
Abstract

Location-aware services have become more important during the last decade due
to the increasing mobility and connectivity of users and resources. Location-
awareness is an important aspect of making an application context-aware. In
supporting collaboration in a ubiquitous computing environment taking advan-
tage of location information is an important feature.

The UbiCollab Platform is a platform that supports collaboration in a ubiqui-
tous environment. This thesis presents an extension of the UbiCollab platform
to make it location-aware. The work shows how the location service can be
developed to handle storing and querying of location information.

i

ii

Preface

This report was written for the Norwegian University of Science and Technology,
Department of Computer and Information Science and Telenor Research and
Development, Trondheim, Norway in the spring 2005 as a master thesis.

The report contains work on a location service for a ubiquitous collaboration
platform. It is an extension to the previous work done on the UbiCollab plat-
form by Christian Schwarz in the spring of 2004 and the work done by Carsten
Andreas Heitmann and Børge Setså Jensen in the autumn of 2004. The report
present an analysis, solution and demonstration of the location service.

I wish to thank my project supervisors, Professor Dr. Monica Divitini at De-
partment of Computer and Information Science and Babak Amin Farshchian at
Telenor for all valuable support and feedback during this work. I would also
like to thank Carsten Andreas Heitmann, Hans Steien Rasmussen and Anders
Magnus Braathen for good collaboration.

Trondheim, June 16, 2005

Børge Setså Jensen

iii

iv

Contents

Preface iii

1 Introduction 1

1.1 Location awareness . 1

1.2 Research focus and project goals 2

1.3 Research method . 3

1.4 Relation to previous UbiCollab work 3

1.5 Report outline . 3

2 Problem elaboration 5

2.1 UbiCollab architecture . 5

2.2 Scenario analysis . 7

2.3 Relation to previous and ongoing work on UbiCollab 9

2.4 Research questions and expected results 11

3 Related work 13

3.1 Introduction . 13

3.1.1 How position and location relate to context and context-
awareness . 14

3.2 Representing location and position 14

3.2.1 On location models for ubiquitous computing 15

v

vi CONTENTS

3.2.2 A hybrid location model with a computable location iden-
ti�er for ubiquitous computing 20

3.2.3 Eploiting Space and Location as a Design Framework for
Interactive Mobile Systems 21

3.3 Review of UbiCollab platform . 23

3.3.1 Location service . 24

3.4 Database solutions for handling location data 25

3.4.1 Oracle Database 10g and Oracle Spatial 25

3.4.2 MapInfo SpatialWare . 26

3.4.3 Discussion . 27

4 Analysis and design 29

4.1 The Location service in relation to other Services 29

4.1.1 Position service . 29

4.1.2 Location service . 29

4.1.3 Collaboration service . 30

4.2 Location database and spatial queries 31

4.2.1 Datamodel for location database 32

4.3 API design . 33

4.4 Logical maps . 35

5 Prototype 37

5.1 UbiCollab overview . 37

5.2 Location module . 39

5.3 Location queries . 41

6 Evaluation 45

6.1 Prototype . 45

CONTENTS vii

6.1.1 Demonstrator . 45

6.1.2 Evaluation and future work 48

6.2 Evaluation of theoretical solution 49

6.3 Work process . 49

7 Conclusion 51

7.1 Summary of contributions . 51

7.2 Future work . 52

Bibliography 53

A Previous work on UbiCollab platform 55

A.1 Theoretical platform . 55

A.1.1 Conceptual model . 55

A.1.2 Platform services . 56

A.2 Developed prototype . 56

B Location Service XML description 57

C Location test data 63

viii CONTENTS

List of Figures

2.1 Architecture overview . 6

2.2 Location Service . 6

3.1 Set/graph-based model . 19

4.1 Datamodel layers . 32

4.2 Hybrid location model . 36

5.1 UbiCollab java-package diagram 38

5.2 Location service class diagram . 39

5.3 Location module class diagram 40

5.4 Sequence diagram for a getLocation query 42

5.5 Sequence diagram for a getDeviceLocation query 43

ix

x LIST OF FIGURES

Chapter 1

Introduction

UbiCollab is a platform for supporting group collaboration in a ubiquitous envi-
ronment. The vision and idea of UbiCollab is described in an article by Divitini
et al. [DFS04]. Work on the theoretical aspects of the platform and a prototype
have been done by Schwarz [Sch04]. A review of this work can be found in
appendix A.

Ubiquitous computing is a relatively new research area. It was introduced by
Mark Weiser and his colleagues at the Ubiquitous Computing project at Xerox
PARC. Mark Weiser described it in the following way [Wei93]:

Ubiquitous computing is the method of enhancing computer use by
making many computers available throughout the physical environ-
ment, but making them e�ectively invisible to the user.

The �eld is constantly undergoing changes as new techniques and technology for
ubiquitous computing are developed. The potential of location-aware services
has increased as the users and resources become more and more mobile and
connected. This master thesis will focus on location-awareness and how it can
support collaboration in a ubiquitous computing environment.

1.1 Location awareness

Location has become an important aspect in ubiquitous collaboration because of
the increased mobility that are available with todays technology. In a ubiquitous
collaborative setting it can be important for the participating users to be aware
of the location of other users. This can enable them to see the availability for
cooperation in a given situation. In a ubiquitous computing environment it is
essential that the user gets access to resources in the surrounding environment,

1

2 CHAPTER 1. INTRODUCTION

without prior knowledge of the resources and their con�guration. Location-
awareness can enable the system to display and use resources that are available
in the environment without need for speci�c con�guration.

The research on use of location information in computer systems have mostly
focused on single user systems and neglected cooperative settings. However
recent research in CSCW (Computer Supported Cooperative Work) has taken
up issues with using location information in a cooperative setting. The results
of this research shows that location information is an important aspect of the
information needs of the users. CSCW literature has often focused on the dis-
tinction between space and place [HD96]. Place is a much encompassing term
than space. In CSCW literature space is generally meant to indicate the physi-
cal surroundings of the user whilst place also indicates social constructs to which
people associate meaning, norms of behavior and the like.

As with the distinction between space and place in CSCW research I distinguish
between location and position in this master thesis. Location in respect to this
thesis is de�ned as the physical location an object has from the users point of
view. Position can be de�ned as the physical position of an object, often pre-
sented in coordinates. Location contains more meta-information than position
and can change depending on who is using it. For instance a room as a location
can be viewed as a lunchroom by one entity but as a meeting room by another,
but the position of the room is constant. Physical location can be represented
in several di�erent forms. Several standards and practises exist for representing
location and position, I will discuss these in a later chapter.

Location services might be used to support a wide range of situations. It is
important to understand location information in a wider context to support
pervasive cooperation. Location services might be used to inform the user, it
might be used to tailor interaction with another user or it might be used directly
by the system to improve the user experience. One of the aims of this thesis
is to show how UbiCollab can be extended to provide basic location services
that can be used by applications running on the platform. Another important
aspect when building location services for a cooperative setting is that they
must be cooperation-aware. That is the location service should be aware of the
collaboration instance it is providing the service to and tailor the information
to the given collaboration instance's preferences.

1.2 Research focus and project goals

The aim of this master thesis is to create a foundation for handling location-
awareness in the UbiCollab platform. The main focus of the research is on
location-awareness and location models in a collaborative environment. Re-
search into former systems, their architecture and di�erent technical solutions
must be undertaken to give a general understanding of the �eld. This will also

1.3. RESEARCH METHOD 3

give an understanding of how to create a location-aware application and enable
me to design a location service that can handle location information in addi-
tion to position information. At the end of the thesis a functioning prototype
showing some of the location-aware features discussed will be developed. A goal
is that the architecture, location- and position-representation should be general
and �exible enough to use di�erent kinds of systems for position pinpointing.

The development of location-awareness should not compromise any of the pre-
viously developed functionality of UbiCollab. Since this master thesis is written
in collaboration with two other groups, one working on the UbiCollab platform
with privacy issues and the other working on shared displays using UbiCollab,
it is important that the work is coordinated with their contribution.

1.3 Research method

The research method for this master thesis is scenario-based and prototype
driven. The scenario used in this thesis is described in the next chapter. The
scenario is used throughout the thesis as an example of how the UbiCollab
platform is used and to highlight what the location service should be able to
provide of functionality. The prototype will be described in a later chapter. At
the start of the thesis time will be spent on researching the �eld of location-
awareness to give a general understanding of the problem. Then as the level of
understanding grows, more speci�c issues will be researched to help develop the
proper solutions.

1.4 Relation to previous UbiCollab work

This master thesis is directly based on the previous work done on the UbiCollab
Platform by Schwarz, Gonçalves and Bakkevold [Sch04, Gon04, Bak04] in their
master thesis. The work is also based on the work done on the UbiCollab
platform by Heitmann and Jensen [HJ04] in 2004. In this work the focus was
on the position service and location service of the UbiCollab platform and a
teoretical solution was presented as well as a prototype. The aim is to build
upon the previous work by further developing the existing platform and only
changing the architectural aspects when it is necessary to accomplish the goals.
This should be done without removing any functionality already provided.

1.5 Report outline

The rest of this report is organised in the following chapters:

4 CHAPTER 1. INTRODUCTION

2 Problem elaboration: Presents an elaboration of the problem for this mas-
ter thesis based on a scenario. A discussion of the scenario is used to highlight
important aspects of the problem. In the end a list of research questions and
expected results is presented.

3 Related work: Gives an overview over the �eld of location-awareness in a
mobile computing environment and presents related work on representation and
storing of location information. It also presents research on database solutions
for handling spatial information.

4 Analyses and design: Gives and overview of the location services relation to
other services. Presents the datamodel and API design for the location service.

5 Prototype: Describes how the location service is realised within the Ubi-
Collab prototype.

6 Evaluation: Evaluates the theoretical and practical work. Gives a critical
view on how the work process has been throughout the thesis.

7 Conclusion: Presents the conclusions drawn from the project, a summary
of the contributions and present future work.

Chapter 2

Problem elaboration

This chapter aims to give a deeper understanding of the problem. First an
introduction to the UbiCollab architecture and where the location service �ts
in this architecture is presented to give an understanding of the service and its
purpose. Then the scenario that is used as a guide for this project is provided.
Some points from the scenario of special interest and a description of the issues
they represent are further described. Then a description of how the work done
on this master thesis �t into the previous work and the work being done by
the other groups are presented. To round of the problem elaboration the major
research questions and expected results are presented in the �nal section.

