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Summary

This thesis covers the topic of image processing in relation to the segmentation and analysis of
pores protruding the surface in the three dimensional surface structure of paper. The successful
analysis of pores is related to a greater goal of relating such an analysis to the perceived quality
of the surface of a paper sample.

The first part of the thesis gives an introduction to the contex t of image processing in relation
to paper research. A lso, an overview of the image processing framework used for image pro-
cessing plugin development, ImageJ, is provided, together with the current status of ImageJ
plugins for surface characterization.

The second part of the thesis gives an overview of an envisioned future paper quality assess-
ment system. The quality assesment system described consists of six phases, three of which are
treated in this thesis. These are the Image Processing phase, the M odeling phase, and the M ea-
surement phase. The Image Processing phase is further divided into three subphases. These
are the Error Correction subphase, the Pore Ex traction subphase, and the Segmentation phase.
Together with the description of the phases of the system, techniques are presented that are
relevant to the phase currently being described.

The third part of the thesis covers the development of new plugins for surface characterization
within the ImageJ framework4. Ex amples are given and evaluated to show the usage and
results of each plugin, and each plugin is related to a specific part of the quality assesment
system. A lso, a tutorial covering use of several plugins in sequence is presented. The parts
of the system receiving the most attention in relation to plugin development are segmentation
and modeling.

4A CD-RO M is included with this thesis, containing ImageJ version 1.34n, the developed plugins including
source code, and ex ample images
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Chapter 1

Introduction

This project concerns three-dimensional surface analysis in the context of paper research. The
main topic is pores occuring in the paper surface, and segmentation and analysis of these.
These pores are also discussed in relation to their consequences in the printing process. More
specifically, the problem of surface areas with large pores or clusters of smaller pores that still
have spots without ink after printing is discussed. For simplification purposes, this is here
called the missing dot problem.

First an overview of the current status of pore analysis is given, both in terms of theoretical
background and the status of current software related to this topic. A framework with the
purpose of describing a system for estimating missing dots is presented, and also the image
processing, modeling and measurement parts of this system are presented.

With this background in mind, software implementations for these parts of the system are pre-
sented together with their corresponding results. The example images used have been acquired
with LLP (Lehrman Laser Profilometry), which is a relatively convenient technique for surface
image acquisition, and presumably accurate enough for the present purposes.

1.1 U nderlying Fiber Structure

At the core of surface analysis in paper research is examination of the relationships between
the underlying fiber structures at the microscopic level and the high-level qualities of the pro-
duced material. Automated and semi-automated analysis of these relationships with the help
of image processing software would be very useful in this context. Gradually, during the last
few decades, the declining price and exponentially increasing power of workstation computers
capable of powerful image processing arrived at the point where the use of image processing
techniques from the field of computer science has become helpful for the pulp and paper re-
search community. As of today, graphic workstations are often more than powerful enough for
processing of the (sometimes quite volumous) amounts of data samples acquired in pulp and
paper research contexts.

1
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1.2 Missing Dot Problem

Several types of analysis are available to aid in the analysis of missing dots. Data sets of the
type used in this report have been prepared and used for other reports at PFI, among others
Chinga’s paper [7]. These data sets have been obtained through the use of the Lehrman Laser
Profilometry (LLP) method. In the context of analysis of transferred vs. missing dots, LLP has
apparently traditionally not been the method of choice, though it has other advantages over
the usual methods, for instance speed of image acquisition.

There are many other techniques in common use. The use of Scanning Electron Microscope
(SEM) has been convenient when analyzing printed surfaces in terms of transferred and miss-
ing dots. An example image acquired with SEM may be useful in visualizing the missing dot
problem. Such an example image is shown in Figure 1-1.

Figure 1-1: Missing Dot Example, SEM Backscatter Images [8]

1.3 Focus

The focus of the present diploma work will be on image processing methods which can be
useful in assessing missing dots that are due to pores protruding the paper surface. A goal
is to enable easier quantification of missing dots prior to actual printing as this is a useful
measure for the quality of the paper. Ideally, it should be possible to process an LLP image
to such a degree that the percentage and layout of missing dots in the sample, after printing,
can be predetermined. The processing should be as automated as possible, though operator
intervention is desirable if it is shown to considerably increase the accuracy of the estimated
percentage and layout of missing dots.

The benefits of a system offering semi- or fully-automated missing dot estimates directly from
an LLP sample should be obvious: As the percentage and layout of missing dots is a large
component in determining final print quality of a paper sample, an automated system which
can perform this analysis with minimal operator intervention would be of highly useful. How-
ever, it is important that the estimates generated by the analysis are close approximations to
real-world measurements after printing. The quality of the estimates would be assessed by
comparing them with empirical measurements.

2
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A goal in a broader context is, of course, to apply such results to the paper production process
itself. The benefits that can ultimately be gained from a more precise automated image analysis
technique for paper quality evaluation are many. For instance, one can imagine the production
of paper with ever improved properties, or even production of paper with the same properties
as today, but with lower production cost. According to Holmstad [14], the crucial elements
with regards to product improvement will be “ to h av e a q u antitativ e measu re of th e detailed stru c -
tu re c h arac teristic s. W ith ou t q u antitativ e measu res th ere are no means for p roc ess c ontrol or objec tiv e
assessment of th e p roc ess imp rov ements.” The present diploma work is, as already presented, a
work in the chain of research that aims at improving the possibility of obtaining a quantitative
measure, more specifically surface quality characterization of paper due to pores protruding
the surface.

1.4 Computer Science and Image Processing in Pulp and Paper Re-

search

It is the purpose of this thesis to bring forward the collaborative efforts that are present between
PFI and IDI, NTNU. These collaborative efforts attempt to combine new imaging techniques
used by PFI researchers with new developments in image processing. A partial goal of the
collaborative efforts is to develop tools helpful in analyzing newly acquired sets of images at
PFI in new and interesting ways.

An observation that should be made is that while the author (as well as the other IDI students
doing their thesis work in collaboration with PFI) has knowledge of software development and
image processing, he (and the other IDI students) has little knowledge of e.g. microscopy and
other paper analysis techniques used at PFI. It could be that some aspects of the present thesis
seem somewhat out of place in the context of paper research, however, it is the view of the
author that new approaches to paper surface analysis could become apparent by viewing the
acquired images from new angles. Therefore it is the goal that new techniques will be presented
and implemented throughout this thesis that can lead to better results in surface analysis (paper
surface as well as possible other types of surfaces).

1.4.1 X -Ray Microtomography and Surface Analysis

In recent years there has been a move to include more techniques from the field of Image Pro-
cessing to the pulp and paper research community. Following are some of the present focus
areas for image processing techniques at PFI.

As mentioned in Chapter 1.4, there is an ongoing collaboration between PFI and IDI, NTNU.
Most of the collaborative projects have involved analysis of 3D X-Ray microtomography im-
ages obtained through the use of a synchrotron at ESRF (European Synchrotron Radiation Fa-
cility). It should be noted that the data sets obtained through the synchrotron are of extremely
high detail and are therefore large and computationally expensive to analyze even with work-
station computers. One of the goals of the X-ray Microtomography project is that of simplifying
the data sets while still retaining the important bits of data. It should be noted that the data vol-

3
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umes of images used in this thesis are much smaller than for those including microtomography
images.

In the future it might be possible to perform more accurate pore analysis by utilizing data from
X-ray microtomography images. However, at the present stage it is unknown if this will be
neccessary in the context of pore segmentation and analysis, and its relation to the missing dot
problem.

4
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Chapter 2

Background

2.1 H istory

Following in the steps of Holmstad’s work (a doctoral thesis in collaboration with PFI), new
methods of measurement lead to a wealth of possibilities for the microscopy and image analysis
of normal and also cross-sectional images for characterization of the paper structure. Holmstad
[14] divides the possibilities into three distinct categories:

1. Observation of paper structure features and quality problem detection by visual inspec-
tion

2. Image analysis for benchmarking and product development

3. Image analysis for explanation of physical behavior

It is clear that the present work will mostly be concerned with the first and third category.

2.2 Applications

An interesting aspect of the topic at hand is that image processing of the type described in this
report has a wide range of applications. From the current consideration of image processing
in the domain of pulp and paper, there are also other domains which can find great interest in
the topics covered in this report. In principle, much of the work on surface characterization
in the context of paper surface analysis could be of use to completely different research areas.
One application is to the domain of road surface analysis. In his paper, Payne [18] presents
an integrated system for road surface analysis which uses similar image processing techniques
to analyze a road profile. Another possible application where the SurfCharJ plugin itself has
actually been applied, is in the domain of soil analysis in the event of volcano eruptions.

5
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2.3 Missing Dots and Printing

2.3.1 Causes

Flat surface; 2 %

Fillers hills; 12 %

Large pore; 8 %

Large fiber(s) & fillers;
14 %

Large fiber(s); 14 %Fibers crossing & fillers;
17 %

Fibers crossing; 33 %

Figure 2-1: Classification of Missing Dots by Underlying Structure [1]

Pores are not the only cause of missing dots. As can be seen in Figure 2-1, which describes
measurements made by Antoine [1], pores are actually not the even main cause of missing dots
after printing. Nevertheless the present work has pore detection, pore segmentation and the
relationship between pores in the surface to missing dots after printing as its main topic. The
main reason for this is that this is an easily isolated subgroup where much progress is still
needed in order to obtain good results.

2.3.2 Physical Consequences During Printing

As explained in Chinga’s thesis and corresponding presentation [5, 6], there are several com-
ponents to the problem of missing dots after printing. It can be infl uenced by three main inter-
actions:

• paper and the printing ink

• paper and the printing press

6
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• light and print

As the physical structure of the surface is the main focus of this thesis, it means that the inter-
action between the paper and the printing press is the most interaction of most interest here. A
simplified discussion of this is presented next.

(b)

(a)

Figure 2-2: Missing Dots After Printing. (a) With, (b) Without a Pore Protruding the Surface

Figure 2-2 attempts to show how pores can cause problems during the printing process. The
round shape with indentations is the printing head and the drawn profile represents the paper
surface at microscopic scale. Each indentation of the printing head contains some ink before
it hits the paper surface, whereupon it circles around and acquires new ink before hitting the
paper surface again. The missing dot problem can occur when an indentation in the printing
head does not come close enough to the paper surface. Then the ink may remain inside the
indentation instead of transfering to the paper surface. This can happen when there is a pore
present in the surface at that particular area. There are also many other causes, which are not
part of the focus of this thesis. These are briefly mentioned in Chapter 2.3.1.

Again referring to Figure 2-2, at the point in time shown in (a) the surface contains a pore that
causes ink not to transfer to the paper surface. At the point in time shown in (b) the surface
does not contain a pore. Therefore the possibility of ink not transferring to the paper is thought
to be greater in (a) than in (b).

2.4 ImageJ

ImageJ is a complete image processing application written fully in the Java programming lan-
guage. It is easily extendible to new contexts due to its open archtecture and active plugin
support. In addition, it has been placed completely in the public domain by the U.S. National
Institute of Health, which makes it easily obtainable from the NIH home page [17]. ImageJ has
been used with success in academic circles. Sage and Unser [19] describe an approach where

7
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ImageJ was used as the base toolkit for a complete introductory course in image processing
because of its ease of use and open nature.

However, some comments about ImageJ are in place. Sage and Unser [19] point to some im-
portant peculiarities of the ImageJ package, some of which were also noticed during plugin
development in the present work. As noted above, ImageJ includes an easy-to-use plugin
architecture. However, the approach taken by the internal (non-plugin) operators is often dif-
ferent from the preferred approach one would like to use when writing plugins. Therefore,
in many cases it is actually preferable to write plugins together with associated routines from
scratch even if the same routines are already present in the ImageJ base package. For some
routines the coupling between abstract routines and the ImageJ program itself is too high to
be useful in alternative contexts. Therefore, in the present work most routines rely little on
calculation routines that come with the ImageJ base package, instead implementing most from
scratch.

2.5 SurfCharJ Surface Characterization Plugin for ImageJ

SurfCharJ is a comprehensive plugin for ImageJ developed mostly by Gary Chinga. Two ver-
sions currently exist: a free version, and a version with additions proprietary to PFI. It should
be noted that the free version is available for download from Chinga’s private home page, with
source code included [9].

SurfCharJ is, as mentioned, a comprehensive plugin, useful for surface characterization and
analysis. It could be viewed as a general tool for semi-automated surface characterization and
analysis work. As it is developed partly for PFI purposes, it has been tested and used mostly
for paper surface microscopic images at the present point. However, since many people in
other fields of research also could be interested in semi-automated surface characterization it
may well be used for completely different types of surfaces in the future.

Few of the options provided by SurfCharJ are used for the present diploma work, as SurfCharJ
covers an array of options, many which are not relevant here. However, two preprocessing
options have been used extensively throughout the present work. These are the “Level surface”
and the “Correct error areas” options, as they are quite generic and useful for nearly all image
processing tasks involving LLP surface images.

Two screenshots presenting the available options and filters in SurfCharJ are shown next, with
minimal options visible in Figure 2-3, and with all options visible in Figure 2-4. In the SurfCharJ
interface an option becomes visible as one selects its “parent” option, that is, options that it
depends on. Instructions for use and explanations of the various options and filters not used
in the present work are available at the SurfCharJ home page [9].

8



Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

Figure 2-3: SurfCharJ, no Options Enabled
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Figure 2-4: SurfCharJ, all Options Enabled
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Chapter 3

Techniques

3.1 O v erv iew

This chapter follows the outline of a future envisioned paper quality assesment system as pre-
sented in Figure 3-1. In the current outline of the system, six general, distinct phases are iden-
tified:

1. Sample Preparation

2. Image Acquisition

3. Image Processing (3 subphases)

4. Modeling

5. Measurement

6. Quality Assesment

In the current chapter, each of the general phases will be presented in turn and related to the
present work. It should be mentioned that the present work has a focus on phases 3, 4, and
5, as the author has his background from computer science and image processing and has no
background in microscopy and image acquisition from microscopy. Therefore the sections on
phases 1 and 2 as well as 6 (which is closely connected to empirical research) will be brief.

Of special note is the final phase, Quality Assessment, which ends with a missing dot esti-
mation. As outlined in Chapter 1.2, an important focus of the present work is approaching
an assesment solution for the problem of missing dots in printing. A good assesment of the
percentage of missing dots in the finished, printed paper would be of great use to the paper
research community. This thesis does not arrive at this final stage but will hopefully be of use
when designing the remaining stages.

11
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3.2 Sample Preparation Phase

Preparation of samples is not part of the present work. The paper samples used here are the
same as described in Chinga [7].

3.3 Image Acquisition Phase

Lehrman Laser Profilometry was used in the present work for image acquisition, which yields
images with an accuracy of about 1/ 100 of a micron for the pixel values, and a grid resolution
of about 1 to 4 microns in the images. Of course, many other techniques are available for image
acquisition. A short discussion on this can be found in Chinga [7]. As mentioned earlier this
phase in Chapter 3.1, this phase is only mentioned briefly in the present work as the author has
no background in microscopy and image acquisition from microscopy.

3.4 Image Processing Phase

This is the first phase covered in detail in the present work. The author has chosen to have a
single phase encompassing all image processing in the system. The reason for this decision is
the thinking that we then have a single phase that

• has raw surface data as input, and

• has all types of relevant images for further processing as output.

One important aspect during parts of the Image Processing phase, is to make sure that noise is
handled with some degree of physical correctness. According to Holmstad [14] there are some
considerations that should be made when attempting to remove noise from an acquired image.
Most importantly, “fi ltering techniques must be applied w ith precaution to fi nd an optimum trade-off
betw een removal of disturbing noise and phy sically present elements” [14]. The conclusion is that one
should, during image analysis routine development, visually compare the filtered image to the
non-filtered image and assess the degree to which the filtered image preserves the structure
topology. Preferrably, the optimal filtering should be chosen as the filter of choice, that is, the
filtering routine which best preserves the structure topology.

As the measurement phase (Chapter 3.9) is set to produce concrete measurements from ade-
quately preprocessed data, it is natural to apply all image (pre)processing techniques in one
phase as is done here. However, it is also natural to divide this large phase into subphases.
These are covered in the subsequent sections of this chapter.

3.5 E rror Correction Subphase

The Error Correction subphase is based in whole on the implementation provided by the Sur-
fCharJ plugin (Chapter 2.5) for ImageJ. The filtering used in this subphase was introduced
fairly recently by Chinga [7].

13
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3.5.1 Surface Leveling

The first part of the Error Correction subphase is the surface leveling filter provided by Sur-
fCharJ. This filter provides a fully automatic way of normalizing the image data before any
further processing.

The filter, called “Level surface”, provides a way of removing disambiguation related to the
orientation of the paper sample. In the present context, the orientation of the paper sample is
simply refered to as the orientation of the image plane. It is clear that imaging through the use
of Laser Profilometry will not yield uniformly oriented image planes when comparing samples.
Minute differences in the image plane orientation will always occur with measurements at such
microscopic levels.

The filter works by iterating over the entire image, calculating the least square estimates for the
x and y dimensions and applying a regression model to all pixels in the image. The process
of least squares estimation and regression model application [24] is repeated 4 times in order
to gain a more balanced regression plane. It should be mentioned that, by its definition, a
property of the resulting leveled image obtained through the calculation of a regression plane
is that its average height after leveling is exactly zero.

3.5.2 Error Area Correction

The second part of the Error Correction subphase is the Error Area Correction filter provided
by SurfCharJ. This filter provides a semi-automatic way of removing the pixel values in the
LLP image that are clearly in error. The reason it is semi-automatic and not fully automatic is
that the filter, called “Error area correction”, takes as input two threshold values. It might be
a possibility in the future to develop a fully automatic error correction filter which identifies
reasonable threshold values through segmentation and automatic analysis of the segmented
image, however it is not a goal of the present work. One of the reasons for this is that such
an automatic analysis would preclude the use of external, empirical knowledge which plays a
large part in the current semi-automatic process.

In the present work, knowledge of cross-sectional Scanning Electron Microscope (SEM) mea-
surement values for Surface Calendered paper is used for determining the error correction
thresholds. Chinga [7] estimated the optimal threshold values at -7.0 and + 4.0 microns, since
SEM measurements showed that “the highest peak and deepest valley expected in SC paper can not
exceed 4 and -7 microns respectively” [7]. As such, these values are also used in the present work
since surface calendered paper is used exclusively in the examples provided here.

The filter works by, first, creating a 3x3 mask locally on points exceeding the thresholds, second,
calculating a mean value and storing this mean value at the point. If the calculated mean value
is still outside the threshold, the mask is increased until its mean value is inside the threshold.

14
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3.6 Pore Extraction Subphase

The Pore Extraction subphase was also, at first, based on the implementation provided by the
SurfCharJ plugin (Chapter 2.5) for ImageJ. However, as part of new implementations in the
present work, the Rolling Ball approach found in SurfCharJ was refined (Chapter 4.3.2) and
included as one of several approaches considered here.

It is of importance to note that the following sections intend to describe several independent
approches to solving the problem of pore extraction. Future studies could of combine several
approaches but this will not be a focus in the present work.

3.6.1 Rolling Ball Filtering

The first approach is the use of a Rolling Ball filtering algorithm, as described by Chinga [7].

The Rolling Ball approach is a simple 2D spatial filtering approach. A detailed discussion of
such 2D image filtering/enhancement in the spatial domain can be found in Gonzalez and
Woods [13]. The Rolling Ball filter in particular is a smoothing filter, with a single parameter:
the radius of the rolling ball. In essence, it preserves the pixel values in regions of the image
with little change while smoothing the regions of the image with abrupt changes in the negative
direction, assigning to the pixels in these regions values from the general regions around them.
The hope is that the regions with abrupt changes will correspond closely to pores for the present
purposes. The filtered image is then subtracted from the original image, yielding a new filtered
image containing only pores (the rest of the image should in general be quite flat). The analogy
to a physical rolling ball traversing the surface is clear, however it is important that the rolling
ball has a large enough radius so it preserves the largest pores. According to crude estimates
extracted from the images themselves, a diameter of 500 microns is possible for some very large
pores, so the radius should ideally be at least 250 microns for good results. Later on, it could be
of interest to filter with several radii and combine the results somehow to improve the accuracy.

At first, the SurfCharJ approach to the Rolling Ball filter was used (“Measure pore volume”
option in SurfCharJ.) Later a separate independent plugin which overcome some problems
with the SurfCharJ implementation was developed. One goal of the new approach was to be
able to evaluate the quality of the implementation by providing the user with an overview of
temporary images generated by the algorithm. These are now shown as separate result images
in ImageJ after running the new plugin. Another goal of the new approach was to have a
rotation invariant plugin. This was not the case with the SurfCharJ approach, as it did not
seem this was a goal of that implementation (it did not treat the edge cases correctly). The new
approach is perfectly rotation invariant for 90, 180, 270 degree rotations of the source image.

3.6.2 Distance Transform-based Filtering

One goal of the present work was to improve the performance of the Rolling Ball spatial filter-
ing algorithm (Chapter 3.6.1). As such, it became natural to explore alternative approaches to
the problem, since the problem lies in the O(n2

× m
2) time complexity of the usual implemen-

tation of spatial filters.
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A natural alternative approach was therefore a Distance Transform approach, successfully ap-
plied to image processing problems in pulp and paper research by a Swedish research commu-
nity (Borgefors et al. [2, 3, 20, 21]). Distance Transform approaches for 3D environments take
as input a 3D image in the form of a voxel1 structure.

An example of how the simplest form of the Distance Transform works is shown in Figure 3-3.
This figure shows a Distance Map in two dimensions on a binary image. As can be seen in
the figure, the distance to the background is assigned to every pixel. Thus, pixels deep inside
the segmented area are assigned larger values than pixels closer to the border. The version
of the distance transform thought to be useful for the present purposes is extended in a few
ways compared to the simplest version. The most useful way to describe it seems to be as
follows. A binary image is still used. However, it is a 3-dimensional binary image as opposed
to a 2-dimensional binary image. In an ImageJ context this would be implemented as a binary
image consisting of several slices. In addition to having to calculate the distance transform in
3 dimensions instead of 2 there is the problem of scale. The LLP images used for the present
purposes usually have at most a resolution of 1 micron per pixel in the pixel grid. However,
measured values are on the order of 1/100 of a micron. This suggests generating 100 slices for
each unit step for pixel values. However, this causes elongated voxels, which can be a pain to
work with according to Sintorn and Borgefors [20]. If elongated voxels are to be avoided, the
resolution of the pixel grid for each slice also has to be increased by a factor of at least 100 in
both the x and y direction for the current LLP images through some method of interpolation.
It is clear that the most feasible option might be some form of tradeoff between elongation and
accuracy.

Figure 3-2: Example Image Before and After Distance Map Calculation

13D equivalent of a pixel, usually in the form of a unit cube
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Figure 3-3: Example Array Before and After Distance Map Calculation

3.6.3 Morphology-based Filtering

Image processing through the use of morphological operation is quite often used on binary
images as part of a segmentation process. Two examples of morphology-based filtering are
shown in Figures 3-4 and 3-5. The first example (Figure 3-4) is from the domain of OCR (Optical
Character Recognition). Here, morphological techniques have proven useful because of the
fact that text consists of connected regions, each of which represents a unique letter. Since
morphological techniques can connect nearby, but disconnected, regions easily it is clear why
this is a good technique for OCR purposes. The second example (Figure 3-5) is an illustration
of morphological processing in the context of pore segmentation (the image is copied from the
later tutorial which Figure 4-12 is a part of).

Figure 3-4: Broken Text Processed with Morphological Filtering (Dilation and Erosion) [13]
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Figure 3-5: Morphological Filtering on a Disconnected Pore

As can be seen in Figure 3-4 morphological filtering can be quite effective at closing gaps at
places where no gap should occur. It should be evident to the reader that the first image is
a bad scan of the word “certain”, with the letters “c”, “e”, and “r” actually consisting of sev-
eral disconnected regions from an image processing viewpoint. Segmenting the image into 7
regions (8 if one counts the dot over the letter i) is easy for humans, as cognitive processes in
the brain closes the evident gaps automatically and groups them into separate, understandable
letters. For a computer, however, explicit processing is needed, and our cognitive process can
be simulated by the morphological closing operation, consisting of one dilation operation fol-
lowed by one erosion operation [13]. Most would agree that the resulting image is extremely
close to the brain’s actual impression of the first image. It should be mentioned that morpho-
logical filtering also can be used in the opposite situation, that is, introducing gaps where two
separate regions are connected which should be disconnected.

