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Abstract

We have implemented and tested segmentation methods for segmenting brain tumours
from magnetic resonance (MR) and ultrasound data.

Our work in this thesis mainly focuses on active contours, both parametric (snakes)
and geometric contours (level set). Active contours have the advantage over simpler
segmentation methods that they are able to take both high- and low-level information
into consideration. This means that the result they produce both depends on shape as
well as intensity information from the input image. Our work is based on the results from
an earlier completed depth study which investigated different segmentation methods.

We have implemented and tested one simplified gradient vector flow snake model
and four level set approaches: fast marching level set, geodesic level set, canny edge
level set, and Laplacian level set. The methods are evaluated based on precision of the
region boundary, sensitivity to noise, the effort needed to adjust parameters and the
time to perform the segmentation. We have also compared the results with the result
from a region growing method.

We achieved promising results for active contour segmentation methods compared
with other, simpler segmentation methods. The simplified snake model has given
promising results, but has to be subject to more testing. Furthermore, tests with four
variants of the level set method have given good results in most cases with MR data
and in some cases with ultrasound data.
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Chapter 1

Background

This chapter will give an overview of the background for our thesis. We will elaborate
the intention and motivation for this thesis. Section 1.1 will give a definition of the
problem we are going to solve. Section 1.2 will present the motivation for our work.
We will explain in which context our work is supposed to be used, and how our work
can contribute to improve medical treatment of brain tumours. We will then in section
1.3 and 1.4 give a short introduction to the imaging technology and types of brain
tumour we have been working with. Section 1.5 presents the datasets we have tested
our segmentation approaches on, and in section 1.6 we shortly arguments the choice
of segmentation methods. Our work is based on a previous performed depth study of
medical image segmentation [23]. Section 1.7 gives a presentation on existing work on
this field and section 1.8 of how we have evaluated the results.

1.1 Problem definition

A set of methods for segmentation of neuro tumours (brain tumours) should be
implemented and tested. Image segmentation is the process where image objects or
areas in the image are separated from the background and each other. In the context
of segmentation of neuro tumours, segmentation is the task of finding regions in the
image representing the brain tumour. The focus should be on implementing and testing
deformable active contours (snake- and level set algorithms), but also compare their
performance with a simpler segmentation algorithm.

The segmentation methods should be tested on both ultrasound (US) and magnetic
resonance (MR) images. All testdata are going to be three dimensional volumes and
represent a variation of tumour types and tumour characteristics.

The goal is to agree on a selection of methods that perform well on general basis,
and the methods should be evaluated based on:

• Precision of the region boundary.

• Sensitivity to noise.

• The effort needed to adjust parameters.

• Time to perform the segmentation.

1



2 Chapter 1 Background

1.2 Motivation

The main motivation of our work is to make a small contribution to improve method of
treatment for brain tumours. One of the paramount objectives for research of treatment
of brain tumours is to be able to perform surgery with minimal incisions. This will
contribute to reduce the risk attended with surgery and make the operation less straining
for the patient.

To elaborate the motivation of our thesis and to put our work into a greater
perspective we will give a short introduction to how brain tumours can be diagnosed
and treated and to the field of image guided surgery.

1.2.1 Diagnose and treatment of brain tumours

There are several different methods to diagnose and treat patients with brain tumours.
The choice of method depends on the type of brain tumour and how far the brain tumour
has developed. The most common methods to diagnose the patient are physical exams,
neurological exams, CT-scans, MRI and skull X-ray. The patient may be treated with
surgery, radiation therapy, chemotherapy or a combination of the preceding methods.

When a physician suspects that the patient may have a brain tumour he often starts
with a physical and neurological exam where he among other things checks the patient’s
general health, coordination and reflexes. After this procedure is done he may continue
with either a CT scan, MRI or skull X-ray to generate pictures of the brain. From
these pictures it is possible to verify and localize a tumour. If a tumour is discovered,
the physician can use these pictures to get an idea of the size of the tumour, degree of
malignancy, type of tumour and other important facts to help him decide how to treat
the tumour.

The most common treatment of brain tumours is surgery. The surgeon then attempts
to remove as much of the tumour tissue as possible. Sometimes surgery can be difficult,
it may be impossible to remove the tumour without damaging the surrounding brain
tissue or the tumour may be located in an area of the brain that is unreachable for the
surgeon. During surgery the surgeon can use imaging techniques to get a better view
of the situation. Ultrasound images can be used to give the surgeon real-time images
of the relevant organs. Radiation therapy or chemotherapy is often used after surgery
to kill remaining tumour cells in the affected area or as an alternative to surgery if
surgery is not possible. Radiation therapy, or radiotherapy, uses high-energy rays to kill
cancer cells and reduce the size of the tumour. X-rays, gamma-ray and neutrons are
the most common form of radiation source. Chemotherapy uses drugs to kill the cancer
cells. The drugs follow the bloodstream into the brain. Chemotherapy may be used as
a standalone method of treatment, but may also follow surgery and radiation therapy.

To monitor the patients’ condition after the surgery, the imaging techniques
mentioned over can be used to examine if the tumour was successfully removed. If
residual tumour cells exists, it is necessary with further treatment.

1.2.2 Image guided surgery

Image guided surgery is a term used to describe surgical procedures that use medical
imaging techniques like CT, MRI and Ultrasound to help surgeons navigate through a
particular part of the body. This often involve that the images is used to plan a surgical
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procedure, guide the surgeon during surgical intervention and to control the result of the
surgery. During surgery it is desirable to view the location of surgical tools on real-time
updates of the anatomy of the patient. We will now briefly outline the development of
image guided surgery. A more thorough description of the field of image guided surgery
can be found in Lindseth [19].

One of the first approaches used was so-called frame-based stereotactic systems. This
approach is based on a technique where the patient is fastened to a special designed frame
during image examinations done both prior to surgery and during the actual surgery.
This ensures that the head is placed at the same position all the time, and mapping
between images is an easy task. This is a very accurate procedure, but it also has some
evident drawbacks. First of all, the frame interferes with the surgical procedure. There
are also problems with the efficiency and lack of real-time feedback.

Frame-based stereotactic systems were gradually replaced by frame-less stereotactic
systems. The frame-less approach differs from the frame-based approach in the way it
integrates preoperative images with physical space and the type of tracking technology
they use to follow the surgical tools that are used [19]. The traditional frame-less
approach has an obvious drawback as the technique is based only on images taken
before surgery, and cannot reflect changes in the anatomy of the patient that occurs
during surgery.

A common way to integrate images taken during surgery with preoperative images
is to transport the patient into a CT or MRI scanner a couple of times during surgery
to update the images, this has the obvious drawback that the patient must be moved
in and out of the scanner during surgery. The scanners can also be moved over the
patient. The scanners are rather large, and this is not a very practical approach. An
alternative approach is for the surgeon to operate inside the magnet of an MRI machine.
This makes it possible to get almost real-time images. This approach, however, is
a very expensive solution. A third approach that combines pre- and intra operative
imaging is use of ultrasound during surgery. This is a more flexible and cost-effective
approach, but the ultrasound images often covers only a small part of the surgical field,
making it harder to get an overview of the situation. Intra operative ultrasound is often
used in combination with preoperative CT- or MRI- images to get a better view of the
situation. The ultrasound and CT- or MRI- images can be combined by using the intra
operative ultrasound images to deform the CT- or MRI- images taken before surgery and
navigation is done based on the manipulated CT- or MRI- images. Another alternative
is to use the ultrasound images in a more direct manner where the intra operative images
are used as maps for navigation.

During the last couple of years surgery has to a larger extent been performed with
minimal invasive therapy. This leads to a increasing demand for good visualization
techniques of the surgical area. The surgeon needs images showing both the surface of
the organs and beyond. To help guide the surgeon in the best possible way, the desirable
situation is a system which gives real-time 3D vision of the patient’s anatomy.

It is still a lot of work to be done to improve the methods for image guided surgery.
In our project we will focus on the process to locate and extract objects of interest
from the rest of the image, and particularly focus on segmentation of brain tumours.
This will help the surgeon in both the planning phase of an operation, as well as during
surgery. For instance, when an operation is performed in order to remove a tumour, a
good method to localize and view the tumour in real time can be very helpful for the
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surgeon.

1.3 Medical Imaging Technologies

In this section we will give an introduction to two of the key technologies in the medical
imaging area, Magnetic Resonance Imaging and Ultrasound.

1.3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) produces high quality images of the inside of the
human body. Among many others areas, MRI is useful for diagnosing multiple sclerosis,
tumours and strokes.

MRI is based on the principle of nuclear magnetic resonance (NMR), a technique
used by scientists to investigate the characteristics of molecules [13]. The technique is
relatively young, in 1952 the magnetic resonance phenomenon was discovered, and in
1977 the first MRI exam ever was performed. As late as 1980 there were only a handful
MRI scanners in the entire United States, while there in 2003 were approximately 10,000
MRI scanners worldwide and approximately 75 million MRI scans per year performed
[15].

While the first versions of MRI scanners only produced one thin slice of the body
at each scan (tomographic imaging), and took hours to produce, todays MRI scanners
produce volume visualizations in much shorter time.

The scanner

A modern MRI scanner can be seen in figure 1.1(a). The size of a typical MRI scanner

(a) (b) (c)

Figure 1.1: (a) A modern MRI scanner [2]. (b) T1 and (c) T2 weighted MR images of a human
brain [1].

is 2 meters tall by 2 meters wide by 3 meters long. A horizontal tube, known as the
bore of the magnet, is running through the scanner. The patient lies on a special table
that slides into the bore. When the bodypart to be examined is in the exact isocenter
of the magnetic field, the scan can begin. The magnets used in the MRI scanner varies
from 0.5 Tesla to 3.0 Tesla, or 5,000 to 30,000 gauss (The magnetic field of the Earth is
only 0.5 gauss).
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To examine a specific part of the body, Radio frequency (RF) pulses specific only to
hydrogen are directed to that part of the body. The pulses cause hydrogen protons to
spin in a particular direction. Turning off the RF pulses cause the protons to return to
their previous alignment relative to the magnetic field in the MRI scanner. Meanwhile,
their stored energy is released, causing RF pulses to be sent out from the protons. These
pulses are picked up by RF coils and forwarded to a computer system that performs
calculations on the signals [15].

Image characteristics

By weightening different parameters, different MR images can be produced. Two
common MR image variants are the T1 and T2 weighted images, see figure 1.1(b) and
1.1(c). T1 weighted images are characterized by the dark cerebrospinal fluid (CSF) and
that white matter is brighter than gray matter. T2 images have bright CSF and gray
matter is brighter than white matter.

Although the MRI technology provides images of good quality, there are some
limitations: Due to noise, physiological factors, partial volume effects and non-uniform
RF fields the MR signal intensity is non-uniform. Problems related to the RF fields are
probably of the greatest influence, and depends on many factors, such as the subject,
slice orientation, RF coil design and the pulse sequence of RF waves [22].

1.3.2 Ultrasound

Ultrasound, or ultrasonography, uses high frequency sound to produce images. Ultra-
sound has a wide area of applications, among these are diagnosing tumours, analyzing
bone structures and examining a foetus inside the uterus.

During the period 1910-1930 sonar and radar, equipment that use sound waves to
detect objects that cannot be seen, was developed. Later this technology found its way
to the medical area, in 1942 Dr. Dussik first used ultrasound to locate brain tumours [9].

The ultrasound machine

A modern ultrasound machine can be seen in figure 1.2(a). Ultrasound waves are
mechanical waves with a frequency above what humans can hear. Sound frequencies
used in medical ultrasound are in the range of approx. 2 to 10 MHz (or wavelengths in
the range of approx. 0,15 to 0,75 mm), while frequencies hearable by humans lie in the
range of 20 to 20 000 Hz [14].

An ultrasound machine uses the transducer probe to emit the high-frequency sound
pulses into the body. When encountering a boundary between two tissues that conduct
sound differently, some of the sound energy get reflected, causing an echo. Other
sound waves travel further, and some of these again get reflected back. The transducer
probe picks up the echoes and passes the incoming information on to a computer. The
computer then calculates an image based on knowledge of the speed of sound in tissue
along with the time it takes for each echo to return to the probe.

Image characteristics

An example of an ultrasound image can be seen in figure 1.2(b). An ultrasound machine
can operate in different modes: The standard mode is the B-mode (B for brightness).
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(a) (b)

Figure 1.2: (a) A modern ultrasound machine [4]. (b) Ultrasound image of intracranial
anatomy and facial features of a foetus [3].