2.1 UbiCollab architecture

This master thesis will focus on the location service in the UbiCollab system.
Most of the work done will focus on the API the location service provide to the
collaboration service and how to use and integrate location in the collaboration
service. See Figure 2.1 for a conceptual overview of the di�erent services that are
present in UbiCollab. The services surrounded by dotted lines is where the focus
of this thesis lies. The location service aim to provide the other services with
location information on users, devices and other resources. It will communicate
with the collaboration service and also the position service. The position service
is a freestanding service that is meant to be implemented on pinpointing devices.
The position module in the location service will then be able to communicate
in a uniform fashion to all pinpointing devices through their position service. It
will then provide position information on devices and resources that are inside
the area of the pinpointing device's sensors. For a more thorough description of
the services in the UbiCollab platform see section 4.2 of �Ubicollab: Improving
collaboration with location services� [DFJ05].

In Figure 2.2 a more detailed view of the services in focus and their relationship is

5

6 CHAPTER 2. PROBLEM ELABORATION

Figure 2.1: Architecture overview

presented. To integrate the location service in the UbiCollab system a functional
and clear API for the location service must be de�ned so that the other services
have a clear interface through which they can access the services provided by
the location service. This thesis will focus on creating a complete API to enable
full use of the location services from the other services such as the Collaboration
service. Another aspect that will be looked into is how location services can be
used in the Collaboration service to support cooperation.

Figure 2.2: Location Service

How the location service handles each request from other services will not be
the most important aspect of this thesis, but some work most be done on the
internal workings on the service in order to produce a functional prototype.

2.2. SCENARIO ANALYSIS 7

2.2 Scenario analysis

The scenario that is used throughout this project is presented in the following
section. I have tried to create a scenario that presents some of the interesting
ways location information can be used to promote collaboration in UbiCollab.
The scenario is used as a guide to functionality that needs to be implemented
in the prototype and what has to be simpli�ed or left out. The scenario is also
provided to give an overview of how UbiCollab can use location information to
enhance cooperation.

Christian, Amanda and John are all working in a telecommunication
company. They are currently working together on the same project,
but due to nature of their work they spend much time working in
separate geographic locations. To help minize the e�ect of the dis-
tance between them they use the UbiCollab platform as a tool to
support collaboration.

Christian is the project manager and he wishes to have a meeting
with the rest of the project group. He is currently located in the
headquarters in oslo. He logs on to UbiCollab with his PDA client
and creates a meeting. The screen asks for time, place and people.
He schedules a meeting with Amanda, John and the rest of the
project group at 12 o'clock the next day in his o�ce. He prepares
some slides for the meeting and adds all relevant �les to the meeting
in UbiCollab so that the others can have a look at them.

Here we can see how the platform must support setting up a meeting for a
collaboration instance. This is already implemented in the state the prototype
is in at the start of this master thesis [HJ04].

Amanda and John are as often is the case away from headquarters
on business. They both receive an email announcing the meeting,
they log on to UbiCollab and review the �les associated with the
meeting.

The next day the project group gathers in Christians o�ce for the
scheduled meeting. When they enter the meeting room, the Ubi-
Collab system registers their location and set the availability of the
participants according to the setting of their meeting pro�le. On the
UbiCollab screen Christian can see information on who is present
at the meeting, where they are located in the world and how they
are connected to the UbiCollab platform. With a few mouse-clicks
he can also check which devices and resources each participant has
available in his surroundings.

8 CHAPTER 2. PROBLEM ELABORATION

Here we see how the platform register location information and then display the
information for users with access to see. Christian get to see not only who is
present and where they are located, but also information about their context
and surroundings.

One of the challenges with this is to be able to gather the proper information
and displaying it in a suitable way. The system must �nd the position of devices,
resources and people. Then it must convert the positions into locations based
on the context of the entities. How to display the information in a simple and
understandable way is also an important issue.

Because of the short notice for the meeting Amanda and John could
not reschedule their travel arrangements for this day. On his Ubi-
Collab meeting screen Christian can see that John is at the airport
and is connected through a wireless on his laptop. Amanda on the
other hand has had a small delay and is on her way to the head-
quarters in a taxi. Amanda is connected through her cellphone and
has limited functionality available to her.
Because Amanda is connected Christian can see her status and also
get some location information. He can see that she is in a car mov-
ing towards headquarters and he sends her a message proposing that
they start the meeting discussing issues that do not require her pres-
ence.

This part of the scenario present an interesting aspect with mobile users and
limited resources available. Amanda is only logged in through her cellphone
but it may still be able to provide the system with some information that can
enhance cooperation. Giving Christian the ability to see Amandas location
enables him to plan the meeting accordingly and start with issues where her
presence is unnecessary.

As the meeting progress John can follow the presentation slides as
they are shifted on a shared display he has set up on his laptop.
He can also control the slideshow if he needs to go to a speci�c
slide to discuss something. Amanda can also follow the progress
of the slideshow from her seat in the taxi. She has printed the
slides on paper and the shared display she has set up on her phone
continuously updates her on which slide the others are looking at.
Christian has some information he wants John to have a look at
during his �ight. He can see on the UbiCollab screen that John
has a publicly available printer in his surroundings and tells John
he will send the information to the printer. John is not sure where
this printer is located, but he pulls up the printer information on
the UbiCollab screen and see that the printer has provided location

2.3. RELATION TO PREVIOUS AND ONGOINGWORKON UBICOLLAB9

information. Using the location service in UbiCollab he gets a map
showing his own location and the location of the printer.

The platform must enable the users to get the most out of the equipment they
have available in their surroundings. We can see how Amanda is able to follow
the slideshow even though she is only connected with her phone. Being able to
adapt the information being displayed to the equipment it is being displayed on
is an important aspect but will not be a main focus of this thesis.

The other interesting issue in this part of the scenario is how UbiCollab helps
John �nd an available printer. We see that the system enables Christian to
send information to a printer in Johns surroundings. To enable John to be able
to locate the printer with help of the location service there are several issues
that must be looked into. First of all how will the location service get location
information on the printer. In the scenario we see that the printer has provided
some location information with its service description. When the devices do not
provide location information one solution would be using the position service to
produce location information on a device. Another issue that is interesting is
how to convert the location information available on the printer and on Johns
position into a suitable representation that can be used by John to navigate
himself to the printer.

Pete is working on a di�erent project together with Christian. He
logs on to UbiCollab to see if he can have a few words with Christian.
He can see that Christian is in his o�ce but is currently sitting in a
meeting on another project. He sends a message to Christian telling
him he wants to discuss some issues when Christian �nds the time
for it. The message will be delivered to Christian's screen as soon
as the meeting has ended.

This last part of the scenario presents some interesting issues with regards to
what information should be presented to other users and also how location and
context information can be used to simplify user interaction. Pete who is not
directly attached to the project working on at the moment will not get the full
location information but rather a more general description of what he is doing.
Pete also gets the option of sending a message that will be delivered as soon as
Christian's context and location imply that the meeting is over.

2.3 Relation to previous and ongoing work on Ubi-
Collab

As mentioned in the introduction, location services can be used to support a
range of di�erent situations and needs. The development of wireless capabilities

10 CHAPTER 2. PROBLEM ELABORATION

together with the possibility of �nding the position of wireless devices has opened
up a whole new set of possibilities for location services.

In the previous work on UbiCollab a shared display application has been devel-
oped. Carsten Heitmann is continuing the work on this application and several
interesting issues can be looked into with regards to presenting location infor-
mation on a shared display.

One interesting aspect would be providing the shared display with location
information to display a map over the people in a collaboration instance and
their position. The map of people could be displayed as a standard geographic
map or as a textual map with description of peoples location. To be able to
provide this information the location service would have to keep a database that
contains information of the locations users might be in. The location service
must be able to convert a position in coordinates into a location. Given a
coordinate the service must search to the database to see if it �ts into one of
the known locations.

The other group that is working on the UbiCollab platform is working on privacy
issues. Their focus is on creating a privacy extension that enables the platform
to adapt what information it provide to users based on privacy settings on
devices, resources and user pro�les. The work on this thesis will not be directly
in�uenced by the privacy extension but in the prototype chapter issues that
needs to be resolved for the prototype to be compatible with the work will be
presented.

Another aspect of this master thesis will be how to integrate the location service
with the other services of the UbiCollab platform. The UbiCollab platform is
arranged as freestanding UPNP-enabled services so that services can be started
and stopped independently. This makes the integration of the service easier
since it is not directly dependent on the other services. However it is important
that the API for the location services is clear and complete so that the other
services can easily use it without needing to consider whats going on inside the
service.

With the implementation of the location service there are several important
issues that must be looked at. One of the issues is how to store the location
information as well as making it available in a sensible way. There are two
main solutions for this issue: using an external database tool that is capable of
handling spatial queries or building the needed functionality on top of a simple
database structure. In the next chapter on related work some available database
solutions will be presented and evaluated. Another issue that will be discussed
is how to create logical maps so that position data can be converted into location
data.

2.4. RESEARCH QUESTIONS AND EXPECTED RESULTS 11

2.4 Research questions and expected results

One of the main goals of this thesis is to develop a solution to the integration
of the location service into the UbiCollab platform. To do this a clear interface
towards the other services must be developed and this should hide all the inner
workings of the location service, so that it is easy to use for the other services.
The goal is to develop a teoretical solution and then implement it or a part of
it in a prototype that will demonstrate the use of the location service. Another
goal is to show how the position information gathered by the position module
can be converted into location information dependent on the context of the user.
To be able to do all this some areas require further research:

1. How should location information be stored and managed?

2. Which solutions are available for storing and querying location informa-
tion?

3. What kind of architecture for position and location data should be used?

4. How to create logical maps and convert position data into location data?

5. How can the collaboration service utilize the location information provided
by the location service?

The end result of this master thesis will be the teoretical results that are pre-
sented, in addition to a demonstrator which will show how the location service
can be integrated into the UbiCollab prototype. The main goal of the thesis is
to show how location information can be provided to di�erent services through
a speci�c API to the location service and how the other services can make use
of this information.

12 CHAPTER 2. PROBLEM ELABORATION

Chapter 3

Related work

In this chapter I look at the concept of location and position representation and
di�erent architectures for handling location. The chapter starts of with a brief
introduction of ubiquitous and context aware computing. Then some research
into representation of location and position is presented. I will also look at
the previous work on the UbiCollab platform and particularly with regards to
support for location- and context-awareness. The chapter also present some
existing database solutions that support storage and management of location
data. The purpose of this chapter is to present research into how position
information can be converted into location information and also how existing
database solutions can be utilised to achieve this.