In relating morphological filtering to the present work, Holmstad [14] clearly shows that pore
interconnection is a serious challange in surface pore analysis: “Except for high density paper
grades, most of the pores in paper are interconnected” [14]. In the current context gaps (or
missing gaps) will arise if some sort of thresholding is used as a first step in pore segmentation.
For instance, gaps may arise in those areas where the threshold value used is set too low, and
gaps may be missing in those areas where the threshold value is set too high. To illustrate
this, a small region has been zoomed into in Figure 3-5. This region is interesting because it
seems to a user that it contains a single pore, when in fact it is treated as two separate pores
because of the disconnection that arises as an artifact of thresholding. That they are in fact
two separate pores is evident after Delaunay Triangulation, which is described in Chapter 4.6.3
and the related Figure 4-16. Applying the morphological closing operation to this region, as
in the OCR example above, solves this problem elegantly, though it could be argued that the
new white “hole” in the middle of the segmented pore should filled after filtering (analogous
to Figure 4-15), for simplification purposes.
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3.6.4 Median Filtering

Median filtering is an alternative which is actually quite closely related to area thresholding
outlined below in Chapter 3.7.3. Median filter is most famous for removing so-called “salt and
pepper” noise from images with minimal distorsion in the replaced areas if a reasonable mask
size is used.

For the present work, median filtering was not used, instead corresponding results were ob-
tained later in the process with the area thresholding technique.

3.7 Segmentation Subphase

The Segmentation subphase was not originally included in any options provided by the Sur-
fCharJ plugin (Chapter 2.5) for ImageJ. In general, there has been little emphasis so far in de-
veloping options for segmentation. Therefore it is interesting to explore the available options
in the present work.

It is of importance to note that the following sections are intended to describe complementary
techniques. As is known from most aspects of automatic image processing, most problems in
the image processing domain do not have one single “correct” solution. This is also for the
most part correct for the pore segmentation aspect of surface analysis. However in the present
context of pores in paper one can point to more guidelines for “correct” segmentation than for
some other problems. That is, since a goal of this segmentation is to identify problems and
properties at a macro level with micro level LLP images, it is of large importance to restrict
the segmentation effort to those objects which cause differing properties at the macro level. A
simple example of this is the measured surface area of a pore – regardless of the shape and
form of the pore it will probably be insignificant in the printing process if its surface area is
significantly less than the surface are covered by one ink dot at the given dot density for this
printing process.

3.7 .1 Simple Thresholding

The first option is to use simple thresholding. In this case simple thresholding consists simply
of input of a threshold value in microns, outputting a binary image where every pixel with
a pixel value below the threshold is set to zero and every pixel with a pixel value above the
threshold is set to one.

This approach is simple and gives quick results but is not robust against noise. Therefore other
techniques need to be combined with simple thresholding to yield usable results.

3.7 .2 Advanced Thresholding

There are several options when it comes to more advanced forms of thresholding. The first re-
finement that comes to mind would be to use adaptive thresholding as described in Gonzalez
and Woods [13]. However for several reasons this is not of much interest in the present context.
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First, a short discussion. One goal of using adaptive thresholding as opposed to simple/global
thresholding is that often, many image attributes are unknown and cause trouble when thresh-
olding at a single level globally. These attributes are for instance lighting, orientation in the
depth plane, tilt, and any other causes of local variations in the image.

The main reason why adaptive thresholding is not so interesting in the present context is the
fact that a modular system is being described, where all the attributes mentioned above should
already be normalized through use of the SurfCharJ plugin for ImageJ. More specifically, the
two most important attributes needing normalization are tilt and measurement scale. Tilt is
corrected by use of the “Level surface” option (Chapter 3.5.1) in SurfCharJ. Measurement scale
is stored inside the 32-bit TIFF image itself, so that all image operation parameters can be speci-
fied in microns with no further considerations about the ratio of pixels/pixel values to microns.

One extension of adaptive thresholding which could be interesting, however, would be to com-
bine morphological operations (as discussed in Chapter 3.6.3) with the thresholding process
itself. An idea for future work would be to do this in form of a feedback algorithm. In such
an algorithm, a local thresholding would first be performed. Second, the number of regions
together with their surface areas and shape would be measured and assigned some weight
defined by an appropriate weighting function. Third, one or more morphological closing oper-
ations (Figure 3-4) as well as one or more morphological opening operations would be applied,
whereupon the surface areas are reevaluated. Here, shape data about pores obtained previ-
ously would be of interest for this reevaluation. If it is clear that two (or more) regions that have
become connected after closing really only represent one pore, these regions remain connected.
If it is clear that one region that has become disconnected after opening really represents two
(or more) pores, this region remains disconnected. Regions not significantly affected by the
morphological filtering remain untouched.

3.7.3 Area Thresholding

Area thresholding is an approach orthogonal to the thresholding methods outlined above. This
type of thresholding is for the present purposes meant to be applied to binary images only.
The binary image may be obtained through a thresholding as outlined above, or by other ap-
proaches that may be explored in future work.

Area thresholding is experimented with in the present work, with results discussed in Chap-
ter 4.1, in relation to Figure 4-14.

3.8 Modeling Phase

In an ideal system, hopefully, the main image resulting from the complete Image Processing
phase is a largely simplified image which is easy to process further. The format experienced
most with in the present work is a binary (black-and-white) segmented image, with pore areas
colored black and non-pore areas colored white. However, it should be noted that this is only
one of many possible result images which could be used for future systems. It could also be
useful to return several result images from the Image Processing phase, each with its own
characteristics relevant for e.g. different types of measurements and other further processing
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in the system. For instance, a segmented binary image is useful when measuring objectively
the simple 2D shape of pores, as well as distances and other types of relationships between two
or more pores. However, segmented binary images contain little information on the 3D pore
shape of individual pores. For analysis of 3D pore shape on can combine the original (leveled
and error corrected) image with the binary segmented image (used as a mask). This could be
a useful option, returning one pore image for each interesting region in the binary segmented
image.

It should be mentioned that the Modeling phase is thought of as an optional preprocessing
stage performed prior to the Measurement phase, returning some model built from the raw
results from the Image Processing phase. The only modeling component included thus far
is Delaunay Triangulation, but other model-building components could be useful in future
systems.

3.8.1 Delaunay Triangulation

The theory behind, as well as applications of Delaunay triangulation and possible implemen-
tation considerations are discussed in Chapter 4.6.3.

3.9 Measurement Phase

As already mentioned in relation to the Modeling phase (Chapter 3.8), it might be useful to
return multiple result images from the Image Processing phase. In addition to these result
images, the measurement phase also has the option of including results derived from the Mod-
eling phase, for instance Delaunay triangulation data.

3.9.1 Pore Distance Calculation

An example of pore distance calculation retrieved directly from the Delaunay triangulation is
given in Figure 4-20. A problem with this approach is that too many edges are included by
default. Methods of reducing the number of edges are explored and described in Chapter 4.6.4
which includes Convex hull and Minimum spanning tree calculation as two starting points.

3.9.2 Q uality Parameter Calculation

It is thought that in future work it may be possible to combine data from the Image Processing
phase, the Measurement phase as well as pore distribution data in order to arrive at suitable
quality parameters. One example of such a parameter could be statistical properties of the pore
distance distribution. Evaluating possible quality parameters is, however, not a goal of the
present work and so is only touched on briefly.
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3.10 Quality Assesment Phase

The goal of the Quality Assesment phase is to arrive at a suitable estimate of missing dots in the
paper sample, both the quantity of missing dots and their layout. The quality assesment phase
is peripheral to the present work and so is only touched on briefly. It is, however, thought that
calculation of standard surface descriptors in any case would be useful in arriving at the final
missing dot estimate.

3.10.1 Surface Descriptors Calculation

Here the usual surface descriptors used in surface analysis should be calculated. These surface
descriptors are described in the ISO 4287/2000 standard as mathematical line profile expres-
sions, and digital approximations of these are presented in Chinga, Gregersen, and Dougherty
[10]. The digital approximations are implemented as routines in the SurfCharJ plugin for Im-
ageJ (Chapter 2.5). In order, the surface descriptions are

• Ra: Arithmetical mean deviation,

• Rq: Root mean squeare deviation

• Rsk: Skewness,

• Rku: Kurtosis,

• Rv: Largest depth measurement,

• Rp: Largest height measurement,

• Rt: Rv + Rp, and

• Rz : < = Rt (same as Rt but within a restricted sampling length).

Further details as well as a graphical presentation of the descriptors is given in Chinga, Gregersen,
and Dougherty [10]. As well as the standardized descriptors given here, further research could
well come up with new descriptors relating more closely to the missing dot problem.

3.10.2 Missing Dot Estimation

It is thought that the ultimate stage of missing dot estimation would take into account both the
results calculated in the Measurement phase and more general measurements as derived from
the surface descriptors. Finding a suitable combination of the two that can give a reasonable
estimate is left as a basis for further research.
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Chapter 4

Implementation

4.1 Area Thresholder

The concept of area thresholding was first introduced in Chapter 3.7.3. A plugin for ImageJ
was developed that attempts to perform area thresholding in a way useful to paper surface
segmentation. The interface for the plugin is structured in the same way as SurfCharJ, with
options becoming available when “parent” options are checked. The interface is shown in
Figure 4-1.

Using the interface, an area threshold value is first given. The value is given in pixels, so with
the example value of 500 pixels all areas containing more than 500 (4-)connected pixels remain
black in the output images, areas containing less than 500 are changed to the white background
color. Using the plugin with only this option gives a binary image image of the type shown in
Figure 4-14 when using the binary image shown in Figure 4-13 as input (the figures are part of
a later example).

Two other main options are given in the interface. If the first checkbox is checked new im-
ages are generated for every region remaining in the image after area thresholding. These new
images are generated by simply copying subregions of the binary input image. Though, only
the current region is included in each output image; other regions that may be present in the
subregion are not included in the new image generated from the subregion.

The second checkbox may be of more interest for pore analysis work. Before checking this
option the original, 32-bit image should be opened in ImageJ. When this option is checked a
dropdown menu appears containing the currently open images in ImageJ. From this dropdown
menu the original image must be selected. If the plugin is now run, new images are generated
for every region as before, however, 32-bit binary data backtranslated from the original image
is now copied into the regions (instead of simply black and white binary data). In paper surface
terms, this means each pore gets its own image containing only this pore (and void area around
it).

The three remaining textfields are options for the second checkbox. “Filler value” chooses
which value should be assigned to void areas. The two “Brightness range” fields are analogous
to the options provided by the “Image-> Adjust-> Brightness/Contrast...” command in ImageJ.
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They select which brightness range should be used for the new, generated images. These are
only for practical display and comparison purposes; they do not change the generated images
themselves. The reason for including this option, however, is that it would be a very tedious
job to set the values manually for every generated image.

Figure 4-1: AreaThresholder Interface, with no Options Enabled and all Options Enabled
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Figure 4-2: Screenshot After Filtering with AreaThresholder

An example of the region image generation functionality of the AreaThresholder plugin is
given in Figure 4-2. Here the ImageJ toolbar, the input binary image, and the original 32-bit
image are present in the upper left corner. Scattered throughout the screen are the generated
region images, both binary versions and backtranslated 32-bit versions. In the upper right cor-
ner the largest region image has been plotted to a 3D surface with ImageJ’s built-in Surface Plot
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command. A filler value of -4.0 micron for the void area was used, since this was the original
height thresholding value used for the example image taken from Figure 4-14.

4.2 Fractal Dimension

Fractal dimension by box counting [25] was implemented as a plugin called FractalDimension.
This plugin takes a binary image as input, performs box counting with increasing box size 1x1,
2x2, 4x4, 8x8 etc, and shows the result in a text window. If one takes the log on each column
and calculates the regression line, the Fractal dimension of that image is found.

An example run of the FractalDimension plugin is shown in Figure 4-3. The binary region
image which was surface plotted in Figure 4-2 is used as input, padded to 256x256 pixels since
the FractalDimension plugin is designed for images with resolution an integer multiple of a
power of two. The linear regression of log values needed for fractal dimension calculation was
for this example calculated with a TI-83 pocket calculator, yielding a Fractal dimension of 1.53.
A further analysis of this number is not the topic of the present work, but sufficient to say, a
Fractal dimension of 1.53 might indicate an image with structure “slightly less complex than a
2D (2.0D) image of average complexity”.

Figure 4-3: Fractal Dimension by Box Counting

4.3 Rolling Ball

The use of a Rolling Ball algorithm at PFI in conjunction with paper surface structure character-
ization was first presented in Chinga’s paper [7]. In the following sections the method and its
particular properties, advantages, and disadvantages are presented and related to the present
work.
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4.3.1 Current Status

In the beginning of the project work the “Measure Pore Volume” feature of the SurfCharJ plu-
gin for ImageJ (Chapter 2.5) was used as a starting point for further work on pore volume
measurement. Some time was spent at the beginning of the project for studying the SurfCharJ
plugin, both the parts related to the measurement of pore volume by the Rolling Ball algorithm
and also the remaining parts. This was done partly to gain some understanding of surface
characterization, and partly to learn about the underlying structure of the SurfCharJ plugin,
how it is designed and how its modules are connected together. In addition it was of interest
to learn more about general programming using the ImageJ framework, as the author had no
previous experience with this particular image processing package.

It was found early on that the SurfCharJ is somewhat divided into separate parts implemented
as separate classes:

• SurfCharJ_1d (main plugin class)

• FacetOrientation

• SurfaceFiltering

• SurfaceMath

• SurfacePeakValley

• SurfacePoreVolume

• SurfaceRoughness

• SurfaceRoughnessGradients

The class of most interest to the present work is the SurfacePoreVolume class, which is the
enabling class for pore volume measurement in the SurfCharJ plugin.

Initial analysis was conducted using the “Measure Pore Volume”, that is, the SurfacePoreV-
olume class, in order to gain an understanding of the results of surface analysis through the
use of the Rolling Ball algorithm. To aid in this analysis the rolling ball filtering parts were
separated from the SurfCharJ code into a “RollingBallOriginal” plugin which calls the API of
SurfCharJ for simpler use during experimentation as well as accurate progress monitoring.

Some problems with the SurfacePoreVolume were observed, however. It was therefore decided
to write a new Rolling Ball plugin from scratch in a new implementation separate from the
SurfCharJ framework. One important aspect with the separate implementation would be the
possibility of displaying intermediate results from the analysis. This would enable a thorough
analysis of the inner workings of the algorithm and point out possible problem areas of using
a Rolling Ball analysis for general surface characterization.

One of the problems was related to the accuracy of the analysis. It was found that the method
for applying the Rolling Ball filter was not rotation independent. This was easy to verify, as a
simple application of the “Measure Pore Volume” option in SurfCharJ to an image, and then
to the same image rotated 90 degrees (rotating the resulting filtered image by -90 degrees, of
course), yielded two different result images. Since there was no apparent reason for this in-
herent in the filtering algorithm, and since in general it is a good property of a filter to be
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as transformation independent as possible, the new implementation in the “RollingBallNew”
plugin remedies this by giving bit-for-bit identical results irrespective of initial orientation.

4.3.2 Improved Rolling Ball

As mentioned in Chapter 4.3.1, it was decided to write a new plugin from scratch, independent
of the existing SurfCharJ plugin which the author had not taken part in the development of.

The new plugin for Surface Characterization was simply implemented as a completely separate
plugin using the general ImageJ framework

The results from running the new Rolling Ball plugin, “RollingBallNew”, is shown in Figures 4-
4 through 4-8. The plugin has been run with two different parameters. The first run was with
radius 20 microns, the second run was with radius 252 microns. The first run completed in
reasonable time for interactive use, that is, within a minute on a 2.0 GHz P4. The second run
needed much more time due to the time complexity of the filtering. It finished in about 15
minutes. However, it is clear both from the theory described in Chapter 3.6.1 and from the
result images themselves that a large rolling ball is neccessary for useful analysis. This will be
discussed next.

The first image (Figure 4-4) shows what is basically a copy of the original LLP input image with
the surface leveled and error areas corrected. The difference between this and the original, Fig-
ure 4-12, is only that some edge pixels have been chopped off. The copy is provided as output
from the “RollingBallNew” plugin for easier pixel-by-pixel comparison with the complete, fil-
tered image. The radius of the rolling ball defines how much is chopped off at each edge, and
the chopping is neccessary because the rolling ball image relies on the use of neighboring pixels
up to the distance equal to its radius. When the rolling ball is convolved close to the edge there
will be no neighboring pixels at a distance this far away. Padding the image could circumvent
this, but as that would yield only approximate, not completely accurate values it was chosen
not to pad the image along the edges. It should also be noted that the rolling ball mask as
shown in Figure 4-5 is not to scale with the other images as the image is zoomed in this figure.

The second image (Figure 4-6) shows what was at first thought of as an uninteresting tempo-
rary data structure internal to the algorithm, but later turned out to be quite interesting when
analyzing the resulting filtered image. The image shows the rolling ball mask value used for
each pixel in the filtered image. That is, lower (more blue) values in this image represents pix-
els where the resulting pixel stored at this location was taken from a close neighboring pixel
compared to those pixels with higher (more white) values. It is therefore the case that those
areas with deep (detected) pores contain more higher-valued pixels, since the rolling ball in
those positions only touches positions far away from the pixel under consideration.

The third image (Figure 4-7) shows the resulting filtered image, and the fourth image (Figure 4-
8) shows the output image. The output image is calculated by subtracting the filtered image
from the original, shown in Figure 4-4. Ideally the output image should only contain detected
pores. As is evident from the left (rolling ball radius 20 micron) image, few pores are detected
with a low radius rolling ball. The right image, however, does quite well in comparison. Most
of the uninteresting, non-pore areas are now quite smooth, and pores remain quite similar to
their appearance in the original image (Figure 4-4).
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Figure 4-4: Original Image, Cropped to Equal Size as Rolling Ball Filtered Image (radius=20
and 252 micron)

Figure 4-5: Rolling Ball Mask (radius=20 and 252 micron)
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Figure 4-6: Rolling Ball Mask Value used for the Filtered Image (radius=20 and 252 micron)

Figure 4-7: Rolling Ball Filtered (Smoothed) Image (radius=20 and 252 micron)
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Figure 4-8: Output Image after Subtracting the Smoothed Image from the Original Image (ra-
dius=20 and 252 micron)

4.4 Distance Transform

One plausible alternative to the use of a rolling sphere algorithm (which is of large, O(N2
×

M2) complexity) is the use of Distance transform. The concept of Distance transform was first
introduced in Chapter 3.6.2.

One drawback connected to the use of Distance transform in the current context is that the use
of Distance transform usually requires a discretized image. In the current context a Distance
transform calculation can therefore only be performed after some preprocessing step has been
applied to the original image / data set.

For the present diploma work, the most obvious solution was selected. That is, the image
is disretized by converting the data set to a volumetric representation. One can look at this
conversion as “slicing” the image into some number of aligned slices. Since the pixel value in
the original data set is only related to height along the Z-axis, the resulting volumetric data
representation contains several times as many voxels as there were pixels in the original image.
The image “slices” themselves, however, are simply binary images (for convenience stored as
8-bit images containing only zero- and 255-valued pixels).

A first attempt at “slicing” the image in a meaningful way before running a distance transform
algorithm was done with a new “DiscretizeZValues” plugin. It was clear that some integer ap-
proximation routine would be needed in order to yield data that could be feeded into a distance
transform algorithm. This was concluded from the observations made by Borgefors [2]: “Us-
ing real-valued local distances is generally not computationally desirable”. This first approach
simply slices the image using as dimension the unit most applicable for the example image,
microns. For some LLP images (those with 1 micron granularity in the x and y directions) this
will give entirely cubic voxels, however for the present image (with 4 micron granularity in
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the x and y directions) the voxels will be slightly elongated in the x and y directions compared
with the z direction.

The results of the first attempt is given in Figure 4-9, obtained by providing the image from
Figure 4-12 as input to the “DiscretizeZValues” plugin. Shown first is the slice at pixel value -4.0
microns, with each image in sequence showing the slice at one micron further up in the image
stack, ending at pixel value +7.0 microns. In these binary images, the white areas correspond
to areas with material, and the black areas correspond to empty areas. Observing the images,
it is clear that the areas first to gain black coverage in the sequence are the pores (as well as
some smaller, noisy areas). It is therefore clear that these are the areas that will be assigned the
largest value after running the distance transform, when looking at the top slice (Figure 4-10).
The end result in Figure 4-10 was obtained by providing the sliced, binary image as input to
the new 3D Distance transform plugin, “DistanceTransform3D”.
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Figure 4-9: Image Sequence Showing all 12 Slices after running DiscretizeZValue
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Figure 4-10: Distance Transform Results, Top Slice

4.5 Image Filtering Tutorial

In this section a practical application of the developed plugins is presented. Therefore, an
explanation of how the images shown in Figures 4-11 through 4-16 was obtained is given next.

Figure 4-11: Image Acquired by Laser Profilometry
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Figure 4-12: Image Acquired by Laser Profilometry after Surface Leveling, Error Correction

Figure 4-13: Image After Thresholding
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Figure 4-14: Image after Thresholding and Area Thresholding

Figure 4-15: Image after Thresholding, Area Thresholding, and Filling of Holes
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Figure 4-16: Image after Delaunay Triangulation

First, Figure 4-11. This is the raw image retrieved by the use of Lehrman Laser Profilometry
(LLP) [7]. The image is stored in the, quite uncommon, 32-bit floating point version of the
TIFF format. Thankfully, ImageJ is one of the few image processing applications which in-
clude built-in support for this and other floating-point formats which is very useful for the
present purposes. The use of a flointing-point format implies that a large range of values can
be represented in this image format, and as such, the values at every (x, y) position in the
image represents the measured LLP value directly. For instance, a value of −1.5 3 at position
(x, y) = (9 9 2 , 3 7 2 ) indicates that the measured LLP value at (9 9 2 , 3 7 2 ) was in fact −1.5 3 mi-
crons, so the values in the images are in fact microns and can be used directly as physical values
during processing in ImageJ. As mentioned in Chapter 3.3, LLP is able to register pixel values
with an accuracy of about 1/100 of a micron, and as such, a floating point image representation
is able to represent this sub-micron step size fairly well..

After importing the 32-bit TIFF image into ImageJ, the image was quite gray and uniform. In or-
der to better visualize the LLP image, the “Image->Adjust->Brightness/Contrast...” command
in ImageJ was used to manually set the min and max brightness values to -7.0 and +4.0 microns,
respectively. The reason for choosing the values -7.0 and +4.0 were explained in Chapter 3.5.2.
Then, in order to increase contrast between regions, the “Image/Lookup Tables” command
was used to set the color map to “Fire” which is a color map with good contrast from low to
high values (black through purple, red, orange, yellow to white).

Then, Figure 4-12. This is the same LLP image after some basic filtering with the SurfCharJ
plugin (Chapter 2.5).

• “Level surface”

• “Correct error areas” (threshold for error correction: -7.0 and +4.0 microns)

The first filter, “Level surface”, simply corrects any eventual tilting of the paper sample relative
to the profilometer. The filter is further discussed in Chapter 3.5.1. In this particular example, it
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is evident in Figure 4-11 that the sample was tilted slightly downwards in the upper left corner,
and correspondingly upwards in the lower right corner, since the resulting image is generally
darker in the upper left corner and generally lighter in the lower right corner. After filtering, it
is evident in Figure 4-12 that the surface has been leveled, and the upper left and lower right
corners are no longer different in height compared with the remaining parts of the surface.