The stronger the echo is, the brighter the image. Among other modes are the M-mode
(M for motion), which works in a similar way as an echo sounder; one axis of the image
represents image data while the other represents time. The Doppler effect can also be
used to calculate blood flow to and from the probe. 3D ultrasound is a relatively new
technique that combines multiple 2D ultrasound images to produce 3D images.

The lateral resolution (perpendicular to the sound waves) is poorer than the radial
resolution (parallel to the sound waves). Also, a typical ultrasound image is relatively
noisy, with a high influence of ultrasound speckle. The speckle is often modelled as
multiplicative noise, since its magnitude is proportional to the signal strength. This
leads to ultrasound images with significant noise even in bright areas. Furthermore,
extraction of edges in an ultrasound image is not an easy task, this is illustrated in
figure 1.3. In this figure a simple Laplacian of Gaussian (LoG) operator detects the
edges surrounding the object of interest correctly, but a large number of incorrect edges
are also produced [30].

(a) (b)

Figure 1.3: Edge detection in ultrasound images. (a) Original image (b) Edge image
(Laplacian of Gaussian with σ = 1.0) [30].
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1.4 Brain tumours

A tumour is a mass of excess tissue that results from abnormal cell division [17]. Brain
tumours are often characterized to be either benign or malignant. In this section we
will try to explain the differences between these two types of tumour. We will also try
to explain the difference between the two main types of brain tumours: primary brain
tumours and metastatic brain tumours. Furthermore, we will give examples of the most
common primary brain tumours. For a more thorough description of the brain and brain
tumours, see [10], [5], [17], [24] and [11].

1.4.1 Benign and malignant brain tumours

A brain tumour can be characterized as either benign or malignant. This will indicate
the aggressiveness of a brain tumour.

A benign brain tumour is growing slowly. The tumour cells do not usually invade
surrounding tissue, and the tumour has rather distinct borders. A benign tumour does
not contain cancer cells and is often less threatening than malignant brain tumours, but
it can do a lot of damage if it puts a lot of pressure on other brain tissue.

A malignant brain tumour is a more aggressive tumour than a benign tumour. It
consists mostly of cancer cells. Malignant tumours infect surrounding brain tissue and
are more difficult to delimit. It usually grows more rapidly than a benign tumour and
is in most cases life-threatening.

The World Health Organization (WHO) has developed a classification system to
indicate the degree of malignancy. A brain tumour can be classified as grade I, II, III
or IV. Grade III and grade IV tumours are, by definition, malignant. Grade IV is the
most malignant tumour. It can often be hard to determine which grade a tumour has,
specially if it is on the margin between two tumour grades.

1.4.2 Metastatic brain tumours

When the cells in a tumour are rapidly growing and infect healthy tissue, they are
called cancer cells. Sometimes, when cancer cells are growing, it happens that some
cells detach from the tumour and travel to other parts of the body. In most cases the
cancer cells penetrate through the connectiv tissue and into the bloodstream. If the
cancer cell survives the trip, it takes home in healthy tissue in other parts of the body.
What kind of tissue the cancer cell attacks is often dependent on the type of cancer cell
[24]. The source of metastasis in the brain is often cancer from the lung, breast, colon or
skin. A metastatic brain tumour is malignant, due to the fact that the cells are cancer
cells.

1.4.3 Primary brain tumours

A primary brain tumour starts in the brain. A primary brain tumour can be benign or
malignant. A primary brain tumour is named according to the type of cells or the part
of the brain in which it begins. The rest of this subsection will give an overview over
the tumours we have worked with.
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Gliomas

This is the most common type of brain tumour. The tumour starts in the glial cells. Glia
is the supportive tissue which helps keep the neurons in place and functioning well [5].
Gliomas has diffuse infiltrating nature, this makes total surgical removal difficult. The
most common types of gliomas are:

• Astrocytoma: This tumour arises from astrocytes (star-shaped glial cells).
Astrocytomas can further be divided into pilocytic-, low grade-, anaplastic
astrocytoma and glioblastoma depending on degree of malignancy. Pilocytic
astrocytoma is the least malignant tumour (grade I) and glioblastoma is the most
malignant tumour (grade IV).

• Oligodendroglioma: This tumour arises from oligodendrocytes (glial cells with
shape like a fried-egg). Oligodendrogliomas can be of degree II and III and the
most common location is the cerebral hemisphere.

• Ependymoma: This tumour arises from ependymal cells. Ependymoma can
have degree I - IV, and is a relatively rare tumour.

Meningioma

Meningioma arises in the meninges (cortex) and is a slowly growing tumour with distinct
borders. When the tumour grows, it puts pressure on surrounding brain tissue and can
cause displacement of the tissue. Because meningioma is growing very slowly, the brain
can adjust the growth, and the tumour can grow into the size of an orange before it is
discovered.

Acoustic Neuroma

Acoustic Neuroma, also called Schwannoma, is located in the angle between the
cerebellum and the pons in the back of the skull [5]. The tumour arises from a schwann
cell, and affects the nerve of hearing. The tumour is benign, and usually grows very
slowly.

1.5 Datasets

In this section we will provide a description of the five datasets that we have tested the
segmentation filters on. Information about the data format will also be included.

1.5.1 Data format

All datasets are in the MetaHeader data format, that consists of two parts: the image
data itself and a header with meta data. Typical information in the header is image
dimensions, data type, orientation and position. These two parts may either be located
in the same file or in two separate files. All the datasets we have used in this thesis are
of type 8 bit unsigned char, with grey level intensities from 0 to 255.
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1.5.2 Composition of a dataset

All of the datasets consist of two series with MRI and US data, where the series are
aligned with each other. Each series consists of data that is sorted by the time the data
was recorded. When we in this thesis refer to ”first MRI” or ”first US” we therefore
mean the first MRI or the first US recorded of the patient, respectively. The difference
between the two series is that in one of them MRI is used as master and in the other
one US is master. The meaning of ”master” is that either the MRI or the US data has
been used as basis for the alignment, or registration1 process. The series with MRI as
master typically contain data for the entire head, while the others typically contains
data surrounding the area of interest. Hence, the size of the tumours in the MRI series
are typically much smaller than the US series, thus leading to a shorter computation
time. In most cases we have used the US series to get as good resolution of the tumour
as possible, but in some cases where the tumour is very large we have used data with
MRI as master to speed up the computation time.

1.5.3 Extraction of subsets

Another way of decreasing the computation time needed for the segmentation filters is
to extract subsets of the data. A subset should typically include the tumour along with
some surrounding tissue. This way the filters only have to process a relatively small
part of the image data, without loosing any resolution of the tumour itself, as the case
is with using data with MRI as master. In addition, this method does not prevent the
filter parameters from being used on the entire dataset afterwards since the conditions
are the same.

1.5.4 Description of the datasets

In this section a short description of the five datasets will be provided. Each dataset
is illustrated with an axial2 , coronal3 and sagittal4 slice from the series of the dataset
with MRI as master.

Dataset N241

The tumour in this dataset is a Metastatic brain tumour (see 1.4.2), and its location
is seen in figure 1.4. The tumour has an intensity distribution that makes it relatively
easy to distinguish from the surrounding tissue. However, we see that it lies close to
other brain structures that makes the segmentation process more difficult.

Dataset N351

This dataset contains a tumour of type Acoustic Neuroma (see 1.4.3). Its location is seen
in figure 1.5. This tumour is probably the easiest one to separate from the surrounding
tissue due to the bright and uniform intensity distribution.

1Registration is the task of mapping one data set onto another. This can be done using position
information from navigation equipment or from using image processing filters, among others.

2An axial slice is a horiozontal cross section through the head (when the patient is standing)
3A coronal slice is a vertical cross section, parallell to the face (when the patient is standing)
4A sagittal slice is a vertical cross section, perpendicular to the coronal cross section.
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(a) (b) (c)

Figure 1.4: Dataset N241 (size: 373 × 373 × 255) with highlighted subset (size: 102 × 102 ×
102). (a) Sagittal, (b) coronal and (c) axial slice of the dataset.

(a) (b) (c)

Figure 1.5: Dataset N351 (size: 256 × 256 × 179) with highlighted subset (size: 50 × 50 ×
50). (a) Sagittal, (b) coronal and (c) axial slice of the dataset.

Dataset N359

The location of the tumour, which is of an unknown type, is shown in figure 1.6.
Although the tumour lies relatively free from the surrounding tissue, its non-uniform
intensity distribution makes the segmentation process more difficult.

(a) (b) (c)

Figure 1.6: Dataset N359 (size: 256 × 256 × 179) with highlighted subset (size: 60 × 60 ×
60). (a) Sagittal, (b) coronal and (c) axial slice of the dataset.
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Dataset N360

The tumour in this dataset is of type Meningioma (see 1.4.3) and the dataset is shown
in figure 1.7. We see that the intensity distribution of this large tumour is relatively
non-uniform and quite similar to the surrounding tissue, making the segmentation task
more difficult.

(a) (b) (c)

Figure 1.7: Dataset N360 (size: 256 × 256 × 179) with highlighted subset (size: 80 × 80 ×
100). (a) Sagittal, (b) coronal and (c) axial slice of the dataset.

Dataset N378

This dataset contains a tumour of type Glioblastoma, which belongs to the Gliomas
category (see 1.4.3). The location of the tumour is shown in figure 1.8. With its dark
and diffuse characteristics, this tumour is probably one of the most difficult cases among
the datasets we have available.

(a) (b) (c)

Figure 1.8: Dataset N378 (size: 256 × 256 × 168) with highlighted subset (size: 72 × 72 ×
62). (a) Sagittal, (b) coronal and (c) axial slice of the dataset.

1.6 Choice of segmentation method

Our work is based on a literature study carried out prior to this thesis [23]. In the
literature study we examined existing segmentation approaches and to what extent they
have been tested within medical image segmentation, and in particular segmentation
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of brain tumours. We considered active contours to be the most suitable segmentation
methods for our usage. Active contours are capable of combining both knowledge of
greylevel intensities in the image as well as apriori knowledge about size, shape and
location. This is a desirable quality because medical image data often is very noisy,
this makes segmentation based solely on greylevel intensities difficult. We found many
promising results from use within medical segmentation in the literature.

The first step in an active contour algorithm is to let the user define a starting
point for the algorithm. This can for instance be a rough boundary of the object of
interest, or a seed point inside it. The contour is evolving through time, the evolution
is described through minimization of a mathematical formulation. The formulation
govern which image qualities the contour strain to find, and the contour shape which is
most preferable. The algorithm converges towards a local minimum in the image, i.e.
the contour evolves to a position in the neighbourhood of the initializing contour that
corresponds best to the properties described by the mathematical formulation.

There are two main groups of active contours: Snakes and level set. We have
tested the performance of one snake formulation and four level set formulations. In
addition, we have compared their performance with region growing segmentation.

1.7 Existing work

We have based our work on the deformable active contour models developed from the
snake model presented by Kass [18] and the level set approach presented by Osher
and Sethian [25]. Various active contour algorithms have previously been tested on
segmentation of different biological structures such as the liver, blood vessels, and
structures from the brain. Chan et. al have used a refined version of the snake method
presented by Kass [18] to find the boundaries of a brain tumour in a MR image. They
achieved very good results on this particular tumour.

Yim et. al. [32] compare the performance of two snake approaches and one watershed
approach on segmentation of a MR image of metastasis (a tumour type) in the brain.
They found that the active contour approach gave good results in this particular case.

There are many of examples from successful use of active contours for segmentation
of other structures than the brain. Chang et. al [8] used a 3-D snake to extract breast
tumour in ultrasound images. They achieved fairly good results, but experienced some
problems due to the high level of noise in the image.

We have not been able to find any existing work where the behaviour of various
active contour algorithms used on various tumour types are compared. The active
contour approach are only tested on ultrasound images to a limited extent.

1.8 Evaluation of results

To be able to measure the quality of a segmentation algorithm, we need a good procedure
for evaluation of the results. In the ideal situation we would have access to the ”ground
truth”, a perfect segmentation to compare the results with. The ”ground truth”
segmentation is usually generated from a constructed image, where the exact border
of the object of interest is known in advance. Before the segmentation is performed,
noise is added to the image. If a perfect segmentation is not available, as often is the
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case, a manually expert segmentation of the datasets can be used as reference. If access
to a perfectly segmented or a manually segmented image can be provided, all results
can be compared to this and it is possible to get a numerical measure on how good each
segmentation result is. Udupa et. al. [29] suggested a methodology for evaluating the
performance of image segmentation algorithms. They take three factors into account:

• Precision: the reproducibility of the segmentation.

