
Abstract

Deriving liver vessel structure from CT scans manually is time consuming
and error prone. An automatic procedure that could help the radiologist in
her analysis is therefore needed. We present two algorithms to preprocess
and segment the hepatic vessels. The first algorithm processes each CT slice
individually, while the second algorithm applies processing on the whole CT
scan at once. Matched filtering and anisotropic diffusion is used to empha-
sise the blood vessels, and entropy based thresholding and segmentation by
local mean and variance are used to coarsely position the vessels. Node po-
sitions and sizes are derived from the skeleton and the distance transform
of the segmentation results, respectively. From the skeleton and node data,
interconnections are added forming a vessel graph. At the end, a search is
executed to find the most likely vessel graph based on anatomical knowledge.
Results have been inspected visually by medical staff and are promising with
respect to clinical use in the future.

Acknowledgements

I would like to thank my advisor Lars Aurdal for his guidance throughout
this project. I am also grateful for all help given by my co-advisor Keith
Downing.

Eigil Samseth, H̊akon Heuch, and Tom Mala from the Interventional Cen-
tre at the University of Oslo have provided CT and MR datasets as well as
guidance in this project. I am very grateful for their support. Also, I would
like to thank Rune Bakken for his help.

Special thanks to Birgit Ødegaard for her patience and encouragement
during this period.

2

Contents

1 Introduction 5

1.1 Problem description . 5
1.2 Document structure . 6

2 Previous work 7

2.1 Preprocessing . 7
2.1.1 Spatial filters . 8
2.1.2 Morphological operators 9
2.1.3 Bayesian image processing 9
2.1.4 Level set methods . 10
2.1.5 Anisotropic diffusion 10

2.2 Segmentation . 12
2.2.1 Local approaches . 12
2.2.2 Global approaches . 16

2.3 Shape representation and description 18
2.3.1 Contour based representation and description 19
2.3.2 Shape invariants . 19
2.3.3 Shape based representation and description 19
2.3.4 Shape skeleton . 20

3 Methods 23

3.1 2D vessel reconstruction . 23
3.1.1 Preprocessing . 24
3.1.2 Segmentation . 26
3.1.3 Classification . 35
3.1.4 Vessel centre extraction 35
3.1.5 Vessel sizes . 39
3.1.6 Vessel graph structure 41
3.1.7 Vessel graph initialisation 41
3.1.8 Genetic algorithms . 45

3.2 3D vessel reconstruction . 54

3

3.2.1 Preprocessing . 55
3.2.2 Segmentation . 57
3.2.3 Vessel graph extraction 59
3.2.4 Vessel graph initialisation 62
3.2.5 Local search . 63

3.3 Visualisation . 64
3.3.1 Vessel root . 65
3.3.2 Simple continuation . 65
3.3.3 Branch . 65
3.3.4 Subdivision . 67

4 Results and discussion 71

4.1 2D vessel reconstruction . 71
4.1.1 Preprocessing . 71
4.1.2 Segmentation of the liver 71
4.1.3 Matched filtering . 73
4.1.4 Segmentation . 74
4.1.5 Classification . 75
4.1.6 Vessel centre extraction 76
4.1.7 Vessel graph initialisation 77
4.1.8 Global search . 78
4.1.9 Result analysis . 80

4.2 3D vessel reconstruction . 83
4.2.1 Preprocessing . 83
4.2.2 Segmentation . 83
4.2.3 Vessel centre extraction 83
4.2.4 Vessel sizes . 84
4.2.5 Vessel graph initialisation 84
4.2.6 Local search . 85
4.2.7 Result analysis . 86

5 Conclusion and future work 95

5.1 Conclusion . 95
5.2 Future work . 96

Bibliography 98

4

Chapter 1

Introduction

The liver is a vital organ with vascular, metabolic, secretory, and excretory
functions. It is extensively perfused and during liver surgery special care has
to be taken in order to avoid bleedings.

Prior to liver surgery, the patient will typically be examined using CT
scans, in particular the position of large hepatic vessels must be determined.
The relative position of, for instance, tumours to these vessels is of great
importance when planning the procedure and in evaluating the operability
of the patient.

Surgeons and radiologists will typically base their evaluation on a visual
inspection of the 2D slices produced by a CT scan. It is difficult, however,
to deduce a detailed liver vessel structures from such images. Surgeons at
the Intervention Centre at Rikshospitalet have found 3D renderings of the
liver and its internal vessel structure to be a valuable aid in this complex
evaluation phase. Currently, these renderings are based on a largely manual
segmentation of the liver vessels. This procedure is time consuming and
error prone, and we have sought a way to extract the liver vessel structure
automatically from CT scans.

MR scan results are similar to that of CT scans, but contain typically
different tissue contrasts. Although the methods we will derive can be applied
to MR scans as well, CT scans will be our primary focus in this thesis.

1.1 Problem description

The task is to create a presentation of the hepatic vessels in 3D. The applica-
tion need to be interactive such that the liver and its vessels can be rotated
and inspected from any angle. From an image processing point of view, we
need to derive techniques to first emphasise the hepatic vessels, and then

5

methods to create a sound vessel segmentation. From this, a vessel graph
should be computed, and anatomical knowledge be used to create a likely
vessel representation.

The visualisation of the resulting vessel graph should be presented in
real-time, and be highly realistic. In order to take advantage of inexpensive
modern graphics cards, a triangle mesh with realistic branching structures
should be computed.

1.2 Document structure

Previous work on medical image analysis will be presented in the next chap-
ter. After this, the method chapter will present the two vessel reconstruction
algorithms. The final section of this chapter will also present the visualisation
technique used. Results and discussion follow next, presenting the outputs of
each separate image analysis method and the final visualisation results. Two
separate techniques have been developed, and we discuss the results at the
end of each technique’s section. Finally, conclusions and further work will be
outlined in chapter 5.

6

Chapter 2

Previous work

Medical images have been of particular interest to the image processing com-
munity. Several methods have been developed to extract valuable information
from CT and MR images in particular. While there exist many theoretical
approaches, very few of them have been implemented and used in practice.
This is understandable due to the fact that great accuracy is needed when
concerning human lives, but as the methods and results from the image pro-
cessing community evolve, the acceptance of these methods increase.

In this chapter we will primarily describe algorithms previously used
in medical imaging. We will first go through a selection of preprocess-
ing/postprocessing algorithms. Segmentation algorithms will be covered next,
and finally we will look at a few representation and description techniques.

The reason why we have chosen these three particular disciplines in image
analysis is closely related to the task at hand. In order to extract the hepatic
vessels from CT or MR images, preprocessing and segmentation techniques
are required. The segmentation results may require postprocessing before
an adequate description of the results can be made. This description will
be further used to construct a likely 3D vessel tree based on anatomical
knowledge.

2.1 Preprocessing

A preprocessing stage is usually done before executing a segmentation algo-
rithm. Generally, the motive is to make interesting regions more readable
by the segmentation algorithms. After the segmentation, corrections of the
results are sometimes needed in a stage typically called the postprocessing
stage. These corrections are often performed using the same techniques that
are used in the preprocessing stage.

7

(a) (b)

Figure 2.1: Example matched filtered result where the blood vessels in an
liver are emphasised. a) Original CT slice masked with a liver mask. b)
Matched filtered result of a) using several templates matching the different
sized blood vessels in separate headings.

2.1.1 Spatial filters

Spatial filtering through convolution is commonly used in image preprocess-
ing (Gonzalez and Woods, 2002; Sonka et al., 1999). A frequent application is
to remove noise by smoothing or blurring an image. Another common use is
called matching, which is basically fitting a template to an image (Gonzalez
and Woods, 2002). Regions where the template fits are marked bright, while
areas that doesn’t match will become dark.

Matched filters

Matched filtering were proposed used in medical imaging by Chaudhuri et al.
(1989). The idea is that blood vessels in CT images have a Gaussian profile,
and thus a Gaussian hill filter can be used to match the blood vessels. Since
blood vessels have distinct sizes and are headed in separate directions, the
filter has to be scaled and rotated. Filtering results from all the scaled and
rotated Gaussian hill templates are summed up. Omholt-Jensen (2002) used
matched filters in segmentation of liver vessels. Figure 2.1 shows an example
result of matched filtering applied to a CT slice.

8

2.1.2 Morphological operators

Most morphological operators are based on dilation and erosion (Gonzalez
and Woods, 2002; Sonka et al., 1999; Soille, 2003). A structure element is
used to define which neighbouring pixels should be included during filtering.
Using a flat structure element (Soille, 2003), dilation and erosion are local
maxima and minima filters, respectively.

These two basic operators can prove powerful in preprocessing and post-
processing stages. Some example uses are region filling, matching through
the hit-or-miss transform, boundary extraction, finding object skeletons, and
pruning unimportant pixels. Also regarded as a morphological operator is
the distance transform, which is used to compute the distances to the nearest
background pixels in an image.

In medical imaging, Aykac et al. (2003) makes use of morphological clos-
ing and erosion in a preprocessing step to identify candidate airway locations.
Further, morphological opening, closing, and skeleton (thinning followed by
pruning) are used by Thomas et al. (1991) to measure the fetal femur length
in ultrasound images. The length is then compared to a growth chart to
calculate the age of an unborn child.

2.1.3 Bayesian image processing

Bayesian image restoration was introduced by Geman and Geman (1984).
The idea was to make use of the Bayes formula (Duda et al., 2001) to classify
pixels:

P (X|Y) =
p(Y |X)P (X)

P (Y)
(2.1)

In this formula, P (Y |X) is called the likelihood distribution, which specify
how X has been degraded from Y . The last part of (2.1), P (X), is the prior
probability that defines how neighbouring pixels are related in X. Figure
2.2 shows an example of vessel restoration that we computed while testing
various preprocessing algorithms.

This technique can be used to reconstruct images in a preprocessing stage
as well as for segmentation purposes. The unknown reconstructed image is
then corresponding to X, and the original image is set to be Y . The pixels
in the new image is updated iteratively after the likelihood distribution and
the prior probability have been defined.

Energy minimising methods such as simulated annealing is ordinarily used
to find the optimal estimation of image X. Refer to Winkler (1995); Geman
and Geman (1984); Hokland (2002) for further reading.

9

(a) (b)

Figure 2.2: a) A part of the liver. b) Result of restoration using Bayesian
image analysis.

2.1.4 Level set methods

The level set method introduced in Sethian (1997, 1996), is primarily a model
based segmentation algorithm and will be more fully described in section
2.2.2. This approach, however, can also be used in noise removal as proposed
by Malladi and Sethian (1996). Suppose we look at the intensity of the
image pixels as heights in a topographic map, then by applying motion by
curvature, small contours will disappear over time as seen in Sethian (2004b).
An example is preprocessing of a digital subtraction angiogram (DSA) as
shown in figure 2.3.

2.1.5 Anisotropic diffusion

The use of anisotropic diffusion in image processing was introduced by Per-
ona and Malik (1990), and the technique has been frequently used in image
analysis ever since. The anisotropic diffusion equation is as follows:

∂I

∂t
= ∇(c∇I) (2.2)

where the diffusion coefficient c varies in space but not time. If c is instead
constant, the equation is reduced to the isotropic heat diffusion equation:

∂I

∂t
= c∇2I (2.3)

10

(a) (b)

Figure 2.3: a) A digital subtraction angiogram of an artery. b) Preprocessing
result of a) using motion by curvature. Images courtesy of Sethian (2004b)

Applying isotropic heat diffusion on an image is equivalent to running a
Gaussian filter on the image. By using anisotropic diffusion with varying c it
is possible to specify the magnitude of blurring with respect to the contents
of the image.

Typically during image preprocessing, we want to blur roughly homoge-
neous regions, while preserving the edges. This can for instance be achieved
in anisotropic diffusion by setting c = g(||∇I(x, y, t)||), and thus vary c with
respect to the edges in an image. Additionally, if the function g is chosen
properly, the edges in an image can be sharpened as well (Perona and Malik,
1990).

There are several example uses of anisotropic diffusion in medical imaging.
For instance, Soler et al. (2001) uses anisotropic diffusion in a preprocessing
phase before segmentation of the liver, blood vessels, and possible liver tu-
mours from CT scans. Another example is Chung and Sapiro (2000), where
anisotropic diffusion is used before segmenting skin lesions.

Anisotropic diffusion is also used in the gradient vector flow procedure (Xu
and Prince, 1998, 2000), which is typically used before applying a deformable
model segmentation (See section 2.2.2).

11

2.2 Segmentation

Image segmentation is typically referred to as the process of finding regions in
an image that have one or more common properties. The common properties
may for instance be intensity values, local mean and variance, texture, and
even shape.

Generally, we group segmentation techniques into two main groups, lo-
cal and global approaches. Local approaches are exclusively based on in-
formation contained in the image itself. The image is assumed to be “self-
contained”, i.e. it has all the information necessary to retrieve the objects of
interest. On the other hand, global methods utilise related knowledge about
the image in the segmentation approach.

2.2.1 Local approaches

In this section we will cover some of the segmentation algorithms based on
local knowledge in a dataset.

Thresholding

Thresholding is the simplest and most frequently used segmentation algo-
rithm. The basic idea is to mark pixels having intensity values within a
predetermined range (Gonzalez and Woods, 2002; Sonka et al., 1999). A
slightly more advanced usage of this algorithm is described in Székely and
Gerig (2000). Here, a two dimensional intensity distribution from a spin-echo
MR image pair is computed, and the two distributions are used to decide
which pixels should be segmented. A more accurate segmentation is usually
accomplished using more than one spectrum of the same scene (for instance
colour images).

The main challenge concerning thresholding is to select the most desirable
intensity range. More often than not this is a nontrivial problem. One way
to solve this is through an approach called optimal thresholding (Gonzalez
and Woods, 2002; Sonka et al., 1999). The optimal threshold is said to be
the threshold that causes the smallest number of pixels to be incorrectly seg-
mented. In optimal thresholding, Gaussian curves are fitted on the histogram
of an image, and thresholds are set where the curves cross. Soler et al. (2001)
makes use of this method in segmenting CT images.

Another significant thresholding algorithm is based on the entropy of an
image’s histogram (Kapur et al., 1985). An entropy diagram is obtained by an
average entropy measure (Gonzalez and Woods, 2002). Each local maximum
on the entropy diagram represents a potential best threshold. This method

12

(a) (b)

Figure 2.4: a) A CT image. b) Resulting segmentation using thresholding
based on entropy.

is reported to be successful in segmenting liver vessels in Glombitza et al.
(1999), and Omholt-Jensen (2002). See figure 2.4 for an example use of
entropy based thresholding.