The second filter, “Correct error areas”, takes care of some special cases in the image where
LLP measurements are completely in error. The filter is further discussed in Chapter 3.5.2.
Here, the threshold for error correction is set to -7.0 and +4.0 microns, which implies that any
measurement below or above these thresholds should be replaced by a filtered, smoothed av-
erage of any neighboring measurements (pixel values in the image) which are inside the given
threshold range.

A comprehensive discussion of the physical characteristics of LLP imaging that generates these
error measurements is not in place here, as the topic of microscopy and image acquisition is not
part of the present work. However, suffice to say, the error measurements are most common
along fiber boundaries, and occur because of sudden change in angle between two measure-
ment positions in the sample. A further and more detailed description of the physical proper-
ties of LLP imaging, as well as a more detailed discussion of the “Correct error areas” filter can
be found in Chinga’s paper on gloss assessment [7].

Then, the segmentation. This is shown in Figures 4-13 through 4-15. These figures show a first
attempt at generating a segmentation of the image. The aim in this case is refering to generation
of a reasonable pore segmentation. The segmentation itself is not too complicated, in order to
quickly yield a sample image for further processing.

First, the image was thresholded through the use of a simple plugin written from scratch called
“Thresholder”. This plugin simply thresholds the 32-bit floating point image yielding a new,
binary black-and-white image stored as an 8-bit image (for convenience) with only zero- and
255- valued pixels. A dialog box takes the threshold value as input. A tentative goal was in this
case to generate a segmentation which included all pores as continous regions. The inclusion
of all pore areas was the most important factor, as a lot of the noise could be removed later. In
this case a reasonable value seemed to be about -4.0 microns, determined after some trial and
error. This seemed to yield a good compromise between good segmentation and noise level.
The segmentation with a threshold value of -4.0 microns is shown in Figure 4-13.

Second, a segmented image had now been generated. However, this segmented image had
much noise which led to the need for more filtering operations. This was already mentioned
above and was adressed partly by applying a plugin written from scratch called “AreaThresh-
older”. This plugin takes as input a binary image (for convenience, an 8-bit image with only
zero and 255 values), and thresholds regions based on their size. The end result is somewhat
similar to median filtering, however the regions which end up being part of the result image
are guaranteed to be unaltered by the filtering operation, which may not be guaranteed after
the use of a median filter. The area thresholder relies on use of a flood fill algorithm in order to
count the number of pixels in regions. There are two passes: One which decides which areas to
discard, and another which actually discards those areas, setting them to 255 (white). The re-
sult after area thresholding with a value of 500 pixels (which equals 8000 microns2 in the given
image scale) is shown in Figure 4-14. A further discussion of the “AreaThresholder” plugin
was presented in Chapter 4.1.

38



Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Third, now with the pores properly segmented, in order to give a clearer shape to pores while
retining their outer boundary, the image is filtered with the “Process->Binary->Fill Holes” com-
mand in ImageJ, which removes holes from the already-segmented pores. It should be men-
tioned that most of these holes were actually much smaller in area than the parameter set for
area thresholding (500 pixels = 8000 microns2), however they were of the “opposite” type of
the regions removed during area thresholding and were thus not removed during area thresh-
olding. The result after filling of holes is shown in Figure 4-15.

Then, Figure 4-16. Here a Delaunay Triangulation (Chapter 3.8.1) of the pores has been overlaid
on the image. Actually, it is not the pores themselves that have been triangulated, rather it is
the point set consisting of the centers of mass of all 13 pores present in the image. This point
set was generated by the use of the new “CenterOfMass” plugin. The point set may or may not
be an accurate representation of the centerpoints of the pores, however it could be argued that
it is accurate enough for the present purpose, which is to obtain a distance measure between
neighboring pores. There are several disadvantages with using center of mass as the center
definition for pores. For instance, some pores may be elongated, and so defining one single
center point for the whole pore might be too crude an estimate. More importantly regarding
center of mass, if a pore has a curved form the center of mass may well be at a point in the
surface outside of the pore itself. This lies in the nature of the center of mass definition and so
may or may not be acceptible for the purpose of pore center calculation depending on the task
at hand.

4.6 Pore Neighborhood

This section discusses concepts related to the Modeling phase as presented in Chapter 3.8. It is
mostly related to relationships between pores, and focuses on neighbors and neighborhoods of
pores.

4.6.1 Neighbor

The first challenge is to define exactly which pores are neighbors. If uses the most pessimistic
approach as a starting point, all other pores in an image are potentially neighboring pores. In
the example image, shown in Figure 4-14, we observe that the successful segmentation of pores
in the end yielded 12 segmented pores.

Note that in the upper right there seems to be a large single pore which has been segmented out,
when in fact this pore has been segmented into 2 separate pores. In fact, the segmentation per-
formed in that example does not include any provision for connecting nearby but disconnected
segmented regions. It would from the example given here seem to be of great relevance if such
a technique is included as part of the segmentation process, perhaps as an implementation of a
morphological filtering.
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4.6.2 Pore Representation

One problem that arises when trying to construct a relationship between pores (or more specifi-
cally, defining which pores are neighbors with which other pores), is the problem of representing
segmented pores. One could use distance from the outer bound of a segmented pore, but in
many cases this is not neccessary and unnecessarily complicates further processing.

The approach used in the present work is to reduce every region representing a segmented
pore into a single point. The advantage of this approach is that the resulting image/data set is
simplified as much as possible while still retaining the general structure of the distance relation-
ships in the data set. Also, the analysis of this data set can now be done with known methods
from computational geometry instead of ad hoc approaches. Therefore, in the current attempt
at identifying potential neighbors for each pore, it seems as if a conversion from a segmented,
binary image to a network graph representation is justified. An introduction to (weighted)
network graphs is presented in the appendix of Cormen, Leiserson, and Rivest [11]. The first
part of the conversion is done by the use of the new “CenterOfMass” plugin discussed briefly
towards the end of Chapter 4.5, the second part of the conversion is handled by the Delaunay
triangulation, described next.

4.6.3 Delaunay Triangulation

Treating the neighborhood analysis as a work in computational geometry leads to a wealth of
possibilities for analysis.

The method chosen for generating a network graph representation in the present work is the
method of D elaunay triangulation. According to the MATLAB documentation [15], Delaunay
triangulation can be defined as follows:

“G iven a set of data points, the D elaunay triangulation is a set of lines connecting each point to its nat-
ural neighbors. T he D elaunay triangulation is related to the V oronoi diagram – the circle circumscribed
about a D elaunay triangle has its center at the vertex of a V oronoi polygon.”

Delaunay triangulation (and its dual, Voronoi diagram) is useful in areas as diverse as theo-
retical computational geometry, visualization problems, cartography, simulation of the growth
of crystals, metallurgy, and in this case, assesment of neighborhood in surface topography
analysis. Of course, surface topography analysis in itself is a varied topic – this was already
mentioned briefly in Chapter 2.2.

The algorithm used for Delaunay triangulation in the present project is, as mentioned, sub-
optimal. However, it is still the algorithm of choice here as it is simple to understand and
implement, while being more than fast enough for the present purposes.

DELAUNAY_TRIANGULATION:
for i=0 to pointlist_length

for j=i+1 to pointlist_length
for k=j+1 to pointlist_length

for a=0 to pointlist_length
if point a is not inside the circle passing
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through points i,j,k for any i,j,k not equal to a
add the triangle defined by points i,j,k

Also, an even more suboptimal but nevertheless simple algorithm was used for Voronoi dia-
gram generation.

VORONOI_DIAGRAM:
for a=0 to pointlist_length

pick color c at random
for j=0 to image_height

for i=0 to image_width
b = pixel at (i,j)
if b isn’t already drawn OR a is closer than b’s

currently assigned closest point
assign a as b’s closest point
draw pixel b with color c

Figure 4-17: Set of Dots before and after Delaunay Triangulation
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Figure 4-18: Set of Dots after Delaunay Triangulation (also with Voronoi Diagram)

Figure 4-19: Triangulation at Macro Scale [4]
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Figure 4-20: Pore Distances Given by the Delaunay Triangulation (in microns)

An example of a Delaunay triangulation and its corresponding Voronoi diagram of a simple
data set is shown in Figures 4-17 and 4-18. If a large paper surface sample is Delaunay triangu-
lated in the future, it is thought that the result might look similar to the macro scale triangula-
tion data presented in Figure 4-19. It should be noted that Figure 4-19 is an example image from
a different domain, not a real paper surface triangulation. The LLP images used in the present
work did not lend themselves to macro scale triangulations since the surface area shown in each
image is not very large. However, in the future other measurement methods could be used as
a basis for macro scale triangulation. Alternatively, several overlapping LLP images could be
combined before processing and triangulation, for instance by some mosaic/”stitching” tech-
nique as described in Forsyth and Ponce [12], and Szeliski and Shum [22, 23] and exemplified
in Figure 4-21 (courtesy of The Applied Computer Science Group at Universitä t Bielefeld [16]).

Also, the measured pore neighbor distances in microns are shown in Figure 4-20. It is important
to note that these distances simply reflect edge lengths in the Delaunay triangulation – some
edges may be highly redundant. This will be discussed in the following sections.
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Figure 4-21: Mosaicing Example [16]

Lastly, the interface of the Triangulation plugin is shown in Figure 4-22. As can be seen in the
window, the plugin also includes options for two other types of calculations in addition to the
Delaunay triangulation and Voronoi diagram. These options are explained in the next sections.

Figure 4-22: Triangulation Interface, with no Options Enabled and all Options Enabled

4.6.4 Removing Edges after Delaunay Triangulation

Even after Delaunay triangulation of the example LLP paper surface image it is evident from
Figure 4-16 that further processing is needed in identifying relevant neighbors. Some of the
edges do indeed represent relevant neighbors, however some do obviously not to a human
observer.

The question is then: Which edges should be removed after triangulation? In order to answer
this question it is neccessary to analyze properties of the different types of generated edges, and
more specifically, determine which criteria should be met in order for the current edge under
consideration to be removed safely.

V ertex Degree and Minimum Spanning Tree

One attribute of the Delaunay triangulation of particular note is the degree of the vertices (that
is, pores) after triangulation. The degree of each vertex is simply the number of neighbors
assigned to the corresponding pore. In a Delaunay triangulation each vertex has degree of at
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least two, since every vertex is a corner point of at least one triangle. This can cause problems
if, for example, vertices/pores are close to colinear.

Some elementry graph theory can be helpful in finding a solution to the neighbor definition
problem. One technique that can be useful is the minimum spanning tree as an ultimate form
of reduction. An example minimum spanning tree superimposed on the current triangulation
example (Figure 4-16) is shown in Figure 4-23. This spanning tree was generated by running the
new “Triangulation” plugin with the minimum spanning tree calculation option checked. The
algorithm used for calculating the minimum spanning tree is Prim’s algorithm. Pseudocode
for this algorithm is presented in Cormen, Leiserson, and Rivest [11].

Figure 4-23: Minimum Spanning Tree Example (Included Edges Marked with Arrows), with
Output

Convex Hull

One of the natural places to start when considering redundant edges is to consider the convex
hull of the pore network. As mentioned towards the end of Chapter 4.6.3 (in relation to Fig-
ure 4-19), it would be interesting to use triangulation at a macro scale in the future, however,
this is not possible due to the small area coved by each of the present LLP images. The small-
ness of the LLP images also creates some problems when calculating a Delaunay triangulation
on these small patches by themselves. Most importantly, the convex hull is always created
when triangulating a patch (which may be part of some larger area). In the context of neigh-
borhood analysis this will often look like an “artificial” boundary that does not represent any
real neighbor relations. The reason why it is “artificial” is that this boundary would not have
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been present in a triangulation of a larger surface area covering more than just the patch area,
since pores outside the patch area would then have been connected to the rest of the network.
It is evident that the convex hull (boundary) is usually not important when evaluating pore
distances and pore distance distributions. The convex hull has been marked out in Figure 4-
24. Here, it is clear to a human observer that all edges that are part of the convex hull can be
removed without removing any “real” neighbor relations.

The convex hull was generated by running the newly written “Triangulation” plugin with the
convex hull option checked. The algorithm used for calculating the convex hull is Graham’s
Scan algorithm. Pseudocode for this algorithm is presented in Cormen, Leiserson, and Rivest
[11].

Figure 4-24: Convex Hull Example (Included Edges Marked with Arrows), with Output

4.7 Measure Pore Volume

The last plugin written, called “MeasurePoreVolume” is useful after performing a segmenta-
tion with e.g. “AreaThresholder”. It takes as input a pore image, and asks for a threshold
plane in microns – the threshold plane can e.g. be equal to the pixel value threshold used. The
volume is calculated by first determining the voxel size in the 3D space of the surface, e.g. with
a pixel delta width and height of 4.0 micron and a pixel delta depth of 1.0 micron, the voxel
size is 16.0 micron3. The pore image is then traversed and summed up by using the voxel
size as the unit measurement, showing the result in a new window. An example is given in
Figure 4-25, and complete measurement of all pores from the screenshot of Figure 4-2 is given
in Table 4-1 (in order from left to right, then top to bottom, refering to the window layout in
the screenshot). A threshold plane value of -4.0 micron was used for the measurements, as the
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pixel value threshold used for segmentation was -4.0 micron.

Figure 4-25: Segmented Region, its Histogram, and Pore Volume Measurement, Threshold
Plane at -4.0 micron

Table 4-1: Pore Volume Measurements of Pores in Figure 4-2

Pore number Pore volume

1 144441 micron3

2 18612 micron3

3 16390 micron3

4 12798 micron3

5 14241 micron3

6 9654 micron3

7 26781 micron3

8 58406 micron3

9 13896 micron3

10 11727 micron3

11 9239 micron3

12 75240 micron3
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Chapter 5

Further Research

As is, the present work presents only a partially complete solution for paper quality and miss-
ing dot evaluation in the context of pore segmentation. Possible approaches have been pre-
sented as well as possible pointers as to how they can be best implemented and integrated
in a complete system. Some of the most noteworthy possible approaches for future work are
mentioned throughout both Chapter 3 and other places, and are summarized here:

• Development of a fully automatic error area correction routine

• Combination of several approaches for successful pore segmentation (instead of choosing
only one)

• Adaptive thresholding combined with morphological operations in a feedback system

• Using several types of images as input to the modeling phase, and building of several
new model-building components

• Completion of graph reduction of the Delaunay triangulation in order to yield a plausi-
ble neighborhood graph, moving beyond the minimum spanning tree and convex hull
starting points

• Calculation and evaluation of distributions related to pore neighbor distances

• Further investigation of fractal dimension and similar shape measurements, also in three
dimensions

• Developing components for the Measurement phase and the Quality Assesment phase
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Chapter 6

Conclusion

Image analysis and image processing methods are becoming more and more useful to the pulp
and paper research community. In this thesis a small subtopic within the huge research field
of surface analysis was treated – the topic of pores in the paper surface, and segmentation
and analysis of single pores as well as clusters of pores. So far it has not been entirely clear
which knobs to turn in order to get a suitable segmentation, though simple methods have been
available to obtain preliminary results that could later be replaced by more novel approaches.

In the first part of this thesis a general framework of a paper quality assesment system using
automated image processing techniques was presented. The system would give a paper quality
measure derived from an estimation of the number of missing dots that would occur when
printing the paper. In line with the main topic of this thesis, only parts of the framework
relating to missing dots due to pores and pore distance distribution are considered for now.
Nevertheless, missing dots due to other factors such as fibers crossing could be included in
future refinements of the system.

The area achieving the most progress in the course of this thesis was the study of relationships
between neighboring pores. The approach presented here transforms raw LLP image data
into a network structure that can later be reduced and turned into a weighted graph showing
neighboring pores and their relationships. It is the hope of the author that further research will
lead to models that give good neighbor graphs, and that these graphs later can be correlated
to empirical measurements of missing dots after printing. Ultimately a model that gives good
estimation of missing dots due to pore distance distribution is desired.
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Appendix A

Code Listing

A.1 AreaThresholder_ .java

� �

import i j . ∗ ;
import i j . gui . GenericDialog ;
import i j . gui . NewImage ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . process . I m a g e S t a t i s t i c s ;

import j ava . awt . Checkbox ;
import j ava . awt . Choice ;
import j ava . awt . GridLayout ;
import j ava . awt . Label ;
import j ava . awt . Tex tF ie ld ;
import j ava . awt . event . ItemEvent ;
import j ava . awt . event . I t emLis tener ;

/∗∗
∗ @ author Sve in F i d j e s t ø l
∗

∗ Area T h r e s h o l d e r p l u g i n f o r Image J . Takes a s i n p u t a b i n a r y b l a c k−and−w h i t e
∗ image , in 8 − b i t g r a y s c a l e f o rmat , wi th w h i t e a s t h e background
∗ c o l o r and b l a c k as t h e f o r e g r o u n d ( r e g i o n ) c o l o r . O utputs a b i n a r y b l a c k−and−w h i t e
∗ image with r e g i o n s s m a l l e r than t h e t h r e s h o l d removed . Also t h e r e g i o n s can
∗ be b a c k t r a n s l a t e d i n t o t h e o r i g i n a l , unsegmented 3 2− b i t f l o a t i n g p o i n t image
∗ i f t h i s i s p r o v i d e d as i n p u t .
∗

∗ The f l o o d f i l l a l g o r i t h m used borrows h e a v i l y from F l o o d f i l l e r . j a v a
∗ and B i n a r y F i l l e r . j a v a in t h e Image J 1 . 3 4 n c o d e b a s e ( a l s o used in
∗ t h e CenterO fMass p l u g i n )
∗ /

public c l a s s AreaThresholder_ implements P l u g I n F i l t e r , I t emLis tener {

/ / v a r i a b l e s from F l o o d f i l l e r . j a v a
i n t maxStackSize = 5 0 0 ; / / w i l l be i n c r e a s e d as ne e de d
i n t [ ] s t ack = new i n t [ maxStackSize ] ;
i n t s t a c k S i z e ;
i n t max ;

/∗∗
∗ O r i g i n a l f l o o d f i l l a l g o r i t h m from F l o o d f i l l e r . j a v a . Takes
∗ as i n p u t a s e e d p o i n t and f i l l s s c a n l i n e by s c a n l i n e .
∗

∗ @ param x X −c o o r d i n a t e o f s e e d p o i n t

55



Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

∗ @param y Y−c o o r d i n a t e o f s e e d p o i n t
∗ @param i p The image b e i n g p r o c e s s e d
∗ @param i p 2 A s e c o n d image t o w r i t e t o
∗ @return True i f e v e r y t h i n g went OK , f a l s e i f s e e d p o i n t a l r e a d y f i l l e d
∗ /

public boolean f i l l ( i n t x , i n t y , ImageProcessor ip , ImageProcessor ip2 ) {
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;
i n t c o l o r = ip . g e t P i x e l ( x , y ) ;
ip . drawLine ( x , y , x , y ) ;
i n t newColor = ip . g e t P i x e l ( x , y ) ;
ip . putPixe l ( x , y , c o l o r ) ;
i f ( c o l o r ==newColor ) return f a l s e ;
s t a c k S i z e = 0 ;
push ( x , y ) ;
while ( t rue ) {

i n t coordinates = pop ( ) ;
i f ( coordinates ==−1) return true ;
x = coordinates& 0 x f f f f ;
y = coordinates > >16;
i n t x1 = x ; i n t x2 = x ;
while ( ip . g e t P i x e l ( x1 , y)== c o l o r & & x1 >=0) x1−−; / / f i n d s t a r t o f scan−l i n e
x1 ++;
while ( ip . g e t P i x e l ( x2 , y)== c o l o r & & x2< width ) x2 + + ; / / f i n d end o f scan−l i n e
x2−−;
ip . drawLine ( x1 , y , x2 , y ) ; / / f i l l scan−l i n e
i f ( ip2 ! = null ) {

ip2 . drawLine ( x1 , y , x2 , y ) ; / / f i l l scan−l i n e
}
boolean inScanLine = f a l s e ;
for ( i n t i =x1 ; i < =x2 ; i + + ) { / / f i n d scan−l i n e s a b o v e t h i s one

i f ( ! inScanLine & & y>0 & & ip . g e t P i x e l ( i , y−1)== c o l o r )
{ push ( i , y−1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine & & y>0 & & ip . g e t P i x e l ( i , y−1)!= c o l o r )
inScanLine = f a l s e ;

}
inScanLine = f a l s e ;
for ( i n t i =x1 ; i < =x2 ; i + + ) { / / f i n d scan−l i n e s be low t h i s one

i f ( ! inScanLine & & y< height −1 & & ip . g e t P i x e l ( i , y+1)== c o l o r )
{ push ( i , y + 1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine & & y< height −1 & & ip . g e t P i x e l ( i , y +1) ! = c o l o r )
inScanLine = f a l s e ;

}
}

}

/ / v a r i a b l e s t h a t s t o r e boundary v a l u e s f o r t h e c u r r e n t r e g i o n
private i n t currentLowX ;
private i n t currentHighX ;
private i n t currentLowY ;
private i n t currentHighY ;

/∗∗
∗ Same as f i l l method but a l s o r e t u r n s a p i x e l count r e f l e c t i n g
∗ how many p i x e l s were f i l l e d .
∗

∗ @param x X−c o o r d i n a t e o f s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f s e e d p o i n t
∗ @param i p The image b e i n g p r o c e s s e d
∗ @return True i f e v e r y t h i n g went OK , f a l s e i f s e e d p o i n t a l r e a d y f i l l e d
∗ /

public i n t f i l l 2 ( i n t x , i n t y , ImageProcessor ip ) {
i n t count = 0 ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;
i n t c o l o r = ip . g e t P i x e l ( x , y ) ;
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ip . drawLine ( x , y , x , y ) ;
i n t newColor = ip . g e t P i x e l ( x , y ) ;
ip . putPixe l ( x , y , c o l o r ) ;
i f ( c o l o r ==newColor ) return −1 ; / / r e t u r n e d f a l s e in o r i g i n a l method
s t a c k S i z e = 0 ;
push ( x , y ) ;
while ( t rue ) {

i n t coordinates = pop ( ) ;
i f ( coordinates ==−1) return count ; / / r e t u r n e d t r u e in o r i g i n a l method
x = coordinates&0 x f f f f ;
y = coordinates > >16;
i n t x1 = x ; i n t x2 = x ;
while ( ip . g e t P i x e l ( x1 , y)== c o l o r && x1 >=0) x1−−; / / f i n d s t a r t o f scan−l i n e
x1 ++;
while ( ip . g e t P i x e l ( x2 , y)== c o l o r && x2<width ) x2 + + ; / / f i n d end o f scan−l i n e
x2−−;
i f ( x1 < currentLowX ) {

currentLowX = x1 ;
}
i f ( x2 > currentHighX ) {

currentHighX = x2 ;
}
i f ( y < currentLowY ) {

currentLowY = y ;
}
i f ( y > currentHighY ) {

currentHighY = y ;
}
ip . drawLine ( x1 , y , x2 , y ) ; / / f i l l scan−l i n e
count + = x2−x1 +1;
boolean inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s a b o v e t h i s one

i f ( ! inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)== c o l o r )
{ push ( i , y−1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)!= c o l o r )
inScanLine = f a l s e ;

}
inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s be low t h i s one

i f ( ! inScanLine && y<height −1 && ip . g e t P i x e l ( i , y+1)== c o l o r )
{ push ( i , y + 1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y<height −1 && ip . g e t P i x e l ( i , y +1) != c o l o r )
inScanLine = f a l s e ;

}
}

}

/∗∗
∗ He lpe r method f o r f i l l a l g o r i t h m
∗

∗ @param x X−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ /

f i n a l void push ( i n t x , i n t y ) {
s t a c k S i z e ++;
i f ( s t a c k S i z e ==maxStackSize ) {

i n t [ ] newStack = new i n t [ maxStackSize ∗ 2 ] ;
System . arraycopy ( stack , 0 , newStack , 0 , maxStackSize ) ;
s t ack = newStack ;
maxStackSize ∗= 2 ;

}
s t ack [ s tackS ize −1] = x + ( y < <16);