• Accuracy: the degree of resemblance with the truth (i.e. the ”ground truth”).

• Efficiency: the time taken to run the algorithm.

It is a very time consuming task to perform manually segmentation of images,
particularly with three dimensional images. During our work we have not been provided
with segmentation results we can use as reference when evaluating the performance of
the segmentation methods. This makes the task of evaluating the results very difficult.
A selection of our results has been evaluated by a group of experts consisting of two
surgeons and one researcher. Expert 1 is the head surgeon of the neuro clinic at St.
Olavs hospital and professor II at NTNU. He has also produced many publications
regarding ultrasound and navigation during neuro surgery. Expert 2 is assistant doctor
at the neuro clinic at St. Olavs hospital and a PhD student. He has also participated in
research in the ultrasound area. Expert 3 is a researcher at SINTEF Health Research,
and has published work on image guided surgery.

The criteria for evaluation are listed in table 1.1. For the first five and the last
criteria each member of the expert team has graded the results (setting points between
1 and 5) based on their opinion of the quality. 1 corresponds to very good quality of
the result, 5 to very low quality. The second last criteria is a true-false evaluation.
Appendix A contains the evaluation form handed out to the expert team prior to the
evaluation.

Criterion Description
Misplacement Does the resulting boundary not approximately corre-

spond to the boundary tumour.
Oversegmentation The amount of pixels not belonging to the tumour,

being classified as tumour tissue.
Undersegmentation The amount of pixels belonging to the tumour, not

being classified as tumour tissue.
Wrong edges traced The amount of the final contour following edges in the

image not belonging to the edges of the tumour.
Details missing The amount of details missing in the image, i.e. the

contour is not able to follow convexities, bumps or
other minor details of the tumour boundary.

Is the result usable? Is the results usable for a surgeon?
Manual adjustment required The degree of manually segmentation is required to

get a usable result (if the answer is no on the last
question).

Table 1.1: Evaluation criteria
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Because we have limited opportunity to evaluate the results and most of the
evaluation is based on our subjective opinion, it is difficult to compare the performance
of the various segmentation methods. We have therefore focused on trying to extract
strengths and weaknesses with each method separately. The objective is to find out
when a particular method can be used, and to agree on one or more methods that is
producing good results on a regular basis. We will therefore look at one and one method
at a time. First, we will present the theoretical background of the method, followed by
a description of the implementation and finally the results of running the method on
the datasets we have been provided with by SINTEF.

All of the segmentation methods we have tested was run on cropped versions of the
original datasets provided by SINTEF. The cropping was done in order to speed up the
computation time.
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Software design

In this chapter we will present the design behind our segmentation software. We will
also give an introduction to the various tools used in the implementation of the software.
The purpose of this chapter is to make our solution easier available for further usage.

2.1 Requirements

The software should be designed in such a way that is easy to integrate the application
or part of it into other applications. More specifically, the software should be designed
so it can be integrated into the CustusX software currently being developed by SINTEF
(see section 2.3.3) This means that the code should be structured in packages and
modules that easily can be replaced or reused. As a consequence of this, all segmentation
filters should be designed in such a way that they all have a similar structure and are
independent of the GUI. Furthermore, the software should seek to make use of other,
existing imaging software as much as possible. This way the software does not have
to include basic imaging functionality from scratch, thus saving a significant amount of
time during the development.

2.2 Top-level design

Our code is structured in two main modules: Segmentation and Visualization. As seen
in figure 2.1, the segmentation part is separated from the visualization part. This is
done in order to make our software more suitable to be included in software developed
by others.

2.2.1 The segmentation module

All segmentation filters are currently implemented as stand-alone programs that take
inputs from the command line, but the filter classes are designed to be included in other
classes as part of a larger application. The different segmentation filter classes are shown
in figure 2.2.

To be able to execute one of the segmentation filters it is necessary to set input- and
output filenames through the methods SetInputFilename() and SetOutputFilename(). It
is also necessary to set other parameters specific to the particular filter. After all the
parameters are given, the filter is executed through the method Run().

15
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#Filter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

Filter

#FastMarchingLevelSetFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

FastMarchingLevelSetFilter

#GeodesicLevelSetFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

GeodesicLevelSetFilter
#RegionGrowingFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

RegionGrowingFilter

#GvfSnakeFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

GvfSnakeFilter

#CannyEdgeLevelSetFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

CannyEdgeLevelSetFilter

#LaplacianLevelSetFilter()
+<<static>> New()
+Run()
+SetInputFilename()
+SetOutputFilename()

LaplacianLevelSetFilter

Figure 2.1: A simple top-level view of the visualization and segmentation parts of our software.

Visualization Segmentation

Figure 2.2: The different segmentation classes.

2.2.2 The visualization module

To present results from segmentation filters we needed some sort of visualization
software. Although there exists many commercial as well as freely available visualization
software, we couldn’t find any that fully suited our needs. In particular, we needed
software that could be helpful during the documentation of the segmentation results
in this thesis. This included features such as extracting slices from the dataset with
the segmentation result overlayed, a feature missing in most existing software such as
CustusX.

We have implemented a basic visualization tool and sketched out a more advanced
visualization tool. The basic visualizer is not directly connected with the filters. It
reads the original data and the result from the segmentation from file and visualize
them together. The advanced visualizer is supposed to offer a graphical user interface
for the filters. This is not implemented yet. We will describe the details of the design
in chapter 7.
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2.3 Software tools

In this section we will give a brief presentation of some of the software we have used
in our implementation. We will also give a short presentation of CustusX which our
application is intended to be integrated with in the future.

2.3.1 ITK

The Insight Segmentation and Registration Toolkit (ITK) is an open-source, object-
oriented software library for image processing, segmentation and registration. ITK
is mainly developed to be used within medical image processing, and it is developed
by three commercial (Kitware, GE Corporate R&D, and Insightful), and three
academic (UNC Chapel Hill, University of Utah, and University of Pennsylvania)
organizations [16]. The toolkit is meant to be used for commercial, research and teaching
purposes. This section will give a brief introduction to ITK, for a more thorough
description see the itk software guide [16]. Throughout all of this thesis, we refer to
all classes in ITK through writing itk::classname.

Essential system concepts

In order to use ITK classes with different data types, the toolkit is built on a
template programming mechanism. This mechanism allows classes to be initialized
with parameters of unknown type, and methods to take parameters of unknown type
etc. The ITK library is therefore organized in containers to hold data, iterators to
iterate through the data, and generic algorithms that use the containers and iterators
to make efficient algorithms.

Another important concept in ITK is the use of object factories. This enables the
user to be able to control run-time initializations of classes.

To ensure a more effective use of memory, ITK is based on a concept called reference
count. Every reference to an instance is counted, when the instance no longer has any
references to it, it destroys itself. This way we ensure that data is not kept in memory
longer than necessary and that no data is removed too early. In ITK this functionality
is represented in the class itk::SmartPointer. This class contains functionality to count
references made to an instance (in the Register() method) and to delete an instance from
memory (in the Unregister() method).

Data representation

In ITK, data is represented as either an image or a mesh. The itk::Image class represents a
multidimensional regular sampling of data where the sampling direction is parallel to the
coordinate axes. The itk::Mesh class represents an adaptive, evolving structure consisting
of points and cells. A mesh can contain information of structure. An itk::PointSet is a
simpler version of the itk::Mesh class, and it can be used to represent a point cloud.

Data Processing Pipeline

A data object in ITK is passed through a pipeline of process objects. There are three
types of process objects in ITK: sources, filter objects and mappers. The source objects
produce data (typically reads from or writes to file), the filter objects take in, and
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processes a data object to produce new data and the mapper objects are used to accept
data to output.

All process objects have a method Update() that makes the filter ”up-to-date”. If the
filter is taking the output from another filter as input, the Update() method checks to see
if this filter has produced any output yet. If not, Update() is called on this filter. When
Update() is called on the last process object in a pipeline, this can trigger execution of
all process objects in the pipeline. An example of an ITK pipeline can be seen in figure
2.3.

Filter #1 Filter #2FileReader FileWriter

Figure 2.3: Example of an ITK pipeline.

2.3.2 VTK

The Visualization Toolkit (VTK) is an open source, object oriented toolkit designed
for 3D computer graphics, image processing and visualization. The graphics model in
VTK is at a higher level than other rendering libraries like OpenGL. VTK offers an
easy and fast way to create graphics and visualization applications. It is however not a
particularly fast graphics engine.

VTK supports a wide variety of visualization algorithms including scalar, vector,
tensor, texture, and volumetric methods; and advanced modelling techniques like
implicit modelling, polygon reduction, mesh smoothing, cutting, contouring, and
Delaunay triangulation. For a complete description of the toolkit we refer to the
Visualization Toolkit Users Guide [16].

We have used VTK in our implementation of the visualization part of our application.

2.3.3 CustusX

CustusX is an application currently under development by SINTEF for managing
medical data. It offers functionality for visualizing several data volumes simultaneous
and it is employed to track and visualize the location of surgical tools.

We chose not to integrate our application directly into CustusX because it is not
completely developed yet. In addition we need additional functionality for visualization
than what is currently offered in CustusX.
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Preprocessing

In this chapter we will give a presentation of how images may be preprocessed in order
to extract and enhance important information.

Figure 3.1 shows an overview of typical tasks that are performed prior to segmenta-
tion. First, smoothing is performed in order to remove noise from the input image. Next,
an edge-extraction filter extracts edges of interest. Finally, specific ranges of intensities
in the image are enhanced.

Smoothing
filter

Edge 
extraction

filter

Intensity
enhancement

filter
Input

Segmentation
algorithm

Figure 3.1: A typical preprocessing pipeline.

3.1 Smoothing

The amount of noise present in an image may vary, depending on the type of image
source as well as many other parameters. MR images typically contain low amounts
of noise, while ultrasound images typically have great amounts of noise. Smoothing an
image may very well remove the noise, but often other information such as e.g. edge
information is lost. Fortunately, there exists methods that both smooth an image and
preserve most of the important information in the image as well.

3.1.1 Simple smoothing

One of the simplest ways of smoothing an image is to convolve an image with a Gaussian.
For a 2D image the Gaussian operator is:

G(x, y) = e−
x2+y2

2σ2 ,

where x, y are coordinates in the image and σ is the standard deviation [28]. Computers
usually use a discrete approximation to the continuous Gaussian distribution. The
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Results of different preprocessing steps (a) Original MRI slice of a human brain (b)
Simple Gaussian blurring (c) Anisotropic diffusion blurring (d) Edge information
extracted using gradient filter (e) Result of sigmoid filtering (f) Result of sigmoid
filtering the gradient image (d) [16].

following matrix is an example of this:

h =
1
16




1 2 1
2 4 2
1 2 1


 .

The advantages of this type of smoothing are that it is a fairly fast and easy to implement
technique, but it does not take edge information into consideration. Therefore, such
information is lost during the process. Figure 3.2(b) is an example of Gaussian
smoothing (with σ=3).
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3.1.2 Edge-preserving smoothing

A more sophisticated and useful technique is to vary the amount of smoothing, depending
on other information present in an image. One way of accomplishing this is to minimize
smoothing close to strong edges in the image and maximize the smoothing elsewhere.
Anisotrophic diffusion, introduced by Perona et al [26], is a solution to this problem.
As opposed to Gaussian blurring, anisotropic diffusion take edge information into
consideration.

The anisotropic diffusion uses a conductance term to vary the amount of smoothing
of each pixel in an image. There are many ways to define such a term, but a desirable
characteristic is that the term should be equal to 0 on edges and 1 in regions. The
implementation of anisotropic diffusion in ITK uses the following conductance term:

C(x) = e−(
||∇U(x)||

K
)2 ,

where x is an N -dimensional array representing pixel values in an N -dimensional image
and K is a constant. The conductance term is then used as a guidance to a smoothing
algorithm, resulting in an image with edge information preserved. For an example of
anisotropic diffusion, see figure 3.2(c) (time step is 0.25 and number of iterations is 5).

The edge-preserving filters used in our implementations, are the itk::Gradient-
AnisotropicDiffusionImageFilter and the itk::CurvatureAnisotropicDiffusionImageFilter.
These provide similar functionality, but the main difference is that the last variant uses
a more robust variant of the diffusion equation. This makes this variant less sensitive
to contrast and it also preserves finer detailed structures.

3.2 Edge extraction

The position of edges in an image and their strength is information that is very helpful
during segmentation tasks. The job of a gradient filter is to extract this edge information.
One way of accomplishing this is to convolve the image with a binary mask. For a 2-D
dimensional image the followings matrices are examples of such masks:

[
1 0 −1

]
and




1
0
−1


 .

