Effective Quantification of the Paper Surface 3D Structure

Preface

This document describes the results of Svein Fidjestol’s diploma work and in-depth study of
image processing techniques in relation to analysis of the three-dimensional surface structure
of paper. The diploma work was conducted during the Spring semester 2005.

The title of the thesis is “Effective Quantification of the Paper Surface 3D Structure”. The project
was given by Gary Chinga, research scientist at PFI! specializing in the field of surface struc-
ture. The project description as given from Gary Chinga is cited in its entirety on the front cover
of this report.

I would like to thank Gary Chinga as well as my academic advisor, Richard E. Blake (IDI?,
NTNU). They have been supportive with their advice and provision of comments throughout
the semester.

Trondheim, June 16, 2005

Svein Fidjestol

!PFI: Paper and Fibre Research Institute
IDI: Department of Computer and Information Science
*NTNU: Norwegian University of Science and Technology

ii

Summary

This thesis covers the topic of image processing in relation to the segmentation and analysis of
pores protruding the surface in the three dimensional surface structure of paper. The successful
analysis of pores is related to a greater goal of relating such an analysis to the perceived quality
of the surface of a paper sample.

The first part of the thesis gives an introduction to the context of image processing in relation
to paper research. Also, an overview of the image processing framework used for image pro-
cessing plugin development, Image], is provided, together with the current status of Image]
plugins for surface characterization.

The second part of the thesis gives an overview of an envisioned future paper quality assess-
ment system. The quality assesment system described consists of six phases, three of which are
treated in this thesis. These are the Image Processing phase, the Modeling phase, and the Mea-
surement phase. The Image Processing phase is further divided into three subphases. These
are the Error Correction subphase, the Pore Extraction subphase, and the Segmentation phase.
Together with the description of the phases of the system, techniques are presented that are
relevant to the phase currently being described.

The third part of the thesis covers the development of new plugins for surface characterization
within the ImageJ] framework?. Examples are given and evaluated to show the usage and
results of each plugin, and each plugin is related to a specific part of the quality assesment
system. Also, a tutorial covering use of several plugins in sequence is presented. The parts
of the system receiving the most attention in relation to plugin development are segmentation
and modeling.

*A CD-ROM is included with this thesis, containing Image] version 1.34n, the developed plugins including
source code, and example images

iii

iv

Contents

1 Introduction
1.1 Underlying Fiber Structure
12 Missing Dot Problem,
1.3 Focus o
14 Computer Science and Image Processing in Pulp and Paper Research
141 X-Ray Microtomography and Surface Analysis
2 Background
21 History
22 Applications
23 Missing Dotsand Printing
231 Causes
2.3.2 Physical Consequences During Printing
24 Image] e
2.5 SurfChar] Surface Characterization Plugin for Image]
3 Techniques
31 Overview e
3.2 Sample PreparationPhase
3.3 Image AcquisitionPhase L Lo
3.4 ImageProcessingPhase
3.5 Error CorrectionSubphase 0 L.
3.5.1 SurfaceLeveling
3.5.2 Error Area Correction,
3.6 Pore ExtractionSubphase
3.6.1 RollingBall Filtering
3.6.2 Distance Transform-based Filtering
3.6.3 Morphology-based Filtering
3.64 MedianFiltering L o
3.7 SegmentationSubphase L o L L
3.7.1 Simple Thresholding
3.7.2 Advanced Thresholding
373 AreaThresholding
3.8 ModelingPhase
3.8.1 Delaunay Triangulation
39 MeasurementPhase. L L

3.9.1 PoreDistance Calculation 21

3.9.2 Quality Parameter Calculation 21

3.10 Quality AssesmentPhase o 22
3.10.1 Surface Descriptors Calculation. 22

3.10.2 Missing Dot Estimation 22

4 Implementation 23
4.1 AreaThresholder e 23
42 Fractal Dimension 26
43 RollingBall. 26
431 CurrentStatus. e 27

432 ImprovedRollingBall 28

4.4 Distance Transform e 31
45 Image Filtering Tutorial 34
4.6 PoreNeighborhood 39
461 Neighbor. 39

4.6.2 DPoreRepresentation o0 L 40

4.6.3 Delaunay Triangulation 40

464 Removing Edges after Delaunay Triangulation 44

47 Measure Pore Volume e 46

5 Further Research 49
6 Conclusion 51
References 54
A Code Listing 55
A1l AreaThresholder_java 55
A.2 CalculateAverageSurfaceHeight_java 63
A3 CenterOfMass_java. e 64
A4 DiscretizeZValues_java L o 69
A5 DistanceTransform3D_java 71
A.6 FractalDimension_java. 75
A.7 MeasurePoreVolume_java L 77
A8 RollingBallNew_java 79
A9 RollingBallOriginal java. 83
A.10 SimulatePrinting_java L o o 86
A1l Triangulation_java L 88
A2 Thresholder_java 103

vi

List of Figures

1-1 Missing Dot Example, SEM Backscatter Images [8]

2-1 Classification of Missing Dots by Underlying Structure [1]
2-2 Missing Dots After Printing. (a) With, (b) Without a Pore Protruding the Surface

2-3 SurfChar],no Options Enabled
2-4 SurfChar], all Options Enabled

3-1 ComponentOverview
3-2 Example Image Before and After Distance Map Calculation.
3-3 Example Array Before and After Distance Map Calculation
3-4 Broken Text Processed with Morphological Filtering (Dilation and Erosion) [13] .
3-5 Morphological Filtering on a Disconnected Pore

4-1 AreaThresholder Interface, with no Options Enabled and all Options Enabled . .
4-2 Screenshot After Filtering with AreaThresholder
4-3 Fractal Dimension by Box Counting
4-4 Original Image, Cropped to Equal Size as Rolling Ball Filtered Image (radius=20
and 252 MiCron) e e e e e e e e
4-5 Rolling Ball Mask (radius=20 and 252 micron)
4-6 Rolling Ball Mask Value used for the Filtered Image (radius=20 and 252 micron)
4-7 Rolling Ball Filtered (Smoothed) Image (radius=20 and 252 micron)
4-8 Output Image after Subtracting the Smoothed Image from the Original Image
(radius=20 and 252 micron)
4-9 Image Sequence Showing all 12 Slices after running DiscretizeZValue
4-10 Distance Transform Results, Top Slice
4-11 Image Acquired by Laser Profilometry
4-12 Image Acquired by Laser Profilometry after Surface Leveling, Error Correction .
4-13 Image After Thresholding
4-14 Image after Thresholding and Area Thresholding
4-15 Image after Thresholding, Area Thresholding, and Filling of Holes
4-16 Image after Delaunay Triangulation
4-17 Set of Dots before and after Delaunay Triangulation
4-18 Set of Dots after Delaunay Triangulation (also with Voronoi Diagram)
4-19 Triangulation at MacroScale [4]o L.
4-20 Pore Distances Given by the Delaunay Triangulation (in microns)
4-21 Mosaicing Example [16] o oo

vii

29
29
30
30

4-22 Triangulation Interface, with no Options Enabled and all Options Enabled 44
4-23 Minimum Spanning Tree Example (Included Edges Marked with Arrows), with

Output 45
4-24 Convex Hull Example (Included Edges Marked with Arrows), with Output . . . 46
4-25 Segmented Region, its Histogram, and Pore Volume Measurement, Threshold

Planeat-4.0micron L 47

viii

List of Tables

4-1 Pore Volume Measurements of Pores in Figure 4-2

iX

Master’s Thesis Spring 2005 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This project concerns three-dimensional surface analysis in the context of paper research. The
main topic is pores occuring in the paper surface, and segmentation and analysis of these.
These pores are also discussed in relation to their consequences in the printing process. More
specifically, the problem of surface areas with large pores or clusters of smaller pores that still
have spots without ink after printing is discussed. For simplification purposes, this is here
called the missing dot problem.

First an overview of the current status of pore analysis is given, both in terms of theoretical
background and the status of current software related to this topic. A framework with the
purpose of describing a system for estimating missing dots is presented, and also the image
processing, modeling and measurement parts of this system are presented.

With this background in mind, software implementations for these parts of the system are pre-
sented together with their corresponding results. The example images used have been acquired
with LLP (Lehrman Laser Profilometry), which is a relatively convenient technique for surface
image acquisition, and presumably accurate enough for the present purposes.

1.1 Underlying Fiber Structure

At the core of surface analysis in paper research is examination of the relationships between
the underlying fiber structures at the microscopic level and the high-level qualities of the pro-
duced material. Automated and semi-automated analysis of these relationships with the help
of image processing software would be very useful in this context. Gradually, during the last
few decades, the declining price and exponentially increasing power of workstation computers
capable of powerful image processing arrived at the point where the use of image processing
techniques from the field of computer science has become helpful for the pulp and paper re-
search community. As of today, graphic workstations are often more than powerful enough for
processing of the (sometimes quite volumous) amounts of data samples acquired in pulp and
paper research contexts.

Master’s Thesis Spring 2005 CHAPTER 1. INTRODUCTION

1.2 Missing Dot Problem

Several types of analysis are available to aid in the analysis of missing dots. Data sets of the
type used in this report have been prepared and used for other reports at PFI, among others
Chinga’s paper [7]. These data sets have been obtained through the use of the Lehrman Laser
Profilometry (LLP) method. In the context of analysis of transferred vs. missing dots, LLP has
apparently traditionally not been the method of choice, though it has other advantages over
the usual methods, for instance speed of image acquisition.

There are many other techniques in common use. The use of Scanning Electron Microscope
(SEM) has been convenient when analyzing printed surfaces in terms of transferred and miss-
ing dots. An example image acquired with SEM may be useful in visualizing the missing dot
problem. Such an example image is shown in Figure 1-1.

""

e 3 a3z SKU X158 mm-- NO13 .

Figure 1-1: Missing Dot Example, SEM Backscatter Images [8]

9

1.3 Focus

The focus of the present diploma work will be on image processing methods which can be
useful in assessing missing dots that are due to pores protruding the paper surface. A goal
is to enable easier quantification of missing dots prior to actual printing as this is a useful
measure for the quality of the paper. Ideally, it should be possible to process an LLP image
to such a degree that the percentage and layout of missing dots in the sample, after printing,
can be predetermined. The processing should be as automated as possible, though operator
intervention is desirable if it is shown to considerably increase the accuracy of the estimated
percentage and layout of missing dots.

The benefits of a system offering semi- or fully-automated missing dot estimates directly from
an LLP sample should be obvious: As the percentage and layout of missing dots is a large
component in determining final print quality of a paper sample, an automated system which
can perform this analysis with minimal operator intervention would be of highly useful. How-
ever, it is important that the estimates generated by the analysis are close approximations to
real-world measurements after printing. The quality of the estimates would be assessed by
comparing them with empirical measurements.

2

Master’s Thesis Spring 2005 CHAPTER 1. INTRODUCTION

A goal in a broader context is, of course, to apply such results to the paper production process
itself. The benefits that can ultimately be gained from a more precise automated image analysis
technique for paper quality evaluation are many. For instance, one can imagine the production
of paper with ever improved properties, or even production of paper with the same properties
as today, but with lower production cost. According to Holmstad [14], the crucial elements
with regards to product improvement will be “to have a quantitative measure of the detailed struc-
ture characteristics. Without quantitative measures there are no means for process control or objective
assessment of the process improvements.” The present diploma work is, as already presented, a
work in the chain of research that aims at improving the possibility of obtaining a quantitative
measure, more specifically surface quality characterization of paper due to pores protruding
the surface.

1.4 Computer Science and Image Processing in Pulp and Paper Re-
search

It is the purpose of this thesis to bring forward the collaborative efforts that are present between
PFI and IDI, NTNU. These collaborative efforts attempt to combine new imaging techniques
used by PFI researchers with new developments in image processing. A partial goal of the
collaborative efforts is to develop tools helpful in analyzing newly acquired sets of images at
PFI in new and interesting ways.

An observation that should be made is that while the author (as well as the other IDI students
doing their thesis work in collaboration with PFI) has knowledge of software development and
image processing, he (and the other IDI students) has little knowledge of e.g. microscopy and
other paper analysis techniques used at PFI. It could be that some aspects of the present thesis
seem somewhat out of place in the context of paper research, however, it is the view of the
author that new approaches to paper surface analysis could become apparent by viewing the
acquired images from new angles. Therefore it is the goal that new techniques will be presented
and implemented throughout this thesis that can lead to better results in surface analysis (paper
surface as well as possible other types of surfaces).

1.4.1 X-Ray Microtomography and Surface Analysis

In recent years there has been a move to include more techniques from the field of Image Pro-
cessing to the pulp and paper research community. Following are some of the present focus
areas for image processing techniques at PFI.

As mentioned in Chapter 1.4, there is an ongoing collaboration between PFI and IDI, NTNU.
Most of the collaborative projects have involved analysis of 3D X-Ray microtomography im-
ages obtained through the use of a synchrotron at ESRF (European Synchrotron Radiation Fa-
cility). It should be noted that the data sets obtained through the synchrotron are of extremely
high detail and are therefore large and computationally expensive to analyze even with work-
station computers. One of the goals of the X-ray Microtomography project is that of simplifying
the data sets while still retaining the important bits of data. It should be noted that the data vol-

Master’s Thesis Spring 2005 CHAPTER 1. INTRODUCTION

umes of images used in this thesis are much smaller than for those including microtomography
images.

In the future it might be possible to perform more accurate pore analysis by utilizing data from
X-ray microtomography images. However, at the present stage it is unknown if this will be
neccessary in the context of pore segmentation and analysis, and its relation to the missing dot
problem.

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

Chapter 2

Background

2.1 History

Following in the steps of Holmstad’s work (a doctoral thesis in collaboration with PFI), new
methods of measurement lead to a wealth of possibilities for the microscopy and image analysis
of normal and also cross-sectional images for characterization of the paper structure. Holmstad
[14] divides the possibilities into three distinct categories:

1. Observation of paper structure features and quality problem detection by visual inspec-
tion

2. Image analysis for benchmarking and product development
3. Image analysis for explanation of physical behavior

It is clear that the present work will mostly be concerned with the first and third category.

2.2 Applications

An interesting aspect of the topic at hand is that image processing of the type described in this
report has a wide range of applications. From the current consideration of image processing
in the domain of pulp and paper, there are also other domains which can find great interest in
the topics covered in this report. In principle, much of the work on surface characterization
in the context of paper surface analysis could be of use to completely different research areas.
One application is to the domain of road surface analysis. In his paper, Payne [18] presents
an integrated system for road surface analysis which uses similar image processing techniques
to analyze a road profile. Another possible application where the SurfChar] plugin itself has
actually been applied, is in the domain of soil analysis in the event of volcano eruptions.

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

2.3 Missing Dots and Printing

2.3.1 Causes

D Flat surface; 2 %
WFillers hills; 12 %

W Fibers crossing; 33 %
OLarge pore; 8 %

OlLarge fiber(s) & fillers;
14 %

EFibers crossing & fillers;

L fib ;14 %
7% M Large fiber(s)

Figure 2-1: Classification of Missing Dots by Underlying Structure [1]

Pores are not the only cause of missing dots. As can be seen in Figure 2-1, which describes
measurements made by Antoine [1], pores are actually not the even main cause of missing dots
after printing. Nevertheless the present work has pore detection, pore segmentation and the
relationship between pores in the surface to missing dots after printing as its main topic. The
main reason for this is that this is an easily isolated subgroup where much progress is still
needed in order to obtain good results.

2.3.2 Physical Consequences During Printing

As explained in Chinga’s thesis and corresponding presentation [5, 6], there are several com-
ponents to the problem of missing dots after printing. It can be influenced by three main inter-
actions:

e paper and the printing ink

e paper and the printing press

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

e light and print

As the physical structure of the surface is the main focus of this thesis, it means that the inter-
action between the paper and the printing press is the most interaction of most interest here. A
simplified discussion of this is presented next.

W

(a)

W

(b)
Figure 2-2: Missing Dots After Printing. (a) With, (b) Without a Pore Protruding the Surface

Figure 2-2 attempts to show how pores can cause problems during the printing process. The
round shape with indentations is the printing head and the drawn profile represents the paper
surface at microscopic scale. Each indentation of the printing head contains some ink before
it hits the paper surface, whereupon it circles around and acquires new ink before hitting the
paper surface again. The missing dot problem can occur when an indentation in the printing
head does not come close enough to the paper surface. Then the ink may remain inside the
indentation instead of transfering to the paper surface. This can happen when there is a pore
present in the surface at that particular area. There are also many other causes, which are not
part of the focus of this thesis. These are briefly mentioned in Chapter 2.3.1.

Again referring to Figure 2-2, at the point in time shown in (a) the surface contains a pore that
causes ink not to transfer to the paper surface. At the point in time shown in (b) the surface
does not contain a pore. Therefore the possibility of ink not transferring to the paper is thought
to be greater in (a) than in (b).

2.4 Image]

Image] is a complete image processing application written fully in the Java programming lan-
guage. It is easily extendible to new contexts due to its open archtecture and active plugin
support. In addition, it has been placed completely in the public domain by the U.S. National
Institute of Health, which makes it easily obtainable from the NIH home page [17]. Image] has
been used with success in academic circles. Sage and Unser [19] describe an approach where

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

Image] was used as the base toolkit for a complete introductory course in image processing
because of its ease of use and open nature.

However, some comments about Image]J are in place. Sage and Unser [19] point to some im-
portant peculiarities of the Image] package, some of which were also noticed during plugin
development in the present work. As noted above, Image] includes an easy-to-use plugin
architecture. However, the approach taken by the internal (non-plugin) operators is often dif-
ferent from the preferred approach one would like to use when writing plugins. Therefore,
in many cases it is actually preferable to write plugins together with associated routines from
scratch even if the same routines are already present in the Image] base package. For some
routines the coupling between abstract routines and the Image] program itself is too high to
be useful in alternative contexts. Therefore, in the present work most routines rely little on
calculation routines that come with the Image] base package, instead implementing most from
scratch.

2.5 SurfChar] Surface Characterization Plugin for Image]

SurfChar] is a comprehensive plugin for Image] developed mostly by Gary Chinga. Two ver-
sions currently exist: a free version, and a version with additions proprietary to PFL It should
be noted that the free version is available for download from Chinga’s private home page, with
source code included [9].

SurfChar] is, as mentioned, a comprehensive plugin, useful for surface characterization and
analysis. It could be viewed as a general tool for semi-automated surface characterization and
analysis work. As it is developed partly for PFI purposes, it has been tested and used mostly
for paper surface microscopic images at the present point. However, since many people in
other fields of research also could be interested in semi-automated surface characterization it
may well be used for completely different types of surfaces in the future.

Few of the options provided by SurfChar] are used for the present diploma work, as SurfChar]
covers an array of options, many which are not relevant here. However, two preprocessing
options have been used extensively throughout the present work. These are the “Level surface”
and the “Correct error areas” options, as they are quite generic and useful for nearly all image
processing tasks involving LLP surface images.

Two screenshots presenting the available options and filters in SurfChar] are shown next, with
minimal options visible in Figure 2-3, and with all options visible in Figure 2-4. In the SurfChar]
interface an option becomes visible as one selects its “parent” option, that is, options that it
depends on. Instructions for use and explanations of the various options and filters not used
in the present work are available at the SurfChar] home page [9].

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

~ Surface characterisation 1c...

[~ Level surface

I~ Correct error areas

™ Measure R-values onwhole surface I~ Display Rg map

Sampling lenath (prm): 10
Min=16, Max=2002pm

I~ Perform facet orientation analysis

I~ Filter surface by

GF, display roughness image |

GF, dizplay waviness image
FFT, display bandpass image

I~ Measure pore valume

™ Perform peak valley analysis

I™ Perform roughness aradient analysis

I Include processing information

OK Cancel

Figure 2-3: SurfChar], no Options Enabled

Master’s Thesis Spring 2005 CHAPTER 2. BACKGROUND

= Surface characterisation 1c... @

v Level surface

W Correct error areas

Highest peak value |4

Deepest valley value |-?

v Suppress horizontal stripes by FFT filtering (%) |2

W Measure R-values onwhaole surface

Iv Perform facet arientation analysis

v Display azimuthal image v Display plot of azimuthal facets
v Display polar image v Threshald polarimage (0-90 degrees)
|20
W Filter surface by
|GF, display roughness image _vJ
Lower structure size limit (pmy |5
Upper structure size limit (pm) ; |1 0

Min=8, Max=2002pm
v Measure pore volurme
Rolling ball radius (Min=16, Max=1001 prmj: |5

Iv Display pore image

v Perform peakvalley analysis
Threshold height

v Perform roughness aradient analysis

W Include processing information

Ok Cancel

Figure 2-4: SurfChar], all Options Enabled

10

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

Chapter 3

Techniques

3.1 Overview

This chapter follows the outline of a future envisioned paper quality assesment system as pre-
sented in Figure 3-1. In the current outline of the system, six general, distinct phases are iden-
tified:

1. Sample Preparation

. Image Acquisition

2
3. Image Processing (3 subphases)
4. Modeling

5

. Measurement
6. Quality Assesment

In the current chapter, each of the general phases will be presented in turn and related to the
present work. It should be mentioned that the present work has a focus on phases 3, 4, and
5, as the author has his background from computer science and image processing and has no
background in microscopy and image acquisition from microscopy. Therefore the sections on
phases 1 and 2 as well as 6 (which is closely connected to empirical research) will be brief.

