
Abstract

Intra-operative Magnetic Resonance Imaging is a new modality for image-guided ther-
apy, and Augmented Reality (AR) is an important emerging technology in this field.
AR enables the development of tools which can be applied both pre-operatively and
intra-operatively, thus helping users to see into the body, through organs and visualize
the relevant parts useful for a specific procedure.

The work presented in this paper aims at solving several problems in order to
develop an Augmented Reality system for real-life surgery in an MR environment.
Specifically, ways of correctly registering 3D-imagery with the real world is the major
problem of both Augmented Reality and this thesis. Emphasis is put on the static reg-
istration problem. Subproblems of this include: calibrating a video-see-through Head
Mounted Display (HMD) entirely in Augmented Reality, registering a virtual object on
a patient by placing a set of points on both the virtual object and patient, and calculat-
ing the transformation needed in order for two overlapping tracking systems to deliver
tracking signals in the same coordinate system. Additionally, problems and solutions
related to the visualization of volume data and internal organs are presented: Specifi-
cally, how to view virtual organs as if they were residing inside the body of a patient
through a cut, thought no surgical opening of the body has been performed, and the
visualization and manipulation of a volume transfer function in a real-time Augmented
Reality setting.

Implementations use the Studierstube and OpenTracker software frameworks for
visualization and abstraction of tracking devices respectively. OpenCV, a computer
vision library, is used for image processing and calibraton together with an implemen-
tation of Tsai’s calibration method by Reg Willson. The Augmented Reality based
calibration implementation uses two different calibration methods, referred to in lit-
terature as Zhang and Tsai camera calibration, for calibrating the intrinsic and extrin-
sic camera parameters respectively. Registering virtual-real objects and overlapping
tracking systems is performed using a simplified version of the Iterative Closest Point
(ICP) procedure solving a problem commonly referred to as the absolute orientation
problem. The virtual-cut implementation works by projecting a rendered texture of
a virtual organ and mapping this to a mesh representation of a cut which is placed
on the patient in Augmented Reality. The volume transfer functions are implemented
as Catmull-Rom curves, and have control points which are movable in Augmented
Reality. Histograms represent transfer functions as well as distribution of volume in-
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tensities.
Results show that the Augmented Reality based camera calibration procedure suf-

fers from inaccuracies in the sampling of points for extrinsic camera calibration due
to the dynamics present when wearing an HMD and holding a tracked pen. This type
of calibration should occur by sampling statically and averaging over several samples
to reduce noise. The virtual-real and overlapping tracking systems are also sensitive
to sampling, and care has to be taken in order to do this accurately. The virtual-cut
technique has been shown to increase the feeling of a virtual object residing within
the body of a patient, and the volume transfer function became easier to use after im-
plementing the histogram visualization, reducing the time needed to set up a transfer
function.

There are many issues which need to be solved in order to set up a useful medical
Augmented Reality implementation. This thesis attempts to illustrate some of these
problems, and introduces solutions to a few. Further developments are needed in order
to bring the results from this paper into a clinical setting, but the possibilities are many
if such an integration is achieved.
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Preface

There are many ways in which people can experience the world. Some sense their
way through their daily lives using just the touch of their fingers or the sounds which
surround them. Others may look at the world in black and white, while a few sense
sounds or touch by color patterns displayed by their brain. Usually people sense the
world using a multitude of natural sensors available to the human body. Still, even
more relevant information and knowledge can be gathered from the world around us
and it can be augmented to degrees which makes the augmentation a part of the world
as we perceive it. This augmented experience could feel as real to the person as the
other sensory input from the real world. Such an experience is what Augmented Real-
ity is all about, but it is a difficult task to achieve. For this to work, the augmentation
has to conincide with the real world in various ways. The problems involved with this
registration is the main problem of this thesis.

This Master’s thesis was written at the end of a computer science study at the
Norwegian University of Science and Technology, and conducted at the Interventional
Center, Rikshospitalet, Oslo, Norway.
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Chapter 1

Introduction

1.1 Background
Computers have in recent years been introduced to the operating rooms, and tendency
is to have them play an increasingly important role during surgery. The systems, which
help the surgeon during a procedure, are often called planning systems due to their
nature. Image guided surgery, image guided therapy, computer integrated surgery,
image guided operating robot and augmented reality in surgery are all titles that rep-
resent the same emerging technology which is on the way to revolutionize the field of
medicine.[1]

Minimally Invasive Surgery (MIS) is becoming a widespread trend in modern
medicine. This developing technology is a tool which inflicts less damage on tissues,
allowing for faster recovery time, and is generally more cost-effective for hospitals.
But even though these are great possibilities, there are also problems involved with
this field of medicine. The limiting factors of MIS are[1]:

• Immature and unreliable tools for real-time 3D navigation.

• MIS is developed by separate groups, causing fragmented research. which pre-
vents rapid development of the technology.

• Lack of cross-disiplinary researchers having insight into many important fields
of research.

These problems have become the main focus of an EU-project named ARIS*ER, co-
ordinated by the University of Oslo.[1]

ARIS*ER is a Marie Curie Research Network, and the name is an abbreviation
which can be expanded to: “Augmented Reality in Surgery”. The project spans over
a time-period of 48 months, starting late 2004. It is conducted by a multi-national
consortium consisting of several cross-disciplinary groups with different interests and
focus areas.[1]. The goals of the project are many, but overall, the main goals are to
educate researchers in the field of Augmented Reality so that the technology can be
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4 CHAPTER 1. INTRODUCTION

more easily adopted into real-life surgery. Thus leading the way for better and safer
healthcare for european citizens. Another major goal is to develop fast, reliable and
user-friendly software which can be used within Minimally Invasive Therapy (MIT).
MIT is a compound of Minimally Invasive Surgery, Image Guided Surgery and Inter-
ventional Radiology[2].

1.2 Problem formulation
Intra-operative MRI is a new modality for image-guided therapy. The Interventional
Center has an open MR scanner, where it is possible to perform surgery on a patient,
in the same time as imaging is conducted. A stereo-display system is installed with
video-see-through goggles. The project aims at developing the software to drive these
goggles, so that images from externally mounted video cameras can be co-registered
with MR images and tracking data creating an augmented reality for the surgeon.

This Master’s thesis, will address several issues in order to develop an Augmented
Reality system for use in real-life surgery in an MR-environment. Specifically, ways
of correctly registering 3D-imagery with the real world is the major problem of both
Augmented Reality and this thesis. Emphasis will be put on the static registration
problem. Some weight will also be left on dynamic registration if needed.

The thesis will be conducted at the Interventional center, Rikshospitalet, Oslo, Nor-
way.

1.3 Clinical background and motivation
At the Interventional Center, there is an open MR-scanner which is used for diagnosing
diseases, non-conventional positioning of patients in a static or dynamic study, and
performing surgery. The most beneficial property of such a system is that imaging can
be conducted while the surgeon still has access to the patient during the procedure[3].
However, the full potential of the machine is not utilized without the surgeon being
able to see a good and intuitive reconstruction of the data. Additionally, the data should
located in an optimal way relative to the surgeon and the patient. The natural way for
human beings to experience and interact with data, is through our senses. The more
the computer is able to interface with the human senses, the better we will be able to
interact with the information presented. To cite the wise words of my mentor at the
Interventional Center, Eigil Samset[3]:

“... Surgical- and interventional procedures are much more demanding, both tech-
nologically and practically. The key feature for successful MRI-guided interventions is
a well-designed interactive image guidance system. For each procedure special care
has to be taken in the design of instruments, the choice of image acquisition technique,
patient positioning, positioning devices, image guidance systems and human-computer
interface.”.
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This citation highlights the need for a good and interactive guidance system for
MR-imaging. By making such a system, the surgeon should be able to operate more
accurately, and the overall invasiveness of procedures can be reduced, thus reducing
the recovery time and expenses related to the procedure. But, of course, only being pre-
sented with data from the MR-scanner does not necessarily help the surgeon perform
better. The data must be presented in an easily understandable fashion and highlight
the problem at hand. Specifically, the system should ease the hand-eye coordination
problem often experienced during computer-aided procedures due to the data being
visualized indepenently of the patient location.

The conventional image guidance systems for intra-operative imaging are not re-
ally designed with good human-computer interfaces in mind. Instead, the images are
often conformant with the old radiological way of viewing the body through prede-
fined planes. Such a non-intuitive mapping between what the eye sees and the body
does is a skill which takes much time to learn, and might not function satisfactory in
stressfull situations.[3].

1.4 The Interventional Center
The Interventional Center is a research and development department located at Rik-
shospitalet University Hospital. The center is a cross-disciplinary group of people
working to further the development and usage of minimally invasive interventions and
patient treatment. The work presented in this thesis was conducted at the Interventional
Center during spring semester 2005.

1.5 Chapter organization
This Master’s thesis continues the work presented by the author in [5]; a project thesis
in the subject TDT4715 Algorithm construction and visualization, depth study con-
ducted autumn semester 2004. The work presented in the current document deals with
the calibration and registration problems found in Augmented Reality in addition to
visualization and interaction issues. All topics are covered with real-life medical ap-
plications in mind.

• Chapter 1 gives an introduction to the thesis and presents relevant background
information.

• Chapter 2 introduces various topics and background information including Aug-
mented Reality, volume graphics, MR-imaging, Minimally Invasive Surgery,
Human Computer Interaction, and more.

• Chapter 3 presents a short summary of the results achieved during the semester.
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• Chapter 4 describes the software and hardware development environments and
resources available at the Interventional Center.

• Chapter 5 discusses and elaborates on the registration problem of Augmented
Reality and illustrates the steps towards possible solutions to different problem
areas.

• Chapter 6 aims at introducing and solving problems related to the visual ap-
pearance of Augmented Reality applications in a medical setting.

• Chapter 7 discusses the work presented in an overall manner.

• Chapter 8 concludes the thesis.

• Chapter 9 presents possible future work.



Chapter 2

Background

2.1 Augmented Reality
2.1.1 What is Augmented Reality
1 Augmented Reality (AR) is a special form of Virtual Reality, and makes use of Head
Mounted Displays (HMDs), or modified optical instruments to superimpose meaning-
ful virtual images onto the user’s view of the real world[6]. Virtual Reality (or Virtual
Environment) is a completely immersive environment in which the user cannot see
the real world around him. In contrast, Augmented Reality superimposes a virtual
world on top of the real one, augmenting the world we see with virtual objects[6][9].
Augmented Reality is defined by Azuma[10] as:

• Combines real and virtual

• Interactive in real time

• Registered in 3D

AR is actually a subgroup of something called Mixed Reality[11]; A term that spans
the continuum between Virtual Reality and actual reality, and includes Augmented
Reality, Augmented Virtuality, and other mixed configurations. Augmented Virtuality
being a system which provides the user with additional sensory input through e.g.
smell, wind blowing in the face, etc. There are two main groups of Augmented Reality
systems.

• Systems using optical-see-through HMDs

• Systems using video-see-through HMDs

There are, however, AR systems using neither of these technologies. Sometimes only a
video projector or a portable screen is used instead of an HMD. An interesting project

1Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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8 CHAPTER 2. BACKGROUND

Figure 2.1: Optical-see-through HMD

Figure 2.2: Video-see-through HMD

at the Bauhaus University, Weimar[12], uses consumer cell phones with digital cam-
eras embedded as an Augmented Reality platform.[11]

Normal Virtual Reality HMDs do not have the capacity of viewing the real world in
addition to the virtual. This is because of the lack of sensors/cameras to relay pictures
of the real world to the displays on the HMD.

Optical-see-through HMDs (figure 2.1) have semi-transparent optical combiners
that let some light enter from the real world, but also projects an image of a virtual
world on the optical combiner, which reflects some of the light towards the user’s
eyes, thereby making it look like virtual objects are placed in the real world.

Video-see-through HMDs (figures 2.2 and 2.3) use cameras mounted on them to
collect images of the real world. These images are sent to a computer where they are
combined with generated images of the virtual world. The modified images are then
sent back to the HMD and shown on the displays.

If one compares optical-see-through and video-see-through approaches to Aug-
mented Reality, there are advantages and disadvantages to both. Optical-see-through
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Figure 2.3: An HMD which attempts to minimize the parallax error by making sure the
images captured by the video cameras are captured as if the cameras were at the true
eye locations[30]

HMDs have no delay when it comes to the imaging of the real world. The only images
to worry about, are those generated by the computer. Video-see-through approaches
make it possible to do further processing of images before they are sent back to the
user. Azuma[13] notes that medical applications mostly use the video-see-through
approach probably because of the flexibility in blending real and virtual, and for the
additional registration procedures available.

Even though Augmented Reality may seem new and interesting, it is by far a new
thought in the history of the computers. Already back in the 1960s, Sutherland and
Sproul experiemented with AR. Their idea was that the more natural the interaction
between human and computer becomes, the more useful the computer will be. By
1968, the first see-through HMD was a reality, and combined with a 3D tracking sys-
tem, a user was able to interact with the system by moving within the sensor area of the
tracker. The problem of the time was that computers were not fast enough to process
the data in a useful manner[14]. Since then, hardware has come a long way, but there
are still many problems not yet solved to a satisfactory level.

2.1.2 Uses of Augmented Reality
2 Possible uses of Augmented Reality is practially endless, but some of them are worth
mentioning. Medical visualization, maintenance and repair of complex equipment,
annotation, path planning, entertainment and military aircraft navigation and targeting
are just some of the possibilities[13][15]. The military is interested in AR because of
its ability to display information, the most important weapon in modern warfare, and
thus spends money on research and equipment. A collaborative augmented environ-
ment could also be used for problem solving, where people can see and interact with

2Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004



10 CHAPTER 2. BACKGROUND

the same augmented environment.
Within medicine, the interest in the field of Augmented Reality has grown the last

few years. This is probably because of the possibilities of training doctors and doing
more accurate surgery without opening patients wide open. The problem minimally
invasive surgery deals with, is how to augment the view of the surgeons, giving them
a view of the internals of a patient, without actually creating a big opening in the
patient’s body[13]. Usually, the surgeon will get video signals from camera(s) inside
the patient or from an MR or CT-scanner, and the information is displayed on a video
screen in the operating room, but research has been conducted on how to augment the
view of the surgeon and display information on the body of the patient, giving the
surgeon “X-ray vision”. A similar approach has been implemented in a system for
examining the inside of the human body using ultrasound. It is often very difficult to
get an accurate understanding of what is seen on the screen when doing ultrasound
of e.g. the heart[16]. Augmenting the view of the examinor could help him get a
better understanding of what is actually going on under the skin, thus being able to
make a more accurate diagnosis. Example uses of Augmented Reality within medicine
include viewing a 3D fetus inside the womb of a woman as if a virtual cut was made,
displaying information for guiding a biopsy needle through a breast tumor, and doing
laparoscopic surgery while images from small cameras are relayed to an HMD[17].
A concrete example includes the Mederpa[18] system, which is a medical AR system
for minimally invasive interventions that is being set up to support areas such as heart
surgery, radiation oncology and respiratory medicine.

This thesis builds on the approach of previously mentioned projects, and deals with
the visualization of volume data from an open magnetic resonance (MR) scanner on
top of a patient, giving the surgeon more accurate information of what is going on
under the skin.

For an excellent and more comprehensive introduction to Augmented Reality, the
interested reader is referred to papers [13] and [15]. For more on different Augmented
Reality implementations, the reader is referred to [19], a paper which compares and
evaluates some of these.

2.1.3 The registration problem
Augmented Reality enhances the world we see with virtual objects. The placement
of the virtual objects relative to the real ones, referred to as the registration, is of
major importance in order to make the combined world believeable. Registering the
systems and data in an Augmented Reality implementation for use in surgery is not
an easy task. Several factors have to be considered. One such factor is to ensure the
registration is as correct as possible in order to perform accurate and safe medical
procedures. Another, and often colliding, factor is the speed in which the registration
needs to be performed. Latency could reduce or destroy the feeling of the virtual
and real worlds existing together. This brings us to the definition of the registration
problem: “Making the real world and the virtual world appear to exist together, not as
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distinct universes, but as one unit”. Unfortunately, registering virtual objects with the
real world is a hard problem to solve. One of the reasons for this, is the fact that human
beings are very good at detecting small misregistrations. Even just a few pixels wrong
is easily perceived.[20][22]

Registration errors fall into two main categories: static and dynamic. Dynamic
registration error is what occurs due to delays within the system when the user moves.
It is often the source of the largest registration error. Static registration error is the
mismatch experienced when the user stands completely still, and is the basis for the
dynamic registration. Both of these issues are extremely important within the domain
of Augmented Reality. In fact, registration is also a problem in Virtual Reality, but is
not as obvious because there is no mixing of the real world.[10][9]

The static camera calibration process can be divided into two main parts:

• Calibrating the intrinsic camera parameters

• Calibrating the extrinsic camera parameters

The intrinsic camera parameters are those which only are dependent on the internal
camera specific attributes. These include camera optics, distortions, dimensions, etc.
The extrinsic camera parameters are those which depend on the placement and orien-
tation of the camera in the world coordinate system.

The terms registration and calibration are often used synonymously. This is not
completely accurate. In this thesis, the word registration will be used as being the
alignment of virtual objects and their associated real counterparts[21]. While calibra-
tion will mean the process of obtaning the registration.

2.2 Volume Visualization and Magnetic Resonance Imag-
ing

2.2.1 Volume visualization
3 Volume data is a set of 3D entities that may hold information inside them, and volume
visualization is the process of extracting information from volume data and displaying
this information using a computer. The volume data is often gathered by sampling
using e.g. Magnetic Resonance Imaging (MRI), or Computer Tomography (CT), but
could also be generated by other sampling, simulation or modeling techniques.[23]

Volume visualization is concerned with synthesis, modeling, manipulation, and
rendering of volumetric objects, stored in a volume buffer of voxels, and most of-
ten uses sampled or computed datasets, while volume graphics (as a distinction from
volume visualization) usually is concerned with modeled geometric scenes.[23] The
process of creating 3D voxel representations that best describe geometric objects is

3Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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called voxelization or 3D scan conversion. Basically a discrete 3D database is created
that represents continuous objects.[23]

The volume data is a set, S, of values, v, at a location (x, y, z). The value can
be just a binary value, or a more complex value, like a vector. The data could be
sampled at random locations in space, but most usually, the samples are taken with
regular spacing in a limited domain. When samplings are taken along the three axes
with regular spacing, the sampling is called isotropic. If the sampling along each axis
is regular, but have different sampling distances along the three axes, the sampling is
called anisotropic. In these cases, the samples are located on a regular grid which
is called a volume buffer (3D array). There are also other data structures used to
represent the 3D volume data[23]:

• Rectilinear grid - the cells are axis-aligned, but the spacing between the grid
elements is irregular. Often called computational space.

• Curvilinear grid - If a rectilinear grid is non-linearly transformed while keeping
its topology, it becomes curvilinear. Often called physical space.

• Unstructured grid - For all other grids. These are grids whose connectivity
have to be specified explicitly because of the cells having arbitrary shapes.

The set S of points with values can have an associated function f(x, y, z) that
also is defined for regions not having any associated value. If (x, y, z) is a point in
space with a value, and there exist neighboring points also having values, f defines
the regions between the points. If f is a zero-order function, the nearest defined point
value will be returned by the function. When the grid is regular, the spacing between
each point is the same, and the function defines square regions with equal volumes.
These square regions are called voxels.[23]

Many techniques have been developed to visualize volume data, and several of
these are based on already known primitives such as triangles. Surfaces are then ex-
tracted from the volume data as approximations, and much of the existing volume
information is lost. Surface techniques are much easier and faster to render in many
circumstances, but on the downside, they do not provide the massive amount of infor-
mation available from the volume representation.[23]

Direct volume rendering (DVR), is the rendering of the entire volume data at
once without the extraction of iso-surfaces or other surface approximations. This way
of displaying volume data has been increasingly popular especially within medicine,
where CT and MR data are collected and used as a basis for e.g. surgery. After the
introduction of hardware accelerated 3D textures and GPU programming, this way of
visualizing volume data gets a great deal of focus. There are currently two differ-
ent hardware accelerated volume rendering techniques being used; object aligned, and
view-aligned. The object-aligned approach has the down side that three copies of the
volume has to be sent to the graphics hardware - one for each major axis. View-aligned
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volume rendering does not have this problem as the graphics hardware does the inter-
polation of the volume data set so it always is sliced with faces towards the viewer. [24]
One of the important features of volume representation is the ability to represent the
inner structure of objects. Volume visualization has advantages over surface graph-
ics by being viewpoint independent, insensitive to scene and object complexity, and
lending itself to the realization of block operations, CSG modeling and hierarchical
representation. [23]

Transfer function specification is also known as intensity classification, and plays
an important role within volume visualization[24]. What transfer function specifica-
tion does, is creating a mapping between the intensity values of the volume, and color
and opacity values. Each intensity in the volume data gets a specific color and a spe-
cific opacity defined by the transfer function. Thus, the volume data will be rendered
with different transparency and color depending on the transfer function.