An example of edge extraction using a gradient filter is shown in figure
3.2. The edge-extracting ITK-filters we have used in our implementations are
the itk::GradientMagnitudeImageFilter and the itk::GradientMagnitudeRecursiveGaussian-
ImageFilter. They provide very similar functionality, but the main difference is that the
latter smooths with a Gaussian kernel prior to the edge-extraction process.

3.3 Intensity enhancement

The purpose of the sigmoid filter is to enhance specific ranges of image intensities and
thus making the segmentation task easier. The filter works by using a non-linear
mapping between input and output image intensities. The mapping is given by the
sigmoid equation
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Iout = (max−min) · 1

1 + e
−
�

Iin−β

α

� + min,

where Iin denotes an input intensity and Iout denotes an output. max and min denote
the maximum and minimum intensity of the output image, respectively. The alpha
(α) and beta (β) parameters alter the intensity window of the mapping. As shown in
figure 3.3, adjusting the alpha parameter will change the width of the intensity window,
while changing the beta parameter will alter the center of the intensity window. Another
useful feature with the sigmoid filter is that negative alpha values inverts an image. An
example of use of the sigmoid filter can be seen in figure 3.2(e) (min = 10, max = 240,
α = 10 and β = 170) and 3.2(f) (min = 0.0, max = 1.0, α = −0.5 and β = 3.0). The
sigmoid filter provided by ITK is the itk::SigmoidImageFilter.

Figure 3.3: How the alpha and beta parameters affect the non-linear mapping in the Sigmoid
filter [16].
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Region growing segmentation

4.1 Theory behind region growing

The basic principle behind a region growing algorithm is to let a region grow from a seed
point within the region of interest. To expand the current region, the pixels adjacent
to the region are examined, and the ones similar to the pixels already in the region are
included in the region.

The behaviour of region growing algorithms depends on three factors:

• choice of similarity criteria

• definition of adjacency

• stopping criteria

Which region growing method to choose depends on the segmentation problem to solve.

4.1.1 Similarity criteria

The similarity criterion is used to determine if the pixel under examination should be
included in the region or not. The most common criterion to use is similarity in colour
or grey level intensities. A simple way is to include pixels if the intensity is inside an
intensity interval. This can be expressed:

I(X) ∈ [lower, upper] (4.1)

where I(X) is the intensity of pixel X, lower and upper is the minimum and maximum
intensity values.

4.1.2 Definition of adjacency

When expanding the region, the region growing algorithm evaluates the neighbouring
pixels of the current region. The most commonly used adjacency definitions for two
dimesions, 4-adjacency and 8-adjacency, can be found in Gonzalez and Woods [12].

4.1.3 Stopping criteria

The stopping criteria defines when the region is complete and the entire region has been
found. The stopping criteria is usually set to be when there are no longer any neighbours
that fulfil the similarity criterion.

23
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4.2 Implementation

There are several variants of region growing algorithm implemented in ITK. We have
tested the itk::ConnectedThresholdImageFilter. The itk::ConnectedThresholdImageFilter
uses the similarity criterion defined in equation 4.1 and it accepts a pixel if the intensity
is within the defined intensity interval.

Figure 4.1 shows the pipeline for the RegionGrowingFilter class, located in Fil-
ters/RegionGrowing. The filter interface can be found in figure 4.2. The first step in the
pipeline is to pass the image through an edge preserving smoothing filter, represented
by the itk::GradientAnisotropicDiffusionImageFilter. The image is then passed through
the itk::ConnectedThresholdImageFilter.

Gradient
anisotropic
diffusion

filter

Connected 
threshold 

filter
Input Output

seedPoint
minIntensity
maxIntensity

numberOfIterationsinputFilename outputFilenameconductance

Figure 4.1: Flowchart of the RegionGrowingFilter class

The RegionGrowingFilter class provides functions to set the most important parame-
ters of the filter:

#RegionGrowingFilter()
+<<static>> New()
+Run()
+SetInputFileName()
+SetOutputFileName()
+SetSeed()
+SetConductance()
+SetThreshold()
+SetNumberOfIterations()

RegionGrowingFilter

Figure 4.2: The RegionGrowingFilter class.

• Conductance: This parameter varies the strength of the diffusion.

• NumberOfIterations: The number of iterations the filter will run.

• Seed: Sets the seed point.

• MinIntensity, MaxIntensity: The minimum and maximum intensity.

• InputFilename, OutputFilename: These parameters sets the filename to read from
and write to, respectively.
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4.3 Results

The RegionGrowingFilter was tested on several data sets, without giving very good
results. We will therefore present only a small selection of the results. Our purpose
is to illustrate the behaviour of the filter.

4.3.1 Results from dataset N359 - MRI

Figure 4.3 shows the results after running the RegionGrowingFilter on the first MRI of
the N359 series. The master is MRI and the parameters used are: seed point = (26, 25,
27), conductance = 2.8, lower threshold = 158 and upper threshold = 250. As we can
see from Figure 4.3(b) the tumour in this dataset lies inside the ventricle, the tumour
therefore has a different grey level than the surrounding tissue. This makes this data
set suitable for the connected threshold region growing algorithm.

A volume representation of the result can be found in figure 4.3(a), and two different
slices through the result in figure 4.3(c) and figure 4.3(e). As we can see from the result,
the tumour is strongly undersegmented. The lower threshold is set to 158, and the
tumour consists of many pixels with lower intensities than that.

The results from running the region growing algorithm with lower threshold = 157,
can be found in figure 4.4. The master is MRI and the parameters used are: seed point
= (26, 25, 27), conductance = 2.8, lower threshold = 157 and upper threshold = 250.
As we can see the tumour is still very undersegmented, and in addition it is leaking to
other parts of the image. The slice throw the initial picture, figure 4.3(b) shows that
the tumour is in connection with tissue of high intensity at the lower right border of the
tumour, this makes the algorithm fail.

4.3.2 Results from dataset N359 - US

When we tested the RegionGrowingFilter on ultrasound images, the result was worse than
in the MRI case. Figure 4.5 shows the results achieved on the first ultrasound image of
the N359 series. The master is MRI and the parameters are: seed point = (27, 28, 24),
conductance = 20.0, lower threshold = 134/135 and upper threshold = 250.

The results are extremely sensitive to the value of the parameters. Figure 4.5(a)
shows the result after setting the lower threshold to 135. As we can see, the result
is heavily oversegmented and is leaking to other parts of the image. If we set lower
threshold to 134, the region is not able to grow at all. The reason for the large variation
of the results is the large amount of noise in the image.

4.3.3 Results from dataset N351 - MRI

Figure 4.6 shows the results after running region growing algorithm on the first MRI of
dataset N351. The master is MRI and the parameters used are: seed point = (36, 26,
27), conductance = 1.0, lower threshold = 186 and upper threshold = 250.

The tumour has a more uniform intensity distribution than in the previous cases,
and it is not in contact with bone structures or other tissue with intensity levels similar
to the tumour. This makes the segmentation problem easier. The results from this
segmentation are acceptable. The tumour is slightly undersegmented, but not nearly
as much as in the previous cases. There is also a few locations in the middle of the
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tumour that are not considered as being inside the region, as seen in figure 4.6(e). This
is because these areas have a lower intensity value than the rest of the tumour.

4.4 Discussion

The region growing algorithm only takes pixel intensity level in consideration when
solving a segmentation problem. This makes the performance of the algorithm very
sensitive to noise in the image. MRI and particularly Ultrasound images are very noisy,
and the different structures of the brain are not always clearly separated (in grey levels).
For instance, a brain tumour can be placed close to a bone structure, making it difficult
to find the boarder between the tumour and bone structure solely based on difference
in grey level.

The region growing algorithm does not take shape into consideration. The resulting
region may therefore have a shape that is rough and with many protruding elements.
This shape is not likely the shape of the tumour.

In cases where the tumour has an almost uniform intensity level, and clearly differs
from the surrounding tissue, the region growing algorithm gives good results. As we
can see from figure 4.6, the results are acceptable, but the region growing algorithm
is producing holes in the tumour. This can however easily be solved by not allowing
regions to be smaller than some limit.
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(a)

(b) (c)

(d) (e)

Figure 4.3: Result of running RegionGrowingFilter on dataset N359 - MRI (a) Volume
representation. (b) Slice of original data set (slice x = 26). (b) Slice of result after
segmentation (slice x=26). (b) Slice of result after segmentation (slice x=24). (d)
Slice of result after segmentation (slice x = 24).
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(a) (b)

Figure 4.4: Result of running RegionGrowingFilter on dataset N359 - MRI (a) Volume
representation. (b) Slice of result after segmentation (slice x = 23).

(a) (b)

Figure 4.5: Result of running RegionGrowingFilter on dataset N359 - US (a) Slice of result
after segmentation with lower threshold 134 (slice x = 33). (b) Slice of result after
segmentation with lower threshold 135 (slice x = 33).
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(a)

(b) (c)

(d) (e)

Figure 4.6: Result of running RegionGrowingFilter on dataset N351 - MRI (a) Volume
representation. (b) Slice of original data set (slice x = 30). (c) Slice of result
after segmentation (slice x = 30). (d) Slice of original data set (slice x = 29). (e)
Slice of result after segmentation (slice x = 29).
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Chapter 5

Snake segmentation

In this chapter we will present the results we have achieved from segmentation of brain
tumours using the snake approach. Unlike the other segmentation algorithms we have
looked at, ITK does not provide a working implementation of snakes1. We have therefore
implemented a simplified snake algorithm. The purpose is to get indications of in
which extent the snake approach is able to produce satisfactory results on brain tumour
segmentation. We have implemented a version of the snake formulation defined by Xu
and Price [31], from now on referred to as the Gradient Vector Flow (GVF) snake. We
will start by giving an introduction to the theory behind the active contour algorithms,
then present our snake implementation and finally look at the results we have achieved.

5.1 Theoretical background

This section will give a brief introduction to the theory behind the snake formulation.
We will start by presenting the original snake model defined by Kass et. al. [18], followed
by a presentation of the gradient vector flow approach.

5.1.1 The original snake model

The traditional snake model described by Kass et al [18] is a parametric closed contour
where each point of the contour can be represented by:

v(s) = (x(s), y(s)),

where x and y represent coordinates and s ∈ [0, 1]. The snake goes through a
deformation process which transforms the snake to a new parametric representation,
i.e. a new contour. This transformation process is carried out by minimizing energy
functionals using Langrangian mechanics. The snake moves towards a state of local
energy minima. The minimization process can be viewed as a time-variable deformation
of the curve. The energy of the snake can be defined:

Esnake =
∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (5.1)

1There exists two snake implementations in itk, but according to the developers of ITK they contain
bugs and do not behave properly.
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Econ represents high-level information of the image. Usually, this energy is involved
through the user initialising a contour near the object of interest and this is used as a
starting point for the snake and is not usually expressed implicit in the energy function.
We will in the following subsections give a description of the internal and image energy
used in the snake model suggested by Kass et al. [18].

5.1.2 Internal forces

In the original snake model, the internal energy can be written:

Eint =
1
2

(
α(s)

∣∣∣∣
δv

δs

∣∣∣∣
2

+ β(s)
δ2v2

δs2

)

A circular contour is represented by the terms x(s) = cos(2πs) and y(s) = sin(2πs).
We can see that x′(s) and y′(s) point in the direction of the tangent of the circle and
that the direction of x′′(s) and y′′(s) is towards the centre of the circle. From this we
can see that a larger circle has a larger energy and hence when minimizing the energy
we are reducing the size of the circle. The first term controls the tension, elasticity and
stretching. The second term controls the rigidity and bending. The α and β coefficients
are used to weight the influence of each term on the total energy. The internal energy
makes the snake contract and assume a circular shape.

5.1.3 Image forces

Kass et al. [18] suggested an image energy formulation that contains three weighted
terms:

Eimage = wlineEline + wedgeEedge + wtermEterm

The weights wline, wedge and wterm can be used to create different behaviours of the
snake. They suggest different functions to attract the snake to salient features in the
image of interest.

The simplest one is to let the snake be attracted to either dark or bright areas of
the image. This can be done by defining:

Eline = I(x, y)

The sign of wline will decide whether the snake moves towards the bright or dark pixels
in the image. Another fairly simple approach is to let a large image gradient attract
the snake. The snake will then move towards features in the image with the largest
variation in pixel-value. This can be expressed:

Eedge = −|∇(x, y)|2

These two approaches are very simple and are indeed very sensitive to noise.
A slightly more sophisticated and a much more widely used approach called scale

space takes noise into consideration. This behaviour can be achieved by setting:

Eline = −(Gσ ∗ ∇2I)2

Gσ is a Gaussian with standard deviation σ. By using this external energy it is possible
to increase the capture range of the active contour, but this will cause blurring of the
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image edges. A result of this will be that the snake will not find the object contour
exact.