3.1 Introduction

Computers are becoming an ever greater part of our lives. They become smaller
and more ubiquitous every time a new model is produced. The computer is
becoming a part of most peoples everyday life, and this has had and will have
enormous impact on the development of systems and applications in computing.
The user can no longer be expected to have knowledge of speci�c computer
systems. This has created a whole new set of requirements for user interfaces
and interaction with the user. Context-aware applications can help lower the
threshold for using an application. This because a context-aware application
can o�er an user interface that is adapted for the given situation. A context-
aware application can be able to automatically con�gure itself and o�er fewer
and more relevant options for the user. This should not limit the users ability
to interact with the application, only make it easier for the user to choose the
correct options.

The last decade context-awareness and ubiquitous computing have become more
and more important within research in computers. One of the reasons is that

13

14 CHAPTER 3. RELATED WORK

the advances within hardware have created more support for context-awareness,
location-positioning and ubiquitous computing. Increased availability of wire-
less networks has made it possible to be online almost everywhere and enables
computers to get and send information to increase context-awareness (e.g. �nd
position by positioning over a WLAN-network).

3.1.1 How position and location relate to context and context-
awareness

Position is in many settings the most important piece of data needed to make
an application context-aware. If the application has knowledge of where the
computer it is running on is located, it can in many instances be able to deduce
what settings the user would prefer.

Often the users context can be deduced from several sensors and several data
stores. However without knowing the position the process of deducing the con-
text can be very hard. Position is usually tightly connected with context, that
is what the user does and how he does it depends on where the user is. Peo-
ple organise their lives so that they have speci�c places for speci�c activities.
When a person is at the o�ce he works (preferably), when he is at the movies
he is unavailable, when in the kitchen he cooks etc. Of course this is a bit of a
simpli�cation since a person can be in di�erent contexts in the same location,
but position is an important factor in deducing the context.

Position is so much more important in a mobile computing environment than
in a stationary one because it is constantly changing. Before the computing
devices became mobile the position did not really matter much because it was
constant. Since the development of laptops, PDAs and enhanced mobile phones
the position for where computing is done has become a dynamic variable.

3.2 Representing location and position

Christein and Schultess [CS02] de�ne location in the following way:

A location is a virtual or real place where someone or something is
located at or is present. Examples of location in the virtual world
are documents or host. (...) Examples of locations in the real world
are postal addresses or GPS coordinates.

In my de�nition of location and position I say that location is the physical
location an object has from the users points of view. The position is the physical
position of an object often represented as coordinates. Unlike Christein and

3.2. REPRESENTING LOCATION AND POSITION 15

Schultess I separate between location and position and give location a deeper
meaning when I associate it with the context i.e. user viewpoint.

There are two main schemes for representing position in a computer system.
The �rst one is the coordinate model, where position is represented through
coordinates that map to the real world (e.g. 3D GPS coordinates). The other
model is the hierarchical model [JS02]. This model is easier understood by hu-
mans because it decomposes the physical environment into di�erent levels of
precision and normally features a self-descriptive position representation (e.g.
Position described with city, building, �oor and room). The hierarchical model
will be ambiguous with respect to position because users will have di�erent per-
ception of the meaning of elements in the hierarchy (Room 4 can be lunchroom
110 for one user and be meeting room 4 for another user.)

The two models have di�erent advantages. With the coordinate model it is easy
to calculate the exact distance between two entities, this is not so easy with
the hierarchical model. However the hierarchical model can have support for
implicit representation of spatial relationships such as closeness, containment,
etc. while this is very hard in the coordinate model.

When designing a location service for the UbiCollab platform it is important
to represent the position of entities in a general way, so that most pinpointing
sources can be used by the platform. In the following sections some articles that
have looked at representation of location and location models is presented.

3.2.1 On location models for ubiquitous computing

[BD04] is an article on di�erent location models and their pros and cons. The
article describes several location models that are interesting for this thesis and
a summary of the article and its �ndings follows.

Introduction

Location information is presented in di�erent formats, such as geometric co-
ordinates and symbolic coordinates. There are three types of queries whitch
should be supported by the location models; position, nearest neighbor and
range. The suitability of a location model for distinct queries depnds on its
internal organization.

Basic properties of coordinates

The article de�nes coordinates in the following de�nition [BD04]:

16 CHAPTER 3. RELATED WORK

A coordinate x is an identi�er which speci�es the position of an
object with respect to a a given coordinate system. A coordinate
system is a set X of coordinates.

Examples include:

• Geographic coordinates in the WGS84 used by GPS: triples containing
longitude, latitude and elevation.

• The active bat system: high-resolution indoor positioning system, three
dimensional coordinates with respect to local Cartesian reference system.

• The active badge system: symbolic identi�ers for locations via IR.

From these examples two basic classes of coordinates can be identi�ed: geomet-
ric and symbolic coordinates.

Geometric coordinates: de�ne positions in the form of coordinate tuples
relative to a reference coordinate system. Geometric coordinates can be divided
into global and local geometric systems. The World Geodetic System 1984
(WGS84) is a global reference system while the Cartesian coordinate system of
the active bat system can only de�ne local coordinates. Geometric coordinates
allows for calculation of distances between locations and deduction of topological
relations such as spatial containment. Hence geometric coordinates already
allow simple spatial reasoning.

Symbolic coordinates: de�ne positions in the form of abstract symbols such
as sensor identi�ers, building and room names, etc. Symbolic coordinates do not
provide any direct means for calculating distances or other spatial properties.
So the symbolic location models have to provide additional information on the
symbolic coordinates to de�ne spatial properties.

Requirements for location models

The article de�nes three di�erent types of queries that users/application might
pose to a location model:

Position queries: All location models contain information on objets position,
but they di�er in the way it is represented. The de�nition of position requiers
some form of coordinates. A general location model has to support di�erent
coordinate reference sysmtes, global and local ones.

Nearest neighbor queries: A search for the n objects closest to a certain
position, i.e. searching for the closest printer. To support this the location
model must contain not only information on the positions of the objects, but also

3.2. REPRESENTING LOCATION AND POSITION 17

de�ne a distance function. The distance function makes it possible to compare
the distance between two objects to the distance between other objects. In
a geometric coordinate system this distance can be calculated by the physical
distance between the objects. In a symbolic coordinate model the distances
between coordinates have to be explicitly de�ned.

Range queries: A range query returns all objects within a certain geographic
area. Such a query might be �nding all the users within a buildings area. To
answer such a query object positions must be known and also the topological
relation �contains� has to be modeled. For geometric coordinates this informa-
tion can be derived from the known geometry, but for symbolic coordinates it
has to be de�ned explicitly. A symbolic model could de�ne a room as being on
(�within�) a �oor which in turn is part of (�within�) a building.

From the cases presented above the article arrives at the following requirements
for location models. A location model should provide:

• Object positions: Positions of objects have to be modeled in the form of
coordinates. Supported coordinate and reference systems are: geometric
and symbolic coordinates and multiple local and global coordinate refer-
ence systems.

• Distance function: Distances between spatial objects have to be modeled.
This can also be the �size� of a location e.g. the length of a road segment
represent the distance one has to travel when crossing this location in
order to reach another location.

• Topological relations:
Spatial containment in order to allow range queries.
Spatially connected to for navigation services.

• Orientation: In addition to the positions of mobile objects, the orientation
in the horizontal and/or vertical dimensions can be supported.

Geometric location models

The geometric models describe locations through geometric �gures. If several
coordinate systems are used, the position and orientation of the di�erent local
and global systems have to be de�ned in order to translate coordinates from
one system to another. All geometric models support the information to derive
the topological relation �contained in�. However the �connected to� relation
has to be modeled explicitly since there is no direct support in a geometric
system. This information can be used to improve the distance function, for
instance incorporating the actual distance a user has to travel, not only the
direct distance between two objects.

18 CHAPTER 3. RELATED WORK

Symbolic location models

There are three main models in presented in this section; the set-based model,
the hierarchical model and the graph-based model.

Set-based model:
Based on a set L of symbolic coordinates where locations are de�ned by subsets
of L. For instance a building with several �oors and rooms could be modeled
by letting the set L represent all the room numbers in the building. The second
�oor is then modeled as the subset containing all the rooms on the second �oor.
Arbitrary locations may also be de�ned by sets that contain one ore several
rooms. The containment relation can be determined in a set-based model by
looking at the intersection of two sets. For the sets L1 and L2 if L1 ∩ L2 6= ∅
then L1 and L2 overlap and if L1 ∩ L2 = L1 then L2 contains L1. A set based
model can only model qualitative distance, that is it can model a neighbour
relation and through this deduce that the distance between A and B is bigger
than the distance between A and C. However it can not deduce the absolute
quantitative distance.

Hierarchical model:
Like the set based model a hierarchical model consists of a set of locations L.
The special thing about the hierarchical model is that the locations are ordered
according to the spatial containment relation. That is a location L1 is modelled
as the ancestor of another location L2 if L1 contains L2. Because of this the
hierarchical models support range queries naturally. The hierarchical models
can be seen as a special case of the set based models and can only support
qualitative distance queries.

Graph-based model:
In the graph-based approach the symbolic coordinates de�ne the vertices V
of a graph G = (V,E). The edges of the graph represent direct connection
between locations. Edges and/or vertices can be weighted to model distance.
The graph-based model explicitly models the topological relation �connected to�
and is therefore well suited to handle nearest neighbor queries. The graph-based
model however has no direct support for modeling ranges such as buildings or
�oors. Range queries can be answered in the case of �nding all objects within
a radius of a reference object, but not �nding all locations contained within a
bigger location (range).

It is possible to combine the set-based and graph-based model to better support
queries for range and distance. Such a combination would combine the bene�ts
of both models and one would also be able to generate di�erent views based on
level of detail see Figure 3.1.

3.2. REPRESENTING LOCATION AND POSITION 19

Figure 3.1: Set/graph-based model

Hybrid location models

The article presents two types of hybrid location models, the subspaces model
and the partial subspaces model.

Subspaces This model uses a symbolic model like the combined symbolic model
presented in the previous section and extends this with geometric model proper-
ties. That is for each location the geometric extent of the location is also stored
in the location model. The geometric extent can be de�ned in accordance to a
global reference system such as WGS84 or it can be de�ned in a local reference
system where the coordinates have only local validity. Subspaces are formed
by embedding coordinate systems into other coordinate systems by de�ning the
position and orientation of embedded systems, a mode detailed description of
this is found in [JS02] which is summarized in the next section.

Partial subspaces The second type of hybrid model is similar to the subspaces
approach, but it does not assume that the geometric extent for every location
is modeled. For instance the geometric extent of buildings might be included in
the models but within the buildings only the symbolic models are used. This
gives the bene�t of enabling range queries for larger geometrically de�ned ranges
(e.g. polygon on city plan) and it is also possible to do approximate calculations
on user position based on the geometric extent of buildings and the symbolic

20 CHAPTER 3. RELATED WORK

mapping of rooms.