Volume scenes often require a substantial amount of memory. A scene using a
5123 grid with two bytes per voxel will need 256MB of memory for storing all the
data. This has not been possible until recently, but as the cost of memory falls, and
the amount available in graphics cards increases, volume visualization/graphics will
be more and more widespread in the years to come.

2.2.2 Magnetic resonance imaging
4 Magnetic Resonance Imaging (MRI) was introduced in the early 1980s. Since then,
the number of medical procedures taking advantage of the technology has been ever
increasing. MRI has among other things been very important in diagnosing problems
within the human body.[3]

Magnetic Resonance Imaging is a process where an electromagnetic field is gener-
ated to create an image of the internals of objects. MR uses the principles of nuclear
magnetic resonance to view structures inside the human body in a non-invasive way.
Protons within the nucleus of atoms contain electrical charge, and while spinning cre-
ate a magnetic field. When these are spinning in a strong magnetic field, they align
themselves with the field in a parallel or antiparallel way. When radiofrequency radia-
tion is sent towards the atoms in this configurations, some protons will absorb radiation
and momentarily be shifted out of alignment or resonate. The radio frequency the dif-
ferent atoms absorb uniquely identifies the type of atom and its chemical environment
(chemical shift). As the external radiofrequency radiation is turned off, the protons
will return to their normal alignment in the magnetic field and release a small amount
of radiation at exactly the same frequency as caused them to shift out of alignment.
This radiation is picked up by sensors mounted on the scanner. One of the limitations
of MR scanners is that they only can be used on magnetic nuclei. This is the reason
why MR imaging usually is targeted at hydrogen nuclei since they make up about one
third of the atoms in the human body, and the resulting images generated give a map

4Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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over the distribution of water and lipids within the tissues.[25]
MR scanners can be found with field strengths varying from 0.02T to 3.0T (tesla).

Different types of magnets can be used for the scanners. The three possible types are
permanent, resistive and superconducting. The permanent magnets use magnetic
materials which always produce magnetic fields. They are inexpensive, but are very
sensitive to temperature, and are huge and heavy. Resistive magnets are made by coils
wrapped around a bore, and electricity is run through the wires, thus generating an
electric field. These magnets are relatively cheap to make, but require huge amounts
of electricity to generate strong magnetic fields, making them quite expensive to use.
The most used magnets in MR scanners are superconducting magnets. These magnets
are very much equal to resistive magnets, but are supercooled using liquid helium to
temperatures close to absolute zero. The cooling decreases the power consumption
and makes the scanner more economic to use.[25]

In practice, a human is placed on a bore inside the MR scanner and a radiofre-
quency coil or antenna is placed over the part of the body to be scanned. The magnetic
field generated by the magnets create distinct planes which all have different resonance
conditions. This makes it possible to collect data directly from a specific slice without
having to move the patient. The data collected by the MR scanner is then sent to a
computer for calculations before cross-sectional images of the body are created.[25]

The design of MR scanners to be used while doing surgery is a balance between
different requirements. On one side, the accessibility of the patient, and on the other
side, the strength of the magnetic field, which has strong impact on image quality.[25]

The use of real-time MR imaging to facilitate minimally invasive therapeutic pro-
cedures is referred to as interventional MR imaging whereas guidance to facilitate
open surgical procedures is usually referred to as intraoperative MR imaging. Col-
lectively these two procedures fall under the acronym IMRI. IMRI falls into three
main categories depending on how the patient is accessed during the procedures[25]:

• Moving the patient to the magnet

• Moving the magnet to the patient

• Operating within the magnet

There does not exist a lot of IMRI scanners around the world. [25] reports that just
40 IMRI systems were installed around the world at the beginning of 2003.

2.3 Minimally Invasive Surgery
2.3.1 What is Minimally Invasive Surgery
Minimally Invasive Surgery (MIS) is a procedure carried out by entering the body
through small incisions or natural body cavities. The procedure attempts to minimize
the trauma inflicted on the patient[7]. Other beneficial factors of MIS include[4]:
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• Reduced risk of infection

• Reduced cost

• Reduced recovery time

All of these factors make MIS a promising and widely researched topic in hospitals
and research laboratories around the world. However, there are problems related to
this type of surgery. In short, the surgeon suffers under these procedures[26]:

• Using smaller incisions, the doctor has less space to work with

• The dexterity of the surgeon is greatly reduced

• The surgeon loses the feeling of touch within the body; this because most instru-
ments do not support tactile feedback

Hence, the surgeon will not be able to fully utilize the human senses[26]. The loss of
tactile feedback is perhaps the biggest disadvantage related to MIS. The sense of touch
is important for locating hidden anatomical structures and evaluating tissue properties.
For example, locating a tumor is often done by feeling the denser structures it has rel-
ative to an organ[26]. Advances in technology have reduced some of these problems,
and will help resolve many more in the future.[27]

Minimally invasive procedures include: endoscopy, laparoscopic surgery, cryosurgery,
angioplasty, stereotactic surgery, and many more[7].

2.3.2 A historical perspective
The history of Minimally Invasive Surgery is relatively long. Already as early as 1804,
the “Lichtleiter” was introduced by Philipp Bozzini. The initial developments did,
however, only rely on natural access through body openings. As time progressed, the
technology remained nearly unchanged. The early developments in medical visualiza-
tion during the 1990s was restricted by the hardware available; keeping computer aided
surgery on a research level only[27]. Only in very recent years has the technology ma-
tured to a level taking MIS out of research labs and into the operating rooms.[28] The
introduction of miniature cameras, fiberoptic cables and new instruments made this
transition possible.[7]

For more on the current status and problems related to Minimally Invasive Surgery,
the interested reader is referred to [27].

2.4 Human Computer Interaction
2.4.1 What is Human Computer Interaction
Human Computer Interaction (HCI) is defined by Rogers as being[31]:
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• The study of relationships between people and computers/computer-mediated
information.

• The design, development and evaluation of models, systems, techniques and
applications from a human-centered perspective.

Basically, the field of HCI is concerned with how to improve the interaction between
human beings and computers by making the computers easier to use.[8]

Research has been conducted on the use of human-computer interfaces, and much
is known about the dynamics of human-computer interaction for different kinds of peo-
ple. However, the multitude of interaction methodologies that exist make it impossible
to deliver a “perfect” interactive system.[32]

When programmers develop software for a computer, they have to consider the
nature of the computer. But the nature and needs of the computer are often com-
pletely different from the nature and needs of the human who will eventually use it. To
make things worse, programming languages do not really build around the concept of
human-computer interaction, thus the programmer has to fight with the languages to
implement this, and often ends up creating an interface which is full of functionality
and works great for other engineers, but not so good for the end user. A well-designed
human computer interaction system needs to have high usability for the end users.
More on this in the following section.[31]

2.4.2 Usability and Usability Engineering
Usability is a major part of Human Computer Interaction. A good interface needs
to have high usability, but what is it really? The ISO9241 standard defines usability
as[31]: “is a measure of the effectiveness, efficiency and satisfaction with which spec-
ified users can achieve specified goals in a particular environment”. Usability is a
combination of factors which work together in creating a total user experience with
the system. Some of the usability factors are[33]:

• How easy it is to learn

• How effective it is to use

• How memorable the system is

• How often errors occur and how severe they are

• How satisfied the user is

The goal of software designed around a user, is to optimize the usability of the soft-
ware. This could, to some degrees, be done by usability engineering[31]. Usability
engineering is a methodical approach aimed at developing a user-centered product that
works for the users, and includes a set of methods which, applied at the right time, can
aid the development of user-centered software. Some of the methods include[31]:
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• Gathering requirements

• Designing

• Developing prototypes

• Testing prototypes

• Evaluating design alternatives

• Analyzing usability problems

• Proposing solutions

• Testing the interface with users

Traditional software development has usually relied on the well-known waterfall
model, where software is developed in stages and cycles occur if needed. User-
centered design is different from this traditional model in several respects. User-
centered development is[31]:

• User-centered (not data-centered). Users are a part of the whole process as
much as possible

• Interdisciplinary. User-centered software is inspired from several different
fields, including: art, psychology, computer science, etc.

• The software has to be tested rigorously and revised as needed, especially before
the final implementation.

The user-centered software life-cycle can be seen in figure (2.4). For more theoretical
and concise background on HCI and usability, the interested reader is referred to [31]
and [33].
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Figure 2.4: Star life cycle - Conceptual development model for user-centered applica-
tions. Order is not as important as going through all stages of development



Chapter 3

Summary of Results

Work conducted during the thesis has not focused on a single problem alone. Several
subproblems within registration and calibration have been investigated and solutions
to some of these proposed. Additionally, topics within visualization of data have been
investigated and possible solutions presented. The following list gives a short overview
of the results achieved during spring semester 2005:

• A calibration application for video-see-through Head Mounted Displays (HMDs)
in the Studierstube Augmented Reality framework. This was the main problem
for the thesis.

• A method for registering a virtual object on a real patient by point-point corre-
spondence.

• A method to automatically register two tracking systems with eachother after
sampling a moving tracked device in both tracker coordinate systems.

• A virtual cut technique which makes it possible to view a virtual object as if
it were placed inside a cut on the patient, though the patient is not surgically
opened.

• A way of performing volume transfer function manipulation in Augmented Re-
ality. The previous approach has been improved upon, and additional features
include histogram visualization.

All results play their part in a medical Augmented Reality system: Having calibrated
the cameras is a prerequisite for convincingly blending real and virtual realities. Be-
ing able to register virtual objects relative to real ones is needed for matching virtual
and real scenes and objects with eachother. Having placed a virtual cut on a patient,
surgery could be performed through minimally invasive procedures using computer
visualized images of volume data acquired from an MR-scanner as a reference. The
visibility and color properties of the volume could be manipulated in real-time using a
transfer function in order to bring out areas of interest. All of this could be tracked by
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several heterogeneous tracking systems where signals are transformed into a common
reference coordinate system.



Chapter 4

Development Environment

4.1 Hardware
4.1.1 Signa SP MR-scanner
The MR-scanner is a 0.5T Signa SP (Special Procedures) scanner by General Electric
Medical Systems. The scanner is an open MR-scanner, meaning it consists of two
donut-shaped rings with a 60cm gap between. In this gap, imaging can be conducted
in an open fashion, making surgery possible during scanning. The scanner has RF-
shielded monitors, and an integrated optical FlashPoint 5000 tracking system is located
between the two bores, above the patient being scanned. The system consists of three
infrared cameras tracking the movement of instruments when they enter the tracking
area of the cameras. The MR-scanner can be seen in figure (4.1).[3]

4.1.2 CardioView Head Mounted Display
The Head Mounted Display (HMD) used for testing was a CardioView HMD, running
at a resolution of 640×480. This is the minimum resolution acceptable for such HMDs,
and a better HMD with a wider field of view is desired, but such an HMD should not be
too big. For the wearer to feel comfortable and accept the virtual world displayed, the
HMD has to be light and easy to wear. The CardioView HMD has separate channels
for right and left eye, so synchronization of graphics cards was not necessary when
connecting two separate computers. A slightly modified version of the CardioView
HMD is found in figure (4.4).

4.1.3 HMD in MR-scanner environment
The HMD specially developed for the Interventional Center and colocated with the
MR-scanner, is currently of unknown type. A normal HMD was modified slightly
to tolerate the harsh MR-environment without breaking. This HMD will be used for
implementing the system described in this thesis in a clinical setting.
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Figure 4.1: The 0.5T Signa SP Open MR-scanner located at the Interventional
Center[3]

4.1.4 Unibrain Fire-i
The digital cameras mounted on the front of the CardioView HMD are of the type
Unibrain Fire-i - firewire cameras. They have much higher framerate than correspond-
ing USB cameras, producing about 30 frames per second at 640 × 480. Even though
the cameras are able to operate at this speed, there still exists latency in the grabbing
system, causing images to appear a little later than they actually were fetched from the
cameras. This could cause undesired effects in an Augmented Reality system.

4.1.5 FlashPoint 3000 and 5000
The tracking system used for testing was a FlashPoint 3000 system, and the system
located in the MR-lab is a FlashPoint 5000 system. Both of which were manufactured
by Image Guided Technologies, Inc. These are optical tracking systems using infrared
diodes and cameras. There are three cameras which together find the spatial location
of the tracked units in the tracker coordinate system. One of these systems is illustrated
in figure (4.2).

Some problems are encountered when using optical tracking systems. The major
problem is the line-of-sight needed from the cameras to the light-emitting diodes on
the tracker. If the diodes are not visible from the cameras, tracking will stop, and
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Figure 4.2: The tracking system used for testing at the Interventional Center. This
is a ceiling-mounted optical tracking system. A tracked pen and additional tracked
tools can be attached and mounted on e.g. the PIP or HMD. A problem which became
apparent with the tracked pen, having all light- emitting diodes on a line, is the fact that
rotation around one of the axes will not generate correctly oriented tracking signals.

registration will suffer. This can easily be the case if e.g. a hand or person come
between the cameras and the tracker units. The current system also has a pretty small
working area. A new optical tracking system will be installed at the Interventional
Center in the future, which has a much greater working area and performs better than
the current systems.

4.1.6 Homemade device for holding cameras and optical tracker
To be able to use the CardioView HMD with the firewire cameras, the cameras had
to be attached in some way. For this purpose, a holding mechanism was constructed
and fixed to the HMD. In addition to the cameras, a mechanism for attaching a head
tracker was added to the device. A schematic view of the holding mechanism is seen
in figure (4.3), and an image of the CardioView HMD with the holding mechanism in
place is seen in figure (4.4).

4.1.7 System overview
The different hardware parts described in the previous sections, have been composited
into one unified working system. Several computers are connected to eachother in a
network configuration. These computers have different roles in the network. One or
two are used to render to a stereo display system worn by the user. An other computer
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Figure 4.3: Schematic view of device developed to hold cameras and tracker unit on
the CardioView HMD. This device is mounted in front of the displays of the HMD,
attempting to reduce the parallax error which is bound to appear in this setup.

Figure 4.4: An Augmented Reality enhanced CardioView HMD. The cameras are
mounted upside down in front of the displays of the HMD to reduce the parallax er-
ror. The tracker is located above the cameras to be easily seen by the tracking system
located in the ceiling.
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is connected to the tracking system, transferring data to listening computer(s). When
two rendering slaves are used, an other computer is added and acts as the master for
the slaves. The job of the master computer is to distribute the scenegraph, which is
a list of 3D objects in a graph, to the rendering slaves. The HMD has two cameras
attached in front of the displays. They gather images from the real world and deliver
them to the rendering slave(s), where the images can be processed and renderings of
the virtual world can be added appropriately. How these systems look schematically is
seen in figure (4.5).

4.2 Software

4.2.1 OpenGL
OpenGL is a platform independent open standard for high-performance hardware-
accelerated 2D and 3D graphics. The OpenGL interface consists of several hundred
functions which enable the visualization of complex scenes using the graphics card
processor. The specification is a leading standard, competing with Direct3D from Mi-
crosoft, which is not a platform independent library. The OpenGL library only knows
about rendering functionality, and does not consern itself with windowing system or
input/output devices. Higher-level functionality has to be handled by the application
programmer, or other libraries which build upon OpenGL. One such abstracting library
is Coin3D, an OpenGL derived library following the Open Inventor standard, which
hides many of the difficulties of OpenGL from the application programmer, allowing
her/him to consentrate on the functionality of his/her software.[34]

4.2.2 Coin3D
Coin3D, based on the Open Inventor standard, is an object-oriented software library
of classes and functions which, among other things, constitute nodes in a scenegraph.
The library is a set of tools and buildingblocks, which makes the programmer able to
create 3D-graphics applications with minimum programming effort. The nodes in the
library are easily extended and can be modified to suit application needs. The Inventor
file format, which is extensible through adding new nodes, is a portable way of writing
Inventor files with programmable nodes[39]. The Coin core system is window-system
independent. The binding to the graphical user interface is done by GUI-libraries.
Some of these bindings include Qt, Gtk, Xt, and more. Coin3D also handles other is-
sues than rendering, e.g. picking, searching and querying the database and calculating
the bounding box.

Coin3D is fully compatible with Open Inventor 2.1, and also adds support for more
nodes and more advanced features, including VRML97 support and multiprocessor
rendering.[35]
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Figure 4.5: System overview. Illustrates the two configurations typically adopted when
working in Augmented Reality. One or two computers are used as rendering slaves,
and in the case of two computers, an other computer acts as a master, controlling
the two slaves. When just using one machine for rendering, the same computer has
to be both master and slave, thus it will receive tracking signals, camera signals and
perform the rendering by it self. MR-data is gathered from an other computer over the
network.
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4.2.3 Studierstube
Studierstube is a GPL licensed development environment for creating Augmented Re-
ality applications. The name is german, translates to “study room”, and is meant
to indicate a place where special computer equipment is available to create insight.
Studierstube has support for specific hardware, and also provides an application pro-
gramming interface called StbAPI. The programming is done using C++, and follows
concepts found in the Open Inventor graphics toolkit. Actually, most classes found
in Studierstube are made as Open Inventor nodes - making the design very uniform.
Applications are a set of nodes in a scenegraph, and the scenegraph is read from Open
Inventor files. To add further capabilities to Studierstube, addon nodes can be created
and dynamically loaded.[36]

Studierstube was made to support most any type of hardware setup by making
it a straight forward process to add support for new hardware devices. For tracking
support, OpenTracker is used. OpenTracker is a C++ library which provides an ab-
straction between hardware and tracking coordinates. The location of tracked devices
is sent into Studierstube as 3D events in the scenegraph.[36]

Working with Studierstube is done by executing an application loader program,
thereby displaying a 3D graphical user interface (GUI). Applications are loaded by
clicking with a pen on menu items in the 3D GUI. Even multitasking is possible with
the system. Controlling application execution is done using a Personal Interaction
Panel (PIP) which is a GUI component making it possible to start, stop and manage
application programs.[36]

A special feature of Studierstube, is the ability for multiple users to interact to-
gether in the same augmented environment where each user get their own pen and
PIP.[36]

4.2.4 OpenTracker
OpenTracker is a tracking framwork which acts as middleware for Studierstube and
other applications in the need for hardware abstraction of tracking devices. Tracking
signals provided by OpenTracker may come from a multitude of different hardware
configurations, but this is invisible to the application programmer. Tracking signals
might even come from a separate source which broadcasts signals over the network.
OpenTracker reads this input and routs the data to listening applications.[40] Open-
Tracker is based on an object oriented design and XML, and attempts to achieve noth-
ing less than write once, input anywhere.[40][41]

4.2.5 OpenCV
OpenCV is an open source computer vision library released by Intel, and provides C-
functions and C++ classes which interface with powerful image processing algorithms.
This enables the programmer to easily perform advanced operations on images. One
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Figure 4.6: The software hierarchy for which most software developed through the
thesis is based on.

of the important parts built into OpenCV, is the calibration algorithm developed by
Zhang.[37][38]

The library is mainly intended for usage in real-time computer vision applications,
where interesting areas span from object identification, face and gesture recognition,
motion tracking to mobile robotics. The functions in OpenCV are high-performance,
low-overhead operations performed mainly on images. Though having alot of low-
level functionality, OpenCV is meant to be a high-level abstraction of the underlying
algorithms. Thus making it possible to easily perform operations like: feature detec-
tion, tracking, 3D reconstruction, and camera calibration, among others. The soft-
ware has specifically been optimized for Intel processors, performing best if this is the
case. OpenCV is designed to function together with the Intel Image Processing Library
(IPL), and uses the Intel Performance Primitives (IPP) to optimize performance if the
binary is found during startup.[38]

4.2.6 System overview
The software development environment can be illustrated as a set of abstraction layers
as illustrated in figure (4.6). The main software components of interest for this project
are: Studierstube, OpenTracker, Coin3D and OpenCV. They are the foundation for all
work conducted during the thesis.
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Figure 4.7: An overview of an Augmented Reality system meant for clinical applica-
tions. It is important that the virtual camera(s) to be correctly calibrated to match the
real camera(s). A volume is rendered based on the known location of the camera(s)

Without further introduction, the Augmented Reality system developed for clinical
use during surgery is illustrated in figure (4.7). Several processes are performed in
order to accurately register a virtual object in the real world as seen through video
cameras.
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Chapter 5

Calibration and Registration

5.1 Motivation
Augmented Reality is essentially a mix between two worlds - the virtual world and
the real world. In order to convincingly mix these two realities, the mapping from one
world to the other is essential. We’re more or less stuck with the real world, so what
we can change is the virtual. It has to be scaled, translated and rotated to fit on top of
the images from the real world. This mapping is mostly done by the tracking system,
but there is another mapping problem that has to be addressed. The virtual and real
cameras have to match with regards to position, perspective, etc. These problems are
not present in immersive virtual environments where the only world visualized, is the
virtual one. The problem of solving these mapping problems is called calibration, and
is the essential problem in Augmented Reality. It has to be done at least once for every
hardware setup.[10].