Kass et al. [18] also describes a termination functional Eterm that finds terminations
of line segments and corners. When setting up an image energy function for the image we
can use one or a combination of the functions described above. The choice is dependent
on the properties of the image we want to segment.

5.1.4 Gradient Vector Flow

The original snake formulation has some weaknesses. One of the most important
problems is sensitivity to the placement of the initial contour. The initial contour
must be placed very close to the boundary of the object of interest, if not the snake
has a tendency to converge toward the wrong result. The snake also has problems
when dealing with objects with concave shapes. Figure 5.1 shows the problem with this
approach. The first figure shows how the snake is converging when used on a U-shaped
object. The figure in the middle shows the vector field of the shape. As we can see, the
vector field has a limited range and consequently, the snake must be initialised close to
the object. The rightmost figure shows the vector field close up, and this reveals the
problem regarding concave shapes.

(a) (b) (c)

Figure 5.1: (a) Convergence of the original snake model. (b) Vector field of the snake. (c)
Close up view of the vector field.[31]

Xu and Price [31] suggested a solution that uses vector diffusion to calculate the
potential field, called gradient vector flow. They defined an edge map with the
property that it is larger near edges in the image. Generally, the gradients of the
edge map points towards edges, and are normal to an edge when being close to one.
This is a desirable property, because it will make the snake converge into a stable
configuration. The problem is that the gradients have large magnitudes only in the
immediate neighbourhood of the edges, and in regions with approximately homogeneous
intensity the gradient is close to zero. This will make the capture range small and
homogenous regions will have no external forces. Xu and Price suggested a solution
which objective is to dispose these two last properties of the edge map approach and
keep the property of the gradient near the edges. They introduced a gradient vector
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flow field and defined it to be the solution to the following equation:

δu

δt
= g(|∇f |)∇2u− h(|∇f |)(u−∇f),

where u(x, 0) = ∇f(x), u is the vector field, f is the edge map derived from the image.
The first term is called smoothing term and the second term is called the data term.
The image force in equation 5.1 is replaced with the gradient vector flow. As we can
see from figure 5.2, the gradient vector flow (GVF) snake deals with both the problems
mentioned above. The vector field has a wider capture range and the direction of the
vectors in the concavity is pointing downwards, pulling the snake into the concavity.

(a) (b) (c)

Figure 5.2: (a) Convergence of the GVF snake model. (b) Vector field of the snake. (c) Close
up view of the vector field.[31]

5.2 Implementation

In this section we will describe how we have implemented the snake model, and also
present a more sophisticated approach on how to implement a three dimensional snake
described by McInerney and Terzopoulos [21]. We will first present a two dimensional
snake implementation, and then try to extend it into three dimensions.

5.2.1 A two dimensional discrete solution

In this section we will present a two dimensional discrete snake model, based on the
model described by Lobregt and Viergever [20]. We will explain the most important
principles in the solution, and later use this as a basis to extend the solution to three
dimensions. A snake model is described through a continuous energy function. We
approximate the continuous energy function as a set of discrete nodes in space.

Principal structure of the model

The model represents the deformable contour as a collection of vertices and edges
between the vertices, see figure 5.3. The position of a vertex Vi is represented by a
vector pi, and the edge between the vertices Vi and Vi+1 by a vector di. The internal
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and external forces of the snake make the vertices move. This is represented in the
figure by the acceleration vector ai. The vertices Vi and Vi+1 are neighbours, and they
therefore have an edge between them. The points form a closed contour, the first vertex
of the structure, V0, and the last vertex, Vn−1, is therefore also neighbours. The length
of the vector di represents the local resolution of the model. If the length is too large,
the contour will not be able to follow details of the contour, if it is too small, the
computation time will increase.

Figure 5.3: A discrete two dimensional contour model with a set of vertices Vi which are
connected by edges di. Deformation is caused by acceleration forces ai [20]

Definition of driving forces

The forces governing the deformation of the contour only influence the vertices of the
contour. In terms of local curvature at a given position of the contour, Lobregt and
Viergever [20] define the internal force to be the difference between the two edge segments
that join at that position. This can be expressed:

ci = d̂i − ˆdi−1

where the unit vector d̂i is the direction of the edge vector di. The vector ci represents
the second derivative of the contour at the position of vertex Vi. As we can see from
figure 5.4, the vector ci points in direction of smaller local curvature.

In addition to the force corresponding to the second derivative, we also use a force
corresponding to the fourth derivative of the contour. We define the fourth derivative
at point Vi to be the difference between the second derivatives at the points Vi+1 and
Vi−1, see figure 5.5. The fourth derivative controls the bending of the contour. This
force is not used in the model described by Lobregt and Viergever [20].

We will describe the computation of the image forces fim when we are describing
the implementation in three dimensions.
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Figure 5.4: Local curvature ci at the position of a vertex Vi[20].
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Figure 5.5: Fourth derivative, gi, at the position of a vertex Vi.

The total force fi acting on vertex Vi can be expressed:

fi = αci + βgi + λfim,i

9where α, β and λ are user-defined weighting factors. ci and gi are the internal forces,
fim,i the image forces acting on vertex Vi.

Deformation and resampling

The deformation process is implemented by making the energy term time-dependent,
the deformation process now can be described by the expression:

pi(t + ∆t) = pi(t) + f(t + ∆t)

where t represents a point in time, and t + ∆t a time ∆t later.
When the vertices in the contour are moved around, the distance between the points

and consequently, the local resolution, are changing. It is desirable to have a fairly
equal local resolution of the snake at all points of the evolution. To control that the
distances between the points in the contour do not vary too much, we require that
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the distance between two points must be inside a predefined interval. The following
relationship between the desired distance, ldes, the minimum distance, lmin, and the
maximum distance, lmax, has proven to give satisfactory results:

lmin =
1
2
ldes

lmax =
3
2
ldes

In our implementation we defined ldes to be 4 pixels.
If the distance between two vertices Vi and Vi+1 is smaller than lmin, the two vertices

are merged to a new vertex with position halfway between the to old vertices, as shown
in figure 5.6(a). If the distance is larger than lmax, a new vertex is inserted between Vi

and Vi+1 as shown in figure 5.6(b).

Figure 5.6: (a) Removal of a point in the contour. (b)Insertion of a point in the contour.

5.2.2 Implementing a three dimensional snake

Extending the two dimensional model into three dimensions may at first glance seem
like an easy task, but this leads to some difficulties. In this section we will explain some
of the difficulties an extra dimension involves and present our solution to the problem.
We will also present an alternative approach, developed by McInerney and Terzopoulos
[21].

Difficulties

Defining a three dimensional spherical structure does not lead to any difficulties, neither
does defining the driving forces nor the neighbour relationships between the vertices.
The neighbour relationships are important in order to be able to compute second and
fourth derivatives of the sphere and to move the vertices towards local energy minima
in the image. The second and fourth derivatives are now computed in two directions of
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the image: the direction of the x-y- plane and one direction perpendicular to the x-y-
plane.

The difficulties with a three dimensional spherical structure appear after the vertices
have been moved around and the distance between the neighbouring vertices is either
too small or too large. There is not always an intuitive way to define the neighbour
relationships after a new vertex is inserted or a vertex is removed.

The most intuitive way to define a three dimensional initial contour is to define a
spherical contour described by the following equation:

x(ui, vi) =

( cosui cosvi

cosui sinvi

sinui

)
(5.2)

In the initial contour, the vertex x(ui, vi) has the following neighbours: x(ui+1, vi),
x(ui−1, vi), x(ui, vi+1) and x(ui, vi−1) as shown in figure 5.7.

X(ui, vi)

X(ui-1, vi) X(ui+1, vi)

X(ui, vi+1)

X(ui, vi-1)

Figure 5.7: Definition of the point x(ui, vi) neighbours.

After the vertices have been influenced by the forces of the snake, they may be too
close or too far away from each other. To make the snake model behave properly, it is
necessary to insert and remove vertices from the sphere. Figure 5.8 shows the situation
before and after inserting a vertex into a sphere. The problem in figure 5.8 is to define
the neighbour relations marked with a question mark. One choice is to leave them open.
This can however result in a lot of open spaces in the contour, and because of lack of
neighbour relations no vertices will be inserted in these holes, resulting in an incomplete
result.

Removing a vertex from the structure also results in a couple of difficulties. No
intuitive way exists on how to define the new neighbours for the vertices previously being
neighbours with the removed vertex. In figure 5.9, the new vertex inserted between the
two removed vertices will have the same left neighbour as the vertex removed at left side
of the new vertex, and same for the right vertex. But the two remaining neighbours are
more difficult to decide. One choice is to let the neighbour references be empty, but this
will not be a good solution because we can risk a lot of vertices being removed, leaving
open spaces in the sphere. Another choice may be to choose the closest one of the two
candidates as the new neighbour. This will neither be a good solution because when
the contour evolves, the structure of the sphere can become very complex and difficult
to handle. It is also extremely difficult to control that it is behaving correctly.
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(a)

?

?

(b)

Figure 5.8: Inserting a new vertex into a sphere. (a) Situation before inserting the vertex. (b)
Situation after inserting the vertex.

(a)

? ?

? ?

?

?

(b)

Figure 5.9: Removing a vertex from a sphere. (a) Situation before removing the vertex. (b)
Situation after removing the vertex.

As we have seen, it is difficult to extend the two dimensional discrete snake model
into three dimensions without making some modifications to it. The collection of vertices
and edges constituting the contour have a tendency to get too complex and difficult to
handle elsewhere.

A three dimensional solution

In our implementation of the snake model we made some simplifications of the model
described in the previous section. Figure 5.10(a) shows the overall structure of the model.
Our model is constructed from layers, with each layer containing a set of vertices. All
the vertices have four neighbours, as shown in figure 5.10(b). Two of the neighbours
are within the same layer (marked 1 and 2 in the figure), and are managed the same
way as in the two dimensional model. This relationship is symmetric, the vertices are
neighbours of each other. If the distance between two vertices in the same layer is too
large, a new vertex is inserted, and if it is too small a vertex is removed. The last two
neighbours (marked 3 and 4) are not symmetric relations. For every point in one layer,
we find the closest point in the two neighbouring layers. Two points can be neighbours
with the same point, and if a point is neighbour with another point, the other point is
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not necessarily neighbour with the first point. The neighbour relations are recomputed
for each iteration of the snake. This property of the sphere makes it possible to remove
points from a layer without affecting the neighbour relationships of points in other layers.

Layer 1

Layer 3

Layer 2

Layer 4

(a)

1

4

3

2

(b)

Figure 5.10: Structure of our 3D implementation. (a) A layered model. (b) Neighbour
relationships. Relations marked 1 and 2 are relations to vertices in same layer,
relations marked 3 and 4 are relations to points in neighbouring layers.

All vertices belonging to the same layer have the same z coordinate, i.e. all vertices
can only move in x- and y-directions. The whole layer is moved depending on the
resultant of the z-component of all forces acting on the vertices in that layer. The
purpose of this restriction is to avoid problems when vertices are inserted between layers.
Instead of inserting vertices between the layers or removing a single vertex from a layer
if it is too close to a vertex in another layer, we insert and remove the entire layers.

Our implementation of the snake model is now manageable, and is not too different
from the two dimensional solution. Our solution is more sophisticated than computing
a two dimensional solution in a slice-by-slice manner. The computation of the forces
influencing the movement of the vertices within a layer, takes under consideration the
neighbour vertices in the neighbouring layers. This prevents the vertices from moving
too far from their neighbours in the neighbouring layers.

Possible side effects

Our snake implementation contains some simplifications of a correct three dimensional
implementation. This may affect the final result.

One of the side effects is that because we require that all vertices in a layer must
have equal z-coordinates, the vertices move in the z-direction that is best for the entire
layer, not what is necessarily best for that particular vertex. A movement of the entire
layer may result in higher snake energy than what may be the case if all vertices were
allowed to move freely.

To simplify the definition of the initial contour, we have the same radius on every
layer. This results in a cylindrical shape of the initial contour. Most tumours have a
spherical shape, and the snake may terminate in the wrong local minima, especially at
the top and bottom of the contour.