Of special note is the final phase, Quality Assessment, which ends with a missing dot esti-
mation. As outlined in Chapter 1.2, an important focus of the present work is approaching
an assesment solution for the problem of missing dots in printing. A good assesment of the
percentage of missing dots in the finished, printed paper would be of great use to the paper
research community. This thesis does not arrive at this final stage but will hopefully be of use
when designing the remaining stages.

11

4!

7777777777777777777777777777) r
|

.
'Image Acquisition Phase

I
|
‘ Laser Profilometry (LPM) ‘ |
I
I
I
I

(‘White Light Inferometry (WLI) ‘)

Image Processing Phase

‘Pore Extraction

: Rolling Ball Filtering

‘ Morphology—based Filtering‘

|

|

| .

! ‘

! ‘

i ‘ ; : ‘
| Phase ‘ ! (‘Scanning Electron Microscopy (SEM) ‘) ‘ | Error Correction ‘
. s C ‘ : :

3 3 — Surface Leveling : ‘Distance Transform—based Filtering ‘ ;

I I . :

| | . .

| | . . :

| | :

Error Area Correction

Median Filtering

:Segmentation
Simple Thresholding

—> ‘Advanced Thresholding ‘

Area Thresholding

[1

'Modeling Phase

Delaunay Triangulation

MIIATSAQ yuauodwo)) :1-¢ arn3r]

P m e e
1Quality Assesment Phase
|

‘ Surface Descriptors Calculation ‘

‘Missing Dot Estimation ‘

b

600z 3uridg stsayf, s, 103se]

SHNOINHDAL "€ YALIVHD

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

3.2 Sample Preparation Phase

Preparation of samples is not part of the present work. The paper samples used here are the
same as described in Chinga [7].

3.3 Image Acquisition Phase

Lehrman Laser Profilometry was used in the present work for image acquisition, which yields
images with an accuracy of about 1/100 of a micron for the pixel values, and a grid resolution
of about 1 to 4 microns in the images. Of course, many other techniques are available for image
acquisition. A short discussion on this can be found in Chinga [7]. As mentioned earlier this
phase in Chapter 3.1, this phase is only mentioned briefly in the present work as the author has
no background in microscopy and image acquisition from microscopy.

3.4 Image Processing Phase

This is the first phase covered in detail in the present work. The author has chosen to have a
single phase encompassing all image processing in the system. The reason for this decision is
the thinking that we then have a single phase that

e has raw surface data as input, and
e has all types of relevant images for further processing as output.

One important aspect during parts of the Image Processing phase, is to make sure that noise is
handled with some degree of physical correctness. According to Holmstad [14] there are some
considerations that should be made when attempting to remove noise from an acquired image.
Most importantly, “filtering techniques must be applied with precaution to find an optimum trade-off
between removal of disturbing noise and physically present elements” [14]. The conclusion is that one
should, during image analysis routine development, visually compare the filtered image to the
non-filtered image and assess the degree to which the filtered image preserves the structure
topology. Preferrably, the optimal filtering should be chosen as the filter of choice, that is, the
filtering routine which best preserves the structure topology.

As the measurement phase (Chapter 3.9) is set to produce concrete measurements from ade-
quately preprocessed data, it is natural to apply all image (pre)processing techniques in one
phase as is done here. However, it is also natural to divide this large phase into subphases.
These are covered in the subsequent sections of this chapter.

3.5 Error Correction Subphase

The Error Correction subphase is based in whole on the implementation provided by the Sur-
fChar] plugin (Chapter 2.5) for Image]. The filtering used in this subphase was introduced
fairly recently by Chinga [7].

13

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

3.5.1 Surface Leveling

The first part of the Error Correction subphase is the surface leveling filter provided by Sur-
fChar]. This filter provides a fully automatic way of normalizing the image data before any
further processing.

The filter, called “Level surface”, provides a way of removing disambiguation related to the
orientation of the paper sample. In the present context, the orientation of the paper sample is
simply refered to as the orientation of the image plane. It is clear that imaging through the use
of Laser Profilometry will not yield uniformly oriented image planes when comparing samples.
Minute differences in the image plane orientation will always occur with measurements at such
microscopic levels.

The filter works by iterating over the entire image, calculating the least square estimates for the
x and y dimensions and applying a regression model to all pixels in the image. The process
of least squares estimation and regression model application [24] is repeated 4 times in order
to gain a more balanced regression plane. It should be mentioned that, by its definition, a
property of the resulting leveled image obtained through the calculation of a regression plane
is that its average height after leveling is exactly zero.

3.5.2 Error Area Correction

The second part of the Error Correction subphase is the Error Area Correction filter provided
by SurfChar]. This filter provides a semi-automatic way of removing the pixel values in the
LLP image that are clearly in error. The reason it is semi-automatic and not fully automatic is
that the filter, called “Error area correction”, takes as input two threshold values. It might be
a possibility in the future to develop a fully automatic error correction filter which identifies
reasonable threshold values through segmentation and automatic analysis of the segmented
image, however it is not a goal of the present work. One of the reasons for this is that such
an automatic analysis would preclude the use of external, empirical knowledge which plays a
large part in the current semi-automatic process.

In the present work, knowledge of cross-sectional Scanning Electron Microscope (SEM) mea-
surement values for Surface Calendered paper is used for determining the error correction
thresholds. Chinga [7] estimated the optimal threshold values at -7.0 and +4.0 microns, since
SEM measurements showed that “the highest peak and deepest valley expected in SC paper can not
exceed 4 and -7 microns respectively” [7]. As such, these values are also used in the present work
since surface calendered paper is used exclusively in the examples provided here.

The filter works by, first, creating a 3x3 mask locally on points exceeding the thresholds, second,
calculating a mean value and storing this mean value at the point. If the calculated mean value
is still outside the threshold, the mask is increased until its mean value is inside the threshold.

14

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

3.6 Pore Extraction Subphase

The Pore Extraction subphase was also, at first, based on the implementation provided by the
SurfChar] plugin (Chapter 2.5) for Image]. However, as part of new implementations in the
present work, the Rolling Ball approach found in SurfChar] was refined (Chapter 4.3.2) and
included as one of several approaches considered here.

It is of importance to note that the following sections intend to describe several independent
approches to solving the problem of pore extraction. Future studies could of combine several
approaches but this will not be a focus in the present work.

3.6.1 Rolling Ball Filtering

The first approach is the use of a Rolling Ball filtering algorithm, as described by Chinga [7].

The Rolling Ball approach is a simple 2D spatial filtering approach. A detailed discussion of
such 2D image filtering/enhancement in the spatial domain can be found in Gonzalez and
Woods [13]. The Rolling Ball filter in particular is a smoothing filter, with a single parameter:
the radius of the rolling ball. In essence, it preserves the pixel values in regions of the image
with little change while smoothing the regions of the image with abrupt changes in the negative
direction, assigning to the pixels in these regions values from the general regions around them.
The hope is that the regions with abrupt changes will correspond closely to pores for the present
purposes. The filtered image is then subtracted from the original image, yielding a new filtered
image containing only pores (the rest of the image should in general be quite flat). The analogy
to a physical rolling ball traversing the surface is clear, however it is important that the rolling
ball has a large enough radius so it preserves the largest pores. According to crude estimates
extracted from the images themselves, a diameter of 500 microns is possible for some very large
pores, so the radius should ideally be at least 250 microns for good results. Later on, it could be
of interest to filter with several radii and combine the results somehow to improve the accuracy.

At first, the SurfChar] approach to the Rolling Ball filter was used (“Measure pore volume”
option in SurfChar].) Later a separate independent plugin which overcome some problems
with the SurfChar] implementation was developed. One goal of the new approach was to be
able to evaluate the quality of the implementation by providing the user with an overview of
temporary images generated by the algorithm. These are now shown as separate result images
in Image] after running the new plugin. Another goal of the new approach was to have a
rotation invariant plugin. This was not the case with the SurfChar] approach, as it did not
seem this was a goal of that implementation (it did not treat the edge cases correctly). The new
approach is perfectly rotation invariant for 90, 180, 270 degree rotations of the source image.

3.6.2 Distance Transform-based Filtering

One goal of the present work was to improve the performance of the Rolling Ball spatial filter-
ing algorithm (Chapter 3.6.1). As such, it became natural to explore alternative approaches to
the problem, since the problem lies in the O(n? x m?) time complexity of the usual implemen-
tation of spatial filters.

15

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

A natural alternative approach was therefore a Distance Transform approach, successfully ap-
plied to image processing problems in pulp and paper research by a Swedish research commu-
nity (Borgefors et al. [2, 3, 20, 21]). Distance Transform approaches for 3D environments take
as input a 3D image in the form of a voxel® structure.

An example of how the simplest form of the Distance Transform works is shown in Figure 3-3.
This figure shows a Distance Map in two dimensions on a binary image. As can be seen in
the figure, the distance to the background is assigned to every pixel. Thus, pixels deep inside
the segmented area are assigned larger values than pixels closer to the border. The version
of the distance transform thought to be useful for the present purposes is extended in a few
ways compared to the simplest version. The most useful way to describe it seems to be as
follows. A binary image is still used. However, it is a 3-dimensional binary image as opposed
to a 2-dimensional binary image. In an Image] context this would be implemented as a binary
image consisting of several slices. In addition to having to calculate the distance transform in
3 dimensions instead of 2 there is the problem of scale. The LLP images used for the present
purposes usually have at most a resolution of 1 micron per pixel in the pixel grid. However,
measured values are on the order of 1/100 of a micron. This suggests generating 100 slices for
each unit step for pixel values. However, this causes elongated voxels, which can be a pain to
work with according to Sintorn and Borgefors [20]. If elongated voxels are to be avoided, the
resolution of the pixel grid for each slice also has to be increased by a factor of at least 100 in
both the x and y direction for the current LLP images through some method of interpolation.
It is clear that the most feasible option might be some form of tradeoff between elongation and
accuracy.

= distance_transform_example.PNG _ _ = distance_transform_example.PNG
400x400 pixels; 8-hit, 156k 400x400 pixels; 8-hit; 156k

Figure 3-2: Example Image Before and After Distance Map Calculation

13D equivalent of a pixel, usually in the form of a unit cube

16

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

S0 0:0:0:0:0:0:0:

Figure 3-3: Example Array Before and After Distance Map Calculation

3.6.3 Morphology-based Filtering

Image processing through the use of morphological operation is quite often used on binary
images as part of a segmentation process. Two examples of morphology-based filtering are
shown in Figures 3-4 and 3-5. The first example (Figure 3-4) is from the domain of OCR (Optical
Character Recognition). Here, morphological techniques have proven useful because of the
fact that text consists of connected regions, each of which represents a unique letter. Since
morphological techniques can connect nearby, but disconnected, regions easily it is clear why
this is a good technique for OCR purposes. The second example (Figure 3-5) is an illustration
of morphological processing in the context of pore segmentation (the image is copied from the
later tutorial which Figure 4-12 is a part of).

& Broken text (600%) 3 & Broken text (600%)
508444 pixels, &-bit, 220K 50444 pixels, 5-bit, 220

cartain | certain

£ Broken text (600%)
505x444 pixels, 6-bit, 220K

certamn

Figure 3-4: Broken Text Processed with Morphological Filtering (Dilation and Erosion) [13]

17

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

4_threshold-minus4_oreathresholder-500_fillhotestf

*

Figure 3-5: Morphological Filtering on a Disconnected Pore

As can be seen in Figure 3-4 morphological filtering can be quite effective at closing gaps at
places where no gap should occur. It should be evident to the reader that the first image is
a bad scan of the word “certain”, with the letters “c”, “e”, and actually consisting of sev-
eral disconnected regions from an image processing viewpoint. Segmenting the image into 7
regions (8 if one counts the dot over the letter i) is easy for humans, as cognitive processes in
the brain closes the evident gaps automatically and groups them into separate, understandable
letters. For a computer, however, explicit processing is needed, and our cognitive process can
be simulated by the morphological closing operation, consisting of one dilation operation fol-
lowed by one erosion operation [13]. Most would agree that the resulting image is extremely
close to the brain’s actual impression of the first image. It should be mentioned that morpho-
logical filtering also can be used in the opposite situation, that is, introducing gaps where two
separate regions are connected which should be disconnected.

1“1
r

In relating morphological filtering to the present work, Holmstad [14] clearly shows that pore
interconnection is a serious challange in surface pore analysis: “Except for high density paper
grades, most of the pores in paper are interconnected” [14]. In the current context gaps (or
missing gaps) will arise if some sort of thresholding is used as a first step in pore segmentation.
For instance, gaps may arise in those areas where the threshold value used is set too low, and
gaps may be missing in those areas where the threshold value is set too high. To illustrate
this, a small region has been zoomed into in Figure 3-5. This region is interesting because it
seems to a user that it contains a single pore, when in fact it is treated as two separate pores
because of the disconnection that arises as an artifact of thresholding. That they are in fact
two separate pores is evident after Delaunay Triangulation, which is described in Chapter 4.6.3
and the related Figure 4-16. Applying the morphological closing operation to this region, as
in the OCR example above, solves this problem elegantly, though it could be argued that the
new white “hole” in the middle of the segmented pore should filled after filtering (analogous
to Figure 4-15), for simplification purposes.

18

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

3.6.4 Median Filtering

Median filtering is an alternative which is actually quite closely related to area thresholding
outlined below in Chapter 3.7.3. Medjian filter is most famous for removing so-called “salt and
pepper” noise from images with minimal distorsion in the replaced areas if a reasonable mask
size is used.

For the present work, median filtering was not used, instead corresponding results were ob-
tained later in the process with the area thresholding technique.

3.7 Segmentation Subphase

The Segmentation subphase was not originally included in any options provided by the Sur-
fChar]J plugin (Chapter 2.5) for Image]. In general, there has been little emphasis so far in de-
veloping options for segmentation. Therefore it is interesting to explore the available options
in the present work.

It is of importance to note that the following sections are intended to describe complementary
techniques. As is known from most aspects of automatic image processing, most problems in
the image processing domain do not have one single “correct” solution. This is also for the
most part correct for the pore segmentation aspect of surface analysis. However in the present
context of pores in paper one can point to more guidelines for “correct” segmentation than for
some other problems. That is, since a goal of this segmentation is to identify problems and
properties at a macro level with micro level LLP images, it is of large importance to restrict
the segmentation effort to those objects which cause differing properties at the macro level. A
simple example of this is the measured surface area of a pore — regardless of the shape and
form of the pore it will probably be insignificant in the printing process if its surface area is
significantly less than the surface are covered by one ink dot at the given dot density for this
printing process.

3.7.1 Simple Thresholding

The first option is to use simple thresholding. In this case simple thresholding consists simply
of input of a threshold value in microns, outputting a binary image where every pixel with
a pixel value below the threshold is set to zero and every pixel with a pixel value above the
threshold is set to one.

This approach is simple and gives quick results but is not robust against noise. Therefore other
techniques need to be combined with simple thresholding to yield usable results.

3.7.2 Advanced Thresholding
There are several options when it comes to more advanced forms of thresholding. The first re-

finement that comes to mind would be to use adaptive thresholding as described in Gonzalez
and Woods [13]. However for several reasons this is not of much interest in the present context.

19

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

First, a short discussion. One goal of using adaptive thresholding as opposed to simple/global
thresholding is that often, many image attributes are unknown and cause trouble when thresh-
olding at a single level globally. These attributes are for instance lighting, orientation in the
depth plane, tilt, and any other causes of local variations in the image.

The main reason why adaptive thresholding is not so interesting in the present context is the
fact that a modular system is being described, where all the attributes mentioned above should
already be normalized through use of the SurfChar] plugin for Image]. More specifically, the
two most important attributes needing normalization are tilt and measurement scale. Tilt is
corrected by use of the “Level surface” option (Chapter 3.5.1) in SurfChar]. Measurement scale
is stored inside the 32-bit TIFF image itself, so that all image operation parameters can be speci-
tied in microns with no further considerations about the ratio of pixels/pixel values to microns.

One extension of adaptive thresholding which could be interesting, however, would be to com-
bine morphological operations (as discussed in Chapter 3.6.3) with the thresholding process
itself. An idea for future work would be to do this in form of a feedback algorithm. In such
an algorithm, a local thresholding would first be performed. Second, the number of regions
together with their surface areas and shape would be measured and assigned some weight
defined by an appropriate weighting function. Third, one or more morphological closing oper-
ations (Figure 3-4) as well as one or more morphological opening operations would be applied,
whereupon the surface areas are reevaluated. Here, shape data about pores obtained previ-
ously would be of interest for this reevaluation. If it is clear that two (or more) regions that have
become connected after closing really only represent one pore, these regions remain connected.
If it is clear that one region that has become disconnected after opening really represents two
(or more) pores, this region remains disconnected. Regions not significantly affected by the
morphological filtering remain untouched.

3.7.3 Area Thresholding

Area thresholding is an approach orthogonal to the thresholding methods outlined above. This
type of thresholding is for the present purposes meant to be applied to binary images only.
The binary image may be obtained through a thresholding as outlined above, or by other ap-
proaches that may be explored in future work.

Area thresholding is experimented with in the present work, with results discussed in Chap-
ter 4.1, in relation to Figure 4-14.

3.8 Modeling Phase

In an ideal system, hopefully, the main image resulting from the complete Image Processing
phase is a largely simplified image which is easy to process further. The format experienced
most with in the present work is a binary (black-and-white) segmented image, with pore areas
colored black and non-pore areas colored white. However, it should be noted that this is only
one of many possible result images which could be used for future systems. It could also be
useful to return several result images from the Image Processing phase, each with its own
characteristics relevant for e.g. different types of measurements and other further processing

20

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

in the system. For instance, a segmented binary image is useful when measuring objectively
the simple 2D shape of pores, as well as distances and other types of relationships between two
or more pores. However, segmented binary images contain little information on the 3D pore
shape of individual pores. For analysis of 3D pore shape on can combine the original (leveled
and error corrected) image with the binary segmented image (used as a mask). This could be
a useful option, returning one pore image for each interesting region in the binary segmented
image.

It should be mentioned that the Modeling phase is thought of as an optional preprocessing
stage performed prior to the Measurement phase, returning some model built from the raw
results from the Image Processing phase. The only modeling component included thus far
is Delaunay Triangulation, but other model-building components could be useful in future
systems.

3.8.1 Delaunay Triangulation

The theory behind, as well as applications of Delaunay triangulation and possible implemen-
tation considerations are discussed in Chapter 4.6.3.

3.9 Measurement Phase

As already mentioned in relation to the Modeling phase (Chapter 3.8), it might be useful to
return multiple result images from the Image Processing phase. In addition to these result
images, the measurement phase also has the option of including results derived from the Mod-
eling phase, for instance Delaunay triangulation data.

3.9.1 Pore Distance Calculation

An example of pore distance calculation retrieved directly from the Delaunay triangulation is
given in Figure 4-20. A problem with this approach is that too many edges are included by
default. Methods of reducing the number of edges are explored and described in Chapter 4.6.4
which includes Convex hull and Minimum spanning tree calculation as two starting points.

3.9.2 Quality Parameter Calculation

It is thought that in future work it may be possible to combine data from the Image Processing
phase, the Measurement phase as well as pore distribution data in order to arrive at suitable
quality parameters. One example of such a parameter could be statistical properties of the pore
distance distribution. Evaluating possible quality parameters is, however, not a goal of the
present work and so is only touched on briefly.

21

Master’s Thesis Spring 2005 CHAPTER 3. TECHNIQUES

3.10 Quality Assesment Phase

The goal of the Quality Assesment phase is to arrive at a suitable estimate of missing dots in the
paper sample, both the quantity of missing dots and their layout. The quality assesment phase
is peripheral to the present work and so is only touched on briefly. It is, however, thought that
calculation of standard surface descriptors in any case would be useful in arriving at the final
missing dot estimate.

3.10.1 Surface Descriptors Calculation

Here the usual surface descriptors used in surface analysis should be calculated. These surface
descriptors are described in the ISO 4287/2000 standard as mathematical line profile expres-
sions, and digital approximations of these are presented in Chinga, Gregersen, and Dougherty
[10]. The digital approximations are implemented as routines in the SurfChar] plugin for Im-
age] (Chapter 2.5). In order, the surface descriptions are

e Ra: Arithmetical mean deviation,
¢ Rg: Root mean squeare deviation
e Rsk: Skewness,

o Rku: Kurtosis,

Ro: Largest depth measurement,

Rp: Largest height measurement,

Rt: Rv + Rp, and

e Rz: <= Rt (same as Rt but within a restricted sampling length).

Further details as well as a graphical presentation of the descriptors is given in Chinga, Gregersen,
and Dougherty [10]. As well as the standardized descriptors given here, further research could
well come up with new descriptors relating more closely to the missing dot problem.

3.10.2 Missing Dot Estimation

It is thought that the ultimate stage of missing dot estimation would take into account both the
results calculated in the Measurement phase and more general measurements as derived from
the surface descriptors. Finding a suitable combination of the two that can give a reasonable
estimate is left as a basis for further research.