Especially medical applications have very high requirements when it comes to reg-
istration. A surgeon wearing a see-through HMD displaying virtual objects on top
of a patient is not likely to trust in that system unless the registration errors are kept
extremely small - below millimeters. Without good registration, systems using Aug-
mented Reality may never be accepted in serious applications.[9] For more information
on the registration problem, the reader is referred to section (2.1.3).

5.2 Static calibration and registration
5.2.1 Overview
1 Static registration errors are those misalignment errors the user encounters when
standing completely still while watching an augmented scene. There are four main
sources of static registration errors[13]:

1Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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1. Optical distortion

2. Errors in the tracking system

3. Mechanical misalignments

4. Incorrect viewing parameters

Optical distortion

The video cameras used for capturing images almost always have some kind of optical
distortion that has to be compensated for, in addition to the errors caused from optics
in front of the displays of the HMD. The distortion is a function of the radial distance
away from the optical axis, and the farther out from the center, the errors increase,
which is why optical distortion is a bigger issue with wide field-of-view displays. This
kind of distortion can, in most cases, be rectified by simulating the noise and applying
an inverse filter, or by adding additional optics to the camera and display systems.[13]

Errors in the tracking system

Augmented Reality has an extremely high sensitivity to tracking errors compared to
immersive Virtual Reality. The slightest error can cause a perceptual mismatch, and the
illusion that the virtual and real world coexisting will be compromised. Hence, this is
often the most serious type of static registration errors. They are unfortunately not easy
to measure or eliminate, and can be non-systematic and difficult to fully characterize.
The problem is not made any easier from the fact that almost all commercially available
tracking systems are not accurate enough for serious AR applications[13].

Mechanical misalignments

Mechanical misalignments occur when the specifications given by the manufacturer do
not match that of the actual product. Optics, displays or cameras may not be located
exactly where they are meant to be, creating a registration problem within AR appli-
cations. Some mechanical misalignments might even happen during use, e.g. when a
user rapidly rotates his head, minor movement of parts could occur, causing registra-
tion errors. A subset of these errors could be compensated for, but the best thing is to
get it right initially, removing the need for extra calibration and compensation.[13]

Incorrect viewing parameters

Incorrect viewing parameters is a special case of alignment errors in which calibration
procedures can be used to correct the view. For an HMD based system, the viewing
parameters of interest are[13]:

• Center of projection and viewport dimensions



5.2. STATIC CALIBRATION AND REGISTRATION 33

• Offset in both translation and orientation between the location of the head tracker
and the user’s eyes/cameras.

• Field of view

To correct these parameters, one could manually try to adjust them while looking at
a registration error from a particular viewpoint, but this will generally not work for
all viewpoints. Another approach would be to use tools like rulers for measuring dis-
tance between the eyes, and distance between the eyes and the tracker. This direct
measurement approach for finding viewing parameters has not had much success, and
other approaches are generally used. Making a user perform certain operations while
wearing the HMD is another approach to calibration. The user gives input which is
used to calculate the viewing parameters. These view based tasks assume the user
gives correct information and that the tracker is accurate. Video based approaches
have also adopted a lot of previous work done in robotics and photogrammetry on how
to calibrate different viewing parameters of cameras.[13]

Other problems worth mentioning

Most all HMDs have fixed eye accomodation, meaning they have a predefined focus
distance which cannot be altered. Some prototype HMDs are able to change the focal
distance, but these are still very experimental[15]. There is also a problem with virtual
and real images being in and out of focus. Virtual images are modeled by a pinhole
camera which has infinite depth perception. Video cameras, on the other side, are only
able maintain focus within a certain distance from the camera. This problem could be
resolved by performing additional computations to simulate limited depth of field for
the virtual images. In addition, the video camera could have autofocus.[13]

Most video-see-through HMDs have parallax error because the cameras are mounted
away from the true eye location. If the cameras are mounted on top of the HMD, the
view will be significantly different than just seeing with the eyes, and the person wear-
ing the HMD has to get used to the parallax error[15]. Also, having the cameras
mounted with different interpupilary distance than the user’s eyes is a source for par-
allax error. It is actually possible to reduce this error by either mounting the cameras
very close to the true eye locations, or by using mirrors to get an optical path more
equal to that of the eyes[13]. Both approaches are illustrated in figures (2.2 and 2.3).

The captured video signals rendered to the HMD have far less resolution than the
resolving power of the fovea[13], giving the wearer a less accurate impression of the
real world than would be given by using optical-see-through systems.
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5.2.2 Previous work
Studierstube

At Vienna University of Technology, several projects on registration and calibration
have been conducted. The goal of some of these, is to automate the calibration process
as much as possible. The calibration processes developed focus mainly on optical-see-
through HMDs. A working framework for calibrating these HMDs has been built into
Studierstube[10].

In [21], a simple and fast calibration scheme not requiring additional instrumenta-
tion or complicated procedures is presented. The process of calibration is done, even
by inexperienced users, by following an interactive guide/wizard that asks the user
for certain input. The method has shown to produce stable results and is applicable
for both optical-see-through and video-see-through HMDs, but is not meant to be the
optimal way of calibrating video-see-through HMDs.

Video-based HMDs are essentially immersive HMDs with attached cameras[21].
The cameras provide the video that is rendered as the background of the Virtual En-
vironment. The calibration procedure for video-see-through HMDs is a more general
procedure than the calibration of optical-see-through HMDs. This is because the cal-
ibration does not have to be done for each user of the system. The reason being the
calibration is done for the video-cameras, and not our eyes, as it would be in the optical
approach.

5.2.3 Problem statement
Several approaches have been made in previous reports that deal with the static cali-
bration problem of Augmented Reality, but not so many deal with the calibration of
systems by untrained users[21]. If doctors, and other personnel are to use the AR-
environment, they have to be able to easily perform such calibration without much or
any a priori knowledge of the intricacies behind the procedure. Also, many calibration
procedures have been presented in photogrammetry, robotics, Augmented Reality, etc.
Some of the most interesting being almost automatic. The author does not believe he
could do much better than what already has been done on this field. However, when it
comes to the process of automating the calibration process within Augmented Reality
environments, there is still much work to be done.

In the previous work section, it was mentioned that Studierstube has a calibration
procedure made for optical-see-through HMDs (that also works for video-see-through
HMDs), but the properties of optical-see-through HMDs make their calibration sig-
nificantly different from the calibration of video-based HMDs[21]. This opts for the
development of a calibration framework (for Studierstube) that is easy to use, but es-
pecially meant for calibrating video-see-through HMDs.

The problem at hand in this part of the thesis is the calibration of general video-
see-through head mounted displays in the Studierstube environment.
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Figure 5.1: Normal pinhole camera used in computer graphics

5.2.4 Procedure
Camera model

A camera basically only performs a projection from 3D coordinates into 2D coor-
dinates. The camera model of choice for most graphics applications, is the pinhole
camera model. It is defined as seen in figure (5.1). Another popular representation
of the pinhole camera is to have the image plane in front of the focal point, thus not
mirroring the scene as done with the other representation.

Camera distortions

Cameras use lenses to produce images on an image plane. One can, however, not
use a pure perspective transformation to represent this mapping. The reason being the
distortions produced by the camera, e.g. from its optical parts[42]:

• Radial distortions is the difference between a captured image and an image
taken with a perfect perspective pinhole camera. It happens when light rays
are bent differently than in the ideal case[43]. The radial distortion curve is a
function of the focal distance of the camera[42].

• Decentering distortions is when the principal point on the projection plane does
not lie on the optical axis[43].
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• Tangential effect is caused by misalignments of lens components relative to the
optical axis, and is equivalent to the prism effect. The tangential effect causes
errors in angles based on the principal point, and is caused by imperfect glass or
imperfect centering of lens components. The prism effect is the effect of a thin
prism being placed in front of a lens[42]. The tangential effect is often only used
in more comprehensive lens models.

These parameters have to be found through calibration procedures, and then used to
undistort the images captured from the camera, thus making them closer to what would
have been captured by an ideal camera. Radial distortion and decentering distortion
can in most cases be assumed to be rotationally symmetric, and are often approximated
using polynomials [44][43].

x = x0 + (x0 − cx)(K1r
2 + K2r

4 + . . .) (5.1)

y = y0 + (y0 − cy)(K1r
2 + K2r

4 + . . .) (5.2)

r = (x0 − cx)
2 + (y0 − cy)

2 (5.3)

Equations (5.1, 5.2, 5.3) model the radial distortion of a typical lens[45]. cx and cy

represent the image center, and x0 and y0 the current image location. Ki are the radial
distortion parameters for the lens. Lenz[46] notes that accurate modeling of the lens
distortion is important for accurate 3D measurements, and that a 2nd order polynomial
is enough to model the distortion accurately enough. Adding more in terms of order
does not give noticeably better results. Since the radial distortion is a function of
the focal distance of the camera, the calibration has to be done for each change of
focus. The easiest way to avoid this is to use fixed optics, but that also has apparent
drawbacks[45].

For 3D-vision the proper choice of image center can be critical, and is not neces-
sarily in the center of the image plane. If only coarse 3D measurements will be per-
formed, the center is not so important, but if more accurate measurements are needed,
the center should be calibrated.[46]

Calibration procedures

The goal of camera calibration is to find the relationship between 2D points captured
by a camera, and their 3D counterparts[46]. There exists several different calibration
procedures. These range from needing predefined objects, predefined control points
or predefined viewpoints to calibration techniques that require little or no interaction
from the users. Two of the most interesting techniques reqiring little interaction are
self-calibration and on-the-job calibration, which have inherited much from the field
of photogrammetric camera calibration.
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Self-calibration - By using methods like non-linear least squares (also known as
bundle adjustment[47]), it is theoretically and practically possible to simultaneously
find the lens parameters and the coordinates of points in three dimensions. This is
done with no explicit intervention by people except the movement of the camera in
a scene. Several different viewpoints are generally needed for the calculations. The
criterias needed for successful self-calibration are[42]:

1. A camera is used to take at least three images from different viewpoint of an
object.

2. The camera mechanics and the object must remain static during the procedure.

3. The photogrammetric network must be strong and have a high degree of conver-
gence.

4. One or more images must have a roll angle that is significantly different than the
other.

5. The scene should contain a significant amount of highly distributed points.

If these criterias are met, a good calibration of the camera should be possible with-
out the need for control or intervention of any kind. A problem in aerial applications
is the difficulty of obtaining images with sufficiently different camera angles[42]. This
does, however, not seem to be a problem so much for Augmented Reality since the
camera can be placed however needed. [48] notes that self-calibration is very flexible,
but not yet mature.

On-the-job calibration - This is a similar technique to self- calibration, but re-
quires a stricter setup. A predefined pattern of control points is used as input and the
camera is moved around the pattern. For each new view, the user tells the computer
to save the current image and use it later for calculating the camera parameters. Bun-
dle adjustment is also used with this configuration to calculate the parameters. Some
of these being: lens distortion, focal length, and offset of the principal point. On-
the-job calibration is the most common type of calibration procedure currently being
used. “On-the-job” calibration is often confused with “self-calibration”, where there
is actually no need for control-points at all.[42]

Photogrammetric camera calibration is the classic calibration method. Zhang[37]
defines this calibration procedure as being one which uses predefined calibration ob-
jects whose geometry is known with high precision. The objects used for calibration
are often planar and placed at angles with each other. As can be gathered, these setups
require well-defined and often expensive calibration equipment.

Basics of camera calibration

The simplest case mathematically, is the calibration of a single camera in a known
scene. In this case, the world coordinates and the image coordinates for the corre-
sponding points are known and used for calculating the camera calibration matrix.
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The matrix part of equation (5.4) is named K, and is the camera calibration matrix[44].
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Finding the constants in this matrix is what is done when performing camera calibra-
tion. Because we are working with homogeneous coordinates, it is possible to write
equation (5.4) as[44]:
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Where R and t represent the transformation (rotation and translation) of the camera
with respect to the world coordinate system, and are called extrinsic parameters be-
cause they are dependent on how the camera is located in the world. There are six
such parameters; one parameter for each axis of rotation and translation. The matrix
K from equation (5.5) consists of coefficients that can be grouped into five constants
representing the intrinsic parameters of the camera. The intrinsic parameters are those
not dependent on the relative position of the camera in the world coordinate system.
These five parameters together model a scale, shear and translation. From equation
(5.5), we get αu = −fa, αv = −fc and αshear = −fb. u0 and v0 are kept as constants
as well. Both the extrinsic and intrinsic parameters can be expressed in a single 3× 4
projective matrix, M , as seen in equation (5.7)[44].
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= MX̃w (5.7)

[U, V, W ]T is the homogeneous image coordinates of the world point Xw.
Single camera calibration is the process of determining the coefficients in the

camera calibration matrix K (equation 5.5), or the projective matrix, M (equation
5.6). Finding K will only give the intrinsic camera parameters, while finding M will
give both the intrinsic and extrinsic camera parameters. There are two basic cases of
camera calibration[44]:

1. Calibration with known scene

2. Calibration with unknown scene
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When the scene is known, a set of non-coplanar points is needed, and corresponding
pairs of image and world coordinates are used for mapping their relationships. Each
of these equations can be written as equation (5.8)[44]. One of the problems with this
approach is the need for special calibration objects, and is thus the beginning of a time
consuming calibration procedure.

αjũj = M

[

Xj

1

]

(5.8)

The reason α is placed here, is because we are using homogeneous coordinates, and
any non-zero constant can be multiplied with such a vector without altering its value
when projecting it to a two-dimensional vector.

Calibrating cameras can also be done in unknown scenes, but more images from
different viewpoints are needed[44]. This works because the intrinsic camera param-
eters will not change from view to view. Within the calibration in unknown scenes,
there are two main cases:

1. Known camera motion - different methods exist for pure rotation, pure trans-
lation, and a mixture of the two.

2. Unknown camera motion - self-calibration techniques are used in order to find
the calibration parameters.

When using self-calibration, at least three different images from different views have
to be the basis for calculating the camera parameters.

Calibration of one camera from a known scene

Calibrating a camera from a known scene is typically done by calculating the pro-
jective matrix, M , then use this matrix to calculate the intrinsic and extrinsic camera
parameters. As previously mentioned, each corresponding pair of world and camera
coordinates can be written as in equation (5.8), and by expanding this equation and
processing it slightly, we get equation (5.9)[44].

u(m31x + m32y + m33z + m34) = m11x + m12y + m13z + m14

v(m31x + m32y + m33z + m34) = m21x + m22y + m23z + m24

(5.9)

This equation, with twelve unknowns (in reality elleven unknowns because of the un-
known scale factor when using homogeneous coordinates), can be used to find the
projective matrix, M , by rewriting it as done in equation (5.10)[44].
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This matrix can and should contain several corresponding pairs of world and image
coordinates. At least six such corresponding points are needed in order to find a result,
but often the system is overdetermined by adding additional points. The exact solution
of the equation is most probably not feasible due to noisy measurements, so an opti-
mization algorithm like the least-square method is often used to calculate the resulting
projective matrix, M . The extrinsic and intrinsic parameters are then found by using
the relation of equation (5.7), rewritten as[44]:

M = [KR| −KRt] = [A|b] (5.11)

Finding the translation, t from this is trivial, but calculating the K and R matrices
requires a little more work. K and R are found by using the knowledge that the
calibration matrix, K, is upper triangular, and the rotation matrix, R, is orthogonal. A
factorization can then be performed to find the matrices. Singular value decomposition
(SVD) or QR decomposition can be used for the calculation.

The calibration method described previously is often referred to as the Direct Lin-
ear Transform (DLT) in litterature.

Stereo camera calibration

Stereo camera calibration is based on that of single camera calibration. The main
differences being the additional problems and possibilities present when adding an
other camera. Stereo camera calibration is of high relevance to Augmented Reality
due to the natural stereo vision of human beings.[44]

If two cameras are calibrated and are watching the same point in space, the 3D
coordinates of the point can uniquely be determined by the intersection of rays from
the two cameras - this is the basic principle of stereo vision.[44]

Stereo vision gives rise to epipolar geometry, as illustrated in figure (5.2). When
the imaging planes are parallel, the epipolar lines also become parallel in the imaging
planes. This is a special case which has been named the canonical configuration,
and is seen in figure (5.3). It is easier for a human operator, and also a computer to
search for equivalent points along a scanline instead of arbitrary lines. Having two
cameras which do not have parallel epipolar lines, the images can be transformed to
the canonical configuration by a process known as image rectification. It is, however,
noted that rectification causes resampling which causes loss of resolution.[44]

Having two image planes in a canonical configuration, as illustrated in figure (5.4),
it is possible to find the 3D location of a point found in images from both cameras
using elementary geometry. The depth value can easily be calculated from the equation
(5.12) given the distance between the optical axes of the cameras, 2h, the focal length,
f , the distance between the left optical axis and the intersection of a ray through the
world point, Pl, and a corresponding Pr for the right camera[44]:

z =
2hf

Pr − Pl

(5.12)
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Figure 5.2: The line connecting the two centers of the cameras is called the baseline.
Any 3D point observable from the stereo cameras define an epipolar plane. The in-
tersection of the epipolar plane and the image planes are called epipolar lines, l and
l′. All such lines pass through the epipoles e and e′ - the intersections of the baseline
with the image planes. Any point visible to both cameras has to have projected image
points lying on the epipolar lines. This is a constraint which essentially reduces the
search for a corresponding points from 2D to 1D.[44]

Figure 5.3: When the imaging planes are parallel, the epipolar lines also become par-
allel in the imaging planes. This is a special case which has been named the canonical
configuration, and makes searching for equivalent points in images captured by the
cameras just a search of two corresponding scanlines.[44]
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Figure 5.4: A stereo camera setup in a canonical configuration. This figure illustrates
the use of disparity to calculate the distance from the cameras to a point, (x, y, z),
in space visible from both cameras. f is the focal distance of the cameras, Pl is the
distance between the left optical axis and the intersection of a ray through the world
point and the image plane. A similar definition goes for Pr. 2h is the distance between
the two optical axes.[44]

Pr − Pl is the effective disparity while observing the world point, P , and if the dis-
parity is zero, z will be at an infinite distance from the cameras.[44]

The fundamental matrix is an important theoretical foundation for stereo vision.
Having two cameras whose optical axes are not parallel, the coordinate system for
the left view can be transformed into the coordinate system of the right view by a
translation and rotation. The translation moves the left camera center, C to the right
camera center, C ′. This transformation is captured in the fundamental matrix, F , and
the relation between two image points, ui and u′

i, in different image planes is written
as equation (5.13).[44]

uT
i Fu′

i = 0 (5.13)

Having at least seven corresponding points in the left and right images enables the
calculation of the fundamental matrix.[44]

Calibration using more cameras than two will not be covered in this thesis, how-
ever, fully automated methods have been developed, and one such utilizing a laser
pointer is described by Svoboda in [49], and more information can be found in [44].
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Different calibration groups

Calibration methods can broadly be divided into two major groups: linear methods
and non-linear methods. Linear methods are efficient, but lack accuracy and robust-
ness. Non-linear methods are accurate, but require an initial guess of parameters and
are more computationally demanding. The initial guess is of high importance for the
non-linear methods to converge towards an accurate solution. In order to work around
this problem, a linear method can first be applied in order to find good guesses for
the camera parameters. Then, the extrinsic camera parameters are calculated by the
non-linear method using the calculated guesses. Linear methods, on the other hand,
are known to respond badly to noise. It has been shown that if the noise rises above
a certain level, and if the number of points is low, errors go through the roof. Adding
additional control points can help reduce this error, but in certain applications, adding
more points is not desireable. When the initial guesses are not good enough, the non-
linear optimization algorithm has a problem of getting stuck in a local minimum. For
this reason, genetic algorithms have been used in order to solve the camera calibration,
a topic touched upon later in this thesis.[50]

Direct Linear Transform

Direct Linear Transform, or DLT for short, is a common calibration method[51] de-
veloped by Abdel-Aziz and Karara. It has since been revised in later publications. The
method is based on the pinhole camera model, ignoring all distortions. The calibra-
tion method is similar to the one introduced in section (5.2.4) when describing basic
single camera calibration. A calibration program using this algorithm was attempted
implemented for this Master’s thesis, but was not able to find a non-trivial solution to
equation (5.10) without modification. This is a known problem when trying to solve
the linear calibration system. In order to avoid the trival solution, a proper normaliza-
tion has to be applied. The original authors set m34 = 1 and solved the equation with
a pseudo-inverse technique. However, using this method, a singularity is introduced
when the correct value of m34 is very close to zero. An other, singularity free, approach
was suggested by Faugeras and Toscani, namely setting m31 + m32 + m33 = 1.[52]

Camera calibration with genetic algorithms

A non-conventional way of performing camera calibration is introduced by Li et al.
in [50]. The method uses Genetic Algorithms (GAs) in order to accurately calibrate
a camera, and shows good results compared to Tsai’s procedure described in the next
section. The reason such a method can be applied to camera calibration, is the way it
maps to solving non-linear problems when little is known about the solution. Calibrat-
ing with genetic algorithms does not call for an initial guess of the solution, something
non-linear methods do. In addition, GAs are robust and attempt to climb out of local
minima. Finally, they also perform good when noise is present. Results from exper-
iments suggest that accurate calibration can be achieved with a minimum number of
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points (about seven), and that adding more points does not necessarily increase the
accuracy of the calibration. An interesting and important advantage of this type of cal-
ibration is the way error in calibration is a function of noise. The GA method was said
to keep the error level almost constant for certain noise levels, with errors increasing
linearly with increased noise.[50]

A related calibration method using neural networks is presented by Memon et al.
in [53].