Simple improvements to speed up the snake evolution

We have not focused on making a fast snake implementation, we will therefore not take
computation time into consideration when evaluating the results of the snake. There are
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some simple improvements that can make the computation time decrease considerably.
One improvement is to let all vertices remember their neighbour vertices in the

neighbouring layers. If the vertex is not removed from the structure, the search for the
closest neighbour starts at that vertex. This way it is not necessary to search through
and compute the distance to all the vertices in the neighbour layers within the same
iteration.

Another quite simple improvement of our implementation is to keep the distances
and derivatives between all vertices in an array, instead of recomputing them several
times.

5.2.3 Triangular Surface Model

McInerney and Terzopoulos [21] present a method for discretization of a three
dimensional snake, where the initial points are defined in a sphere (see equation 5.2).

The sphere is subdivided into triangular elements. To increase the resolution, one
triangle is subdivided into four new triangles. The model described by McInerney
and Terzopoulos subdivides all triangles in the model to change the resolution. A
better scheme is to locally subdivide the triangles only at places where the data varies
considerably.

5.2.4 ITK pipeline

The pipeline for the snake model we have implemented and tested is shown in figure 5.11.

Anisotropic
diffusion
filter

Gradient
filter

Input

Output
Snake
filter

sigmainputFilename

outputFilename
alpha
beta

lambda
seedPoint
tumourSize

numberOfIterations

conductanse

Gradient
vector
flow
filter

Figure 5.11: Flowchart of the GvfSnakeFilter class

The filter starts with an itk::GradientAnisotropicDiffusionImageFilter. This filter
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smooths the image while preserving edge information. The smoothed image is then
passed through an itk::GradientRecursiveGaussianImageFilter. This filter computes the
gradient vectors of the smoothed image. The gradient image is then rescaled to make
vectors at positions close to edges have small magnitudes, and vectors far away from
edges have larger magnitudes. The rescaled gradient image is then passed through an
itk::GradientVectorFlowFilter that enlarges the capture range of the gradient force. The
GVF gradient image is then used as image forces for the snake implementation described
in the previous section. An itk::PointSet is created with centre of the middle layer at
the seedPoint, and radius equal to the tumourSize. The forces influencing the points of
the pointset are then computed and the points are moved around as described in the
previous section. The last step of the GVFSnakeFilter is to transform the pointset into
an image using the itk::PointSetToImageFilter.

The interface for the GvfSnakeFilter can be found in figure 5.12. To use the filter,
the following parameters must be given:

• Seed: Sets the initial seed point

• TumourSize: Sets the approximate radius of the tumour. This is used for creation
of the initial contour.

• Conductance: This parameter varies the strength of the diffusion.

• Sigma (σ): Controls how sensitive the gradient filter should be.

• Alpha (α): Controls the snake tension, elasticity and stretching.

• Beta (β): Controls the rigidity and bending of the snake.

• Lambda (λ): Weights how much the image forces should influence the movement
of the points.

• SnakeIterations: Maximum number of iterations of the snake.

• InputFilename and OutputFilename: These parameters set the filenames to read
from and write to.
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#GvfSnakeFilter()
+<<static>> New()
+Run()
+SetInputFileName()
+SetOutputFileName()
+SetSeedPoint()
+SetTumourSize()
+SetConductance()
+SetSigma()
+SetAlpha()
+SetBeta()
+SetLambda()
+SetSnakeIterations()

GvfSnakeFilter

Figure 5.12: The GvfSnakeFilter class.

5.3 Results

In this section we will presents results from tests with the snake segmentation filter.
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5.3.1 Dataset N241 - MRI

Figure 5.13 shows the result after running the GvfSnakeFilter on the first MR image
of the N241 series. Master is US and the parameters are: seedpoint = (38, 39, 45),
tumourSize = (29, 29, 15), conductance = 5.0, σ = 3.0, α = 0.05, β = 0.05, λ = 2.0.

As we can see from the slices 5.13(a) and (c), the tumour tissue does not have
uniform graylevel intensities. The border at the lower left part of the tumour is difficult
to separate from the surrounding tissue. As we can see from figure 5.13(b), the snake
has failed to detect the lower left part of the tumour. It has also undersegmented the
tumour at the lower right side. The degree of oversegmentation is low in this slice. The
snake only has problems with a concavity on the top of the tumour. The edges are
probably not sharp enough to pull the snake into the concavity.

Figure 5.13(d) shows a slice through the snake result at position z=36. We can see
from figure 5.13(c) that the tumour lies close to some surrounding tissue with sharp
edges at the lower left side. This results in a rather high degree of oversegmentation of
the result. As we can see from figure 5.13(e) and (f), the edges of the surrounding tissue
have almost the same intensity as the edges of the tumour, this is causing the snake to
find the wrong boundary.

The total judgement of this result is that it is a middle good segmentation. At
the parts of the tumour where the border separates clearly from the background the
results are very good, but at parts where the transition between the tumour and
surrounding tissue is less evident the results are of lower quality. The tumour is too much
under- and oversegmented for the result to be valuable for tasks that require accurate
segmentations. The slices where the tumour is not particularly oversegmented can be
valuable as indication of tumour size, position etc. The degree of misclassification may
be reduced if a better method for initialisation of the active contour is available.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Results of running GvfSnakeFilter on dataset N241 - MRI (a) Slice of original
image data (slice z=49). (b) Slice of result on original data (slice z=49). (c)
Slice of original image data (slice z=36). (d) Slice of result on original data (slice
z=36). (e) Slice of gradient image (slice z=36). (f) Slice of result on gradient
(slice z=36).
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5.3.2 Dataset N241 - US

Figure 5.14 shows the result after running the GvfSnakeFilter on the first US image of the
N241 series. Master is US and the parameters are: seedpoint = (41, 42, 45), tumourSize
= (31, 25, 15), conductance = 6.0, σ = 3.0, α = 0.05, β = 0.05, λ = 3.0.

The results achieved for the US image is slightly better than for the for the MR
image from the same series. The degree of undersegmentation is lower than for the MRI
case. The algorithm still has problems regarding the the neighbouring tissue at the lower
part of the tumour. The reason for the oversegmentation can be found in figure 5.14(e).
The edges of the surrounding tissue is stronger than the edges of the tumour, dragging
the contour to this position. The degree of undersegmentation is lower for the US image
than what it was for the MRI case. One of the reasons for this is that the MR image is
capable of capturing the variations of graylevel inside the tumour.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Results of running GvfSnakeFilter on dataset N241 - US (a) Slice of original image
data (slice z=44). (b) Slice of result on original data (slice z=44). (c) Slice of
original image data (slice z=39). (d) Slice of result on original data (slice z=39).
(e) Slice of gradient image (slice z=39). (f) Slice of result on gradient (slice
z=39).
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5.3.3 Dataset N351 - MRI

Figure 5.15 shows the result after segmentation of the first MR image of dataset N351
with the GvfSnakeFilter. The master is MRI and the parameters used are: seedpoint =
(26, 26, 23), tumourSize = (16, 16, 14), conductance = 4.0, σ = 3.0, α = 0.05, β = 0.03,
λ = 1.0.

As we can see from figure 5.15(b), the tumour is slightly undersegmented (at the
lower right part of the tumour). If we look at the image data in figure 5.15(a), there is
a weak edge in the image data, causing the snake to fall into the wrong local minima.
This problem can be solved by using a larger conductance and σ in the preprocessing
phase, but this will also blur the edges of the tumour, making it difficult to find a precise
position of the tumour edge.

The tumour lies close to some surrounding tissue as shown in figure 5.15(c). The
surrounding tissue has about the same graylevel as the tumour and the same contrast to
other surrounding tissue as the tumour. These edged in the image pull the snake away
from the edge of the tumour, and as we can see from the gradient image of figure 5.15(e),
the edges of the surrounding tissue are stronger than the edges of the tumour. This leads
to a oversegmentation of the tumour in this area.

The segmentation result is altogether slightly undersegmented, except from the
positions where the tumour has neighbouring tissue with similar greylevel. The result
is not good enough to be used in applications demanding high presission, because of
the high degree of oversegmentation. This may be solved with a more sophisticated
initialising method. The results give a good indication of the tumour boundary.

5.3.4 Dataset N351 - US

Figure 5.16 shows the results of running the GvfSnakeFilter on the first US image of the
N351 series. Master is US and the parameters are: seedpoint = (69, 65, 56), tumourSize
= (30, 31, 14), conductance = 25.0, σ = 7.0, α = 0.05, β = 0.05, λ = 50.0.

The US image is extremely noisy, making it very difficult to find the tumour on the
image. Consequently the results are not very good. The result shown in figure 5.16(b)
is achieved after performing heavy smoothing of the original US image. The GVF edge
map has small magnitude because the edges of the image are rather weak, λ is therefore
set to 50.0 to increase the magnitude of the gradient vector field to be about the same
as the internal energies.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Results of running GvfSnakeFilter on dataset N351 - MRI (a) Slice of original
image data (slice z=34). (b) Slice of result on original data (slice z=34). (c)
Slice of original image data (slice z=19). (d) Slice of result on original data (slice
z=19). (e) Slice of gradient image (slice z=19). (f) Slice of result on gradient
(slice z=19).
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(a) (b)

Figure 5.16: Result of running GvfSnakeFilter on dataset N351 - US (a) Slice of original image
data (slice z=62). (b) Slice of result on original data (slice z=62).

5.3.5 Dataset N359 - MRI

Figure 5.17 shows the results of running the GvfSnakeFilter on the first MR image of the
N359 series. The master is MRI and the parameters used are: seedpoint = (26, 26, 25),
tumourSize = (13, 13, 12), conductance = 2.0, σ = 2.0, α = 0.05, β = 0.05, λ = 2.0.

Figure 5.17(b) shows that the snake has found the boarder of the tumour with high
precision. Because the tumour tissue has high variance of grey level intensities, it is
necessary to smooth the image to eliminate disturbing edge information. Figure 5.17(e)
shows that there is a great deal of remaining edge information inside, and around the
tumour. The result is that the snake has problems finding the lower left boundary of the
snake. If we smooth the image more, we can eliminate this problem, but that will result
in a less accurate result. The problem can also be solved by using a more sophisticated
initialisation of the contour.

The result is very good, except from the place where the tumour is growing into the
surrounding tissue as shown in figure 5.17(d). The result is useful as an indication of the
size and scope of the tumour, but is not good enough in areas of application demanding
extremely precise results.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Results of running GvfSnakeFilter on dataset N359 - MRI (a) Slice of original
image data (slice z=29). (b) Slice of result on original data (slice z=29). (c)
Slice of original image data (slice z=19). (d) Slice of result on original data (slice
z=19). (e) Slice of gradient image (slice z=19). (f) Slice of result on gradient
(slice z=19).
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5.3.6 Dataset N359 - US

The results of the segmentation of the US images are shown in figure 5.18. The master
is MRI and the parameters used are: seedpoint = (30, 28, 14), tumourSize = (12, 12,
12), conductance = 7.0, σ = 3.0, α = 0.05, β = 0.05, λ = 6.0.

The results are not as good as the results of the MR image in the same dataset, and
the results now have a higher degree of undersegmentation than what was the case for
the MRI segmentation. The snake finds the tumour boundary relatively precise when
the tumour is not surrounded by tissue with similar grey level as shown in figure 5.18(d).
The results are not as good when the tumour merge into the surrounding tissue as shown
in figure 5.18(b).

The result can be valuable for a surgeon when high precision is not necessary.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Results of running GvfSnakeFilter on dataset N359 - US (a) Slice of original image
data (slice z=29). (b) Slice of result on original data (slice z=29). (c) Slice of
gradient image (slice z=29). (d) Slice of result on gradient (slice z=29). (e)
Slice of original image data (slice z=19). (f) Slice of result on original data (slice
z=19)
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5.3.7 Dataset N360 - MRI

Figure 5.19 shows the snake contour after passing the first MRI of the dataset N360
through the GvfSnakeFilter. The master is MRI and the parameters used are: seedpoint
= (46, 36, 50), tumourSize = (20, 27, 30), conductance = 6.0, σ = 2.0, α = 0.05, β =
0.05, λ = 1.0.

As we can see from figure 5.19 the GvfSnakeFilter gives very good results on this
dataset. In figure 5.19(d) the contour is matching the contour of the tumour very
good, the only exception is in the top left part of the tumour where the tumour is
undersegmented. As we can see from the gradient image in figure 5.19(f), this problem
could be avoided if the snake was initialised closer to the real boundary. The snake also
succeeds in dividing the tumour from the nearby tissue at the left side of the tumour.