Discussion

In this article by Becker and Dürr a very clear description of the di�erent loca-
tion models and their strenghts and weaknesses are presented. From the article
it is easy to see that no single model can solve all the possible requirements to
a location model but rather the developer must select the model best suited to
the application/usage. The hybrid location models presented in the end of the
article are very interesting because they have the highest ability of solving the
queries de�ned in the article. However the modeling e�ort for using the models
increase with the higher complexity of the hybrid models.

3.2.2 A hybrid location model with a computable location iden-
ti�er for ubiquitous computing

[JS02] describes a model for representing the location or position of an entity. It
describes a position identi�er that is a hybrid between the two di�erent models
for representing position (hierarchical and coordinate). This model would �t
into the subspaces category of models de�ned in the previous section.

Hybrid model: Starting point hierarchical location model. View the world as
hierarchy of spaces and each level further re�nes and subdivides the spaces of
the previous level. Bring in the coordinate location model by allowing each
space in the hierarchy to de�ne a coordinate system that can be used to de�ne
points or areas within that space.

Use three types of location:

• Space: Location is a physical space entity, e.g. �room 3115 of 3rd �oor of
Wean Hall at CMU�.

• Area: Location is a space not physically demarcated, but virtually de�ned
by applications, e.g. �the area covered by a particular wireless access
point�.

• Point: Location is a position of mobile user or object.

Use formatted string representation complying with generic syntax of a Univer-
sal Resource Identi�er to describe location:

• Space identi�er: �ali://cmu/wean-hall/�oor3/3100-corridor/3115�.

• Area identi�er: �ali://cmu/wean-hall/�oor3{(1,0), (-1.5,0.5), (0,3), (2,3.5),
(3,1.5)-(1,5)}�.

3.2. REPRESENTING LOCATION AND POSITION 21

• Point identi�er: �ali://cmu/wean-hall/�oor3/3700-corridor/3718(10,4,1)�.

Each subspace has the following geometric attributes to integrate the coordinate
model with the hierarchical model:

• Shape: Indicates the geometric shape of space.

• Extension: Combined with Shape attribute, speci�es the volume/area cov-
ered by space.

• Origin: The origin point for the space coordinate system of the current
space relative to the parent's coordinate system.

• Rotation: Matrix which speci�es the directions of the three axes of the
space coordinate system of the current space relative to the parent's co-
ordinate system.

Discussion

Combining the location and position representation in one model can ease the
way to resolving the position and location. It can also be used for a system that
should work both in indoor and outdoor settings and be able to take advantage
of several di�erent sources for pinpointing. It would be able to resolve position
and location information suitable for the operation in focus depending of what
kind of position and location information wanted. However the representation
is quite advanced and will be hard to implement in the UbiCollab system. The
idea of di�erent sets of location such as space, area and point will be considered
when building logical maps.

3.2.3 Eploiting Space and Location as a Design Framework for
Interactive Mobile Systems

[DRD+00] present a design framework for location awareness in mobile systems.
The article describes several interesting aspects with regards to location and its
relation to context.

The article has a main focus on location and its implications when developing
a interactive mobile system. To understand the role of location in relation
to context it is necessary to look at how di�erent forms of context in�uence
interaction with mobile systems.

Di�erent forms of context

Context can be divided into four groups:

22 CHAPTER 3. RELATED WORK

• Infrastructure context: In mobile systems the nature of the infrastructure
is likely to change as the application is used. User interfaces to mobile ap-
plications must be designed to cope with a level of uncertainty that comes
from working with wireless communication and distributed information.

• System context: The extent to which a device is aware of other devices in
its vicinity and also the extent to which an application is aware of other
applications.

• Domain context: How the relationship between the users and mobile de-
vices support the nature of the work being done. Another aspect is the
level of trust and mutual awareness between participants in collaborative
interactions. Especially if devices are used to identify users and potentially
provide location and context information for others.

• Physical context: How mobile systems are aware of or embedded into
their physical surroundings. If they are have sensory information about
the surroundings this can be used to provide information or adapt the
services presented to the user.

Location is very important in understanding context. For instance location is
a useful indexing device from which to infer the overall context in�uencing the
mobile application. To be able to �nd what devices are near this device (system
context) we need to know the location of the device. To be able to measure the
environment (physical context) the device must be physically located in space.

Location and Space

Any notion of location puts the device within some form of space. This space
can contain other devices, users and applications with which the device can
interact. The device interacts with the space in several ways:

• It has a location in the space.

• It has an e�ect on the space (interacting with devices and users within it).

• It is subject to in�uencing events from the space.

In a static system where the devices are �xed at a location the nature of in-
teraction between devices would be one of con�guration. In a mobile system
however there is a much more dynamic relationship and the model for spatially
situated interaction must take the following into consideration:

• Location in space (of the device and other bodies).

• Mobility through space (of these).

3.3. REVIEW OF UBICOLLAB PLATFORM 23

• The kinds of bodies populating the space (which the device may interact
with).

• The awareness (of the device) of these other bodies.

Real and Virtual Worlds and Spaces

Computers and mobile devices existence and presence can be thought of in
terms of many spaces. They can be considered as simultaneously inhabiting
a real world and some forms of virtual worlds. Virtual worlds exist in almost
all computer systems. It has grown from the use of spatial metaphors and
techniques to represent information and actions. Development of cooperative
systems in CSCW has relied much on concepts drawn from spatial arrangements.
The latest research point in the direction of combining the real and the virtual.
Examples include wearable computing and augmented reality. The fact that
devices have both physical and virtual locations is something that must be
considered when developing models of space and location.

A Taxonomy of Location

Any simpel mobile device will have a physical location in space. For some devices
the exact Cartesian position in 2D or 3D space is important for de�ning a sense
of absolute physical location. For others a more topological idea of space is
su�cient in understanding position, and location is considered not in an absolute
sense but in relation to other objects or sensors. This separation of location into
cartesian spaces and topological spaces is also usable for virtual locations. For
instance a location in a hypertext system might be de�ned using topological
space and a location in virtual reality could be de�ned using a cartesian space.
These categories are not mutually exclusive as a device may have both a precise
longitude and latitude and have existence in one or more virtual spaces as well as
the physical space. Many of the most interesting interaction possibilities occur
when the di�erent ideas of location are linked together. For instance moving a
display up and down in the physical space could be used to change what it is
displaying in its window.

3.3 Review of UbiCollab platform

The domain of the UbiCollab platform is the intersection of ubiquitous comput-
ing and collaboration support systems. In the previous work done by Schwarz,
Bakkevold and Gonçalves a prototype of the platform, shared display and a
PDA-client was developed. The master thesis by Schwarz [Sch04] has focus on
specifying a complete platform for collaboration in a ubiquitous computing en-

24 CHAPTER 3. RELATED WORK

vironment and this review will focus mostly on his work with regards to the
location service.

To represent the abstract collaboration concept Schwarz uses a collaboration
instance. This is an entity which is meant to capture a real world activity,
or context, of collaboration between people and resources they use. A person
entity represent a human participant while a resource can be a physical device
or electronic information.

For a more complete introduction and review of the previous work on the Ubi-
Collab platform see appendix A.

3.3.1 Location service

In the previous work on UbiCollab before autumn 2004 little focus was given to
the location service. Schwarz has in his master thesis one section describing the
service in the chapter on the theoretical foundation of the platform. He starts
this section with an introduction [Sch04]:

A location service is an important service when supporting ubiqui-
tous collaboration, as it makes it easier for the users to �nd people
to collaborate with or devices to use for collaboration.
The UbiCollab location service builds on other more speci�c location
services such as GPS, GSM and WLAN positioning services, and
present the location in a useful way to clients of the service.

He goes on to describe some of the challenges of such a location service. One
of the challenges he describes is that the lower level position devices can return
the position in several di�erent representations. Often these representations can
be incompatible such as GPS coordinate, coordinate relative to some position,
hierarchical position etc. This can make it harder to compare distances. He
also argues that the UbiCollab location service should provide a basic sorting
functionality to the clients, e.g. sorting on proximity to user A. In the end of
the section on location service Schwarz mentions that privacy is a very big issue
in this service. Data should be encrypted and National laws and restrictions
must be taken into account.

Schwarz gives a very brief and general description of the location service. He
gives a general idea of some of the issues that must be taken into consideration,
but does not elaborate on the di�erent solutions that are available.

In the autumn of 2004 Heitmann and Jensen did work on the location-awareness
of the UbiCollab platform [HJ04]. To enable dynamic discovery and use of
pinpointing devices they proposed that a position service run on the pinpoint-
ing devices so that uniform communication with the location service could be

3.4. DATABASE SOLUTIONS FOR HANDLING LOCATION DATA 25

achieved. A solution where the location service has two modules, a position
module and a location module was presented:

The position module handles everything that has to do directly with
position. The location module handles the mapping from position to
location. The position module should support storage and mainte-
nance of position data. It must also handle calculations on positional
data such as calculating distance between two positions, sorting with
regards to position and nding the device closest to a position. This
module will also handle the communication with the position ser-
vices.
The location module should support storing and maintenance of
location information with regards to a context. The context will
often be bound to the collaboration instance and user. With location
information we mean information that can be used to build a logical
map.

In the prototype they presented only the position module of the location service
is implemented. The work of this thesis will build on the work done and complete
the location service so that also the location module is implemented.

3.4 Database solutions for handling location data

3.4.1 Oracle Database 10g and Oracle Spatial

Oracle Database 10g together with Oracle Spatial provides a framework for
storing spatial information and deploying wireless location based services. The
database solution solves key problems such as how to [Lop03]:

• E�ciently store, retrieve, and manage location data and attribute data
from a single, open database.

• Improve performance for very large databases containing terabytes of lo-
cation data.

• Maintain versions of spatial database tables transparently, and identify
any con�icts in table values.

• Store location data once and make it accessible to users from multiple,
heterogeneous GIS tools and e-Business applications without any modi�-
cation via open, stadards-based APIs.

The database system supports three basic geometric forms:

26 CHAPTER 3. RELATED WORK

• Points and point clusters: Can be used to represent location such as build-
ings, vehicles, users or devices.

• Lines and line strings: Lines can represent roads, railroads etc.

• Polygons and complex polygones with holes: Represent outlines of cities,
districs, buildings etc.

Oracle Spatial has several spatial operators such as contains, covers and any-
interact that allows us to answer speci�c spatial queries. The system also has
special spatial indexing that helps optimize the performance of such spatial
queries.