Roger Tsai camera calibration

In 1987, Roger Tsai published a camera calibration procedure applicable to almost all
cameras. It is a classic calibration method which is cited by most litterature on the
subject. Tsai’s calibration procedure is based on the pinhole camera, and models first
order radial lens distortion. It works by calculating the mapping between known 3D
locations and their image plane projections. The technique requires at least five or
seven accurately detected points in a coplanar or non-coplanar configuration respec-
tively. The points can be arbitrarily placed, but located at known geometric positions.
The camera model has five intrinsic and six extrinsic parameters which have to be
calculated. The intrinsic parameters are[54]:

• The focal length, f

• First order radial lens distortion component, K1

• The center of the radial distortion, and the point where the z-axis intersects with
the image plane, (Cx, Cy)

• A scale factor, sx

The six extrinsic parameters are represented by the rotation and translation, each hav-
ing three parameters. Additionally, there are six fixed camera constants which need to
be set before starting the calibration process[54]:

• Ncx, the number of sensor elements in the x-direction of the camera

• Nfx, the width in pixels of the image captured by the camera

• dx, the dimension along the x-axis of the camera sensor element

• dy, the dimension along the y-axis of the camera sensor element

• dpx, the effective dimension along the x-axis of a pixel in the frame grabber

• dpy, the effective dimension along the y-axis of a pixel in the frame grabber
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These constants are not the same for all cameras, thus they have to be found from
the camera specifications. Consumer cameras, as the ones used for the thesis, do not
normally specify these values. To get them, one usually has to contact the manufac-
turer. However, good calibration could be achieved by just finding the correct ratio
between dpx and dpy. This value can be approximated by finding the ratio of a rect-
angle, width/height, visible by the camera. Having this ratio correct, the calibration
should be able to converge.

To accurately estimate image center and radial lens distortion, world coordinates
used for calibration should be sampled broadly accross the field of view, and span
the depths the model is intended to work for. Finding the image plane coordinates of
the world points needs to be done with subpixel accuracy in order to achive a good
calibration results. Still, there are more issues which could cause erroneous results
of the calibration process. The worst-case scenario in coplanar calibration is if all
samples are placed on a plane which is parallel to the image plane. Having an angle
of 30 degrees or more is recommended in order to spread the samples over a broader
depth range. Non-coplanar calibration will suffer if the 3D world coordinates lie in a
volume which is small relative to the distance from the camera.[54]

An interesting aspect of Tsai’s calibration method is the fact that pose, i.e. the
extrinsic camera parameters, can be calibrated in a separate step if the intrinsic camera
parameters already are known. This has the potential of speeding up the calibration,
and enables the easy calculation of the extrinsic camera parameters if the camera has
been moved relative to the world coordinate system, while the intrinsic camera param-
eters remain constant.[54] However, as will be discussed in section (5.2.4), calibrating
intrinsic and extrinsic parameters independent of eachother could cause inaccuracies
in the calibration and should be avoided if possible.

Li et al. shows in [50] that Tsai’s method is extremely accurate when the image data
has little or no perturbation. However, when noise rises above a certain level, so does
the error in Tsai’s procedure; pixel errors were said to almost exponentially increase!
The genetic algorithms method described by Li et al. from section (5.2.4), was said
to keep the error level almost constant for certain noise levels, and increased linearly
with increased noise. This means that when using Tsai’s method, the noise has to be
controlled and kept low to achive accurate calibration results. If noise levels cannot
be controlled, other calibration methods could be implemented, e.g. using genetic
algorithms.[50]

A variant of Tsai’s calibration method, implemented by Reg Willson[54], was uti-
lized for calibration purposes for this thesis. Software routines are provided for two
levels of calibration. The first level is a direct implementation of Tsai’s algorithm,
where only three of the 11 camera intrinsic and extrinsic parameters are numerically
optimized. The second level is an extension of Tsai’s algorithm, where all 11 parame-
ters are numerically optimized. It is noted by the author that full optimization is slower,
but provides more accurate results.[54]
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Zhang camera calibration

The calibration procedure presented by Zhang et al. in [37] is the calibration method
implemented in OpenCV and has been used during this thesis. The method can be
used even without prior knowledge of computer vision or the problems involved with
calibrating cameras, and needs two or more images of a planar calibration pattern from
different angles in order to find the camera parameters, including radial distortion. The
calibration pattern or the camera can be moved freely without affecting the result. The
calibration procedure consists of a closed-form solution which is followed by a non-
linear refinement based on the maximum likelihood criterion.[37]

Zhang’s method is a fairly new addition to the computer vision toolbox. When it
surfaced in 1998, it significantly added to the usagespace of camera calibration. It is
no longer necessary to have significant prior knowledge of camera optics, sensors, etc,
and still, very good results can be achieved. The technique is shown to be both easy to
use and flexible, taking camera calibration from laboratories to real world use.[37]

There already exist several different camera calibration procedures, some of which
are mentioned in section (5.2.4). These include photogrammetric camera calibration,
self-calibration and on-the-job calibration. Zhang’s method is of the type on-the-job
calibration because it requires a predefined calibration pattern to be present, and is
referred to as a calibration method for Desktop Vision Systems (DVS). A DVS is a
minimalistic system consisting of e.g. webcamera(s) connected to a computer. Most
people do not have expensive calibration equipment, and are not willing to buy such
hardware. This makes Zhang’s approach very interesting for computer vision systems
for a wide variety of users.

The recommended procedure of calibrating a camera by Zhang’s method is[37]:

• Print a pattern and make sure it is planar

• Take images of the calibration pattern at different angles. This can be done by
either moving the camera or the calibration pattern.

• Find the gridpoints in the images

• Estimate the intrinsic and extrinsic parameters

• Estimate the radial distortion coefficients

• Refine all the parameters by minimization

Zhang models the two first radial distortion parameters, and notes that adding more
parameters does not give much higher accuracy, but could actually cause numerical
instability[37]. The intrinsic camera parameters calculated by Zhang’s method are[38]:

• Focal length

• Center of image
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• Pixel size

• Radial distortion

The extrinsic parameters include world rotation and translation, together specifying
the transformation between the camera and world reference frames. The relationship
between an image point and its corresponding 3D point is represented by the following
equation[38]:

sm̃ = A[R|t]M̃ (5.14)

Here, s is an arbitrary scale factor which can be used because m̃ is a homogeneous
coordinate representing an image point. M̃ is also a homogeneous coordinate, but rep-
resents a 3D coordinate which projects to the point m̃ on the image plane. R and t are
the extrinsic camera parameters (rotation and translation respectively), and transforms
from the world coordinate system to the camera coordinate system. [R|t] is a matrix
composed of the 3 × 3 rotation matrix and the 3 × 1 translation vector, making the
resulting matrix 3× 4. A is a matrix of the intrinsic camera parameters and is defined
as follows[38]:

A =







α γ u0

0 β v0

0 0 1





 (5.15)

u0 and v0 represents the principal point, meaning the center-point of the image, and α
and β are scale factors in the u and v axes of the image. γ is the skewness of the image
axes.[38] Looking back at the introduction of camera calibration and equation (5.5), it
is easy to see the similarities between the matrices A and K. This is no coincidence,
A is actually the same matrix as K, rewritten using different constants. So, it comes
as no surprise that equation (5.14) represents the same projection as found in equation
(5.6). The two projections just use slightly different mathematical syntax.

The extrinsic parameters are represented by a rotation matrix, R, and a translation
vector, t. They are stored in the following format[38]:

R =







r11 r12 r13

r21 r22 r23

r31 r32 r33





 (5.16)

t =







t1
t2
t3






(5.17)

An important observation about the method, is that just translating the calibration
pattern, or just translating the camera does not give the additional constraints needed
when trying to calibrate the camera. It is therefore very important to have rotational
components different in the calibration images.[37]

Results from calibration attempts with real and constructed data show that cali-
bration error is decreased when using many images. Especially, having three images
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instead of two significantly reduced the error. Additionally, having significant angles
between the model plane and the camera is important for good performance. An angle
of 45 degrees was shown (by experiments) to give the best results. However, when the
angle between the model plane and the camera increases, the area of the plane visible
to the camera is reduced, thus making corner detection less accurate. Testing corner
detection when rotating the pattern was not implemented in the experiement conducted
by Zhang et al., and it may be possible that angles around 30 degrees could give better
results in practical implementations.[37]

Having a model pattern which is not planar is also a problem for the technique.
However, if the non-planarity of the pattern is less than 3%, the results are still good.
One should in any case try to make a planar pattern, printed on a high-quality printer
where aspect ratio and other dimensions are preserved.[37]

Accuracy of calibration

In [55], Gonzales et al. compare different camera calibration methods, including the
ones developed by Zhang and Tsai. The accuracy of point reconstruction was mea-
sured. Additionally, the stability of the calibration was measured when the pattern was
moved relative to the camera, and when the intrinsic camera parameters were altered.
Two types of stabilities were defined: if only the extrinsic parameters were altered,
then the intrinsic parameters should stay the same. Conversely, if only the intrinsic
parameters were altered, then the extrinsic parameters should stay the same. The study
was performed using both real and simulated data, with varying number of points and
varying locations. Errors were measured in 2D and 3D. The errors were respectively
measured as the mean distance between real and reconstructed image coordinates and
mean distance between real and reconstructed point coordinates. Because the real pa-
rameters of a camera are unknown, it was not possible to know if the calibration using
a particular method came close to the correct result. For this reason, data which simu-
lates a known camera was generated and used for simulation. Noise was added to the
simulated data in order to test the influence on the calibration methods.[55]

To be able to test the stability of the extrinsic parameters, the camera was zoomed,
thus altering the focal length of the camera. The stability of the intrinsic parameters
were tested using two different methods; displacing the calibration pattern parallel to
the camera, and placing the pattern at different locations and orientations relative to
the camera.[55]

The very important result from the experiments, is the fact that most of the calibra-
tion methods are unstable - that is, they do not result in the same intrinsic parameters
when the calibration pattern was moved relative to the camera. A similar observation
was made in the extrinsic case. When just the intrinsic camera parameters were varied,
the parameters related to the altered parameters became affected by the change. An
example is that change in focal distance caused the extrinsic parameters also to vary.

The influence of noise was measured on simulated data only. Most of the methods
tested attempted to minimize the the image space error, and errors were compareable
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with the methods. The relative equality of error measurements did, however, not result
in the same camera parameters being calculated by the different methods.[55]

The conclusion of the experiments was that the values generated by the differ-
ent calibration methods are not necessarily comparable or pointing towards the same,
ground truth, solution. In addition to this, the experiments also showed a strong cou-
pling between intrinsic and extrinsic parameters calculated by one specific calibration
method, and it was noted that when moving the calibration pattern or moving the cam-
era, even though the intrinsic parameters in theory should stay the same, this is not
always the case. If an accurate calibration is wanted, both intrinsic and extrinsic pa-
rameters should be estimated at the same time.[55]

Kalman filter

Errors in the reported output from the tracking and sensing systems are often the most
serious type of static registration errors[10]. These errors are difficult to characterize
and handle, but trying to filter the signal to reduce noise is possible, and is exactly
what the Kalman filter does. In his rather famous paper from 1960, R. E. Kalman
described a recursive solution to the discrete-data linear filtering problem[60]. Welch
and Bishop[63] describe the Kalman filter in the following way:

“The Kalman filter is a set of mathematical equations that provides an efficient
computational (recursive) means to estimate the state of a process, in a way that min-
imizes the mean of the squared error. The filter is very powerful in several aspects: it
supports estimation of past, present and even future states, and it can do so even when
the precise nature of the modeled system is unknown”

The process described by the Kalman filter addresses the general problem of es-
timating the state xεRn of a discrete-time controlled process that is governed by the
linear stochastic difference equation:

xk = Axk−1 + Buk−1 + wk−1 (5.18)

with a measurement zεRm that is:

zk = Hxk + vk (5.19)

wk and vk are random variables with wk representing the process noise and vk rep-
resenting the measurement noise. They are also assumed to be independent of each
other, white, and with normal probability distributions.

What the Kalman filter does, is to estimate the state of a process at a particular
instant in time. Feedback is given by newly obtained measurements (noisy), which
are used to create an a posteriori estimate of a previously calculated a priori estimate.
This corrected estimate is, for the next iteration, used to calculate the new a priori
estimate, and so on. This recursive property of the Kalman filter is what makes it so
appealing, because it makes practical implementations much more feasible than e.g. an
implementation of the Wiener filter (which is constructed to work on all available data
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directly for each estimate). The equations fall into two main categories: time update
equations and measurement update equations. The time update equations predict the
future, and measurement update equations updates the state on which the predicted
estimates are based. Time update equations can be thought of as predictor equations,
and measurement update equations can be thought of as corrector equations[63].

For a better introduction to the Kalman filter, the reader is referred to [63].

5.2.5 Results
Overview

Having covered a lot of topic in the procedure section, it is time to sum things up a
bit. Not all parts mentioned have been implemented, and clarifying this issue seems
appropriate. An overview of what has been implemented is seen in the following list:

• Calibration of intrinsic camera parameters using Zhang’s method implemented
using OpenCV.

• Calibration of the extrinsic camera parameters using Tsai’s method implemented
by Reg Willson.

Intrinsic camera calibration is conducted by taking a series of pictures of a chessboard
calibration pattern from different angles. The corners of the squares on the pattern are
found by algorithms within OpenCV at subpixel accuracy. Extrinsic camera calibra-
tion is performed by moving a tracked pen slowly in front of a camera attached to a
tracked HMD. On the tip of the pen, a 2 × 2 chessboard pattern is attached to make
it possible to automatically find the projected location of the pen on the image plane.
When the pattern is recognized, both the location of the pen relative to the head tracker
and the image plane projection are saved for use in Tsai’s calibration algorithm. Both
stereo and mono calibration is possible for the two calibration methods.

Calibration takes place in Augmented Reality, and is built on the Studierstube
framework. Thus, calibration has to produce camera parameters valid for the SoOf-
fAxisCamera model used by Studierstube. SoOffAxisCamera has several parameters
representing the state of the camera[56]:

• eyepointPosition is the location of the eye

• position is the position of the center of the image plane

• orientation is the orientation of the image plane

• size is the size of the image plane

These parameters together model a camera illustrated by figure (5.5). The goal of the
camera calibration is to find the intrinsic parameters in addition to the translation and
rotation of the camera relative to a headtracker, illustrated in figure (5.6).
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Figure 5.5: Illustrates the SoOffAxisCamera model used in Studierstube. Eyepoint
and image plane are two separate entities which can be moved independently. The
orientation vector should actually point in the opposite direction, but was drawn this
way for illustrational purposes[10]

Figure 5.6: The goal of extrinsic camera calibration is the calculation of the relative
transformation between the head tracker and the cameras. The transformation can
consist of both rotation and translation.
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Implementations of the Direct Linear Transform method described earlier was at-
tempted, but was not finished due to problems related to normalization and the trivial
solution. An attempt was also made on calibrating both the intrinsic and extrinsic
camera parameters using Zhang’s method from OpenCV. This was not finished due to
problems related to accuracy discussed in the next section. Also, an implementation of
the Kalman filter to predict future tracking positions was also started, but lack of time
and priority caused it to be dropped.

Zhang camera calibration

Calibrating the cameras using Zhang’s method to calculate both intrinic and extrinsic
camera parameters is one way to find them. This approach is described in Algorithm
1. However, there are problems related to this approach which need to be addressed.
The problems relate to accuracy and are further presented in the next paragraph.

Algorithm 1 was partially implemented, but not finished. The reason for this relates
to the extrinsic camera parameters which could come out wrong. This is because
the extrinsic parameters found by Zhang’s method are only relative to the calibration
pattern coordinate system, not the tracker coordinate system. In order to convert to the
tracker coordinate system, the location of the calibration plane in tracker space has to
be found. This is of course possible, and could be done by using a tracked pointer to
sample the position of the plane corners in order to define a coordinate system in which
the plane is located in 3D space. This sampling could be noisy, something which could
be reduced by sampling the calibration pattern with the pen many times and projecting
the coordinate axes into the plane. However, due to the nature of rotational errors in a
camera model, any small mistake here will propogate and increase further away from
the calibration pattern, as illustrated in figure (5.7). This makes it difficult to get an
accurate position of the camera relative to a head tracker.

The calibration is performed from images collected of a chessboard pattern, as
shown in figure (5.8). After collecting about 15 of these images in stereo or mono,
the intrinsic camera calibration is performed, and this calibration can be applied to the
Studierstube camera(s). The images collected from the cameras by OpenCV can easily
be undistorted using internal functions in the library.

In order to make sure the extrinsic camera parameters come out accurately and
not so much affected by errors in the sampling, Tsai’s method could be used for the
extrinsic parameter calibration, as described in the following section.

Tsai camera calibration

Tsai’s procedure, as described in Algorithm 2, is in the need for a set of quintuples
containing the pen position in the tracker coordinate system as well as the projected
coordinate of the pen on the screen. The tracked pen was chosen as an input device
instead of a calibration object because such calibration objects are costly, difficult to
set up and have to be calibrated themselves. The sampling process consists of moving
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Algorithm 1 : Zhang calibration of intrinsic and extrinsic camera parameters
i← 0
while more images of calibration pattern to sample do

pattern← sampleImageOfCalibrationPattern()
corners ← findCalibPatternCorners(pattern) {Find corners at subpixel ac-
curacy}

{If all corners were found in the image, save the corners along with the head
tracker transformation. This transformation will be used to find the head tracker
relative extrinsic camera parameters}
if found corners then

headtransforms[i]← sampleHeadTrackerTransform()
samples[i]← corners
i← i + 1

end if
end while
camparams← calibrateCameraZhang(samples, i)
intrinsic⇐ extractIntrinsic(camparams);
extrinsic← extractExtrinsic(camparams); {Pattern relative}
{Have to sample the calibration plane position and orientation in the tracker coordi-
nate system in order to find the extrinsic camera parameters in the tracker coordinate
system}
i← 0
while need to sample tracker location on calibration pattern do

points[i]← sampleTrackerPositionOnCalibrationPattern()
i← i + 1

end while
plane← findOptimalP lane(points, i)

{Now, sample the location tracker positions of origo, positive x-axis and positive
y-axis of the calibration pattern}
origo← sampleCalibPatternOrigo(plane)
xaxis← sampleCalibPatternXAxis(plane)
yaxis← sampleCalibPatternY Axis(plane)

{Generate a transform which takes us from pattern space to tracking space}
patt2tracker ← generateTransform(origo, xaxis, yaxis)

{Find the head-tracker relative extrinsic camera parameters}
extrinsic⇐ transformToTrackerCoord(patt2tracker, headtransforms, i, extrinsic)
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Figure 5.7: Illustrates the propogative nature of rotational errors in the extrinsic cam-
era parameters. The farther away the calibration pattern is, the distance between the
real point on the plane normal and the calculated one increases in size. Calculating
the camera position this way could lead to the camera center being wrongly placed.

Figure 5.8: This figure display the calibration pattern used for calibrating camera
parameters using OpenCV. 10-20 images are captured during the procedure, and the
corners in the pattern are automatically detected at subpixel accuracy



5.2. STATIC CALIBRATION AND REGISTRATION 55

Figure 5.9: The tracked pen with a 2 × 2 chessboard pattern attached. The pattern
has to placed with the center at the tip of the pen. Calibration is performed by slowly
moving the pen in front of the camera while both the head and pen are being tracked.

a tracked pen with a 2 × 2 calibration pattern pointing towards the camera being cal-
ibrated, as seen in figure (5.9). It is assumed the tracking system is very accurate. If
the calibration pattern is found by image processing techniques, the tracker location is
saved along side the image coordinate marking the center of the calibration pattern.

When enough samples has been gathered, the calibration process starts and the
algorithms try to find the best camera model to fit the sampled data. After calibration
is done, a SoOffAxisCamera is created based on the result.