22

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Chapter 4

Implementation

4.1 Area Thresholder

The concept of area thresholding was first introduced in Chapter 3.7.3. A plugin for Image]
was developed that attempts to perform area thresholding in a way useful to paper surface
segmentation. The interface for the plugin is structured in the same way as SurfChar], with
options becoming available when “parent” options are checked. The interface is shown in
Figure 4-1.

Using the interface, an area threshold value is first given. The value is given in pixels, so with
the example value of 500 pixels all areas containing more than 500 (4-)connected pixels remain
black in the output images, areas containing less than 500 are changed to the white background
color. Using the plugin with only this option gives a binary image image of the type shown in
Figure 4-14 when using the binary image shown in Figure 4-13 as input (the figures are part of
a later example).

Two other main options are given in the interface. If the first checkbox is checked new im-
ages are generated for every region remaining in the image after area thresholding. These new
images are generated by simply copying subregions of the binary input image. Though, only
the current region is included in each output image; other regions that may be present in the
subregion are not included in the new image generated from the subregion.

The second checkbox may be of more interest for pore analysis work. Before checking this
option the original, 32-bit image should be opened in Image]. When this option is checked a
dropdown menu appears containing the currently open images in Image]J. From this dropdown
menu the original image must be selected. If the plugin is now run, new images are generated
for every region as before, however, 32-bit binary data backtranslated from the original image
is now copied into the regions (instead of simply black and white binary data). In paper surface
terms, this means each pore gets its own image containing only this pore (and void area around
it).

The three remaining textfields are options for the second checkbox. “Filler value” chooses
which value should be assigned to void areas. The two “Brightness range” fields are analogous
to the options provided by the “Image->Adjust->Brightness/Contrast...” command in Image].

23

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

They select which brightness range should be used for the new, generated images. These are
only for practical display and comparison purposes; they do not change the generated images
themselves. The reason for including this option, however, is that it would be a very tedious
job to set the values manually for every generated image.

& AreaThresholder @ & AreaThresholder rz\

Threshold {in pixels) Threshold {in pixels)
[500] [500
[Generate a new hinary image for each region IV Generate a new hinary image far each region

[~ Generate a new image for each region with data from the original image Iv Generate a new image for each region with data from the original image

Filler value

[-40
Brightness range (low):
[-7.0
Brightness range thigh)
[40

Ok Cancel Ok Cancel

Figure 4-1: AreaThresholder Interface, with no Options Enabled and all Options Enabled

24

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

LIl Ha R

1]

~

=T

Far=]

172.00x92.00 prm (4

&2

344.00x72.00 pm (36

File Edit Image Process Anahze Plugins Window Help

o e N e BN A R NN
4004.00x4004.00 prm (1001x1001); 8-bit; 478K

286.00%136.00 pm (

Figure 4-2: Screenshot After Filtering with AreaThresholder

An example of the region image generation functionality of the AreaThresholder plugin is
given in Figure 4-2. Here the Image]J toolbar, the input binary image, and the original 32-bit
image are present in the upper left corner. Scattered throughout the screen are the generated
region images, both binary versions and backtranslated 32-bit versions. In the upper right cor-
ner the largest region image has been plotted to a 3D surface with Image]’s built-in Surface Plot

25

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

command. A filler value of -4.0 micron for the void area was used, since this was the original
height thresholding value used for the example image taken from Figure 4-14.

4.2 Fractal Dimension

Fractal dimension by box counting [25] was implemented as a plugin called FractalDimension.
This plugin takes a binary image as input, performs box counting with increasing box size 1x1,
2x2, 4x4, 8x8 etc, and shows the result in a text window. If one takes the log on each column
and calculates the regression line, the Fractal dimension of that image is found.

An example run of the FractalDimension plugin is shown in Figure 4-3. The binary region
image which was surface plotted in Figure 4-2 is used as input, padded to 256x256 pixels since
the FractalDimension plugin is designed for images with resolution an integer multiple of a
power of two. The linear regression of log values needed for fractal dimension calculation was
for this example calculated with a TI-83 pocket calculator, yielding a Fractal dimension of 1.53.
A further analysis of this number is not the topic of the present work, but sufficient to say, a
Fractal dimension of 1.53 might indicate an image with structure “slightly less complex than a
2D (2.0D) image of average complexity”.

= segmentedregion_binary... [ZJ@| g|

1024.00%1024.00 prn (256x256), 8-biT, GAK

= FractalDimension Result E@E]

File Eciit

Results from FractalDimension box counting
hoxsize: 1 count: 5539

hoxsize: 2 count: 1562

hoxsize: 4 count: 443

hoxsize: 8 count: 128

boxsize: 16 count: 39

hoxsize: 32 count: 14

hoxsize: 64 count: 7

hoxsize: 128 count: 4 —]

q []

Figure 4-3: Fractal Dimension by Box Counting

4.3 Rolling Ball

The use of a Rolling Ball algorithm at PFI in conjunction with paper surface structure character-
ization was first presented in Chinga’s paper [7]. In the following sections the method and its
particular properties, advantages, and disadvantages are presented and related to the present
work.

26

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

4.3.1 Current Status

In the beginning of the project work the “Measure Pore Volume” feature of the SurfCharJ plu-
gin for Image] (Chapter 2.5) was used as a starting point for further work on pore volume
measurement. Some time was spent at the beginning of the project for studying the SurfChar]
plugin, both the parts related to the measurement of pore volume by the Rolling Ball algorithm
and also the remaining parts. This was done partly to gain some understanding of surface
characterization, and partly to learn about the underlying structure of the SurfChar] plugin,
how it is designed and how its modules are connected together. In addition it was of interest
to learn more about general programming using the Image] framework, as the author had no
previous experience with this particular image processing package.

It was found early on that the SurfChar] is somewhat divided into separate parts implemented
as separate classes:

SurfChar]_1d (main plugin class)

FacetOrientation

SurfaceFiltering

SurfaceMath

SurfacePeakValley

SurfacePoreVolume

SurfaceRoughness

SurfaceRoughnessGradients

The class of most interest to the present work is the SurfacePoreVolume class, which is the
enabling class for pore volume measurement in the SurfChar] plugin.

Initial analysis was conducted using the “Measure Pore Volume”, that is, the SurfacePoreV-
olume class, in order to gain an understanding of the results of surface analysis through the
use of the Rolling Ball algorithm. To aid in this analysis the rolling ball filtering parts were
separated from the SurfChar] code into a “RollingBallOriginal” plugin which calls the APT of
SurfChar] for simpler use during experimentation as well as accurate progress monitoring.

Some problems with the SurfacePoreVolume were observed, however. It was therefore decided
to write a new Rolling Ball plugin from scratch in a new implementation separate from the
SurfChar] framework. One important aspect with the separate implementation would be the
possibility of displaying intermediate results from the analysis. This would enable a thorough
analysis of the inner workings of the algorithm and point out possible problem areas of using
a Rolling Ball analysis for general surface characterization.

One of the problems was related to the accuracy of the analysis. It was found that the method
for applying the Rolling Ball filter was not rotation independent. This was easy to verify, as a
simple application of the “Measure Pore Volume” option in SurfChar] to an image, and then
to the same image rotated 90 degrees (rotating the resulting filtered image by -90 degrees, of
course), yielded two different result images. Since there was no apparent reason for this in-
herent in the filtering algorithm, and since in general it is a good property of a filter to be

27

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

as transformation independent as possible, the new implementation in the “RollingBallNew”
plugin remedies this by giving bit-for-bit identical results irrespective of initial orientation.

4.3.2 Improved Rolling Ball

As mentioned in Chapter 4.3.1, it was decided to write a new plugin from scratch, independent
of the existing SurfCharJ plugin which the author had not taken part in the development of.

The new plugin for Surface Characterization was simply implemented as a completely separate
plugin using the general Image] framework

The results from running the new Rolling Ball plugin, “RollingBallNew”, is shown in Figures 4-
4 through 4-8. The plugin has been run with two different parameters. The first run was with
radius 20 microns, the second run was with radius 252 microns. The first run completed in
reasonable time for interactive use, that is, within a minute on a 2.0 GHz P4. The second run
needed much more time due to the time complexity of the filtering. It finished in about 15
minutes. However, it is clear both from the theory described in Chapter 3.6.1 and from the
result images themselves that a large rolling ball is neccessary for useful analysis. This will be
discussed next.

The first image (Figure 4-4) shows what is basically a copy of the original LLP input image with
the surface leveled and error areas corrected. The difference between this and the original, Fig-
ure 4-12, is only that some edge pixels have been chopped off. The copy is provided as output
from the “RollingBallNew” plugin for easier pixel-by-pixel comparison with the complete, fil-
tered image. The radius of the rolling ball defines how much is chopped off at each edge, and
the chopping is neccessary because the rolling ball image relies on the use of neighboring pixels
up to the distance equal to its radius. When the rolling ball is convolved close to the edge there
will be no neighboring pixels at a distance this far away. Padding the image could circumvent
this, but as that would yield only approximate, not completely accurate values it was chosen
not to pad the image along the edges. It should also be noted that the rolling ball mask as
shown in Figure 4-5 is not to scale with the other images as the image is zoomed in this figure.

The second image (Figure 4-6) shows what was at first thought of as an uninteresting tempo-
rary data structure internal to the algorithm, but later turned out to be quite interesting when
analyzing the resulting filtered image. The image shows the rolling ball mask value used for
each pixel in the filtered image. That is, lower (more blue) values in this image represents pix-
els where the resulting pixel stored at this location was taken from a close neighboring pixel
compared to those pixels with higher (more white) values. It is therefore the case that those
areas with deep (detected) pores contain more higher-valued pixels, since the rolling ball in
those positions only touches positions far away from the pixel under consideration.

The third image (Figure 4-7) shows the resulting filtered image, and the fourth image (Figure 4-
8) shows the output image. The output image is calculated by subtracting the filtered image
from the original, shown in Figure 4-4. Ideally the output image should only contain detected
pores. As is evident from the left (rolling ball radius 20 micron) image, few pores are detected
with a low radius rolling ball. The right image, however, does quite well in comparison. Most
of the uninteresting, non-pore areas are now quite smooth, and pores remain quite similar to
their appearance in the original image (Figure 4-4).

28

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-4: Original Image, Cropped to Equal Size as Rolling Ball Filtered Image (radius=20
and 252 micron)

Figure 4-5: Rolling Ball Mask (radius=20 and 252 micron)

29

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

oo ; Pty s
BT U W NPT e SN

Figure 4-7: Rolling Ball Filtered (Smoothed) Image (radius=20 and 252 micron)

30

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-8: Output Image after Subtracting the Smoothed Image from the Original Image (ra-
dius=20 and 252 micron)

4.4 Distance Transform

One plausible alternative to the use of a rolling sphere algorithm (which is of large, O(N? x
M?) complexity) is the use of Distance transform. The concept of Distance transform was first
introduced in Chapter 3.6.2.

One drawback connected to the use of Distance transform in the current context is that the use
of Distance transform usually requires a discretized image. In the current context a Distance
transform calculation can therefore only be performed after some preprocessing step has been
applied to the original image / data set.

For the present diploma work, the most obvious solution was selected. That is, the image
is disretized by converting the data set to a volumetric representation. One can look at this
conversion as “slicing” the image into some number of aligned slices. Since the pixel value in
the original data set is only related to height along the Z-axis, the resulting volumetric data
representation contains several times as many voxels as there were pixels in the original image.
The image “slices” themselves, however, are simply binary images (for convenience stored as
8-bit images containing only zero- and 255-valued pixels).

A first attempt at “slicing” the image in a meaningful way before running a distance transform
algorithm was done with a new “DiscretizeZValues” plugin. It was clear that some integer ap-
proximation routine would be needed in order to yield data that could be feeded into a distance
transform algorithm. This was concluded from the observations made by Borgefors [2]: “Us-
ing real-valued local distances is generally not computationally desirable”. This first approach
simply slices the image using as dimension the unit most applicable for the example image,
microns. For some LLP images (those with 1 micron granularity in the x and y directions) this
will give entirely cubic voxels, however for the present image (with 4 micron granularity in

31

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

the x and y directions) the voxels will be slightly elongated in the x and y directions compared
with the z direction.

The results of the first attempt is given in Figure 4-9, obtained by providing the image from
Figure 4-12 as input to the “DiscretizeZValues” plugin. Shown first is the slice at pixel value -4.0
microns, with each image in sequence showing the slice at one micron further up in the image
stack, ending at pixel value +7.0 microns. In these binary images, the white areas correspond
to areas with material, and the black areas correspond to empty areas. Observing the images,
it is clear that the areas first to gain black coverage in the sequence are the pores (as well as
some smaller, noisy areas). It is therefore clear that these are the areas that will be assigned the
largest value after running the distance transform, when looking at the top slice (Figure 4-10).
The end result in Figure 4-10 was obtained by providing the sliced, binary image as input to
the new 3D Distance transform plugin, “DistanceTransform3D”.

32

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

o

Figure 4-9: Image Sequence Showing all 12 Slices after running DiscretizeZValue

33

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-10: Distance Transform Results, Top Slice

4.5 Image Filtering Tutorial

In this section a practical application of the developed plugins is presented. Therefore, an
explanation of how the images shown in Figures 4-11 through 4-16 was obtained is given next.

Figure 4-11: Image Acquired by Laser Profilometry

34

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-13: Image After Thresholding

35

Master’s Thesis Spring 2005

CHAPTER 4. IMPLEMENTATION

%

Figure 4-14: Image after Thresholding and Area Thresholding

E

Figure 4-15: Image after Thresholding, Area Thresholding, and Filling of Holes

36

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-16: Image after Delaunay Triangulation

First, Figure 4-11. This is the raw image retrieved by the use of Lehrman Laser Profilometry
(LLP) [7]. The image is stored in the, quite uncommon, 32-bit floating point version of the
TIFF format. Thankfully, Image] is one of the few image processing applications which in-
clude built-in support for this and other floating-point formats which is very useful for the
present purposes. The use of a flointing-point format implies that a large range of values can
be represented in this image format, and as such, the values at every (z,y) position in the
image represents the measured LLP value directly. For instance, a value of —1.53 at position
(x,y) = (992,372) indicates that the measured LLP value at (992, 372) was in fact —1.53 mi-
crons, so the values in the images are in fact microns and can be used directly as physical values
during processing in Image]. As mentioned in Chapter 3.3, LLP is able to register pixel values
with an accuracy of about 1/100 of a micron, and as such, a floating point image representation
is able to represent this sub-micron step size fairly well..

After importing the 32-bit TIFF image into Image], the image was quite gray and uniform. In or-
der to better visualize the LLP image, the “Image->Adjust->Brightness/Contrast...” command
in Image] was used to manually set the min and max brightness values to -7.0 and +4.0 microns,
respectively. The reason for choosing the values -7.0 and +4.0 were explained in Chapter 3.5.2.
Then, in order to increase contrast between regions, the “Image/Lookup Tables” command
was used to set the color map to “Fire” which is a color map with good contrast from low to
high values (black through purple, red, orange, yellow to white).

Then, Figure 4-12. This is the same LLP image after some basic filtering with the SurfChar]
plugin (Chapter 2.5).

e “Level surface”
e “Correct error areas” (threshold for error correction: -7.0 and +4.0 microns)

The first filter, “Level surface”, simply corrects any eventual tilting of the paper sample relative
to the profilometer. The filter is further discussed in Chapter 3.5.1. In this particular example, it

37

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

is evident in Figure 4-11 that the sample was tilted slightly downwards in the upper left corner,
and correspondingly upwards in the lower right corner, since the resulting image is generally
darker in the upper left corner and generally lighter in the lower right corner. After filtering, it
is evident in Figure 4-12 that the surface has been leveled, and the upper left and lower right
corners are no longer different in height compared with the remaining parts of the surface.

The second filter, “Correct error areas”, takes care of some special cases in the image where
LLP measurements are completely in error. The filter is further discussed in Chapter 3.5.2.
Here, the threshold for error correction is set to -7.0 and +4.0 microns, which implies that any
measurement below or above these thresholds should be replaced by a filtered, smoothed av-
erage of any neighboring measurements (pixel values in the image) which are inside the given
threshold range.

A comprehensive discussion of the physical characteristics of LLP imaging that generates these
error measurements is not in place here, as the topic of microscopy and image acquisition is not
part of the present work. However, suffice to say, the error measurements are most common
along fiber boundaries, and occur because of sudden change in angle between two measure-
ment positions in the sample. A further and more detailed description of the physical proper-
ties of LLP imaging, as well as a more detailed discussion of the “Correct error areas” filter can
be found in Chinga’s paper on gloss assessment [7].

Then, the segmentation. This is shown in Figures 4-13 through 4-15. These figures show a first
attempt at generating a segmentation of the image. The aim in this case is refering to generation
of a reasonable pore segmentation. The segmentation itself is not too complicated, in order to
quickly yield a sample image for further processing.

First, the image was thresholded through the use of a simple plugin written from scratch called
“Thresholder”. This plugin simply thresholds the 32-bit floating point image yielding a new,
binary black-and-white image stored as an 8-bit image (for convenience) with only zero- and
255- valued pixels. A dialog box takes the threshold value as input. A tentative goal was in this
case to generate a segmentation which included all pores as continous regions. The inclusion
of all pore areas was the most important factor, as a lot of the noise could be removed later. In
this case a reasonable value seemed to be about -4.0 microns, determined after some trial and
error. This seemed to yield a good compromise between good segmentation and noise level.
The segmentation with a threshold value of -4.0 microns is shown in Figure 4-13.

Second, a segmented image had now been generated. However, this segmented image had
much noise which led to the need for more filtering operations. This was already mentioned
above and was adressed partly by applying a plugin written from scratch called “AreaThresh-
older”. This plugin takes as input a binary image (for convenience, an 8-bit image with only
zero and 255 values), and thresholds regions based on their size. The end result is somewhat
similar to median filtering, however the regions which end up being part of the result image
are guaranteed to be unaltered by the filtering operation, which may not be guaranteed after
the use of a median filter. The area thresholder relies on use of a flood fill algorithm in order to
count the number of pixels in regions. There are two passes: One which decides which areas to
discard, and another which actually discards those areas, setting them to 255 (white). The re-
sult after area thresholding with a value of 500 pixels (which equals 8000 microns? in the given
image scale) is shown in Figure 4-14. A further discussion of the “AreaThresholder” plugin
was presented in Chapter 4.1.

38

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Third, now with the pores properly segmented, in order to give a clearer shape to pores while
retining their outer boundary, the image is filtered with the “Process->Binary->Fill Holes” com-
mand in Image], which removes holes from the already-segmented pores. It should be men-
tioned that most of these holes were actually much smaller in area than the parameter set for
area thresholding (500 pixels = 8000 microns?), however they were of the “opposite” type of
the regions removed during area thresholding and were thus not removed during area thresh-
olding. The result after filling of holes is shown in Figure 4-15.

Then, Figure 4-16. Here a Delaunay Triangulation (Chapter 3.8.1) of the pores has been overlaid
on the image. Actually, it is not the pores themselves that have been triangulated, rather it is
the point set consisting of the centers of mass of all 13 pores present in the image. This point
set was generated by the use of the new “CenterOfMass” plugin. The point set may or may not
be an accurate representation of the centerpoints of the pores, however it could be argued that
it is accurate enough for the present purpose, which is to obtain a distance measure between
neighboring pores. There are several disadvantages with using center of mass as the center
definition for pores. For instance, some pores may be elongated, and so defining one single
center point for the whole pore might be too crude an estimate. More importantly regarding
center of mass, if a pore has a curved form the center of mass may well be at a point in the
surface outside of the pore itself. This lies in the nature of the center of mass definition and so
may or may not be acceptible for the purpose of pore center calculation depending on the task
at hand.

4.6 Pore Neighborhood

This section discusses concepts related to the Modeling phase as presented in Chapter 3.8. It is
mostly related to relationships between pores, and focuses on neighbors and neighborhoods of
pores.

4.6.1 Neighbor

The first challenge is to define exactly which pores are neighbors. If uses the most pessimistic
approach as a starting point, all other pores in an image are potentially neighboring pores. In
the example image, shown in Figure 4-14, we observe that the successful segmentation of pores
in the end yielded 12 segmented pores.

Note that in the upper right there seems to be a large single pore which has been segmented out,
when in fact this pore has been segmented into 2 separate pores. In fact, the segmentation per-
formed in that example does not include any provision for connecting nearby but disconnected
segmented regions. It would from the example given here seem to be of great relevance if such
a technique is included as part of the segmentation process, perhaps as an implementation of a
morphological filtering.

39

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

4.6.2 Pore Representation

One problem that arises when trying to construct a relationship between pores (or more specifi-
cally, defining which pores are neighbors with which other pores), is the problem of representing
segmented pores. One could use distance from the outer bound of a segmented pore, but in
many cases this is not neccessary and unnecessarily complicates further processing.

The approach used in the present work is to reduce every region representing a segmented
pore into a single point. The advantage of this approach is that the resulting image/data set is
simplified as much as possible while still retaining the general structure of the distance relation-
ships in the data set. Also, the analysis of this data set can now be done with known methods
from computational geometry instead of ad hoc approaches. Therefore, in the current attempt
at identifying potential neighbors for each pore, it seems as if a conversion from a segmented,
binary image to a network graph representation is justified. An introduction to (weighted)
network graphs is presented in the appendix of Cormen, Leiserson, and Rivest [11]. The first
part of the conversion is done by the use of the new “CenterOfMass” plugin discussed briefly
towards the end of Chapter 4.5, the second part of the conversion is handled by the Delaunay
triangulation, described next.