Mean shift segmentation

Mean shift segmentation is an interesting, recently proposed segmentation
technique. Here, pixels in an image are instead represented as points in
a feature space. Density estimation in the feature space is processed using
the Parzen window technique described in Comaniciu and Meer (2002); Duda
et al. (2001), and a mean shift procedure is used to follow the density gradient
in the feature space to a local maximum (Comaniciu and Meer, 2002).

These maxima represents segmentation identities, and all pixels leading
to the same local maximum is grouped into the same segment. The number
of maxima is dependant on the Parzen window size, and thus the number of
segments does not need to be known beforehand.

Although not mentioned in section 2.1, the mean shift procedure can be
used in image preprocessing as well (Comaniciu and Meer, 2002; Fernández
et al., 2003).

13

Edge based segmentation

Edge based segmentation involves following edges in an image and mark
pixels within closed boundaries. The simplest approach is to analyse the
immediate neighbourhood of each pixel in an image, and label pixels hav-
ing similar gradient magnitude and direction (Gonzalez and Woods, 2002).
Closed contours, containing equally labelled pixels, are eventually filled and
transformed into segmented regions.

The procedure above, however, consider only local adjacent pixels when
tracking the edges in an image. Instead, graph theoretic techniques (Gonzalez
and Woods, 2002; Sonka et al., 1999) can be utilised to find the least expensive
path according to a given cost function. Dynamic programming (Bellman,
1957; Sonka et al., 1999) can be used to find the global minimum, and thereby
the most appropriate edge graph from a given starting point.

Another example of an edge based segmentation algorithm is the Hough
transform (Hough, 1959; Gonzalez and Woods, 2002). Using various formu-
las, it is possible to search an image for simple geometric shapes. For instance,
to search an image for circles with radius 1 we calculate the following Hough
transform:

H(a, b) =

∫ ∫

f(x, y)δ((x − a)2 + (y − b)2 − 1)dxdy (2.4)

where f(x, y) represents the gradient of an image, and (a, b) corresponds to
the positions of the sought circles. The commonly used delta function, δ(u),
returns 1 when u is 0, and 0 otherwise. High values in H(a, b) represents
positions (a, b) where circles are found in f(x, y).

An elliptical Hough transform was used to identify axon centre in Fok
et al. (1996). The purpose of this paper was to count the number of axons
in nerve cells as well as extract each axon’s size and shape. After the initial
identification of the axon centre, an active contour model was used to refine
the axon contours.

Region based segmentation

A second subset of traditional segmentation techniques is region-based tech-
niques. These procedures rely on common properties between adjacent pixels
as previously mentioned. Starting with a few seed points, regions are typ-
ically expanded until a property criteria is no longer met, or until a region
boundary collides with another region’s boundary. In addition to the tradi-
tional region growing scheme (Gonzalez and Woods, 2002; Sonka et al., 1999),
the watershed segmentation (Soille, 2003), shown in figure 2.5, represents a

14

(a) (b) (c)

Figure 2.5: Segmentation of the brain white matter. a) Seed points. b)
Resulting oversegmentation using watershed. c) A level set method, which
will be described in section 2.2.2, is used to make the final segmentation
using the watershed results from b). Images courtesy of MIPG medical image
processing group.

similar technique. In Haris et al. (1999), the watershed transform was used
to segment the coronary arterial tree.

Example applications are region growing (Martinez-Perez et al., 1999)
and 3D region growing (Tuduki et al., 2000) used to segment blood vessels
in medical images. In (Krivanek and Sonka, 1998), the watershed segmen-
tation is used to automatically measure the size and shape of follicles from
ultrasound images.

Additionally, several articles propose region based methods for delineating
the liver vessels automatically through region based segmentation algorithms
(Chaudhuri et al., 1989; Kapur et al., 1985; Inaoka et al., 1992; Zahlten et al.,
1995; Soler et al., 2001). Most promising, with respect to creating a 3D model
of the liver vessel structure, are the methods by Zalthen et al. and Soler et
al.

Zalthen et al. use a voxel based region-growing-algorithm to extract the
portal vein, but the algorithm requires an initial seed point and is therefore
not fully automatic. In the article by Soler et al. however, the portal trunk is
located using its general anatomical position. The portal vein skeleton is cal-
culated utilising methods from Bertrand and Malandain (1994); Malandain
et al. (1993), and is corrected by pruning vessel segments that do not confirm
with a set of predetermined properties.

15

2.2.2 Global approaches

In this section we will present global segmentation methods that utilise ad-
ditional knowledge than that contained in the image itself.

Deformable models

The first article on this topic was Kass et al. (1988). Here a model called
snake was introduced. In short, a snake is a spline influenced by internal and
external forces seeking an energy minima. Internal forces typically controls
the tension and rigidity of the snake, and external forces draws the snake
towards edges of an image (McInerney and Terzopoulos, 2000; Heuch, 2003).
External forces from the image I(x, y) is usually derived from:

P (x, y) = −c|∇[Gσ ∗ I(x, y)]| (2.5)

where c is the magnitude of the force, ∇ is the gradient, and Gσ is a Gaus-
sian smoothing filter. Gσ ∗ I(x, y) means that I(x, y) is convolved with Gσ.
External forces can also include the so-called balloon force that expands the
snake to find far edges. Another way of pulling the snake to remote edges
is to implement gradient vector flow (Xu and Prince, 1998, 2000) that was
briefly mentioned in section 2.1.5.

An interesting alternative to the original snake model is the discrete dy-
namic contour model (Lobregt and Viergever, 1995). The structure of this
model is a set of connected vertices. Instead of a computationally expen-
sive numeric solution used in the traditional snake model, these vertices are
manipulated by simple vector operations. We implemented this model us-
ing balloon forces to segment the liver from CT images. Figure 2.6 shows a
typical execution of this algorithm.

Snakes are becoming more and more common in medical imaging. For
instance Heuch (2003) uses snakes to segment the liver from CT images, and
Kelemen et al. (1998); Kelemen and Székely (1999); Székely and Gerig (2000)
utilise snakes to segment the basal gonglia of the human brain. Moreover,
snakes with a modified gradient vector flow were used to track white blood
cells in citetray02.

Level set methods

Deformable models are difficult to handle when the topology of the contour
changes (Sethian, 1997). The level set method (Sethian, 1997, 1996) solves
this problem by viewing the contour as a graph instead of a parameterised
curve, and by adding an additional dimension, time, to the interface. If we

16

(a) (b) (c) (d)

Figure 2.6: a) Initialisation of the contour model, in blue, on a CT image.
b), c), d) The contour alters shape to fit the liver .

consider the third dimension as height instead of time, we can represent the
model as a surface. Then, by setting the contour at time z equal to the
contour at hight z, we can easily represent a changing contour. Merging
contours can accordingly be easily formulated.

Level set methods have been demonstrated useful in outlining the stomach
from CT images, and in segmenting the structure of arterial trees from DSA
images (Malladi et al., 1995; Malladi and Sethian, 1996). Examples of beating
heart segmentation, femurs and surrounding soft tissue segmentation, and
brain reconstruction can in addition be found in Sethian (2004a).

Statistical models

Unlike the active contour models and the level set method, statistical models
represents the general shape of the sought object. In order to build a statis-
tical model, manually segmented training samples are needed. This makes
implementing statistical model algorithms time-consuming and resource de-
manding. However, many segmentation tasks require statistical models in
order to be adequately solved. In such cases, models such as snakes will
more often than not result in an incorrect segmentation.

In applications, statistical models have two common uses. First, they can
be used as a segmentation initialisation by matching reconstructed models
onto structures in an image. After this, the segmentation is refined using an-
other segmentation method, for instance active contours. Székely and Gerig
(2000); Kelemen et al. (1998); Kelemen and Székely (1999) use principal com-
ponent analysis (Duda et al., 2001) to create a small set of statistical models,
eigenmodes, expressing the main variations of a larger training set. The
eigenmodes are built from the eigenvectors with the largest corresponding

17

Figure 2.7: Statistical models built by principal component analysis. The
figures show the models reconstructed from the three eigenvectors with the
highest corresponding eigenvalues. Images courtesy of Székely and Gerig
(2000).

eigenvalues.
The second use of statistical models are in criteria functions to com-

pute the statistical validity of a segmentation result. In (Sclaroff and Liu,
2001), a multidimensional unimodal Gaussian distribution of the training set
is assumed. Deviation from the mean is penalised by an amount that is
proportional to the Gaussian distribution function.

Example uses of statistical models are Székely and Gerig (2000); Kelemen
et al. (1998); Kelemen and Székely (1999) where 2D and 3D models of the
corpus callosum are used (see figure 2.7). In Soler et al. (2001), a statistical
model of lesions were defined to locate tumours in the liver. Furthermore,
statistical models were used to automatically segment the three main struc-
tures of the heart from MR scans in Frangi et al. (2002).

Bayesian image segmentation

In section 2.1.3, we described methods that could be used to restore lost
information in images.

Similar methods are proposed in medical image segmentation (Choi et al.,
1991). First, a manual segmentation and classification is conducted. After-
wards, Gaussian curves are fitted to the probability distributions for each
class. From these Gaussian curves, the mean µ and variance σ is measured.
Automatic segmentation can then be executed. For each pixel, a probability
P (X|Y) is calculated for each class, and typically through inversion a class is
selected for the corresponding pixel. Inversion is explained in Ripley (1987).

2.3 Shape representation and description

In image recognition, classification of the segmented shapes in an image is
essential. Before the shapes can be classified, however, they need to be
described in an appropriate numeric feature vector for the classifier.

18

Shape description has other uses as well. Since it transforms the seg-
mented shapes into more useful representations, the results can be more
easily processed and analysed. In this section, we will outline such represen-
tation and description techniques with emphasis on shape skeletons.

2.3.1 Contour based representation and description

Shapes can be described by their boundary. Various features can be used
such as chain codes, boundary length, curvature, bending energy, signature,
and chord distribution (Sonka et al., 1999; Gonzalez and Woods, 2002).

2.3.2 Shape invariants

The shapes of objects in an image may change depending on viewpoint. This
problem may be overcome by shape invariants, which represent geometric
configurations that remain unchanged under an appropriate class of trans-
forms (Sonka et al., 1999).

One simple example of an invariant feature is cross ratio (Sonka et al.,
1999). Cross ratio is a projectively invariant image feature, meaning that the
feature is not altered by a projection transform. It is based on the fact that
a straight line is always projected as a straight line, and thus four points on
a line will have the following ratio both before and after a projection:

I =
(A − C)(B − D)

(A − D)(B − C)
(2.6)

where A, B, C, and D are sequential points on a straight line.

2.3.3 Shape based representation and description

There are numerous ways to describe the region itself. Some example descrip-
tions from Sonka et al. (1999) are shape area, Euler’s number, projections,
eccentricity, elongatedness, rectangularity, shape direction, compactness, and
convex hull.

Another important region descriptor is region moments (Papoulis, 1991).
Here, the image function is interpreted as a probability density of a 2D ran-
dom variable. Properties of this random variable can be described using
statistical characteristics, namely moments. Different degrees of invariance
can be achieved depending on which moments are used. Scaled central mo-
ments, for instance, are translation and scale invariant.

19

2.3.4 Shape skeleton

A shape skeleton represents a minimal representation of a shape without
changing its topology. In 2D, the skeleton is typically defined as the medial
axis of a shape. Blum (1967) proposed a medial axis transform, where each
pixel in a shape is marked as a medial axis if the pixels have two or more
smallest distances to the background. An extension of this definition to 3D
is possible, however, surfaces instead of lines may then be characterised as
medial axes. Thus, in 3D, it is common to distinguish 3D skeletons into
medial surfaces and medial lines.

2D skeletons

In this subsection we will look at algorithms used to create 2D skeletons. We
briefly mentioned skeletonisation through morphological thinning in subsec-
tion 2.1.2. In morphological thinning, hit-and-miss templates are first used
to find shape boundaries (Soille, 2003). The boundaries are removed suc-
cessively until only the skeleton of the shape remains. Postprocessing of the
skeleton may consist of a pruning phase where small end branches of the
skeleton is removed.

Another example of an iterative skeleton algorithm is described in Guo
and Hall (1989). This algorithm produces a minimal skeleton that does not
need pruning. Unlike many skeleton methods, this technique does not have
a set of templates to match the neighbourhood of each pixel. Instead, a set
of criteria functions have to be fulfilled before a pixel is marked for deletion.

Iterative skeleton algorithms can often be parallelised, and specialised
hardware may increase the speed of these algorithms. Refer to Lam et al.
(1992) for further reading on iterative 2D skeleton algorithms.

Non-iterative skeleton algorithms have also been derived. These are
typically based on medial axis and distance transforms (for instance Blum
(1967)), or line following and run length encoding (Lam et al., 1992).

Figure 2.8 shows a rectangle and its resulting skeletons using thinning by
morphology, and the algorithm given in Guo and Hall (1989).

3D skeletons

Existing templates or criteria functions used in many 2D skeleton algorithms
cannot be directly extended into 3D. However, much research effort has been
put into 3D skeletons recently due to the increased availability of 3D image
modalities. Lobreget et al. (1980) first presented a skeleton algorithm based
on preservation of Euler characteristics. Further, Ma and Sonka (1996) pro-
posed a boundary thinning algorithm utilising deleting templates, and Saha

20

(a) (b) (c)

Figure 2.8: The skeleton of a rectangle using two different algorithms. a)
The rectangle to be thinned. b) Skeleton of a) using morphological thinning.
c) Skeleton of a) using the algorithm given in Guo and Hall (1989).

et al. (1997) developed a thinning algorithm that preserves the number of
object components, cavities, and tunnels. More recent example publications
of 3D thinning algorithms can be found in Borgefors et al. (1999); Palagyi
et al. (2001); Xie et al. (2003).

Palagyi et al. (2001); Xie et al. (2003) both make use of a simple point
definition derived in Malandain and Bertrand (1992). A point is simple if
its removal does not affect the topology of the shape. This simple point
characterisation is mathematically sound, but can only be used to compute
6-connected skeletons. The simple point definition is insufficient, however,
to create a sound thinning algorithm. The thinning algorithm also depends
on the deletion order of the simple points. Palagyi et al. (2001), for instance,
proposes a method that mark all pixels for deletion in a separate pass be-
fore deleting them. This procedure is repeated for each heading; northern
boundary pixels are deleted first, then southern, etc. Figure 2.9 shows an ex-
ample medial surface and medial line of a cube. The medial line is produced
using the simple point definition in Malandain and Bertrand (1992), and by
thinning boundary pixels a predetermined number of iterations.