Figure 5.19(b) shows a slice where the results are not quite that good. The snake
fails in detecting a concavity at the bottom of the tumour, and the neighbouring tissue
at the left side of the tumour is not distinguished from the tumour.

The results of this segmentation are very good except from the problems at the
top left of the tumour. If the snake implementation provides a method for better
initialisation of the snake, we may be able to eliminate this problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Results of running GvfSnakeFilter on dataset N360 - MRI (a) Slice of original
image data (slice z=43). (b) Slice of result on original data (slice z=43). (c)
Slice of original image data (slice z=54). (d) Slice of result on original data (slice
z=54). (e) Slice of gradient image (slice z=54). (f) Slice of result on gradient
(slice z=54).
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5.3.8 Dataset N360 - US

Figure 5.20 shows the result after passing the first US image of the dataset N360 through
the GvfSnakeFilter. The master is MRI and the parameters used are: seedpoint = (36,
38, 20), tumourSize = (20, 25, 30), conductance = 20.0, σ = 3.0, α = 0.04, β = 0.04, λ
= 1000.0.

The image is very noisy, and it is necessary to smooth the image heavily. This makes
the edge information weaker and makes it more difficult to find the precise boundary.
Figure 5.20(e) shows a slice through the gradient image, and as we can see the edge
information is smoothed.

The results are very inaccurate, and can only be used as an indicator to the tumour
boundary.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Results of running GvfSnakeFilter on dataset N360 - US (a) Slice of original image
data (slice z=25). (b) Slice of result on original data (slice z=25). (c) Slice of
original image data (slice z=38). (d) Slice of result on original data (slice z=38).
(e) Slice of gradient image (slice z=38). (f) Slice of result on gradient (slice
z=38).
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5.3.9 Dataset N378 - MRI

Figure 5.21 shows slices of the result after passing the first MR image of the N378 series
through the GvfImageFilter. The master is MRI and the parameters used are: seedpoint
= (36, 35, 30), tumourSize = (20, 15, 20), conductance = 5.0, σ = 5.0, α = 0.05, β =
0.05, λ = 1.0.

The best result is achieved on slice z=26, viewed in figure 5.21(b). The final contour
is not able to capture the all the details of the tumour boundary. The reason is that the
image is blurred during preprocessing. The tumour is non uniform and is very similar
to its surroundings. This makes it difficult to remove the noise without reducing the
quality of the edge information. This results in that the snake follows the wrong image
edge at the lower left part of the tumour.

One disadvantage of the snake model is that it is not capable to split up and merge
the contour. This results in erroneous segmentation results in cases like the one in
figure 5.21(d).

The result is generally of low quality and is not usable for any practical applications.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Results of running GvfSnakeFilter on dataset N378 - MRI (a) Slice of original
image data (slice z=26). (b) Slice of result on original data (slice z=26). (c)
Slice of original image data (slice z=38). (d) Slice of result on original data (slice
z=38). (e) Slice of gradient image (slice z=38). (f) Slice of result on gradient
(slice z=38).
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5.3.10 Dataset N378 - US

Figure 5.22 shows the result after passing the first US image of the N378 series through
the GvfSnakeFilter. The master is MRI and the parameters used are: seedpoint = (34,
37, 25), tumourSize = (30, 20, 20), conductance = 8.0, σ = 3.0, α = 0.05, β = 0.05, λ
= 2.0.

The results are very similarly to the results we achieved with the corresponding MR
image. The snake is not capable to adapt the topology changes of the tumour as shown
in figure 5.22 (b). The US image was smoothed with a higher conductance than the
MR image, causing the edge information to be weaker and more diffuse. As we can see
in figure 5.22(d) the image is heavily undersegmented.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Results of running GvfSnakeFilter on dataset N378 - US (a) Slice of original image
data (slice z=39). (b) Slice of result on original data (slice z=39). (c) Slice of
original image data (slice z=31). (d) Slice of result on original data (slice z=31).
(e) Slice of gradient image (slice z=31). (f) Slice of result on gradient (slice
z=31).
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5.4 Discussion

We have seen that the snake algorithm has located the tumour boundary with high
precision in several cases. The algorithm typically fails at some parts of the tumour.
This is often because the edges are weaker than other surrounding edges belonging
to other structures or edges caused by graylevel variations within the tumour. This
problem can be solved by offering a method where the user can initialise the contour
more accurate. The snake algorithm could possibly perform even better if the user in
addition is able to guide the snake during snake evolution by dragging the contour in
the correct direction.

Finding the optimal segmentation requires a great deal of trial and error. There are
several parameters that can be adjusted to get a better result. To simplify the task of
producing a better result, it can be advantageous to keep some parameters constant.
We have experienced that keeping α = 0.05 and β = 0.05 and only adjusting λ gives
good results. The parameters regulating the preprocessing are more difficult to find.
The values of the conductance and σ depend a lot on characteristics of the image and
the tumour.
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Level set segmentation

Level set methods are general numerical techniques for solving the problem of evolving
interfaces, or boundaries. In addition to segmentation of images, level set methods are
also being used to solve problems in physics, chemistry, fluid mechanics and optimal
control theory, among many other areas.

In this section we will give a thorough description of the level set approach, starting
out with a general description. Furthermore, four variants of the general level set method
will be presented along with results from use of these methods.

6.1 Theoretical background

Presume an image, with a boundary separating two regions in the image. While most
numerical techniques would use marker points to track this boundary, the principle of
the level set approach is quite different: Instead of dealing with the boundary function
itself, the level set approach converts this equation into a higher dimensional function,
named the level set function, φ(x, y, t) (x, y are image coordinates, t denotes time). The
level set function has the following property:

φ(x, y, t)





< 0 if (x, y) ∈ Ω(t)
= 0 if (x, y) ∈ Γ(t)
> 0 otherwise

where Ω(t) denotes the region inside the boundary and Γ(t) denotes the boundary itself
at a given time t. An example of a level set function can be seen in figure 6.1. Evolving
the boundary is done by manipulating the level set function φ with a differential equation
φt. Extracting the boundary can easily be done from the zero level of the level set
function: Γ(t) = {(x, y)|φ(x, y, t) = 0}.

The level set equation is formulated as follows: First, the level set value of a particle
on the boundary with path x(t) must always must be zero,

φ(x(t), t) = 0.

Furthermore, the chain rule then yields:

φt +∇φ((x(t), t) · x′(t) = 0.

63
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Figure 6.1: A level set function with the zero level set (dark circle).

The speed F is always in the outward normal direction and hence we can write x′(t) ·n =
F , where n = ∇φ/|∇φ|. This results in

φt + F |∇φ| = 0,

given φ(x, t = 0),

which is the level set equation proposed by Osher and Sethian [25]. Here, F is the speed
equation and it may depend on one or many factors, as will be explained in detail in
the next section.

6.1.1 The speed equation

Determining a good speed equation is one of the key parts of level set segmentation. In
its general form, the speed equation is made up of a propagation, a curvature and an
advection term:

F = Fprop + Fcurv + Fadv,

the different terms are defined as follows:

The propagation term describes how the boundary expands. An example of this
term is Fprop = F0, where the boundary expands with a constant speed in its
normal direction.

The curvature term describes the dependence of the speed on the boundary. An
example of this term is Fcurv = −εκ, where ε is a constant and κ is the mean
curvature. This results in a curvature term which value is proportional to the
curvature.

The advection term describes how the boundary evolves based on the structure of
the underlying image. An example of this term is an underlying velocity field
calculated independent of the boundary itself and multiplied with a vector that is
normal to the boundary: Fadv = φ(x, y, t) · n.
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Using the above example terms, the resulting level set equation would then become:

φt + F |∇φ| = 0,

φt + (F0 − εκ + φ(x, y, t) · n)|∇φ| = 0.

Since the normal n of the boundary is given by ∇φ/|∇φ|, this yields:

φt + F0|∇φ|+ φ(x, y, t) · ∇φ = εκ|∇φ|.
While the speed equation defined here only relies on information from the curvature

and the underlying image, additional information may also be included. An example
of such information may be statistical models of the distribution of the various tissue
types in a brain.

6.1.2 Narrow band

The straightforward way of solving a level set problem tries to compute answers for
the entire computational domain. This means that all the level sets are updated, not
only the zero level set that contains the boundary itself. Unfortunately, this leads
to a slow solution. The narrow band level set method, on the other hand, narrows
the computational domain down and thus leading to a much faster way of solving the
problem.

The basic idea behind the narrow band approach is to compute solutions within a
narrow band of user-specified width close to the moving boundary. This is carried out
by calculating and freeze the level set values within the narrow band. Calculating new
values of the boundary itself is then carried out in i normal way. Once the boundary
moves close to the border of the narrow band the values within the narrow band is
recalculated and frozen. An example of a boundary and a narrow band can be seen in
figure 6.2.

Figure 6.2: A boundary (black line) and the corresponding narrow band (dark grey colour).

The Narrow band approach provides a significant computational benefit: A
calculation over the entire computational band would result in O(N3) operations per
time step in three dimensions. Assuming that the boundary consists of O(N2) points in
three dimensions would require O(kN2) operations in the narrow band approach, where
k is the width of the narrow band. In addition, the general level set approach requires
the speed function F to take into consideration the entire domain, not only the zero
level set with the boundary itself. In this approach F only has to look at the points
close to the boundary [27].
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6.2 Fast marching level set

In this section we present the theory behind the Fast marching variant of the Level Set
approach. We will also describe the implementation as well as presenting the results.

6.2.1 Theoretical background

In cases where the speed function F > 0, the fast marching approach may be used.
While in the general level set approach the boundary may move both backward and
forward and reach any point in the domain multiple times, this is not the case with a
F that always is positive. As the boundary evolves, the boundary will only cross one
point in the domain once, and the arrival time T (x, y) for each point can be calculated.
The problem now reduces to:

|∇T |F = 1, T = 0 on Γ,

where Γ is the initial location of the boundary. At time t, the boundary is now given
by:

Γ(t) = {(x, y)|T (x, y) = t}.
The solution is calculated in an upwind scheme, starting out with low T values. A heap
data structure is also used to store the T values. The computational benefit from this
approach is substantial.

6.2.2 Implementation

The pipeline shown in figure 6.3 is implemented in our class FastMarchin-
gLevelSetFilter. First, the input image is passed through a smoothing filter,
the itk::CurvatureAnisotropicDiffusionImageFilter, that smoothes the image while pre-
serving edge information. Next, the image is passed through a gradient filter,
itk::GradientMagnitudeRecursiveGaussianImageFilter, that extracts edge information and
passes this on to the itk::SigmoidImageFilter. The purpose of the sigmoid filter is to
enhance intensity information of interest. Furthermore, the output from the sigmoid
filter is passed on to the itk::FastMarchingImageFilter that calculates a time crossing
map. The time crossing map describes how the propagating level set surface evolves
through time. A time crossing map ideally varies slowly close to strong edges in the
original image, and fast when no such information is present. To be able to extract the
surface of interest, or the zero level set, the time crossing map is passed on to a threshold
filter. The output of this filter is a binary image, representing the segmented surface.

Figure 6.4 shows an overview of the FastMarchingLevelSetFilter class, located in
Filters/LevelSet. The class provides functions to set the most important parameters
of the filter:

• TimeStep: Controls the amount of smoothing that is applied to the input image

• Sigma (σ): Controls how sensitive the gradient filter should be

• SigmoidAlpha (α): Controls the width of the intensity window

• SigmoidBeta (β): Controls the center of the intensity window
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Figure 6.3: Flowchart of the FastMarchingLevelSetFilter.

• TimeThreshold: Sets the threshold level to be applied to the output from the level
set filter

• Seed: Sets the initial seed point

• StoppingValue: Sets the range of the level set computation - the size of the time
crossing map

• InputFilename and OutputFilename: These parameters set the filenames to read
from and write to
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#FastMarchingLevelSetFilter()
+<<static>> New()
+~FastMarchingLevelSetFilter()
+Run()
+SetInputFilename()
+SetOutputFilename()
+SetSeed()
+SetSigma()
+SetSigmoidAlpha()
+SetSigmoidBeta()
+SetTimeThreshold()
+SetStoppingValue()
+SetTimeStep()
+SetDebugOutput()

FastMarchingLevelSetFilter

Figure 6.4: The FastMarchingLevelSetFilter class.

6.2.3 Results

This section will present the results achieved with the FastMarchingLevelSetFilter. We
will try to present the strengths and weaknesses with this segmentation approach.

Some of the results were also presented to an expert panel. Their evaluation is
presented along with the results.