4.6.3 Delaunay Triangulation

Treating the neighborhood analysis as a work in computational geometry leads to a wealth of
possibilities for analysis.

The method chosen for generating a network graph representation in the present work is the
method of Delaunay triangulation. According to the MATLAB documentation [15], Delaunay
triangulation can be defined as follows:

“Given a set of data points, the Delaunay triangulation is a set of lines connecting each point to its nat-
ural neighbors. The Delaunay triangulation is related to the Voronoi diagram — the circle circumscribed
about a Delaunay triangle has its center at the vertex of a Voronoi polygon.”

Delaunay triangulation (and its dual, Voronoi diagram) is useful in areas as diverse as theo-
retical computational geometry, visualization problems, cartography, simulation of the growth
of crystals, metallurgy, and in this case, assesment of neighborhood in surface topography
analysis. Of course, surface topography analysis in itself is a varied topic — this was already
mentioned briefly in Chapter 2.2.

The algorithm used for Delaunay triangulation in the present project is, as mentioned, sub-
optimal. However, it is still the algorithm of choice here as it is simple to understand and
implement, while being more than fast enough for the present purposes.

DELAUNAY_TRIANGULATION:
for i=0 to pointlist_length
for j=i+1 to pointlist_length
for k=j+1 to pointlist_length
for a=0 to pointlist_length
if point a is not inside the circle passing

40

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

through points i, j,k for any i, j,k not equal to a
add the triangle defined by points i, j,k

Also, an even more suboptimal but nevertheless simple algorithm was used for Voronoi dia-
gram generation.

VORONOI_DIAGRAM:
for a=0 to pointlist_length
pick color ¢ at random
for j=0 to image_height
for i=0 to image_width
b = pixel at (i, 3j)
if b isn’t already drawn OR a is closer than b’s
currently assigned closest point
assign a as b’s closest point
draw pixel b with color c¢

Figure 4-17: Set of Dots before and after Delaunay Triangulation

41

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-18: Set of Dots after Delaunay Triangulation (also with Voronoi Diagram)

ol

Figure 4-19: Triangulation at Macro Scale [4]

42

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Pore Distance

5000

4500 -
4000
3500 -
3000 -

2500 - O Pore Distance

2000

1500 4
1000 4

DDDDUUUHHHHHHHHHHH

123456 7 8 91011121314151617 18 1920 21 22 23 24 25 26 27

50

S

o

Figure 4-20: Pore Distances Given by the Delaunay Triangulation (in microns)

An example of a Delaunay triangulation and its corresponding Voronoi diagram of a simple
data set is shown in Figures 4-17 and 4-18. If a large paper surface sample is Delaunay triangu-
lated in the future, it is thought that the result might look similar to the macro scale triangula-
tion data presented in Figure 4-19. It should be noted that Figure 4-19 is an example image from
a different domain, not a real paper surface triangulation. The LLP images used in the present
work did not lend themselves to macro scale triangulations since the surface area shown in each
image is not very large. However, in the future other measurement methods could be used as
a basis for macro scale triangulation. Alternatively, several overlapping LLP images could be
combined before processing and triangulation, for instance by some mosaic/”stitching” tech-
nique as described in Forsyth and Ponce [12], and Szeliski and Shum [22, 23] and exemplified
in Figure 4-21 (courtesy of The Applied Computer Science Group at Universitdt Bielefeld [16]).

Also, the measured pore neighbor distances in microns are shown in Figure 4-20. It is important
to note that these distances simply reflect edge lengths in the Delaunay triangulation — some
edges may be highly redundant. This will be discussed in the following sections.

43

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

Figure 4-21: Mosaicing Example [16]

Lastly, the interface of the Triangulation plugin is shown in Figure 4-22. As can be seen in the
window, the plugin also includes options for two other types of calculations in addition to the
Delaunay triangulation and Voronoi diagram. These options are explained in the next sections.

& Triangulation @

& Triangulation

[v Delaunay Triangulation
¥ Minirnum spanning free
Iv Convex hull

I Voronoi Diagram ¥ Voronoi Diagram

oKk | Ccancel 0KY cancel

Figure 4-22: Triangulation Interface, with no Options Enabled and all Options Enabled

4.6.4 Removing Edges after Delaunay Triangulation

Even after Delaunay triangulation of the example LLP paper surface image it is evident from
Figure 4-16 that further processing is needed in identifying relevant neighbors. Some of the
edges do indeed represent relevant neighbors, however some do obviously not to a human
observer.

The question is then: Which edges should be removed after triangulation? In order to answer
this question it is neccessary to analyze properties of the different types of generated edges, and
more specifically, determine which criteria should be met in order for the current edge under
consideration to be removed safely.

Vertex Degree and Minimum Spanning Tree
One attribute of the Delaunay triangulation of particular note is the degree of the vertices (that

is, pores) after triangulation. The degree of each vertex is simply the number of neighbors
assigned to the corresponding pore. In a Delaunay triangulation each vertex has degree of at

44

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

least two, since every vertex is a corner point of at least one triangle. This can cause problems
if, for example, vertices/pores are close to colinear.

Some elementry graph theory can be helpful in finding a solution to the neighbor definition
problem. One technique that can be useful is the minimum spanning tree as an ultimate form
of reduction. An example minimum spanning tree superimposed on the current triangulation
example (Figure 4-16) is shown in Figure 4-23. This spanning tree was generated by running the
new “Triangulation” plugin with the minimum spanning tree calculation option checked. The
algorithm used for calculating the minimum spanning tree is Prim’s algorithm. Pseudocode
for this algorithm is presented in Cormen, Leiserson, and Rivest [11].

& Triangulation Result FEX
File Edit
Resultfrom Triangulation:
& 0S_01r_leveled:surface-and-corrected-error-areas-minus7-4_threshold-minus4_areathresholder-500_fillholes-centerofmass: Triangulation) Length of edges in Delaunay triangulation
TOTI00T s, oo 76K e L
79.75587 752636166
90.82400563727631
J J 98.03060746521976
127.534309100353
129.49517365523704
\ 130.61393493804556
148 60686380607 538
154 46682491719702
169.00887550658396
174.0028735394807
181.34221791960034
187.00253805471644
218387270691 31113
286.0367 103306076
338.16120416156554
341.3151036798694
340.82840257232084
362.33137264380057
417 42664026149555
v v 4250
496.1058354827123
502.3554518465984
’ §11.53103522660285
539.5979607211493
o5l £23.263559057743
1141 9032077392615
o Number of edges in Delaunay triangulation: 27
Average edge length in Delaunay triangulation: 307.7045068183335
l Length of edges in Minimum Spanning Tree
F7.10382610480484
79.75587 752636166
90.82400563727631
98.03060746521976
127.534309100353
129.49517365523704
154 46682491719702
169.00887550658396
338.16120416156554
341.3151036798634
4250
Nurnber of edges in Minimum Spanning Tree: 11
Average edge length in Minimum Spanning Tree: 184, 608709796679 —f
4]

Figure 4-23: Minimum Spanning Tree Example (Included Edges Marked with Arrows), with
Output

Convex Hull

One of the natural places to start when considering redundant edges is to consider the convex
hull of the pore network. As mentioned towards the end of Chapter 4.6.3 (in relation to Fig-
ure 4-19), it would be interesting to use triangulation at a macro scale in the future, however,
this is not possible due to the small area coved by each of the present LLP images. The small-
ness of the LLP images also creates some problems when calculating a Delaunay triangulation
on these small patches by themselves. Most importantly, the convex hull is always created
when triangulating a patch (which may be part of some larger area). In the context of neigh-
borhood analysis this will often look like an “artificial” boundary that does not represent any
real neighbor relations. The reason why it is “artificial” is that this boundary would not have

45

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

been present in a triangulation of a larger surface area covering more than just the patch area,
since pores outside the patch area would then have been connected to the rest of the network.
It is evident that the convex hull (boundary) is usually not important when evaluating pore
distances and pore distance distributions. The convex hull has been marked out in Figure 4-
24. Here, it is clear to a human observer that all edges that are part of the convex hull can be
removed without removing any “real” neighbor relations.

The convex hull was generated by running the newly written “Triangulation” plugin with the
convex hull option checked. The algorithm used for calculating the convex hull is Graham’s
Scan algorithm. Pseudocode for this algorithm is presented in Cormen, Leiserson, and Rivest
[11].

£ 05_01r_leveled-surface-and-corrected-error-areas-minus7-4_threshold-minusd_areathresholder-500_fillholes-centerofmass: Triangulation [&]=]E3] i 3
0011001 pels, 01, 370K & Triangulation Result =163

File Ect

J L Resultfrom Triangulation

Length of edges in Delaunay triangulation
/ 77.10382610480404
|| |7aracer7sz6aeisn
/ | 90.82400563727631
/ 98.03060746521976
/ 127.534309109353
/ 120.40517365523704
/ 7 130,61393493804555
7 148 60656360607938

/ 154.46682481719702
\/ o 169.00887550658305
/ 174.0026735394807
/‘ 7 181.34221791960084
197.00253805471644
/ 7% 218.38727069131113
/ 286.0367108306076
330.161204161566554
/ / 341.3151036798694
/ 340.82840267232084
/ / 960.33137254360057
/ 417 420640267149565
/ 4250
/ /\ 496.1055354827123
/ 502.3554518465384
4 511.53103522660285
529.5079607211493
/ S 523.253550957743
/ 1151.9032077392615
/ g Number of edges in Delaunay fiangulation: 27
\/ 3 4verage edge length in Delaunay friangulation: 307 7045063133335
/ ¢ Length of edges in Gonvex Hull
/ / 77.10362610430494
154.46082491719702
74 417 42664026149555
4250
/ 511.53103522660285
/ : 1151.9032077302615
/y/4 Mumber af edges in Gonvex Hull: 6
/ / 4verage edge length in Convex Hull: 456, 2385800415603 =

2l »

Figure 4-24: Convex Hull Example (Included Edges Marked with Arrows), with Output

4.7 Measure Pore Volume

The last plugin written, called “MeasurePoreVolume” is useful after performing a segmenta-
tion with e.g. “AreaThresholder”. It takes as input a pore image, and asks for a threshold
plane in microns — the threshold plane can e.g. be equal to the pixel value threshold used. The
volume is calculated by first determining the voxel size in the 3D space of the surface, e.g. with
a pixel delta width and height of 4.0 micron and a pixel delta depth of 1.0 micron, the voxel
size is 16.0 micron®. The pore image is then traversed and summed up by using the voxel
size as the unit measurement, showing the result in a new window. An example is given in
Figure 4-25, and complete measurement of all pores from the screenshot of Figure 4-2 is given
in Table 4-1 (in order from left to right, then top to bottom, refering to the window layout in
the screenshot). A threshold plane value of -4.0 micron was used for the measurements, as the

46

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

pixel value threshold used for segmentation was -4.0 micron.

& Histogram of segmentedregion..... [=|[B][X]
300240 pixels, RGB; 260K

& segmentedregion_32.tif (200%)
664 00x280.00 prm (166x70); 32-hit grayscale; 44K

-6.941 2847
Count 11620 Min:-6.941
Mean:-4.777 Wax;-2.847
StdDev: 0.876 Wode: -4.006 (6094)
Bins: 256 Bin Width: 0.016

ﬂ o ﬂ Value: -5.294

Count: 29

Resultfrom
144441.38T6G01 272 pmit

4 »

Figure 4-25: Segmented Region, its Histogram, and Pore Volume Measurement, Threshold
Plane at -4.0 micron

Table 4-1: Pore Volume Measurements of Pores in Figure 4-2

Pore number Pore volume
1 144441 micron?
18612 micron?
16390 micron?
12798 micron?
14241 micron?
9654 micron?
3

3

3

3

3

3

26781 micron
58406 micron
13896 micron
11727 micron

9239 micron
75240 micron

CE 0N Ul WN

—_
N

47

Master’s Thesis Spring 2005 CHAPTER 4. IMPLEMENTATION

48

Master’s Thesis Spring 2005 CHAPTER 5. FURTHER RESEARCH

Chapter 5

Further Research

As is, the present work presents only a partially complete solution for paper quality and miss-
ing dot evaluation in the context of pore segmentation. Possible approaches have been pre-
sented as well as possible pointers as to how they can be best implemented and integrated
in a complete system. Some of the most noteworthy possible approaches for future work are
mentioned throughout both Chapter 3 and other places, and are summarized here:

Development of a fully automatic error area correction routine

Combination of several approaches for successful pore segmentation (instead of choosing
only one)

Adaptive thresholding combined with morphological operations in a feedback system

Using several types of images as input to the modeling phase, and building of several
new model-building components

Completion of graph reduction of the Delaunay triangulation in order to yield a plausi-
ble neighborhood graph, moving beyond the minimum spanning tree and convex hull
starting points

Calculation and evaluation of distributions related to pore neighbor distances

Further investigation of fractal dimension and similar shape measurements, also in three
dimensions

Developing components for the Measurement phase and the Quality Assesment phase

49

Master’s Thesis Spring 2005 CHAPTER 5. FURTHER RESEARCH

50

Master’s Thesis Spring 2005 CHAPTER 6. CONCLUSION

Chapter 6

Conclusion

Image analysis and image processing methods are becoming more and more useful to the pulp
and paper research community. In this thesis a small subtopic within the huge research field
of surface analysis was treated — the topic of pores in the paper surface, and segmentation
and analysis of single pores as well as clusters of pores. So far it has not been entirely clear
which knobs to turn in order to get a suitable segmentation, though simple methods have been
available to obtain preliminary results that could later be replaced by more novel approaches.

In the first part of this thesis a general framework of a paper quality assesment system using
automated image processing techniques was presented. The system would give a paper quality
measure derived from an estimation of the number of missing dots that would occur when
printing the paper. In line with the main topic of this thesis, only parts of the framework
relating to missing dots due to pores and pore distance distribution are considered for now.
Nevertheless, missing dots due to other factors such as fibers crossing could be included in
future refinements of the system.

The area achieving the most progress in the course of this thesis was the study of relationships
between neighboring pores. The approach presented here transforms raw LLP image data
into a network structure that can later be reduced and turned into a weighted graph showing
neighboring pores and their relationships. It is the hope of the author that further research will
lead to models that give good neighbor graphs, and that these graphs later can be correlated
to empirical measurements of missing dots after printing. Ultimately a model that gives good
estimation of missing dots due to pore distance distribution is desired.

51

Master’s Thesis Spring 2005 CHAPTER 6. CONCLUSION

52

Master’s Thesis Spring 2005 REFERENCES

References

[1] C. Antoine, P. J. Mangin, J. L. Valade, M.-C. Belandand K. Chartier, and M. A. MacGre-
gor. The influence of underlying paper surface structure on missing dots in gravure. In
J. A. Bristow, editor, Advances in Print Science and Technology, volume 23, pages 401-414.
IARIGAI, 1997.

[2] Gunilla Borgefors. On digital distance transforms in three dimensions. Comput. Vis. Image
Underst., 64(3):368-376, 1996.

[3] Gunilla Borgefors and Stina Svensson. Optimal Local Distances for Distance Transforms
in 3D Using an Extended Neighbourhood. In IWVF-4: Proceedings of the 4th International
Workshop on Visual Form, pages 113-122, London, UK, 2001. Springer-Verlag.

[4] Paul Bourke. Efficient triangulation algorithm suitable for terrain modelling, May 2005.
http://astronomy.swin.edu.au/ pbourke/terrain/triangulate/.

[5] Gary Chinga. Printability of rotogravure papers as affected by their structural and chem-
ical characteristics. Presentation, 2001.

[6] Gary Chinga. Structural studies of LWC paper coating layers using SEM and image analysis
techniques. PhD thesis, NTNU, 2002.

[7] Gary Chinga. Detailed characterization of paper surface structure for gloss assessment.
Journal of pulp and paper science, 30(11):222-227, August 2004.

[8] Gary Chinga. COST Action E32 home page, May 2005.
http://www.pfi.no/gary/COSTE32.htm.

[9] Gary Chinga. SurfChar] at Gary Chinga’s private home page, May 2005.
http://home.online.no/ gary.c/IJ/SurfCharJ.htm.

[10] Gary Chinga, Qyvind Gregersen, and Robert Dougherty. Paper surface characterisation
by laser profilometry and image analysis. Journal of microscopy and analysis, 84:5-7, 2003.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, 2001.

[12] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall
Professional Technical Reference, 2002.

[13] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley Long-
man Publishing Co., Inc., 2001.

53

Master’s Thesis Spring 2005 REFERENCES

[14] Rune Holmstad. Methods for paper structure characterisation by means of image analysis. PhD
thesis, NTNU, 2004.

[15] MathWorks. MATLAB Function Reference, Delaunay Triangulation, May 2005.
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/delaunay.html.

[16] Birgit Moller. Mosaic ~ Project web page, Applied Com-
puter Science Group, Universitit Bielefeld, June 2005.
http://www.techfak.uni-bielefeld.de/ags/ai/projects/mosaic/.

[17] U.S. National Institute of Health. Image], Image Processing and Analysis in Java, home
page, March 2005. http://rsb.info.nih.gov/1ij/.

[18] L. Donnell Payne. Automating road surface analysis. In SAC "92: Proceedings of the 1992
ACMY/SIGAPP symposium on Applied computing, pages 944-950, New York, NY, USA, 1992.
ACM Press.

[19] Daniel Sage and Michael Unser. Easy Java programming for teaching image-processing.
In Proceedings of the 2001 IEEE International Conference on Image Processing, volume 3, pages
298-301. IEEE, 2001.

[20] Ida-Maria Sintorn and Gunilla Borgefors. Weighted distance transforms for volume im-
ages digitized in elongated voxel grids. Pattern Recogn. Lett., 25(5):571-580, 2004.

[21] Stina Svensson and Mattias Aronsson. Using distance transform based algorithms for
extracting measures of the fiber network in volume images of paper. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 33(4):562-571, 2003.

[22] Richard Szeliski. Video mosaics for virtual environments. IEEE CG&A, pages 22-30,
March 1996.

[23] Richard Szeliski and Heung-Yeung Shum. Creating full view panoramic image mosaics
and environment maps. In SIGGRAPH '97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, pages 251-258, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[24] R. E. Walpole, R. H. Myers, and S. L. Myers. Probability and Statistics for Engineers and
Scientists. Prentice-Hall, Inc., New Jersey, sixth edition, 1998.

[25] Dave Wilson. Fractal Dimension by Box Counting, June 2005.
http://www.ees.nmt.edu/ davew/P362/boxcnt.htm.

54

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

Appendix A

Code Listing

A.1 AreaThresholder_.java

import ij.x;

import ij.gui.GenericDialog;

import ij.gui.Newlmage;

import ij.plugin. filter.PluglInFilter;
import ij.process.ImageProcessor;
import ij.process.ImageStatistics;

import java.awt.Checkbox;
import java.awt.Choice;

import java.awt.GridLayout;
import java.awt.Label;

import java.awt. TextField;
import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

/% %

* @author Svein Fidjestol

*

x Area Thresholder plugin for Image]. Takes as input a binary black—and—white
* image , in 8—Dbit grayscale format , with white as the background

x color and black as the foreground (region) color. Outputs a binary black—and—white
* image with regions smaller than the threshold removed. Also the regions can
* be backtranslated into the original , unsegmented 32—bit floating point image
« if this is provided as input.

*

« The flood fill algorithm used borrows heavily from Floodfiller.java

« and BinaryFiller.java in the Image] 1.34n code base (also used in

x the CenterOfMass plugin)
*/

public class AreaThresholder_ implements PluglnFilter , ItemListener ({

// variables from Floodfiller .java

int maxStackSize = 500; // will be increased as needed
int[] stack = new int[maxStackSize];

int stackSize;

int max;

/% %
Original flood fill algorithm from Floodfiller.java. Takes
as input a seed point and fills scanline by scanline.

* ¥ x x ¥

@param x X—coordinate of seed point

55

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

@param y Y—coordinate of seed point

@param ip The image being processed

@param ip2 A second image to write to

@return True if everything went OK, false if seed point already filled

* ¥ X X

*/
public boolean fill (int x, int y, ImageProcessor ip, ImageProcessor ip2) {
int width = ip.getWidth ();
int height = ip.getHeight();
int color = ip.getPixel(x, y);
ip.drawLine(x, y, x, y);
int newColor = ip.getPixel(x, y);
ip.putPixel(x, y, color);
if (color==newColor) return false;
stackSize = 0;
push(x, y);
while (true) {
int coordinates = pop();
if (coordinates ==—1) return true;
X = coordinates&0xffff;
y = coordinates >>16;
int x1 = x; int x2 = x;

while (ip.getPixel(x1,y)==color && x1>=0) x1——; // find start of scan—Ii

x1++;

while (ip.getPixel(x2,y)==color && x2<width) x2++; // find end of scan+

X2——;
ip.drawLine(x1,y, x2,y); // fill scan—line
if (ip2 !'= null) {
ip2.drawLine(x1,y, x2, y); // fill scan—line
}

boolean inScanLine = false;

for (int i=x1; i<=x2; i++) { // find scan—lines above this one
if (!inScanLine && y>0 && ip.getPixel(i,y—1)==color)
{push(i, y—1); inScanLine = true;}
else if (inScanLine && y>0 && ip.getPixel(i,y—1)!=color)
inScanLine = false;
}
inScanLine = false;
for (int i=x1; i<=x2; i++) { // find scan—lines below this one
if (!inScanLine && y<height—1 && ip.getPixel(i,y+1)==color)
{push(i, y+1); inScanLine = true;}
else if (inScanLine && y<height -1 && ip.getPixel(i,y+1)!=color)

inScanLine = false;

}

// variables that store boundary values for the current region
private int currentLowX;
private int currentHighX;
private int currentLowY;
private int currentHighY;

*

/
Same as fill method but also returns a pixel count reflecting
how many pixels were filled .