2D and 3D skeletons in medical applications

2D and 3D skeletons have been used extensively in medical image analysis.
In Yim et al. (2000), vessel skeletons are used to analyse vessel paths and
branching patterns of vascular trees from magnetic resonance angiography
(MRA). Similar operations were performed in Palagyi et al. (2001), but from
Spiral Computed Tomography (S-CT) volumes. More recently, Volkau et al.
(2005) uses 3D shape skeletons to construct the human normal cerebral arte-
rial system from various 3D datasets. Other examples include Nyström and
Smedby (2001); Tom et al. (1994); Gomberg et al. (2000).

21

(a) (b)

(c)

Figure 2.9: This figure shows the medial surface and an example medial line
of a cube. a) The cube before 3D thinning. b) Medial surface of a). c)
Medial line of a) using the simple point definition described in Malandain
and Bertrand (1992).

22

Chapter 3

Methods

This chapter is separated into three sections. We will first describe two
distinct techniques that have been derived to construct liver vessels from
CT images. Both techniques are graph based, where an initial graph is
first constructed through a set of preprocessing, segmentation, and graph
representation techniques. After this, cost functions representing anatomical
knowledge is used to improve the vessel graph.

A prerequisite to both techniques is that the liver is segmented before-
hand. This is presently an unsolved problem, which will not be focused on in
this thesis. In our work, the liver was segmented partially by hand through
the application implemented in Heuch (2003).

The third section outlines the mesh generation algorithm used to visu-
alise the vessel graph. The derived mesh generation method creates natural
looking vessels and vessel branches that improves the presentation of the final
results.

3.1 2D vessel reconstruction

In this section, a continuation of the work in Omholt-Jensen (2002) is pre-
sented where each CT slice is processed separately in the preprocessing and
segmentation stages. After segmentation, a graph is constructed and im-
proved through a global search mechanism.

New algorithms have been derived that lead to better segmentation re-
sults, a more improved vessel graph initialisation, and more appropriate cost
functions for the global search method. Parts of this work have been pub-
lished previously in Eidheim et al. (2004a) and Eidheim et al. (2004b).

23

Figure 3.1: Two CT images before histogram equalisation.

3.1.1 Preprocessing

During the preprocessing step, the blood vessels are emphasised through the
set of methods outlined in this subsection. The results are next processed by
the segmentation algorithms described in subsection 3.1.2.

Histogram equalisation

CT sequences may contain images with slightly different gray value contrast.
An example is shown in figure 3.1. This may represent a problem when
processing the images with equal parameter choices.

We chose to normalise the gray value contrast through a method called
histogram equalisation (Gonzalez and Woods, 2002). The new image is ob-
tained from:

sk =
k

∑

j=0

nj

n
k = 0, 1, 2, ..., L − 1 (3.1)

where sk is the new pixel intensity for pixel intensity k, L is the number of
possible gray levels, n is the number of pixels in the image, and nj is the
number of pixels having intensity j. Figure 3.2 shows the result of histogram
equalisation of the images in figure 3.1.

24

Figure 3.2: Two CT images after histogram equalisation using equation (3.1).

Figure 3.3: Gaussian hill template.

Matched filtering

The use of matched filtering to segment blood vessels was introduced by
Chaudhuri et al. (1989). The basic idea was that 1D profiles of blood ves-
sels can be approximated by a Gaussian curve. The Gaussian curve can be
extended to 2D by forming a Gaussian hill, which in turn can be used as a
template to match vessels in 2D images. The function for a Gaussian curve
is:

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (3.2)

where σ is the standard deviation, and µ is the mean. The Gaussian hill
template in figure 3.3 is simply a Gaussian curve repeated in the y direction.

Since blood vessels are headed in separate directions and are dissimilar

25

(a) (b)

Figure 3.4: a) A CT image. b) Result of matched filtering.

in size, the Gaussian hill template has to be rotated and scaled. The results
from filtering with each rotated and scaled template is summarised at the
end. See figure 3.4.

3.1.2 Segmentation

Two separate segmentation techniques were used in order to improve the
overall result. In the following subsection these two techniques will be de-
scribed in detail.

Automatic thresholding using entropy of the histogram

An automatic segmentation algorithm is needed that can segment the re-
maining vessels after a matched filtering process. In section 2.2.1 we briefly
described some thresholding algorithms used in medical image segmentation.
Our method of choice is the entropy based algorithm (Kapur et al., 1985)
that is reported to be successful in segmenting liver vessels in both Glombitza
et al. (1999) and Omholt-Jensen (2002). Furthermore, the system developed
by Glombitza et al. (1999) is claimed to be in clinical use.

Entropy is a measure of change (Gonzalez and Woods, 2002). Homoge-
neous images result in zero entropy, while noisy images lead to high entropy.

26

0 50 100 150 200 250
0

1

2

3

4

5

6

t

e(
t)

Figure 3.5: Masked result of a match filtered liver and its entropy diagram.
Vertical lines mark the local maxima.

The average entropy measure, which is used in the thresholding algorithm,
is defined as:

e = −
L−1
∑

i=0

p(zi)ln(p(zi)) (3.3)

where zi is the gray value, L is the number of distinct gray levels, and p(zi)
is the histogram values normalised between [0, 1]. Entropy based threshold-
ing sums the entropy of the thresholded object and its background. Higher
entropy yields more information about the image, and so we are looking
for thresholds where the entropy peaks. Our slightly modified thresholding
algorithm involves four steps:

1. An entropy is computed for each possible threshold, resulting in an
entropy diagram.

2. The diagram is modified to remove less essential maxima.

3. Local maxima are found in the modified diagram.

4. A threshold is selected for the most suited local maximum.

Figure 3.5 shows an example result of steps one and three.
Due to the many local maxima we introduce an addition to the algorithm

proposed by Glombitza et al. (1999). Before we find the maxima and apply
the knowledge based selection, we smooth the entropy diagram by convolving

27

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

t

e(
t)

Figure 3.6: Smoothed entropy diagram from figure 3.5. Vertical lines mark
the local maxima.

it with a simple [1
3
, 1

3
, 1

3
] filter. In this way we remove the insignificant max-

ima, but keep those of interest. The resulting maxima are shown in figure
3.6.

A morphological transformation is used to find the local maxima (Soille,
2003). See section 3.1.2 at page 34 for details.

Usually more than one local maxima exists, and a solution to pick the best
threshold is necessary. Glombitza et al. (1999) suggests a knowledge based
algorithm that selects the threshold by comparing the segmented vessels and
the liver (also reported used in Omholt-Jensen (2002)). The volume of the
vessels are modulated to be from 5% to 15% of the liver, and the bounding
boxes of both the vessels and the liver are to be approximately the same.
The thresholded result that corresponds most to this model is selected.

After completing the first three steps in the thresholding algorithm, we
then apply the algorithm from Glombitza et al. (1999) to find the optimal
threshold. Two fuzzy functions are proposed to validate the candidate thresh-
olds (see figure 3.7).

The first function returns > 0 if the ratio between the vessels and the
liver are likely, and the second function results in 0 if the bounding boxes
of the vessels and the liver are too diverse. These two functions are used to
derive F :

F = fV (
V olumevessels

V olumeliver

) + fB(
BoundingBoxvessels

BoundingBoxliver

) (3.4)

where F represents the “correctness” of the threshold. The threshold with

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
f(x

)

(b)

Figure 3.7: a) Fuzzy function for volume comparison, x =
V olumevessels/V olumeliver. b) Fuzzy function for bounding box comparison,
x = BoundingBoxvessels/BoundingBoxliver.

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

2 2

1.29
1.05

1 1 1 1

0

t

e(
t)

Figure 3.8: The entropy diagram shown in figure 3.6, but values F from
equation (3.4) are added. Red line indicates optimal threshold t=82.

highest value F is selected. In figure 3.8 the values F are plotted on the same
entropy diagram as shown in figure 3.6.

As seen in the figure, the red vertical line indicates the best threshold
according to Glombitza et al. (1999). The resulting thresholded liver is shown

29

(a) (b)

Figure 3.9: a) Masked result of a match filtered liver. b) Thresholded result
of a) using entropy.

in Figure 3.9.

Segmentation based on local mean and variance

Segmentation results from the previously described preprocessing algorithms
and the following thresholding are not always correct. In particular, large
vessels entering the liver may be corrupted as shown in figure 3.10. The
false segmentation is due to the edge effect that the boundary of the liver is
causing to the matched filtering procedure.

We developed another segmentation algorithm to improve these segmen-
tation flaws. This algorithm is based on the local variance of each pixel from
the histogram equalised images. By observing the large hepatic vessels in
CT images, it can be seen that the local variance within the pixels constitut-
ing the larger vessels is smaller than elsewhere in the liver. We used this to
formulate the following algorithm:

1. From a histogram equalised image, find the local variance for each pixel.

2. Convolve the local variances with a small averaging filter.

3. For the pixels with intensity values above a predetermined value, store

30

(a) (b)

Figure 3.10: Segmentation corruption due to liver boundary. a) Masked liver
from a CT image after histogram equalisation. b) After applying matched
filtering and the described segmentation algorithm, large vessels entering the
liver are corrupted.

the pixels that have local variance larger than value a in a new image
mask.

4. For each pixel in mask, store the pixels that have local variance larger
than value a + b in a new image marker.

5. Perform reconstruction by dilation (see section 3.1.2) with the mask
and marker images derived in step 3 and 4.

6. Dilate the results with a small circular structure element to better
match the original size of the hepatic vessel.

The idea behind this algorithm is first that the marker pixels position the
centre of the large vessels. By expanding these centres within the mask image,
we rule out noise included in the mask image while at the same time include

31

(a) (b) (c) (d) (e)

Figure 3.11: a) Segmentation resulting from matched filtering and automatic
thresholding. Large blood vessels entering the liver are corrupted in the
filtering process. b) Marker used in the second segmentation algorithm. The
marker is selected based on local variance with a high threshold. c) Mask
used in the second segmentation algorithm. The mask is selected based on
local variance, but with a lower threshold compared to the threshold used to
find the marker. d) Resulting reconstruction by dilation. The result is also
dilated with a small structure element to better match the original vessel
size. e) The two segmentation results combined.

the relevant parts of the mask image. An example algorithm execution and
result is presented in figure 3.11.

Improving segmentation results using morphological operators

The resulting segmented vessels from the previous sections require further
processing. Isolated pixels should be regarded as noise, and be removed.
Additionally, vessels with squared corners should be rounded. A solution to
both of these problems is morphological opening.

Morphological opening is equivalent to a morphological erosion followed
by dilation (Soille, 2003):

γB(f) = δB̌[εB(f)] (3.5)

where B̌ is B reflected. Erosion, εB(f), of a set f by structure element B is
defined as:

εB(f) = {x|Bx ⊆ f} (3.6)

where Bx means B translated by a vector x. In other words, erosion results in
all the points x where B translated by x is included in f . Likewise, dilation,

32

(a) (b)

Figure 3.12: a) A thresholded liver. b) Result of using morphological opening
with structure element B on image a).

δB(f), can be expressed as:

δB(f) = {x|Bx ∩ f 6= ∅} (3.7)

Nearly the same as erosion, the dilation result includes all the points x where
B translated by x is somewhat included in f .

In our application a circular structure element B of radius 1 seemed ade-
quate in both removing spurious pixels, and rounding squared corners:

B =

1
1 1 1

1

The segmentation result so far is shown in figure 3.12.
A third problem arises from the use of matched filtering. Holes may

appear within the vessels that are clearly undesirable. This phenomena is
shown in figure 3.13.

A way to resolve this flaw is through geodesic transformations (Soille,
2003). These transformations are based on the basic morphological operators
as well, but a mask image is added to the computations. Before we continue,
we will take a closer look at geodesic erosion. The definition of geodesic

33

(a) (b) (c)

Figure 3.13: a) A vessel in a CT image. b) Matched filtered result of a). c)
Thresholded result of b).

erosion is as follows:

ε(1)
g (f) = ε(1)(f) ∨ g (3.8)

with mask image g, and marker image f . Geodesic erosion is the result of
erosion with pixel values not smaller than mask image g. ε(1)(f) stand for
erosion of f by the structure element,

1
1 1 1

1

As explained, this basic transformation can be used to fill the holes previously
mentioned. We define holes in a binary image as regions of zeros that are
not connected with the border of the image. A simple marker f is used
that consists of values 1 everywhere but in the image’s border. Further, the
thresholded vessels are used as mask image g. Subsequent geodesic erosions,
such that f = ε

(1)
g (f), will then eventually result in f where all the holes

of the binary image g are filled. The algorithm is stopped when there is no
further change in f . Also known as reconstruction by erosion, this process is
shown in figure 3.14.

A similar transformation, namely reconstruction by dilation, is used to
find local maxima in section 3.1.2. Using this transformation, Soille (2003)
defines the regional maxima as:

RMAX(f) = f − Rδ
f (f − 1) (3.9)

where Rδ
f (f −1) is reconstruction by dilation with mask image f and marker

image f − 1.

34

(a) (b) (c) (d) (e)

Figure 3.14: a) Mask image g. b) Initial marker image f . c), d), e) Re-
construction by erosion ultimately yields a filled version of the thresholded
image g.

3.1.3 Classification

Now that we have the segmented vessels, we want to find the points where
the blood vessels enter and leave the CT images. To accomplish this, we first
need to classify the segmented regions. There are two possible classifications
for each segment:

1. A vessel running perpendicular to the CT image.

2. A vessel running in an oblique angle to the CT image.

The following classifier were chosen to classify the regions:

1. If the region is circular, it should be classified as 1.

2. Else, classify the region as 2.

In more detail, the classifier returns class 1 if the vessel’s area and its convex
area are similar, and the ratio of its minor and major axis do not exceed a
predetermined limit.

The first condition has to be true since cross sections should not be clas-
sified as 1, and the last condition ensures that primarily elliptical elements
receives classification 2.

3.1.4 Vessel centre extraction

The classification of the previously processed segments are used to derive the
centres of the vessels. The centre points are needed as node positions in the
following blood vessel graph initialisation and search.

35

n1 n2 n3

n8 p n4

n7 n6 n5

Figure 3.15: The defined neighbourhood of a pixel p.

Simplest are the vessels that runs vertically through the CT image. In
these cases, the centres are simply the mass centres of the segmented regions.
The centres of cross sections and elliptical segments are more complicated to
derive. Here, a skeleton algorithm is applied to the segments and the centre
points are located at intervals within the skeleton.

Two types of centre points are used. Some of the centre points will
represent potential interconnection points between adjacent slices. The mass
centres and endpoints of the skeletons correspond to such points, however,
additional interconnection points may be added as described in the following
subsections.

Skeleton

A skeleton is a minimal representation of a region with the same topology as
the region itself. In section 2.3.4, we described several 2D skeleton algorithms.
From these algorithms, Guo and Hall (1989) was selected because it results in
a minimal skeleton that do not need postprocessing such as pruning. It is an
iterative algorithm that consists of two processing passes for each iteration.
The algorithm results in an 8-connected skeleton, and is based on a set of
criteria functions rather than templates.