}

/∗∗
∗ He lpe r method f o r f i l l a l g o r i t h m

57



Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

∗

∗ @param x X−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ /

f i n a l i n t pop ( ) {
i f ( s t a c k S i z e ==0)

return −1;
e lse {

i n t value = s t ack [ s tackS ize −1];
s tackS ize −−;
return value ;

}
}

/∗∗
∗ S t o r e s whe the r t h e l o o k u p t a b l e i s i n v e r t e d
∗ /

protected boolean backgroundIsZero ;

/∗∗
∗ The i n p u t image
∗ /

private ImagePlus imp ;

/ / Components
private Checkbox cbBinaryRegion ;
private Checkbox cbOriginalRegion ;
private Choice chOriginalImage ;
private Label lblDisplayRange ;
private Label l b l F i l l e r V a l u e ;
private TextF ie ld t f F i l l e r V a l u e ;
private Label lblLow ;
private TextF ie ld tfLow ;
private Label lblHigh ;
private TextF ie ld tfHigh ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {

i f ( imp==null )
{ I J . noImage ( ) ; return DONE; }
t h i s . imp = imp ;
I m a g e S t a t i s t i c s s t a t s =imp . g e t S t a t i s t i c s ( ) ;
i f ( s t a t s . histogram [ 0 ]+ s t a t s . histogram [ 2 5 5 ] ! = s t a t s . pixelCount ) {

I J . e r r o r ( " 8−b i t binary image ( 0 and 2 5 5 ) required . " ) ;
return DONE;

}
backgroundIsZero = P r e f s . blackBackground ;
i f ( imp . i s I n v e r t e d L u t ( ) )

backgroundIsZero = ! backgroundIsZero ;
return I J . setupDialog ( imp , DOES_8G ) ;

}

/∗∗
∗ Standard Image J p l u g i n run method . Q u i t e m o n o l i t h i c f o r s i m p l i c i t y p u r p o s e s
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / C a l i b r a t i o n i n f o i s not used f o r p a r a m e t e r s in t h i s i m p l e m e n t a t i o n ,
/ / however i t i s r e t a i n e d in t h e r e s u l t image
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/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get some i n f o from t h e i n p u t image
byte [ ] o l d _ p i x e l s = ( byte [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;

/ / R e t r i e v e l i s t o f open images
i n t [ ] wList = WindowManager . g e t I D L i s t ( ) ;

/ / Get t h r e s h o l d
i n t threshold ;
GenericDialog gd = new GenericDialog ( className ) ;
gd . setLayout (new GridLayout ( 1 2 , 1 ) ) ;

/ / D e f a u l t v a l u e 5 0 0 ( Should i d e a l l y be c u s t o m i z e d
/ / f o r C a l i b r a t i o n ( microns ) )
Label lb lThreshold = new Label ( " Threshold ( in p i x e l s ) " ) ;
Tex tF ie ld t fThreshold = new TextF ie ld ( " 500 " , 0 ) ;

/ / Draw GUI
boolean binaryRegion = f a l s e ;
boolean or ig ina lRegion = f a l s e ;
cbBinaryRegion = new Checkbox ( " Generate a new binary image f o r each region " ,

binaryRegion ) ;
cbOriginalRegion = new Checkbox ( " Generate a new image f o r each region with " +

" data from the o r i g i n a l image " , or ig ina lRegion ) ;
chOriginalImage = new Choice ( ) ;
for ( i n t i = 0 ; i <wList . length ; i + + ) {

ImagePlus imp = WindowManager . getImage ( wList [ i ] ) ;
i f ( imp!= null && imp . getWidth ( ) = = width && imp . getHeight ( ) = = height )

chOriginalImage . add ( imp . g e t T i t l e ( ) ) ;
e lse

chOriginalImage . add ( " " ) ;
}
l b l F i l l e r V a l u e = new Label ( " F i l l e r value " ) ;
t f F i l l e r V a l u e = new TextF ie ld ( " −4.0 " , 0 ) ;
lblLow = new Label ( " Br ightness range ( low ) : " ) ;
tfLow = new TextF ie ld ( " −7.0 " ) ;
lblHigh = new Label ( " Br ightness range ( high ) : " ) ;
t fHigh = new TextF ie ld ( " 4 . 0 " ) ;

cbOriginalRegion . addItemListener ( t h i s ) ;

gd . add ( lb lThreshold ) ;
gd . add ( t fThreshold ) ;
gd . add ( cbBinaryRegion ) ;
gd . add ( cbOriginalRegion ) ;
gd . add ( chOriginalImage ) ;

gd . add ( l b l F i l l e r V a l u e ) ;
gd . add ( t f F i l l e r V a l u e ) ;
gd . add ( lblLow ) ;
gd . add ( tfLow ) ;
gd . add ( lblHigh ) ;
gd . add ( tfHigh ) ;

lb lThreshold . s e t V i s i b l e ( t rue ) ;
t fThreshold . s e t V i s i b l e ( t rue ) ;
cbBinaryRegion . s e t V i s i b l e ( t rue ) ;
cbOriginalRegion . s e t V i s i b l e ( t rue ) ;
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chOriginalImage . s e t V i s i b l e ( f a l s e ) ;

l b l F i l l e r V a l u e . s e t V i s i b l e ( f a l s e ) ;
t f F i l l e r V a l u e . s e t V i s i b l e ( f a l s e ) ;
lblLow . s e t V i s i b l e ( f a l s e ) ;
tfLow . s e t V i s i b l e ( f a l s e ) ;
lblHigh . s e t V i s i b l e ( f a l s e ) ;
t fHigh . s e t V i s i b l e ( f a l s e ) ;

gd . showDialog ( ) ;
i f ( gd . wasCanceled ( ) ) {

return ;
}

/ / R e t r i e v e p a r a m e t e r s from d i a l o g
threshold = I n t e g e r . p a r s e I n t ( t fThreshold . getText ( ) ) ;
binaryRegion = cbBinaryRegion . g e t S t a t e ( ) ;
or ig ina lRegion = cbOriginalRegion . g e t S t a t e ( ) ;
f l o a t f i l l e r V a l u e = F l o a t . pa rs e F l o a t ( t f F i l l e r V a l u e . getText ( ) ) ;
double low = Double . parseDouble ( tfLow . getText ( ) ) ;
double high = Double . parseDouble ( tfHigh . getText ( ) ) ;

/ / o r i g i n a l c o n v e r t e d t o w h i t e p a r t i c l e s ( p a r t o f o r i g i n a l F l o o d f i l l e r . j a v a a l g o r i t h m )
i f ( ! backgroundIsZero )

ip . i n v e r t ( ) ;

/ / Get some i n f o from t h e o r i g i n a l image (32− b i t f l o a t i n g p o i n t f o r m a t )
ImagePlus orig_imp ;
f l o a t [ ] o r i g _ p i x e l s = null ;
i f ( or ig ina lRegion ) {

orig_imp = WindowManager . getImage ( wList [ chOriginalImage . ge tSe lec tedIndex ( ) ] ) ;
o r i g _ p i x e l s = ( f l o a t [ ] ) orig_imp . ge tProcessor ( ) . g e t P i x e l s ( ) ;

}

/ / G e n e r a t e a new , empty image
ImagePlus new_imp = NewImage . createByteImage ( " temp1 " , width , height , 1 ,

NewImage . FILL_WHITE ) ;
new_imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageProcessor new_ip = new_imp . getProcessor ( ) ;
/ / Copy t h e o l d image i n t o t h e new one
byte [ ] p i x e l s = ( byte [ ] ) new_imp . getProcessor ( ) . g e t P i x e l s ( ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s [ x + y ∗ width ] = o l d _ p i x e l s [ x + y∗width ] ;

}
}

/ / G e n e r a t e a new , empty image once more
ImagePlus new_imp2 = NewImage . createByteImage ( " temp2 " , width , height , 1 ,

NewImage . FILL_WHITE ) ;
new_imp2 . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageProcessor new_ip2 = new_imp2 . ge tProcessor ( ) ;
/ / Copy t h e o l d image i n t o t h e new one
byte [ ] p i x e l s 2 = ( byte [ ] ) new_imp2 . ge tProcessor ( ) . g e t P i x e l s ( ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s 2 [ x + y ∗ width ] = o l d _ p i x e l s [ x + y∗width ] ;

}
}

/ / Main a l g o r i t h m p a r t
i n t regionCount = 0 ;
i n t o f f s e t ;
for ( i n t j = 0 ; j < height ; j + + ) {

o f f s e t = j ∗height ;
for ( i n t i = 0 ; i < width ; i + + ) {
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i f ( p i x e l s [ o f f s e t + i ] = = − 1 ) { / / c h e c k f o r b l a c k
/ / Measure s i z e o f r e g i o n by f i l l i n g , and s t o r e
/ / low and h igh c o o r d i n a t e s
currentLowX = currentLowY = I n t e g e r .MAX_VALUE;
currentHighX = currentHighY = I n t e g e r .MIN_VALUE;
i n t count = f i l l 2 ( i , j , new_ip ) ;
i f ( count < threshold ) {

f i l l ( i , j , ip , null ) ;
} e lse i f ( binaryRegion | | or ig ina lRegion ) { / / G e n e r a t e

/ / s egmented ou tp ut images
regionCount ++;
/ / bounding box
i n t bb_width = currentHighX − currentLowX ;
i n t bb_height = currentHighY − currentLowY ;

/ / G e n e r a t e a new , empty image
ImagePlus bb_imp = NewImage . createByteImage (

" Region number " + regionCount +
" , BoundingBoxInPixels ( [ " + currentLowX +
"−" + currentHighX + " ] , [ " + currentLowY +
"−" + currentHighY + " ] ) , binary " , width ,
height , 1 , NewImage . FILL_WHITE ) ;

bb_imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageProcessor bb_ip = bb_imp . getProcessor ( ) ;

/ / F i l l b o t h new_ ip2 and a t t h e same l o c a t i o n s in b b _ i p
f i l l ( i , j , new_ip2 , bb_ip ) ;
bb_ip . se tRo i ( currentLowX , currentLowY ,
bb_width , bb_height ) ;
bb_imp . s e t P r o c e s s o r ( null , bb_ip . crop ( ) ) ;
byte [ ] bb_pixe ls =
( byte [ ] ) bb_imp . ge tProcessor ( ) . g e t P i x e l s ( ) ;
i f ( binaryRegion ) {

bb_imp . show ( ) ;
} e lse {

/ / p r e p a r e f o r g a r b a g e c o l l e c t i o n
bb_ip = null ;
bb_imp = null ;

}
i f ( or ig ina lRegion ) {

/ / B a c k t r a n s l a t e s egmented r e g i o n s t o o r i g i n a l image
ImagePlus bborig_imp =
NewImage . createFloat Image ( " Region number " +
regionCount + " , BoundingBoxInPixels ( [ " +
currentLowX + "−" + currentHighX + " ] , [ " +
currentLowY + "−" + currentHighY + " ] ) , o r i g i n a l " ,
bb_width , bb_height , 1 , NewImage . FILL_WHITE ) ;
bborig_imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
f l o a t [ ] b b o r i g _ p i x e l s =

( f l o a t [ ] ) bborig_imp . ge tProcessor ( ) .
g e t P i x e l s ( ) ;

for ( i n t x = 0 ; x < bb_width ; x + + ) {
for ( i n t y = 0 ; y < bb_height ; y + + ) {

i f ( bb_pixe ls [ y∗bb_width + x ] = = 0 ) {
b b o r i g _ p i x e l s [ x + y ∗ bb_width ] =

o r i g _ p i x e l s [ ( currentLowY+y )∗width +
( currentLowX+x ) ] ;

} e lse {
/ / Which v a l u e t o use a t empty p i x e l s ?
/ / b b o r i g _ p i x e l s [ x + y ∗ bb _ width ] =

/ / F l o a t . POSITIVE_ IN FIN ITY ;
/ / b b o r i g _ p i x e l s [ x + y ∗ bb _ width ] =

/ / ( f l o a t ) 0 . 0 ;
/ / b b o r i g _ p i x e l s [ x + y ∗ bb _ width ] =

/ / F l o a t . N aN ;
b b o r i g _ p i x e l s [ x + y ∗ bb_width ] =
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f i l l e r V a l u e ;
}

}
}
ImageProcessor bborig_ip = bborig_imp . ge tProcessor ( ) ;
bborig_ip . setMinAndMax ( low , high ) ;
bborig_imp . show ( ) ;
Executer e = new Executer ( " F i r e " , bborig_imp ) ;
e . run ( ) ;

}
}

}
}

}

/ / r e t u r n t o o r i g i n a l s t a t e ( p a r t o f o r i g i n a l F l o o d f i l l e r . j a v a a l g o r i t h m )
i f ( ! backgroundIsZero )

ip . i n v e r t ( ) ;

/ / p r e p a r e f o r g a r b a g e c o l l e c t i o n
new_imp = null ;
new_ip = null ;

}

/∗∗
∗ C a l l b a c k method used f o r h i d i n g and showing
∗ components in t h e d i a l o g
∗

∗ @param e The I t emEvent
∗ /

public void itemStateChanged ( ItemEvent e ) {
i f ( e . g e t I t e m S e l e c t a b l e ( ) = = cbOriginalRegion ) {

i f ( e . getStateChange ( ) = = ItemEvent . SELECTED ) {
chOriginalImage . s e t V i s i b l e ( t rue ) ;
l b l F i l l e r V a l u e . s e t V i s i b l e ( t rue ) ;
t f F i l l e r V a l u e . s e t V i s i b l e ( t rue ) ;
lblLow . s e t V i s i b l e ( t rue ) ;
tfLow . s e t V i s i b l e ( t rue ) ;
lblHigh . s e t V i s i b l e ( t rue ) ;
t fHigh . s e t V i s i b l e ( t rue ) ;

} e lse {
chOriginalImage . s e t V i s i b l e ( f a l s e ) ;
l b l F i l l e r V a l u e . s e t V i s i b l e ( f a l s e ) ;
t f F i l l e r V a l u e . s e t V i s i b l e ( f a l s e ) ;
lblLow . s e t V i s i b l e ( f a l s e ) ;
tfLow . s e t V i s i b l e ( f a l s e ) ;
lblHigh . s e t V i s i b l e ( f a l s e ) ;
t fHigh . s e t V i s i b l e ( f a l s e ) ;

}
}

}

}
� �
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A.2 CalculateAverageSurfaceHeight_.java

� �
import j ava . t e x t . DecimalFormat ;

import i j . ImagePlus ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . t e x t . TextWindow ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ C a l c u l a t e A v e r a g e S u r f a c e H e i g h t p l u g i n f o r Image J . Meant t o be used
∗ f o r s u r f a c e images . Takes a s i n p u t a 32− b i t f l o a t image and p r i n t s
∗ out t h e a v e r a g e h e i g h t v a l u e in a new window .
∗

∗ /
public c l a s s CalculateAverageSurfaceHeight_ implements P l u g I n F i l t e r {

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method . Quite m o n o l i t h i c f o r s i m p l i c i t y p u r p o s e s
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get some i n f o from t h e i n p u t image
f l o a t [ ] p i x e l s = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;

/ / Sum
double cumsum = 0 . 0 ;
double s i z e = height∗width ;
for ( i n t j = 0 ; j < height ; j + + ) {

for ( i n t i = 0 ; i < width ; i + + ) {
cumsum + = p i x e l s [ j ∗width+ i ] ;

}
}

/ / C a l c u l a t e t h e a v e r a g e
TextWindow tw = new TextWindow (

" CalculateAverageSurfaceHeight Resul t " ,
" Average s u r f a c e height : " +
new DecimalFormat (

" # # # . # # # # " ) . format (cumsum/ ( ( double ) ( height∗width ) ) ) ,
4 0 0 , 1 5 0 ) ;

}
}

� �
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A.3 CenterOfMass_.java

� �
import i j . ∗ ;
import i j . gui . NewImage ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . process . I m a g e S t a t i s t i c s ;

import j ava . awt . Point ;
import j ava . u t i l . ArrayLis t ;
import j ava . u t i l . I t e r a t o r ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ CenterOfMass p l u g i n f o r Image J . Takes a s i n p u t a b i n a r y b l a c k−and−w h i t e
∗ image , in 8− b i t g r a y s c a l e f o rmat , wi th w h i t e a s t h e background
∗ c o l o r and b l a c k as t h e f o r e g r o u n d ( r e g i o n ) c o l o r . Outputs a b i n a r y b l a c k−and−w h i t e
∗ image with e v e r y b l a c k r e g i o n in t h e image s u b s t i t u t e d with a s i n g l e
∗ p i x e l a t t h e p o s i t i o n which i s t h e r e g i o n ’ s c e n t e r o f mass p o i n t .
∗

∗ The f l o o d f i l l a l g o r i t h m used borrows h e a v i l y from F l o o d f i l l e r . j a v a
∗ and B i n a r y F i l l e r . j a v a in t h e Image J 1 . 3 4 n c o d e b a s e ( a l s o used in
∗ t h e A r e a T h r e s h o l d e r p l u g i n )
∗ /

public c l a s s CenterOfMass_ implements P l u g I n F i l t e r {

/ / v a r i a b l e s from F l o o d f i l l e r . j a v a
i n t maxStackSize = 5 0 0 ; / / w i l l be i n c r e a s e d as ne e de d
i n t [ ] s t ack = new i n t [ maxStackSize ] ;
i n t s t a c k S i z e ;
i n t max ;

/∗∗
∗ O r i g i n a l f l o o d f i l l a l g o r i t h m from F l o o d f i l l e r . j a v a . Takes
∗ as i n p u t a s e e d p o i n t and f i l l s s c a n l i n e by s c a n l i n e .
∗

∗ @param x X−c o o r d i n a t e o f s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f s e e d p o i n t
∗ @param i p The image b e i n g p r o c e s s e d
∗ @param i p 2 A s e c o n d image t o w r i t e t o
∗ @return True i f e v e r y t h i n g went OK, f a l s e i f s e e d p o i n t a l r e a d y f i l l e d
∗ /

public boolean f i l l ( i n t x , i n t y , ImageProcessor ip ) {
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;
i n t c o l o r = ip . g e t P i x e l ( x , y ) ;
ip . drawLine ( x , y , x , y ) ;
i n t newColor = ip . g e t P i x e l ( x , y ) ;
ip . putPixe l ( x , y , c o l o r ) ;
i f ( c o l o r ==newColor ) return f a l s e ;
s t a c k S i z e = 0 ;
push ( x , y ) ;
while ( t rue ) {

i n t coordinates = pop ( ) ;
i f ( coordinates ==−1) return true ;
x = coordinates&0 x f f f f ;
y = coordinates > >16;
i n t x1 = x ; i n t x2 = x ;
while ( ip . g e t P i x e l ( x1 , y)== c o l o r && x1 >=0) x1−−; / / f i n d s t a r t o f scan−l i n e
x1 ++;
while ( ip . g e t P i x e l ( x2 , y)== c o l o r && x2<width ) x2 + + ; / / f i n d end o f scan−l i n e
x2−−;
ip . drawLine ( x1 , y , x2 , y ) ; / / f i l l scan−l i n e
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boolean inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s a b o v e t h i s one

i f ( ! inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)== c o l o r )
{ push ( i , y−1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)!= c o l o r )
inScanLine = f a l s e ;

}
inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s be low t h i s one

i f ( ! inScanLine && y<height −1 && ip . g e t P i x e l ( i , y+1)== c o l o r )
{ push ( i , y + 1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y<height −1 && ip . g e t P i x e l ( i , y +1) != c o l o r )
inScanLine = f a l s e ;

}
}

}

/∗∗
∗ Same as f i l l method but a l s o r e t u r n s a p i x e l count r e f l e c t i n g
∗ how many p i x e l s were f i l l e d .
∗

∗ @param x X−c o o r d i n a t e o f s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f s e e d p o i n t
∗ @param i p The image b e i n g p r o c e s s e d
∗ @return True i f e v e r y t h i n g went OK, f a l s e i f s e e d p o i n t a l r e a d y f i l l e d
∗ /

public ArrayList f i l l 2 ( i n t x , i n t y , ImageProcessor ip ) {
ArrayList p o i n t L i s t = new ArrayList ( ) ;
/ / i n t count = 0 ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;
i n t c o l o r = ip . g e t P i x e l ( x , y ) ;
ip . drawLine ( x , y , x , y ) ;
i n t newColor = ip . g e t P i x e l ( x , y ) ;
ip . putPixe l ( x , y , c o l o r ) ;
i f ( c o l o r ==newColor ) return null ; / / f a l s e
s t a c k S i z e = 0 ;
push ( x , y ) ;
while ( t rue ) {

i n t coordinates = pop ( ) ;
i f ( coordinates ==−1) return p o i n t L i s t ; / / t r u e
x = coordinates&0 x f f f f ;
y = coordinates > >16;
i n t x1 = x ; i n t x2 = x ;
while ( ip . g e t P i x e l ( x1 , y)== c o l o r && x1 >=0) x1−−; / / f i n d s t a r t o f scan−l i n e
x1 ++;
while ( ip . g e t P i x e l ( x2 , y)== c o l o r && x2<width ) x2 + + ; / / f i n d end o f scan−l i n e
x2−−;
ip . drawLine ( x1 , y , x2 , y ) ; / / f i l l scan−l i n e
/ / count + = x2−x1 +1;
for ( i n t i = x1 ; i <= x2 ; i + + ) {

p o i n t L i s t . add (new Point ( i , y ) ) ;
}
boolean inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s a b o v e t h i s one

i f ( ! inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)== c o l o r )
{ push ( i , y−1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y>0 && ip . g e t P i x e l ( i , y−1)!= c o l o r )
inScanLine = f a l s e ;

}
inScanLine = f a l s e ;
for ( i n t i =x1 ; i <=x2 ; i + + ) { / / f i n d scan−l i n e s be low t h i s one

i f ( ! inScanLine && y<height −1 && ip . g e t P i x e l ( i , y+1)== c o l o r )
{ push ( i , y + 1 ) ; inScanLine = t rue ; }

e lse i f ( inScanLine && y<height −1 && ip . g e t P i x e l ( i , y +1) != c o l o r )
inScanLine = f a l s e ;
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}
}

}

/∗∗
∗ He lp e r method f o r f i l l a l g o r i t h m
∗

∗ @param x X−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ /

f i n a l void push ( i n t x , i n t y ) {
s t a c k S i z e ++;
i f ( s t a c k S i z e ==maxStackSize ) {

i n t [ ] newStack = new i n t [ maxStackSize ∗ 2 ] ;
System . arraycopy ( stack , 0 , newStack , 0 , maxStackSize ) ;
s t ack = newStack ;
maxStackSize ∗= 2 ;

}
s t ack [ s tackS ize −1] = x + ( y < <16);

}

/∗∗
∗ He lp e r method f o r f i l l a l g o r i t h m
∗

∗ @param x X−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ @param y Y−c o o r d i n a t e o f c u r r e n t s e e d p o i n t
∗ /

f i n a l i n t pop ( ) {
i f ( s t a c k S i z e ==0)

return −1;
e lse {

i n t value = s t ack [ s tackS ize −1];
s tackS ize −−;
return value ;

}
}

/∗∗
∗ S t o r e s whe the r t h e l o o k u p t a b l e i s i n v e r t e d
∗ /

protected boolean backgroundIsZero ;

/∗∗
∗ The i n p u t image
∗ /

private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {

i f ( imp==null )
{ I J . noImage ( ) ; return DONE; }
t h i s . imp = imp ;
I m a g e S t a t i s t i c s s t a t s =imp . g e t S t a t i s t i c s ( ) ;
i f ( s t a t s . histogram [ 0 ]+ s t a t s . histogram [ 2 5 5 ] ! = s t a t s . pixelCount ) {

I J . e r r o r ( "8−b i t binary image ( 0 and 2 5 5 ) required . " ) ;
return DONE;

}
backgroundIsZero = P r e f s . blackBackground ;
i f ( imp . i s I n v e r t e d L u t ( ) )

backgroundIsZero = ! backgroundIsZero ;
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return I J . setupDialog ( imp , DOES_8G ) ;
}