@param x X—coordinate of seed point
@param y Y—coordinate of seed point
@param ip The image being processed
@return True if everything went OK, false if seed point already filled

* ¥ ¥ % ¥ x x ¥

*/
public int fill2 (int x, int y, ImageProcessor ip) {
int count = 0;
int width = ip.getWidth ();
int height = ip.getHeight();
int color = ip.getPixel(x, y);

56

ne

tline

Master’s Thesis Spring 2005

APPENDIX A. CODE LISTING

}
/* %

ip.drawLine(x, y, x, y);

int newColor = ip.getPixel(x, y);

ip.putPixel(x, y, color);

if (color==newColor) return —1; // returned false in original method
stackSize = 0;

push(x, y);

while (true) {

int coordinates = pop();
if (coordinates ==—1) return count; // returned true in original method
x = coordinates&0Oxffff;
y = coordinates >>16;
int x1 = x; int x2 = x;
while (ip.getPixel(x1,y)==color && x1>=0) x1——; // find start of scan—Ii
x1++;
while (ip.getPixel(x2,y)==color && x2<width) x2++; // find end of scan+
X2——;
if (x1 < currentLowX) {
currentLowX = x1;
}
if (x2 > currentHighX) {
currentHighX = x2;
}
if (y < currentLowY) {
currentLowY = y;
}
if (y > currentHighY) {
currentHighY = y;
}
ip.drawLine(x1,y, x2,y); // fill scan—line
count += x2—x1+1;
boolean inScanLine = false;
for (int i=x1; i<=x2; i++) { // find scan—lines above this one
if (!inScanLine && y>0 && ip.getPixel(i,y—1)==color)
{push(i, y—1); inScanLine = true;}
else if (inScanLine && y>0 && ip.getPixel(i,y—1)!=color)
inScanLine = false;
}
inScanLine = false;
for (int i=x1; i<=x2; i++) { // find scan—lines below this one
if (!inScanLine && y<height—1 && ip.getPixel(i,y+1)==color)

{push(i, y+1); inScanLine = true;}
else if (inScanLine && y<height -1 && ip.getPixel(i,y+1)!=color)
inScanLine = false;

x Helper method for fill algorithm

*

* @param x X—coordinate of current seed point
* @param y Y—coordinate of current seed point

*/

final void push(int x, int y) {
stackSize++;
if (stackSize==maxStackSize) {

}
/% %

}

int[] newStack = new int[maxStackSize*2];

System . arraycopy (stack , 0, newStack, 0, maxStackSize);
stack = newStack;

maxStackSize x= 2;

stack[stackSize —1] = x + (y<<16);

x Helper method for fill algorithm

57

ne

tline

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

*
* @param x X—coordinate of current seed point
* @param y Y—coordinate of current seed point
*/
final int pop () {
if (stackSize==0)
return —1;

else {
int value = stack[stackSize —1];
stackSize ——;
return value;
}
}
/% *
*« Stores whether the lookup table is inverted
*/
protected boolean backgroundIsZero;
/%%
x The input image
*/

private ImagePlus imp;

// Components

private Checkbox cbBinaryRegion;
private Checkbox cbOriginalRegion;
private Choice chOriginallmage;
private Label IblDisplayRange;
private Label 1blFillerValue;
private TextField tfFillerValue;
private Label lblLow;

private TextField tfLow;

private Label IblHigh;

private TextField tfHigh;

/% *

*« Standard Image] plugin setup method

*

* @param arg Plugin arguments

* @param imp The input image

*/

public int setup(String arg, ImagePlus imp) {

if (imp==null)

{IJ .nolmage (); return DONE;}

this .imp = imp;

ImageStatistics stats=imp.getStatistics ();

if (stats.histogram[0]+ stats.histogram[255]!=stats.pixelCount){
IJ .error ("8—bit binary image (0 and 255) required.");
return DONE;

}

backgroundIsZero = Prefs.blackBackground;

if (imp.isInvertedLut())
backgroundIsZero = !backgroundIsZero;

return IJ.setupDialog(imp, DOES_8G);

}

/% %

*« Standard Image] plugin run method. Quite monolithic for simplicity purposes
*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {
// Calibration info is not used for parameters in this implementation ,
// however it is retained in the result image

58

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Get the classname without trailing underscore
String className = getClass ().getName ();
if (className.charAt(className.length() —1) == "_") {
className = className.substring (0, className.length()—1);

}

// Get some info from the input image
byte[] old_pixels = (byte[]) ip.getPixels ();
int width = ip.getWidth ();

int height = ip.getHeight ();

// Retrieve list of open images
int[] wList = WindowManager. getIDList ();

// Get threshold

int threshold;

GenericDialog gd = new GenericDialog (className);
gd.setLayout(new GridLayout(12,1));

// Default value 500 (Should ideally be customized

// for Calibration (microns))

Label IblThreshold = new Label("Threshold (in pixels)");
TextField tfThreshold = new TextField ("500", 0);

// Draw GUI
boolean binaryRegion = false;
boolean originalRegion = false;
cbBinaryRegion = new Checkbox("Generate a new binary image for each region",
binaryRegion);
cbOriginalRegion = new Checkbox("Generate a new image for each region with " +
"data from the original image" , originalRegion)

chOriginallmage = new Choice ();
for (int i=0; i<wList.length; i++) {

ImagePlus imp = WindowManager. getimage (wList[i]);

if (imp!=null && imp.getWidth () == width && imp. getHeight () == height)

chOriginallmage .add (imp. getTitle ());
else
chOriginallmage.add("");

)
IblFillerValue = new Label("Filler value");
tfFillerValue = new TextField ("—4.0", 0);
IblLow = new Label("Brightness range (low):");
tfLow = new TextField("—-7.0");
IblHigh = new Label("Brightness range (high):");
tfHigh = new TextField("4.0");

cbOriginalRegion.addItemListener (this);

gd.add(1blThreshold);
gd.add (tfThreshold);
gd.add (cbBinaryRegion);
gd.add(cbOriginalRegion);
gd.add (chOriginallmage);

gd.add(IblFillerValue);
gd.add(tfFillerValue);
gd.add (IblLow);

gd.add (tfLow);

gd.add (1blHigh);

gd.add (tfHigh);

IblThreshold.setVisible (true);
tfThreshold .setVisible (true);
cbBinaryRegion.setVisible (true);
cbOriginalRegion.setVisible (true);

59

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

chOriginallmage .setVisible (false);

IblFillerValue.setVisible (false);
tfFillerValue .setVisible (false);
IblLow .setVisible (false);
tfLow.setVisible (false);

IblHigh .setVisible (false);
tfHigh.setVisible (false);

gd.showDialog ();
if (gd.wasCanceled ()) {
return;

}

// Retrieve parameters from dialog

threshold = Integer.parselnt(tfThreshold.getText());
binaryRegion = cbBinaryRegion. getState ();

originalRegion = cbOriginalRegion. getState ();

float fillerValue = Float.parseFloat(tfFillerValue.getText());
double low = Double.parseDouble (tfLow.getText ());

double high = Double.parseDouble(tfHigh.getText());

//original converted to white particles (part of original Floodfiller.java algonithm)
if (!backgroundIsZero)
ip.invert ();

// Get some info from the original image (32— bit floating point format)
ImagePlus orig_imp;
float[] orig_pixels = null;
if (originalRegion) {
orig_imp = WindowManager. getlmage (wList[chOriginallmage . getSelectedIndex ()]);
orig_pixels = (float[]) orig_imp.getProcessor (). getPixels ();
J

// Generate a new, empty image
ImagePlus new_imp = Newlmage. createBytelmage ("templ" , width, height, 1,
Newlmage . FILL_WHITE) ;

new_imp.setCalibration (imp. getCalibration ());
ImageProcessor new_ip = new_imp. getProcessor ();
// Copy the old image into the new one
byte[] pixels = (byte[]) new_imp.getProcessor (). getPixels ();
for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

pixels[x + y * width] = old_pixels[x + y*xwidth];

}

}

// Generate a new, empty image once more
ImagePlus new_imp2 = Newlmage. createBytelmage ("temp2" , width, height, 1,
NewlImage . FILL_WHITE) ;

new_imp2.setCalibration (imp. getCalibration ());
ImageProcessor new_ip2 = new_imp2. getProcessor ();
// Copy the old image into the new one
byte[] pixels2 = (byte[]) new_imp2. getProcessor (). getPixels ();
for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

pixels2[x + y * width] = old_pixels[x + y*width];

}

}

// Main algorithm part

int regionCount = 0;

int offset;

for(int j = 0; j < height; j++) {
offset = jxheight;
for(int i = 0; i < width; i++) {

60

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

if (pixels[offset+i] == —1) { // check for black
// Measure size of region by filling , and store
// low and high coordinates
currentLowX = currentLowY = Integer .MAX_VALUE;
currentHighX = currentHighY = Integer .MIN_VALUE;
int count = fill2 (i,j,new_ip);
if (count < threshold) f{
fill(i,j,ip, null);
} else if(binaryRegion || originalRegion) { // Generate
// segmented output images
regionCount++;
// bounding box
int bb_width = currentHighX — currentLowX;
int bb_height = currentHighY — currentLowY ;

// Generate a new, empty image

ImagePlus bb_imp = Newlmage.createByteImage (
"Region number " + regionCount +
", BoundingBoxInPixels ([" + currentLowX

non

—" + currentHighX + "],[" + currentLowY
—" + currentHighY + "]), binary" , width

"

height , 1, Newlmage.FILL_WHITE);
bb_imp.setCalibration (imp. getCalibration ());
ImageProcessor bb_ip = bb_imp.getProcessor ();

// Fill both mnew_ip2 and at the same locations
fill (i,j,new_ip2,bb_ip);
bb_ip . setRoi (currentLowX , currentLowY ,
bb_width, bb_height);
bb_imp.setProcessor (null, bb_ip.crop());
byte[] bb_pixels =
(byte[]) bb_imp.getProcessor (). getPixels ();
if (binaryRegion) {
bb_imp .show () ;
} else {
// prepare for garbage collection
bb_ip = null;
bb_imp = null;
}
if (originalRegion) {
// Backtranslate segmented regions to original
ImagePlus bborig_imp =
Newlmage. createFloatImage ("Region number " +

regionCount + ", BoundingBoxInPixels ([" +
currentLowX + "—" + currentHighX + "],[" +
currentLowY + "—" + currentHighY + "]), origing

bb_width , bb_height, 1, Newlmage.FILL_WHITE);
bborig_imp.setCalibration (imp. getCalibration ()
float[] bborig_pixels =
(float[]) bborig_imp.getProcessor ().
getPixels ();
for (int x = 0; x < bb_width; x++) {
for (int y = 0; y < bb_height; y++) {
if (bb_pixels[yxbb_width + x] == 0) {
bborig_pixels[x + y * bb_width] =
orig_pixels [(currentLowY+y)*width +
(currentLowX+x)];
} else {
// Which value to use at empty pixels?
//bborig_pixels[x + y = bb_width] =
//Float .POSITIVE_INFINITY ;
//bborig_pixels[x + y * bb_width]
//(float) 0.0;
//bborig_pixels[x + y * bb_width]
// Float .NaN;

bborig_pixels[x + y % bb_width] =

61

¥

n bb_ip

image

—
~

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

fillerValue;
}
}
}

ImageProcessor bborig_ip bborig_imp . getProces
bborig_ip .setMinAndMax(low , high);

bborig_imp .show ();

Executer e = new Executer("Fire" , bborig_imp);
e.run();

}

//return to original state (part of original Floodfiller.java algorithm)
if (!backgroundIsZero)
ip.invert ();

// prepare for garbage collection
new_imp = null;
new_ip = null;

}

/% %

x Callback method used for hiding and showing

* components in the dialog

*

* @param e The ItemEvent

*/

public void itemStateChanged (ItemEvent e) {

if (e.getltemSelectable () == cbOriginalRegion) {
if (e.getStateChange () == ItemEvent.SELECTED) {
chOriginallmage.setVisible (true);
IblFillerValue.setVisible (true);
tfFillerValue .setVisible (true);
IblLow . setVisible (true);
tfLow .setVisible (true);
IblHigh .setVisible (true);
tfHigh.setVisible (true);
} else {

chOriginallmage . setVisible (false);
IblFillerValue.setVisible (false);
tfFillerValue.setVisible (false);
IblLow . setVisible (false);
tfLow.setVisible (false);
IbIHigh .setVisible (false);
tfHigh.setVisible (false);

sor ();

62

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.2 CalculateAverageSurfaceHeight .java

-
import java.text.DecimalFormat;

import ij.ImagePlus;

import ij.plugin. filter.PluglnFilter;
import ij.process.ImageProcessor;
import ij.text.TextWindow;

/% %

* @author Svein Fidjestol

*

x CalculateAverageSurfaceHeight plugin for Image]. Meant to be used
* for surface images. Takes as input a 32—Dbit float image and prints
* out the average height value in a new window.

*/

public class CalculateAverageSurfaceHeight_ implements PluglnFilter {
/% %
*« Standard Image] plugin setup method
&

* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) ({
return DOES_32;
}

/% *

x Standard Image] plugin run method. Quite monolithic for simplicity purposes
*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {
// Get the classname without trailing underscore
String className = getClass ().getName ();
if (className.charAt(className.length() —1) == "_") {
className = className.substring (0, className.length()—1);
}

// Get some info from the input image
float[] pixels = (float[]) ip.getPixels ();
int width = ip.getWidth ();

int height = ip.getHeight ();

// Sum
double cumsum = 0.0;
double size = heightxwidth;
for(int j = 0; j < height; j++) {
for(int i = 0; i < width; i++) {
cumsum += pixels[j*width+i];
}

}

// Calculate the average
TextWindow tw = new TextWindow (
"CalculateAverageSurfaceHeight Result",
"Average surface height: " +
new DecimalFormat (
"### #### "). format (cumsum / ((double) (heightxwidth))) ,
400, 150);

63

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.3 CenterOfMass_.java

import ij.x;

import ij.gui.Newlmage;

import ij.plugin. filter.PluglnFilter;
import ij.process.ImageProcessor;
import ij.process.ImageStatistics;

import java.awt.Point;
import java.util.ArrayList;
import java.util.Iterator;

~
*

* ¥ ¥ K % ¥ ¥ x % ¥ x ¥

@author Svein Fidjestol

CenterOfMass plugin for Image]. Takes as input a binary black—and—white

image , in 8—bit grayscale format , with white as the background

color and black as the foreground (region) color. Outputs a binary black—and—white
image with every black region in the image substituted with a single

pixel at the position which is the region’s center of mass point.

The flood fill algorithm used borrows heavily from Floodfiller.java
and BinaryFiller.java in the Image] 1.34n code base (also used in
the AreaThresholder plugin)

*/

public class CenterOfMass_ implements PlugInFilter |{

// variables from Floodfiller.java

int maxStackSize = 500; // will be increased as needed
int[] stack = new int[maxStackSize];

int stackSize;

int max;

/* %

x Original flood fill algorithm from Floodfiller.java. Takes

* as input a seed point and fills scanline by scanline.

*

* @param x X—coordinate of seed point

* @param y Y—coordinate of seed point

* @param ip The image being processed

* @param ip2 A second image to write to

* @return True if everything went OK, false if seed point already filled

*
/
public boolean fill (int x, int y, ImageProcessor ip) {
int width = ip.getWidth();
int height = ip.getHeight();
int color = ip.getPixel(x, y);
ip.drawLine(x, y, x, y);
int newColor = ip.getPixel(x, y);
ip.putPixel(x, y, color);
if (color==newColor) return false;
stackSize = 0;
push(x, y);
while (true) {
int coordinates = pop();
if (coordinates ==—1) return true;
x = coordinates&0Oxffff;
y = coordinates >>16;
int x1 = x; int x2 = x;

while (ip.getPixel(x1,y)==color && x1>=0) x1——; // find start of scan—Ii

x1++;

while (ip.getPixel(x2,y)==color && x2<width) x2++; // find end of scan+

X2——;
ip.drawLine(x1,y, x2,y); // fill scan—line

64

ne

tline

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

*
*
*
*
*
*
*
*

*/

public ArrayList fill2 (int x, int y, ImageProcessor ip) {

boolean inScanLine = false;
for (int i=x1; i<=x2; i++) { // find scan—lines above this one
if (!inScanLine && y>0 && ip.getPixel(i,y—1)==color)

{push(i, y—1); inScanLine = true;}
else if (inScanLine && y>0 && ip.getPixel(i,y—1)!=color)
inScanLine = false;
}
inScanLine = false;

for (int i=x1; i<=x2; i++) { // find scan—lines below this one
if (!inScanLine && y<height -1 && ip.getPixel(i,y+1)==color)
{push(i, y+1); inScanLine = true;}
else if (inScanLine && y<height -1 && ip.getPixel(i,y+1)!=color)
inScanLine = false;

Same as fill method but also returns a pixel count reflecting
how many pixels were filled .

@param x X—coordinate of seed point
@param y Y—coordinate of seed point
@param ip The image being processed
@return True if everything went OK, false if seed point already filled

ArrayList pointList = new ArrayList();
//int count = 0;
int width = ip.getWidth ();
int height = ip.getHeight ();
int color = ip.getPixel(x, y);
ip.drawLine(x, y, x, y);
int newColor = ip.getPixel(x, y);
ip.putPixel(x, y, color);
if (color==newColor) return null; //false
stackSize = 0;
push(x, y);
while (true) {
int coordinates = pop();
if (coordinates ==—1) return pointList; //true
x = coordinates&0Oxffff;
y = coordinates >>16;
int x1 = x; int x2 = x;

while (ip.getPixel(x1,y)==color && x1>=0) x1——; // find start of scan—Ii
x1++;
while (ip.getPixel(x2,y)==color && x2<width) x2++; // find end of scan-
X2——;

ip.drawLine(x1,y, x2,y); // fill scan—line

//count += x2—x1+1;

for(int i = x1; i <=x2; i++) {
pointList.add(new Point(i,y));

}

boolean inScanLine = false;

for (int i=x1; i<=x2; i++) { // find scan—lines above this one
if (!inScanLine && y>0 && ip.getPixel (i, y—1)==color)

{push(i, y—1); inScanLine = true;}
else if (inScanLine && y>0 && ip.getPixel(i,y—1)!=color)
inScanLine = false;
}
inScanLine = false;

for (int i=x1; i<=x2; i++) { // find scan—lines below this one
if (!inScanLine && y<height -1 && ip.getPixel(i,y+1)==color)
{push(i, y+1); inScanLine = true;}
else if (inScanLine && y<height -1 && ip.getPixel(i,y+1)!=color)

tline

inScanLine = false;

65

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

}

/% *
* Helper method for fill algorithm
*
* @param x X—coordinate of current seed point
* @param y Y—coordinate of current seed point
*/
final void push(int x, int y) {
stackSize ++;
if (stackSize==maxStackSize) {
int [] newStack = new int[maxStackSizex2];
System .arraycopy (stack , 0, newStack, 0, maxStackSize);
stack = newStack;
maxStackSize *x= 2;
}
stack[stackSize —1] = x + (y<<16);
}

/% *
+« Helper method for fill algorithm
*
* @param x X—coordinate of current seed point
* @param y Y—coordinate of current seed point
*/
final int pop () {

if (stackSize==0)

return —1;

else {
int value = stack[stackSize —1];
stackSize ——;
return value;
}
}
/* %
* Stores whether the lookup table is inverted
*/
protected boolean backgroundIsZero;
/% *
* The input image
*/

private ImagePlus imp;

/% %

x Standard Image] plugin setup method

*

* @param arg Plugin arguments

* @param imp The input image

*/

public int setup(String arg, ImagePlus imp) {

if (imp==null)

{IJ .nolmage (); return DONE;}

this .imp = imp;

ImageStatistics stats=imp.getStatistics ();

if (stats.histogram|[0]+stats.histogram[255]!=stats.pixelCount){
IJ .error("8—bit binary image (0 and 255) required.");
return DONE;

}

backgroundIsZero = Prefs.blackBackground;

if (imp.islnvertedLut())
backgroundIsZero = !backgroundIsZero;

66

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

}
/* %

x Standard Image] plugin run method.