The neighbourhood of a pixel p is defined as shown in figure 3.15, where
n1 correspond to the upper left neighbour pixel, and n2−8 is the remaining
8-neighbour pixels in clockwise direction. In Guo and Hall (1989), a pixel p
is deleted if the following conditions are true:

1.
∑4

i=1(NOT(n2i) AND (n2i+1 OR n2i+2)) = 1

2. 2 ≤ min(
∑4

i=1(n2i OR n2i+1),
∑4

i=1(n2i−1 OR n2i)) ≤ 3

3. if pass 1, ((n2 OR n3 OR (NOT(n5))) AND n4) = 0

4. if pass 2, ((n6 OR n7 OR (NOT(n1))) AND n8) = 0

where n9 and n10 corresponds to n1 and n2, respectively. The processed
image and the operators “AND”,“OR”, and“NOT”are binary. Integer values

36

(a) (b)

Figure 3.16: a) A thresholded blood vessel. b) The skeleton of a).

1 and 0 are used instead of true and false. Using this definition, the sum of
binary operator results is a positive integer. Further, two passes are run for
each iteration as stated above. Condition 3 is used in the first pass, while
condition 4 is used in the second pass. The process is repeated until there
are no further pixels to be removed. Figure 3.16 shows an example skeleton
result of a segmented blood vessel using this algorithm.

Skeleton postprocessing

Large hepatic vessels running at an oblique angle to a CT slice may still be
projected onto more than one slice during a CT scan. This represents a major
difficulty when processing each 2D image separately. If no further processing
was performed, each of these vessels would be visualised as several vessels
running in parallel to the slice planes. Another problem arises when a vessel
running at an oblique angle to the CT slice branches into a vessel running
perpendicular to the slice as shown in figure 3.17 a). In this case, there is no
interconnection point that could interconnect these two segments.

Corrections of the vessel centre and interconnection points are therefore
required. First, these corrections consist of removing vessel centres based on
the thickness of similar vessel segments lying in corresponding positions in
adjacent CT slices. Next, potential interconnection points are added making
likely interconnections possible:

1. Follow the skeleton of each segment in each CT slice.

2. Remove the centres whose distance (see subsection 3.1.5) to the back-
ground is smaller than that of neighbouring centres in adjacent CT

37

(a) (b)

Figure 3.17: Vessel centre corrections. White pixels correspond to inter-
connection points, and opaque gray lines are possible interconnections. a)
Add potential interconnection points within the skeletons near endpoints or
mass centres if no such points exist. b) Interconnection points are added if
interconnections between two segments are made impossible.

slices.

3. Follow the remaining skeletons.

4. Add potential interconnection points within the skeletons near end-
points or mass centres if there exist no such points already. See figure
3.17 a).

5. If endpoints have been removed in step 2 such that potential graph
interconnections are made impossible, points are added to make the
interconnections possible. See figure 3.17 b).

An example result is presented in figure 3.18.

Endpoint centres

The positions where the vessels enter or leave a CT image is used to inter-
connect vessels between CT slices. We call these positions endpoint centres,
and define them as skeleton pixels that have only one neighbouring pixel.
See figure 3.19 for an example.

38

(a) (b) (c)

Figure 3.18: This figure shows the results after applying the centre corrections
on three adjacent CT images. A vessel branches from a), and continues into
b) and c).

(a) (b)

Figure 3.19: a) The skeleton from figure 3.16. b) Vessel endpoint centre
where the vessel enters or leaves the CT image.

3.1.5 Vessel sizes

The vessel sizes are measured using a Euclidean distance map of the seg-
mented vessels. To ensure that the correct distance, that is the distance

39

(a) (b)

Figure 3.20: a) An Euclidean distance map of a CT image. b) The distance
map is morphologically dilated and masked with the original segmented ves-
sels. This is done to ensure that the right distance, the one corresponding to
the size of the vessel, is picked.

corresponding to the size of the vessel, is selected, the distance map is mor-
phologically dilated and masked as shown in figure 3.20. Especially in the
algorithm described in subsection 3.1.4, when comparing vessel sizes in ad-
jacent CT slices, the positions used for comparison do seldom correspond to
a vessel centre in the adjacent CT slices. By dilating the distance map, the
correct vessel size is thus selected.

An additional positive effect by dilating the distance map, is that the
change in vessel sizes become more continuous in a given direction. This
corresponds well with the observed anatomy of hepatic vessels.

40

3.1.6 Vessel graph structure

By vessel graph, we refer to nodes and node interconnections that represent
the blood vessel tree found in the liver. In this brief section we will define
the data structures used to represent the vessel graph. Two main classes are
suggested: Nodes and interconnections. See figure 3.21 for examples. Each
node correspond to a vessel joint, and the interconnections describe how these
nodes are linked.

A node data structure contains an unique id to distinguish it, the node’s
position, and its size. On the other hand, the interconnection class holds
two ids corresponding to the interconnected nodes. In order to improve the
processing time of the graph algorithms, the distance between the associ-
ated nodes are stored, and interconnections in both directions between two
nodes are added. Two types of interconnections are used, namely permanent
and alterable interconnections. More details can be found in the following
sections.

3.1.7 Vessel graph initialisation

The search space for the most likely vessel graph is vast and can not be
explored in a exhaustive search. A good initialisation of the vessel graph is
therefore needed as a starting point for the following global search algorithm.

We split the vessel interconnections into two groups, namely known and
unknown interconnections. Vessels segments corresponding to vessels that
run in an oblique angle to a CT slice are derived directly from the vessel
skeletons, and can be regarded as correct. We consider these interconnections
permanent and they will not be changed during the global search. On the
other hand, vessel segments corresponding to vessels running perpendicular
to a CT slice should be interconnected with similar vessels in adjacent CT
slices. These interconnections are not known beforehand, and an algorithm
to make initial interconnections is required. Figure 3.21 shows an example
initialisation of both known and unknown vessel connections.

Permanent, known vessel interconnections

To derive the known vessel interconnections, the skeleton is subdivided into
segments. Each section represents one small part of a blood vessel. During
this stage, branch points and endpoints should be given special consideration
since a chain of segments will both start and end in one.

We have earlier looked at skeletons, e.g. in figure 3.16, and at vessel
endpoints in figure 3.19. In order to find the branching points, we find the

41

Figure 3.21:

(a) (b)

Figure 3.22: a) Thresholded vessel, with skeleton, endpoints, and branch
points shown in lighter gray. b) The result after subdividing the skeleton
into segments.

pixels in the skeleton that have three or more neighbouring pixels of value
1. This definition may result in more than one pixel per branching point. If
this is the case, the median pixel is used as the branching point.

Segments are constructed from endpoints to branching points, and from
branching points to other branching points. This process is repeated until all
the remaining skeletons are divided into sections. Each segment but the last
in a chain have the same length. Figure 3.22 shows the resulting sections of
a skeleton separated by light gray points.

The segments are created in six steps:

42

1. A segment is created with the start pixel selected at an endpoint or a
branching point.

2. The segment is expanded along the skeleton to a neighbouring pixel.

3. Stop if an endpoint or a branch is reached.

4. Goto step 2 if not a given length is exceeded.

5. Create a new segment with start pixel set at the current location of the
skeleton.

6. Goto step 2.

Euclidean distances are used, i.e. the length of two pixels lying horizon-
tally or vertically together is 1, and the distance of two pixels positioned
together diagonally is

√
2. At the end, each segment’s start and end points

are registered as nodes, and interconnections are added in between.

Alterable, unknown vessel interconnections

Vessel segments corresponding to vessels running perpendicular to a CT slice
need to be interconnected to other vessels in adjacent CT slices. These
interconnections are unknown, and should be derived based on anatomical
knowledge on hepatic vessels. In the initialisation though, we create likely
interconnections depending on interconnection lengths and the size of the
vessels that are to be interconnected. If two nodes in adjacent CT slices
are positioned closely together and are of similar size, an interconnection is
added between them to the initialisation graph. However, the initialisation
algorithm need further prerequisites:

1. All vessel segments should be interconnected to one or two separate
vessels in adjacent CT slices.

2. Closely positioned segments should be preferred as opposed to more
distant segments.

3. Points whose distance exceeds a given limit should not be intercon-
nected.

4. Segments having similar sizes should be preferred.

5. Vessel loops should be avoided.

43

6. If only one possible interconnection exist that satisfy the above prereq-
uisites around two nodes, this interconnection should be made perma-
nent.

If two segments are the only possible interconnections that satisfy the
above prerequisites, they should be permanently interconnected.

Occasionally, the third requirement leads to breaking the first, i.e. a segment
will not be interconnected to any other. It might in some cases be difficult
to find an appropriate interconnection, thus it would be better to leave this
up to the following global search.

The sixth requirement were added during testing of our algorithm. It
was apparent that some interconnections should not change during the global
search since they were obviously correct. Having our global search algorithm
trying to alter these interconnections would only result in a larger and more
complex search space. Therefore, by making these interconnections perma-
nent we drastically reduce the processing time, while the quality of our results
are preserved.

An algorithm that satisfy the above prerequisites has been derived as
follows:

1. Select the first CT slice and call it S1.

2. Name the next slice S2.

3. The interconnections derived in steps 4 and 5 are stored as temporary
interconnections.

4. For each segment in S1, find the closest segment in S2 and interconnect
them if the distance between the two is within a given length and their
sizes are similar.

5. For each segment in S2, find the closest segment in S1 and interconnect
them if the distance between the two is within a given length and their
sizes are similar.

6. The temporary interconnections are ordered by interconnection length.

7. The temporary interconnections are added one by one while the ves-
sel graph is checked for loops. If a vessel loop is detected, the last
interconnection is removed. After this, the process is continued.

8. If S2 does not equal the last CT slice: S1=S2, and goto step 2.

44

9. If two nodes have only the option to interconnect to each other, un-
der the condition that the distance should be within a predetermined
length, make the interconnection between them permanent.

Step 4 and 5 ensures that every segment is tested for interconnection to an-
other segment on the adjacent slices. Special care has to be taken not to
create loops in our vessel graph. The interconnections are therefore added to
a temporary storage and ordered by interconnection length before they are
added. The ordered interconnections are added one by one while the vessel
graph is checked for looping structures. By doing this, the most likely inter-
connections are added before less likely interconnections, which are removed
if a looping structure is found.

3.1.8 Genetic algorithms

Our final step in finding a probable vessel graph is to conduct a global search.
We want, as efficient as possible, to search through dissimilar graphs and test
their validity. The most likely graph will be chosen for visualisation at the
end.

Genetic algorithms are an interesting approach to global search (Gold-
berg, 1998; Banzhaf et al., 1998). The approach is based on Darwinian nat-
ural selection, popularly called “survival of the fittest”. Fit specimen are
selected for reproduction at the expense of less fit specimen through several
generations. In this way, the specimen become more and more adapted to a
given environment.

Brief introduction

The DNA of a particular organism is called its genome, and an organism’s
observable properties is named its phenotype. In genetic algorithms this dis-
tinction is important. Genomes are merged and changed through crossover
and mutation, and from these genomes phenotypes are constructed. Further-
more, the building blocks of the genomes are grouped into genes, which in
turn consists of a segment of bases. For every generation, fitness are com-
puted for all the individual phenotypes. Based on the fitness, phenotypes
are selected to populate the next generation. The phenotypes of a given
generation is called that generation’s population.

Crossover Crossover is the process of merging two genomes into offspring.
If the genome is a string of codes, then two genomes are usually merged by
first cutting each of the strings at a random position. Next, each substring

45

TACGAATTT↓CAAACC

crossovered with

CATGCTGTA↓AGTTGA

produces

TACGAATTTAGTTGA
and

CATGCTGTACAAACC

(a)

TACGAATTTCAAACC
mutates to

TACGCATTTCAATCC

(b)

Figure 3.23: Crossover and mutation. DNA is used as an example, and
the letters represent the DNA bases. a) Two genomes are merged through
crossover. ↓ is where the genomes are split. The last two strings are the re-
sulting genomes. b) Genomes are shown before and after a genetic mutation.
Only a few of the letters are changed.

from one genome will be joined with the fitting substring from the other such
that two new genomes are created. For an example crossover, see figure 3.23.

Mutation Mutation is basically random change in a genome. It ensures
that the gene pool changes, and thus that the fitness of the phenotypes can be
improved. The rate of mutation, that is the probability of change in a gene,
should be set low. If the probability of mutation is too high, the offspring will
be too genetically different from its parents and the advantages of crossover
is diminished. See figure 3.23 for an example mutation.

Definition of our genome

The DNA consists of four bases, A (adenosine), C (cytosine), G (guanosine),
and T (thymine) (Purves et al., 2001). When programming genetic algo-
rithms, we are not constricted to this “alphabet”. Instead, we define our
genome to be practically adaptable to the problem at hand. A gene can for
example be an integer, character, float, or even a complex data structure
consisting of multiple data types. The only restriction is that it must be
possible to define crossover and mutation with the chosen genome structure.

Our definition is best explained by looking at figure 3.24. Each gene
consists of a node and its interconnections to nodes having higher node ids.
The number of interconnections is not set, that is an infinite number of
interconnections are possible for each node.

46

Figure 3.24: A representation of the genome structure used in our application.
Each gene consists of a node and its connections to nodes having higher node
ids.

Crossover For our definition of the genome structure, we also have to de-
velop a reasonable crossover method. In our case, we simply need to define
possible split positions. One solution could be to separate the genome any-
where possible. Although, such a solution could result in a split gene and
thus lead to severe mutation in the crossover phase. As explained in the next
section, we want to control the mutation rate with a separate parameter.
Therefore, our solution is to define possible split locations between whole
genes in the genome.

Mutation Using our genome structure, we cannot simply change a value
as in the DNA shown in figure 3.23. Mutation in our application is instead
addition and removal of interconnections. For each gene, there is a small
probability that an interconnection is added, and an equal probability that
one is deleted. In this way, there are no major change in the phenotypes
from generation to generation, but rather a steady and controlled variation.
See figure 3.25 for an example mutation.

As in the initialisation of the graph, we have to be careful not to create
any loops in our vessel graph. Therefore, after adding a new interconnection,
the graph is checked for loops. If a looping structure is found, the new
interconnection is removed.

Adding interconnections The removal of interconnections between nodes
are self-explanatory, but the addition of interconnections has to be defined.
If a random node were selected for interconnection, we soon would have a
highly unlikely vessel graph. We choose therefore to produce a probability
distribution for interconnection addition.