/∗∗
∗ S t a n d a r d I m a g e J p l u g i n r u n m e t h o d .
∗

∗ @ p a r a m i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void r un ( ImageP r oc essor ip ) {
/ / G e t t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g c lassN ame = ge t C l ass ( ) . getN ame ( ) ;
i f ( c lassN ame . c h ar A t ( c lassN ame . le n gt h ( ) − 1 ) = = ’ _ ’ ) {

c lassN ame = c lassN ame . su b s t r i n g ( 0 , c lassN ame . le n gt h ( ) − 1 ) ;
}

/ / o r i g i n a l c o n v e r t e d t o w h i t e p a r t i c l e s ( p a r t o f o r i g i n a l F l o o d f i l l e r . j a v a a l g o r i t h m )
i f ( ! b ac k gr oun d IsZ er o )

ip . i n v e r t ( ) ;

by t e [ ] o l d _ p i x e l s = ( by t e [ ] ) ip . g e t P i x e l s ( ) ;
i n t w id th = ip . getW id th ( ) ;
i n t h e ig h t = ip . get H eigh t ( ) ;

/ / G e n e r a t e a n e w , e m p t y i m a g e
ImageP lus n ew _imp = N ew Image . c r eate B y teImage ( imp . g e t T i t l e ( ) + " : " + c lassN ame ,
w id th , h eigh t , 1 , N ew Image . F IL L _W H IT E ) ;
n ew _imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageP r oc essor n ew _ip = n ew _imp . ge t P r o c esso r ( ) ;
/ / C o p y t h e o l d i m a g e i n t o t h e n e w o n e
by t e [ ] p i x e l s = ( by t e [ ] ) n ew _imp . ge t P r o c esso r ( ) . g e t P i x e l s ( ) ;
f o r ( i n t x = 0 ; x < w id th ; x + + ) {

f o r ( i n t y = 0 ; y < h e ig h t ; y + + ) {
p i x e l s [ x + y ∗ w id th ] = o l d _ p i x e l s [ x + y ∗ w id th ] ;

}
}

/ / G e n e r a t e a n e w , e m p t y i m a g e o n c e m o r e
ImageP lus n ew _imp2 = N ew Image . c r eate B y teImage ( imp . g e t T i t l e ( ) + " : " + c lassN ame ,
w id th , h eigh t , 1 , N ew Image . F IL L _W H IT E ) ;
n ew _imp2 . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageP r oc essor n ew _ip2 = n ew _imp2 . ge t P r o c esso r ( ) ;

/ / M a in a l g o r i t h m s t a r t
i n t o f f s e t ;
f o r ( i n t j = 0 ; j < h e ig h t ; j + + ) {

o f f s e t = j ∗ h e ig h t ;
f o r ( i n t i = 0 ; i < w id th ; i + + ) {

i f ( p i x e l s [ o f f s e t + i ] = = − 1 ) { / / c h e c k f o r b l a c k
A r r a y L i s t p o i n t L i s t = f i l l 2 ( i , j , n ew _ip ) ;

/ / S u m
P o i n t p ;
lon g c umsum_x = 0 ;
lon g c umsum_y = 0 ;
i n t n umP oin ts = 0 ;
f o r ( I t e r a t o r i t = p o i n t L i s t . i t e r a t o r ( ) ; i t . h asN ex t ( ) ; ) {

n umP oin ts + + ;
p = ( P o i n t ) i t . n e x t ( ) ;
c umsum_x + = p . x ;
c umsum_y + = p . y ;

}

/ / C a l c u l a t e m i d p o i n t
i n t geom_mid poin t_x = ( i n t ) ( c umsum_x / n umP oin ts ) ;
i n t geom_mid poin t_y = ( i n t ) ( c umsum_y / n umP oin ts ) ;
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/ / Draw i t
new_ip2 . drawPixel ( geom_midpoint_x , geom_midpoint_y ) ;

}
}

}

/ / r e t u r n t o o r i g i n a l s t a t e ( p a r t o f o r i g i n a l F l o o d f i l l e r . j a v a a l g o r i t h m )
i f ( ! backgroundIsZero )

ip . i n v e r t ( ) ;

new_imp2 . show ( ) ;

/ / p r e p a r e f o r g a r b a g e c o l l e c t i o n
new_imp = null ;
new_ip = null ;

}

}
� �
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A.4 DiscretizeZValues_.java

� �
im port i j . I J ;
im port i j . ImagePlus ;
im port i j . gui . NewImage ;
im port i j . plugin . f i l t e r . P l u g I n F i l t e r ;
im port i j . process . ImageProcessor ;
im port i j . process . I m a g e S t a t i s t i c s ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ D i s c r e t i z e Z V a l u e s p l u g i n f o r Image J . T ak e s a s i n p u t a 3 2 − b i t
∗ s u r f a c e image and " s l i c e s " t h e image in u n i t i n c r e m e n t s , from t h e l o w e s t
∗ i n t e g e r v a l u e t o t h e h i g h e s t rounded i n t e g e r v a l u e d e t e c t e d in t h e image .
∗ T he ou t pu t i s an image s t a c k o f b i n a r y images where w h i t e p i x e l s
∗ c o r r e s p o n d t o f i l l e d a r e a s and b l a c k p i x e l s c o r r e s p o n d t o empty a r e a s .
∗

∗ /
public c l a s s Discret i z eZV a lues_ im plem ents P l u g I n F i l t e r {

/∗ ∗ T he i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg P lug in arguments
∗ @param imp T he i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
t h i s . imp = imp ;
return DOES_3 2 ;

}

/∗∗
∗ Standard Image J p l u g i n run method . S imple p l u g i n so
∗ e v e r y t h i n g i s done in h e r e
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get some c o l o r s
I J . run ( " F i r e " ) ;

/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get width and h e i g h t o f i n p u t image
i n t width = imp . getWidth ( ) ;
i n t height = imp . getHeight ( ) ;
f l o a t [ ] p i x e l s = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;

/ / Get rounded i n t e g e r min and max o f i n p u t image
I m a g e S t a t i s t i c s s t a t s = imp . g e t S t a t i s t i c s ( ) ;
i n t min = ( i n t ) Math . round ( s t a t s . min ) ;
i n t max = ( i n t ) Math . round ( s t a t s . max ) ;
i n t s l i c e s = max − min ;

/ / G e n e r a t e a new , empty image
ImagePlus new_imp = NewImage . createByteImage ( imp . g e t T i t l e ( ) + " : " + className ,
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width , height , s l i c e s + 1 , NewImage . FILL_BLACK ) ;

/ / S l i c e t h e image
f l o a t p i x e l ;
byte d i s c r e t i z e d _ p i x e l ;
for ( i n t j = 0 ; j < height ; j + + ) {

for ( i n t i = 0 ; i < width ; i + + ) {
p i x e l = p i x e l s [ j ∗width+ i ] ;

/ / R ound as l a s t s t e p , e l s e i t doe sn ’ t work c o r r e c t l y f o r n e g a t i v e
/ / p i x e l v a l u e s
d i s c r e t i z e d _ p i x e l = ( byte ) Math . round ( p i x e l − min ) ;
for ( i n t k = 0 ; k <= d i s c r e t i z e d _ p i x e l ; k + + ) {

( ( byte [ ] ) new_imp . getS tack ( ) . g e t P i x e l s ( k + 1 ) ) [ j ∗width+ i ] =
( byte ) 0 x f f ;

}
}

}

/ / Show t h e new , s l i c e d image
new_imp . show ( ) ;

}

}
� �
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A.5 DistanceTransform3D_.java

� �
/ / O r i g i n a l GNU c o p y r i g h t message f o l l o w s −−−s v e i n f i d June 1 3 , 2 0 0 5
/∗ Makes a 3D d i s c r e t e d i s t a n c e t r a n s f o r m . Uses Image J .

Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r
modi fy i t under t h e t e rms o f t h e GNU G e n e r a l P u b l i c L i c e n s e
as p u b l i s h e d by t h e F r e e S o f t w a r e Founda t i on ; e i t h e r v e r s i o n 2
o f t h e L i c e n s e , o r ( a t your o p t i o n ) any l a t e r v e r s i o n .

Th i s program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l ,
but W ITH OUT A NY W A RRA NTY ; w i t h o u t even t h e i m p l i e d warranty o f
ME RCH A NTA B IL ITY o r FITNE SS FOR A PA RTICUL A R PURPOSE . See t h e
GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

Y ou s h o u l d have r e c e i v e d a copy o f t h e GNU G e n e r a l P u b l i c L i c e n s e
a l o n g with t h i s program ; i f not , w r i t e t o t h e F r e e S o f t w a r e
Foundat ion , I n c . , 5 9 Temple P l a c e − S u i t e 3 3 0 , B oston , MA 0 21 1 1 − 1 30 7 , USA .

W r i t t en by Maria A xe l s son , p o r t e d t o Image J / J a v a by
J e n s B ache−W iig < j ensbw% a t% gma i l . com > and
Per C h r i s t i a n H enden < p e r c h r h% a t% pvv . org >

F u r t h e r c u s t o m i z e d f o r use in p a p e r s u r f a c e a n a l y s i s by Sve in F i d j e s t ø l

∗ /

import i j . I J ;
import i j . ImagePlus ;
import i j . gui . NewImage ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;

/∗∗
∗ @author Sve in F i d j e s t ø l ( o r i g i n a l c o d e : J e n s B ache−W iig , Per C h r i s t i a n H enden
∗ and Maria A x e l s s o n )
∗

∗ 3D D i s t a n c e Trans form p l u g i n f o r Image J . Takes a s i n p u t v o x e l d a t a in t h e
∗ form o f a s l i c e d b i n a r y b l a c k−and−w h i t e image ( a s e . g . g e n e r a t e d by t h e
∗ D i s c r e t i z e Z V a l u e s p l u g i n ) where w h i t e p i x e l s
∗ c o r r e s p o n d t o f i l l e d a r e a s and b l a c k p i x e l s c o r r e s p o n d t o empty a r e a s .
∗ C a l c u l a t e s t h e 3D D i s t a n c e Trans form from t h i s v o x e l d a t a and o u t p u t s
∗ a s l i c e d 8 − b i t gray l e v e l image .
∗ /

public c l a s s DistanceTransform3D_ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imR ef_old ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
i f ( arg . e q uals ( " about " ) ) {

showAbout ( ) ;
return DONE;

}
imR ef_old = imp ;
return DOES_8G ;

}

/∗∗
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∗ Standard Image J p l u g i n run method . Quite m o n o l i t h i c f o r s i m p l i c i t y p u r p o s e s
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get some i n f o from t h e i n p u t image
f i n a l i n t width = ip . getWidth ( ) ;
f i n a l i n t height = ip . getHeight ( ) ;
f i n a l i n t depth = imRef_old . g e t S t a c k S i z e ( ) + 2 ;

/ / f i n a l i n t a = 3 , b = 4 , c = 3 , d = 4 , e = 5 ; / / a l t e r n a t e w e i g h t s
f i n a l i n t a = 3 , b = 4 , c = 5 , d = 3 , e = 7 ;

f i n a l i n t [ ] wf = new i n t [ ] { e , d , e , d , c , d , e , d , e , b , a , b , a , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , } ;
f i n a l i n t [ ] wb = new i n t [ ] { 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , a , b , a , b , e , d , e , d ,
c , d , e , d , e , } ;
i n t [ ] s l a s k = new i n t [ 2 ∗ 3 ∗ 3 ] ;

/ / G e n e r a t e a new , empty image
ImagePlus imRef = NewImage . createByteImage ( imRef_old . g e t T i t l e ( ) + " : " +
className , width , height , depth , NewImage . FILL_BLACK ) ;
imRef . s e t C a l i b r a t i o n ( imRef_old . g e t C a l i b r a t i o n ( ) ) ;
/ / Copy t h e o l d image i n t o t h e new one s l i c e by s l i c e and
/ / g e n e r a t e padd ing s l i c e s a t t o p and bot tom o f s t a c k
byte [ ] p i x e l s ;
byte [ ] p i x e l s _ o l d ;
p i x e l s = ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s ( 1 ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s [ x + y ∗ width ] = ( byte ) 0 x0 ;

}
}
p i x e l s = ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s ( depth ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s [ x + y ∗ width ] = ( byte ) 0 x f f ;

}
}
for ( i n t z = 0 ; z < depth −2 ; z + + ) {

p i x e l s = ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s ( z + 2 ) ;
p i x e l s _ o l d = ( byte [ ] ) imRef_old . ge tS tack ( ) . g e t P i x e l s ( z + 1 ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s [ x + y ∗ width ] = ( byte ) ( ( byte ) 0 x f f ^
( byte ) p i x e l s _ o l d [ x + y ∗ width ] ) ;

}
}

}

/ / Bo r d e r p i x e l s a r e i g n o r e d t o s i m p l i f y t h e c o n v o l u t i o n s be low
/∗ f o r ( i n t z = 0 ; z < d e p t h ; z + + ) {

f o r ( i n t x = 0 ; x < width ; x + + ) {
f o r ( i n t y = 0 ; y < h e i g h t ; y + + ) {

i f ( z = = 0 | | x = = 0 | | y = = 0 | | z= = depth −1 | |
y= = h e i g h t −1 | | x= = width −1 ) {

( ( b y t e [ ] ) imRef . g e t S t a c k ( ) . g e t P i x e l s ( z + 1 ) ) [ x +
y ∗ width ]
= ( b y t e ) 0 x0 ;
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}

}
}

} ∗ /

/ / Forward i t e r a t i o n
for ( i n t z = 1 ; z < depth −1 ; z + + ) {

I J . showProgress ( z , 2 ∗ depth −2);
for ( i n t x = 1 ; x < width −1 ; x + + ) {

for ( i n t y = 1 ; y < height −1 ; y + + ) {

for ( i n t k = −1 ; k < 1 ; k + + ) {
for ( i n t j = −1 ; j < 2 ; j + + ) {

for ( i n t i = −1 ; i < 2 ; i + + ) {
i n t s lask index =
( i + 1 ) + ( j + 1 ) ∗ 3 + ( k + 1 ) ∗ 3 ∗ 3 ;
i n t p i x e l = 0 x f f &
( ( byte [ ] ) imRef . ge tS tack ( ) .
g e t P i x e l s (

z + k + 1 ) ) [ ( x+ i ) +
( y+ j ) ∗ width ] ;

s l a s k [ s lask index ]=
p i x e l + wf [ s lask index ] ;

}
}

}
i n t minval = s l a s k [ 0 ] ; / / t h e l o w e s t v a l u e so f a r
for ( i n t i = 1 ; i < s l a s k . length ; i + + ) {

i f ( ( s l a s k [ i ] ) < minval ) minval =( s l a s k [ i ] ) ;
}

i n t p i x e l = 0 x f f & ( ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s (
z + 1 ) ) [ ( x ) + ( y ) ∗ width ] ;

i f ( p ixe l > minval ) ( ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s (
z + 1 ) ) [ x + y ∗ width ] = ( byte ) ( minval& 0 x f f ) ;

}
}

}

/ / Backward i t e r a t i o n
for ( i n t z = depth −2 ; z > 0 ; z−−) {

I J . showProgress (2∗depth−z , 2 ∗ depth −2);
for ( i n t x = width −2 ; x > 0 ; x−−) {

for ( i n t y = height −2 ; y > 0 ; y−−) {

for ( i n t k = 0 ; k < 2 ; k + + ) {
for ( i n t j = −1 ; j < 2 ; j + + ) {

for ( i n t i = −1 ; i < 2 ; i + + ) {
i n t s lask index = ( i + 1 ) + ( j + 1 ) ∗ 3
+ ( k ) ∗ 3 ∗ 3 ;
i n t p i x e l = 0 x f f &
( ( byte [ ] ) imRef . ge tS tack ( ) .
g e t P i x e l s (

z + k + 1 ) ) [ ( x+ i ) +
( y+ j ) ∗ width ] ;

s l a s k [ s lask index ] = p i x e l
+ wb[ s lask index ] ;

}
}

}

i n t minval = s l a s k [ 0 ] ; / / t h e l o w e s t v a l u e so f a r
for ( i n t i = 1 ; i < s l a s k . length ; i + + ) {

i f ( ( s l a s k [ i ] ) < minval ) minval =( s l a s k [ i ] ) ;
}
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i n t p i x e l = 0 x f f & ( ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s (
z + 1 ) ) [ ( x ) + ( y ) ∗ width ] ;

i f ( p ixe l >minval ) ( ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s (
z + 1 ) ) [ x + y ∗ width ] = ( byte ) ( minval&0 x f f ) ;

}
}

}

/ / D e l e t e padd ing s l i c e s and show r e s u l t
/ / G e n e r a t e a new , empty image
ImagePlus imRef2 = NewImage . createByteImage ( imRef_old . g e t T i t l e ( ) +
" : " + className , width , height , depth −2 , NewImage . FILL_BLACK ) ;
imRef2 . s e t C a l i b r a t i o n ( imRef_old . g e t C a l i b r a t i o n ( ) ) ;
/ / Copy t h e o l d image i n t o t h e new one
byte [ ] p i x e l s 2 ;
byte [ ] p i x e l s 1 ;
for ( i n t z = 0 ; z < depth −2 ; z + + ) {

p i x e l s 2 = ( byte [ ] ) imRef2 . ge tS tack ( ) . g e t P i x e l s ( z + 1 ) ;
p i x e l s 1 = ( byte [ ] ) imRef . ge tS tack ( ) . g e t P i x e l s ( z + 2 ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s 2 [ x + y ∗ width ] = p i x e l s 1 [ x + y ∗ width ] ;

}
}

}
imRef2 . show ( ) ;

}

void showAbout ( ) {
I J . showMessage ( " About DT3D . . . " ,

" This plug−in f i l t e r c a l c u l a t e s the 3D d i s t a n c e s transform " +
" of a binary image with " +
" white ( 2 5 5 ) as background and black ( 0 ) as foreground . \ n" ) ;

}

} / / c l a s s
� �
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A.6 FractalDimension_.java

� �
import i j . ImagePlus ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . t e x t . TextWindow ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ F r a c t a l D i m e n s i o n p l u g i n f o r Image J . Takes a s i n p u t a b i n a r y b l a c k−and−w h i t e
∗ image , in 8− b i t g r a y s c a l e f o rmat , wi th w h i t e a s t h e background
∗ c o l o r and b l a c k p i x e l s a s r e g i o n s . P r i n t s out t h e r e s u l t o f
∗ box c o u n t i n g which i s n e c c e s s a r y f o r c a l c u l a t i n g t h e
∗ f r a c t a l d imens i on o f t h e b i n a r y image . Box c o u n t i n g i s done by s t a r t i n g
∗ with 1 x1 r e g i o n s , i n c r e a s i n g t o 2 x2 , 4 x4 , 8 x8 e t c up t o t h e maximum s i z e
∗ a l l o w e d in t h e i n p u t image .
∗

∗ I n s p i r e d by t h e t u t o r i a l o f t h e f r a c t a l d imens i on by box c o u n t i n g
∗ web page a t
∗ h t t p : / / www. e e s . nmt . edu / ~ davew / P36 2 / b o x c n t . htm
∗

∗ /
public c l a s s FractalDimension_ implements P l u g I n F i l t e r {

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
/ / TODO Auto−g e n e r a t e d method s t u b
return DOES_8G ;

}

/∗∗
∗ Standard Image J p l u g i n run method .
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get some i n f o from t h e i n p u t image
byte [ ] p i x e l s = ( byte [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;

/ / number o f i t e r a t i o n s as l i m i t e d by t h e i n p u t image
i n t i t e r a t i o n s = ( i n t ) ( Math . log ( width )/Math . log ( 2 ) ) ;
i n t numboxes [ ] = new i n t [ i t e r a t i o n s ] ;
i n t count [ ] = new i n t [ i t e r a t i o n s ] ;
i n t boxsize [ ] = new i n t [ i t e r a t i o n s ] ;

/ / Do t h e c o u n t i n g
i n t currentboxs ize , y_steps , x_s teps ;
for ( i n t i t = 0 ; i t < i t e r a t i o n s ; i t + + ) {

curr en tbox s ize = boxsize [ i t ] = ( i n t ) Math . pow( 2 , i t ) ;
y_steps = height / curre nt bo xs ize ;
x_s teps = width / curre nt bo xs ize ;
numboxes [ i t ] = x_steps∗y_steps ;
for ( i n t j = 0 ; j < y_steps ; j + + ) {

for ( i n t i = 0 ; i < x_steps ; i + + ) {
inner loops :
for ( i n t j 2 = 0 ; j 2 < current bo xs ize ; j 2 + + ) {

for ( i n t i 2 = 0 ; i 2 < curre nt bo xs ize ; i 2 + + ) {
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/ / Check f o r b l a c k p i x e l
i f ( p i x e l s [ ( ( j ∗ curren tbox s ize+ j 2 )∗width )+
( i ∗ curren tbox s ize+ i 2 ) ] = = ( byte ) 0 ) {

count [ i t ]++ ;
break inner loops ;

}
}

}
}

}
}

/ / G e n e r a t e r e s u l t s t r i n g
S t r i n g r e s u l t = " " ;
for ( i n t i = 0 ; i < i t e r a t i o n s ; i + + ) {

r e s u l t + = "\nboxsize : " + boxsize [ i ] + "\tcount : " + count [ i ] ;
}

/ / Show in a r e s u l t window
TextWindow tw = new TextWindow ( " FractalDimension Resul t " ,
" Resul t s from FractalDimension box counting " + r e s u l t , 4 0 0 , 1 5 0 ) ;

}

}
� �
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A.7 MeasurePoreVolume_.java

� �
import j ava . awt . GridLayout ;
import j ava . awt . Label ;
import j ava . awt . Tex tF ie ld ;

import i j . I J ;
import i j . ImagePlus ;
import i j . gui . GenericDialog ;
import i j . measure . C a l i b r a t i o n ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . t e x t . TextWindow ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ MeasurePoreVolume p l u g i n f o r Image J . Measures t h e volume
∗ o f a s i n g l e p o r e in microns .
∗ /

public c l a s s MeasurePoreVolume_ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
i f ( arg . equals ( " about " ) ) {

showAbout ( ) ;
return DONE;

}
t h i s . imp = imp ;
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method .
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get some i n f o from t h e i n p u t image
f l o a t [ ] p i x e l s = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;

C a l i b r a t i o n c a l = imp . g e t C a l i b r a t i o n ( ) ;
S t r i n g uni t = c a l . get U ni t ( ) ;
i f ( ! uni t . equals ( "um" ) ) { / / mic rons

I J . showMessage ( " Measurement uni t f o r image must be um" ) ; / / mic rons
return ;

}

/ / Read in t h r e s h o l d p l a n e v a l u e
GenericDialog gd = new GenericDialog ( " MeasurePoreVolume " ) ;
gd . setLayout (new GridLayout ( 2 , 2 ) ) ;
Label lblThresholdPlaneValue = new Label ( " Threshold plane value ( in um ) : " ) ;
/ / mic rons
TextF ie ld tfThresholdPlaneValue = new TextF ie ld ( " −4.0 " , 0 ) ;
gd . add ( lblThresholdPlaneValue ) ;
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gd . add ( tfThresholdPlaneValue ) ;
lb lThresholdPlaneValue . s e t V i s i b l e ( t rue ) ;
t fThresholdPlaneValue . s e t V i s i b l e ( t rue ) ;
gd . showDialog ( ) ;
i f ( gd . wasCanceled ( ) ) {

return ;
}

/ / Get t h e t h r e s h o l d v a l u e
f l o a t t = F l o a t . pa r se F l o a t ( t fThresholdPlaneValue . getText ( ) ) ;

double pd = c a l . pixelDepth ;
double pw = c a l . pixelWidth ;
double ph = c a l . pixe lHeight ;
double voxelvolume = pd∗pw∗ph ;

double volume = 0 . 0 ;
i n t o f f s e t ;
f l o a t p i x e l ;
for ( i n t j = 0 ; j < height ; j + + ) {

o f f s e t = j ∗width ;
for ( i n t i = 0 ; i < width ; i + + ) {

p i x e l = p i x e l s [ o f f s e t + i ] ;
volume + = ( t−p i x e l )∗ voxelvolume ;