Calibrating intrinsic and extrinsic parameters with different procedures

In some cases the calibration process is best split into two different parts: calculating
the intrinsic camera parameters and calculating the extrinsic camera parameters. These
parameters can be found by different calibration methods if wanted. Such a compos-
ite calibration method was implemented for this thesis by using Zhang’s method to
calibrate the intrinsic camera parameters and Tsai’s method to calibrate the extrinsic
camera parameters. This method is illustrated in Algorithm 3.

But, as noted in the section about accuracy, calibrating using different calibration
methods could introduce errors due to the different algorithms being used to calculate
the parameters. That is, the intrinsic and extrinsic parameters might not be compatible.
This will become an issue if calibration accuracy is very important.

Calibrating a Studierstube SoOffAxisCamera

In order to be able to use the previously introduced calibration methods in Studierstube,
a way of mapping the intrinsic and extrinsic parameters calculated by each procedure
into a SoOffAxisCamera is needed. The problem revolves around to having a matrix for
the intrinsic camera parameters as seen in equation (5.20), and values for the extrinsic
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Algorithm 2 : Tsai’s method for calibrating intrinsic and extrinsic camera parameters
i← 0
while more images of the pen with the 2× 2 calibration pattern to sample do

pattern← sampleImageOfCalibrationPattern()
corner ← findCalibPatternCorner(pattern) {Find the projection of the pen
tip}
if found corner then

penpos← samplePenTrackerPosition()
headpos← sampleHeadTrackerPosition()
headrot← sampleHeadTrackerRotation()

relpos ← headrot−1 ∗ (penpos − headpos) {Pen position relative to head
tracker}

samples[i]← (corner, relpos) {Save sampled quintuple}
i← i + 1

end if
end while
camparams← calibrateCameraTsai(samples, i)
intrinsic⇐ extractIntrinsic(camparams);
extrinsic⇐ extractExtrinsic(camparams);

camera parameters as seen in equation (5.21).

A =







α γ u0

0 β v0

0 0 1





 (5.20)

R =







r11 r12 r13

r21 r22 r23

r31 r32 r33





 , t =







t1
t2
t3





 (5.21)

How do these relate to each other? Taking the intrinsic camera parameters first, the
proper way to map these to a SoOffAxisCamera is illustrated in Algorithm 4. The
results of this algorithm makes it possible to set up a SoOffAxisCamera as follows[57]:

• size set to size returned from Algorithm 4

• position set to position returned from Algorithm 4

• eyepointPosition set to (0, 0, 0)

• orientation is set to identity rotation



5.2. STATIC CALIBRATION AND REGISTRATION 57

Algorithm 3 : Zhang’s method for intrinsic and Tsai’s method for extrinsic calibration
{Find intrinsic parameters using Zhang’s method}
i← 0
while more images of calibration pattern to sample do

pattern← sampleImageOfCalibrationPattern()
corners ← findCalibPatternCorners(pattern) {Find corners at subpixel ac-
curacy}

if found corners then
samples[i]← corners
i← i + 1

end if
end while
camparams← calibrateCameraZhang(samples, i)
intrinsic⇐ extractIntrinsic(camparams);

{Find extrinsic parameters using Tsai’s method}
i← 0
while more images of the pen with the 2× 2 calibration pattern to sample do

pattern← sampleImageOfCalibrationPattern()
corner ← findCalibPatternCorner(pattern) {Find the projection of the pen
tip}
if found corner then

penpos← samplePenTrackerPosition()
headpos← sampleHeadTrackerPosition()
headrot← sampleHeadTrackerRotation()

relpos ← headrot−1 ∗ (penpos − headpos) {Pen position relative to head
tracker}

samples[i]← (corner, relpos) {Save sampled quintuple}
i← i + 1

end if
end while
camparams← calibrateCameraTsai(samples, i)
extrinsic⇐ extractExtrinsic(camparams);
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Hence, a SoOffAxisCamera can easily be construced if the intrinsic camera parameters
are available. The intrinsic camera parameters have all be converted into a Studierstube
camera, but the conversion is not over yet. The extrinsic camera parameters have to be
considered.

Algorithm 4 : Convert intrinsic parameters to a SoOffAxisCamera
Require: A to be a 3× 3 matrix containing intrinsic camera parameters
Require: width to be the width of video stream in pixels
Require: height to be the height of video stream in pixels
Ensure: position is the calibrated position of the image plane
Ensure: size is the calibrated size of the image plane

{Find the coordinates over the image points on the image plane. The columns of
the right matrix are homogeneous coordinates marking the boundary of the image
in pixels}

Ipc← A−1 ∗







0 width 0 width
0 0 height height
1 1 1 1







{Copy 2 × 4 values from the Ipc matrix into a new matrix. The values not copied
are all 1’s}
for i = 0 to 3 do

Imageplanecoords(0, i)← Ipc(0, i)
Imageplanecoords(1, i)← Ipc(1, i)

end for
{Find the center of the image plane}
Posmat(0, 0)← 1/4

∑

3

i=0 Imageplanecoords(0, i)
Posmat(1, 0)← 1/4

∑

3
i=0 Imageplanecoords(1, i)

{Subtract the center from the image plane coordinates, making the resulting image
plane coordinates relative to origo}
Sizemat← Imageplanecoords− Posmat ∗

[

1 1 1 1
]

{Extract position and size from matrices. The position of the image plane is al-
ways at a distance −1 in the z-axis. This is because the different focal lengths are
compensated for in the size of the image plane.}
position⇐ (Posmat(0, 0), P osmat(1, 0),−1)
size⇐ SVD(Sizemat)

The extrinsic camera parameters are, as you might remember from section (2.1.3),
those which depend on the position and orientaton of the camera. Looking back at our
camera model, the parameters related to position and orientation are:
• position

• eyepointPosition
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• orientation

In the intrinsic camera calibration stage described earlier, these values were altered to
match the camera parameters, but these values need to be changed in order to place
the camera at the correct location in the head tracker relative coordinate system. This
basically means that eyepointPosition and position have to be transformed to the
correct locations, and orientation has to be rotated in order to apply the extrinsic
camera parameters. Basically, what we are trying to do was earlier written as equation
(5.22), which is a rotation and translation followed by a projection.

sm̃ = A[R|t]M̃ (5.22)

A problem with the SoOffAxisCamera camera model which becomes apparent now,
is the fact that intrinsic and extrinsic camera parameters are not separated; changes
to the intrinsic parameters affect the extrinsic and vise versa. This is an unattractive
feature when performing calibration using separate methods, or when just the intrinsic
or extrinsic camera parameters should be recalibrated. Still, this is the camera model
currently implemented in Studierstube, and is also adopted for this thesis. Hence,
the search for the calibrated SoOffAxisCamera continues. However, a new camera
model more closely related to the logical separation of intrinsic and extrinsic camera
parameters is a wanted feature in future versions of Studierstube.

Adding the extrinsic camera parameters cannot be directly performed as illus-
trated in equation (5.22). The extrinsic camera parameters have to be directly ap-
plied to the camera, and the needed transformation is the inverse extrinsic transfor-
mation. This transformation is applied to the SoOffAxisCamera by transforming the
eyepointPosition, position and orientation as illustrated in Algorithm 5. The SoOf-
fAxisCamera looks by default down the negative z-axis (y-axis goes up and x-axis
to the right), and this has to be considered when applying the transformation to the
camera.

Stereo camera calibration

The calibration framework implemented has also support for stereo camera calibra-
tion. In the case of calibrating by Zhang’s method using OpenCV, two images will
be captured while sampling instead of one. The calibration pattern has to be found in
both images in order for the sample to be valid. When stereo calibration is performed,
several interesting features are accessible through OpenCV. These include image rec-
tification, calculation of depth maps, and much more.

Sampling stereo images has to be done with care. The cameras are most likely
not synchronized with eachother, and movement between capturing the images is not
a desired event. So, calibrating a stereo camera system should be conducted while
having the HMD statically mounted when sampling.

When calibrating in stereo, the images can be rectified using builtin functionality
in OpenCV. This is, however, a problem. The problem being that only the images
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Algorithm 5 : Apply extrinsic parameters to a SoOffAxisCamera
Require: [R|t] to be a 3× 4 matrix containing extrinsic camera parameters
Require: position is the intrinsic calibrated position of the image plane
Require: orientation is the intrinsic calibrated orientation of the image plane
Ensure: position is the calibrated position of the image plane
Ensure: eyepointPosition is the calibrated position of the eyepoint
Ensure: orientation is the calibrated orientation of the image plane

{Transform the eyepointPosition, position and orientation parameters of the
camera. Rx(Π) is needed in order to compensate for the fact that the SoOffAx-
isCamera looks down the negative z-axis. It is a transformation which makes it
possible to map one camera-model to another. In this case, Tsai’s model is mapped
to a SoOffAxisCamera}

eyepointPosition⇐

[

R | t
0 | 1

]

−1

∗Rx(Π) ∗
[

0 0 0 1
]T

position⇐

[

R | t
0 | 1

]

−1

∗Rx(Π) ∗ position

orientation⇐ RT ∗Rx(Π) ∗ orientation

collected by OpenCV from the cameras are rectified, not the composite images of
the virtual scene and the background which is needed in order to correctly register
the virtual objects with the rectified scene. A way to solve this is to perform the
rectification in OpenGL after rendering the scene to a buffer, and then applying the
rectification and rendering the rectified images. This has not been implemented, but
remains labeled “work to be done”.

It is also possible to perform calibration using Tsai’s method in stereo. This, how-
ever, is currently not a recommended approach because of the time it takes to search
for the calibration pattern in two images in real-time.

Accuracy of calibration

As discussed in the procedure section, there are issues with calibrating intrinsic and
extrinsic camera parameters using separate methods, but before this becomes the real
issue, the calibration should give fairly accurate results. While the calibration of the
intrinsic camera parameters using OpenCV remained accurate, the extrinsic calibration
using Tsai’s method introduced errors. These spawned from the sampling process;
moving the tracked pen slowly in front of the camera and saving the head-tracker
relative transformation was shown to not generally give good and reproducible results.
This problem should be easy to mend by sampling only when both the head-tracker
and the pen remain static. Finding the average of several samples over a time-interval
should also help to solve the problem. However, when this problem is solved and if use
of two calibration methods becomes a problem, calibrating both intrinsic and extrinsic
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Figure 5.10: The calibration process is performed in Augmented Reality and starts
with this menu..

parameters using Tsai’s method could be implemented and should give good results if
accurate sampling is achived.

User interface

As mentioned earlier, the calibration process is performed in Augmented Reality, mak-
ing calibration an interactive process for both mind and body. The calibration starts
with the menu seen in figure (5.10) and continues as illustrated in figure (5.11). By
pressing buttons, the user chooses basic calibration options. For more specific control,
the manipulation of an Open Inventor file is needed.

The calibration process by itself is quite easy to perform. One only has to do certain
tasks which can easily be learned by anyone.

5.2.6 Discussion
Calibrating the extrinsic camera parameters with Zhang’s method can be achieved if
additional input for finding the head tracker relative transformation is found. Though
not fully implemented, the procedure has a potential of becoming a fast and easy, but
somewhat noise dependent, way of calibrating an HMD while in Augmented Reality.
This because finding a plane in the tracker coordinate system can be performed with
a fair amount of accuracy, and could be conducted in a fast and easy manner. Hence,
this method could be used by inexperienced users not in the need of very accurate
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Figure 5.11: The Augmented Reality application for calibrating intrinsic and extrinsic
camera parameters follows a certain execution path which is illustrated in this figure..
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calibration.
Tsai’s method for extrinsic camera calibration was adopted in the hope that it would

lead to accurate results. Though Tsai’s method is fairly accurate, the sampling of quin-
tuples for the calibration process experienced noise. This was due to the unsynchro-
nized nature of the tracking and image acquisition devices. It is very hard to sample
accurate data when movement of head and other tracked devices is allowed during
sampling. This is why static sampling is a desired feature if accuracy is important.
However, if static sampling is not an option, using calibration methods less affected
by noise is desired. One such method, based on genetic algorithms, was introduced in
section (5.2.4).

It is noted by [58] that accurate calibration should be conducted using a calibration
object whenever possible. The same accuracy is usually not otherwise achieved. These
objects most often consist of two or three orthogonal planes. It is also possible to per-
form such a calibration using a plane undergoing known translation. These calibration
objects are, on the other side, an added problem if a system is to work on multiple
locations without having a calibration object available. However, when having a track-
ing system, 3D points can easily be attained and used for calibration. These should
be sampled multiple times for each point in order to minimize the errors in the tracker
data.

It was earlier mentioned that SoOffAxisCamera does not separate between intrinsic
and extrinsic camera parameters. Having a camera model separating these is desired
because it allows for an easier and more versatile calibration process, giving the user
the choice of calibrating either the intrinsic or extrinsic parameters independently.

5.3 Dynamic registration
5.3.1 Overview
2 End-to-end system latency is what Azuma[13] classifies as dynamic registration,
and is the time it takes from the moment the tracking system registers the position
and orientation of the HMD until the view is updated to correspond with the tracking
information. The dynamic registration errors are not visible until the user changes the
position or orientation of his head, but is still the largest source of registration errors.
This type of error is observable when delay causes virtual objects to lag behind their
real counterparts when the user moves his head.

The goal of dynamic registration procedures is to accurately predict the location of
the users head at the time the displays are updated. There are two kinds of systems for
handling dynamic registration errors, open-loop systems, and closed-loop systems.
Open-loop systems do not have a feedback loop, so the accuracy of the technique de-
pends on the tracking equipment and calibration. Closed-loop systems have feedback

2Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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mechanisms which make it possible to calculate the goodness of a solution to be able
to minimize the error[61].

Tracking data received by sensors are usually full of error. Accurate positioning of
objects is a difficult process that is in need of special, and often expensive hardware.
Not only the positioning has to be correct, but also the timing - waiting several mil-
liseconds for a tracking input to arrive cannot be compensated by the accuracy of the
tracking signal. Also, real and virtual objects need to be registered to their counter-
parts. Procedures for compensating dynamic errors fall into four main categories[13]:

• Reduce system lag

• Reduce apparent lag

• Match temporal streams (with video-based systems)

• Predict future locations

Reduce system lag

System lag is what causes dynamic error, and by removing this source dynamic error
will also be removed. This is, however, not an easy task. To reduce system lag, refresh
rate of the monitor must be very high, and reducing the latency of a system will also
reduce the maximum throughput. On current systems, this is not a practical solution
due to the need for much faster hardware for processing the data.[13]

Reduce apparent lag

This can be done by a technique called “image deflection”. With this technique, the
scene is rendered into a buffer which is bigger than the actual size needed to fill the
screen. Then the most recent tracking coordinates are read just before the image is to
be rendered to the screen, and the orientation values are used for translating the image
to reduce the apparent registration error.[13]

Match temporal streams

When using video cameras for collecting images of the real world, the capturing and
digitization processes cause a delay, but this could actually be utilized. The virtual
scene could dynamically be transformed to match the captured images, causing the rel-
ative registration error to be removed. When the user moves his head, his movements
will not match what he sees in his displays, so registration error is still present.[13]
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Predict future locations

To predict future locations has shown to be a very promising technique for reducing
the registration error, especially when the system lag is below 80ms. Predictors using
inertial sensors have shown to reduce lag by a factor of 2-3. Predictors can make
mistakes, but in general they are able to predict close to correct positions, making
them very useful in Augmented Reality applications.[13]

5.3.2 Previous work
Hybrid tracking systems

Hybrid tracking systems utilizing inertial sensors to predict future position and orien-
tation, can greatly reduce dynamic registration errors. Azuma has shown that hybrid
tracking systems using inertial sensors are approximately 5-10 times more accurate
than doing no prediction at all[9]. A problem with inertial tracker is the drift they
experience as time goes on.

Using only tracking data from the tracking system gives no way to check the ac-
curacy of the data, and without feedback on the accuracy, good registration is difficult
to achieve[13]. Video-based approaches can be used for calculating the match be-
tween the worlds, but can be quite expensive with regards to processing. Patterns
recognizable by a computer vision program could be used for tracking head and object
locations. Even images taken of objects from different viewpoints could be used for
recognizing and tracking objects.

Other possible sensors to help registration are depth sensors, e.g. laser rangefind-
ers. They can create depth maps which can be matched with the depth maps of the
virtual model, and thus improve registration. Magnetic trackers are also being used,
but suffer from problems when metal is introduced into the environment.

If just one technology is to be looked at, optical tracking is probably the most
promising one because of the increasing resolution of digital cameras, real-time pho-
togrammetric techniques and structured light sources giving for more light at longer
distances.[13] But hybrid tracking systems is probably the way of the future because a
multitude of sensors can combine their strengths to overcome their weaknesses.

Computer vision based techniques

[61] describes a process of dynamically measuring 2D registration error which in turn
improves registration in the combined images. It is noted that a similar error correction
process will probably be a key component in future video-based Augmented Reality
systems. By using video images for correcting registration error, a possible perfect
registration is possible if the user can tolerate a certain delay from processing the
images.
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Robotics

For robots to autonomously be able to perform task and navigate, they need accurate
information on where in the world they are located. This information can not only be
gathered from GPS systems, due to their lack of accuracy. The problems related to the
positioning of a robot can be divided into two main problem areas[48]:

• Relative localization

• Absolute localization

The relative localization information is gathered through a multitude of sensors, e.g.
inertial sensors, to integrate the position and orientation from the initial position. The
absolute localization is usually based on GPS systems, navigation beacons, etc. These
systems are, unfortunately, very much corrupted with noise, and methods to handle
this have to be used.

A promising way to correct noisy data from tracking sensors, is to use them in
combination with other sensors, like inertial tracking devices, and computer vision
based tracking[48]. [48] propose a hybrid tracking system based on accelerometers,
gyroscopes, a compass, a video camera and a differential GPS. The position of the
camera is calculated from known objects in the real world using line matching. They
note that the process of finding the correct match is quite expensive.

Predictors

Azuma[9], suggests a setup where separate predictors are used for position and orien-
tation. First the current position, velocity and acceleration are calculated. Then this
data is used to calculate where the HMD will be at the next redraw. The predictor used
for this is the Kalman filter, which is a highly popular filter for e.g. image processing.
The filter also has a tendency to behave good even though data is received that does
not meet the assumptions on which it is based. In order to do accurate predictions, the
tracking data should preferably be timestamped[9]. This is, however, not commonly
done, even by modern tracking equipment/software.

5.3.3 Problem statement
Magnetic Resonance scanners are highly sensitive to metallic substances in their vicin-
ity, and will not function properly if this is the case. Also, most electronic equipment
will not survive the extremely magnetic environment the MR-scanner causes. The
magnetic fields could cause heating of wires, and induction of electricity within elec-
trical and metallic devices[62]. There exist methods to create electronic devices that
work in an MRI environment, but most tracking systems do not comply to this. There-
fore, at the Interventional Center, an optical tracking setup is used. A hybrid tracking
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system based on e.g. inertial integration is not so plausible without the correct equip-
ment.

The problem of interest in this part of the thesis, is how to reduce noise from
tracking data for more stable and accurate results. The approach used differs from
other approaches in that it is to be used in a tracking framework named OpenTracker
(which is used by Studierstube). It does not use the video information coming from
the video-see-through HMD to reduce registration errors, this mainly because such
calculations could reduce the performance of the system (though it probably will be an
important way of reducing dynamic registration errors in future applications).

5.3.4 Procedure
Image deflection

Image deflection, as introduced in section (5.3.1), is used to reduce registration errors
caused by change of orientation. This is done by rendering images that are bigger than
the actual display to an offscreen buffer, and translating the image just before rendering
to the display. The translation is performed using the newest tracking coordinates from
the tracking system[13]. This procedure can give better apparent registration if the
delay caused by rendering a bigger image can be tolerated. The method exploits the
fact that rendering of scenes take time, and newer tracking signals will most probably
be available when rendering is finished.

Video-based registration correction

Even though a video-based approach might not be a good solution for this project,
some focus seems appropriate. The system developed uses video-see-through HMDs,
which have both pros and cons. On the negative side, the video camera(s) and dig-
itization hardware will cause even more delays in the system. On the positive side,
video-see-through HMDs have the opportunity of reducing the dynamic registration
errors through computer vision techniques.[13]

A problem with this approach is the assumption made of the virtual world being a
close model of the real world. This is, however, not always the case. Often, the world
is augmented, not copied. Virtual objects are placed in the real world, they do not
replace the real world. Volume data contains lots of information which could be used
for finding a good registration. However, when rendering the volume with different
alpha-mappings, the outer details of the volume will disappear and the image is no
longer usable for registration purposes. This could be solved by creating a surface
approximation of the outer boundary of the volume which is rendered into a separate
buffer and only used for registration purposes.