The farther away two nodes are, the less likely it is that they should

47

Figure 3.25: An example mutation of our genome structure. A probability is
given for addition and/or removal of an interconnection

be interconnected. If distances are normalised between [0, 1], the average
distance between two interconnected nodes after initialisation is about 0.034.
We can use this mean to formalise a probability function based on the normal
distribution:

p(x) =
1

σ
√

2π
e

−x2

2σ2 (3.10)

where σ is set to 0.034, and x is the length of the suggested interconnec-
tion. Probability p(x) is calculated for every possible interconnection within
a predetermined distance, and using this probability an interconnection is se-
lected through a roulette wheel method. Figure 3.26 shows the distribution
in equation (3.10).

Fitness functions

The fitness represents the ability to adopt to a given environment, and the
degree of fitness of a given phenotype is measured by a fitness function. In our
application, the fitness function should favour likely vessel structures, while
penalising unlikely structures. The selected anatomical criteria of the vessel
structures are based on the work in Omholt-Jensen (2002), and extended

48

−0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

p(
x)

Figure 3.26: Probability distribution of equation (3.10).

further in this project. Five criteria are defined:

1. Distance - The distance between two interconnected nodes should be
small.

2. Curvature - The angle between two successive segments should be small.

3. Branching - A segment should not branch into more than two segments.

4. Dimension - The vessel size should be similar between interconnected
nodes.

5. Loops - Vessel loops should not exist.

Based on these criteria, we separate the fitness function of the vessel graph
into five fitness sub-functions, one for each of the given criteria:

F = αFdistance + βFcurvature + γFbranching + δFdimension + εFloop (3.11)

α, β, γ, δ, and ε are constants that can be used to weight the different fitness
functions. In the next subsections, we will describe these fitness functions in
more detail.

Distance function The distance function should award interconnections
that are made between adjacent nodes, and penalise interconnections of dis-
tant nodes. We chose a simple linear function to express this as shown in

49

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Distance

Fi
tn

es
s

Figure 3.27: Fitness function fdistance for interconnection lengths. Two inter-
connected nodes far away are less fit than those lying close by.

figure 3.27. The distance value that corresponds to zero fitness is set equal
to the max interconnection length used in the graph initialisation.

Omholt-Jensen (2002) suggests that the distance should be normalised
with respect to the maximum possible distance between two nodes. Al-
though, the distance function would then be affected by the liver size. We
propose instead to compute the distance function Fdistance as the average
fitness of all the calculated interconnection lengths:

Fdistance =
1

Nconn

Nconn
∑

i=1

fdistance(d(ci)) (3.12)

where fdistance is the fitness function in figure 3.27, function d calculates the
distance of connection c, and Nconn denotes the number of connections.

Curvature function According to Omholt-Jensen (2002), the angle be-
tween two successive interconnections usually stays between [0, π

2
], and is

likely to be as small as possible unless the interconnections are part of a
vessel branch. The angle θ is derived from the use of the dot product, and is
the smallest angle between two vectors:

θ = arccos(
v1 · v2

|v1||v2|
) (3.13)

where v1, and v2 are the two interconnection vectors. We define the fitness
function for curvature as shown in figure 3.28, where a quadratically decreas-
ing function is used:

50

0 0.5 1 1.5 2 2.5 3.14

−0.4

−0.2

0

0.2

0.4

0.6

Curvature

Fi
tn

es
s

Figure 3.28: Fitness function fcurvature for the curvature between connections.
Small curvature leads to high fitness.

fcurvature(θ) = 0.5 − θ2

π2
(3.14)

The average fitness of all curvatures is calculated in function Fcurvature:

Fcurvature =
1

Ncurv

Ncurv
∑

i=1

fcurvature(a(ci)) (3.15)

where Ncurv is the number of curvatures tested, and function a calculates
the curvature between interconnection ci and its successive interconnections
using equation (3.13).

Branching function Blood vessels sometimes branch into two sub-vessels.
However, due to the slice thickness of the CT scans it is possible that a vessel
branches more than once between two slices. We should thus allow branching
into several sub vessels, but at the cost of fitness. Since it is unlikely that
a vessel fork several times between slices, we give interconnections which
separate more than three times a fitness of 0. One or zero branches are likely
and are granted fitness 1, while three branches are penalised with 1

3
fitness.

The function fbranching for an individual node is displayed in figure 3.29.
The total branching function Fbranching should not be affected by the

number of vessel sections. Fbranching is therefore normalised with respect to
the number of interconnections:

Fbranching =
1

Nconn

Nconn
∑

i=1

fbranching(ci) (3.16)

51

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Branches

Fi
tn

es
s

Figure 3.29: Fitness function fbrancing for branching. More than two sub-
vessels lead to less fitness.

where Nconn is the number of interconnections, and ci is interconnection i.

Dimension function Hepatic vessels are either increasing or decreasing
in size in a given direction. However, the rate of change is often low. This
knowledge is used to formulate the next fitness function, namely dimension
fitness. The dimension fitness should ensure that interconnected nodes with
similar sizes are rewarded high fitness. As in the distance function, we chose
to use a linear function to express this as shown in figure 3.30. The difference
value that corresponds to zero fitness is set equal to the max size difference
used in the graph initialisation.

To calculate the total dimension fitness Fdimension we use the average of
all fdimension:

Fdimension =
1

Nconn

Ndim
∑

i=1

fdimension(ci) (3.17)

where, as above, Nconn is the number of interconnections, and ci is intercon-
nection i.

Loop function The last part of the fitness function F is the loop function.
Since vessels in the liver generally do not form vessel loops, such loops found
in the vessel graph should be penalised. Experimentation showed that the
best solution when finding a graph containing a loop was to simply give it a

52

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Dimension

Fi
tn

es
s

Figure 3.30: Fitness function fdimension for size difference of interconnected
nodes. Small size differences are rewarded high fitness.

low fitness:
Floop = −4Eloop (3.18)

where Eloop returns true if a loop exists, and false otherwise. It should be
noted that in Omholt-Jensen (2002) loops are avoided entirely by disallowing
creation of interconnections resulting in a loop. Similar methods are devel-
oped as described in previous sections, but looping can still occur. During a
crossover, interconnections from two different graphs are merged and there
are no mechanisms that ensure that the resulting graph contains no vessel
loops.

Selection of optimal vessel graph

After the fitness of all the individual phenotypes in a generation are calcu-
lated, a selection mechanism should select the most fit for reproduction. We
propose the use of Boltzmann selection (Sonka et al., 1999), which calculates
the probability of selecting a specific genome by:

p(Fi) = e
−fi
T (3.19)

where Fi is the fitness of a given genome i, and T is the temperature used in
simulated annealing (Sonka et al., 1999). Simulated annealing is a optimisa-
tion method that slowly lowers the energy of a search landscape.

In the first generations, T is set to a high value. We call this stage
“exploration”, meaning that the value of the fitness is not highly decisive.

53

35%

8%

25%

18%

15%

(a) Normal

27%

13%

23%

19%

18%

(b) Exploration

50%

2%

25%

13%

9%

(c) Exploitation

Figure 3.31: Pie charts showing p(Fi) from equation (3.19) of 5 separate
genomes in different colours. a) No temperature, that is T = 1. b) Temper-
ature T set high. c) Temperature T set low.

At this stage, many different graphs are selected for reproduction. During
evolution, the value of T is slowly reduced, and the fitness values become
more and more determining. The final stage is called “exploitation”, and
only the phenotypes with highest fitness are selected. See figure 3.31 for an
example.

We wish to constantly improve the fitness of our graphs. The best graph
is therefore copied directly to the next generation without any mutation or
crossover. A popular term for this is elitism (Goldberg, 1998).

3.2 3D vessel reconstruction

An apparent problem with the 2D vessel reconstruction described in the
previous section, is that important information is disregarded in the vessel
processing. When the vessels are emphasised by matched filtering for in-
stance, vessel information on adjacent slices are not considered. Likewise,
vessel centres are extracted from one CT slice at a time, and the algorithms
are not exploiting the CT data to the full extent.

In this section, we propose algorithms that retrieve hepatic vessels using
3D processing techniques that work on a CT volume, and not its individual
images one at a time. We base our 3D techniques on the methods used
in the previous section. Further changes have also been applied, especially
with regards to the search for the most likely vessel graph. An additional

54

weakness with the techniques described in the previous section, is that the
algorithms do not result in the same vessel graph when processing a CT scan
more than once. This is due to the global search, which attempts to find
the global optimum graph through random changes in the processed vessel
graphs. Instead, we present here a local search mechanism that give the same
result each time the algorithm is executed for a given CT scan.

3.2.1 Preprocessing

As in the previous section, we apply algorithms to emphasise the hepatic
vessels before segmentation. The major difference, however, is that the CT
images are not histogram equalised individually. This may alter the intensity
relationship between adjacent slices. We instead perform a histogram equal-
isation on the whole CT scan in order to increase the visibility of the hepatic
vessels.

Histogram equalisation

As mentioned above, we perform histogram equalisation on the whole CT
scan rather than on the individual CT images. The hepatic vessels are thus
easier to distinguish for the human eye, while the intensity relationship be-
tween the CT slices is preserved.

Matched filtering

Matched filtering is applied in order to emphasise the hepatic vessels. Instead
of matching blood vessels in 2D, we implement 3D filters that matches blood
vessels in all directions through a 3D convolution. The basic 3D blood vessel
template is based on the Gaussian distribution as follows:

template(x, y, z) =
1

σ
√

2π
e

−((x−µx)+(y−µy))2

2σ2 (3.20)

where µx and µy are the centres of the template in the xy-plane, and σ
corresponds to the variance where σ = σx = σy. Furthermore, the template
is the same for all z. Figure 3.32 show an example template filter.

The 3D template is scaled and rotated in all directions in order to match
the hepatic vessels with different sizes and headings. The templates are con-
volved with the CT scan, and the result from each convolution is summarised
at the end.

Since the CT scans may have different voxel size ratios, it is important
to scale the templates according to this ratio. This scaling is executed after
the rotation and scaling previously described.

55

Figure 3.32: Three xy-planes of an example 3D template that is used to
match hepatic vessels in a CT scan. The template is scaled and rotated in
order to match the different vessels.

Multiple 3D convolutions require a great deal of computational resources,
and the above calculations may take hours to execute. A simple and in-
expensive solution is to implement these 3D convolutions on the graphics
processing units (GPUs) on a modern hardware accelerated graphics card
(GPGPU-group, 2005). Expected run-time improvements is discussed in Ei-
dheim et al. (2005).

Anisotropic diffusion

Anisotropic diffusion was briefly introduced in subsection 2.1.5. It represents
a method that is very similar to heat conduction, but instead of diffusing all
image intensities, strong edges are kept.

Anisotropic diffusion was used in Soler et al. (2001) in a preprocessing
stage before segmenting various tissues in the liver. The article presents
techniques that are processed on each image individually. Extending this
preprocessing method to 3D makes it more powerful due to the increase in
data that can be exploited.

We implemented anisotropic diffusion for use prior to a second segmenta-
tion algorithm, which will be described in more detail in section 3.2.2. Before
applying diffusion, however, we decided to execute a morphological opening
on the CT data. This was done in order to make the pixel intensity of the
hepatic vessels and the remaining liver tissue more distinct.

56

The anisotropic diffusion equation is as follows:

∂I

∂t
= ∇(c∇I) (3.21)

where the diffusion coefficient c varies in space but not time. We define ∇I
with finite differences as follows:

∂EI = Ix+1,y,z − Ix,y,z (3.22)

∂W I = Ix,y,z − Ix−1,y,z (3.23)

∂NI = Ix,y+1,z − Ix,y,z (3.24)

∂SI = Ix,y,z − Ix,y−1,z (3.25)

∂UI = Ix,y,z+1 − Ix,y,z (3.26)

∂DI = Ix,y,z − Ix,y,z−1 (3.27)

Further, ∇2 is defined as:

∂2I =
1

6
(∂EI − ∂W I + ∂NI − ∂SI + ∂UI − ∂DI) (3.28)

We next define c to be small near edges of I, and large in homogeneous
regions:

c = 1 − (∂EIorig + ∂W Iorig + ∂NIorig + ∂SIorig + ∂UIorig + ∂DIorig) (3.29)

where Iorig is the original volume to be anisotropically diffused, and c is set
to 0 if c < 0. Figure 3.33 shows an example result.

3.2.2 Segmentation

From the preprocessing result computed in the previous section, we now
apply segmentation algorithms to locate the hepatic vessels. First, we apply
the thresholding algorithm used in 2D vessel reconstruction on the matched
filtered result.

A second segmentation algorithm is applied to improve the segmentation
result. This algorithm is based on intensity values and local variance of the
CT scan. The automatic thresholding algorithm is also applied here at the
end.

Automatic thresholding using entropy of the histogram

We have extended the thresholding algorithm outlined in section 3.1.2 to
work on volumes instead of images. First, a volume histogram has to be

57

(a) (b) (c)

Figure 3.33: Example 3D anisotropic diffusion of a CT volume. a) An original
CT slice. b) Morphological opening result of a). c) Resulting anisotropic
diffusion of b). The vessels can now be more easily distinguished from the
liver tissue.

found, but the calculation of a volume histogram is similar to that of an
image histogram. The only difference is that pixels are counted in three
dimensions instead of two. When the volume histogram has been computed,
the entropy is measured and local minima are found as described in section
3.1.2.

The next step is to select one of these thresholds to apply to the matched
filtered CT scan. In the 2D reconstruction algorithm, we used the knowledge
based fuzzy functions presented in Glombitza et al. (1999). This technique
has been implemented for 3D volumes as well. Glombitza et al. (1999) pro-
posed to compare the area and bounding box of the thresholded hepatic
vessels and the liver. The simple 3D extension consists of comparing the vol-
umes instead of areas, and use a 3D bounding box. All the different threshold
results are compared to the liver, and the most appropriate is selected.

Segmentation based on anisotropic diffusion and local variance

The projections of hepatic vessels in CT scans are usually of bright pixel
intensity with low local variance. We have used this to define a second
segmentation algorithm to locate vessel regions that the matched filtering
fail to emphasise. These are typically regions of larger vessels that lie close
to the boundary of the liver. This was also an issue in the 2D reconstruction
algorithm, but another solution is presented here.

We base our segmentation algorithm on the anisotropic diffusion proce-
dure outlined in subsection 3.2.1. The result of this method is first thresh-

58

(a) (b) (c)

Figure 3.34: An example result using the second segmentation algorithm. a)
Original CT slice. b) Thresholded diffusion result. c) Segmentation result
consisting of pixels from b) having low local intensity variance.

olded using the automatic thresholding algorithm from subsection 3.2.2. Next,
for each segmented pixel in the previous step, the local variance is calculated.
If the local variance surrounding a voxel is below a predetermined value, the
voxel is set true. The result is dilated slightly to compensate for the fact that
boundary pixels have high local variance. An example is given in figure 3.34.