3.4.2 MapInfo SpatialWare

MapInfo SpatialWare is a tool for storing and and manipulating spatial data
in a relational database. It is available in two con�gurations, SpatialWare for
Microsoft SQL Server and SpatialWare DataBlade for Informix 9.2 Databases.
To enable a relational database to handle spatial data the provision of three
component parts are required [MS001]:

• Spatial Data Type de�ning the data structure and storage mechanism.

• Spatial Indexing providing custom index structure to handle spatial data.

• Spatial Operators extending the SQL interface to the data.

As with Oracle Spatial this system also supports three basic geometric forms:

• Points objects: Point is the simplest of the classi�cations; it is de�ned as
a single set of x,y, (z) coordinates

• Lines objects: Lines are linear constructs that include simple two point
lines, multi-point lines (polyline), curves and arcs.

• Area Objects: Area (polygon or surface) represents bounding areas such
as lakes, states, cities etc.

The MapInfo SpatialWare provides more than 150 spatial operators which can
be classi�ed in the following categories: constructor, general, measurement,
observer, spatial and spatial predicate. The most interesting spatial operators
are measurement operators such as HG_DISTANCE and spatial predicates such
as ST_OVERLAPS, ST_CONTAINS and ST_ADJACENT_TO.

3.4. DATABASE SOLUTIONS FOR HANDLING LOCATION DATA 27

3.4.3 Discussion

As we can se from the above presentation of two di�erent database systems for
handling spatial data the functionality they provide are very similar. Both have
a framework for storing spatial data in special data types. They provide an
extension to SQL so that spatial queries can be created with the help of spatial
operators. There are of course many more systems that could be used, but with
regards to the need of this thesis they provide much the same functionality.

28 CHAPTER 3. RELATED WORK

Chapter 4

Analysis and design

In this chapter I will look at the di�erent issues concerning the Location service
in UbiCollab and how they can be solved. The result of this is a design scheme
that will be used when building the Location service in the UbiCollab prototype.

4.1 The Location service in relation to other Services

As anticipated in section 2.1 in UbiCollab there are three services that will
have the give the main functionality when it comes to location awareness. The
services are Collaboration service, Location service and Position service. To
support the location awareness a three-level approach will be used where the
di�erent services handles di�erent concers.

4.1.1 Position service

It is a service that runs independently on each pinpointing device. It enables
the location service to have a standard interface to interact with when collecting
the position data.

4.1.2 Location service

The location service consists of two modules: position module and location mod-
ule. The main goal of the service is to provide position and location information
for the other services in the UbiCollab platform.

29

30 CHAPTER 4. ANALYSIS AND DESIGN

Position Module

The position module shall handle everything that has to do with simple position.
Position gives a universal speci�cation (i.e. coordinates) of where an object is
independent of context. This level must provide basic services such as:

• Comparison of position

• Dynamic discovery of pintpointing services (using directory service and
resource collector

The pinpointing devices are regarded as resources that can be discovered and
used by UbiCollab. So the Position module must be able to discover pinpoint-
ing devices as the environment change and add and remove devices to the list
of available pinpointing devices accordingly. To simplify the communication
between the position service and a 3rd party positioning/pinpointing system,
these 3rd party systems must implement a standard interface (position service).

The position module have a table in the database where it stores position data
collected from the various pinpointing devices.

Location Module

This is the level where the actual conversion from position to location takes
place. The location module will get position information from the position
module. Then it uses a location database and spatial queries to convert the po-
sition information into location information. The location module must provide
more advanced services than the position module such as:

• Advanced location model for representing location

• Answer spatial queries

• Build logical maps

To do this the location module must build up a location database containing
information on the various locations. The location module will not store infor-
mation on where a device is at a given time, rather get this information from
the position module and convert it to �nd the location. How the database is
developed is described in the section �Location database and spatial Queries�.

4.1.3 Collaboration service

This level is the highest level of abstraction and the collaboration service must
be designed to support the contextualization of the map created by the location

4.2. LOCATION DATABASE AND SPATIAL QUERIES 31

service. It must be able to provide the following information to help contextu-
alize:

• Collaboration instance information

• Status of users and resources

• Presence of involved users

• Pro�le and preferences of users'

The collaboration service must also provide the possibility to annotate maps.
These annotations are speci�c to each collaboration instance and will help sup-
port the transition from space to place, by enabling each collaboration instance
to give special meaning to the spaces represented in the map.

4.2 Location database and spatial queries

To be able to store and access it, the location information needs to be stored in
a database scheme. There are two possible solutions for storing and maintaining
this data. The �rst solution is to use a regular database to store the data and
build all the functionality needed on top of this. However another solution is to
use a database tool that is designed for handling spatial data. This will simplify
the process of building logical maps and answering spatial queries since much of
the functionality needed can be found in such a tool. The disadvantage of using
a third party solution is that the service then becomes dependent on running
on a system that can support this solution. Also a third party database system
with support for spatial data usually requires a lisence for use and this can
increase the cost of running the platform.

In the previous chapter on related work Oracle Database 10g combined with
Oracle Spatial and MapInfo SpatialWare were presented as such solutions. Both
solutions provide the needed functionality for the location module so either
solutions could be chosen. Because Telenor has an Oracle database with Oracle
Spatial available this solution was chosen for the prototype. It provides the
necessary tools for storing the data and also functionality for searching through
the data based on spatial parameters. It has several spatial operators such as
contains, covers and anyinteract that allow us to answer speci�c spatial queries.

To be able to use the location module a database of information on locations
must be designed. Because the position module works with the WGS84 coordi-
nate system, this will also be used as reference system in the location database.
The location database must be able to store information on a wide range of
location types. A location can be a room, a building, a city etc. Locations can
be de�ned in 3 dimensions (x,y,z coordinates) or just 2 dimensions (x,y coor-
dinates). When a location is de�ned in only 2 dimensions the location module

32 CHAPTER 4. ANALYSIS AND DESIGN

will not di�erentiate between a device located on the second �oor or on the �rst
�oor of a building de�ned only by its area.

4.2.1 Datamodel for location database

In Oracle Spatial there is a mechanisms for representing geometry:

• Object-relational model: uses a table with single column of type
MDSYS.SDO_GEOMETRY and a single row per geometry instance.

What this means is that the relational-model uses the existing numeric SQL-
types for geometry storage and the object-relational model uses de�ned SQL
with Geometry types. This means that the object-relational model has implicit
support for a range of geometry types such as arcs, circles, compound poly-
gons etc. With the object-relational model it is easier to create geometries and
therefore this is the natural choice for this solution.

In Oracle Spatial the data model is a hierarchical structure consisting of ele-
ments, geometries and layers, with layers being the topmost abstraction. In
this thesis elements and geometries will be used to create the locations. Each
location will be modelled as a geometry which is in turn made up of one or
more elements. A further technical description on how to create locations as a
geomtetry object will be presented in the Prototype chapter.

Figure 4.1: Datamodel layers

One idea on how to use layers in the solution is to have di�erent layers for
di�erent location abstraction levels see Figure 4.1. The lowest layer could be
single locations such as rooms, then a layer for collections of locations such as

4.3. API DESIGN 33

buildings and then the topmost layer would be areas such as city, state etc. This
way when one is searching to �nd a given location one can start by searching
through the low level, if no such location is found at the position the search
continues but on a higher abstraction layer.

Each location will be given an unique ID to identify it. This ID will be a String
such as �NTNU-Gløshaugen-IT-bygget� that clearly identi�es the location. In
di�erent contexts the name or label on a location will vary, this will be handled
by having a separate data source over the locationIDs, their corresponding labels
and contextIDs. When a location is found the location module will look up the
location in the label database and �nd the label that is used with the context.
If no label is assosiated the ID of the location will be returned, therefore the
locationIDs should be as informative as possible. The service that is using the
location service must therefore specify a contextID in its queries if it wants to
get a label on the location not just the ID String. This will be very useful when
using the information to create logical maps since each location can be labeled
with di�erent labels given di�erent contexts.

4.3 API design

In this section a simple API that is designed for the location service is presented.
Each function is described with details on input parameters, output parameters
and how the function works. All of these functions will not necessarily be
implemented in the prototype presented in the next chapter, but they should be
provided in a �nalised version of the location service. The full XML description
of the location service is included in appendix B.

getLocation:

• Input: position

• Output: location

• Description: returns the location of a given position. Does not consider
context and the return value is the ID-string of the location.

getDeviceLocation:

• Input: entityID, requestEntityID, contextID

• Output: location

• Description: returns the location of a given entity. When the location
is found in the location database, the function then searches to see if it
can �nd a label for the location for the given context. If a label is found

34 CHAPTER 4. ANALYSIS AND DESIGN

the label is returned, if no label is found or no contextID is given, the
ID-string of the location is returned.

getUserLocation:

• Input: userID, requestEntityID, contextID

• Output: location

• Description: returns the location of a given user. The function must �nd
which device the user is currently using or used most recently and then
return the location of this device. As with the getDeviceLocation function
it returns the label associated with the context or the locationID if no label
is found.

getDeviceListLocation:

• Input: locationID, deviceType, requestEntityID

• Output: deviceList

• Description: returns a list of all devices of the given deviceType present
in the given location. If no deviceType is speci�ed the function will return
all the devices in the given location.

getLabel:

• Input: locationID, contextID

• Output: label

• Description: returns the label that matches a locationID given a speci�c
context. If no label can be found the function will return the locationID.

addLocation:

• Input: locationID, perimeterPoints

• Output: output

• Description: This is a helper method to add a location to the location
database. The locationID is an ID-string which clearly and uniquely de�ne
the location such as �NTNU-Gløshaugen-IT-bygget�. The perimeterPoints
de�ne the outline of the location. The perimeterPoints parameter must be
given in the following format: each point is separated by a | and the X and
Y value of a point is separated by a #. Also to create a closed polygon
(all locations must be polygons) the �rst and last perimeterPoints must be
equal and the outline be de�ned in a counterclockwise order. The function
returns a boolean value based on the success of the insert.

4.4. LOGICAL MAPS 35

addLabel:

• Input: locationID, contextID, label

• Output: output

• Description: This is a helper method to add a label to the location
database. The locationID and contextID is the primarykey which de�ne
the situation for the label. So in the label database table the locationID
and contextID pairs must be unique.

There are still some issues that are not handled by this simple API because they
require a more complex functional structure. One issue is how to create and
distribute logical maps. The next section will look at some solutions within the
database scheme that has been presented.

4.4 Logical maps

In the related work chapter di�erent representations for locations where pre-
sented. In the Oracle database scheme presented in the previous section the
locations are stored in a geometric coordinate model. So creating a map of a
speci�c area or containing speci�c locations is quite feasible. Creating a more
logical map which bases its mapping on hierarchical and spacial relationships is
also feasible but will require more work on transforming the location data.