When using stereo video input, some thought also has to be put into how registra-
tion correction should occurs with relation to each eye in order to maintain the correct
relationship between the eyes and the images.
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Average filter

An averaging filter was implemented for testing purposes autumn semester 2004. Us-
ing an ultrasound tracking system, the position of a tracked static device was recorded
for about ten seconds with and without the average filter, as seen in figure (5.12). The
figures show the reduction of static errors when using an averaging filter, but when
moving the device, as shown in figure (5.13), the averaging filter returns tracking coor-
dinates lagging behind the tracked device coordinates, actually increasing the dynamic
errors.

Because we want to reduce both dynamic and static registration errors, the average
filter does not suffice. An other and more mathemathical approach is needed, which
brings us to the next sections.

Bayesian filtering

Bayesian Filtering is a technique using probabilities for fusing data. Such a system is
mathematically formulated and changes state as time goes on. The state is represented
by the probabilities currently calculated by the system. This state can be utilized to
predict future states. Such a predictor is called an estimator, and calculates an estimate
of the system state with each observation provided to the system. The Kalman filter is
a frequently used filter of this type. [59]

Kalman filter

The Kalman filter should already be known from static registration (section 5.2.4).
The filter can, as mentioned, also be used to predict the future, which can be utilized
for improving the dynamic registration. Though, it is assumed the end-to-end sys-
tem latency is more or less predictable. If this is the case, a fairly accurate predicted
position/orientation can be calculated using the filter.[63][9]

5.3.5 Results
Dynamic registration errors are very important and cause the biggest errors compared
to static registration errors. However, good static registration is the basis for good
dynamic registration, and has for this reason been more researched during this thesis.

It has been shown that the use of hybrid tracking systems based on intertial sensors
can produce far better results than just using one tracking system alone, and the use
of predictors could help reduce the problem even further. Looking at the future, using
image-based methods will probably be a major part of handling dynamic registration
in years to come.
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Figure 5.12: The upper graph shows the reported tracking coordinates for an HMD
tracked by a ultrasound tracking system. The device remains static (not moving), and
the correct output would be a straight line for all axes, but this is not the case due to
noise. The final graph shows the another output that is smoothed using an averaging
filter. As seen, noise is reduced in this static case. Measurements are in meters, and
sampling was performed for about ten seconds.
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Figure 5.13: The above graphs are two different views of the same tracking data. At
the top, a raw dump of a device which is moved around and around is illustrated.
Below, the same data is averaged to produce a smoother curve. It is apparent from this
example that averaging is a low-pass filter which causes reaction delays, but produce
smooth movement. Measurements are in meters, and sampling was performed for
about ten seconds.
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5.3.6 Discussion
Not much work was conducted on implementing dynamic calibration procedures. Just
a little time was spent trying to implement a Kalman filter to predict tracker coordi-
nates, but this was never finished. The theory presented in the previous sections is
meant as an introduction to problems and solutions involved in dynamic registration.

5.4 Registering a virtual object on a patient
5.4.1 Overview
Having calibrated both the intrinsic and extrinsic camera parameters, there are even
more registration problems left to solve. If virtual objects are to be placed in the
scene, they should be placed in relation to real objects. If the virtual object has a real
counterpart, these have to coincide. There are many cases in which such a registration
is important, e.g. the registration of an ultrasound image on top of a patient, performing
breast biopsy using Augmented Reality, visualizing the part in a printer which needs
to be changed, and many more. Wherever there are virtual objects which have to be
registered with a physical ones, the registration problem is bound to appear.

5.4.2 Previous work
Registering hybrid tracking systems

Schwald et al.[64] describe a method for registering a virtual volume on top of a patient
using a set of points. The method described is also used to correctly register tracking
systems with eachother, as described in forthcoming section (5.5.2).

The registration starts with the placement of a set of small spherical markers on
the patient. Then, a volume scan of the patient is acquired from either MR or CT
scanning. The number of markers necessary is minimum four, and usually below ten,
and they have to stay on the patient until the Augmented Reality system is used. After
the scanning, the position of the spheres on the patient is sampled using a handle with
a special electromagnetic sensor which is placed on the top of all spheres, one by one.
The sensor has a concave tip which enables it to focus on the center of the spheres.
To minimize the errors inherent in the tracking system, a number of samples are taken
for each sphere position. Typically around 100 samples per sphere is used, and the
result is the average of all positions. The spheres are sampled starting from the marker
closest to the feet of the patient, and ending with the markers closest to the head, thus
sampling is well-defined.[64]

Calculating the registration transformation is now performed by finding the rotation
and translation which will transform the virtual volume on top of the patient in the
tracker coordinate system. This problem is called the absolute orientation problem,
and is described further in sections (5.4.4 and 5.5.2). The article does, however, not
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mention how the positions of the spherical markers are found in the CT and MR data.
Finding these could probably be performed automatically by special algorithms or
manually by locating them in the volume. Results of the tests conducted by Schwald
et al. show that high accuracy is achieved with their algorithm. The mean translation
errors are usually below 2mm; residing between 1mm and 2mm. Though it is possible
to find a registration just using four markers, having more markers will usually result in
a better registration due to the measurement errors of the tracking system. As many as
8−10 markers are proposed in order to get high accuracy and reproducible registration
in a fast and easy manner. Improving the accuracy even further is said to be possible
with the advent of new and better tracking systems and sensors. Also, the fusion of
sensor data could help reduce the errors in the tracking system.[64]

Object calibration for Augmented Reality

In their publication, Whitaker et al.[65] describe an object calibration method based
on landmarks. Landmarks being points placed in easily recognizable places such as
corners and creases. The calibration procedure consists of locating the corresponding
points on the virtual as well as real model. This is followed by the calculation of an
object-to-world transformation based on the corresponding points. Two methods to
perform the calibration are presented[65]:

• Image-based object calibration

• Pointer-based object calibration

Image-based object calibration assumes the camera has been calibrated and at-
tempts to calculate the object-to-world transformation of a single and known geometric
object. The calibration starts by capturing an image of the object and preprocesses it in
order to find landmarks. The calibration approach described by Whitaker et al., does
not make many assumptions about the scene, and does not need to. This is because
manual intervention, by using a mouse pointer, is needed in order to find the landmarks.
A rigid 3D transformation and a projection by a pinhole camera is assumed to map 3D
world coordinates into image coordinates. It is noted that this is a simplification of the
optics of a camera and does generally not apply.

The registration was solved as a minimization problem in a short amount of time,
and the reprojection error was generally kept between 2 − 3 pixels. However, even
though the reprojection error is kept small, rotating the camera around the object could
potentially show a problem. The errors in the z-direction when performing image-
based calibraton can be very large. This depth problem was thought to be caused by
the assumptions in the simplified camera model. Because of this problem, a method
based on a tracked pointer was developed for object calibration.[65]

For pointer-based calibration to work, a pointing device capable of delivering
world coordinates of its position is needed. The challenge is then to calculate the
transformation between a set of 3D point pairs collected by the device. The world
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points collected, P w
i , are then used to calculate the transformation from object coordi-

nates, P l
i , to world coordinates. The relationship between P w

i and P l
i can be written

as[65]:
P w

i = P l
i R + T (5.23)

A linear system of twelve unknowns is created from equation (5.23). To solve this
system, at least four points have to be sampled, and the least-squares error solution
has to be calculated. This method of registering points with eachother can produce
non-rigid transformations which are undesireable. Forcing the rotation to be rigid can
be performed by a non-linear optimization problem[65]:

min
x
||P w

i − P l
i R − T ||2 + α||RRT − I||2 (5.24)

The procedure presented was able to calculate the object-to-world registration from
the minimization problem of equation (5.24) in a short timeperiod.

It is noted that this method of registering, in contrast with the image-based method,
does not have problems with depth, and that when working with large physical objects,
the image-based approach is often better because it is more practical than the pointer-
based approach. The pointer-based method is better when having a smaller object or
when accuracy is desired.[65]

Non-rigid volume registration

Non-rigid volume registration is a very much bigger problem to solve than the previ-
ously mentioned rigid registration techniques. It is a well-known problem within im-
age guided brain surgery that the brain actually “deflates” about one centimeter when
opened. The cortical surface shifts of approximately 10mm, and subsurface shifts in
the range of 6mm. This causes problems when trying to register pre-operative volume
data correctly on top of the patient.[66]

The main causes of brain shift are[66]: the loss of cerebro spinal fluid, the usage
of anaestetics and the work of the surgeon. This makes the preoperative and pre-
processed images less useful for the neurosurgeon during the operation, and a better
way of registering the preoperative volume data is needed.[66]

The non-rigid volume registration techniques can be separated into two main blocks:
techniques using image based models, and techniques using biomechanical models.
The image based models are often used if such images are possible to aquire during
surgery.[66]

Transformations can be rigid, affine, projective and curved, and can be either global
or local. Rigid transformations imply only rotation and translation effects are of con-
cern. Affine also emphasizes the scaling and shearing effects which may occur. Projec-
tive transformations do not necessarily preserve parallel lines, and elastic transforma-
tions give the additional feature of being able to register lines with curves. Rigid and
affine transformations are often characterized as global, since they affect globally.[67]
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Non-rigid volume registration is a large and complex topic which will be researched
for still many years. This section was meant as an introduction to the very important
registration topic.

5.4.3 Problem statement
Calibration and registration of cameras and objects is an essential part of Augmented
Reality. Without good registration, convincing demonstrations of the technology is not
possible. Good registration enables effects such as occlusion and collision detection[65],
and makes it possible to register a virtual object on top of a object with high accuracy.

A problem when dealing with volume data gathered from an MR-scanner, is the
placement of the volume in world coordinates. Registering the volume with the patient
is a must to accurately be able to perform surgery based on the data.

The problem to be solved in this part of the thesis is the registration of virtual
objects on top of their real counterparts in a way which minimizes the error and can be
performed fast and easily by a human operator.

5.4.4 Procedure
3D point registration

The registration could be performed using either image-based object registration or
pointer-based object registration, as mentioned in section (5.4.2). Because of the depth
and accuracy problem of the image-based method, the choice for this report is the
pointer-based object registration.

When performing the sampling of points, the samples are bound to be off by some
degree. A popular method for achieving this kind of object registration is the Iterative
Closest Point (ICP) algorithm. It is an iterative procedure which requires an initial
registration. For each step in the algorithm, two tasks are executed[68]:

• The closest neighbouring points are assumed to be the same points.

• The registration error is attempted minimized using a least squares algorithm
which minimizes the distance error between the corresponding points.

This registration technique can be shown to converge towards a solution of minimal
residual error, but the initial registration is of high importance for it to converge accu-
rately and within a timeframe.[68]

The ICP algorithm is more often used when having a large number of samples, but
registering a virtual object with a real should be performed by a human operator in
a relatively short amount of time. Hence, having the operator sample many points is
not desireable. Additionally, in contrast with the ICP algorithm, the mapping between
corresponding points in the two coordinate systems is known prior to executing the
algorithm. These properties of the problem indicate that another method for solving the
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problem is needed. A simplified version of the ICP algorithm should to be investigated.
But before that, some more information on the ICP algorithm seems appropriate.[68]

Iterative Closest Point algorithm

The Iterative Closest Point (ICP) algorithm is a popular method for aligning geometric
models with eachother. The algorithm starts with an initial guess for the registration
of the data, and iterates over the data until a good registration is found by minimizing
an error metric.

Normally, the ICP algorithm has two sets of points as input, where the number
of points in one set can vary from the number of points in the other set. The sets
can be mathematically written as P = {pi}

N
1 and M = {mi}

M
1 , where usually

N 6= M . The problem, given the input parameters, is to compute the best transfor-
mation (rotation and translation) which aligns P with M . Equation (5.25) illustrates
the transformation.[68]

mi = Rpi + t (5.25)
The closest neighbouring points are assumed to correspond with eachother in the two
sets[68]:

cp(p) = min
mεM
||m− p|| (5.26)

cp(p) in the previous equation matches the closest point in the M set with the point p
in the P set. Having this tool, the ICP algorithm can be expressed as follows[68]:

1. Find a set of closest points. Can be achieved by an exhausting search, or by
heuristical methods and smart algorithms.

Y = {mεM : pεP ∧m = cp(p)} (5.27)

2. Compute the optimized transformation from P to Y

(R, t) = min
R,t

N
∑

i=1

||yi − Rpi − t||2 (5.28)

3. Apply the transformation to all points in P :

pi = Rpi + t (5.29)

4. Continue at 1 if the stop criterion has not yet been satisfied.

The algorithm stops as soon as any of the following conditions are satisfied[68]:

• The mean square error, equation (5.30), is low and below a threshold value.

MSE =
1

N

N
∑

i=1

||yi − pi||
2 (5.30)
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• The mean square error between two iterations is relatively small.

• The maximum number of iterations has been reached.

Step number two of the ICP algorithm is the focus of the remaining parts of the “Proce-
dure” section, and is more generally known as the absolute orientation problem. For
more information on the ICP algorithm, the interested reader is referred to documents
([69] and [70]).

Absolute orientation problem

In many applications, the need for finding the transformation between coordinate sys-
tems exist. Having two sets of feature measurements and finding the transformation
between them is what constitutes the absolute orientation problem. There are many
features which can be used, e.g. lines, surfaces, etc, but points are the most commonly
used feature in practical applications. There are two general methods for solving these
problems: closed form solutions and iterative methods, where the closed form so-
lutions have shown to produce generally better results because they are not trapped in
local minima.[71]

First it is assumed there coexists two point sets with corresponding points in each
set, {mi} and {di}, where i = 1, 2..N . The point sets are related by the transformation[71]:

di = Rmi + T + Vi (5.31)

As suspected, R is a rotation matrix and T is a translation vector. These basic blocks
define the transformation between the coordinate systems. Vi is a noise component
which is related to each of the corresponding points in the sets. Finding the optimal
rotation and translation components which minimizes the error of the correspondence
very often requires minimizing a least squares criterion, as seen in equation 5.32.[71]

ε2 =
N

∑

i=1

||di − R̂mi − T̂ ||2 (5.32)

However, it is noted that if outliers exist in the data sets, the use of this minimization
is not optimal and other methods should be applied. There also exist several slightly
different methods to calculate the optimization, but a choice was taken, and the method
used in this thesis is that of Arun et al. (1987), and was designed to minimize equation
(5.32).[71]

Equation (5.32) requires the point data to have the same centroid for the rotation
part to work correctly. The centroids are defined as seen in equations (5.33, 5.34).

d = 1

N

∑N
i=1 di

dci
= di − d

(5.33)

And for the other point set:
m = 1

N

∑N
i=1 mi

mci
= mi −m

(5.34)
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Basically, the centroid is just the mean of the point positions of all the points in the
set. The points in the sets are then subtracted the centroid to find the relative positions
dci

and mci
. This computation makes it possible to reduce equation (5.32) to equation

(5.35).[71]
ε2 =

∑N
i=1 ||dci

− R̂mci
||2

ε2 =
∑N

i=1(d
T
ci
dci

+ mT
ci
mci
− 2dT

ci
R̂mci

)
(5.35)

To minimize equation (5.35), the last term of the equation has to be maximized.
This is equal to maximizing Trace(R̂H), where H is a correlation matrix defined by
equation(5.36)[71]:

H =
N

∑

i=1

mci
dT

ci
(5.36)

A singular value decomposition (SVD) is then performed on the correspondence ma-
trix, H , which in turns yields a result of H = UΛV T . From this, the optimal rotation,
R̂ can be calculated as seen in equation (5.37).[71]

R̂ = V UT (5.37)

The solutions calculated by this method have been experienced to hold also in cases
where both model and data points contain noisy data, which is just what is needed in
our implementation of rigid registration. Thinking back to our problem, the markers
have to be placed by human hand, and each point has to have a corresponding point in
the other point set. Though errors should be fairly low, they will be present to some
degree.[71]

Currently we have found an optimized rotation, but have yet to find an optimal
translation. This translation is one which aligns the centroid of point set {di} with the
rotated point set of {mi}. Mathematically, this is written as equation (5.38).[71]

T̂ = d− R̂m (5.38)

If the determinant of R̂ is +1, there are no problems, but if the points in the data sets
are planar, or large amounts of noise exists in the data, the determinant may become
−1. This tells us there was a reflection instead of just a rotation conducted. Under
these circumstances, the rotation matrix is found by calculating R̂ = V ′UT , where
V ′ = [v1, v2,−v3] (values taken from V ) has v3 where the column corresponding to
the singular value of H that is zero.[71]

5.4.5 Results
Overview

The registration of a point set with another point set is needed in order to correctly
register a virtual objects on a patient. A clinical setting in which this is needed, is the
registration of e.g. a volume data scan of a patient with the corresponding anatomy



78 CHAPTER 5. CALIBRATION AND REGISTRATION

of the actual patient. How such a registration can be performed mathematically was
described in the procedure section, and will be refreshed in the Algorithms section
coming up next. The registration is performed with a simplified version of the Iterative
Closest Point (ICP) method - solving an issue called the absolute orientation problem.
Two algorithms solving this problem have been implemented in Studierstube during
the thesis:

• Register 3 points on a virtual object and 3 points on a patient after placing them
in Augmented Reality .

• Register N > 3 points on a virtual object and N points on a patient after placing
them in Augmented Reality.

The main difference between these two procedures is the underlying algorithm being
used. The first procedure uses basic knowledge of vectors and matrices, while the last
approach minimizes an error metric in order to calculate the transformation. Using just
three points will make the transformation very noise-dependent, while the algorithm
registering N points is able to handle noise much better. In any case, ensuring that as
little noise as possible is present will help calculate a more accurate results.

Algorithms

Two calibration methods were implemented, however, the basic procedure to register
a virtual object with a patient remains the same:

• Place a set of points on landmarks on the virtual object

• Place a set of points on the corresponding landmarks on the patient

• Press a register button which causes the registration to be calculated and applied
to the virtual object.

• The virtual object should now be correctly placed on the patient unless there was
noisy data.

Registering three points in one set with three points in another set can be done as seen
in Algorithm 6. Registering two corresponding sets with N points in each is a more
general process, taking advantage of algorithms developed to solve the absolute orien-
tation problem previously mentioned. Performing this registration was implemented
during this thesis and the registration procedure can be found in Algorithm 7.

Accuracy

The accuracy of the registration highly depends on the quality of the point sampling. If
sampling is performed by moving the points using a 3D pointer in Augmented Reality,
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Algorithm 6 : Three corresponding points virtual-real registration
Require: M = {mi}

2
i=0 to be a set of non-planar points placed on a virtual object

Require: D = {di}
2
i=0 to be a similar set of non-planar points placed on a patient

Require: Both sets are located in the tracker coordinate system
Ensure: TM→D is the transformation from M to D

{Create vectors in order to set up a coordinate system}
a1 ← normalize(m2 −m1) , a2 ← normalize(m3 −m1)
b1 ← normalize(d2 − d1) , b2 ← normalize(d3 − d1)

{Cross-products follow the right hand rule.}
a3 ← a1 × a2

b3 ← b1 × b2

{Do another cross-product to make sure the vectors really are orthogonal}
a2 ← a3 × a1

b2 ← b3 × b1

{Find the translation which takes us from M to D.}
tm1→d1

← d1 −m1;

{The rotation is found from the coordinate systems previously calculated.}

Ra ←











a1[0] a2[0] a3[0] 0
a1[1] a2[1] a3[1] 0
a1[2] a2[2] a3[2] 0

0 0 0 1











, Rb ←











b1[0] b2[0] b3[0] 0
b1[1] b2[1] b3[1] 0
b1[2] b2[2] b3[2] 0

0 0 0 1











{Ra and Rb are rotation matrices of the two corresponding coordinate systems. We
now need to find the relative rotation which takes us from Ra to Rb.}
Ra→b ← Rb ∗R−1

a

{Set up translation matrices}

Tm1→d1
←











1 0 0 tm1→d1
[0]

0 1 0 tm1→d1
[1]

0 0 1 tm1→d1
[2]

0 0 0 1











, Torigo→m1
←











1 0 0 m1[0]
0 1 0 m1[1]
0 0 1 m1[2]
0 0 0 1











{The resulting transformation can now be calculated.}
TM→D ⇐ Tm1→d1

∗ Torigo→m1
∗Ra→b ∗ T−1

origo→m1

{All homogeneous points, p̃m, located in M ’s coordinate system can be transformed
to D’s coordinate system by a simple matrix multiplication: p̃d = TM→D ∗ p̃m}
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Algorithm 7 : N corresponding points virtual-real registration
Require: N > 3
Require: M = {mi}

N−1
i=0 to be a set of N points placed on a virtual object

Require: D = {di}
N−1
i=0 to be a similar set of N points placed on a patient

Require: Both sets are located in the tracker coordinate system
Ensure: TM→D is the transformation from M to D

{Calculate the mean/centroids of both sets}
d← 1

N

∑N−1

i=0 di

m← 1

N

∑N−1

i=0 mi

{Subtract the respective centroid from all points in M and D and place the resulting
points in {mci

}N−1

i=0 and {dci
}N−1

i=0 respectively.}
for i = 0 to N − 1 do

dci
← di − d

mci
← mi −m

end for

{H is a 3× 3 correlation matrix}
H ←

∑N−1

i=0 mci
∗ dci

T

{Decompose H by Singular Value Decomposition}
UΛV ← SV D(H)

{Calculate the optimal rotation, R̂}
R̂← V ∗ UT

{Calculate the optimal translation, t}
t̂← d− R̂m

{Create a homogeneous transformation matrix, TM→D}

TM→D ⇐

[

R̂ | t̂
0 | 1

]

{All homogeneous points, p̃m, located in M ’s coordinate system can be transformed
to D’s coordinate system by a simple matrix multiplication: p̃d = TM→D ∗ p̃m}
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the quality of the samples could be bad. This is because it is very difficult to keep the
hand steady enough when releasing the point near the desired location.