The segmentation results from both the segmentation algorithms are
added together, and holes are filled through morphological reconstruction
described in 3.1.2. Finally, a morphological closing with a small spherical
structure element was applied to the segmentation results in order to attach
separated vessels and to close small concave regions. These postprocessing
methods were applied to decrease the possibility of vessel loops, and to make
the reconstruction algorithm less dependant on the heavily parameter con-
trolled graph search.

3.2.3 Vessel graph extraction

The next step is to locate the vessel centres and to derive the vessel widths.
We use this information first to initialise a vessel graph, and thereafter to
improve the vessel graph in a local search for the most likely vessel graph.

Vessel centres

In section 3.1, we used 2D skeletons or mass centre points to locate vessel
centres depending on classifications of the 2D vessel segments. Instead, we

59

(a) (b)

Figure 3.35: The algorithm presented in Palagyi et al. (2001) fails to preserve
the 6-connected endpoints shown in this figure. a) The original object. b)
The skeleton of the object.

will apply a 3D skeleton algorithm on the segmented vessels computed in the
previous section.

The derivation of 3D skeletons have been the subject of many studies in
the field of image analysis. A short overview was given in section 2.3.4. Many
articles propose methods to find and delete simple points, that is pixels in a
volume that can be removed without affecting the topology of the volume.
An additional challenge is to select an appropriate order in which simple
points are to be removed.

A mathematically sound classification of simple points was given in Ma-
landain and Bertrand (1992). This simple point classifier has been used in
many other articles such as in Palagyi et al. (2001) to create object skeletons
in medical applications. During testing of this algorithm, it was discovered
that it had a fundamental weakness under certain conditions. Figure 3.35
shows an example flaw where diagonal 6-connected pixels are mistakenly re-
moved even though they are endpoints in a 6-connected skeleton. This is due
to the endpoint check that is defined, where a pixel is marked as an endpoint
only if the number of 26-connected neighbours are equal to 1. The number
of 26-connected neighbours in figure 3.35 is 2, and the pixels are therefore
removed one by one. If we modify the endpoint classification algorithm to
count the number of 6-connected neighbours instead of the 26-connected
neighbours, new endpoints would be introduced depending on the order in
which pixels are removed. This is also undesirable, since we want the skeleton
computation to be independent of an object’s rotation.

A new 3D skeleton algorithm was therefore derived based on the simple

60

point classifier presented in Malandain and Bertrand (1992). Here, a pixel p
is defined as a simple point if the following two criteria are fulfilled:

1. The number of 26-connected foreground pixels in the 26-neighbourhood
of p is 1.

2. The number of 6-connected background pixels in the 18-neighbourhood
of p is 1.

The 26-neighbourhood of a pixel p corresponds to all the pixels that are 26-
connected to p, but not including pixel p. The 6-neighbourhood is defined in
the same manner.

6-connectivity is ensured for all objects in the data volume using this
simple point classifier to remove pixels. A complete proof is given in Bertrand
and Malandain (1994).

After the pixels are classified, a scheme to delete the simple pixels is
needed. We have derived the following procedure:

1. Keep endpoints, that is true pixels that have only one 6-connected true
neighbour.

2. For all other true pixels, store simple points in an array.

3. Remove the pixels in the array one by one, but keep pixels that are no
longer simple points.

4. Repeat step 3 until no further change.

5. If a pixel has been deleted in step 3, goto step 1.

The first solution that comes to mind when using the simple point classifier,
is to execute step 1 to 3 until a skeleton is produced. This solution might,
however, remove an object altogether if all the pixels constituting the object
are marked simple. Step 3 is repeated to remove unnecessary endpoints that
might result after one or few executions of this step.

This algorithm will result in a minimal representation of objects in a 3D
volume. The resulting skeleton will lie within the medial axis since object
boundaries are removed iteratively. At the same time, due to the simple
point definition, the topology of the objects are preserved. Figure 3.36 shows
an example execution of this algorithm.

Smaller skeleton branches are unimportant in the analysis of the hepatic
vessels, and are therefore pruned. At the end, the skeletons are subdivided
into nodes as described in section 3.1.7.

61

(a) (b) (c)

Figure 3.36: Successive thinning of a 2D square using our new algorithm. 3D
thinning is similarly computed. a) a 2D square. b) Resulting thinning after
one iteration. c) Resulting skeleton after two iterations.

Vessel sizes

As in subsection 3.1.5, the vessel sizes are computed from a dilated distance
transform. 3D Euclidean distance is used, and the distances are scaled with
respect to the voxel size ratio of the CT scan.

3.2.4 Vessel graph initialisation

We now have the node positions and their sizes that we need to initialise the
vessel graph. Additionally, we have most of the interconnections required
through the 3D skeleton algorithm. Some interconnections may be lacking,
however, due to false vessel segmentation. We solve this by interconnecting
adjacent nodes that are similar in size.

The initialisation algorithm is as follows. For each interconnected vessel
structure, the most fitting interconnection to another vessel structure is cho-
sen. This process is repeated until there are no more fitting interconnections.
In this way, looping structures are avoided and more likely interconnections
are added before less likely ones.

The initialisation performed in the 3D vessel reconstruction is less com-
plex than in the 2D vessel reconstruction, and more interconnections are
derived directly from the vessel skeletons. The 3D technique is thus less
vulnerable to error, and it should in theory produce better results.

Smoothing the vessel graph

An additional step is performed in the initialisation of the vessel graph,
namely averaging the node positions with their interconnected neighbours.
The step size of the original nodes may be large in the z-direction due to

62

the CT slice thickness. By applying this average filter, the locations of the
hepatic vessels are thus more naturally positioned.

3.2.5 Local search

A local search is finally conducted to improve the initialised vessel graph.
This method is chosen before a global search for two reasons. First, an
exhaustive search for a global optimum can not be executed in reasonable
time, and thus the solution graphs would differ in separate executions of the
global search. Second, a local search results generally in a better solution in
less time than a global search.

In the following subsections we will describe the local search methods we
chose to apply to the vessel graph. The vessel graph corrections are applied
in the order they are listed.

Size difference correction

If two interconnected nodes differ significantly in size, the interconnection
between them is removed. This will further remove spurs from from the vessel
skeletons, as well as separate vessel structures that should not be joined.

Angle correction

Starting at the trunk of each vessel structure, the interconnections are fol-
lowed recursively. Each interconnection that have a larger angle than π

2
to

the previous interconnection is removed.

Multiple branch correction

If a vessel branches into more than two sub-vessels after the above correc-
tions, we apply no further change to the vessel structure. The size difference
correction and the angle correction should remove the most unlikely vessel
structures. Additionally, branching into more than two sub-vessels may occur
in the CT data, for instance if a vessel subdivides more than once between
two CT slices.

Vessel loop corrections

Postprocessing algorithms were applied to the segmentation results in order
to remove a number of possible looping structures. However, not all vessel
loops are guaranteed to be removed using these methods alone. Testing
showed that the skeleton might contain smaller vessel loops even after the

63

postprocessing algorithms. These loops are removed by simply deleting one
of the looping arcs that consists of pixels with two 6-connected neighbours
(pixels not corresponding to skeleton branches).

The above solution is very simple and good results are not guaranteed.
A better loop correction procedure needs to be developed if this technique is
to be used in clinical applications.

3.3 Visualisation

The finished graph needs to be visualised for inspection and analysis. We
have all the necessary data, that is locations and sizes of the nodes and node
interconnections, to create a realistic visualisation of the hepatic vessels. A
new visualisation algorithm is presented here to create a natural looking
visualisation of a vessel graph. This work is also published in Skjermo and
Eidheim (2005).

In order to take advantage of modern graphics hardware, we need to
extract a polygon mesh model from the graph. A number of techniques
exist to create polygon mesh models from voxel data, such as contour track-
ing, opaque cubes, marching cubes, dividing cubes, and marching tetrahedra
(Watt, 1999; SIGGRAPH-group, 2005; Lorensen and Cline, 1987). In our
case, however, we need to create the mesh model from a vessel graph, and
not voxel data.

The most related work to computing mesh models of graphs is mesh
generation of trees. The major difficulty here is to create natural looking
branches. Several methods have been proposed, for instance by paramet-
ric surfaces in Bloomenthal (1985), key-point interpolation in Oppenheimer
(1986), “branching ramiforms” in Bloomenthal and Wyvill (1990), and “re-
finement by intervals” in Lluch et al. (2001).

Our algorithm is based on the work of Felkel et al. (2002a) and Felkel
et al. (2002b). Basically, it consists of creating connected cubes, which are
subdivided through Catmull-Clark subdivision (Catmull and Clark, 1978).
The result is a smooth, detailed vessel visualisation with natural looking
branches. The algorithm will be described in more detail in the following
subsections.

64

3.3.1 Vessel root

The root node, which correspond to the largest node having a single intercon-
nection, is first found for each of the separate vessel trees1. From this node,
the mesh is created iteratively for each node in the tree processed. The first
part of the mesh is created at the location of the root node; a square polygon
that is scaled depending on the size of the root node. The square polygon is
rotated such that its normal vector points toward the next node.

The mesh is continued depending on whether the next node represents
a simple vessel continuation or a vessel branch. These computations are
described in the next two sections.

3.3.2 Simple continuation

If the next node has only one further interconnection, we call this a simple
continuation of the vessel. A new scaled square polygon is then added at the
position of this new node, and it is rotated so that its normal vector points
in the direction ds

1:

ds
1 = nodeposition(n − 1) − nodeposition(n + 1) (3.30)

where node(n) corresponds to the current node that involves the simple con-
tinuation.

Between the last and the newly made square polygons, new quadrilaterals
are added such that a hexahedron is formed as shown in figure 3.37

3.3.3 Branch

A vessel branch exists where a node has several further interconnections to
other nodes. We call these nodes child nodes and denote them by node(n+1).

In order to create a natural looking branch, we use one or more hexahe-
drons to connect the sub-vessel hexahedrons together in the branch. First of
all, a new square polygon, named square 1, is created at position pb

1:

pb
1 = nodeposition(n) − branchSize(nodesize(n))

(nodeposition(n) − nodeposition(n − 1)) (3.31)

where branchSize is a function depending on the size of node(n), and is used
to control the size of the branching structure. The position is shifted slightly

1The vessel graph generally consists of several vessel trees, that is a collection of nodes
that are directly or indirectly interconnected.

65

(a)

Figure 3.37: This figure illustrates how the mesh is generated if each node has
only one further interconnection. Image courtesy of Skjermo and Eidheim
(2005)

towards the last node position to leave more space for the branch. The square
is rotated such that its normal vector points in the direction db

1:

db
1 = nodeposition(n) − nodeposition(n − 1) (3.32)

Next, a node interconnection is selected to form a branch structure where
additional sub-vessels can be added. The selection of the next node is derived
from the Da Vinci rule presented in Richter (1970), and the results presented
in Murray (1927). The Da Vinci rule states that the cross section area of
a segment is equal to the combined cross section areas of its child segments
after a branch. Richter (1970) derived further that the child segment with
the largest cross section area has the smallest angle to the parent segment.
We base our next step in the algorithm on this, and order the child nodes by
their sizes. The node with the largest size is selected to form the structure
of the branch. A new square is thus added at the following position pb

2:

pb
2 = nodeposition(n) +

branchSize(nodesize(n))

(nodeposition(sortedNodes(n + 1), 1) − nodeposition(n)) (3.33)

where sortedNodes(n + 1, 1) returns the child node with largest size. The
normal vector of this square should point in the direction db

2:

db
2 = |(nodeposition(sortedNodes(n + 1, 1)) − nodeposition(n))| + |db

1| (3.34)

66

where the vector norm of db
1 is denoted |db

1|. This square is rotated only
slightly in the direction of the child node. As in the simple continuation
mesh, new quadrilaterals are added between this square and the previous one
constituting a hexahedron. After this, a new square is created at position db

3:

db
3 = nodeposition(sortedNodes(n + 1, 1)) (3.35)

The normal vector of this square should point in direction db
3:

db
3 = nodeposition(sortedNodes(n + 1, 1) − nodeposition(n) (3.36)

Quadrilaterals are added between square 2 and 3, and an additional hexahe-
dron is formed.

The second largest child node is considered next. A new square is created
at position pb

4:

pb
4 = averageQuadPosition + branchSize(nodesize(n)) (3.37)

where averageQuadPosition is derived from the quadrilaterals added be-
tween square 2 and 3; the average position of the quadrilateral that is closest
to the second largest child node. The new square is rotated such that its
normal vector points in the direction db

4:

db
4 = |pb

4 − averageQuadPosition| +
|nodeposition(sortedNodes(n + 1, 2) − nodeposition(n)| (3.38)

A hexahedron is created between the previous hexahedron and quad 4. Fin-
ishing the branch, an additional quad is added at the position of the second
largest child node, having normal vector pointing to db

5:

db
5 = nodeposition(sortedNodes(n + 1, 2)) − nodeposition(n) (3.39)

A hexahedron is formed between quad 4 and 5 at the end.
Hepatic vessels seldom branch into more than two sub-vessels, but our

algorithm should still be able to handle such branches. If this is the case, these
branches will be added as previously described. If the branching structure
needs to be extended, this is done iteratively as shown in figure 3.38.

3.3.4 Subdivision

The polygon mesh derived in the previous section is smoothed by subdivi-
sion to create natural looking hepatic vessels. The Catmull-Clark subdivision

67

(a) (b) (c)

Figure 3.38: Branches are created by extra hexahedrons to connect the dif-
ferent sub-vessels. a) The largest sub-vessel is added first. b) The second
largest sub-vessel is added. c) A third sub-vessel is added. Images courtesy
of Skjermo and Eidheim (2005).

(a) (b) (c)

Figure 3.39: This figure shows the variables and the resulting vertices of
one Catmull-Clark subdivision. a) The polygons to be subdivided. c) New
vertices, face points. d) New vertices, edge points. Images courtesy of Jo
Skjermo.

method (Catmull and Clark, 1978) was chosen, and an outline of this tech-
nique is given here.

In polygon subdivision, a finer polygon mesh is created and the vertices
are filtered such that the second derivative of each vertex is small. The
following steps are performed in Catmull-Clark subdivision (see figure 3.39):

1. New vertices, face points, are introduced at the centre of each face.

68

2. New vertices, edge points, are added at the centre of each edge.

3. New edges are added to connect the new edge points to adjacent face
points.

The old vertices are manipulated afterwards as follows:

v =
Q

n
+

2R

n
+

v(n − 3)

n
(3.40)

where Q corresponds to the average of the new face points surrounding the
vertex v, R is the average of the new edge points that is connected to v,
and n is the number of edges that share v. Figure 3.40 shows an example
subdivisions of a tree produced by the algorithm.