}
}
TextWindow tw = new TextWindow ( " MeasurePoreVolume Resul t " ,
" Resul t from MeasurePoreVolume :\n" + volume + " " + uni t + " ^3 " , 4 0 0 , 1 5 0 ) ;

}

/∗∗
∗ About window .
∗ /

public void showAbout ( ) {
I J . showMessage ( " About MeasurePoreVolume . . . " ,

" Measures the volume of a s i n g l e pore in microns^3 " ) ;
}

}
� �
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A.8 RollingBallNew_.java

� �
import j ava . awt . GridLayout ;
import j ava . awt . Label ;
import j ava . awt . Tex tF ie ld ;

import i j . I J ;
import i j . ImagePlus ;
import i j . gui . GenericDialog ;
import i j . measure . C a l i b r a t i o n ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . F l o a t P r o c e s s o r ;
import i j . process . ImageProcessor ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ R o l l i n g B a l l N e w p l u g i n f o r Image J . A new i m p l e m e n t a t i o n o f
∗ t h e r o l l i n g b a l l f i l t e r i n g a l g o r i t h m . Takes a s i n p u t a 32− b i t f l o a t
∗ image and o u t p u t s
∗ 1 ) The o r i g i n a l i n p u t image , c r o p p e d t o t h e same s i z e a s t h e f i n i s h e d ,
∗ f i l t e r e d image
∗ 2 ) The s p h e r e mask image
∗ 3 ) R o l l i n g b a l l mask v a l u e image
∗ 4 ) R o l l i n g b a l l f i l t e r e d / smoothed image
∗ 5 ) Output image : O r i g i n a l image with f i l t e r e d image s u b t r a c t e d
∗ ( image 1 minus image 4 )
∗ I f a r o l l i n g b a l l o f l a r g e enough r a d i u s i s used , image 5 s h o u l d c o n t a i n
∗ an image t h a t c o n t a i n s i m p o r t a n t p o r e s and c r e a s e s in t h e image and f l a t t e n s
∗ out t h e r ema in ing a r e a s s u i t a b l y ( i n c l u d i n g s m a l l e r and u n i n t e r e i n g
∗ p o r e s and c r e a s e s ) .
∗ /

public c l a s s RollingBallNew_ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
t h i s . imp = imp ;
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method .
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Checks f o r c o r r e c t u n i t and s t o r e s s c a l e
C a l i b r a t i o n c a l = imp . g e t C a l i b r a t i o n ( ) ;
S t r i n g uni t = c a l . getUnit ( ) ;
i f ( ! uni t . equals ( "um" ) ) { / / mic rons

I J . showMessage ( " Measurement uni t f o r image must be um" ) ; / / mic rons
return ;

}
i n t s c a l e = ( i n t ) Math . round ( c a l . pixelWidth ) ;

/ / Read in r a d i u s o f t h e r o l l i n g b a l l wi th a d i a l o g box
GenericDialog gd = new GenericDialog ( " RollingBallNew " ) ;
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gd . setLayout (new GridLayout ( 2 , 2 ) ) ;
Label lb lRadius = new Label ( " Rol l ing b a l l radius ( in microns ) : " ) ;
Tex tF ie ld t fRadius = new TextF ie ld ( " 5 " , 0 ) ;
Label lblRadiusComment = new Label ( " Radius in microns must be d i v i s a b l e by " +
s c a l e ) ;
gd . add ( lb lRadius ) ;
gd . add ( t fRadius ) ;
gd . add ( lblRadiusComment ) ;
lb lRadius . s e t V i s i b l e ( t rue ) ;
t fRadius . s e t V i s i b l e ( t rue ) ;
lblRadiusComment . s e t V i s i b l e ( t rue ) ;
gd . showDialog ( ) ;
i f ( gd . wasCanceled ( ) ) {

return ;
}

/ / Get t h e r o l l i n g b a l l r a d i u s and d i a m e t e r and a d j u s t f o r s c a l e
i n t r = I n t e g e r . p a r s e I n t ( t fRadius . getText ( ) ) ;
i f ( r % s c a l e ! = 0 ) {

GenericDialog gd2 = new GenericDialog ( " Error " ) ;
gd2 . setLayout (new GridLayout ( 1 , 1 ) ) ;
Label lblErrorMessage = new Label ( " Radius in microns not d i v i s a b l e by " +
s c a l e ) ;
gd2 . add ( lblErrorMessage ) ;
lblErrorMessage . s e t V i s i b l e ( t rue ) ;
gd2 . showDialog ( ) ;
return ;

}
r = r / s c a l e ;

i n t d = 2∗ r ;
i n t mw = d + 1 ; / / width o f mask i s 1 p i x e l more than d i a m e t e r so

/ / mask width becomes odd−v a l u e d

f l o a t d _ f l o a t = d ;
f l o a t r _ f l o a t = r ;

/ / C r e a t e mask in t h e form o f a s p h e r e .
f l o a t maxValueInImage = ( f l o a t ) ip . getMax ( ) ;
f l o a t [ ] sphereMask = new f l o a t [mw∗mw] ;
i n t o f f s e t 1 , o f f s e t 2 ;
f l o a t i _ f l o a t , j _ f l o a t ;
f l o a t t1 , t 2 ;
f l o a t tmp ;
f l o a t x_sq , y_sq ;
for ( i n t j = 0 ; j <= r ; j + + ) {

o f f s e t 1 = mw∗ j ;
o f f s e t 2 = mw∗ (mw−( j + 1 ) ) ;
j _ f l o a t = j ;
for ( i n t i = 0 ; i <= r ; i + + ) {

i _ f l o a t = i ;
t 1 = r _ f l o a t− j _ f l o a t ; t 2 = r _ f l o a t−i _ f l o a t ;
f l o a t d i s t = ( f l o a t ) Math . s q r t ( t 1∗ t 1 + t 2∗ t 2 ) ;
i f ( d i s t > r _ f l o a t ) {

/ / v o i d a r e a
sphereMask [ o f f s e t 1 + i ] = F l o a t . POSITIVE_INFINITY ;
sphereMask [ o f f s e t 1 +(mw−( i + 1 ) ) ] = F l o a t . POSITIVE_INFINITY ;
sphereMask [ o f f s e t 2 +(mw−( i + 1 ) ) ] = F l o a t . POSITIVE_INFINITY ;
sphereMask [ o f f s e t 2 + i ] = F l o a t . POSITIVE_INFINITY ;

} e lse {
/ / p l a c e l o w e s t p o i n t on r o l l i n g b a l l in l i n e with
/ / h i g h e s t p i x e l in image
tmp = r _ f l o a t + maxValueInImage −

( f l o a t ) Math . s q r t ( r _ f l o a t ∗ r _ f l o a t − d i s t ∗ d i s t ) ;
sphereMask [ o f f s e t 1 + i ] = tmp ;
sphereMask [ o f f s e t 1 +(mw−( i + 1 ) ) ] = tmp ;
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sphereMask [ o f f s e t 2 +(mw−( i + 1 ) ) ] = tmp ;
sphereMask [ o f f s e t 2 + i ] = tmp ;

}
}

}

/ / Shows s p h e r e mask image
F l o a t P r o c e s s o r ipSphereMask = new F l o a t P r o c e s s o r (mw, mw, sphereMask , null ) ;
ImagePlus impSphere = new ImagePlus ( " Sphere mask with radius = " + r∗ s c a l e +
"um" , ipSphereMask ) ; / / mic rons
impSphere . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
impSphere . show ( ) ;
I J . run ( " F i r e " ) ;

/ / The ne x t s e c t i o n s c o n v o l v e t h e image with t h e mask and shows
/ / r e s u l t a s a new f i l t e r e d / smoothed image
i n t w = imp . getWidth ( ) ;
i n t h = imp . getHeight ( ) ;
f l o a t [ ] impPixels = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;
i n t new_w = w−d ;
i n t new_h = h−d ;
f l o a t [ ] smoothed_pixels = new f l o a t [new_w∗new_h ] ;
f l o a t tmpdist , mindist ;
i n t offset_imp , offset_imp_new , offset_mask , o f f se t _ imp_ j , imp_i , idx_mask , idx_imp ;
i n t mindistidx_mask = 0 , mindistidx_imp = 0 ;
i n t midindex = mw∗ r+r ;

/ / Find t h e d i s t a n c e
f l o a t [ ] d i s t _ p i x e l s = new f l o a t [new_w∗new_h ] ;
for ( i n t j = r ; j < ( h−r ) ; j + + ) {

of fse t_ imp = w∗ j ;
offset_imp_new = new_w∗ ( j−r ) ;
for ( i n t i = r ; i < (w−r ) ; i + + ) {

mindist = F l o a t .MAX_VALUE;
I J . showProgress ( ( j−r ) , ( h−r ) ) ;
/ / Loop through t h e mask t o f i n d min d i s t a n c e
for ( i n t j s = 0 ; j s < mw; j s + + ) {

offset_mask = mw∗ j s ;
o f f s e t _ i m p _ j = of fse t_ imp+w∗ ( j s−r ) ;
for ( i n t i s = 0 ; i s < mw; i s + + ) {

imp_i = i +( i s−r ) ;
idx_mask = offset_mask+ i s ;
idx_imp = o f f s e t _ i m p _ j +imp_i ;
tmpdist = sphereMask [ idx_mask ] − impPixels [ idx_imp ] ;
i f ( tmpdist < mindist ) {

mindist = tmpdist ;
mindistidx_mask = idx_mask ;
mindistidx_imp = idx_imp ;

}
}

}
i f ( mindistidx_imp ! = midindex ) {

/ / i f t h e mid d l e o f t h e r o l l i n g b a l l d i d not p r o v i d e t h e
/ / min d i s t a n c e ,
/ / c a l c u l a t e new v a l u e from v a l u e found from r o l l i n g b a l l
/ / mask ( m i n d i s t )
smoothed_pixels [ offset_imp_new +( i−r ) ] =
maxValueInImage − mindist ;
d i s t _ p i x e l s [ offset_imp_new +( i−r ) ] =
sphereMask [ mindistidx_mask ] ;

} e lse {
/ / . . . e l s e no p r o c e s s i n g ne e de d
smoothed_pixels [ offset_imp_new +( i−r ) ] =
impPixels [ of fse t_ imp+ i ] ;
d i s t _ p i x e l s [ offset_imp_new +( i−r ) ] = ( f l o a t ) 0 . 0 ;
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}
}

}

F l o a t P r o c e s s o r i p D i s t = new F l o a t P r o c e s s o r (new_w , new_h , d i s t _ p i x e l s , null ) ;
ImagePlus impDist = new ImagePlus (

" Rol l ing b a l l mask value used f o r the f i l t e r e d image f o r sphere " +
"mask with radius = " + r∗ s c a l e + " um" , i p D i s t ) ; / / mic rons

impDist . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
impDist . show ( ) ;

/ / Shows f i l t e r e d / smoothed image
F l o a t P r o c e s s o r ipSmoothed = new F l o a t P r o c e s s o r (new_w , new_h ,
smoothed_pixels , null ) ;
ImagePlus impSmoothed = new ImagePlus ( " Smoothed image crea ted with sphere " +
"mask with radius = " + r∗ s c a l e + " um" , ipSmoothed ) ; / / mic rons
impSmoothed . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
impSmoothed . show ( ) ;
I J . run ( " F i r e " ) ;

/ / S u b t r a c t t h e f i l t e r e d image from t h e o r i g i n a l , c r e a t i n g a new image
/ / c o n t a i n i n g on ly t h e p o r e s and show t h e r e s u l t i n g image
f l o a t [ ] output_pixe l s = new f l o a t [new_w∗new_h ] ;
for ( i n t j = r ; j < ( h−r ) ; j + + ) {

of fse t_ imp = w∗ j ;
offset_imp_new = new_w∗ ( j−r ) ;
for ( i n t i = r ; i < (w−r ) ; i + + ) {

output_pixe l s [ offset_imp_new +( i−r ) ] = impPixels [ of fse t_ imp+ i ] −

smoothed_pixels [ offset_imp_new +( i−r ) ] ;
}

}

/ / Shows ou tp ut image
F l o a t P r o c e s s o r ipOutput = new F l o a t P r o c e s s o r (new_w , new_h , output_pixels , null ) ;
ImagePlus impOutput = new ImagePlus ( " Output image crea ted with sphere " +
"mask with radius = " + r∗ s c a l e + " um" , ipOutput ) ; / / mic rons
impOutput . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
impOutput . show ( ) ;
I J . run ( " F i r e " ) ;

/ / Shows t h e o r i g i n a l image , c r o p p e d ( f o r compar i s on )
f l o a t [ ] cropped_pixels = new f l o a t [new_w∗new_h ] ;
for ( i n t j = r ; j < ( h−r ) ; j + + ) {

of fse t_ imp = w∗ j ;
offset_imp_new = new_w∗ ( j−r ) ;
for ( i n t i = r ; i < (w−r ) ; i + + ) {

cropped_pixels [ offset_imp_new +( i−r ) ] = impPixels [ of fse t_ imp+ i ] ;
}

}
F l o a t P r o c e s s o r ipCropped = new F l o a t P r o c e s s o r (new_w , new_h , cropped_pixels , null ) ;
ImagePlus impCropped = new ImagePlus ( " Or ig ina l image , cropped " , ipCropped ) ;
impCropped . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
impCropped . show ( ) ;
I J . run ( " F i r e " ) ;

}
}

� �
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A.9 RollingBallOriginal_.java

� �
import j ava . awt . Checkbox ;
import j ava . awt . GridLayout ;
import j ava . awt . Label ;
import j ava . awt . Tex tF ie ld ;

import i j . I J ;
import i j . ImagePlus ;
import i j . ImageStack ;
import i j . gui . GenericDialog ;
import i j . measure . C a l i b r a t i o n ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . F l o a t P r o c e s s o r ;
import i j . process . ImageProcessor ;

/∗
∗ C r e a t e d on 0 6 . apr .2005
∗

∗ TODO To change t h e t e m p l a t e f o r t h i s g e n e r a t e d f i l e go t o
∗ Window − P r e f e r e n c e s − J a v a − Code S t y l e − Code T e m p l a t e s
∗ /

/∗∗
∗ @author Sve in F i d j e s t ø l ( S u r f C h a r J API : Gary Chinga )
∗

∗ R o l l i n g B a l l O r i g i n a l p l u g i n f o r Image J . Used f o r i n i t i a l a n a l y s i s in t h e t h e s i s .
∗ S e p a r a t e s out t h e r o l l i n g b a l l f i l t e r i n g r o u t i n e s from S u r f C h a r J
∗ by c a l l i n g t h e S u r f C h a r J API , and adds p r o g r e s s measurement .
∗ /

public c l a s s R o l l i n g B a l l O r i g i n a l _ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
t h i s . imp = imp ;
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method .
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {

boolean dPoreVol = t rue ;

/ / Get some i n f o from t h e i n p u t image
C a l i b r a t i o n c a l = imp . g e t C a l i b r a t i o n ( ) ;
double pSize = c a l . pixelWidth ;

i n t w = ip . getWidth ( ) ;
i n t h = ip . getHeight ( ) ;

i n t mMask ;
i f ( h<w) mMask=h ; e lse mMask=w; / / C a l c u l a t e s t h e s m a l l e s t d imens i on

S t r i n g u n i t s = imp . g e t C a l i b r a t i o n ( ) . getUni ts ( ) ;

/ / Draw GUI
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GenericDialog gd = new GenericDialog ( " R o l l i n g B a l l O r i g i n a l " ) ;
gd . setLayout (new GridLayout ( 2 , 2 ) ) ;
Label lb lRadius = new Label ( " Rol l ing b a l l radius ( Min=" +( i n t ) ( 4∗ pSize )+
" , Max=" +( i n t ) ( mMask∗pSize /4)+ " "+ u n i t s +" ) : " ) ;
Tex tF ie ld t fRadius = new TextF ie ld ( " 5 " , 0 ) ;
Checkbox cbDisplayVol = new Checkbox ( " Display pore image " , dPoreVol ) ;
gd . add ( lb lRadius ) ;
gd . add ( t fRadius ) ;
gd . add ( cbDisplayVol ) ;
lb lRadius . s e t V i s i b l e ( t rue ) ;
t fRadius . s e t V i s i b l e ( t rue ) ;
cbDisplayVol . s e t V i s i b l e ( t rue ) ;
gd . showDialog ( ) ;

/ / R e t r i e v e p a r a m e t e r s from d i a l o g
double bRadius = ( double ) ( Double . parseDouble ( t fRadius . getText ( ) ) ) ;
t r y {

bRadius = ( double ) ( Double . parseDouble ( t fRadius . getText ( ) ) ) ;
i f ( bRadius <( i n t ) ( 4∗ pSize )| | bRadius >( i n t ) ( mMask∗pSize / 4 ) ) {

I J . showMessage ( " I n v a l i d pore radius input ( min=" +( i n t ) ( 4∗ pSize )+
" and max=" +( i n t ) ( mMask∗pSize /4)+ " ) , pore volume a n a l y s i s " +
" w i l l not be performed " ) ;

}
} catch ( NumberFormatException e ) {

I J . showMessage ( " I n v a l i d pore radius input , pore volume a n a l y s i s w i l l " +
" not be performed " ) ;

}

/ / Do t h e a n a l y s i s
i n t bRad = ( i n t ) ( bRadius/pSize ) ;

i n t n S l i c e s = imp . g e t S t a c k S i z e ( ) ; / / assume whole s t a c k ( and t h e r e i s on ly 1 s l i c e )

i n t parameters = 7 , PVPar = 1 ;
f l o a t [ ] [ ] roughnessValues = new f l o a t [ n S l i c e s ] [ parameters ] ;

i n t nn = roughnessValues [ 0 ] . length−PVPar ;

ImageStack imsPVolume = new ImageStack (w, h ) ;

SurfacePoreVolume2 spvol = new SurfacePoreVolume2 ( ) ;
F l o a t P r o c e s s o r ipPV = spvol . getPoreImage ( ip , bRad ) ; / / g e t s l i c e 1 on ly
roughnessValues [ 0 ] [ nn ] = spvol . getPoreVolume ( ipPV , bRad ) ;
ipPV . setMinAndMax ( 0 , 0 ) ;
imsPVolume . addSl ice ( " Smoothed image created with sphere mask with radius = " +
bRadius + " um" , ipPV ) ; / / mic rons
i f ( dPoreVol ) {

createImagePlus ( imsPVolume , " Output image crea ted with sphere mask " +
" with radius = " + bRadius + " um" , c a l ) ; / / mic rons
I J . run ( " F i r e " ) ;
ipPV . setMinAndMax ( 0 , 0 ) ;

}
}

/∗∗
∗ C r e a t e s t h e volume ou tpu t ImagePlus image
∗

∗ @param imsTemp Volume o u tp u t image as a s t a c k
∗ @param t x t Name o f ImagePlus image
∗ @param c C a l i b r a t i o n o f t h e image
∗ /

void createImagePlus ( ImageStack imsTemp , S t r i n g t x t , C a l i b r a t i o n c ) {
/ / C r e a t e new images us ing t h e new s t a c k s .
ImagePlus impTemp = new ImagePlus ( t x t , imsTemp ) ;
impTemp . s e t C a l i b r a t i o n ( c ) ;
impTemp . s e t S t a c k ( null , imsTemp ) ;
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impTemp . show ( ) ;
}

}
� �
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A.10 SimulatePrinting_.java

� �
import i j . I J ;
import i j . ImagePlus ;
import i j . gui . NewImage ;
import i j . gui . OvalRoi ;
import i j . measure . C a l i b r a t i o n ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ S i m u l a t e P r i n t i n g p l u g i n f o r Image J . S i m u l a t e s p r i n t i n g a t
∗ 3 0 0 d p i ( d o t s p e r i n c h ) = = 1 2 d o t s p e r mm
∗ which p l a c e s t h e c e n t e r o f e a c h d o t 8 5 microns a p a r t .
∗ Takes as i n p u t a 32− b i t f l o a t image and o u t p u t s a c o r r e s p o n d i n g
∗ " p r i n t e d " image with t h e i n k p o i n t s r a i s e d t o t h e max v a l u e
∗ in t h e image . I n t e n d e d t o show some r e l a t i o n s h i p be tween
∗ d o t s i z e s and p o r e s i z e s .
∗ /

public c l a s s Simula tePr in t ing_ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
t h i s . imp = imp ;
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method .
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
C a l i b r a t i o n c a l = imp . g e t C a l i b r a t i o n ( ) ;
S t r i n g uni t = c a l . getUnit ( ) ;
i f ( ! uni t . equals ( "um" ) ) { / / mic rons

I J . showMessage ( " Measurement uni t f o r image must be um" ) ; / / mic rons
return ;

}
I J . run ( " F i r e " ) ;

/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get some i n f o from t h e i n p u t image
f l o a t [ ] o l d _ p i x e l s = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = imp . getWidth ( ) ;
i n t height = imp . getHeight ( ) ;

/ / G e n e r a t e a new , empty image
ImagePlus new_imp = NewImage . createFloat Image ( imp . g e t T i t l e ( ) + " : " +
className , width , height , 1 , NewImage . FILL_WHITE ) ;
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new_imp . s e t C a l i b r a t i o n ( c a l ) ;
ImageProcessor new_ip = new_imp . getProcessor ( ) ;
/ / Copy t h e o l d image i n t o t h e new one
f l o a t [ ] p i x e l s = ( f l o a t [ ] ) new_imp . getProcessor ( ) . g e t P i x e l s ( ) ;
for ( i n t x = 0 ; x < width ; x + + ) {

for ( i n t y = 0 ; y < height ; y + + ) {
p i x e l s [ x + y ∗ width ] = o l d _ p i x e l s [ x + y∗width ] ;

}
}

/ / I t e r a t e through t h e d o t s and p a i n t them
i n t r ;
OvalRoi dot ;
double max = new_imp . g e t S t a t i s t i c s ( ) . max ;
new_ip . setValue (max ) ;
for ( i n t j = ( i n t ) ( c a l . getRawValue ( 8 5 . 0 ) / 2 . 0 ) ; j < height −

( c a l . getRawValue ( 8 5 . 0 ) / 2 . 0 ) ; j + = c a l . getRawValue ( 8 5 . 0 ) ) {
for ( i n t i = ( i n t ) ( c a l . getRawValue ( 8 5 . 0 ) / 2 . 0 ) ; i < width −

( c a l . getRawValue ( 8 5 . 0 ) / 2 . 0 ) ; i + = c a l . getRawValue ( 8 5 . 0 ) ) {
r = ( i n t ) c a l . getRawValue ( 3 0 . 0 ) ;
dot = new OvalRoi ( i , j , 2∗ r , 2∗ r , new_imp ) ;
new_ip . f i l l P o l y g o n ( dot . getPolygon ( ) ) ;

}
}
/ / S e t b r i g h t n e s s v a l u e s and show r e s u l t
new_ip . setMinAndMax ( ip . getMin ( ) , ip . getMax ( ) ) ;
new_imp . show ( ) ;
I J . run ( " F i r e " ) ;

}

}
� �
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A.11 Triangulation_.java

� �
import j ava . awt . Checkbox ;
import j ava . awt . GridLayout ;
import j ava . awt . Point ;
import j ava . awt . event . ItemEvent ;
import j ava . awt . event . I t emLis tener ;
import j ava . u t i l . ArrayLis t ;
import j ava . u t i l . C o l l e c t i o n s ;
import j ava . u t i l . Comparator ;
import j ava . u t i l . HashSet ;
import j ava . u t i l . I t e r a t o r ;
import j ava . u t i l . L i s t ;
import j ava . u t i l . Stack ;

import i j . I J ;
import i j . ImagePlus ;
import i j . gui . GenericDialog ;
import i j . gui . Line ;
import i j . gui . NewImage ;
import i j . gui . PointRoi ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;
import i j . t e x t . TextWindow ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ T r i a n g u l a t i o n p l u g i n f o r Image J . Takes a s i n p u t a b i n a r y b l a c k−and−w h i t e
∗ image , in 8− b i t g r a y s c a l e f o rmat , wi th w h i t e a s t h e background
∗ c o l o r and b l a c k s i n g l e p i x e l s a s v e r t i c e s . Outputs e i t h e r a Delaunay
∗ t r i a n g u l a t e d image , i t s c o r r e s p o n d i n g Vorono i diagram , or b o t h . I f a
∗ Delaunay T r i a n g u l a t i o n i s c a l c u l a t e d , t h e p l u g i n may a l s o c a l c u l a t e
∗ t h e minimum spanning t r e e and t h e convex h u l l .