To create a map of a speci�c area one can use the features in Oracle spatial
to get all the geometries (locations) within the area and then draw the map
with speci�c labels to create a normal graphical visualisation of the locations.
However for some applications/devices such a visualisation might not be imple-
mentable. For devices where this visualisation does not �t a logical map might
be the right tool. To create a map of how di�erent locations relate without
using a graphic visualisation, the spatial relationsships between the various lo-
cations must be deduced or explicitily modeled. In the datamodel presented in
the previous section only the geometric properties of the location was modeled.
However it is quite feasible to extend the model so that also spatial relationships
such as connectivity and containment can be explicitily modeled to get a hybrid
model as described in [BD04].

A possible design for this hybrid model would be to add extra database tables
for each spatial relationship that needs to be modeled. For instance modeling
connectivity can be done quite easily by adding a table that contains one entry
for each connection between two locations. To enable the creation of big logical
maps, using the hybrid model based on a hierarchical symbolic model has many
advantages. The hierarchical model is based on modeling the containment re-
lation explicitly in the model. To adapt the database scheme presented in the

36 CHAPTER 4. ANALYSIS AND DESIGN

previous section each location must store atleast which location it has as a par-
ent (directly above it in the containment-hierarchi). A diagram showing how
this hybrid model would work is presented in �gure 4.2

Figure 4.2: Hybrid location model

Chapter 5

Prototype

The prototype developed with in connection to this master thesis is a proof
of some of the concepts discussed in the previous chapters. The focus for the
prototype is on the location service of the UbiCollab platform. It is based on
the prototype developed by Heitmann and Jensen in the autumn of 2004 [HJ04].
The main goal for the development is to complete work the location service so
that it can handle requests for both position and location data.

5.1 UbiCollab overview

In this section an overview of the UbiCollab platform prototype developed by
Heitmann and Jensen is presented. Special attention is given to the location
service where most of the work on this prototype will be done. Also some issues
regarding existing problems with the prototype are disscussed.

The UbiCollab platform consists of several independent UPNP enabled services.
This means that the services can be dynamically discovered by other services
and services can communicate using their published service description. An
overview of the di�erent services implemented is presented in Figure 5.1 which
show the package diagram for the UbiCollab java prototype. Each service is
implemented as its own package and in addition there are some administrative
packages (util and common). Each of the services have their own startup �le
and can be started independently.

The location service consists of two modules; position module and location mod-
ule see Figure 5.2. The work on this prototype will complete the location module
so that the location service can handle queries about location. The location ser-
vice consists mainly of the locationDevice class which makes the service UPNP
enabled and the two modules that answer the position and location queries.
The way the service is built the position module has its own dataset for storing

37

38 CHAPTER 5. PROTOTYPE

Figure 5.1: UbiCollab java-package diagram

position information which is created in the same mysql database that the other
services use to store device and user information. When a request for position
information is sent to the position module it will search through its database
to see if it has valid position information, if the information is not found in the
database, it will query all the position services for the information.

One of the issues with the existing prototype is that there is no direct link be-
tween a user and the devices registered with the platform. For instance when
logging on to the platform through the PDA-client the prototype does not reg-
ister the PDA used as a device, only the user session is activated. This loose
connection between users and devices is a problem when trying to �nd the po-
sition/location of a user since the answer often is dependent of which device the
user is using.

There is also the issue of how the devices register with the platform. The de-
vices are registered through publishing their UPNP service description (XML).
However there is no clear deviceID stored with the devices when they are stored
in the directory service and this makes it hard to uniquely identify devices when
searching for them in the position service. The approach that was made in the
autumn 2004 was to use the closest thing to a deviceID, friendlyName, which
is stored with the device information in the directory service. However this re-
quires that the friendlyName parameter is set to a di�erent value for each device
in their service description.

5.2. LOCATION MODULE 39

Figure 5.2: Location service class diagram

5.2 Location module

This section describes the design and implementation of the location module in
the location service. To be able to store and update the location information a
location database is required. As mentioned in the analyses and design chapter
the choice of database system fell on Oracle Spatial.

The database consists of three tables used for storing geometries, one for each
layer described in the previous chapter. Each of the tables are set up with
their own spatial index on the WGS84 coordinate system. This means that it
is possible to perform spatial searches and queries on the tables.

To create a table that can store the location information the special Oracle Spa-
tial datatype of MDSYS.SDO_GEOMETRY is used for storing the geometries.
To organize and keep an overview of the tables containing spatial information
Oracle spatial uses a special table containing geometry metadata. It is this table
which will keep track of which coordinate system the data should be stored in
and what level of tolerance should be used when performing spacial queries on
a table. The following SQL code is used for creating the table and setting up
the spatial indexing:

40 CHAPTER 5. PROTOTYPE

Creating detail location table and index:

CREATE TABLE detail_location (

location_id VARCHAR2(32) PRIMARY KEY,
shape MDSYS.SDO_GEOMETRY);

INSERT INTO USER_SDO_GEOM_METADATA
VALUES (
'detail_location',
'shape',
MDSYS.SDO_DIM_ARRAY(

MDSYS.SDO_DIM_ELEMENT('Longitude', -180, 180, 0.5),
MDSYS.SDO_DIM_ELEMENT('Latitude', -90, 90, 0.5)
),

8307 -- SRID for 'Longitude / Latitude (WGS 84)' coordinate system
);

CREATE INDEX detail_loc_spatial_idx_cs
ON detail_location(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The location module consists of two classes, see Figure 5.3. The LocationServer
class handles all the requests from the locationDevice. The LocationData class is
a wrapper class for accessing the location data in the database. To communicate
with the oracle databace the class uses the standard JDBC interface with the
Oracle driver.

Figure 5.3: Location module class diagram

In addition to the database tables for storing the location information and their
geometries there is also a table for storing label information. Each location is

5.3. LOCATION QUERIES 41

de�ned by a unique string ID which should be descriptive so that it gives an
understanding of where the location is. However a location may have di�erent
names in di�erent contexts and this is where the labels come in. This proto-
type enables the services using the location service to associate labels with the
di�erent locations based on which context the location is needed for. The label
is stored in the table along with the locationID and a contextID. Together the
locationID and the contextID must make a unique pair. When a service re-
trieves a location for a speci�c context it can associate a label with the location
by using the function addLabel(). When a request for a location includes a
contextID the locationModule will �rst �nd the location, then it will search to
see if it has a label for the speci�c locationID and contextID pair. If a label is
found the label is returned, and if no label is found the locationID is returned.

The location module can handle queries for the label or ID of a given position, it
can also handle queries for the location of a given device. The location module
stores no information on the devices or users location, this is left to be handled
by the position module. This is because it is the position module that handles
the communication with the position service and stores the position data of
devices. So when a query for the location of a speci�c device is received the
location module queries the position module for the position of the device and
then goes on to identify the location from the position data it receives.

In this prototype the position data and the location data are in separate databases,
which presents some issues for some of the more advanced queries. For instance
searching for all the devices in a speci�c location becomes very hard because
the location database has no information on the position of the di�erent de-
vices. If the positions of devices had been plotted in the same database as the
location information it would have been a simple matter of using spatial opera-
tors to �nd all the positions contained within the locations geometry. However
because converting the position database and merging it with the Oracle spa-
tial database would require a massive restructuring of the position module and
position service this has not been done in this prototype.

5.3 Location queries

The new functionality in the location service can be accessed by other services
throught the location service's UPNP device. In Figure 5.4 a simple location
query from a client application to get the locationID of a given position is
presented as a sequence diagram.

The client application sends an action with the name getLocation to the Lo-
cationDevice through its service interface. The LocationDevice identi�es the
action and retrieves the ArgumentList contained in the action object. It then
sends a getLocation message to the LocationDeviceActionHandler. The Action-
Handler converts the position data, which is included in the ArgumentList as

42 CHAPTER 5. PROTOTYPE

Figure 5.4: Sequence diagram for a getLocation query

a string, to a Position object and sends a getLocation message to the Loca-
tionServer with the position object as input parameter. The LocationServer
then passes the message on to the LocationData object which searches through
the database for the location that contains the position and returns the Lo-
cationID. The LocationID is passed back through the chain and returned as
the outputArgument of the client application's query. When the LocationData
object searches for the location it will �rst search in the lowest location layer,
the �detail location layer�. If no location is found it then searches the medium
layer, the �collection location layer�, and then goes on to search the top layer,
the �overview location layer�.

Another example is presented in Figure 5.5 where the sequence diagram of a
query searching for the location of a given device is depicted.

The message sequence of the search for device's location is similar to the se-
quence for �nding the location of a given position, but it also involves contex-
tID, locationLabel and the PositionModule. The ActionHandler now extracts
the EntityID and the ContextID from the argument list and sends the getDe-
viceLocation message with these as input parameters to the LocationServer.
The locationServer then query the PositionModule for the position of the de-
vice with the given EntityID. When the position of the device has been found
the location can then be found by querying the locationData for the location
matching the position. Once the location has been identi�ed the LocationID
and the ContextID can be used to �nd and return the LocationLabel for the
given context. If no contextID is included in the query or no matching label can
be found the LocationID will be returned as the outputArgument of the query.

5.3. LOCATION QUERIES 43

Figure 5.5: Sequence diagram for a getDeviceLocation query

44 CHAPTER 5. PROTOTYPE

Chapter 6

Evaluation

In this chapter an evaluation of the theoretical and the practical work done on
this master thesis is presented. First an evaluation of the prototype is done.
Then the teoretical solutions presented in the analysis and design chapter are
evaluated. A short evaluation of the work process throughout the master thesis
is also inlcuded.

6.1 Prototype

This section starts of with a demonstration of how the prototype can be used
to provide other services with location information. Then an evaluation of the
prototype's limitations and future possibilities is presented.

6.1.1 Demonstrator

The original plan for the demonstrator was to use the shared display application
developed by Heitmann [Hei05] to demonstrate the use of the location service,
however because of time limitations and latent restrictions in the UbiCollab
prototype this has not been achieved. One of the limitations is that there is no
direct connection between the user and their devices in the UbiCollab prototype
and to rectify this the whole prototype would have to be altered and partially
redesigned. So the demonstration of the prototype will be in the form of a set
of test data entered into the database and test queries to �nd the location of
devices and positions. The aim of the test is to show how the location service
now can handle location queries and also add new location information when
the service is running.

To simulate that there is a service sending requests to the location service I
have created a test class which emulate a service by invoking actions on the

45

46 CHAPTER 6. EVALUATION

LocationDevice through the CollaborationUPNPControlPoint as a real service
will do.