69

(a) (b)

(c) (d)

Figure 3.40: Example subdivision of a tree. a) The polygon mesh produced
by the algorithm described in 3.3. b) Shaded mesh. c) The result after one
subdivision. d) The result after two subdivisions. Images courtesy of Skjermo
and Eidheim (2005).

70

Chapter 4

Results and discussion

In this chapter we will present the results of the derived algorithms. The
results from the 2D vessel reconstruction will be given first, and thereafter
the results from the 3D vessel reconstruction. For each method, an example
run of the algorithm will be given, including the results after each image
analysis task.

4.1 2D vessel reconstruction

The processing algorithms will be demonstrated on four adjacent CT im-
ages shown in figure 4.1. At the end, a visualisation of the reconstructed
vessels will be presented. We will also show the effects of the global search
parameters, and present a likely vessel graph using a tuned set of parameters.

4.1.1 Preprocessing

First, we applied histogram equalisation as described in the previous chapter.
The results are shown in figure 4.2.

4.1.2 Segmentation of the liver

Segmentation of the liver was performed prior to matched filtering to reduce
edge effects near the boundary of the liver. Additionally, we needed a seg-
mented liver in the following processing stages in order to extract the vessels
properly.

There currently exists no satisfactory automatic solution to segment the
liver, and this task is beyond the scope of this thesis. To segment the liver,

71

Figure 4.1: We follow the processing of these four CT images.

we instead used a semi-automatic segmentation method developed by Heuch
(2003). An active contour model was used to segment the liver slice by slice.
The contour needed to be guided by the user from time to time, but the
contour model did ease the segmentation task. Regions outside of the seg-
mented liver was set equal to 1 in order to avoid edge effects in the following
matched filtering. Segmentation results from this application are presented
in figure 4.3

72

Figure 4.2: Histogram equalised images using eq. (3.1).

4.1.3 Matched filtering

Matched filtering is performed next. The choice of templates are crucial for
the method to give good results. A Gaussian curve was used to produce
the selection of Gaussian hill templates shown in figure 4.4. In our tests
we rotated the template 6 degrees after each convolution, and the template
was scaled 7 times. The results from filtering with each rotated and scaled
template were summed.

Few additional details would arise by adding more templates to the algo-
rithm, and by doing so the processing time would increase further. Using the
templates described above, it took about 40 seconds to filter one CT image.

73

Figure 4.3: Masked liver results before matched filtering. The segmentation
was done semi-automatically using the application designed in Heuch (2003).

Figure 4.5 shows the resulting matched filtered CT images.

4.1.4 Segmentation

Segmentation of the emphasised liver vessels is done by our slightly mod-
ified entropy thresholding algorithm combined with a second segmentation
algorithm based on local mean and variance. After applying the knowledge
based selection of the thresholds from Glombitza et al. (1999), the method

74

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 4.4: a) Gaussian curve used to design the filters in b). b) A selection
of the templates used in our matched filter procedure. 203 templates were
used, created by rotating and scaling a Gaussian hill template.

executes fully automatically. From the segmented images in figure 4.5, the
algorithms produce the segmentation results shown in figure 4.6.

Further, results from filling, removal of isolated pixels, and rounding of
square corners through morphological operators, can be seen in figure 4.7.

4.1.5 Classification

The next phase is the classification of the segmented vessels. There are two
possible classifications, either the segment corresponds to a vessel running
perpendicular to the CT slice, or it is a vessel running in an oblique angle
to the slice. We call the former classification 1, and the latter 2. Figure 4.8
shows the resulting classification, where blue vessels are classified as 1 and
red vessels have classification 2.

In our tests we received acceptable results using the following parameters:

1. If the rate between the minor and major axes of a segment is above 0.6,
and the rate between the convex hull of the segment and the segment’s
area is higher than 0.85, classify the segment as 1.

2. Else, classify as 2.

Extensive testing on multiple CT slices were done before we found suitable
values. Of course, the work was done manually and it is likely that the
parameters can be better adjusted.

75

Figure 4.5: Results of using matched filtering on the images in figure 4.2.

4.1.6 Vessel centre extraction

The vessel centres are used to derive nodes and node positions for the ves-
sel graph search. The centres are computed differently depending on the
classification of the segments. As described in chapter 3, we use the mass
centres for the segments classified as vessels running perpendicular to the CT
slices, and the segments’ skeletons for the remaining segments. Corrections
are made to the centre points, and nodes are eventually created at intervals
within the centres. Figure 4.9 shows the resulting node locations where they
are represented by bright white pixels.

76

Figure 4.6: The resulting segmentation of the two segmentation algorithms
added together. Segmentation based on local mean and variance was used
to improve the segmentation of large hepatic vessels close to the boundary
of the liver.

4.1.7 Vessel graph initialisation

The vessel graph is initialised based on the size of adjacent nodes between
slices. The most probable interconnections are created first, and if a vessel
loop is found, the last interconnection is removed before the remaining in-
terconnections are added. Figure 4.10 shows a part of the initialised vessel
graph visualised by the algorithm described in section 3.3. All vessels but

77

Figure 4.7: Blood vessels after being improved by morphological operators.

the portal vein were removed to increase the visibility of the result.

The application we have developed to visualise and verify our results is
shown in figure 4.11. The outline of the liver is showned as well as the CT
slices to compare the reconstructed vessels to the original data volume.

4.1.8 Global search

After the vessel graph initialisation, we applied algorithms to improve the
graph through a global search mechanism. In the first executions, we used

78

Figure 4.8: Vessel classification. Blue segments are vessels that runs perpen-
dicular to the CT slice, while red segments corresponds to vessels running in
an oblique angle to the slice.

three fitness functions only, namely the distance, dimension, and loop func-
tions. The reason for this was that the initialisation was based on the same
parameters that were used in these three functions. The resulting graph after
applying the global search was equal to the initialisation graph.

79

Figure 4.9: The results of the vessel centre calculations. Bright white pixels
indicate node locations that will be used to create the vessel graph.

4.1.9 Result analysis

The segmentation algorithms result in a good approximation of the hepatic
vessels within the liver. Both small and large vessels are found, and they have
a continuous, circular shape. The method is also scalable as the CT imaging
equipment becomes more advanced and produces CT images in higher res-
olutions. To segment larger vessels more templates are simply added in the
matched filtering process. The thresholding algorithm remain the same.

The results from the global search using the distance, dimension, and loop

80

Figure 4.10: This figure shows a visualisation of the portal vein from the
initialised vessel graph.

fitness functions are identical to the initialisation of the vessel graph. This
proves that our initialisation algorithm is sound with respect to these vessel

81

Figure 4.11: The application we have developed for visualisation and veri-
fication of the reconstructed vessels is shown here. The outline of the liver
and the CT slices are visualised together with the vessels.

criteria.

Since our initial graphs did not contain any likely branches resulting in
more than two child vessels, adding the branching fitness did not have any
effect in the global search execution. On the other hand, when adding the
last fitness function, curvature fitness, the initial graph changed. The results
were not neccessary better, however, since weighting the different fitness func-
tions proved difficult. Our conclusion was that the initial graphs were good
approximations of the hepatic vessels, and that applying a global search to
the algorithm only complicated the method more without necessarily giving
a better result.

This method is dependant on numerous parameters. Extensive testing
and adjustment of the parameters were done in order to achieve the results
we have given in this section. Based on this observation, we must conclude
that the method lacks the robustness and adaptability needed in clinical use.

82

4.2 3D vessel reconstruction

In this section we will present the results from the 3D vessel reconstruction
methods. As in the previous section, the four CT images in figure 4.1 will be
used as examples throughout the processing.

4.2.1 Preprocessing

The CT scan was first histogram equalised using our 3D equalisation al-
gorithm. Second, matched filtering was applied in order to emphasise the
hepatic vessels. The result from the matched filtering was next used in the
first segmentation algorithm as described in section 3.2.2. Figure 4.12 shows
the matched filtering result. 1800 templates were used in the filtering pro-
cess. Due to the large number of templates, the algorithm took several hours
to execute.

A second segmentation algorithm was applied to better segment large ves-
sels positioned close to the boundary of the liver. Prior to this second algo-
rithm, the CT scan was morphologically opened and filtered using anisotropic
diffusion. The resulting diffused images after 10 iterations can be seen in fig-
ure 4.13.

4.2.2 Segmentation

Automatic segmentation was executed by the entropy thresholding method
and the knowledge based threshold selection described in subsection 3.2.2.
This segmentation algorithm was applied on both preprocessing results.

After the anisotropic diffusion result had been thresholded, each seg-
mented pixel was kept if the local variance was below 0.01. The final seg-
mentation was added with the thresholded matched filtering result as shown
in figure 4.14.

4.2.3 Vessel centre extraction

Vessel centre points were extracted through our new 3D skeleton algorithm
presented in section 3.2.3. Next, smaller branches were pruned since they are
not interesting in the analysis of the hepatic vessels. Skeleton results before
and after pruning can be seen in figure 4.15. Branches smaller than 10 pixels
were pruned.

83

Figure 4.12: The resulting 3D matched filtering, where the slices shown in
figure 4.1 are presented.

4.2.4 Vessel sizes

The vessel sizes are extracted from a distance transform as in the 2D vessel
reconstruction. A dilated 3D distance transform is used that is scaled de-
pending on the voxel ratio of the CT scan. Figure 4.16 shows example results
at the slice positions previously used.

4.2.5 Vessel graph initialisation

As described in section 3.2.4, interconnections are mostly derived from the
vessel skeletons. The vessel graph initialisation in this application consists

84

Figure 4.13: The results of the 3D anisotropic diffusion executed 10 iterations.
The slices used in figure 4.1 are also presented here.

of interconnecting vessel structures that are likely to be parts of a larger
structure. This algorithm is applied iteratively until no more vessel structures
are likely to be joined. Figure 4.17 shows the initialisation of the previously
presented dataset. Interconnections from the skeleton alone is shown first,
and the derived additional interconnections are shown for comparison.

4.2.6 Local search

The local search method process each interconnection from the initial graph,
and removes unlikely interconnections based on node size and the angle be-
tween the interconnections. The results from the local search can be seen in

85

Figure 4.14: The final segmentation after adding both segmentation results
together.

figure 4.18, and it can be seen that some of the interconnections have been
removed. The portal vein from the same result is shown from a different
angle in figure 4.21.

Results from two other datasets can be seen in figure ?? and ??.

4.2.7 Result analysis

The number of templates used in the matched filtering procedure is large and
the results can take hours to compute. The runtime of the procedure may be
reduced, however, by implementing the filtering on the GPU as previously
mentioned.

86

The skeleton produced by the new algorithm results in a sound minimal
representation of the segmented vessels. Almost all interconnections were
derived from this skeleton. This gives a more solid initialisation of the vessel
graph than that of the 2D vessel reconstruction method.

After applying the vessel graph corrections, a likely vessel reconstruction
is made. The number of interconnected nodes are larger than in the results
from the previous method, which means that more of the vessel structure is
reconstructed. Moreover, the results seem more likely when compared to the
CT slices by hand.

87

Figure 4.15: The vessel centre points were extracted from a 3D skeleton. a)
The resulting 3D skeleton. b) The result after pruning smaller branches from
b).

88

Figure 4.16: A dilated 3D distance transform were computed to find the
vessel sizes.

89

Figure 4.17: Initialisation of the vessel graph resulting from 3D processing
of the CT data. a) The vessel interconnections derived directly from the 3D
skeleton algorithm. b) The resulting initialisation where interconnections are
added between nearby nodes that are similar in size.

90

Figure 4.18: Resulting vessel graph after applying a local search to remove
unlikely interconnections. a) Initial vessel graph. b) Final vessel graph after
applying local search.

Figure 4.19: The portal vein from the results also shown in figure 4.18 is
shown here from a different angle.

91

Figure 4.20: Resulting reconstruction of the portal vein from CT scan 2.

92

Figure 4.21: Resulting reconstruction of a part of the hepatic vein from CT
scan 3.

93

94

Chapter 5

Conclusion and future work

The main motivation behind this thesis was to ease the planning phase prior
to a liver surgery, and to improve the current presentations of the hepatic
vessels from CT scans. In more detail, an interactive representation of the
hepatic vessels within the liver was to be developed. Through image pro-
cessing algorithms the vessels should be emphasised, segmented, and a likely
vessel graph should be derived. A polygon mesh should be constructed from
this graph and finally visualised for inspection.

5.1 Conclusion

We have developed two distinct methods to create a realistic vessel graph
from a CT scan. The first method works on each CT slice individually
before the graph is built. Additional algorithms have been implemented
compared with the work done in Omholt-Jensen (2002). Most important
are segmentation based on local variance to better segment larger vessels
near the boundary of the liver, classification of the segments combined with
shape skeletons to better extract the vessel centre points, and corrections to
the derived centre points based on information in adjacent CT slices. The
initialisation of the graph and the cost functions used in the global search
also differs from Omholt-Jensen (2002). Unfortunately, this method rely on
numerous parameters, which makes the method highly vulnerable to bad
parameter choices. Because of this, the method lacks the robustness and
adaptability needed in clinical use.

The second method was derived to reduce this dependability on parame-
ters, and additionally take advantage of the information between neighbour-
ing CT slices throughout the processing. The algorithms were extended to
3D and applied to the whole CT scan at once. In addition to the threshold-

95

ing of the 3D matched filtered result, 3D anisotropic diffusion was applied
and thresholded using the same thresholding algorithm. The two segmen-
tation results were added together to improve the overall segmentation. A
new 3D skeleton algorithm was derived to extract the vessel centres based on
a simple point definition previously derived. The algorithm produces more
usable skeletons for our application than other skeleton algorithms studied.
Moreover, a local search was implemented that removed some of the unlikely
vessel interconnections in a matter of seconds. This represent a major im-
provement to the global search implemented in the first method, which could
take hours to execute.

A realistic polygon mesh algorithm has been implemented that resulted
in natural looking vessel branches. The visualisation of the hepatic vessels
has been implemented in an interactive application where the vessels can be
studied from every angle and position. The outline of the liver can be shown
in relation to the vessels, and the CT images can be viewed to compare the
results to the original dataset.

The results from both methods have been compared, and we conclude that
the second method results in a more likely reconstruction of hepatic vessels
from CT scans. The number of interconnected nodes were larger using this
method, and the graph corresponded better to the inspected CT slices when
studied by hand.

The results have been visually inspected by a radiologist and the response
was positive, but an empirical study on the correctness of the vessel graph
has not been performed. Before this application is ready for production use,
this study needs to be completed, but the technique shows great promise and
may eventually be used clinically.

5.2 Future work

While our results are promising, there is still work that needs to be done.
We propose the following improvements:

• Our results need to be tested and verified by experienced radiologists.