∗ The Minimum Spanning Tr e e u s e s Prim ’ s a l g o r i t h m
∗ The Convex Hull u s e s Graham ’ s Scan a l g o r i t h m
∗ The Delaunay T r i a n g u l a t i o n u s e s a s i m p l e but s u b o p t i m a l a l g o r i t h m
∗ The Vorono i Diagram a l s o u s e s a s i m p l e but h i g h l y s u b o p t i m a l a l g o r i t h m
∗ /

public c l a s s Tr iangula t ion_ implements P l u g I n F i l t e r , I temListener , Comparator {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
i f ( arg . equals ( " about " ) ) {

showAbout ( ) ;
return DONE;

}
t h i s . imp = imp ;
return DOES_8G ;

}

/ / Components
private Checkbox cbDelaunay ;
private Checkbox cbMST ;
private Checkbox cbConvexHull ;
private Checkbox cbVoronoi ;
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/∗∗
∗ Standard Image J p l u g i n run method . Quite m o n o l i t h i c f o r s i m p l i c i t y p u r p o s e s
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Get o p t i o n s
GenericDialog gd = new GenericDialog ( className ) ;
gd . setLayout (new GridLayout ( 5 , 1 ) ) ;

boolean delaunay = t rue ;
boolean mst = f a l s e ;
boolean convexhull = f a l s e ;
boolean voronoi = f a l s e ;
cbDelaunay = new Checkbox ( " Delaunay Tr iangula t ion " , delaunay ) ;
cbMST = new Checkbox ( "Minimum spanning t r e e " , mst ) ;
cbConvexHull = new Checkbox ( " Convex h u l l " , convexhull ) ;
cbVoronoi = new Checkbox ( " Voronoi Diagram " , voronoi ) ;

cbDelaunay . addItemListener ( t h i s ) ;

gd . add ( cbDelaunay ) ;
gd . add (cbMST ) ;
gd . add ( cbConvexHull ) ;
gd . add ( cbVoronoi ) ;

cbDelaunay . s e t V i s i b l e ( t rue ) ;
cbMST . s e t V i s i b l e ( t rue ) ;
cbConvexHull . s e t V i s i b l e ( t rue ) ;
cbVoronoi . s e t V i s i b l e ( t rue ) ;

gd . showDialog ( ) ;
i f ( gd . wasCanceled ( ) ) {

return ;
}

delaunay = cbDelaunay . g e t S t a t e ( ) ;
mst = cbMST . g e t S t a t e ( ) ;
convexhull = cbConvexHull . g e t S t a t e ( ) ;
voronoi = cbVoronoi . g e t S t a t e ( ) ;

/ / Read in v e r t i c e s / p o i n t s
ArrayList points = new ArrayList ( ) ;
byte [ ] p i x e l s = ( byte [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;
i n t o f f s e t ;
for ( i n t j = 0 ; j < height ; j + + ) {

o f f s e t = j ∗width ;
for ( i n t i = 0 ; i < width ; i + + ) {

i f ( p i x e l s [ o f f s e t + i ] = = 0 ) {
points . add (new Point ( i , j ) ) ;

}
}

}

/ / Conver t t o s i m p l e a r r a y
i n t len = points . s i z e ( ) ;
Point [ ] points2 = new Point [ len ] ;
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for ( i n t i = 0 ; i < len ; i + + ) {
points2 [ i ] = ( Point ) points . get ( i ) ;

}

/ / Conver t t o R e a l P o i n t r e p r e s e n t a t i o n ( f o r h e l p e r methods )
RealPoint [ ] points3 = new RealPoint [ len ] ;
Point tmpPoint ;
for ( i n t i = 0 ; i < len ; i + + ) {

tmpPoint = ( Point ) points . get ( i ) ;
points3 [ i ] = new RealPoint ( tmpPoint . x , tmpPoint . y ) ;

}

/ / G e n e r a t e a new , empty image
ImagePlus new_imp = NewImage . createByteImage ( imp . g e t T i t l e ( ) + " : " +
className , width , height , 1 , NewImage . FILL_WHITE ) ;
new_imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
ImageProcessor new_ip = new_imp . getProcessor ( ) ;
byte [ ] new_pixels = ( byte [ ] ) new_imp . getProcessor ( ) . g e t P i x e l s ( ) ;

/ / S t o r a g e f o r t r i a n g u l a t i o n d a t a
HashSet l i n e s = new HashSet ( ) ;
HashSet point_ tuple ;

/ / Delaunay t r i a n g u l a t i o n p a r t
i f ( delaunay ) {

/∗
∗ The f o l l o w i n g c o d e borrows h e a v i l y on example c o d e from
∗ Delaunay . j a v a which can be found a t
∗ h t t p : / / www. c s . p r i n c e t o n . edu / i n t r o c s / 3 5 i n h e r i t a n c e /
∗

∗ The p e r f o r m a n c e o f t h e f o l l o w i n g a l g o r i t h m used i s on ly n^ 4 ,
∗ but t h i s p r o b a b l y doesn ’ t m a t t e r when us ing s m a l l d a t a s e t s
∗ ( a s in 1000 x1000 p i x e l s u r f a c e a n a l y s i s )
∗ /

/ / Determine i f i−j−k i s a c i r c l e wi th no i n t e r i o r p o i n t s .
/ / I f so , add t h e c o r r e s p o n d i n g t r i a n g l e t o t h e t r i a n g u l a t i o n

for ( i n t i = 0 ; i < len ; i + + ) {
I J . showProgress ( i , len ∗3−3);

for ( i n t j = i + 1 ; j < len ; j + + ) {
for ( i n t k = j + 1 ; k < len ; k + + ) {

boolean i s T r i a n g l e = t rue ;
for ( i n t a = 0 ; a < len ; a + + ) {

i f ( a = = i | | a = = j | | a = = k ) continue ;
C i r c l e c = new C i r c l e ( ) ;
c . c i rcumCirc le ( points2 [ i ] , points2 [ j ] , points2 [ k ] ) ;
i f ( c . i n s i d e ( points2 [ a ] ) ) {
i s T r i a n g l e = f a l s e ;

break ;
}

}
i f ( i s T r i a n g l e ) {

po int_ tuple = new HashSet ( ) ;
po int_ tuple . add ( points2 [ i ] ) ; po int_ tuple . add ( points2 [ j ] ) ;
l i n e s . add ( point_ tuple ) ;
po int_ tuple = new HashSet ( ) ;
po int_ tuple . add ( points2 [ i ] ) ; po int_ tuple . add ( points2 [ k ] ) ;
l i n e s . add ( point_ tuple ) ;
po int_ tuple = new HashSet ( ) ;
po int_ tuple . add ( points2 [ j ] ) ; po int_ tuple . add ( points2 [ k ] ) ;
l i n e s . add ( point_ tuple ) ;

}
}

}
}
}
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/ / Vorono i d iagram g e n e r a t i o n and p a i n t i n g p a r t
i f ( voronoi ) {

RealPoint [ ] [ ] n e a r e s t = new RealPoint [ width ] [ height ] ;
for ( i n t pt = 0 ; pt < points3 . length ; pt + + ) {

I J . showProgress ( points3 . length −1 + pt , points3 . length ∗3−3);
/ / Draw r e g i o n s with random v a l u e
new_ip . setValue ( Math . random ( ) ∗ 2 5 6 . 0 ) ;
for ( i n t j = 0 ; j < height ; j + + ) {

for ( i n t i = 0 ; i < width ; i + + ) {
RealPoint q = new RealPoint ( i , j ) ;
i f ( n e a r e s t [ i ] [ j ] = = null | | q . d i s t a n c e ( points3 [ pt ] ) <
q . d i s t a n c e ( n e a r e s t [ i ] [ j ] ) ) {

n e a r e s t [ i ] [ j ] = points3 [ pt ] ;
PointRoi pr = new PointRoi ( i , j , new_imp ) ;
pr . drawPixels ( new_ip ) ;

}
}

}
}

}

S t r i n g r e s u l t = " " ;

/ / Delaunay t r i a n g u l a t i o n p a i n t i n g p a r t
i f ( delaunay ) {

/ / Draw with l i g h t gray
new_ip . setValue ( 1 9 2 . 0 ) ;
ArrayList l i n e s L i s t = new ArrayList ( ) ;
Line l i n e ;
Point p1 , p2 ;
Object [ ] l ineArray = l i n e s . toArray ( ) ;
for ( i n t i = 0 ; i < l ineArray . length ; i + + ) {

I J . showProgress ( l ineArray . length ∗2−2 + i , l ineArray . length ∗3−3);
po int_ tuple = ( HashSet ) l ineArray [ i ] ;
i f ( po int_ tuple . s i z e ( ) < 2 ) / / s a f e t y c h e c k

continue ;
I t e r a t o r i t 2 = point_ tuple . i t e r a t o r ( ) ;
p1 = ( Point ) i t 2 . next ( ) ;
p2 = ( Point ) i t 2 . next ( ) ;
l i n e = new Line ( p1 . x , p1 . y , p2 . x , p2 . y , new_imp ) ;
l i n e s L i s t . add ( l i n e ) ;
l i n e . drawPixels ( new_ip ) ;

}

/ / P r i n t out some i n f o on t h e t r i a n g u l a t i o n t o t h e c o n s o l e
C o l l e c t i o n s . s o r t ( l i n e s L i s t , new Comparator ( ) {

public i n t compare ( Object arg0 , Object arg1 ) {
return ( i n t ) ( ( ( Line ) arg0 ) . getLength ( ) − ( ( Line ) arg1 ) . getLength ( ) ) ;

}
} ) ;
r e s u l t + = " Length of edges in Delaunay t r i a n g u l a t i o n \n" ;
for ( i n t i = 0 ; i < l i n e s L i s t . s i z e ( ) ; i + + ) {

Line l = ( Line ) l i n e s L i s t . get ( i ) ;
r e s u l t + = l . getLength ( ) + "\n" ;

}
r e s u l t + = "Number of edges in Delaunay t r i a n g u l a t i o n : " + l i n e s . s i z e ( ) + "\n" ;
double averageLengthTRI = calcAverageLength ( l i n e s L i s t ) ;
r e s u l t + = " Average edge length in Delaunay t r i a n g u l a t i o n : " +
averageLengthTRI + "\n" ;

i f ( convexhull ) {
ArrayList chLines = grahamscanConvexHull ( l i n e s L i s t ) ;
/ / P r i n t out some i n f o on t h e convex h u l l t o t h e c o n s o l e
C o l l e c t i o n s . s o r t ( chLines , new Comparator ( ) {

public i n t compare ( Object arg0 , Object arg1 ) {
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return ( i n t ) ( ( ( Line ) arg0 ) . getLength () −

( ( Line ) arg1 ) . getLength ( ) ) ;
}

} ) ;
r e s u l t + = " Length of edges in Convex Hull\n" ;
for ( i n t i = 0 ; i < chLines . s i z e ( ) ; i + + ) {

Line l = ( Line ) chLines . get ( i ) ;
r e s u l t + = l . getLength ( ) + "\n" ;

}
r e s u l t + = "Number of edges in Convex Hull : " + chLines . s i z e ( ) + "\n" ;
double averageLengthCH = calcAverageLength ( chLines ) ;
r e s u l t + = " Average edge length in Convex Hull : " +
averageLengthCH + "\n" ;

/ / Draw t h e Convex Hull
new_ip . setValue ( 9 6 . 0 ) ;
Line l3 , l 4 ;
for ( i n t i = 0 ; i < chLines . s i z e ( ) ; i + + ) {

l 3 = ( Line ) chLines . get ( i ) ;
l 3 . drawPixels ( new_ip ) ;

}
}

i f ( mst ) {
ArrayList mstLines = primMST ( l i n e s L i s t ) ;
/ / P r i n t out some i n f o on t h e minimum spanning t r e e t o t h e c o n s o l e
C o l l e c t i o n s . s o r t ( mstLines , new Comparator ( ) {

public i n t compare ( Object arg0 , Object arg1 ) {
return ( i n t ) ( ( ( Line ) arg0 ) . getLength () −

( ( Line ) arg1 ) . getLength ( ) ) ;
}

} ) ;
r e s u l t + = " Length of edges in Minimum Spanning Tree\n" ;
for ( i n t i = 0 ; i < mstLines . s i z e ( ) ; i + + ) {

Line l = ( Line ) mstLines . get ( i ) ;
r e s u l t + = l . getLength ( ) + "\n" ;

}
r e s u l t + = "Number of edges in Minimum Spanning Tree : " +
mstLines . s i z e ( ) + "\n" ;
double averageLengthMST = calcAverageLength ( mstLines ) ;
r e s u l t + = " Average edge length in Minimum Spanning Tree : " +
averageLengthMST + "\n" ;

/ / Draw t h e Minimum Spanning Tr e e
new_ip . setValue ( 3 2 . 0 ) ;
Line l3 , l 4 ;
for ( i n t i = 0 ; i < mstLines . s i z e ( ) ; i + + ) {

l 3 = ( Line ) mstLines . get ( i ) ;
l 3 . drawPixels ( new_ip ) ;

}
}

}

/ / L a s t l y , draw t h e b l a c k d o t s from s o u r c e image t o d e s t image
for ( i n t y = 0 ; y < height ; y + + ) {

o f f s e t = y∗width ;
for ( i n t x = 0 ; x < width ; x + + ) {

i f ( p i x e l s [ o f f s e t +x ] = = 0 ) {
new_pixels [ o f f s e t +x ] = 0 ;

}
}

}
new_imp . show ( ) ;
TextWindow tw = new TextWindow ( " Tr iangula t ion Resul t " ,
" Resul t from Tr iangula t ion :\n" + r e s u l t , 4 0 0 , 1 5 0 ) ;

}
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/ / Needed f o r a c c e s s from t h e compare ( ) f u n c t i o n ,
/ / used f o r convex h u l l
private Point p0 ;

/∗∗
∗ Graham ’ s Scan a l g o r i t h m , c a l c u l a t e s t h e convex h u l l
∗ o f a s e t o f p o i n t s .
∗ NOTE : Would work with p o i n t s only , l i n e s t r u c t u r e u n n e c c e s s a r y
∗ but u s e f u l in t h e c u r r e n t c o n t e x t
∗

∗ D e t a i l s in Cormen , L e i s e r s o n , R i v e s t ’ s
∗ " I n t r o d u c t i o n To A l g o r i t h m s " 2 nd ed c h a p t e r 3 3
∗

∗ @param l i n e s L i s t L i n e s in t h e graph in t h e ImageJ
∗ Lin e f o r m a t
∗ @return The l i n e s ( in Image J L ine f o r m a t ) c o n s t i t u t i n g
∗ t h e convex h u l l o f t h e graph
∗ /

private ArrayList grahamscanConvexHull ( ArrayLis t l i n e s L i s t ) {
/ / R e t r i e v e p o i n t s
ArrayList pts = new ArrayList ( ) ;
for ( i n t i = 0 ; i < l i n e s L i s t . s i z e ( ) ; i + + ) {

Line curLine = ( Line ) l i n e s L i s t . get ( i ) ;
Point p1 = new Point ( curLine . x1 , curLine . y1 ) ;
Point p2 = new Point ( curLine . x2 , curLine . y2 ) ;
boolean foundP1 = f a l s e ;
boolean foundP2 = f a l s e ;
for ( i n t j = 0 ; j < pts . s i z e ( ) ; j + + ) {

Point p = ( Point ) pts . get ( j ) ;
i f ( ( p . x = = p1 . x ) & & (p . y = = p1 . y ) ) {

foundP1 = t rue ;
}
i f ( ( p . x = = p2 . x ) & & (p . y = = p2 . y ) ) {

foundP2 = t rue ;
}

}
i f ( ! foundP1 )

pts . add ( p1 ) ;
i f ( ! foundP2 )

pts . add ( p2 ) ;
}

/ / R e t r i e v e p o i n t wi th l o w e s t y va lue ,
/ / l e f t m o s t i f two p o i n t s wi th same y v a l u e . . .
i n t minYSoFar = I n t e g e r .MAX_VALUE;
Line minYSoFar_l = null ;
boolean i s F i r s t P o i n t O n L i n e = t rue ;
for ( i n t i = 0 ; i < l i n e s L i s t . s i z e ( ) ; i + + ) {

Line l = ( Line ) l i n e s L i s t . get ( i ) ;
i f ( l . y1 < minYSoFar ) {

minYSoFar = l . y1 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = t rue ;

} e lse i f ( l . y1 = = minYSoFar ) {
i f ( ( i s F i r s t P o i n t O n L i n e ) && ( l . x1 < minYSoFar_l . x1 ) ) {

minYSoFar = l . y1 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = t rue ;

} e lse i f ( ( ! i s F i r s t P o i n t O n L i n e ) && ( l . x1 < minYSoFar_l . x2 ) ) {
minYSoFar = l . y1 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = t rue ;

}
}
i f ( l . y2 < minYSoFar ) {
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minYSoFar = l . y2 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = f a l s e ;

} e lse i f ( l . y2 = = minYSoFar ) {
i f ( ( i s F i r s t P o i n t O n L i n e ) && ( l . x2 < minYSoFar_l . x1 ) ) {

minYSoFar = l . y2 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = f a l s e ;

} e lse i f ( ( ! i s F i r s t P o i n t O n L i n e ) && ( l . x2 < minYSoFar_l . x2 ) ) {
minYSoFar = l . y2 ;
minYSoFar_l = l ;
i s F i r s t P o i n t O n L i n e = f a l s e ;

}
}

}
/ / . . . and r e t r i e v e i t from t h e p o i n t l i s t
for ( i n t i = 0 ; i < pts . s i z e ( ) ; i + + ) {

Point p = ( Point ) pts . get ( i ) ;
i f ( i s F i r s t P o i n t O n L i n e ) {

i f ( ( p . x = = minYSoFar_l . x1 ) && (p . y = = minYSoFar_l . y1 ) ) {
p0 = p ;
break ;

}
} e lse i f ( ! i s F i r s t P o i n t O n L i n e ) {

i f ( ( p . x = = minYSoFar_l . x2 ) && (p . y = = minYSoFar_l . y2 ) ) {
p0 = p ;
break ;

}
}

}

/ / C o n s t r u c t an a r r a y o f t h e r ema in ing p o i n t s ,
/ / s o r t e d a f t e r i n c r e a s i n g p o l a r a n g l e in r e l a t i o n
/ / wi th f i r s t p o i n t ( p0 )
ArrayList pts_rem = new ArrayList ( ) ;
for ( i n t i = 0 ; i < pts . s i z e ( ) ; i + + ) {

Point p = ( Point ) pts . get ( i ) ;
i f ( ! ( p . equals ( p0 ) ) ) {

pts_rem . add ( p ) ;
}

}
C o l l e c t i o n s . s o r t ( pts_rem , t h i s ) ;

/ / S t a c k c o n t a i n i n g f i r s t t h r e e p o i n t s
Stack S = new Stack ( ) ;
S . push ( p0 ) ;
S . push ( ( Point ) pts_rem . get ( 0 ) ) ;
S . push ( ( Point ) pts_rem . get ( 1 ) ) ;

/ / Main l o o p : Loop o v e r r ema in ing p o i n t s
/ / and add c o r r e c t p o i n t s t o t h e c o n v e x h u l l
/ / by popp ing and push ing
Line l_tmp = new Line ( 0 , 0 , 1 , 1 , imp ) ; / / dummy l i n e
Point p_tmp = ( Point ) pts_rem . get ( 0 ) ;
for ( i n t i = 2 ; i < pts_rem . s i z e ( ) ; i + + ) {

Point p_i = ( Point ) pts_rem . get ( i ) ;
while ( t rue ) {

/ / R e t r i e v e t h e two t o p e l e m e n t s
Point topP = ( Point ) S . pop ( ) ;
Point nextToTopP = ( Point ) S . peek ( ) ;
S . push ( topP ) ; / / put i t b a c k

/ / C a l c u l a t e a n g l e be tween p o i n t nex t t o t o p o f s t a c k ,
/ / p o i n t a t t o p on s t a c k , and c u r r e n t p o i n t
double a1 = l_tmp . getAngle ( topP . x , topP . y , nextToTopP . x ,
nextToTopP . y ) ;
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double a2 = l_tmp . getAngle ( topP . x , topP . y , p_i . x , p_i . y ) ;

/ / Ad jus t a s n e c c e s s a r y
i f ( a1 < = 0 . 0 ) {

a1 = −1 . 0 ∗ a1 ;
} e lse {

a1 = 3 6 0 . 0 − a1 ;
}
i f ( a2 < = 0 . 0 ) {

a2 = −1 . 0 ∗ a2 ;
} e lse {

a2 = 3 6 0 . 0 − a2 ;
}
double del ta_angle = a1−a2 ;
i f ( ( ( de l ta_angle < 0 . 0 ) & & ( de l ta_angle > −180 .0 ) ) ||
( de l ta_angle > 1 8 0 . 0 ) ) {

S . pop ( ) ; / / p o i n t on t o p o f s t a c k not p a r t o f convex h u l l
} e lse {

break ;
}

}
S . push ( p_i ) ;

}

/ / C o n s t r u c t L ine o b j e c t s ( e d g e s ) from p o i n t s
ArrayList chLines = new ArrayList ( ) ;
Point p _ i n i t , p_prev , p = null ;
p_prev = p _ i n i t = ( Point ) S . pop ( ) ;
while ( ! S . isEmpty ( ) ) {

p = ( Point ) S . pop ( ) ;
Line l = new Line ( p_prev . x , p_prev . y , p . x , p . y , imp ) ;
chLines . add ( l ) ;
p_prev = p ;

}
/ / Add c l o s i n g l i n e ( edge )
Line l = new Line ( p . x , p . y , p _ i n i t . x , p _ i n i t . y , imp ) ;
chLines . add ( l ) ;

/ / E x t r a c t t h e o r i g i n a l l i n e s , s o t h e y can be e q u a l s ( ) ’ ed
/ / in l a t e r use
ArrayList chLines2 = new ArrayList ( ) ;
for ( i n t i = 0 ; i < l i n e s L i s t . s i z e ( ) ; i + + ) {

Line l 1 = ( Line ) l i n e s L i s t . get ( i ) ;
for ( i n t j = 0 ; j < chLines . s i z e ( ) ; j + + ) {

Line l 2 = ( Line ) chLines . get ( j ) ;
i f ( ( ( l 1 . x1 = = l 2 . x1 ) & & ( l 1 . y1 = = l 2 . y1 ) && ( l 1 . x2 = = l 2 . x2 )
&& ( l 2 . y2 = = l 2 . y2 ) )

| | ( ( l 1 . x1 = = l 2 . x2 ) & & ( l 1 . y1 = = l 2 . y2) &&
( l 1 . x2 = = l 2 . x1 ) && ( l 1 . y2 = = l 2 . y1 ) ) ) {

chLines2 . add ( l 1 ) ;
}

}
}
return chLines2 ;

}

/∗∗
∗ Prim ’ s a l g o r i t h m , c a l c u l a t e s t h e minimum spanning t r e e
∗ in a graph .
∗

∗ D e t a i l s in Cormen , L e i s e r s o n , R i v e s t ’ s
∗ " I n t r o d u c t i o n To A l g o r i t h m s " 2 nd ed c h a p t e r 2 3
∗