Inserting test data

To test the location service the database have to be �lled with a set of locations
and I have chosen to model some locations in Trondheim. The full test-set is
included in appendix C and will not be presented in this section however to
demonstrate how the location service works parts of the test-set will be pre-
sented.

The �rst test for the location service is to add a location to the database. This
is done by invoking the �addLocation� action. The addLocation action requires
two input parameters, locationID and perimeterPoints. The perimeterPoints is
a collection of coordinates that de�ne the outline of the location in a counter-
clockwise order. The code for inserting a location into the location database is
as follows:

Adding location to location database:

Hashtable arguments = new Hashtable();
arguments.put("locationID", "NTNU-Gløshaugen-IT-bygget");
arguments.put("perimeterPoints",

"63.417387678888889 # -10.401984163888889 | " +
"63.417558822222222 # -10.402812941666667 | " +
"63.417652011111111 # -10.402710913888889 | " +
"63.417566277777778 # -10.402239972222222 | " +
"63.417745441666667 # -10.402051827777778 | " +
"63.417662763888889 # -10.401648816666667 | " +
"63.417387678888889 # -10.401984163888889");

result = collaborationUPnPControlPoint.invoke(locationDevice, "addLocation", arguments);

The next test is to add some label data to the database so that the locations
are given di�erent labels for di�erent contexts. The code for inserting a label
into the database is given below:

Adding label to location database:

Hashtable arguments = new Hashtable();
arguments.put("locationID", "NTNU-Gløshaugen-IT-bygget");
arguments.put("contextID", "Prosjekt");
arguments.put("label", "Kontoret");
result = collaborationUPnPControlPoint.invoke(locationDevice, "addLabel", arguments);

6.1. PROTOTYPE 47

A device with a speci�c position will also be added to the position database so
that all the functionality can be tested:

Adding device to position database:

Hashtable arguments = new Hashtable();
arguments.put("positionX", "63.417498650000000");
arguments.put("positionY", "-10.402015497222222");
arguments.put("height", "0");
arguments.put("timeStamp", "0");
arguments.put("timeToLive", "0");
arguments.put("entityID", "testDevice");
result = collaborationUPnPControlPoint.invoke(locationDevice, "addEntity", arguments);

The addLocation, addLabel and addEntity actions return a boolean value based
on the success of the insertion. For the rest of the test location data see appendix
C.

Testing location queries

Now that some test data has been inserted into the database it is possible to test
to see if the location queries run as they are intended to run. For the queries I
have run I have used the test data from appendix C and each query is presented
with the description of how to run it and the results for di�erent values.

The �rst test is the simple getLocation query:

Running getLocation query:

Hashtable arguments = new Hashtable();
arguments.put("position", "63.417498650000000#-10.402015497222222");
result = collaborationUPnPControlPoint.invoke(locationDevice, "getLocation", arguments);

This query does not take into consideration the context and labels and therefore
it returns the location, from the most detailed layer possible, that contains the
position. The results from the query was very good. When trying to locate
a position that was covered by a location in the detail_location layer such as
�NTNU-Gløshaugen-IT-bygget� the query returned the correct locationID as
the result. Also when searching with a position argument that is not in the
detail_location layer the location containing the position from the closest layer
above was returned. When searching for a position that is not covered by any
test location the query returned �no location found error�.

The next query to be tested is the getDeviceLocation action. This action re-
quires the entityID of the device and the contextID of the context as input:

48 CHAPTER 6. EVALUATION

Running getDeviceLocation query:

Hashtable arguments = new Hashtable();
arguments.put("entityID", "testDevice");
arguments.put("contextID", "Prosjekt");
result = collaborationUPnPControlPoint.invoke(locationDevice, "getLocation", arguments);

This query uses both the positionModule and the locationModule of the location
service. When the location service receives a request for the location of a device
it �rst uses the positionModule to �nd the position of the device and then it
uses the locationModule to get the locationID or label. This query was tested
with di�erent positions for the testDevice and di�erent contextIDs. All the tests
gave the correct/expected results.

6.1.2 Evaluation and future work

The prototype has successfully implemented a locationModule that can handle
simple location queries. The foundation for an advanced location service has
been implemented and it is possible to extend the prototype to handle more
advanced location queries such as the ones discussed in the end of the analysis
and design chapter.

The prototype demonstration could not be integrated as well with the work of
Heitmann as planned because the issues discussed in the previous section. This
has done that the demonstration does not include any screenshots or other visual
aids. Still I feel that the demonstration shows how the location service works
and that it now can handle location queries in addition to position queries.

One of the major drawbacks that was encountered during the prototype devel-
opment was that there are several latent restrictions in the UbiCollab platform
prototype. One of the things that should be looked into in future work is to
restructure and redesign the whole prototype to get a more coherent prototype
and make it easier to maintain and modify.

For the location service part of the prototype it would be crucial to get a stronger
link between the users and their devices so that this can be utilised in getting
location information on devices, users and resources.

Another thing that should be looked into is to integrate the two databases,
position and location. By having one coherent database more advanced location
queries with regard to devices and users can be created.

6.2. EVALUATION OF THEORETICAL SOLUTION 49

6.2 Evaluation of theoretical solution

In the analysis and design chapter a solution for storing and querying spatial
data in the UbiCollab platform was presented. One of the aims of this master
thesis was to present an API for the location service in the UbiCollab platform.
The design chapter presents an API that handles the basic location queries
and insertion of location information. The API was used as the interface the
prototype locationService should provide and the solution seemed to work well
in practical work as well as in theory.

The storing of location information is one of the main issues of this master
thesis. The solution presented in the analysis and design chapter is based on
using a third party solution for handling the storing and querying. This has
both positive and negative ramni�cations. By using a third party solution the
location service then becomes dependent on a speci�c software, that is for the
service to be able to run it must be able to run an Oracle Spatial database or
be able to communicate with one. However there are also positive sides such as
full support for spatial indexing and querying, built in geometric types, multiple
spatial operators and �lters.

Another aspect of the storage and querying of location information is how the
information is stored in the database. The solution presented in this thesis
is based on the hybrid location model architecture presented in [BD04]. This
solution gives a model that can be very rich on information and therefore answer
all the important spatial queries. However the richness of the model also makes
it more work intensive to create the di�erent locations in the model.

6.3 Work process

When starting out on this master thesis I made a general plan for how much time
should be spent on the various parts of the thesis work. As in many projects
some time limits were exceeded an the plan had to be adjusted. All in all the
plan worked out, but I should have scheduled some more time for development
to be able to create a mutual demonstration with the other groups working on
the UbiCollab platform.

As for the collaboration with the other groups working on the platform it has
been good throughout the process. Because we decided to produce our own
separate demonstrations the collaboration has been on a theoretical level. We
have had meetings regularly to inform each other of how the work is going and
shared information that a�ect the work of other groups.

50 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this thesis I have studied how to handle location information. I have contin-
ued the work of Heitmann and Jensen on the location service in the UbiCollab
platform by making it location-aware. This work has made the UbiCollab plat-
form location-aware with regards to both position and location. The work has
been done on state-of-the-art concepts and given a contribution to the UbiCollab
project.

In the thesis I used a scenario to specify the issues and goals with regards to
the work on location-awareness in UbiCollab. The goals were focused on issues
on the platform level, but also more general issues with regards to handling
location information has been kept in mind while working on this thesis.

The related work presents background information to understand the di�erent
issues surrounding storing and handling of location information. This under-
standing has been used for analysing the issues and designing the solution for
a fully location-aware location service. The prototype developed in this master
thesis partly implemented this design and enabled the location service to handle
some of the location queries.

7.1 Summary of contributions

In this master thesis I have made the following contributions to the �eld of
location-awareness and the UbiCollab platform:

• Presented research in the �eld of location-awareness and handling of spa-
tial information.

• Created a location model for use in the UbiCollab location service.

• Created an API for the location service in the UbiCollab platform.

51

52 CHAPTER 7. CONCLUSION

• Designed a complete location service which can handle both position and
location information.

• Designed and implemented a prototype that shows how location informa-
tion can be stored and accessed in the UbiCollab platform.

• Demonstrated through this prototype that the theory presented can be
realised in the platform.

7.2 Future work

For the future there are several issues with regards to the UbiCollab platform
in general and the location service in particular that could be looked into.

Because work on the UbiCollab platform has been done by several di�erent
groups over the years the platform design has slowly become less coherent. The
design started out as a clear and robust design with good structure. As the dif-
ferent work on several of the services has been added to the design it has become
less clear. Especially for the prototype of the platform this constant adding has
cluttered the design and made the prototype more error prone. So an e�ort
should be put into cleaning up the design and incorporating the di�erent ideas
that has been presented over the years in a new design that is more coherent.
A new platform prototype that can show all the work done on privacy, shared
display and location-awareness should be developed.

The work done in this master thesis on the location service has made it possible
to handle location information. However there are several issues left to be
handled. This thesis has described some of the issues regarding more advanced
spatial queries such as creating logical maps. Building a location service that
can handle the more advanced queries have been left for future work.

Bibliography

[Bak04] Anders Bakkevold. A shared display system for a ubiqui-
tous computing environment. Master's thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2004.

[BD04] Christian Becker and Frank Dürr. On location models for ubiqui-
tous computing. Personal Ubiquitous Computing, 3(9):20�31, Au-
gust 2004.

[CS02] Holger Christein and Peter Schulthess. A general purpose model
for presence awareness. In J. Place, P. Kropf, P. Schulthess, and
J. Slonim, editors, 4th International Workshop, DCW 2002 Sydney,
Australia, April 3-5, 2002 Revised Papers, volume 2468 of Lecture
Notes in Computer Science, pages 24�34. Springer-Verlag Berlin Hei-
delberg, 2002.

[DFJ05] Monica Divitini, Babak A. Farshchian, and Børge S. Jensen. Ubi-
collab: Improving collaboration with location services. 2005.

[DFS04] Monica Divitini, Babak A. Farshchian, and Haldor Samset. Ubicol-
lab: Collaboration support for mobile users. In Proceedings of the
2004 ACM symposium on Applied computing. ACM, 2004.

[DRD+00] Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor, Adrian Fri-
day, and Kevin Palfreyman. Exploiting space and location as a
design framework for interactive mobile systems. Transactions on
Computer-Human Interaction, 7(3):285�321, September 2000.

[Gon04] Pedro André Cravo da Silva Garcia Gonçalves. Ubiclient: a mobile
client for an ubiquitous collaborative environment. Master's thesis,
Norges Teknisk-Naturvitenskapelige Universitet, 2004.