• Improved cost functions can be derived, as well as more appropriate
function weights.

• Our preprocessing phase could be improved to extract even more infor-
mation from the CT images.

• In the 3D reconstruction algorithm, we have a poor mechanism for
resolving vessel loops. A good result is not guaranteed, and a better

96

solution needs to be derived before this technique is used in clinical
applications.

• Without significant change, our algorithm can be adopted to similar
problems, for instance vessel segmentation in the eye fundus.

• As medical modalities improve, higher resolution CT images can be
obtained. This will enable us to find even smaller blood vessels using
our algorithm. As previously mentioned, we simply need to add more
templates to our matched filtering algorithms.

• The preprocessing algorithms can be more efficiently executed on the
GPU of modern graphics cards.

• Tumours should be segmented and visualised in relation to the liver
and the liver vessels.

97

98

Bibliography

Aykac, D., Hoffman, E. A., McLennan, G., and Reinhardt, J. M. (2003). Seg-
mentation and analysis of the human airway tree from three-dimensional
x-ray ct images. IEEE Transactions on Medical Imaging, 22(8):940–950.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic
Programming: An Introduction. Morgan Kaufmann Publishers, Inc.

Bellman, R. (1957). Dynamic Programming. Princeton University Press,
Princeton, NJ.

Bertrand, G. and Malandain, G. (1994). A new characterization of three-
dimensional simple points. Pattern Recognition Letters, 15(3):196–175.

Bloomenthal, J. (1985). Modeling the mighty maple. Computer Graphics,
19(3):305–311.

Bloomenthal, J. and Wyvill, B. (1990). Interactive techniques for implicit
modeling. Computer Graphics, 24(2):109–116.

Blum, H. (1967). A transformation for extracting new descriptors of shape. In
Wathen-Dunn, W., editor, Models for the Perception of Speech and Visual
Form. MIT Press, Cambridge, Mass.

Borgefors, G., Nystrom, I., and Baja, G. (1999). Computing skeletons in
three dimensions. Pattern Recognition, 32:1225–1236.

Catmull, E. and Clark, J. (1978). Recursively generated b-spline surfaces on
arbitrary topological meshes. Computer Aided Design, 10(6):350–355.

Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M.
(1989). Detection of blood vessels in retinal images using two-dimensional
matched filters. IEEE Transactions on Medical Imageing, 8(3):263–269.

99

Choi, H. S., Haynor, D. R., and Kim, Y. (1991). Partial volume tissue
classification of multichannel magnetic resonance images - a mixel model.
IEEE Transactions on Medical Imaging, 10(3):395–407.

Chung, D. H. and Sapiro, G. (2000). Segmenting skin lesions with partial-
differential-equations-based image processing algorithms. IEEE Transac-
tions on Medical Imaging, 19(7):763–767.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach to-
ward feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5):603 – 619.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification.
John Wiley & Sons.

Eidheim, O. C., Aurdal, L., Omholt-Jensen, T., Mala, T., and Edwin, B.
(2004a). Interconnecting segmented hepatic vessels in adjacent ct slices.
NOBIM, pages 91–97.

Eidheim, O. C., Aurdal, L., Omholt-Jensen, T., Mala, T., and Edwin, B.
(2004b). Segmentation of liver vessels as seen in mr and ct images. Com-
puter Assisted Radiology and Surgery, pages 201–206.

Eidheim, O. C., Skjermo, J., and Aurdal, L. (2005). Real-time analysis of
ultrasound images using gpu. Computer Assisted Radiology and Surgery.

Felkel, P., Fuhrmann, A., Kanitsar, A., and Wegenkittl, R. (2002a). Surface
reconstruction of the branching vessels for augmented reality aided surgery.
In Analysis of Biomedical Signals and Images, volume 16, pages 252–254.
BIOSIGNAL 2002.

Felkel, P., Kanitsar, A., and Fuhrmann, A. L. (2002b). Surface models of
tube trees. Tech. Rep. TR VRVis 2002 008, VRVis.

Fernández, G., Bischof, H., and Beichel, R. (2003). Nonlinear filters on
3d ct imaging - bilateral filter and mean shift filter. Computer Vision -
CVWW’03.

Fok, Y.-L., Chan, J. C. K., and Chin, R. T. (1996). Automated analysis
of nerve-cell images using active contour models. IEEE Transactions on
Medical Imaging, 15(3):353–368.

Frangi, A., Rueckert, D., Schnabel, J., and Niessen, W. (2002). Automatic
construction of multiple-object three-dimensional statistical shape models:

100

application to cardiac modeling. IEEE Transactions on Medical Imaging,
21(9):1151–1166.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distribution,
and the bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAM1-6, No. 6:721–741.

Glombitza, G., Lamadé, W., Demiris, A. M., Göpfert, M.-R., Mayer, A.,
Bahner, M. L., Meinzer, H.-P., Richter, G., Lehnert, T., and Herfarth, C.
(1999). Virtual planning of liver resections: image processing, visualization
and volumetric evaluation. International Journal of Medical Informatics,
53:225–237.

Goldberg, D. E. (1998). Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison-Wesley.

Gomberg, B., Saha, P., Song, H. K., Hwang, S., and Wehrli, F. (2000).
Topological analysis of trabecular bone mr images. IEEE Transactions on
Medical Imaging, 19(3):166–174.

Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing. Prentice
Hall, second edition.

GPGPU-group (2005). General-purpose computations using graphics hard-
ware. http://www.gpgpu.org.

Guo, Z. and Hall, R. W. (1989). Parallel thinning with two-subiteration
algorithms. Communications of the ACM, 32(3):359–373.

Haris, K., Efstratiadis, S. N., Maglaveras, N., Pappas, C., Gourassas, J.,
and Louridas, G. (1999). Model-based morphological segmentation and
labeling of coronary angiograms. IEEE Transactions on Medical Imaging,
18(10):1003–1015.

Heuch, H. (2003). Segmentation of the liver from mr and ct images. Master’s
thesis, Norwegian University of Science and Technology.

Hokland, J. (2002). Introduksjon til bayesiansk bildeanalyse. Kompendium
i fag SIF8068 - Statistisk Bildeanalyse og Læring, pages 1–9.

Hough, P. V. C. (1959). Machine analysis of bubble chamber pictures. In-
ternational Conference on High Energy Accelerators and Instrumentation,
CERN.

101

Inaoka, N., Suzuki, H., and Fekuda, M. (1992). Hepatic blood vessel recogni-
tion using anatomical knowledge. In Loew, M. H., editor, Medical Imaging
VI: image processing, pages 509–513. SPIE.

Kapur, J. N., Sahoo, P. K., and Wong, A. K. C. (1985). A new method for
gray-level picture thresholding using the entropy of the histogram. Com-
puter Vision, Graphics, and Image Processing, 29:273–285.

Kass, M., Witkin, A., and Terzoploulos, D. (1988). Snakes: Active contour
models. International Journal of Computer Vision, pages 321–331.

Kelemen, A. and Székely, G. (1999). Elastic model-based segmentation of
3-d neuroradiological data sets. IEEE Transactions on Medical Imaging,
18(10):828–839.

Kelemen, A., Székely, G., and Gerig, G. (1998). Three-dimensional model-
based segmentation of brain mri. In Proceedings of the Workshop on
Biomedical Image Analysis, pages 4–13.

Krivanek, A. and Sonka, M. (1998). Ovarian ultrasound image analysis:
follicle segmentation. IEEE Transactions on Medical Imaging, 17(6):935–
944.

Lam, L., Lee, S.-W., and Suen, C. (1992). Thinning methodologies-a com-
prehensive survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(9):869–885.

Lluch, J., Vicent, M., Fernandez, S., Monserrat, C., and Vivo, R. (2001).
Modelling of branched structures using a single polygonal mesh. In
IASTED International Conference on Visualization, Imaging, and Image
Processing.

Lobreget, S., Verbeek, P., and Groen, F. (1980). Three-dimensional skele-
tonization: principle and algorithm. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2:75–77.

Lobregt, S. and Viergever, M. A. (1995). A discrete dynamic contour model.
IEEE Transactions on Medical Imaging, 14(1):12–24.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution
3d surface construction algorithm. In Computer Graphics (Proceedings of
SIGGRAPH ’87), volume 21, pages 163–169.

Ma, C. and Sonka, M. (1996). A fully parallel 3d thinning algorithm and its
applications. Computer Vision and Image Understanding, 64:420–433.

102

Malandain, G. and Bertrand, G. (1992). Fast characterization of 3d simple
points. In 11th IEEE International Conference on Pattern Recognition,
pages 232–235.

Malandain, G., Bertrand, G., and Ayache, N. (1993). Topological segmen-
tation of discrete surfaces. International Journal of Computer Vision,
10(2):183–197.

Malladi, R. and Sethian, J. A. (1996). A unified approach to noise removal,
image enhancement, and shape recovery. IEEE Transactions on Image
Processing, 5(11):1554–1568.

Malladi, R., Sethian, J. A., and Vemuri, B. C. (1995). Shape modeling with
front propagation: A level set approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(2):158–175.

Martinez-Perez, M., Hughes, A., Stanton, A., Thom, S., Bharath, A., and
Parker, K. (1999). Segmentation of retinal blood vessels based on the
second directional derivative and region growing. Proceedings of the Inter-
national Conference on Image Processing, 2:173–176.

McInerney, T. and Terzopoulos, D. (2000). Deformable models. In Bankman,
I., editor, Handbook of Medical Imaging, pages 127–145. Academic Press.

Murray, C. D. (1927). A relationship between circumference and weight in
trees and its bearing in branching angles. Journal of General Phyiol.,
9:725–729.

Nyström, I. and Smedby, Ö. (2001). Skeletonization of volumetric vascular
images – distance information utilized for visualization. Journal of Combi-
natorial Optimization, 5(1):27–41. Special Issue on Optimization Problems
in Medical Applications.

Omholt-Jensen, T. (2002). Segmentation of the hepatic vessels as seen in
mr or ct images. Master’s thesis, Norwegian University of Science and
Technology.

Oppenheimer, P. E. (1986). Real time design and animation of fractal plants
and trees. Computer Graphics, 20(4):55–64.

Palagyi, K., Sorantin, E. Balogh, E., and Kuba, A. (2001). A sequential 3d
thinning algorithm and its medical applications. In Insana, M. and Leahy,
R., editors, IPMI 2001, LNCS 2082, pages 409–415. Springer-Verlag Berlin
Heidelberg.

103

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Proceses.
McGraw-Hill, New York, 3rd edition.

Perona, P. and Malik, J. (1990). Scalar-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12(7):629–639.

Purves, W. K., Sadava, D., Orians, G. H., and Heller, H. C. (2001). Life:
The science of Biology. Sinauer Associates, Inc and W.H. Freeman and
Coompany.

Richter, J. P. (1970). The notebooks of Leonardo da Vinc Vol. 1. Dover
Pubns.

Ripley, B. D. (1987). Stochastic Simulation. John Wiley & Sons.

Saha, P., Chauduri, B., and Majumder, D. (1997). A new shape preserving
parallel thinning algorithm for 3d digital images. Pattern Recognition,
30:1939–1955.

Sclaroff, S. and Liu, L. (2001). Deformable shape detection and description
via model-based region grouping. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(5):475–489.

Sethian, J. A. (1996). Level Set Methods and Fast Marching Methods: Evolv-
ing interfaces in Computatinal Geometry, Fluid Mechanics, Computer Vi-
sion and Materials Science. Cambridge University Press.

Sethian, J. A. (1997). Tracking interfaces with level sets. American Scientist.

Sethian, J. A. (2004a). Evolving interface approach to shape recovery. http:
//math.berkeley.edu/~sethian/Movies/Movieartery.html.

Sethian, J. A. (2004b). Noise removal from images. http://math.berkeley.
edu/~sethian/Movies/Movienoiseremoval.html.

SIGGRAPH-group (2005). Acm siggraph. http://www.siggraph.org.

Skjermo, J. and Eidheim, O. C. (2005). Polygon mesh generation of branching
structures. 14th Scandinavian Conference on Image Analysis.

Soille, P. (2003). Morphological Image Analysis. Springer-Verlag.

104

Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., Koehl,
C., Dourthe, O., Malassagne, B., Smith, M., Mutter, D., and Marescaux,
J. (2001). Fully automatic anatomical, pathological, and functional seg-
mentation from ct scans for hepatic surgery. Computer Aided Surgery,
6:131–142.

Sonka, M., Hlavac, V., and Boyle, R. (1999). Image Processing, Analysis and
Machine Vision. PWS Publishing, second edition.

Székely, G. and Gerig, G. (2000). Model-based segmentation of radiological
images. Künstliche Intelligenz, 3:18–23.

Thomas, J. G., Peters II, R. A., and Jeanty, P. (1991). Automatic segmen-
tation of ultrasound images using morphological operators. IEEE Trans-
actions on Medical Imaging, 10(2):180–186.

Tom, B., Efstratiadis, S., and Katsaggelos, A. (1994). Motion estimation of
skeletonized angiographic images using elastic registration. IEEE Trans-
actions on Medical Imaging, 13(3):450–460.

Tuduki, Y., Murase, K., Izumida, M., Miki, H., Kikuchi, K., Murakami, K.,
and Ikezoe, J. (2000). Automated seeded region growing algorithm for
extraction of cerebral blood vessels from magnetic resonance angiographic
data. Proceedings of the 22nd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 3:1756–1759.

Volkau, I., Zheng, W., Baimouratov, R., Aziz, A., and Nowinski, W. L.
(2005). Geometric modeling of the human normal cerebral arterial system.
IEEE Transactions on Medical Imaging, 24(4):529–539.

Watt, A. (1999). 3D Computer Graphics. Addison Wesley.

Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte
Carlo Methods. Springer-Verlag.

Xie, W., Thompson, R., and Perucchio, R. (2003). A topology-preserving
parallel 3d thinning algorithm for extracting the curve skeleton. Pattern
Recognition, 36:1529–1544.

Xu, C. and Prince, J. L. (1998). Snakes, shapes, and gradient vector flow.
IEEE Transactions on Image Processing, 7(3):359–369.

Xu, C. and Prince, J. L. (2000). Gradient vector flow deformable models. In
Bankman, I., editor, Handbook of Medical Imaging, pages 159–169. Aca-
demic Press.

105

Yim, P., Choyke, P., and Summers, R. (2000). Gray-scale skeletonization of
small vessels in magnetic resonance angiography. IEEE Transactions on
Medical Imaging, 19(6):568–576.

Zahlten, C., Jürgens, H., Evertsz, C. J. G., Leppek, R., Peitgen, H.-O., and
Klose, K. J. (1995). Portal vein reconstruction based on topology. European
Journal of Radiology, 19(2):96–100.

106