Currently, the placement of points on landmarks is performed in Augmented Re-
ality for both the virtual object and the patient. Placing the points on the patient in
Augmented Reality should not be difficult to do with a certain amount of accuracy
because the patient is a physical entity with a surface on which landmarks can easily
be found using a tracked pen.

To perform the registration, a set of easily identifiable points on the real patient is
needed. In section (5.4.2), a method which used small spheres placed on the patient
before MR or CT scanning was discussed. This technique is probably very accurate
and should be tested in future implementations. A method which does not use spheres,
but identifiable contours of the human body could also be implemented. The idea is to
take an MR-image of the patient, find landmark points in the volume and then locate
the landmark points on the patient. The points in the volume are found by looking at
2D slices from different angles.

In most cases, having more than four points could increase the precision. Iterative
Closest Point implementations generally use hundreds of points to find a good approx-
imated transform. However, having to place the points manually, using a number of
points between eight and ten was said by Schwald[64] to give good results. Outliers
should not be an issue in this context beacuse they are avoidable if sampling is care-
fully performed.

If accurate sampling can be assumed, there is no real limitation in the quality of the
calibration except perhaps floating point accuracy. The method described in Algorithm
7 can be shown to converge towards the optimal solution.

User interface

The test-application developed does not need a real patient to be present. It registers
two dummy-objects in 3D with eachother using a set of points which are moved by the
user and placed on the corresponding locations on the two objects. Initially the points
are placed in the scene as seen in figure (5.14). The blue points are to be placed on the
virtual object, while the green points are placed on the real patient (which also is a 3D
object in the case of the test-application).

A point is moved with the pen by pressing the pen button near the point, then
relocating it to the desired position and releasing the pen button. The points change
size when the pen enters their bounding volumes. This gives the process an intuitive
feel and makes picking easier.

An example placement of the points is shown in figure (5.15). The locations do not
have to be exactly the same as that of the reference model, but should be very close
approximations if a good registration is needed.

After the points have been placed on corresponding locations on the virtual and
real patient, the registration can be calculated. This is performed by clicking on the
“Register” button located in the scene. The registration is then calculated and the
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Figure 5.14: Shows the setup currently used for registering a virtual and a real patient.
The operator has to move the points manually in Augmented Reality using a pen. The
blue points are placed on the virtual patient, and the green ones are placed on the real
patient

Figure 5.15: Shows the points being placed on the virtual and real face, thus enabling
a transform to be calculated and optimized. By pressing the “Register” button, the
transformation will be calculated and applied - effectively registering the virtual object
on top of the real
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Figure 5.16: The virtual object has been transformed to fit the real patient. The fit is
not exact because the points have not been placed on the exact same relative locations
in both models.

virtual object is aligned (rotated and translated) to optimize the fit of the points with
those on the patient. An example result with points not placed exactly correct is seen
in figure (5.16)

If the calibration came out wrong, it is possible to move the control points again
and the registration can be recalibrated, and hopefully improved upon.

5.4.6 Discussion
The method developed for registering virtual objects with real ones, has proved itself
very general purpose and easily applicable. However, the way it was applied in this
thesis is not how it will be used in a clinical setting. The surgeon will not have to
place the points on the virtual objects in Augmented Reality. The reason why this
is not a desired feature, is that accuracy suffers. It is much easier to place a point
accurately on a 2D image with a mouse than in a 3D volume using a tracked pen.
Further developments will have to address this issue.

Though two different methods to perform the virtual-real registration were intro-
duced, only one is generally applicable. Being restricted to two sets with three corre-
sponding points is a major limitation. Hence, the best method in most cases is the N
point virtual-real registration algorithm.
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5.5 Registering overlapping tracking systems
5.5.1 Overview
Overlapping tracking systems is here defined as tracking systems with overlapping
tracking volumes. In these volumes, two or more tracking systems deliver tracking
signals, but not necessarily in the same coordinate system or at the same time.

Having multiple overlapping tracking systems causes trouble because they, most
likely, will not deliver tracking coordinates in the same coordinate system. Hence,
a way to transform the tracking coordinates into a reference coordinate system is a
desired feature, and will be discussed in this part of the thesis.

The previous sections dealt with the registration of virtual objects on top of a pa-
tient. This was performed by placing a set of points on both a virtual object and on
the patient. As it turns out, fortune has favoured the brave - the virtual-real registration
problem is related to the problem of registering overlapping tracking systems.

5.5.2 Previous work
Registering hybrid tracking systems

Schwald et al. proposes in [64] procedures for registering several tracking systems
with eachother, making them produce tracking signals in the same coordinate system.
The paper describes procedures for utilizing the capabilities of separate and overlap-
ping tracking systems in a hybrid tracking system for medical Augmented Reality.
The tracking components consist of a video-based infrared tracking system, and an
electromagnetic tracking system. The optical tracking system is used for tracking the
head of the surgeon as well as a semi-transparent display mounted on a mechanical
arm, while the magnetic tracking system is used for tracking the other instruments and
the patient. Several problems, including timing issues, are discussed.

Transforming from one coordinate system to the other ensures that all tracking sig-
nals are registered in the same coordinate system. The alignment process consists of
moving an instrument, both magnetically and optically tracked, for about 20 seconds,
or until enough samples have been gathered; typically around 250 are taken from each
tracking system. When sampling is finished, the transformation between the coordi-
nate systems is found and optimized. The rotation, R and translation, T , are found by
minimizing equation (5.39).

err =
n

∑

i=1

|RPi + T −Qi|
2 (5.39)

This minimization problem is solved by maximizing trace(RK), where K is defined
as equation (5.40).

K =
n

∑

i=1

Q̂iP̂
T
i (5.40)
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Pi and Qi are corresponding points from the electromagnetic and optical tracking sys-
tems respectively. P̂i = Pi − P and Q̂i = Qi − Q are a set of points from Pi and Qi

with shifted centers to the centroids, P and Q, of the point sets (average of all points in
the sets) respectively. P and Q are defined to be: P = 1

n

∑n
i=1 Pi and Q = 1

n

∑n
i=1 Qi.

The rotation part of the transformation from Pi to Qi can be found by Singular Value
Decomposition (SVD) of the matrix K:

K = V DUT (5.41)

R = V UT (5.42)
The optimal translation vector can now be calculated as:

T = RP −Q (5.43)

All the corresponding points (Pi, Qi) are then entered into equation (5.44) and the
points are only used if the distance is below a threshold value. This ensures the re-
moval of outliers caused by bad tracking data.

d = |PiR + T −Qi| (5.44)

The algorithm is now run another time to ensure the bad values have no influence on
the solution. The resulting rotation and translation after this second step is the final
transformation.[64]

Having walked through the mathematics, the perceptive reader might have noticed
the similarities between this procedure and the one used in section (5.4.4) to solve
the absolute orientation problem. In fact, nearly the same algorithm was implemented
when solving the virtual-real registration problem, and can be seen in previously in-
troduced Algorithm 7.

Schwald et al. also tested an other way of calculating the transformation: non-
linear optimization with the Levenberg-Marquardt (LM) method. The algorithm re-
sulted in a slightly different mean error, but the solution described above was chosen
because of its simplicity.

A problem which will become appearent when working with different tracking
systems, is the time of which the samples are gathered. The algorithm mentioned
above assumes the corresponding points are gathered at exactly the same moment in
time. This will, however, not be the case of most tracking systems. It may not even be
the case that the tracking data is distributed in even intervals due to the thread priority
of the computer or issues with the tracking system. These timing problems could be
solved in this case by only sampling data when the trackers are completely still, but
this is not a satisfactory solution in an interactive Augmented Reality application[64].

When motion is allowed, the usage of time stamps is needed in order to find com-
patible samples from the two tracking systems. This is done by finding the offset time,
toffset, between samples from the different systems. This value has to be within an
epsilon time value, ∆t. The ideal case would be to have ∆t = 0, but this is essentially
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impossible due to the synchronization issues. However, it is noted that ∆t should be
significantly lower than the update rate of the tracking system with the highest fre-
quency. This coupling restricts the number of samples usable for registration. The ∆t
which gives the least error in equation (5.39) can be found by testing with different
values of ∆t.[64]

Other work

As mentioned in the overview, the problem of registering overlapping tracking systems
is related to the problem of virtual-real registration from section (5.4). The problem
also has many similarities with methods where the transformation between two sets
of points is needed, as is the case when applying the Iterative Closest Point algorithm
(ICP) introduced in section (5.4.4). Because of the power and popularity of the ICP
algorithm, there are many implementations spanning different domains and problem
areas utilizing the algorithm. It is up to the interested reader to investigate this topic
further.

5.5.3 Problem statement
At the Interventional Center, there is an MR-scanner with an attached FlashPoint 5000
optical tracking system. In the central parts of the scanner, there is a magnetic tracking
system which allows for tracking when occlusions cover the optical trackers. Also, it is
possible to use more than one optical tracking system to further increase the possibility
of at least one tracker being visible at a moment. Funds have been granted to the
Interventional Center to get an additional optical tracking system, which will further
increase the problem of having multiple tracking units working in union. To be able
to use overlapping tracking systems together, they have to be registered to the same
coordinate system.

The problem in this part of the thesis is the calibration and registration of overlap-
ping tracking system so that tracking signals from all trackers are transformed into a
reference coordinate system.

5.5.4 Procedure
Calculating the registration

Having two sets of corresponding points in different coordinate systems is visualized
by figure (5.17). The basic idea behind the procedure, is to transform all points in one
set so that the centroid of the set (average of positions of all points) becomes the origo.
Now, the rotation has to be calculated between the points. This is calculated by solving
the absolute orientation problem problem described in sections (5.5.2 and 5.4.4). A
short review of the algorithm is seen in the following list:

• Find the centroids of both point sets.
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Figure 5.17: Illustrates the problem of registering points from two different coordi-
nate systems. All points in one set have corresponding points in the other set. A
transformation between one set and the other is needed to properly register the sets
with eachother. The goal is to calculate the transformation where the corresponding
points, indicated by red lines, are located exactly at the same locations in a reference
coordinate system

• Subtract the controid from all points in the respective set from which it was
calculated.

• Find the optimal rotation from one set to the other

• Find the optimal translation from one set to the other

• For all subsequent tracking signals which should be in the reference coordinate
system, apply calculated transformation by matrix-vector multiplication.

There are several issues when working with two possibly heterogeneous tracking
systems. One issue is the timing and rate at which the samples are returned. Another
problem is the possibility of receiving bad tracker data. Handling such cases is im-
portant in order to achieve good and reproducible registration. These problems were
introduced earlier in the document when referring to work done by Schwald et al. in
section (5.5.2). The next sections will dive a little deeper into the timing and noise
management issues.

Timing issues

When registering virtual objects with real ones or just two virtual sets of points with
eachother, timing is not of concern. The positions are “timeless” - meaning they are
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Figure 5.18: Illustrates the timing issue when sampling from two tracking systems
where the coordinates are time-dependent, meaning movement of the tracker is possi-
ble during sampling. The two tracking systems have different update rates. Thus, find-
ing corresponding points from the two tracking systems is not a trivial task. Schwald et
al.[64] notes that the time offset between corresponding samples should be very low,
a time threshold significantly lower than the update rate of highest frequency tracker.
This ensures the positions gathered are close enough in time to assume they have been
sampled at the same moment

not dependent on time information. However, when receiving a continuous stream of
samples from the tracking systems, timing becomes an important issue. Especially
when receiving tracking data from two or more devices for calibrating their coordinate
systems. If motion is prevented when sampling, the timing does not become a problem.
But if movement is allowed, timing becomes a relevant factor which requires some
more thought. An illustration of the problem is found in figure (5.18).

One way of finding corresponding samples from the two tracking systems is to
make sure the samples are close in time. Such a procedure was presented by Schwald
in the “Previous work” section. Another theoretical approach is to perform some kind
of interpolation between two following samples to approximate the tracking infor-
mation at a specific time. The samples have to be close in time for this to work.
Interpolation is conducted in such a manner that it predicts the signal sent by the other
tracking system between the two samples. However, this setup requires a tracking
system with low latency.

Handling noisy samples

Tracking systems have many sources of inaccuracies, and noisy measurements can
easily occur. Investigating methods for handling these circumstances is necessary in
order to achieve accurate registration.

The method introduced by Schwald et al. in the “Previous work” section handles
outliers in the tracking signals by removing their influence on the resulting transforma-
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tion. More details on how the registration could be done is found in the forthcoming
“Results” section.

5.5.5 Results
Overview

To be able to register two overlapping tracking systems semi-automagically, the first
task is to perform a sampling of a tracked device in both tracking systems. From
this correspondence, the transformation between one tracking system to the other is
calculated and optimized. One method for solving this problem has been implemented,
and an other method is proposed:

• The implemented procedure interpolates between subsequent samples which are
assumed to be close in time, followed by the calculation of the optimal transfor-
mation between the points. The functionality is implemented as an OpenTracker
node.

• The proposed procedure matches samples that are close together in time and
removes outliers in the sampling before calculating the optimal transformation.
This method is potentially easier to implement as well as more accurate than the
above procedure.

Algorithms

The current implementation of the registration procedure assumes the points from the
tracking systems are located fairly close in time, and interpolates between subsequent
samples. This method is described in Algorithm 8, and has problems when time be-
tween samples is relatively large, or when outliers are present in the data.

Using the method introduced by Schwald et al.: assuming two points are the same
if they are sampled during a very short timeperiod, shorter than the update rate of
the fastest tracking system, the timing problem can be alleviated. However, the exact
position of the point at the reference time is not calculated, and the position is due to
be off by a small amount. This method has not been implemented, but is described in
Algorithm 9.

Accuracy

Accuracy depends on the quality of sampling. Only sampling static points makes
it possible to get a high-quality registration assuming the tracking system delivers
good tracking signals. Performing sampling with a moving device introduces prob-
lems which could reduce the accuracy.

Methods for handling dynamic devices were introduced in Algorithms 8 and 9.
Even with these methods in place, one should be careful when sampling. Moving the



90 CHAPTER 5. CALIBRATION AND REGISTRATION

Algorithm 8 : Registering tracking system 1 with tracking system 2

Require: N > 3 to be the number of corresponding points to use for registration

s1 ← s2 ← s1,prev ← nil
interpolated← false
i← 0
while i < N do

sample← waitForSample()
{Wait for sample from tracking system 1}
if s1,prev = nil then

if sample comes from tracking system 1 then
s1,prev ← sample

end if
continue {Continue while loop from top}

end if

if sample comes from tracking system 1 then
s1 ← sample
if s2 is set and not interpolated then
{Linearly interpolate position and use SLERP for rotations}
samples[i]← interpolate(s1,prev, s1, s2.time)
interpolated← true
i← i + 1

end if
else if sample comes from tracking system 2 then

s2 ← sample
interpolated← false

end if

s1,prev ← s1

end while

{Calculate optimal transform from samples in tracking coordinate system 1 to track-
ing coordinate system 2}
T1→2 ← calculateOptimalTransform(samples, i) {As done in Algorithm 7}

while true do
sample← waitForSample()
if sample comes from tracking system 1 then

sample← transformBy(sample, T1→2)
end if

updateObservers(sample) {Notify observers of new tracking coordinate}
end while
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Algorithm 9 : Registering tracking system 1 with tracking system 2

Require: N > 3 to be the number of corresponding points to use for registration
Require: ∆t to be the maximum time difference between corresponding samples
Require: εmax to be the maximum distance between transformed and reference points

in order to remove outliers

s1 ← s2 ← nil
i← 0
while i < N do

sample← waitForSample()
if sample comes from tracking system 1 then

s1 ← sample
else if sample comes from tracking system 2 then

s2 ← sample
end if

if s1 and s2 are set then
toffset ← |s1.time− s2.time|
if toffset ≤ ∆t then

samples[i]← (s1, s2)
i← i + 1

s1 ← nil
s2 ← nil

end if
end if

end while

{Calculate optimal transform from samples in tracking coordinate system 1 to track-
ing coordinate system 2}
(R, t)← calculateOptimalTransform(samples, i) {As done in Algorithm 7}
for j = 0 to N − 1 do

ε← |R ∗ samples[j].s1.position + t− samples[j].s2.position|
if ε > εmax then

samples← samples− samples[j]
i← i− 1

end if
end for

T1→2 ← calculateOptimalTransform(samples, i) {As done in Algorithm 7}

while true do
sample← waitForSample()
if sample comes from tracking system 1 then

sample← transformBy(sample, T1→2)
end if

updateObservers(sample) {Notify observers of new tracking coordinate}
end while
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tracked device should be done slowly in order to ensure the samples from the different
tracking systems are close in space. Having a high-frequency tracking system will also
help reduce the error. Additionally, sampling should use a large number of points if
noise is known to be present in the data. Typically 100− 300 corresponding samples
are used.

Predictive tracking using e.g. the Kalman filter (introduced in section 5.2.4) could
increase the accuracy of the registration. However, this has to be tested, and it is proba-
ble that the sampling of tracking coordinates which are close in time is a simplification
which delivers valid results with low errors.

To sum things up, great registration is possible by sampling static points. This is,
however, not always a desired feature. By sampling a moving device, accuracy will
suffer if not carefully done.

User interface

The current implementation calculates the registration after having sampled a specified
amount of coordinates. Because the registration is performed in OpenTracker, there is
no Graphical User Interface (GUI). In fact, registration happens automatically as soon
as enough samples have been matched from the two tracking systems. All the user has
to do is move the tracked device slowly around while sampling occurs. After enough
samples have been gathered, the registration transform is calculated and all tracking
signals received from this point on from one of the tracking systems is transformed
into the coordinate system of the other.

5.5.6 Discussion
Having just implemented one of the mentioned algorithms, testing the other one could
show increased precision. The proposed method is also easier to implement since it
does not need to interpolate between subsequent samples.

More testing is needed in order to find the quality of registration with the different
approaches. If accuracy is not good enough, static sampling should be used. This is
because static sampling does not have issues with inaccuracies caused by a moving
device. However, sampling statically demands for user input, thus complicating the
procedure.



Chapter 6

Visualization and Interaction

6.1 Motivation
Volume data has recently become increasingly important in many fields. The abilities
of the newest graphics cards to perform real-time visualization of voxel graphics is
probably the main reason for the growing interest. But still there are complexity and
speed obstacles to overcome. Being able to visualize complex volumes at interactive
rates in stereo is needed. Medicine has been using volume data for a long time, and
research is focusing on newer and better ways for surgeons to utilize the new possi-
bilities. Augmented Reality is an interesting field for researchers trying to figure out
better and more accurate ways of displaying information, including volume data.[5]

6.2 Virtual cut
6.2.1 Overview
A virtual cut in the context of this thesis is a method giving the impression of a vir-
tual object residing on the inside of a patient, though no surgical opening has been
performed. Outside the cut the object is not visible, as illustrated in figure (6.1). This
virtual cut technique is in sharp contrast with mesh cutting techniques dealing with
how to simulate surgical cuts by cutting through meshes[83][84][85].

6.2.2 Previous work
Augmented Reality Visualization for Laparoscopic Surgery

Fuchs et al.[30] present an Augmented Reality prototype constructed to assist with la-
paroscopic surgical procedures. The system generates 3D structures from depth maps
calculated from images captured by a laparoscope, and the resulting 3D mesh is tex-
tured with the same images.

93
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Figure 6.1: As with a real cut, the internals of a patient are only visible through the
cut, and not anywhere else

The system is described to be intuitive and easy to use due its Augmented Reality
nature. A helpful factor is also the way data is visualized; as if it were located inside
the patient body when viewed from the outside. Compared to laparoscopic imagery
on a video monitor, or even stereo laparoscopic imagery on a stereo display, it is noted
that the Augmented Reality interface will be more intuitive and more powerful. An
example is the movement of the laparoscope: The surgeon is often interested in spe-
cific areas and frequently moves the laparoscope. With the proposed interface, the
movement of the instrument does not cause any disruptive changes in viewpoint which
could cause confusion.[30].