[HD96] S. Harrison and P Dourish. Re-place-ing space: the roles of place
and space in collaborative systems. In Proceedings of the 1996 ACM
conference on Computer supported cooperative work. ACM, 1996.

[Hei05] Carsten Andreas Heitmann. Discolab: a toolkit for development of
shared display systems in ubicollab. Master's thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2005.

53

54 BIBLIOGRAPHY

[HJ04] Carsten Andreas Heitmann and Børge Setså Jensen. Location-aware
service for the ubicollab platform. Master's thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2004.

[JS02] Changhao Jiang and Peter Steenkiste. A hybrid location model with
a computable location identi�er for ubiquitous computing. In Gae-
tano Borriello and Lars E. Holmquist, editors, UbiComp 2002: Ubiq-
uitous Computing 4th International Conference, Göteborg, Sweden,
September 29 - October 1, 2002. Proceedings, volume 2498 of Lecture
Notes in Computer Science, pages 246�263. Springer-Verlag Berlin
Heidelberg, 2002.

[Lop03] Xavier Lopez. Oracle spatial and oracle locator. White paper, Oracle
Corporation, December 2003.

[MS001] Enterprise mapping deployments: Managing spatial data in a rela-
tional database management system. White paper, MapInfo Corpo-
ration, June 2001.

[Sch04] Christian Schwarz. Ubicollab - platform for supporting collaboration
in a ubiquitous computing environment. Master's thesis, Norges
Teknisk-Naturvitenskapelige Universitet, 2004.

[Wei93] Mark Weiser. Some computer science issues in ubiquitous comput-
ing. Communications of the ACM, 36 (7):75�84, 1993.

Appendix A

Previous work on UbiCollab
platform

A.1 Theoretical platform

The Ubicollab consist of several native platform services. These provide the sup-
port for collaboration in a ubiquitous computing environment. They do however
not have the responsibility of providing the actual services for speci�c type or
domain of collaboration (like instant messaging, cooperative programming etc.).
That is, the platform enables support for usage and management of such ser-
vices, but do not provide such basic collaborative services itself. By keeping the
platform clean like this the generality of the platform is ensured and the focus
can be on developing new kinds of collaboration support instead of reinventing
existing collaborative services.

A.1.1 Conceptual model

To represent the abstract collaboration concept Schwarz uses a collaboration
instance. This is an entity which is meant to capture a real world activity,
or context, of collaboration between people and resources they use. A person
entity represent a human participant while a resource can be a physical device
or electronic information. By creating a conceptual model centered around the
collaboration instance several issues can be solved fairly easy. This gives a focus
point for all the services and tie the whole platform together as a coherent
system. Another important aspect with this solution is that it enables resources
and other entities to be connected to several collaboration instances. It also
enable collaboration instances to be aggregated with others and still maintain
their components.

55

56 APPENDIX A. PREVIOUS WORK ON UBICOLLAB PLATFORM

A.1.2 Platform services

The platform consist of modular services that cooperate with each other but
run independently. The most complex and advanced service is the collaboration
server which provides the main functionality that enable collaboration between
clients.

The directory service is another important service. It provides basic resource
management and is used to provide information on which resources are avail-
able at a given time. It collects information on which resources are available
from resource collectors which run on the clients. This is a good solution since
it enables dynamic adding and removing of resources as the device collectors
discover or lose devices.

When it comes to the location service and the privacy service little or no work
has been done in developing these. Developing the location service is the main
focus of this project whilst the work of Braathen and Rasmussen will focus on
the privacy service.

A.2 Developed prototype

The prototype that was developed by Schwarz focused on developing the col-
laboration server, the resource collector, the directory service and the presence
service. To communicate internally between the services in the platform UPnP
is used and every service can communicate to every other service over UPnP.
To communicate with the clients a web service was developed.

The prototype is well structured and implements a well arranged architecture.
However there is a lack of documentation in the prototype. Almost no javadoc
comments is provided and this makes the process of understanding and further
developing the prototype much harder.

Appendix B

Location Service XML
description

The following pages contain the xml service description for the location service.
The xml-schema follows the standard UPNP service description schema.

57

58 APPENDIX B. LOCATION SERVICE XML DESCRIPTION

59

60 APPENDIX B. LOCATION SERVICE XML DESCRIPTION

61

62 APPENDIX B. LOCATION SERVICE XML DESCRIPTION

Appendix C

Location test data

The following pages contain the test data used for the demonstration of the
prototype.

Locations are given in the following format:
Layer: name of the layer (detail_location, collection_location or overview_location)
LocationID: the ID used for the location in the database
Coordinates: (WGS84(hour-min-sec) || WGS84(double) given in the required
counterclockwise order
SQL-insert: Gives the SQL statement needed to insert the location into the
database
Coordinate inside location: Gives a coordinate that is located within the
outline of the location
Coordinate outside location: Gives a coordinate that is located outside the
outline of the location

Location Data

Layer: detail_location
LocationID: NTNU-Gløshaugen-IT-bygget
Coordinates:
N63-25-2.59550, E10-24-7.14299 || 63.417387678888889, -10.401984163888889
N63-25-3.21176, E10-24-10.12659 || 63.417558822222222, -10.402812941666667
N63-25-3.54724, E10-24-9.75929 || 63.417652011111111, -10.402710913888889
N63-25-3.23860, E10-24-8.03879 || 63.417566277777778, -10.402239972222222
N63-25-3.88359, E10-24-7.38658 || 63.417745441666667, -10.402051827777778
N63-25-3.58595, E10-24-5.93574 || 63.417662763888889, -10.401648816666667
N63-25-2.59550, E10-24-7.14299 || 63.417387678888889, -10.401984163888889

SQL-insert:
INSERT INTO detail_location VALUES('NTNU-Gløshaugen-IT-bygget',

MDSYS.SDO_GEOMETRY(2003, 8307, NULL,

63

64 APPENDIX C. LOCATION TEST DATA

MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1),
MDSYS.SDO_ORDINATE_ARRAY(63.417387678888889, -10.401984163888889,

63.417558822222222, -10.402812941666667,
63.417652011111111, -10.402710913888889,
63.417566277777778, -10.402239972222222,
63.417745441666667, -10.402051827777778,
63.417662763888889, -10.401648816666667,
63.417387678888889, -10.401984163888889

)
)

);

Coordinate inside location:
N63-25-2.99514, E10-24-7.25579 || 63.417498650000000, -10.402015497222222

Coordinate outside location:
N63-25-3.79703, E10-24-8.66584 || 63.417721397222222, -10.402407177777778

Layer: collection_layer
LocationID: NTNU-Gløshaugen
N63-24-55.34535, E10-24-15.13605 || 63.415373083333334, -10.404204458333334
N63-24-59.23937, E10-24-29.11624 || 63.416455380555554, -10.408087844444445
N63-25-11.30976, E10-24-13.80953 || 63.419808266666664, -10.403835980555556
N63-25-7.55753, E10-23-54.30882 || 63.418765980555555, -10.398419116666666

SQL-insert:
INSERT INTO collection_location VALUES('NTNU-Gløshaugen',

MDSYS.SDO_GEOMETRY(2003, 8307, NULL,
MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1),
MDSYS.SDO_ORDINATE_ARRAY(63.415373083333334, -10.404204458333334,

63.416455380555554, -10.408087844444445,
63.419808266666664, -10.403835980555556,
63.418765980555555, -10.398419116666666

)
)

);

Coordinate inside location:
N63-25-2.99514, E10-24-7.25579 || 63.417498650000000, -10.402015497222222

Coordinate outside location:
N63-25-1.40846, E10-23-45.75714 || 63.417057905555555, -10.396043650000000

Layer: overview_layer
LocationID: Trondheim
N63-23-1.43562, E10-18-48.76641 || 63.383732116666664, -10.313546225000001
N63-23-2.49423, E10-26-0.39549 || 63.384026175000000, -10.433443191666667
N63-25-50.42746, E10-31-22.92445 || 63.430674294444444, -10.523034569444444
N63-27-19.22504, E10-26-26.81552 || 63.455340288888889, -10.440782088888889
N63-25-55.58342, E10-21-0.80733 || 63.432106505555555, -10.350224258333332
N63-23-1.43562, E10-18-48.76641 || 63.383732116666664, -10.313546225000001

SQL-insert:

65

INSERT INTO collection_location VALUES('Trondheim',
MDSYS.SDO_GEOMETRY(2003, 8307, NULL,

MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1),
MDSYS.SDO_ORDINATE_ARRAY(63.383732116666664, -10.313546225000001,

63.384026175000000, -10.433443191666667,
63.430674294444444, -10.523034569444444,
63.455340288888889, -10.440782088888889,
63.432106505555555, -10.350224258333332,
63.383732116666664, -10.313546225000001

)
)

);

Coordinate inside location:
N63-25-1.40846, E10-23-45.75714 || 63.417057905555555, -10.396043650000000

Coordinate outside location:
N63-24-48.54855, E10-36-2.45588 || 63.413485708333333, -10.600682188888889

Label data is given in the following format:
LocationID: The ID of the location that is to be labeled
ContextID: A unique identi�er for the context the label is used in
Label: The string that is used as a label for the given location in a given con-
text
SQL-insert: Gives the SQL statement needed to insert the label into the
database

Label Data

LocationID: NTNU-Gløshaugen-IT-bygget
ContextID: Prosjekt
Label: Kontoret

SQL-insert:
INSERT INTO context_label VALUES(
'NTNU-Gløshaugen-IT-bygget',
'Prosjekt',
'Kontoret'
);

LocationID: NTNU-Gløshaugen-IT-bygget
ContextID: Studass
Label: Veilednings-lab

SQL-insert:
INSERT INTO context_label VALUES(
'NTNU-Gløshaugen-IT-bygget',
'Studass',
'Veilednings-lab'
);

66 APPENDIX C. LOCATION TEST DATA

LocationID: NTNU-Gløshaugen-IT-bygget
ContextID: Bekjent
Label: Trondheim, Gløshaugen

SQL-insert:
INSERT INTO context_label VALUES(
'NTNU-Gløshaugen-IT-bygget',
'Bekjent',
'Trondheim, Gløshaugen'
);

LocationID: NTNU-Gløshaugen
ContextID: Prosjekt
Label: Gløshaugen

SQL-insert:
INSERT INTO context_label VALUES(
'NTNU-Gløshaugen-IT-bygget',
'Prosjekt',
'Trondheim, Gløshaugen'
);

LocationID: NTNU-Gløshaugen
ContextID: Bekjent
Label: Trondheim, Gløshaugen

SQL-insert:
INSERT INTO context_label VALUES(
'NTNU-Gløshaugen',
'Bekjent',
'Trondheim, Gløshaugen'
);

