Case 3
	Figure 5-8: Opening of watershed result for Case 3
	Figure 5-9: Active contours for Case 3 without user interaction
	Figure 5-10: Active contours for Case 3 with user interaction

	5.4 Summary

	Chapter 6: Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Watershed Segmentation
	6.1.2 Translation from Watershed to Active Contour
	6.1.3 Active Contour
	6.1.4 Overall

	6.2 Future Work

	Appendix A: Kidney anatomy and function
	A.1 Placement
	A.2 Anatomy
	A.3 Function

	Appendix B: References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