*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {

return IJ.setupDialog(imp, DOES_8G);

// Get the classname without trailing underscore
String className = getClass ().getName();
if (className.charAt(className.length() —1) == "_") {
className = className.substring (0, className.length() —1);

}

// original converted to white particles (part of original Floodfiller.java algd
if (!backgroundIsZero)
ip.invert();

byte[] old_pixels = (byte[]) ip.getPixels ();
int width = ip.getWidth();
int height = ip.getHeight ();

// Generate a new, empty image
ImagePlus new_imp = Newlmage.createByteImage (imp. getTitle () +
width , height, 1, Newlmage.FILL_WHITE);
new_imp.setCalibration (imp. getCalibration ());
ImageProcessor new_ip = new_imp. getProcessor ();
// Copy the old image into the new one
byte[] pixels = (byte[]) new_imp. getProcessor (). getPixels ();
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels[x + y * width] = old_pixels[x + y*xwidth];

",

+ className,

}
}

// Generate a new, empty image once more

ImagePlus new_imp2 = Newlmage. createBytelmage (imp. getTitle () +
width , height, 1, Newlmage.FILL_WHITE);
new_imp2.setCalibration (imp. getCalibration ());

ImageProcessor new_ip2 = new_imp2. getProcessor ();

[T

+ className

// Main algorithm start
int offset;
for(int j = 0; j < height; j++) {
offset = jxheight;
for(int i = 0; i < width; i++) {
if (pixels[offset+i] == —1) { // check for black
ArrayList pointList = fill2(i,j,new_ip);

// Sum
Point p;
long cumsum_x
long cumsum_y
int numPoints = 0;
for(Iterator it = pointList.iterator (); it.hasNext();) {
numPoints++;
p = (Point) it.next();
cumsum_Xx += p.X;
cumsum_y += p.y;

Il
| oo o

7

’

}

// Calculate midpoint
int geom_midpoint_x = (int) (cumsum_x / numPoints);
int geom_midpoint_y = (int) (cumsum_y / numPoints);

67

rithm)

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Draw it
new_ip2.drawPixel (geom_midpoint_x , geom_midpoint_y);

)

//return to original state (part of original Floodfiller.java algorithm)
if (!backgroundIsZero)
ip.invert ();

new_imp2.show ();
// prepare for garbage collection

new_imp = null;
new_ip = null;

68

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.4 DiscretizeZValues_.java

import ij.IJ;

import ij.ImagePlus;

import ij.gui.Newlmage;

import ij.plugin. filter.PluglnFilter;
import ij.process.ImageProcessor;
import ij.process.ImageStatistics;

/% %

* @author Svein Fidjestol

*

x DiscretizeZValues plugin for Image]. Takes as input a 32—Dbit

* surface image and "slices ” the image in unit increments , from the lowest
* integer wvalue to the highest rounded integer value detected in the image.
* The output is an image stack of binary images where white pixels

x correspond to filled areas and black pixels correspond to empty areas.

sk

x/

public class DiscretizeZValues_ implements PluglnFilter {

/*% The input image =/
private ImagePlus imp;

/% %
x Standard Image] plugin setup method
*
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
this .imp = imp;
return DOES 32;
}

/% *
* Standard Image] plugin run method. Simple plugin so
* everything is done in here
*
* @param ip Selected region for processing
*/
public void run(ImageProcessor ip) {
// Get some colors
IJ .run("Fire");

// Get the classname without trailing underscore
String className = getClass ().getName();
if (className.charAt(className.length() —1) == "_") {
className = className.substring (0, className.length() —1);

}

// Get width and height of input image
int width = imp.getWidth ();

int height = imp.getHeight();

float[] pixels = (float[]) ip.getPixels ();

// Get rounded integer min and max of input image
ImageStatistics stats = imp.getStatistics ();

int min = (int) Math.round(stats.min);

int max = (int) Math.round(stats.max);

int slices = max — min;

// Generate a new, empty image
ImagePlus new_imp = Newlmage.createBytelmage (imp. getTitle () +

"o,

' + className,

69

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

width , height, slices+1, Newlmage.FILL_BLACK);

// Slice the image
float pixel;
byte discretized_pixel;
for(int j = 0; j < height; j++) {
for(int i = 0; i < width; i++) {
pixel = pixels[j*width+i];

// Round as last step , else it doesn’t work correctly for mnegat
// pixel values
discretized_pixel = (byte) Math.round(pixel — min);
for(int k = 0; k <= discretized_pixel; k++) {
((byte[]) new_imp.getStack (). getPixels (k+1))[j*width+i]
(byte) 0 xff;

)

// Show the new, sliced image
new_imp . show () ;

70

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.5 DistanceTransform3D_.java

-
// Original GNU copyright message follows ——sveinfid June 13, 2005
/* Makes a 3D discrete distance transform. Uses Image].

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License , or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation , Inc., 59 Temple Place — Suite 330, Boston , MA 02111—-1307, USA.

Written by Maria Axelsson , ported to Image]/Java by
Jens Bache—Wiig <jensbw%at%gmail .com> and
Per Christian Henden <perchrh%at%pvv.org>

Further customized for use in paper surface analysis by Svein Fidjestol
*/

import ij.IJ;

import ij.ImagePlus;

import ij.gui.Newlmage;

import ij.plugin. filter.PlugInFilter;
import ij.process.ImageProcessor;

/% *
* @author Svein Fidjestol (original code: Jens Bache—Wiig, Per Christian Henden
* and Maria Axelsson)

3D Distance Transform plugin for Image]. Takes as input voxel data in the
form of a sliced binary black—and—white image (as e.g. generated by the
DiscretizeZValues plugin) where white pixels

correspond to filled areas and black pixels correspond to empty areas.

x Calculates the 3D Distance Transform from this wvoxel data and outputs

* a sliced 8—bit gray level image.

*

/

public class DistanceTransform3D_ implements PlugInFilter {

LR N

/x% The input image =/
private ImagePlus imRef_old;

/% *
* Standard Image] plugin setup method
*
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")){
showAbout ();
return DONE;
}
imRef_old = imp;
return DOES_8G;

/% *

71

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

* Standard Image] plugin run method. Quite monolithic for simplicity purposes
*
* @param ip Selected region for processing
*/
public void run(ImageProcessor ip) {

// Get the classname without trailing underscore

String className = getClass ().getName();

if (className. charAt(className.length() —1) == "_") {

className = className.substring (0, className.length() —1);

}

// Get some info from the input image

final int width = ip.getWidth();

final int height = ip.getHeight ();

final int depth = imRef_old.getStackSize ()+2;

=4, 3
4, ¢

, 5; //alternate weights
, d

// final int a

3, b
final int a =

3,Db

I o

(S]]
I =

@ |l

4, e
, € =

Nl

’

final int[] wf = new int[] { e, d, e, d, ¢, d, e, d, e,b, a, b, a, 255, 255,
255, 255, 255, };

final int[] wb = new int[] { 255, 255, 255, 255, 255, a, b, a, b,e, d, e, d,
c,d, e, d, e, };

int[] slask = new int[2 x 3 % 3];

// Generate a new, empty image
ImagePlus imRef = Newlmage.createByteImage (imRef_old. getTitle () + ": " +
className , width, height, depth, Newlmage.FILL_BLACK);
imRef.setCalibration (imRef_old . getCalibration ());
// Copy the old image into the new one slice by slice and
// generate padding slices at top and bottom of stack
byte[] pixels;
byte[] pixels_old;
pixels = (byte[]) imRef.getStack (). getPixels(1);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels[x + y * width] = (byte) 0x0;
}
}
pixels = (byte[]) imRef.getStack (). getPixels(depth);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels[x + y * width] = (byte) 0xff;
}
}
for (int z = 0; z < depth—2; z++) {
pixels = (byte[]) imRef.getStack (). getPixels(z+2);
pixels_old = (byte[]) imRef_old.getStack (). getPixels(z+1);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels[x + y * width] = (byte) ((byte) 0xff A
(byte) pixels_old[x + y * width]);

}

//Border pixels are ignored to simplify the convolutions below
/xfor (int z = 0; z < depth; z++) {
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {

if(z==0 11 x==0 11| y==0 || z==depth —1 ||

y==height —1 | | x==width —1) {
((byte[]) imRef.getStack (). getPixels(z+1))[x +
y * width]
= (byte) 0x0;

72

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

}*/

//Forward iteration
for (int z = 1; z < depth—1; z++) {
IJ .showProgress(z, 2+depth —2);
for (int x = 1; x < width—1; x++) {
for (int y = 1; y < height —1; y++) {

for (int k= —1; k < 1; k++) {
for (int j = —1;j < 2; j++) {
for (int i = —1; i < 2; i++) {

int slaskindex =

(i+1) + (j+1) = 3 + (k+1) = 3 =

int pixel = 0xff &

((byte[]) imRef. getStack ().

getPixels (
z + k+1))[(x+i) +
(y+j) = width];

slask[slaskindex]=

pixel + wf[slaskindex];

}
}

int minval = slask[0]; //the lowest wvalue so far
for (int i = 1; i < slask.length; i++) {
if ((slask[i])<minval)minval=(slask[i]);

}

int pixel = O0xff & ((byte[]) imRef.getStack (). getPixels
z+1))[(x) + (y) * width];

if (pixel>minval) ((byte[]) imRef. getStack (). getPixels(
z+1))[x + y * width] = (byte) (minval&0xff);

}

//Backward iteration
for (int z = depth—-2;z > 0; z——) {
IJ .showProgress(2xdepth—z, 2*depth —2);
for (int x = width—2; x > 0; x——) {
for (int y = height-2;y >0 ; y——){

for (int k = 0; k < 2; k++) {
for (int j = —1;j < 2; j++) {
for (int i = —1;i < 2; i++) {
int slaskindex = (i+1) + (j+1) %
+ (k) = 3 % 3;
int pixel = 0xff &
((byte[]) imRef.getStack ().
getPixels (
z +k + 1))[(x+i) +
(y+j) * width];
slask[slaskindex]= pixel
+ wb[slaskindex];

}

int minval = slask[0]; //the lowest value so far
for (int i = 1; i < slask.length; i++) {
if ((slask[i])<minval)minval=(slask[i]);

}

73

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

int pixel = 0xff & ((byte[]) imRef.getStack (). getPixels
z+1))[(x) + (y) *= width];

if (pixel>minval) ((byte[]) imRef.getStack (). getPixels (
z+1))[x + y * width] = (byte) (minval&0xff);

}

// Delete padding slices and show result

// Generate a new, empty image

ImagePlus imRef2 = Newlmage.createByteImage (imRef_old. getTitle () +
": " + className, width, height, depth —2, Newlmage.FILL_BLACK);
imRef2.setCalibration (imRef_old. getCalibration ());

// Copy the old image into the new one

byte[] pixels2;

byte[] pixelsl;

for (int z = 0; z < depth—2; z++) {
pixels2 = (byte[]) imRef2.getStack (). getPixels(z+1);
pixelsl = (byte[]) imRef.getStack (). getPixels(z+2);

for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels2[x + y * width] = pixelsl[x + y % width];
}
}
}
imRef2 .show ();
)

void showAbout () {
1] .showMessage (" About DT3D...",
"This plug—in filter calculates the 3D distances transform " +
"of a binary image with " +
"white (255) as background and black (0) as foreground.\n");
}

} //class

74

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.6 FractalDimension_.java

import ij.ImagePlus;

import ij.plugin. filter.PlugInFilter;
import ij.process.ImageProcessor;
import ij.text.TextWindow;

/% %

* @author Svein Fidjestol

*

x FractalDimension plugin for Image]. Takes as input a binary black—and—white
* image , in 8—Dbit grayscale format , with white as the background

x color and black pixels as regions. Prints out the result of

* box counting which is mneccessary for calculating the

* fractal dimension of the binary image. Box counting is done by starting
* with 1x1 regions , increasing to 2x2, 4x4, 8x8 etc up to the maximum size
* allowed in the input image.

*

x Inspired by the tutorial of the fractal dimension by box counting

* web page at

* http ://www. ees .nmt.edu/~davew /P362/boxcnt . htm

*

*/

public class FractalDimension_ implements PluglnFilter {

/% %
x Standard Image] plugin setup method
*
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
// TODO Auto—generated method stub
return DOES_8G;
}

/% *

* Standard Image] plugin run method.

*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {
// Get some info from the input image
byte[] pixels = (byte[]) ip.getPixels();
int width = ip.getWidth ();
int height = ip.getHeight ();

// number of iterations as limited by the input image
int iterations = (int) (Math.log(width)/Math.log(2));
int numboxes[] = new int[iterations];

int count[] = new int[iterations];

int boxsize[] = new int[iterations];

// Do the counting
int currentboxsize , y_steps, Xx_steps;
for(int it = 0; it < iterations; it++) {
currentboxsize = boxsize[it] = (int) Math.pow(2,it);
y_steps = height / currentboxsize;
x_steps = width / currentboxsize;
numboxes[it] = x_steps*xy_steps;
for(int j = 0; j < y_steps; j++) {
for(int i = 0; i < x_steps; i++) {

innerloops:
for(int j2 = 0; j2 < currentboxsize; j2++) {
for(int i2 = 0; i2 < currentboxsize; i2++) {

75

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Check for black pixel
if (pixels [((j*currentboxsize+j2)*width)+
(ixcurrentboxsize+i2)] == (byte) 0) {
count[it]++;
break innerloops;

}

// Generate result string

String result = "";
for(int i = 0; i < iterations; i++) {
result += "\nboxsize: " + boxsize[i] + "\tcount: " + count[i];

}

// Show in a result window
TextWindow tw = new TextWindow ("FractalDimension Result",
"Results from FractalDimension box counting" + result, 400, 150);

76

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.7 MeasurePoreVolume_.java

import java.awt.GridLayout;
import java.awt.Label;
import java.awt. TextField;

import ij.IJ;

import ij.ImagePlus;

import ij.gui.GenericDialog;

import ij.measure.Calibration;

import ij.plugin. filter.PluglnFilter;
import ij.process.ImageProcessor;
import ij.text.TextWindow;

/% *

* @author Svein Fidjestol

*

* MeasurePoreVolume plugin for Image]. Measures the volume
* of a single pore in microns.

*/

public class MeasurePoreVolume_ implements PluglnFilter {

/*% The input image =/
private ImagePlus imp;

/% %
x Standard Image] plugin setup method
*
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")){
showAbout () ;
return DONE;
)
this .imp = imp;
return DOES_32;
}

/% %

x Standard Image] plugin run method.

*

* @param ip Selected region for processing
*/

public void run(ImageProcessor ip) {
// Get some info from the input image
float [] pixels = (float[]) ip.getPixels ();
int width = ip.getWidth();
int height = ip.getHeight();

Calibration cal = imp.getCalibration ();

String unit = cal.getUnit();

if ('unit.equals("um")) { // microns
1] .showMessage ("Measurement unit for image must be um"); // microns
return;

}

// Read in threshold plane value

GenericDialog gd = new GenericDialog ("MeasurePoreVolume");

gd.setLayout (new GridLayout(2,2));

Label IblThresholdPlaneValue = new Label("Threshold plane value (in um): ");
// microns

TextField tfThresholdPlaneValue = new TextField (" —4.0",0);

gd.add (1blThresholdPlaneValue);

77

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

}
/% *

gd.add(tfThresholdPlaneValue);
IblThresholdPlaneValue.setVisible (true);
tfThresholdPlaneValue.setVisible (true);
gd.showDialog ();
if (gd.wasCanceled ()) {

return;

}

// Get the threshold value
float t = Float.parseFloat(tfThresholdPlaneValue.getText());

double pd = cal.pixelDepth;
double pw = cal.pixelWidth;
double ph = cal.pixelHeight;
double voxelvolume = pdspwsxph;

double volume = 0.0;
int offset;
float pixel;
for(int j = 0; j < height; j++) {
offset = j*width;
for(int i = 0; i < width; i++) {
pixel = pixels[offset+i];
volume += (t—pixel)*voxelvolume;
}
}
TextWindow tw = new TextWindow ("MeasurePoreVolume Result",
"Result from MeasurePoreVolume:\n" + volume + " " + unit + "~3", 400, 150);

* About window .

*/

public void showAbout() {

"

IJ .showMessage (" About MeasurePoreVolume...",
"Measures the volume of a single pore in microns”3");

78

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.8 RollingBallNew_.java

import java.awt.GridLayout;
import java.awt.Label;
import java.awt. TextField;

import ij.IJ;

import ij.ImagePlus;

import ij.gui.GenericDialog;

import ij.measure.Calibration;

import ij.plugin. filter.PluglnFilter;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;

/% *
* @author Svein Fidjestol
*
RollingBallNew plugin for Image]. A new implementation of
the rolling ball filtering algorithm . Takes as input a 32—Dbit float
image and outputs
1) The original input image, cropped to the same size as the finished ,
filtered image
2) The sphere mask image
3) Rolling ball mask value image
4) Rolling ball filtered /smoothed image
5) Output image: Original image with filtered image subtracted
(image 1 minus image 4)
If a rolling ball of large enough radius is used , image 5 should contain
an image that contains important pores and creases in the image and flattens
out the remaining areas suitably (including smaller and unintereing
pores and creases).

* ¥ X K K K K K X X ¥ X X ¥

*/
public class RollingBallNew_ implements PluglnFilter {

/%% The input image =/
private ImagePlus imp;

/* %

x Standard Image] plugin setup method

*

* @param arg Plugin arguments

* @param imp The input image

*/

public int setup(String arg, ImagePlus imp) {
this .imp = imp;
return DOES_32;

}

/% %

x Standard Image] plugin run method .

*

* @param ip Selected region for processing
*/

public void run(ImageProcessor ip) {
// Checks for correct unit and stores scale
Calibration cal = imp.getCalibration ();
String unit = cal.getUnit();
if (! unit.equals("um")) { // microns
IJ .showMessage ("Measurement unit for image must be um"); // microns
return;

}
int scale = (int) Math.round(cal.pixelWidth);

// Read in radius of the rolling ball with a dialog box
GenericDialog gd = new GenericDialog("RollingBallNew");

79

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

gd.setLayout(new GridLayout(2,2));
Label IblRadius = new Label("Rolling ball radius (in microns): ");
TextField tfRadius = new TextField("5",0);
Label lblRadiusComment = new Label("Radius in microns must be divisable by " +
scale);
gd.add (1blRadius);
gd.add (tfRadius);
gd.add (IblRadiusComment) ;
IblRadius.setVisible (true);
tfRadius.setVisible (true);
IbIRadiusComment. setVisible (true);
gd.showDialog ();
if (gd.wasCanceled ()) {
return;
}

// Get the rolling ball radius and diameter and adjust for scale
int r = Integer.parselnt(tfRadius.getText());
if(r % scale !'= 0) {
GenericDialog gd2 = new GenericDialog("Error");
gd2.setLayout(new GridLayout(1,1));
Label IblErrorMessage = new Label("Radius in microns not divisable by "
scale);
gd2.add(lblErrorMessage);
IblErrorMessage . setVisible (true);
gd2.showDialog ();
return;
}
r =r / scale;
int d = 2x*r;
int ow = d+1; // width of mask is 1 pixel more than diameter so
// mask width becomes odd—valued

float d_float
float r_float

d;
r;

// Create mask in the form of a sphere.
float maxValuelnImage = (float) ip.getMax();
float [] sphereMask = new float [nmwsw];

int offsetl , offset2;

float i_float , j_float;

float t1, t2;

float tmp;
float x_sq, y_sq;
for(int j = 0; j <=71; j++) {

offsetl = mws«j;
offset2 = mwsx(mw—(j+1));
j_float = j;
for(int i = 0; i <=71; i++) {
i_float = i;
tl = r_float—j_float; t2 = r_float—i_float;
float dist = (float) Math.sqrt(tl*tl + t2xt2);
if (dist > r_float) {
// wvoid area
sphereMask|[offsetl+i] = Float.POSITIVE_INFINITY ;
sphereMask|[offsetl+(mw—(i+1))] = Float.POSITIVE_INFINITY
sphereMask[offset2 +(mw—(i+1))] = Float.POSITIVE_INFINITY
sphereMask [offset2+i] = Float.POSITIVE_INFINITY ;
} else {
// place lowest point on rolling ball in line with
// highest pixel in image
tmp = r_float + maxValuelnlmage —
(float) Math.sqrt(r_float*xr_float — distxdist);
sphereMask[offsetl+i] = tmp;

sphereMask [offset]l +(mw—(i+1))] = tmp;

80

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

sphereMask[offset2 +(mw—(i +1))] = tmp;
sphereMask[offset2+i] = tmp;

}

// Shows sphere mask image

FloatProcessor ipSphereMask = new FloatProcessor (mw, mw, sphereMask ,null);
ImagePlus impSphere = new ImagePlus("Sphere mask with radius = " + rxscale +
"um" , ipSphereMask); // microns

impSphere. setCalibration (imp. getCalibration ());

impSphere .show ();

IJ .run("Fire");

// The mext sections convolve the image with the mask and shows
// result as a new filtered /smoothed image

int w = imp.getWidth ();

int h = imp.getHeight ();

float [] impPixels = (float[]) ip.getPixels ();

int new.w = w-d;

int new_h = h-d;

float [] smoothed_pixels = new float[new_wsxnew_h];

float tmpdist, mindist;

int offset_imp , offset_imp_new , offset_mask, offset_imp_j, imp_i, idx_mask, idx_imp;
int mindistidx_mask = 0, mindistidx_imp = 0;
int midindex = nmwxr+r;