Future work proposed by Fuchs et al. include the visualization of MR and/or CT
data alongside the laparoscopic imaging, thus enabling a better view of the internals,
possibly better than what would be experienced during open surgery. Some of the
beneficial factors expected from the technology include[30]:

• Reduced average time for procedures

• Reduced training time of physicians

• Increased accuracy due to better understanding of physiology

• Better hand-eye coordination

• Reduced trauma to the patient

• Increased availability of procedures
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6.2.3 Problem statement
Being able to see an augmented view of what is going on under the skin of a patient
could greatly increase the accuracy of surgery, and also bring other beneficial factors
as mentioned in section (6.2.2). However, a problem when rendering virtual geometry
on top of a human body, is the perception that objects appear to float above instead of
appearing on the inside. A virtual cut could help resolve this issue.

The problem at hand in this part of the thesis is the development of a virtual cut
technique.

6.2.4 Procedure
A method for achieving a virtual cut in Studierstube is to render the virtual organs to a
texture; then projecting this texture onto a mesh representation of the cut:

• Place the mesh representation where the cut is to be visualized on the patient.

• Render the virtual organs to a texture from the viewpoint of the camera.

• Map the generated texture onto the mesh representation of the cut.

• Render the entire scene with the textured virtual cut mesh.

The virtual organs will only be visible by looking at the mesh representation of the cut.
How this could be implemented is described in the following “Results” section.

6.2.5 Results
Overview

The practical approach taken in order to solve the virtual cut problem is to render a vir-
tual object, representing the internal organs, using the standard Coin node SoScene-
Texture2. A geometric node (being the mesh representation of the cut) has to be
created. Both the virtual object and the mesh have to be correctly registered with the
body of the patient. This could be performed using the registration method developed
in section (5.4). The texture is then mapped onto the mesh representation of the cut in
such a way that the virtual object appears to be inside the patient. A possible result of
this operation is seen in figure (6.2).

Algorithms

Before being able to see a virtual cut, certain operations need to have been performed:

• Calibrate the camera

• Register a virtual cut mesh on the body of the patient. This could be performed
as described in Algorithm 7.
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Figure 6.2: The virtual cut technique is illustrated on an arm. The location of the
camera in the tracking system is known, and a scene, representing the bone structure
of the arm, is rendered to a texture using the same camera location. Having placed the
virtual cut mesh in the scene, texture coordinates have to be applied. These are set to
be the normalized screen projection coordinates of the 3D points.
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• Register the virtual organ on the body of the patient. This could also be per-
formed as described in Algorithm 7.

The mapping of the scene texture onto the cut mesh depends on what the camera
sees. The texture coordinates for each point in the mesh are set to be the normalized
screen projection coordinates of the 3D points. The operation is illustrated in figure
(6.2), and described in Algorithm 10.

Algorithm 10 : Virtual cut
Require: A calibrated camera attached to a tracked HMD
Require: The virtual cut mesh has been registered with the patient
Require: The virtual organ has been registered with the patient
Ensure: The virtual organ is rendered inside a virtual cut

for each frame do
{Render the virtual organ from the view of the camera and place the result in a
texture}
texture← renderToTexture(organ, camera)

{Finds the normalized screen coordinates of the mesh vertices}
texcoords← calculateNormalizedScreenProjection(mesh, camera)

{Apply the generated texture to the mesh using the normalized screen coordinates
as texture coordinates}
applyTexture(mesh, texcoords, texture)

{Render the texturemapped virtual cut mesh. It should now appear as if the virtual
organ lies on the inside of a cut on the patient}
render(mesh, camera)

end for

Accuracy

The accuracy depends highly on how good the virtual organ has been placed relative
to the patient. If the placement is precise, the virtual cut technique should not, theoret-
ically, have many issues with accuracy.

However, the current technique used for mapping the rendered texture onto the
mesh representation of the cut causes perspective correction to be applied to the tex-
ture, this leads to the texture being stretched and squeezed depending on the depth
distance between polygonal points. This is an undesired sideeffect of the method. If
it is possible to turn off texture correction in Coin, fixing this problem should not be a
difficult task.
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Figure 6.3: This figure illustrates the virtual cut (blue area) as it would work on a real
person. The patient has been replaced by a 3D avatar for illustrational purposes

User interface

An implementation of the virtual cut, in this case placed on a virtual patient, can be
seen in figure (6.3). In a real-life setting, the patient would of course be real, but the
concept remains the same.

The technique by itself does not need specific user input. When correctly set up,
the user should be able to see a virtual object registered inside the patient when looking
at the cut mesh from different viewpoints.

6.2.6 Discussion
Having developed a virtual cut technique as described previously, there are a few issues
which have not been discussed. It is not just important that the virtual cut is rendered
with the correct camera, but lighting is also of importance. How should the organ be
lit? No research has been conducted on this topic, and more work is needed in order
to find answers.

The virtual cut technique has been visualized on a virtual patient. This is a much
easier task than placing it on a real patient. Especially the registration of the virtual
organ and the cut mesh with the patient is vital in achieving the aspired cut effect.
More work is needed in order to get a satisfactory result in a clinical situation.
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6.3 Volume transfer function specification
6.3.1 Overview
1 Volume data can hold massive amounts of information. In most instances it is practi-
cally impossible for a human to comprehend an entire volume by looking at it directly.
Hence, there is a need for tools which can manipulate the volume so that relevant parts
can be visualized and enhanced with color and opacity. A typical tool of visualizing
different parts of a volume and altering color mappings is a transfer function. This part
of the thesis will deal with the transfer function specification problem, and builds on
the work presented by the author in [5].

6.3.2 Previous work
StudyDesk

StudyDesk is a solution for presenting 3D-graphics interactively. The software foun-
dation on which it is based is Studierstube. For volume visualization, SGI Volumizer
is used. By moving a pen and a personal interaction panel (PIP), both of which are
transparent and tracked objects, the user interacts with the volume data. Menus and
other virtual objects are visualized on the PIP. The duality of pen and PIP makes two-
handed interaction possible. [86] notes that two-handed interaction has proven very
useful in medical applications. Some of the features included in the StudyDesk inter-
active volume exploration toolset are[86]:

• Scaling the volume is done by moving a sliderbar mapped onto the PIP. By
scaling the volume, an increasing number of calculations have to be conducted
in order to visualize the volume. This slows rendering down considerably.

• The lookup table is a way of controlling the colors and the opacity of the vol-
ume data. It allows for the display of data in a specific intensity range. A linear
lookup table is used, and the linear curve is altered by adjusting mean and toler-
ance values by moving sliders on the PIP. The line goes from min−tolerance/2
to mean + tolerance/2. Additionally, a freehand procedure for drawing the
transfer function was introduced.

• Dragging the volume is done by grabbing it with the pen, and moving it around
and rotating it. This method of interaction is inspired by how we look at objects
in the real world.

• Cutting the volume is done by flipping the PIP over. The menus will disappear
and the transparent interaction panel can be used as a clipping plane. The PIP
can then be moved over the volume data, and the volume is cut by the plane,

1Text partially taken from [5] - a project thesis conducted by the author autumn semester 2004
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making it possible to see deeper into the volume. The two-handed interaction
makes it possible to move the volume while also moving the clipping plane. This
is a more natural way of interaction than just moving the clipping plane.

• Freezing cutting planes is done when the cutting plane is in a preferred position.
One just has to click on the pen button, and the plane freezes on the volume.

• Unfreezing cutting planes is done by flipping the PIP back over in display
mode; then clicking on the pen button.

• Mirroring is an interesting way of using the PIP. Flipping it over will have it
working like a mirror.

• Extracting arbitrary slices is an important feature when used in medical appli-
cations.

The two-handed interaction as well as the above mentioned features were experi-
enced to be very helpful. However, it was noted that powerful hardware is needed in
order to render volume data in stereo.

Specification of transfer function

Some work has been conducted, using Studierstube, to find new and interactive meth-
ods for specifying the transfer function for volume data. The great importance of
specifying a good transfer function is noted in [24], but the procedure is often per-
formed on a trial and error basis. A new way of specifying such transfer functions was
introduced in the same paper: The user chooses from a set of predefined transfer func-
tions that can be manually adjusted. The transfer functions are modified by clicking
on certain intensity values directly on a slice through the volume data. The intensity
value chosen is then used as a peak value for an associated and predefined transfer
function. Typical predefined transfer functions used are the box-shape, tent-shape, and
gaussian shape. One or more transfer functions can be used together to specify a new
and composited transfer function. This makes it possible to make certain regions of
interest in the volume visible, while insignificant regions are kept transparent.

Previous research on transfer function specification concludes that it does not mat-
ter if the technique of choosing the transfer function is automatic, semi-automatic or
manual unless it is fast and simple. It has been tested that the approach of StudyDesk;
to let the user manually draw transfer functions, as with a pencil, turned out to be very
difficult to do because of the trial and error type of input needed to find the correct
transfer function. A new way of specifying the function is to choose an arbitrary point
of interest within a volume, and a distance map is calculated from this point. The map
influences the opacity of neighboring voxels. The paper only presents ways to interact
with alpha-values, and did not touch color manipulation.[24]
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Figure 6.4: 3D GUI for transfer function specification. This screenshot displays the
volume transfer function specification application developed autumn semester 2004 at
NTNU.

Work conducted at NTNU autumn 2004

A method for altering the transfer-function when displaying volume data has been
developed in a project conducted autumn semester 2004. A screenshot of the resulting
application can be seen in figure (6.4).

A special type of Hermite curves, called Catmull-Rom curves, were used to model
the transfer function. The Hermite basis matrix is used for the calculation, but the tan-
gent vectors are restricted to the constraints imposed by using Catmull-Rom curves[87].
Points along the curve are calculated using equation (6.1).
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P1 and P2 are the current neighboring control points. The tangent vectors, R1 and
R2, are what set Catmull-Rom curves aside from other Hermite curves, and they are
defined as in equation (6.2).

Ri =
1

2
(Pi+1 − Pi−1) (6.2)

The reason Catmull-Rom curves were chosen, was because of their interpolation prop-
erty, meaning the curves interpolate the control points, and because their tangent vec-
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tors are predefined by the control points.
Undefined curve regions occur between the two first and two last points. The

reason for this is that no valid tangent vectors can be found (see equation 6.2 why
this is so). To make sure all segments have a defined curve, a linear interpolation
between these points was used. The curve loses its continuity at two control points,
but gains defined regions.

For the user interface to be easy, the control-points are geometric objects, e.g.
spheres or cubes, and they change color and increase in size when the pen enters their
bounding boxes. Manipulation is done just by dragging the geometric control points
wherever wanted. No restrictions have been made to ensure the points stay within a
valid domain. This is because creating a desired curve may demand the freedom to
place points in undefined locations. The resulting undefined values are just clamped to
be within the valid range.

6.3.3 Problem statement

Previous approaches to transfer function specification have shown that setting up the
function has to be fast and easy, which was the background for developing a transfer
function specification application autumn semester 2004. The function is specified
by movable control points defining a Catmull-Rom curve. A problem present in the
previous implementation is that very little is known about the intensity distribution
within the volume, and presenting some of this information visually could help the
transfer function specification process.

The problem at hand in this part of the thesis is the development of methods for
displaying information about a volume helpful for fast and easy transfer function spec-
ification.

6.3.4 Procedure

Visualizing the transfer function using a histogram

The transfer function based on the Catmull-Rom curve is discretely sampled into a
list of values. These values are used for altering the volume transparency and color.
However, when the Catmull-Rom curve is steep, produces illegal values, winds back
on itself, etc., the sampled transfer function will not entirely match the one visualized
as a Catmull-Rom curve. Under these circumstances, it is very useful to see the transfer
function actually being used. This is the motivation behind drawing a histogram of the
transfer function together with the Catmull-Rom curve. More on this in the “Results”
section.
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Visualizing the distribution of volume intensities using a histogram

Altering the transfer function in real-time by moving control points defining a Catmull-
Rom curve is a task requiring patience. In the old implementation, the only knowledge
of the intensity distribution within the volume data was the visualization of the volume
itself. This, however, does not help much in manipulating the transfer function. For
this reason, a histogram visualization is desired in order to show the distribution of
intensity values within the volume. The histogram will help the user in choosing a
good transfer function by displaying important statistical information extracted from
the volume data. More on the method can be read in the following “Results” section.

6.3.5 Results
Overview

Both histogram visualization procedures mentioned in previous sections have been
implemented, and experiments show they have the potential of easing the process of
setting up good transfer functions.

Algorithms

One of the histogram visualization methods implemented displays the sampled trans-
fer function used for changing color and opacity values of the volume. The other
iterates through a volume dataset and ends up containing the intensity distribution of
the volume. Both methods are described in Algorithms 11 and 12.

Algorithm 11 : Histogram from a Catmull-Rom curve
Require: C to be a Catmull-Rom curve used for transfer-function specification
Require: N to be the number of samples used for transfer-function specification
Ensure: H is a histogram with N values sampled from the Catmull-Rom curve along

an axis

H ← nil
for i = 0 to N − 1 do
{Sample a value along an axis of the transfer function and place it in the histogram
at the current sample index}
H[i]← sampleCatmullRom(C, i)

end for

User interface

The idea behind the transfer function, as displayed in figure (6.5), is that is should
be easy to use and understand. The control points are draggers which can be moved
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Algorithm 12 : Histogram from a volume
Require: N to be the number of distinct intensities in the volume
Require: V to be a volume containing scalar values between 0 and N − 1
Require: (width, height, depth) to be the dimensions of the volume
Ensure: H is a histogram with N values based on the volume intensities. H[i] is the

number of voxels in the volume with i as intensity value.

H ← nil
for x = 0 to width do

for y = 0 to height do
for z = 0 to depth do

intensity ← V (x, y, z)
H[intensity]← H[intensity] + 1

end for
end for

end for

around. The draggers increase in diameter when the pen enters their bounding boxes.
Then, pressing the pen button inside a bounding box, attaches the dragger to the tip of
the pen while the dragger decreases in size. It can now be moved within a restricted
area, and it will detach from the tip of the pen when the user releases the pen button.
The transfer function is altered in real-time as a dragger is moved, causing the volume
data to also change while dragging. It is possible to change both alpha as well as red,
green and blue color components and luminance. Predefined transfer functions can be
used through clicking in the menu.

The histogram based on the Catmull-Rom curve continuously follows the curve;
approximating it as best it can. The volume histogram is rendered in the same location
as the Catmull-Rom histogram as seen in figure (6.5).

The new and old transfer function specifications methods can be compared in figure
(6.6).

6.3.6 Discussion
The developed transfer function manipulator is quite easy to use, but a view of both
the transfer function manipulator and the volume is still needed in order to find a good
function. Hence, the user has to watch two different parts of the scene at the same
time; potentially making the method difficult to use.

Another problem which is yet to be addressed, is the fact that the current method
does not allow for adding or removing control points at runtime. Setting up the number
of control points has to be done before the application is started. The author believes
there are many circumstances where the adding or removing control points is a desired
feature, hence it should be implemented if the method is to be used in a real application.
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Figure 6.5: The transfer function specification with the additional histograms display-
ing the current transfer function (white) and the intensity distribution in the volume
(green).

Figure 6.6: On the left side is an image of the transfer function specification as it looked
previous semester. On the right hand side, additional features have been added.
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Chapter 7

Discussion

One of the major difficulties in Augmented Reality, and the major topic of this thesis,
is the accuracy problem. Combining the best of two worlds, Augmented Reality has
the potential of becoming a useful medical tool in addition to becoming an ubiquitous
part of our daily lives. But if the illusion of the real and virtual worlds existing together
is compromised due to lack of accuracy, the user might not be satisfied by the system,
and mass-acceptance will not occur.

The calibration and registration methods presented earlier in the document all expe-
rience accuracy problems. Most of these occur due to issues with the various sampling
processes. The reason why sampling is such a problem is related to tracker accu-
racy, latency in capturing systems, refresh rates, and physics in general. The speed
of computers is of major importance: Augmented Reality systems attempt to render
a virtual scene on top of images of the real world in real-time. Due to the latency
inherent in computer systems, and the dynamics of real world, the rendered images
could be invalid by the time the scene is displayed, hence causing accuracy problems.
Unless tracking systems, computers, sampling systems and algorithms are immensely
improved, accuracy problems will continue to play a major role a long period into the
future.

Making Augmented Reality a useful addition to the Image Guided Therapy toolbox
is a relatively big task. AR is a major topic covering vast areas, and it is very impor-
tant to keep the inter-disciplinary nature of the technology in mind when developing
applications. Hence, results acquired through the years in other subjects like medicine,
product design, psychology, art, user interface design, etc should be adopted.

This thesis has dealt with various problems in the field of Augmented Reality,
touching many topics merely on a superficial level. During the work on this paper,
many problems had to be solved, and even more problems were left unchallenged due
to lack of time. The domain and possibilities of Augmented Reality are practically
boundless, making the subject even more interesting. The author’s hope for the future
is that hardware usable with Augmented Reality will evolve rapidly and progress will
be made in important areas, making the technology available and, more importantly,
helpful and fun for most people.
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Chapter 8

Conclusion

Augmented Reality is a natural way to interact with data, making it the preferred in-
teraction methodology in many settings. AR enables new possibilities within the pop-
ular subject of Minimally Invasive Surgery, and is becoming an important tool within
image-guided therapy in the near future. This thesis has investigated how Augmented
Reality can be applied as a tool in such a setting. Focus was set on the registration and
calibration issues, but problems related to the visualization and manipulation of data
registered on a patient have also been investigated.

The main result of the work conducted, is a camera calibration procedure for use
within Studierstube. The framework calculates the intrinsic and extrinsic camera pa-
rameters of video-cameras placed on a Head Mounted Display, and applies these to
cameras in the Studierstube scenegraph; thus making the calibration process both fast
and easy, but sensitive to noisy measurements. Several other parts were also con-
structed, e.g. the virtual cut technique; allowing the surgeon to see inside the body of
the patient without cutting the body open, enhanced methods for altering the transfer
function of volume data, and ways of registering coordinate systems with eachother.
Several other tasks were also undertaken in order to achive the results presented in this
document. The system developed during the thesis, though practical and easy to use,
needs to be further revised, enhanced and added upon in order to become a useful part
of the surgeons’ daily routine in the MR-lab.

Progress will be made in the years to come which will further enhance the applica-
bility of computer aided planning and intervention in surgery. The ARIS*ER project
has just started and will continue several more years. What the final result will be is
hard to imagine, but hopefully it will take Minimally Invasive Surgery one step further
into the high-tech medical future.

“Reality is merely an illusion, albeit a very persistent one”
Albert Einstein (1879 - 1955)
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Figure 8.1: Yours truely, wearing an HMD



Chapter 9

Future Work

Future work includes further developments in order to bring the system into a clinical
setting. For this to be achieved, the calibration process has to be slightly modified;
meaning that sampling of corresponding world and image points must be performed
as accurately as possible. This can only be achieved if both head-mounted display
and the tracked unit used for sampling are statically mounted in the tracker coordinate
system during the sample acquisition process.

Algorithms for registering a virtual object on a patient have been implemented for
this thesis, but even though the algorithms look promising, the user interface needs
to be rethought. Placing the points on the virtual object in Augmented Reality causes
accuracy problems and could result in an erroneous transform being calculated. Future
work has to address this issue and implement an other method for sampling these points
with high precision.

A method for finding the transform from one tracking system to another was pre-
viously presented in this document, but the method implemented should be improved
upon due to possible accuracy problems. An algorithm which could resolve some of
these issues was presented in the same sections, and future work should include the
implementation of this and testing it against the old procedure.

When the static registration problem has been solved to a satisfactory level, dy-
namic registration should be further investigated. Some interesting methods have been
introduced previously in the document, and among these, the Kalman filter, image
deflection and video-based approaches look very interesting.

The virtual cut technique looks promising, but inaccuracies due to perspective cor-
rection were encountered, and this has to be fixed before the method becomes clinically
applicable.

The volume transfer function specification, though relatively easy to use, had prob-
lems with the user having to look at both the volume and the transfer function at the
same time. An alternative view of the volume while changing the transfer function
could be visualized, thus slightly easing the specification process.

When accuracy and registration problems have been solved, the focus should be
shifted to Human Computer Interaction, a subject of vital importance if the system is
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to be adopted in real-world medical applications.
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Echokardiographie, Zeitschrift fűr Kardiologie, Steinkopff Verlag, Ma̋rz 2000

[17] Reading Surgical Associates, Laparoscopic surgery, http://www.rsapc1.
com/laparoscopic_surgery/, October 2004

[18] Schnaider, M., Schwald, B., Seibert, H., Weller, T., Medarpa - A Medical Aug-
mented Reality System for Minimal-Invasive Interventions, ZGDV, 2002
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