∗ @param l i n e s L i s t L i n e s in t h e graph in t h e ImageJ
∗ Lin e f o r m a t
∗ @return The l i n e s ( in Image J L ine f o r m a t ) c o n s t i t u t i n g
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∗ t h e minimum spanning t r e e o f t h e graph
∗ /

private ArrayList primMST ( ArrayLis t l i n e s L i s t ) {
/ / R e t r i e v e p o i n t s
ArrayList pts = new ArrayList ( ) ;
for ( i n t i = 0 ; i < l i n e s L i s t . s i z e ( ) ; i + + ) {

Line curLine = ( Line ) l i n e s L i s t . get ( i ) ;
PrimPoint p1 = new PrimPoint ( curLine . x1 , curLine . y1 ) ;
PrimPoint p2 = new PrimPoint ( curLine . x2 , curLine . y2 ) ;
boolean foundP1 = f a l s e ;
boolean foundP2 = f a l s e ;
for ( i n t j = 0 ; j < pts . s i z e ( ) ; j + + ) {

PrimPoint p = ( PrimPoint ) pts . get ( j ) ;
i f ( ( p . x = = p1 . x ) & & (p . y = = p1 . y ) ) {

foundP1 = t rue ;
}
i f ( ( p . x = = p2 . x ) & & (p . y = = p2 . y ) ) {

foundP2 = t rue ;
}

}
i f ( ! foundP1 )

pts . add ( p1 ) ;
i f ( ! foundP2 )

pts . add ( p2 ) ;
}

/ / F i l l a d j a c e n c y l i s t in a l l p o i n t s
for ( i n t i = 0 ; i < pts . s i z e ( ) ; i + + ) {

PrimPoint p = ( PrimPoint ) pts . get ( i ) ;
for ( i n t j = 0 ; j < l i n e s L i s t . s i z e ( ) ; j + + ) {

Line l = ( Line ) l i n e s L i s t . get ( j ) ;
i f ( ( l . x1 = = p . x ) & & ( l . y1 = = p . y ) ) {

for ( i n t k = 0 ; k < pts . s i z e ( ) ; k + + ) {
PrimPoint p_tmp = ( PrimPoint ) pts . get ( k ) ;
i f ( ( l . x2 = = p_tmp . x ) && ( l . y2 = = p_tmp . y ) ) {

p . ad j . add ( p_tmp ) ;
}

}
} e lse i f ( ( l . x2 = = p . x ) & & ( l . y2 = = p . y ) ) {

for ( i n t k = 0 ; k < pts . s i z e ( ) ; k + + ) {
PrimPoint p_tmp = ( PrimPoint ) pts . get ( k ) ;
i f ( ( l . x1 = = p_tmp . x ) && ( l . y1 = = p_tmp . y ) ) {

p . ad j . add ( p_tmp ) ;
}

}
}

}
}

/ / I n i t i a l i z e keys , s e t t i n g key 0 t o z e r o so t h i s becomes
/ / t h e s t a r t i n g p o i n t
for ( i n t i = 0 ; i < pts . s i z e ( ) ; i + + ) {

PrimPoint p = ( PrimPoint ) pts . get ( i ) ;
i f ( i = = 0 )

p . key = 0 . 0 ;
e lse

p . key = Double .MAX_VALUE;
p . parent = −2 ; / / f o r s a n i t y c h e c k i n g

}

/ / I n i t i a l i z e p r i o r i t y queue
ArrayList PQ = new ArrayList ( ) ;
for ( i n t i = 0 ; i < pts . s i z e ( ) ; i + + ) {

PrimPoint p = ( PrimPoint ) pts . get ( i ) ;
PQ . add ( p ) ;

}
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/ / Main l o o p
while ( ! PQ. isEmpty ( ) ) {

/ / u <− E x t r a c t−min (PQ)
double minKey = Double .MAX_VALUE;
i n t minKeyIdx = −1 ;
for ( i n t i = 0 ; i < PQ. s i z e ( ) ; i + + ) {

PrimPoint p = ( PrimPoint ) PQ. get ( i ) ;
i f ( p . key <= minKey ) {

minKey = p . key ;
minKeyIdx = i ;

}
}
PrimPoint u = ( PrimPoint ) PQ. remove ( minKeyIdx ) ;

/ / Find i n d e x o f u
i n t u_idx = −1 ;
for ( i n t k = 0 ; k < pts . s i z e ( ) ; k + + ) {

PrimPoint p_tmp2 = ( PrimPoint ) pts . get ( k ) ;
i f ( ( p_tmp2 . x = = u . x ) && ( p_tmp2 . y = = u . y ) ) {

u_idx = k ;
}

}

/ / Loop o v e r v ’ s t h a t a r e b o t h in PQ and a d j a c e n c t t o u
for ( i n t i = 0 ; i < u . adj . s i z e ( ) ; i + + ) {

PrimPoint v = ( PrimPoint ) u . ad j . get ( i ) ;
i f (PQ. conta ins ( v ) ) {

for ( i n t j = 0 ; j < l i n e s L i s t . s i z e ( ) ; j + + ) {
Line l = ( Line ) l i n e s L i s t . get ( j ) ;
i f ( ( ( u . x = = l . x1 ) & & (u . y = = l . y1) &&
( v . x = = l . x2 ) && ( v . y = = l . y2 ) )

| | ( ( v . x = = l . x1 ) & & ( v . y = = l . y1) &&
( u . x = = l . x2 ) && (u . y = = l . y2 ) ) ) {

/ / Find i n d e x o f v
i n t v_idx = −1 ;
for ( i n t k = 0 ; k < pts . s i z e ( ) ; k + + ) {

PrimPoint p_tmp3 =
( PrimPoint ) pts . get ( k ) ;
i f ( ( p_tmp3 . x = = v . x) &&
( p_tmp3 . y = = v . y ) ) {

v_idx = k ;
}

}
/ / S t o r e new p a r e n t and k e y s
double len = l . getLength ( ) ;
i f ( len < v . key ) {

v . parent = u_idx ;
v . key = len ;

}
}

}
}

}
}

/ / Read out minimum spanning t r e e i n t o ms t L i ne s
/ / by c o n n e c t i n g c h i l d r e n and p a r e n t s
ArrayList mstLines = new ArrayList ( ) ;
Line f i r s t L i n e = ( Line ) l i n e s L i s t . get ( 0 ) ;
for ( i n t i = 1 ; i < pts . s i z e ( ) ; i + + ) { / / s k i p f i r s t p o i n t by s t a r t i n g a t one

PrimPoint p1 = ( PrimPoint ) pts . get ( i ) ;
PrimPoint p2 = ( PrimPoint ) pts . get ( p1 . parent ) ;
for ( i n t j = 0 ; j < l i n e s L i s t . s i z e ( ) ; j + + ) {

Line l = ( Line ) l i n e s L i s t . get ( j ) ;
i f ( ( ( p1 . x = = l . x1 ) & & ( p1 . y = = l . y1) &&
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( p2 . x = = l . x2 ) && ( p2 . y = = l . y2 ) )
| | ( ( p2 . x = = l . x1 ) & & ( p2 . y = = l . y1) &&
( p1 . x = = l . x2 ) && ( p1 . y = = l . y2 ) ) ) {

mstLines . add ( l ) ;
}

}
}
return mstLines ;

}

/∗∗
∗ He lp e r method t o c a l c u l a t e a v e r a g e l e n g t h o f s e v e r a l l i n e s
∗

∗ @param l i n e s A L i s t o b j e c t c o n t a i n i n g two or more L ine o b j e c t s
∗ @return Average l e n g t h o f t h e l i n e s
∗ /

private double calcAverageLength ( L i s t l i n e s ) {
double cumsum = 0 . 0 ;
Line l i n e ;
for ( I t e r a t o r i t = l i n e s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {

l i n e = ( Line ) i t . next ( ) ;
cumsum + = l i n e . getLength ( ) ;

}
return ( cumsum / l i n e s . s i z e ( ) ) ;

}

/∗∗
∗ Compare method used in grahamscanConvexHull ( )
∗

∗ @param arg0 F i r s t p o i n t
∗ @param arg1 Second p o i n t
∗ @return P o i n t wi th t h e l o w e s t p o l a r a n g l e t o a h o r i z o n t a l l i n e
∗ /

public i n t compare ( Object arg0 , Object arg1 ) {
Point p1 = ( Point ) arg0 ;
Point p2 = ( Point ) arg1 ;
Line l = new Line ( 0 , 0 , 1 , 1 , imp ) ; / / dummy l i n e
double angleWithP0_1 = l . getAngle ( p0 . x , p0 . y , p1 . x , p1 . y ) ;
double angleWithP0_2 = l . getAngle ( p0 . x , p0 . y , p2 . x , p2 . y ) ;
i f ( angleWithP0_1 < = 0 . 0 ) {

angleWithP0_1 = −1 . 0 ∗ angleWithP0_1 ;
} e lse {

angleWithP0_1 = 3 6 0 . 0 − angleWithP0_1 ;
}
i f ( angleWithP0_2 < = 0 . 0 ) {

angleWithP0_2 = −1 . 0 ∗ angleWithP0_2 ;
} e lse {

angleWithP0_2 = 3 6 0 . 0 − angleWithP0_2 ;
}
return ( i n t ) ( angleWithP0_1 − angleWithP0_2 ) ;

}

/∗∗
∗ C a l l b a c k method used f o r h i d i n g and showing
∗ components in t h e d i a l o g
∗

∗ @param e The I t emEvent
∗ /

public void itemStateChanged ( ItemEvent e ) {
i f ( e . g e t I t e m S e l e c t a b l e ( ) = = cbDelaunay ) {

i f ( e . getStateChange ( ) = = ItemEvent . SELECTED ) {
cbMST . s e t V i s i b l e ( t rue ) ;
cbConvexHull . s e t V i s i b l e ( t rue ) ;

} e lse {
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cbMST . s e t V i s i b l e ( f a l s e ) ;
cbConvexHull . s e t V i s i b l e ( f a l s e ) ;

}
}

}

/∗∗
∗ About window .
∗ /

public void showAbout ( ) {
I J . showMessage ( " About Tr iangula t ion . . . " ,

" Tr iangula t ion plugin f o r ImageJ . Takes as input a binary black−and−white " +
" image , in 8− b i t g ra ys ca le format , with white as the background " +
" c o l o r and black s i n g l e p i x e l s as v e r t i c e s . Outputs e i t h e r a Delaunay " +
" t r i a n g u l a t e d image , i t s corresponding Voronoi diagram , or both . " ) ;

}

/∗
∗ The r ema in ing h e l p e r c l a s s e s and methods borrow h e a v i l y on example a p p l e t
∗ T r i a n g u l a t i o n A p p l e t . j a v a which can be found a t
∗ h t t p : / / goanna . c s . rmi t . edu . au /~ g l / c l a s s e s / T r i a n g u l a t i o n A p p l e t . j a v a
∗ h t t p : / / goanna . c s . rmi t . edu . au /~ g l / r e s e a r c h / comp_ geom / d e l au n a y / d e l a un a y . html
∗ /

/∗∗
∗ C i r c l e c l a s s . C i r c l e s a r e fundamenta l t o c o m p u t a t i o n o f Delaunay
∗ t r i a n g u l a t i o n s . In p a r t i c u l a r , an o p e r a t i o n which computes a
∗ c i r c l e d e f i n e d by t h r e e p o i n t s i s r e q u i r e d .
∗ /

c l a s s C i r c l e {
RealPoint c ;
f l o a t r ;

C i r c l e ( ) { c = new RealPoint ( ) ; r = 0 . 0 f ; }
C i r c l e ( RealPoint c , f l o a t r ) { t h i s . c = c ; t h i s . r = r ; }
public RealPoint c e n t e r ( ) { return c ; }
public f l o a t radius ( ) { return r ; }
public void s e t ( RealPoint c , f l o a t r ) { t h i s . c = c ; t h i s . r = r ; }

/∗∗
∗ T e s t s i f a R e a l P o i n t o b j e c t l i e s i n s i d e t h e c i r c l e i n s t a n c e .
∗

∗ @param p The R e a l P o i n t i n p u t o b j e c t
∗ @return True i f t h e R e a l P o i n t i s i n s i d e , f a l s e o t h e r w i s e
∗ /

public boolean i n s i d e ( RealPoint p ) {
i f ( c . d is tanceSq ( p ) < r ∗ r )

return true ;
e lse

return f a l s e ;
}

/∗∗
∗ T e s t s i f a P o i n t o b j e c t l i e s i n s i d e t h e c i r c l e i n s t a n c e .
∗

∗ @param p The P o i n t i n p u t o b j e c t
∗ @return True i f t h e P o i n t i s i n s i d e , f a l s e o t h e r w i s e
∗ /

public boolean i n s i d e ( Point p ) {
return i n s i d e (new RealPoint ( p . x , p . y ) ) ;

}

/∗∗
∗ Compute t h e c i r c l e d e f i n e d by t h r e e R e a l P o i n t s ( c i r c u m c i r c l e ) .
∗

∗ @param p1 F i r s t p o i n t d e f i n i n g t h e c i r c l e boundary
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∗ @param p2 Second p o i n t d e f i n i n g t h e c i r c l e boundary
∗ @param p3 Thi rd p o i n t d e f i n i n g t h e c i r c l e boundary
∗ /

public void c i rcumCirc le ( RealPoint p1 , RealPoint p2 , RealPoint p3 ) {
f l o a t cp ;

cp = crossProduct ( p1 , p2 , p3 ) ;
i f ( cp ! = 0 . 0 )

{
f l o a t p1Sq , p2Sq , p3Sq ;
f l o a t num , den ;
f l o a t cx , cy ;

p1Sq = p1 . x ( ) ∗ p1 . x ( ) + p1 . y ( ) ∗ p1 . y ( ) ;
p2Sq = p2 . x ( ) ∗ p2 . x ( ) + p2 . y ( ) ∗ p2 . y ( ) ;
p3Sq = p3 . x ( ) ∗ p3 . x ( ) + p3 . y ( ) ∗ p3 . y ( ) ;
num = p1Sq∗ ( p2 . y ( ) − p3 . y ( ) ) + p2Sq∗ ( p3 . y ( ) − p1 . y ( ) ) +
p3Sq∗ ( p1 . y ( ) − p2 . y ( ) ) ;
cx = num / ( 2 . 0 f ∗ cp ) ;
num = p1Sq∗ ( p3 . x ( ) − p2 . x ( ) ) + p2Sq∗ ( p1 . x ( ) − p3 . x ( ) ) +
p3Sq∗ ( p2 . x ( ) − p1 . x ( ) ) ;
cy = num / ( 2 . 0 f ∗ cp ) ;

c . s e t ( cx , cy ) ;
}

/ / Radius
r = c . d i s t a n c e ( p1 ) ;

}

/∗∗
∗ Wrapper t o use t h e c i r c u m C i r c l e f u n c t i o n on P o i n t o b j e c t s
∗ as w e l l a s R e a l P o i n t o b j e c t s
∗

∗ @param p1 F i r s t p o i n t d e f i n i n g t h e c i r c l e boundary
∗ @param p2 Second p o i n t d e f i n i n g t h e c i r c l e boundary
∗ @param p3 Thi rd p o i n t d e f i n i n g t h e c i r c l e boundary
∗ /

public void c i rcumCirc le ( Point p1 , Point p2 , Point p3 ) {
c i rcumCirc le (new RealPoint ( p1 . x , p1 . y ) ,new RealPoint ( p2 . x , p2 . y ) ,
new RealPoint ( p3 . x , p3 . y ) ) ;

}
}

/∗∗
∗ He lp e r c l a s s r e p r e s e n t i n g a P o i n t in f l o a t f o rmat , wi th c o r r e s p o n d i n g
∗ h e l p e r methods
∗ /

c l a s s RealPoint {
f l o a t x , y ;

RealPoint ( ) { x = y = 0 . 0 f ; }
RealPoint ( f l o a t x , f l o a t y ) { t h i s . x = x ; t h i s . y = y ; }
RealPoint ( RealPoint p ) { x = p . x ; y = p . y ; }
public f l o a t x ( ) { return t h i s . x ; }
public f l o a t y ( ) { return t h i s . y ; }
public void s e t ( f l o a t x , f l o a t y ) { t h i s . x = x ; t h i s . y = y ; }

public f l o a t d i s t a n c e ( RealPoint p ) {
f l o a t dx , dy ;

dx = p . x − x ;
dy = p . y − y ;
return ( f l o a t ) Math . s q r t ( ( double ) ( dx ∗ dx + dy ∗ dy ) ) ;

}
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public f l o a t distanceSq ( RealPoint p ) {
f l o a t dx , dy ;

dx = p . x − x ;
dy = p . y − y ;
return ( f l o a t ) ( dx ∗ dx + dy ∗ dy ) ;

}
}

/∗∗
∗ V e c t o r c l a s s . I n c l u d e s a few e l e m e n t a r y v e c t o r o p e r a t i o n s as h e l p e r methods
∗ /

c l a s s Vector {
f l o a t u , v ;

Vector ( ) { u = v = 0 . 0 f ; }
Vector ( RealPoint p1 , RealPoint p2 ) {

u = p2 . x ( ) − p1 . x ( ) ;
v = p2 . y ( ) − p1 . y ( ) ;

}
Vector ( f l o a t u , f l o a t v ) { t h i s . u = u ; t h i s . v = v ; }

f l o a t dotProduct ( Vector v ) { return u ∗ v . u + t h i s . v ∗ v . v ; }

f l o a t crossProduct ( Vector v ) { return u ∗ v . v − t h i s . v ∗ v . u ; }

void s e t R e a l P o i n t s ( RealPoint p1 , RealPoint p2 ) {
u = p2 . x ( ) − p1 . x ( ) ;
v = p2 . y ( ) − p1 . y ( ) ;

}
}

/∗∗
∗ PrimPoint c l a s s . Used f o r r e p r e s e n t i n g p o i n t s
∗ in primMST ( Prim ’ s minimum spanning t r e e a l g o r i t h m )
∗ /

c l a s s PrimPoint ex tends Point {
private s t a t i c f i n a l long ser ia lVers ionUID = 1 L ;

public double key ;
public ArrayList ad j ;
public i n t parent ;

public PrimPoint ( i n t x , i n t y ) {
super ( x , y ) ;
ad j = new ArrayList ( ) ;

}
}

/∗∗
∗ V e c t o r d o t p r o d u c t on R e a l P o i n t o b j e c t s
∗

∗ @param p1 F i r s t p o i n t in d o t p r o d u c t c a l c u l a t i o n
∗ @param p2 Second p o i n t in d o t p r o d u c t c a l c u l a t i o n
∗ @param p3 Thi rd p o i n t in d o t p r o d u c t c a l c u l a t i o n
∗ @return The v e c t o r d o t p r o d u c t
∗ /

s t a t i c f l o a t dotProduct ( RealPoint p1 , RealPoint p2 , RealPoint p3 ) {
f l o a t u1 , v1 , u2 , v2 ;

u1 = p2 . x ( ) − p1 . x ( ) ;
v1 = p2 . y ( ) − p1 . y ( ) ;
u2 = p3 . x ( ) − p1 . x ( ) ;
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v2 = p3 . y ( ) − p1 . y ( ) ;

return u1 ∗ u2 + v1 ∗ v2 ;
}

/∗∗
∗ V e c t o r c r o s s p r o d u c t on R e a l P o i n t o b j e c t s
∗

∗ @param p1 F i r s t p o i n t in v e c t o r p r o d u c t c a l c u l a t i o n
∗ @param p2 Second p o i n t in v e c t o r p r o d u c t c a l c u l a t i o n
∗ @param p3 Thi rd p o i n t in v e c t o r p r o d u c t c a l c u l a t i o n
∗ @return The v e c t o r c r o s s p r o d u c t
∗ /

s t a t i c f l o a t crossProduct ( RealPoint p1 , RealPoint p2 , RealPoint p3 ) {
f l o a t u1 , v1 , u2 , v2 ;

u1 = p2 . x ( ) − p1 . x ( ) ;
v1 = p2 . y ( ) − p1 . y ( ) ;
u2 = p3 . x ( ) − p1 . x ( ) ;
v2 = p3 . y ( ) − p1 . y ( ) ;

return u1 ∗ v2 − v1 ∗ u2 ;
}

}
� �
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A.12 Thresholder_.java

� �
import j ava . awt . GridLayout ;
import j ava . awt . Label ;
import j ava . awt . Tex tF ie ld ;

import i j . ImagePlus ;
import i j . gui . GenericDialog ;
import i j . gui . NewImage ;
import i j . plugin . f i l t e r . P l u g I n F i l t e r ;
import i j . process . ImageProcessor ;

/∗∗
∗ @author Sve in F i d j e s t ø l
∗

∗ T h r e s h o l d e r p l u g i n f o r Image J . Takes a s i n p u t a 32− b i t f l o a t
∗ image and o u t p u t s a c o r r e s p o n d i n g ( h e i g h t −) t h r e s h o l d e d
∗ 8− b i t b i n a r y b l a c k−and−w h i t e image .
∗ /

public c l a s s Thresholder_ implements P l u g I n F i l t e r {

/∗ ∗ The i n p u t image ∗ /
private ImagePlus imp ;

/∗∗
∗ Standard Image J p l u g i n s e t u p method
∗

∗ @param arg Plug in arguments
∗ @param imp The i n p u t image
∗ /

public i n t setup ( S t r i n g arg , ImagePlus imp ) {
/ / TODO Auto−g e n e r a t e d method s t u b
t h i s . imp = imp ;
return DOES_32 ;

}

/∗∗
∗ Standard Image J p l u g i n run method . Quite m o n o l i t h i c f o r s i m p l i c i t y p u r p o s e s
∗

∗ @param i p S e l e c t e d r e g i o n f o r p r o c e s s i n g
∗ /

public void run ( ImageProcessor ip ) {
/ / Get t h e c l a s s n a m e w i t h o u t t r a i l i n g u n d e r s c o r e
S t r i n g className = getClass ( ) . getName ( ) ;
i f ( className . charAt ( className . length ( ) −1) == ’ _ ’ ) {

className = className . subs t r ing ( 0 , className . length ( ) −1 ) ;
}

/ / Read in t h r e s h o l d v a l u e with a d i a l o g box
S t r i n g c u r r e n t S e l e c t i o n ;
f l o a t threshold ;
GenericDialog gd = new GenericDialog ( className ) ;
gd . setLayout (new GridLayout ( 2 , 1 ) ) ;

Label lb lThreshold = new Label ( " Threshold " ) ;
TextF ie ld t fThreshold = new TextF ie ld ( " 0 . 0 " , 0 ) ;

gd . add ( lb lThreshold ) ;
gd . add ( t fThreshold ) ;

lb lThreshold . s e t V i s i b l e ( t rue ) ;
t fThreshold . s e t V i s i b l e ( t rue ) ;

gd . showDialog ( ) ;
threshold = F l o a t . p a rs e F l o a t ( t fThreshold . getText ( ) ) ;
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/ / Get some i n f o from t h e i n p u t image
f l o a t [ ] p i x e l s = ( f l o a t [ ] ) ip . g e t P i x e l s ( ) ;
i n t width = ip . getWidth ( ) ;
i n t height = ip . getHeight ( ) ;

/ / G e n e r a t e a new , empty image
ImagePlus new_imp = NewImage . createByteImage ( imp . g e t T i t l e ( ) + " : " +
className , width , height , 1 , NewImage . FILL_WHITE ) ;
new_imp . s e t C a l i b r a t i o n ( imp . g e t C a l i b r a t i o n ( ) ) ;
byte [ ] new_pixels = ( byte [ ] ) new_imp . getProcessor ( ) . g e t P i x e l s ( ) ;

/ / T h r e s h o l d t h e image
f l o a t p i x e l ;
for ( i n t j = 0 ; j < height ; j + + ) {

for ( i n t i = 0 ; i < width ; i + + ) {
p i x e l = p i x e l s [ j ∗width+ i ] ;
i f ( p i x e l < threshold ) {

new_pixels [ j ∗width+ i ] = ( byte ) 0 ;
} e lse {

new_pixels [ j ∗width+ i ] = ( byte ) 2 5 5 ;
}

}
}
new_imp . show ( ) ;

}

}
� �
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