// Find the distance
float[] dist_pixels = new float[new_wxnew_h];
for(int j = r; j < (h-1); j++){
offset_imp = wxj;
offset_imp_new = new_wx(j—r);
for(int i = 1r; i < (wr); i++) {
mindist = Float.MAX VALUE;
1] .showProgress ((j—r) ,(h—-r));
// Loop through the mask to find min distance
for(int js = 0; js <mw; js++) {
offset_mask = mwxjs;
offset_imp_j = offset_imp+wx(js—r);
for(int is = 0; is <mw; is++) {
imp_i = i+(is—r);
idx_mask = offset_mask+is;
idx_imp = offset_imp_j+imp_i;
tmpdist = sphereMask[idx_mask] — impPixels[idx_imp];
if (tmpdist < mindist) {
mindist = tmpdist;
mindistidx_mask = idx_mask;
mindistidx_imp = idx_imp;

}

}

if (mindistidx_imp != midindex) {
// if the middle of the rolling ball did not provide thgq
//min distance ,
// calculate new value from value found from rolling ba
//mask (mindist)
smoothed_pixels[offset_imp_new+(i—r)]
maxValuelnlmage — mindist;
dist_pixels[offset_imp_new+(i—r)] =
sphereMask [mindistidx_mask |;

} else |
// ...else no processing mneeded
smoothed_pixels[offset_imp_new+(i—r)]
impPixels[offset_imp+i];
dist_pixels[offset_imp_new+(i—r)] = (float) 0.0;

—

81

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

}

FloatProcessor ipDist = new FloatProcessor(new_w, new_h, dist_pixels , null);
ImagePlus impDist = new ImagePlus (
"Rolling ball mask value used for the filtered image for sphere " +
"mask with radius = " + rxscale + " um", ipDist); // microns
impDist.setCalibration (imp. getCalibration ());
impDist.show ();

// Shows filtered /smoothed image
FloatProcessor ipSmoothed = new FloatProcessor (new_w, new_h,
smoothed_pixels , null);

ImagePlus impSmoothed = new ImagePlus("Smoothed image created with sphere " +
"mask with radius = " + rxscale + " um", ipSmoothed); // microns
impSmoothed . setCalibration (imp. getCalibration ());
impSmoothed . show () ;
IJ .run("Fire");
// Subtract the filtered image from the original , creating a new image
// containing only the pores and show the resulting image
float[] output_pixels = new float[new_wxnew_h];
for(int j =1; j < (h-r); j++) {

offset_imp = wxj;

offset_imp_new = new_wx*(j—r1);

for(int i = r; i < (wr); i++) {

output_pixels[offset_imp_new+(i—r)] = impPixels[offset_imp+i] —

smoothed_pixels[offset_imp_new+(i—r)];

}

// Shows output image

FloatProcessor ipOutput = new FloatProcessor (new_w, new_h, output_pixels , null)
ImagePlus impOutput = new ImagePlus("Output image created with sphere " +

"mask with radius = " + rxscale + " um", ipOutput); // microns

impOutput. setCalibration (imp. getCalibration ());

impOutput.show () ;

IJ .run("Fire");

// Shows the original image, cropped (for comparison)
float [] cropped_pixels = new float[new_wsxnew_h];
for(int j = 1r; j < (h-r); j++) {
offset_imp = wxj;
offset_imp_new = new_wx*(j—r1);
for(int i = r; i < (wr); i++) {
cropped_pixels[offset_imp_new+(i—r)] = impPixels[offset_imp+i];
}
}
FloatProcessor ipCropped = new FloatProcessor(new_w, new_h, cropped_pixels, null
ImagePlus impCropped = new ImagePlus("Original image, cropped" , ipCropped);
impCropped . setCalibration (imp. getCalibration ());
impCropped .show () ;
IJ .run("Fire");

82

~

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.9 RollingBallOriginal_.java

Vs

import java.awt.Checkbox;
import java.awt.GridLayout;
import java.awt.Label;

import java.awt. TextField;

import ij.IJ;

import ij.ImagePlus;

import ij.ImageStack;

import ij.gui.GenericDialog;

import ij.measure.Calibration;

import ij.plugin. filter.PlugInFilter;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;

* Created on 06.apr.2005

* TODO To change the template for this generated file go to
* Window — Preferences — Java — Code Style — Code Templates
*/

*
@author Svein Fidjestol (SurfChar] API: Gary Chinga)

Separates out the rolling ball filtering routines from SurfChar]
by calling the SurfChar] API, and adds progress measurement.

*/

public class RollingBallOriginal_ implements PlugInFilter {

*
*
*
* RollingBallOvriginal plugin for Image]. Used for initial analysis in the thesis.
*
*

/*% The input image =/
private ImagePlus imp;

/% %
x Standard Image] plugin setup method
&
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
this.imp = imp;
return DOES 32;
}

/% %

* Standard Image] plugin run method .

*

* @param ip Selected region for processing
*/

public void run(ImageProcessor ip) {
boolean dPoreVol = true;

// Get some info from the input image
Calibration cal = imp.getCalibration ();
double pSize = cal.pixelWidth;
int w = ip.getWidth ();
int h = ip.getHeight ();
int mMask;
if (h<w) mMask=h; else mMask=w; // Calculates the smallest dimension
String units = imp.getCalibration (). getUnits ();

// Draw GUI

83

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

/* %

* % % ¥ x ¥

*/

void createlmagePlus(ImageStack imsTemp, String txt, Calibration c){

GenericDialog gd = new GenericDialog("RollingBallOriginal");
gd.setLayout(new GridLayout(2,2));

Label IblRadius = new Label("Rolling ball radius (Min="+(int)(4x*pSize)+
", Max="+(int)(mMaskxpSize /4)+" "+units+"): ");

TextField tfRadius = new TextField("5",0);

Checkbox cbDisplayVol = new Checkbox("Display pore image ", dPoreVol);
gd.add(1blRadius);

gd.add(tfRadius);

gd.add(cbDisplayVol);

IblRadius.setVisible (true);

tfRadius.setVisible (true);

cbDisplayVol.setVisible (true);

gd.showDialog ();

// Retrieve parameters from dialog
double bRadius = (double)(Double.parseDouble(tfRadius.getText()));
try {
bRadius = (double)(Double.parseDouble(tfRadius.getText ()));
if (bRadius<(int)(4xpSize)!||bRadius>(int)(mMask«pSize /4)){
IJ .showMessage("Invalid pore radius input (min="+(int)(4x* pSize)
" and max="+(int)(mMaskxpSize/4)+"), pore volume analysis " +
"will not be performed");
}
} catch (NumberFormatException e){
I] .showMessage("Invalid pore radius input, pore volume analysis will
"not be performed");

)

// Do the analysis
int bRad= (int)(bRadius/pSize);

int nSlices = imp.getStackSize (); // assume whole stack (and there is only 1 sli

int parameters=7, PVPar = 1;
float[][] roughnessValues= new float[nSlices][parameters];

int nn = roughnessValues[0].length—PVPar;
ImageStack imsPVolume = new ImageStack(w,h);

SurfacePoreVolume2 spvol = new SurfacePoreVolume2 ();
FloatProcessor ipPV = spvol.getPoreImage(ip, bRad); // get slice 1 only
roughnessValues [0][nn] = spvol.getPoreVolume (ipPV, bRad);
ipPV .setMinAndMax (0 ,0);
imsPVolume. addSlice ("Smoothed image created with sphere mask with radius = " +
bRadius + " um",ipPV); // microns
if (dPoreVol){
createImagePlus (imsPVolume, "Output image created with sphere mask " +
"with radius = " + bRadius + " um", cal); // microns
IJ .run("Fire");
ipPV .setMinAndMax (0 ,0);

Creates the volume output ImagePlus image

@param imsTemp Volume output image as a stack
@param txt Name of ImagePlus image
@param ¢ Calibration of the image

// Create new images using the new stacks.
ImagePlus impTemp = new ImagePlus (txt ,imsTemp);
impTemp. setCalibration(c);

impTemp. setStack (null ,imsTemp) ;

84

ce)

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

impTemp . show () ;

85

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.10 SimulatePrinting .java

import ij.IJ;

import ij.ImagePlus;

import ij.gui.Newlmage;

import ij.gui.OvalRoi;

import ij.measure.Calibration;

import ij.plugin. filter.PluglnFilter;
import ij.process.ImageProcessor;

/% %

* @author Svein Fidjestol

%

x SimulatePrinting plugin for Image]. Simulates printing at

* 300 dpi (dots per inch) == 12 dots per mm

x which places the center of each dot 85 microns apart.

x Takes as input a 32—bit float image and outputs a corresponding
= "printed " image with the ink points raised to the max value

% in the image. Intended to show some relationship between

* dot sizes and pore sizes.
*/

public class SimulatePrinting_ implements PluglnFilter ({

/*% The input image =/
private ImagePlus imp;

/% *

*« Standard Image] plugin setup method

*

* @param arg Plugin arguments

* @param imp The input image

*/

public int setup(String arg, ImagePlus imp) {
this .imp = imp;
return DOES_32;

}

/% %

x Standard Image] plugin run method.

*

* @param ip Selected region for processing
*/

public void run(ImageProcessor ip) {
Calibration cal = imp.getCalibration ();
String unit = cal.getUnit();
if (!unit.equals("um")) { // microns
IJ .showMessage ("Measurement unit for image must be um"); // microns
return;
}

IJ .run("Fire");

// Get the classname without trailing underscore
String className = getClass ().getName ();
if (className.charAt(className.length () —1) == "_") {
className = className.substring (0, className.length()—1);
}

// Get some info from the input image

float[] old_pixels = (float[]) ip.getPixels();
int width = imp.getWidth ();

int height = imp.getHeight ();

// Generate a new, empty image

ImagePlus new_imp = Newlmage. createFloatImage (imp. getTitle () + ": +
className , width, height, 1, Newlmage.FILL_WHITE);

86

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

new_imp.setCalibration(cal);
ImageProcessor new_ip = new_imp. getProcessor ();
// Copy the old image into the new one
float [] pixels = (float[]) new_imp.getProcessor (). getPixels ();
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
pixels[x + y * width] = old_pixels[x + yxwidth];
}
}

// Iterate through the dots and paint them
int r;
OvalRoi dot;
double max = new_imp. getStatistics ().max;
new_ip.setValue (max);
for(int j = (int) (cal.getRawValue(85.0) / 2.0); j < height —
(cal.getRawValue (85.0) / 2.0); j += cal.getRawValue(85.0)) {
for(int i = (int) (cal.getRawValue(85.0) / 2.0); i < width —
(cal.getRawValue (85.0) / 2.0); i += cal.getRawValue(85.0)) {
r = (int) cal.getRawValue(30.0);
dot = new OvalRoi(i,j,2%r,2%r,new_imp);
new_ip. fillPolygon (dot. getPolygon ());
}
}
// Set brightness wvalues and show result
new_ip .setMinAndMax (ip . getMin () ,ip . getMax ());
new_imp . show () ;
IJ .run("Fire");

87

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A11 Triangulation_.java

import java.awt.Checkbox;

import java.awt.GridLayout;
import java.awt.Point;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import java.util. ArraylList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;

import java.util.Iterator;
import java.util.List;

import java.util.Stack;

import ij.IJ;

import ij.ImagePlus;

import ij.gui.GenericDialog;

import ij.gui.Line;

import ij.gui.Newlmage;

import ij.gui.PointRoi;

import ij.plugin. filter.PlugInFilter;
import ij.process.ImageProcessor;
import ij.text.TextWindow;

/% %

* @author Svein Fidjestol

*

x Triangulation plugin for Image]. Takes as input a binary black—and—white
x image , in 8—Dbit grayscale format , with white as the background

x color and black single pixels as wvertices. Outputs either a Delaunay

x triangulated image, its corresponding Voronoi diagram , or both. If a

* Delaunay Triangulation is calculated , the plugin may also calculate

* the minimum spanning tree and the convex hull.

*

The Minimum Spanning Tree uses Prim’s algorithm

The Convex Hull uses Graham’s Scan algorithm

The Delaunay Triangulation uses a simple but suboptimal algorithm

* The Voronoi Diagram also uses a simple but highly suboptimal algorithm
*/

public class Triangulation_ implements PlugInFilter , ItemListener , Comparator {

* ¥

/x% The input image =/
private ImagePlus imp;

/% *
*« Standard Image] plugin setup method
*
* @param arg Plugin arguments
* @param imp The input image
*/
public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")){
showAbout ();
return DONE;
}
this .imp = imp;
return DOES_8G;
}

// Components

private Checkbox cbDelaunay;
private Checkbox cbMST;
private Checkbox cbConvexHull;
private Checkbox cbVoronoi;

88

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

/% %

x Standard Image] plugin run method. Quite monolithic for simplicity purposes
*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {
// Get the classname without trailing underscore
String className = getClass ().getName ();
if (className.charAt(className.length() —1) == "_") {
className = className.substring (0, className.length() —1);

}

// Get options
GenericDialog gd = new GenericDialog (className);
gd.setLayout(new GridLayout(5,1));

boolean delaunay = true;

boolean mst = false;

boolean convexhull = false;

boolean voronoi = false;

cbDelaunay = new Checkbox("Delaunay Triangulation" , delaunay);
cbMST = new Checkbox("Minimum spanning tree" , mst);
cbConvexHull = new Checkbox("Convex hull", convexhull);
cbVoronoi = new Checkbox("Voronoi Diagram" , voronoi);

cbDelaunay.addItemListener (this);

gd.add (cbDelaunay);
gd.add (cbMST);

gd.add (cbConvexHull);
gd.add(cbVoronoi);

cbDelaunay . setVisible (true);
cbMST. setVisible (true);
cbConvexHull. setVisible (true);
cbVoronoi.setVisible (true);

gd.showDialog ();
if (gd.wasCanceled ()) {
return;

}

delaunay = cbDelaunay. getState ();

mst = cbMST. getState ();

convexhull = cbConvexHull. getState ();
voronoi = cbVoronoi. getState ();

// Read in wvertices/points
ArrayList points = new ArrayList();
byte[] pixels = (byte[]) ip.getPixels ();
int width = ip.getWidth();
int height = ip.getHeight ();
int offset;
for(int j = 0; j < height; j++) {
offset = jxwidth;
for(int i = 0; i < width; i++) {
if (pixels[offset+i] == 0) {
points.add (new Point(i,j));
}

}

// Convert to simple array
int len = points.size();
Point[] points2 = new Point[len];

89

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

for(int i = 0; i < len; i++) {
points2[i] = (Point) points.get(i);
}

// Convert to RealPoint representation (for helper methods)
RealPoint [] points3 = new RealPoint[len];
Point tmpPoint;
for(int i = 0; i < len; i++) {

tmpPoint = (Point) points.get(i);

points3[i] = new RealPoint(tmpPoint.x,tmpPoint.y);
}

// Generate a new, empty image

ImagePlus new_imp = Newlmage.createBytelmage (imp. getTitle () + ": " +
className , width, height, 1, Newlmage.FILL_WHITE);
new_imp.setCalibration (imp. getCalibration ());

ImageProcessor new_ip = new_imp. getProcessor ();

byte[] new_pixels = (byte[]) new_imp.getProcessor (). getPixels ();

// Storage for triangulation data
HashSet lines = new HashSet();
HashSet point_tuple;

// Delaunay triangulation part
if (delaunay) {

/%

* The following code borrows heavily on example code from

* Delaunay.java which can be found at

* http ://www. cs. princeton .edu/introcs/35inheritance/

*

* The performance of the following algorithm wused is only n™4,
* but this probably doesn’t matter when using small datasets
* (as in 1000x1000 pixel surface analysis)

*/

// Determine if i—j—k is a circle with no interior points.
// If so, add the corresponding triangle to the triangulation
for (int i = 0; i < len; i++) {
IJ .showProgress (i, len*3-3);
for (int j = i+1; j < len; j++) {
for (int k = j+1; k < len; k++) {
boolean isTriangle = true;
for (int a = 0; a < len; a++) {
if (a==1ll a==j |l a==k) continue;
Circle ¢ = new Circle ();
c.circumCircle (points2[i], points2[j], points2[k]);
if (c.inside(points2[a])) {
isTriangle = false;
break;
}
}
if (isTriangle) {
point_tuple = new HashSet ();
point_tuple.add(points2[i]); point_tuple.add(points2[j]);
lines .add(point_tuple);
point_tuple = new HashSet ();
point_tuple.add(points2[i]); point_tuple.add(points2[k]);
lines .add(point_tuple);
point_tuple = new HashSet ();
point_tuple.add(points2[j]); point_tuple.add(points2[k]);
lines .add(point_tuple);

90

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Voronoi diagram generation and painting part
if (voronoi) {

RealPoint [][] nearest = new RealPoint[width][height];

for(int pt = 0; pt < points3.length; pt++) {
IJ .showProgress(points3.length —1 + pt, points3.length=*3-3);
// Draw regions with random value
new_ip.setValue (Math.random () * 256.0);
for(int j = 0; j < height; j++) {

for(int i = 0; i < width; i++) {
RealPoint q = new RealPoint(i,j);
if (nearest[i][j] == null || q.distance(points3[pt]) <

q.distance(nearest[i][j])) {
nearest[i][j] = points3[pt];
PointRoi pr = new PointRoi(i,j,new_imp);
pr.drawPixels (new_ip);

}

nn

String result = ;

// Delaunay triangulation painting part
if (delaunay) {
// Draw with light gray
new_ip.setValue (192.0);
ArrayList linesList = new ArrayList();
Line line;
Point pl,p2;
Object [] lineArray = lines.toArray();
for(int i = 0; i < lineArray.length; i++) {
IJ .showProgress(lineArray.length+*2—2 + i, lineArray.length*3-3);
point_tuple = (HashSet) lineArray[i];
if (point_tuple.size() < 2) // safety check
continue;
Iterator it2 = point_tuple.iterator ();
pl = (Point) it2.next();
p2 = (Point) it2.next();
line = new Line(pl.x,pl.y,p2.x,p2.y, new_imp);
linesList.add(line);
line . drawPixels (new_ip);

}

// Print out some info on the triangulation to the console
Collections.sort(linesList ,new Comparator () {
public int compare(Object arg0, Object argl) {

return (int) (((Line)arg0).getLength() — ((Line)argl).getLength
}

1)
result += "Length of edges in Delaunay triangulation\n";
for(int i = 0; i < linesList.size (); i++) {

Line 1 = (Line) linesList.get(i);

result += l.getLength () + "\n";
}
result += "Number of edges in Delaunay triangulation: " + lines.size() + "\n/

double averageLengthTRI = calcAverageLength(linesList);
result += "Average edge length in Delaunay triangulation:
averageLengthTRI + "\n";

"

+

if (convexhull) {
ArrayList chLines = grahamscanConvexHull(linesList);
// Print out some info on the convex hull to the console
Collections.sort(chLines ,new Comparator () {

public int compare(Object arg0, Object argl) {

91

Master’s Thesis Spring 2005

APPENDIX A. CODE LISTING

}

return (int) (((Line)arg0).getLength() —
((Line)argl).getLength ());
}
¥
result += "Length of edges in Convex Hull\n";
for(int i = 0; i < chLines.size(); i++) {
Line 1 = (Line) chLines.get(i);
result += 1.getLength () + "\n";
}
result += "Number of edges in Convex Hull:
double averageLengthCH = calcAverageLength(chLines);
result += "Average edge length in Convex Hull: " +
averageLengthCH + "\n";

"

// Draw the Convex Hull

new_ip.setValue (96.0);

Line 13, 14;

for(int i = 0; i < chLines.size (); i++) {
13 = (Line) chLines.get(i);
13 . drawPixels (new_ip);

if (mst) {
ArrayList mstLines = primMST(linesList);
// Print out some info on the minimum spanning tree to the
Collections.sort(mstLines ,new Comparator () {
public int compare(Object arg0, Object argl) {
return (int) (((Line)arg0).getLength() —
((Line)argl).getLength ());
}
¥
result += "Length of edges in Minimum Spanning Tree\n";
for(int i = 0; i < mstLines.size (); i++) {
Line 1 = (Line) mstLines.get(i);
result += 1.getLength () + "\n";
}
result += "Number of edges in Minimum Spanning Tree: " +
mstLines.size () + "\n";
double averageLengthMST = calcAverageLength (mstLines);
result += "Average edge length in Minimum Spanning Tree:
averageLengthMST + "\n";

"

// Draw the Minimum Spanning Tree
new_ip.setValue (32.0);
Line 13, 14;
for(int i = 0; i < mstLines.size (); i++) {
13 = (Line) mstLines.get(i);
13 . drawPixels (new_ip);

// Lastly , draw the black dots from source image to dest image

for (int y

= 0; y < height; y++) {

offset = yxwidth;
for (int x = 0; x < width; x++) {

}

if (pixels[offset+x] == 0) {
new_pixels[offset+x] = 0;

}

}

+ chLines.size () + "\n"

console

new_imp .show ();
TextWindow tw = new TextWindow ("Triangulation Result",
"Result from Triangulation:\n" + result, 400, 150);

92

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Needed for access from the compare() function,
// used for convex hull
private Point p0;

/% *
* Graham's Scan algorithm , calculates the convex hull
* of a set of points.
* NOTE: Would work with points only, line structure unneccessary
* but useful in the current context
*
* Details in Cormen, Leiserson , Rivest's
* "Introduction To Algorithms” 2nd ed chapter 33
*
* @param linesList Lines in the graph in the Image]
* Line format
* @return The lines (in Image] Line format) constituting
* the convex hull of the graph
*
/

private ArrayList grahamscanConvexHull(ArrayList linesList) {
// Retrieve points
ArrayList pts = new ArrayList();
for(int i = 0; i < linesList.size (); i++) {
Line curLine = (Line) linesList.get(i);
Point pl = new Point(curLine.x1,curLine.yl);
Point p2 = new Point(curLine.x2,curLine.y2);
boolean foundP1 = false;
boolean foundP2 = false;
for(int j = 0; j < pts.size(); j++) {
Point p = (Point) pts.get(j);
if (p.x == pl.x) && (p.y == pl.y)) {
foundP1 = true;
)

if (p.x == p2.x) && (p.y == p2.y)) {
foundP2 = true;
}
}

if (! foundP1)
pts.add(pl);
if (! foundP2)
pts.add(p2);
}

// Retrieve point with lowest y value,
// leftmost if two points with same y value...
int minYSoFar = Integer .MAX VALUE;
Line minYSoFar_1 = null;
boolean isFirstPointOnLine = true;
for(int i = 0; i < linesList.size (); i++) {
Line 1 = (Line) linesList.get(i);
if (1.yl < minYSoFar) {
minYSoFar = 1.yl;
minYSoFar_1 = 1;
isFirstPointOnLine = true;
} else if(l.yl == minYSoFar) {
if ((isFirstPointOnLine) & & (1l.x1 < minYSoFar_1.x1)) {
minYSoFar = 1.y1;
minYSoFar_1 = 1;
isFirstPointOnLine = true;
} else if ((!isFirstPointOnLine) && (1.x1 < minYSoFar_1.x2)) {
minYSoFar = 1.yl;
minYSoFar_1 = 1;
isFirstPointOnLine = true;
}
}
if (1.y2 < minYSoFar) {

93

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

minYSoFar = 1.y2;

minYSoFar_1 = 1;

isFirstPointOnLine = false;

} else if(l.y2 == minYSoFar) {

if ((isFirstPointOnLine) & & (1.x2 < minYSoFar_1.x1)) {
minYSoFar = 1.y2;
minYSoFar_1 = 1;
isFirstPointOnLine = false;

} else if ((!isFirstPointOnLine) && (1.x2 < minYSoFar_1.x2)) {
minYSoFar = 1.y2;
minYSoFar_1 = 1;
isFirstPointOnLine = false;

}
}
// ...and retrieve it from the point list
for(int i = 0; i < pts.size(); i++) {
Point p = (Point) pts.get(i);
if (isFirstPointOnLine) {
if ((p.x == minYSoFar_1.x1) && (p.y == minYSoFar_l.y1)) {
p0 = p;
break;
}
} else if (!isFirstPointOnLine) f{
if ((p.x == minYSoFar_1.x2) && (p.y == minYSoFar_l.y2)) {
PO = p;
break;

}

// Construct an array of the remaining points,
// sorted after increasing polar angle in relation
// with first point (p0)
ArrayList pts_rem = new ArrayList();
for(int i = 0; i < pts.size(); i++) {

Point p = (Point) pts.get(i);

if (1(p.equals(p0)))|

pts_rem.add(p);
}

}

Collections.sort(pts_rem , this);

// Stack containing first three points
Stack S = new Stack ();

S.push(p0);
S.push((Point)pts_rem.get(0));
S.push((Point)pts_rem.get(1));

// Main loop: Loop over remaining points
// and add correct points to theconvex hull
// by popping and pushing
Line l_tmp = new Line(0,0,1,1,imp); // dummy line
Point p_tmp = (Point)pts_rem.get(0);
for(int i = 2; i < pts_rem.size(); i++) {
Point p_i = (Point) pts_rem.get(i);
while (true) {
// Retrieve the two top elements
Point topP = (Point) S.pop();
Point nextToTopP = (Point) S.peek();
S.push(topP); // put it back

// Calculate angle between point next to top of stack,
// point attop on stack , and current point

double al = l_tmp.getAngle(topP.x, topP.y, nextToTopP.x,
nextToTopP.y);

94

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

*
*
*
*
*
*
*
*
*
*

double a2 = I_tmp.getAngle(topP.x, topP.y, p_i.x, p_i.y);

// Adjust as mneccessary
if (al <= 0.0) {

al = —1.0 % al;
} else |

al = 360.0 — al;
}

if (a2 <= 0.0) {
a2 = —1.0 % a2;
} else |
a2 = 360.0 — a2;
}
double delta_angle = al—a2;
if (((delta_angle < 0.0) && (delta_angle > —180.0)) ||
(delta_angle > 180.0)) {
S.pop(); // point on top of stack not part of convex hu
} else |
break;
}
}
S.push(p_i);
}

// Construct Line objects (edges) from points
ArrayList chLines = new ArrayList();
Point p_init, p_prev, p = null;
p_prev = p_init = (Point) S.pop();
while (!S.isEmpty ()) {
p = (Point) S.pop();
Line 1 = new Line(p_prev.x,p_prev.y,p.x,p.y,imp);
chLines.add(1);
p-prev = p;
}
// Add closing line (edge)
Line 1 = new Line(p.x,p.y,p_init.x, p_init.y,imp);
chLines.add(1);

// Extract the original lines , so they can be equals ()’ ed
// in later use
ArrayList chLines2 = new ArrayList();
for(int i = 0; i < linesList.size (); i++) {
Line 11 = (Line) linesList.get(i);
for(int j = 0; j < chLines.size (); j++) {
Line 12 = (Line) chLines.get(j);
if (((11.x1 == 12.x1) && (11.y1 == 12.y1) && (11.x2 == 12.x2)
&& (12.y2 == 12.y2))
FI((1T.x1 == 12.x2) && (11.y1 == 12.y2) &&
(11.x2 == 12.x1) && (11.y2 == 12.y1))) {
chLines2.add (11);

}
}

return chLines2;

Prim’s algorithm , calculates the minimum spanning tree
in a graph.

Details in Cormen, Leiserson , Rivest’s
“"Introduction To Algorithms” 2nd ed chapter 23

@param linesList Lines in the graph in the Image]
Line format

@return The lines (in Image] Line format) constituting

95

—

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

* the minimum spanning tree of the graph
*/
private ArrayList primMST(ArrayList linesList) {
// Retrieve points
ArrayList pts = new ArrayList();
for(int i = 0; i < linesList.size (); i++) {
Line curLine (Line) linesList.get(i);
PrimPoint pl = new PrimPoint(curLine.x1,curLine.yl);
PrimPoint p2 new PrimPoint(curLine.x2,curLine.y2);
boolean foundP1 = false;
boolean foundP2 = false;
for(int j = 0; j < pts.size(); j++) {
PrimPoint p = (PrimPoint) pts.get(j);
if ((p.x == pl.x) && (p.y == pl.y)) |
foundP1 = true;
}

if ((p.x == p2.x) && (p.y == p2.y)) |
foundP2 = true;
}

}

if (! foundP1)
pts.add(pl);

if (! foundP2)
pts.add(p2);

}

// Fill adjacency list in all points
for(int i = 0; i < pts.size(); i++) {
PrimPoint p = (PrimPoint) pts.get(i);
for(int j = 0; j < linesList.size (); j++) {
Line 1 = (Line) linesList.get(j);
if ((I.x1 ==p.x) && (l.yl ==p.y)) {
for(int k = 0; k < pts.size(); k++) {
PrimPoint p_tmp = (PrimPoint) pts.get(k);
if ((1.x2 == p_tmp.x) && (1.y2 == p_tmp.y)) {
p.adj.add(p_tmp);
}
}

} else if ((1.x2 ==p.x) && (1.y2 ==p.y)) {
for(int k = 0; k < pts.size (); k++) {
PrimPoint p_tmp = (PrimPoint) pts.get(k);
if ((1.x1 == p_tmp.x) && (1.yl == p_tmp.y)) {
p-adj.add(p_tmp);
}

}

// Initialize keys, setting key 0 to zero so this becomes
// the starting point
for(int i = 0; i < pts.size(); i++) {
PrimPoint p = (PrimPoint) pts.get(i);
if (i ==0)
p-key = 0.0;
else
p.-key = Double MAX VALUE;
p.parent = —2; // for sanity checking
}

// Initialize priority queue

ArrayList PQ = new ArrayList();

for(int i = 0; i < pts.size(); i++) {
PrimPoint p = (PrimPoint) pts.get(i);
PQ.add(p);

96

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Main loop
while (!PQ.isEmpty ()) {
// u <— Extract—min(PQ)
double minKey = Double .MAX VALUE;
int minKeyldx = —1;
for(int i = 0; i <PQ.size(); i++) {
PrimPoint p = (PrimPoint) PQ.get(i);
if (p.key <= minKey) {
minKey = p.key;
minKeyldx = i;
}
}

PrimPoint u = (PrimPoint) PQ.remove(minKeyldx);

// Find index of u
int u_idx = —1;
for(int k = 0; k < pts.size (); k++) {
PrimPoint p_tmp2 = (PrimPoint) pts.get(k);
if ((p_tmp2.x = x) && (p_tmp2.y == u.y)) {
u_idx

= u.

= k;
}

J

// Loop over v’s that are both in PQ and adjacenct to u
for(int i = 0; i <wu.adj.size(); i++) {

PrimPoint v = (PrimPoint) u.adj.get(i);

if (PQ. contains(v)) {

for(int j = 0; j < linesList.size (); j++) {
Line 1 = (Line) linesList.get(j);
if (((u.x ==1.x1) && (u.y == 1.y1) &&

(v.x == 1.x2) && (v.y == 1.y2))
[((v.x == 1.x1) && (v.y == 1.yl) &&
(u.x ==1.x2) && (u.y == 1.y2))) {
// Find index of v
int v_idx = —1;
for(int k = 0; k < pts.size (); k++) {
PrimPoint p_tmp3 =
(PrimPoint) pts.get(k);
if ((p_tmp3.x == v.x) &&
(p_tmp3.y == v.y)) {
v_idx = k;
}

}
// Store new parent and keys
double len = 1.getLength ();
if (len < v.key) {
v.parent = u_idx;
v.key = len;

}

// Read out minimum spanning tree into mstLines
// by connecting children and parents
ArrayList mstLines = new ArrayList();
Line firstLine = (Line) linesList.get(0);
for(int i = 1; i < pts.size(); i++) { // skip first point by starting at one
PrimPoint pl (PrimPoint) pts.get(i);
PrimPoint p2 = (PrimPoint) pts.get(pl.parent);
for(int j = 0; j < linesList.size (); j++) {
Line 1 = (Line) linesList.get(j);
if (((pl.x == 1.x1) && (pl.y == 1.y1) &&

97

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

(p2.x == 1.x2) && (p2.y == 1.y2))
[((p2.x == 1.x1) && (p2.y == 1
(pl.x == 1.x2) && (pl.y == 1.y2))
mstLines.add(1);

}
}

return mstLines;

}
/% *

x Helper method to calculate average length of several lines
*
* @param lines A List object containing two or more Line objects
* @return Average length of the lines
*/
private double calcAverageLength(List lines) {
double cumsum = 0.0;
Line line;
for(Iterator it = lines.iterator (); it.hasNext();) {
line = (Line) it.next();
cumsum += line.getLength ();
}

return (cumsum / lines.size ());

Compare method used in grahamscanConvexHull ()

*
*
*
* @param arg0 First point
* @param argl Second point
* @return Point with the lowest polar angle to a horizontal line
*/
public int compare(Object arg0, Object argl) {
Point pl = (Point) arg0;
Point p2 = (Point) argl;
Line 1 = new Line(0,0,1,1,imp); // dummy line
double angleWithPO_1 = 1.getAngle(p0.x, pO.y, pl.x, pl.y);
double angleWithP0_2 = 1.getAngle(p0.x, p0.y, p2.x, p2.y);
if (angleWithP0_1 <= 0.0) {
angleWithP0_1 = —1.0 * angleWithP0_1;
} else {
angleWithP0_1 = 360.0 — angleWithP0_1;
}
if (angleWithP0_2 <= 0.0) {
angleWithP0_2 = —1.0 x angleWithP0_2;
} else |
angleWithP0_2 = 360.0 — angleWithP0_2;
}
return (int) (angleWithP0_1 — angleWithP0_2);

/% %
x Callback method used for hiding and showing
* components in the dialog
*
* @param e The ItemEvent
*/
public void itemStateChanged (ItemEvent e) {
if (e.getltemSelectable () == cbDelaunay) {
if (e.getStateChange () == ItemEvent.SELECTED) {
¢bMST . setVisible (true);
cbConvexHull. setVisible (true);
} else |

98

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

cbMST . setVisible (false);
cbConvexHull.setVisible (false);

}
/* %

* About window .
*/
public void showAbout() {

IJ .showMessage (" About Triangulation...",
"Triangulation plugin for Image]. Takes as input a binary black—and—white"
"image, in 8—bit grayscale format, with white as the background" +
"color and black single pixels as vertices. Outputs either a Delaunay" 4
"triangulated image, its corresponding Voronoi diagram, or both.");

/*

*

The remaining helper classes and methods borrow heavily on example applet
* TriangulationApplet.java which can be found at

* http ://goanna.cs.rmit.edu.au/~gl/classes/TriangulationApplet.java

* http ://goanna.cs.rmit.edu.au/~gl/research/comp_geom/delaunay/delaunay . html
*/

/% *

x Circle class. Circles are fundamental to computation of Delaunay

* triangulations. In particular , an operation which computes a

x circle defined by three points is required.

*/

class Circle {
RealPoint c;
float r;

Circle () { ¢ = new RealPoint(); r = 0.0f; }

Circle (RealPoint ¢, float r) { this.c = c¢; this.r = r; }

public RealPoint center () { return c; }

public float radius() { return r; }

public void set(RealPoint ¢, float r) { this.c = c¢; this.r = r; }

VEES
« Tests if a RealPoint object lies inside the circle instance.
*
* @param p The RealPoint input object
* @return True if the RealPoint is inside , false otherwise
*/
public boolean inside(RealPoint p) {
if (c.distanceSq(p) < r * r)
return true;
else
return false;

}

/% *
« Tests if a Point object lies inside the circle instance.
*
* @param p The Point input object
* @return True if the Point is inside , false otherwise
*/
public boolean inside (Point p) {
return inside (new RealPoint(p.x,p.y));

}

/% *
* Compute the circle defined by three RealPoints (circumcircle).
*

* @param pl First point defining the circle boundary

99

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

* @param p2 Second point defining the circle boundary
* @param p3 Third point defining the circle boundary

*/
public void circumCircle(RealPoint pl, RealPoint p2, RealPoint p3) {
float cp;
cp = crossProduct(pl, p2, p3);
if (cp !'=0.0)
{
float plSq, p2Sq, p3Sq;
float num, den;
float cx, cy;
p1Sq = pl.x() * pl.x() + pl.y() * pl.y();
P25q = p2.x() * p2.x() + p2.y() * p2.y();
p35q = p3.x() * p3.x() + p3.y() * p3.y();
num = p1Sq#(p2.y() — p3.y()) + p25q*(p3.y() — pl.y()) +
p3Sqx*(pl.y() — p2.y());
cx =num / (2.0f % cp);
num = pl1Sq*(p3.x() — p2.x()) + p2Sq*(pl.x() — p3.x()) +
p35qx*(p2.x() — pl.x());
cy =num / (2.0f % cp);
c.set(cx, cy);
}
// Radius
r = c.distance(pl);
}
/% *
* Wrapper to use the circumCircle function on Point objects
* as well as RealPoint objects
*
* @param pl First point defining the circle boundary
* @param p2 Second point defining the circle boundary
* @param p3 Third point defining the circle boundary

*/

public void circumCircle(Point pl, Point p2, Point p3) {
circumCircle (new RealPoint(pl.x,pl.y),new RealPoint(p2.x,p2.y),
new RealPoint(p3.x,p3.y));

}

/% %
x Helper class representing a Point in float format , with corresponding
* helper methods
*/
class RealPoint {
float x, y;

RealPoint () { x =y = 0.0f; }

RealPoint (float x, float y) { this.x = x; this.y =y; }
RealPoint(RealPoint p) { x = p.x; y = p.y; }

public float x() { return this.x; }

public float y() { return this.y; }

public void set(float x, float y) { this.x = x; this.y =y; }

public float distance(RealPoint p) {
float dx, dy;

dx p.-Xx — X;

dy =p.y —y;
return (float)Math.sqrt((double)(dx * dx + dy * dy));

100

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

public float distanceSq(RealPoint p) {
float dx, dy;

dx = p.x — x;
dy = p.y - y;
return (float)(dx = dx + dy = dy);

}
/* %

* Vector class. Includes a few elementary vector operations as helper methods
*/
class Vector {

float u, v;

Vector () { u=v =0.0f; }

Vector (RealPoint pl, RealPoint p2) {
u = p2.x() — pl.x();

} v =p2.y() — pl.y();

Vector(float u, float v) { this.u = u; this.v = v; }

float dotProduct(Vector v) { return u % v.u + this.v x v.v; }

float crossProduct(Vector v) { return u x v.v — this.v x v.u; }

void setRealPoints (RealPoint pl, RealPoint p2) {
u=p2.x() — pl.x();

v =p2.y0) - pl.y();
}
}
/% %
* PrimPoint class. Used for representing points
* in primMST (Prim’s minimum spanning tree algorithm)
*/

class PrimPoint extends Point {
private static final long serialVersionUID = 1L;
public double key;
public ArrayList adj;
public int parent;

public PrimPoint(int x, int y) {

super(x,y);
adj = new ArrayList();

Vector dot product on RealPoint objects

*

*

*

* @param pl First point in dot product calculation

* @param p2 Second point in dot product calculation

* @param p3 Third point in dot product calculation

* @return The vector dot product

static float dotProduct(RealPoint pl, RealPoint p2, RealPoint p3) {
float ul, vl, u2, v2;

ul = p2.x() — pl.x();
vl = p2.y() — pl.y();
u2 = p3.x() — pl.x();

101

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

v2 = p3.y() — pl.y();

return ul * u2 + vl * v2;

*
Vector cross product on RealPoint objects

@param pl First point in vector product calculation

@param p2 Second point in vector product calculation

@param p3 Third point in vector product calculation

* @return The vector cross product

*/

static float crossProduct(RealPoint pl, RealPoint p2, RealPoint p3) {
float ul, vl, u2, v2;

* % x ¥ x ¥

ul = p2.x() — pl.x();

vl = p2.y() — pl.y();
u2 = p3.x() — pl.x();
v2 = p3.y() — pl.y();

return ul * v2 — vl *x u2;

102

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

A.12 Thresholder_.java

import java.awt.GridLayout;
import java.awt.Label;
import java.awt. TextField;

import ij.ImagePlus;

import ij.gui.GenericDialog;

import ij.gui.Newlmage;

import ij.plugin. filter.PlugInFilter;
import ij.process.ImageProcessor;

/* %

* @author Svein Fidjestol

*

x Thresholder plugin for Image]. Takes as input a 32—bit float
* image and outputs a corresponding (height —) thresholded

* 8—Dbit binary black—and—white image.

*/

public class Thresholder_ implements PluglnFilter {

/%% The input image =/
private ImagePlus imp;

/% *

* Standard Image] plugin setup method

*

* @param arg Plugin arguments

* @param imp The input image

*/

public int setup(String arg, ImagePlus imp) {
// TODO Auto—generated method stub
this .imp = imp;
return DOES _32;

}

/% *

« Standard Image] plugin run method. Quite monolithic for simplicity purposes
*

* @param ip Selected region for processing

*/

public void run(ImageProcessor ip) {
// Get the classname without trailing underscore
String className = getClass ().getName();
if (className. charAt(className.length() —1) == "_") {
className = className.substring (0, className.length()—1);

}

// Read in threshold wvalue with a dialog box
String currentSelection;

float threshold;

GenericDialog gd = new GenericDialog (className);
gd.setLayout(new GridLayout(2,1));

Label IblThreshold = new Label("Threshold");
TextField tfThreshold = new TextField("0.0" ,0);

gd.add(1blThreshold);
gd.add(tfThreshold);

IblThreshold.setVisible (true);
tfThreshold .setVisible (true);

gd.showDialog ();
threshold = Float.parseFloat(tfThreshold.getText());

103

Master’s Thesis Spring 2005 APPENDIX A. CODE LISTING

// Get some info from the input image
float[] pixels = (float[]) ip.getPixels ();
int width = ip.getWidth ();

int height = ip.getHeight();

// Generate a new, empty image

ImagePlus new_imp = Newlmage.createBytelmage (imp. getTitle () + ": " +
className , width, height, 1, Newlmage.FILL_WHITE);
new_imp.setCalibration (imp. getCalibration ());

byte[] new_pixels = (byte[]) new_imp. getProcessor (). getPixels ();

// Threshold the image
float pixel;
for(int j = 0; j < height; j++) {
for(int i = 0; i < width; i++) {
pixel = pixels[j*width+i];
if (pixel < threshold) {
new_pixels[j*width+i]
} else {
new_pixels[j*width+i] = (byte) 255;

(byte) 0;

}
}
}

new_imp .show () ;

104