Dataset N241 - MRI

For results from the first MRI (T1) of the dataset N241, see figure 6.5. The master is
US and the parameters used are: seed = (40, 40, 40), time step = 0.0625, σ = 1.5, α
= -1.0, β = 2.0, time threshold = 200, stopping value = 100. Our reference computer
used 6,67 seconds to preprocess and 0,25 seconds to run the level set segmentation.

In terms of location, the segmentation result seems to fit the tumour well. As seen
in figure 6.5 (c), the result seems to fit the boundary of the tumour fairly good on most
parts, but it seems to ”hang” up in small details of the tumour. The result has ”holes”
in the center of the tumour (figure 6.5 (c)), this is probably due to the light parts at
these points. As seen in figure 6.5 (e), the result is both undersegmented at the upper
part of the tumour, with some holes in the center. In the lower left corner of the tumour
the level set filter has detected an arm, this is a false response. It seems that details
have been picked up very well, but because of the fact that the tumour doesn’t stand
that well out from the rest of the brain data it is hard to adjust the sigmoid filter to
enhance the right parts.

It seems like the result cannot be used directly in an operation, but it might be used
for other purposes, such as navigation or to give a brief overview of the scope of the
tumour. It should be possible to get a fairly good result with some manual modifications
of the result.
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(b) (c)

(d) (e)

Figure 6.5: Results of running FastMarchingLevelSetFilter on dataset N241 - MRI (a) Volume
representation of result (b) Original slice (x = 41) (c) Slice (x = 41) with result
(d) Original slice (x = 33) (e) Slice (x = 33) with result
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Dataset N241 - US

For results from the first US of the dataset N241, see figure 6.6. The master is US and
the parameters are: seed = (40, 40, 40), time step = 0.0625, σ = 2.0, α = -1.5, β = 2.0,
time threshold = 200, stopping value = 100. Our reference computer used 6.66 seconds
to preprocess and 0,20 seconds to run the level set segmentation.

As seen from figure 6.6 (a) and (c), the ultrasound data is heavily disturbed by
noise. In spite of this, the level set filter has produced good results. The main reason
for this is probably that the tumour is relatively uniform in its intensity if the noise
is disregarded. Although the result follows the shape of the tumour fairly good, it is
slightly undersegmented along the entire contour. This is due to the initial smoothing
of the input image, where the sigma is set to be larger than with the MR image.

Due to the overall undersegmentation, this result is probably useful. If a couple
of iterations of a region growing filter is used to postprocess the result, this should
compensate for the undersegmentation.
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Figure 6.6: Results of running FastMarchingLevelSetFilter on dataset N241 - US (a) Volume
representation of result (b) Original slice (x = 48) (c) Slice (x = 48) with result
(d) Original slice (x = 64) (e) Slice (x = 64) with result
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Dataset N351 - MRI

For results from the first MRI (T1) of dataset N351, see figure 6.7. The master is US
and the parameters are: seed = (54, 58, 56), time step = 0.0625, σ = 1.0, α = -2.0, β
= 2.0, time threshold = 200, stopping value = 100. Our reference computer used 14,76
seconds to preprocess and 0,83 seconds to run the level set segmentation.

Compared with the MRI data from N241 (see figure 6.5), this tumour has a more
uniform intensity distribution and stands more out from the surrounding intensities.
This makes the job of the level set filter much easier and the result is very good, although
a bit undersegmented. The resulting boundary tracks the contour of the tumour very
well, and partly succeeds in finding small details of the tumour. This is seen in the
upper part of figure 6.7 (e).

The result seems to be very useful in terms of medical application. In order to
compensate for the small undersegmentation, one iteration of region growing may be
run on the result

Comments from the expert panel may be seen in table 6.1.

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 1 1 1
Undersegmentation 2 2 2
Wrong edges traced 1 1 1
Details missing 1 1 -
Is the result usable? yes yes yes
Manual adjustment required - 1 2

Table 6.1: Expert evaluation of segmentation result from dataset N351 - MRI (For a description
of the evaluation criteria, see section 1.8)
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Figure 6.7: Results of running FastMarchingLevelSetFilter on dataset N351 - MRI (a) Volume
representation of result (b) Original slice (x = 59) (c) Slice (x = 59) with result
(d) Original slice (x = 35) (e) Slice (x = 35) with result
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Dataset N351 - US

For results from the first US of dataset N351, see figure 6.8. The master is US and the
parameters are: seed = (54, 58, 56), time step = 0.0625, σ = 2.0, α = -1.0, β = 2.0,
time threshold = 200, stopping value = 100. Our reference computer used 14,68 seconds
to preprocess and 1,74 seconds to run the level set segmentation.

Due to the non-uniform intensity distribution of the tumour, the segmentation filter
is facing great problems. Although the overall placement of the segmentation result
partly fit the tumour, the result is not very good. The result both contains holes
(figure 6.8 (b)) that should not have been detected, as well as a leaking edge on the left
hand side (figure 6.8 (e)). The reason of the leaking edge is probably the diffuse/missing
edge information. This problem is typical for this version of the level set filter, and as
described in the geodesic level set section, improvements have been made to this model
that takes especially care of this. Furthermore, the boundary often get stuck in local
edge information, but more smoothing of the input image would probably result in other
more important edge information being lost as well.

The result is not much useful for medical purposes, but may be used to get an
indication of the scope of the tumour. Manual adjustment of the result would be very
labour-intensive and would probably not be worth the effort.
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Figure 6.8: Results of running FastMarchingLevelSetFilter on dataset N351 - US (a) Volume
representation of result (b) Original slice (x = 76) (c) Slice (x = 76) with result
(d) Original slice (x = 54) (e) Slice (x = 54) with result
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Dataset N359 - MRI

For results from the first MRI (T1) of the dataset N359, see figure 6.9. The master is
US and the parameters are: seed = (55, 50, 65), time step = 0.0625, σ = 2.5, α = -3.0, β
= 3.0, time threshold = 200, stopping value = 100. Our reference computer used 13,49
seconds to preprocess and 0,53 seconds to run the level set segmentation

On the overall, these results approximates the tumour contour well. However, due to
the heavy non-uniformity of the tumour intensities, the input image had to be heavily
smoothed. The result of this is that a more uniform tumour area is obtained, but at
the expense of that some edge information is lost. Furthermore, the resulting boundary
is a bit undersegmented, especially on the right-hand and lower-right side of figure 6.9
(e). In figure 6.9 (c) and (e) we see that the result has hung up in small details of the
tissue surrounding the tumour causing a small oversegmentation of the result.

The non-modified result should be useful in a medical context, at least as an
indication of the size and scope of the tumour. Furthermore, due to the fact that
the result is slightly oversegmented, it can not be used in navigation system during
surgery.

Comments from the expert panel may be seen in table 6.2. Expert 1 also stated that
the ”the risk of using this result is larger when it’s oversegmented”, and expert 2 stated
”in my opinion a small part of the normal tissue was included. In addition, a part of
the tumour was not segmented.”

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 2 2 1
Undersegmentation 3 2 2
Wrong edges traced 2 2 3
Details missing 2 2 -
Is the result usable? yes yes yes
Manual adjustment required - 2 2

Table 6.2: Expert evaluation of segmentation result from dataset N359 - MRI (For a description
of the evaluation criteria, see section 1.8)
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Figure 6.9: Results of running FastMarchingLevelSetFilter on dataset N359 - MRI (a) Volume
representation of result (b) Original slice (x = 41) (c) Slice (x = 41) with result
(d) Original slice (x = 61) (e) Slice (x = 61) with result
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Dataset N359 - US

For results from the first US of the dataset N359, see figure 6.10. The master is US and
the parameters are: seed = (55, 50, 65), time step = 0.0625, σ = 2.5, α = -2.5, β =
3.0, time threshold = 200, stopping value = 100. Our reference computer used 13,53
seconds to preprocess and 0,77 seconds to run the level set segmentation.

The ultrasound data had to be heavily smoothed due to the noise, thus resulting
in some loss of edge information. Furthermore, although some parts of the tumour is
relatively free from the surrounding tissue (figure 6.10 (c)), other parts lie close into
other tissue (figure 6.10 (e)). This, along with the fact that the intensity of the tumour
is similar to the one of the surrounding tissue causes the result to wander off. This effect
is particularly visible in figure 6.10 (e), where the result is very oversegmented. This
version of the level set filter, which is fairly simple compared with the on described in
the next section, relies heavily on good results from the preprocessing stage in order to
track the object of interest in an image. From the ultrasound data provided in this case,
the preprocessing stages have failed to extract much useful information, thus leading to
little help for the level set segmentation stage.

The result, as it stands is not very useful. At it’s most it could probably be used
by medical personnel to get an rough overview of the location of the tumour. Manual
modifications to the result would probably not produce much better results.
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Figure 6.10: Results of running FastMarchingLevelSetFilter on dataset N359 - US (a) Volume
representation of result (b) Original slice (x = 45) (c) Slice (x = 45) with result
(d) Original slice (x = 66) (e) Slice (x = 66) with result
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Dataset N360 - MRI

For results from the first MRI (T1) of the dataset N360, see figure 6.11. The master is
MRI and the parameters: first MRI (T1), master: MRI, seed = (45, 45, 55), time step
= 0.0625, σ = 1.0, α = -1.2, β = 2.0, time threshold = 200, stopping value = 100. Our
reference computer used 8,18 seconds to preprocess and 0,30 seconds to run the level
set segmentation.

As can be seen from the results, the level set segmentation has caught the overall
contour of the tumour very well. Even though the intensity of the tumour is not
too different from the surrounding tissue, the tumour has a fairly uniform intensity
distribution. As seen in figure 6.11 (c), the result covers three small areas that are not
part of the tumour itself. This is probably due to low and diffuse edge information
of some parts of the tumour boundary, and makes the level set segmentation ”leak”.
Furthermore, as seen in figure 6.11 (e), the result is a bit undersegmented. Adjusting
the sensitivity level in order to solve this problem would cause the result to include more
of the brain structure seen on the lower left side of figure 6.11 (e). It is not easy to see
from the lower slices, but the tumour narrows towards the upper left corner, and this is
very well picked up by the level set filter.

The result may very well be used for medical purposes. With some manual
modifications, especially where the result has a tendency to ”leak”, the resulting contour
will coincide with the tumour with a small error rate.
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Figure 6.11: Results of running FastMarchingLevelSetFilter on dataset N360 - MRI (a) Volume
representation of result (b) Original slice (x = 42) (c) Slice (x = 42) with result
(d) Original slice (x = 27) (e) Slice (x = 27) with result
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Dataset N360 - US

For results from the first US of the dataset N360, see figure 6.12. The master is MRI
and the parameters are: seed = (40, 30, 40), time step = 0.0625, σ = 1.5, α = -2.0, β
= 2.0, time threshold = 200, stopping value = 100. Our reference computer used 0,22
seconds to preprocess and 9,16 seconds to run the level set segmentation.

Figure 6.12 (c) shows that in tumour areas with strong edges the segmented boundary
coincides very well with the tumour contour. On the other hand, when the edge
information is weaker, which is the case with the right-hand side of figure 6.12 (c),
the result is slightly undersegmented. Furthermore, as seen in figure 6.12 (e), the brain
structure close to the lower left side of the tumour has influenced the result negatively
and caused the result to be oversegmented. The hole in the center of the tumour is
probably due to a light part of the tumour tissue.

The result covers the size and scope of the tumour very well but it is not useful
in any medical applications where precision is required. Manual adjustment of the
segmentation result could easily remove small, oversegmented parts but a lot of work
would have to be done in order to make the resulting boundary fit the tumour in areas
with weak edge information.

Comments from the expert panel may be seen in table 6.3. Expert 2 stated that the
result was ”quite good. Slightly undersegmented.”

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 1 1 1
Undersegmentation 2 2 2
Wrong edges traced 1 2 2
Details missing 1 2 2
Is the result usable? yes yes yes
Manual adjustment required - 2 2

Table 6.3: Expert evaluation of segmentation result from dataset N360 - US (For a description
of the evaluation criteria, see section 1.8)
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Figure 6.12: Results of running FastMarchingLevelSetFilter on dataset N360 - US (a) Volume
representation of result (b) Original slice (x = 42) (c) Slice (x = 42) with result
(d) Original slice (x = 31) (e) Slice (x = 31) with result
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Dataset N378 - MRI

For results from the first MRI (T1) of the dataset N378, see figure 6.13. The master is
MRI and the parameters are: first MRI (T1), master: MRI, seed = (30, 30, 30), time
step = 0.0625, σ = 1.0, α = -2.0, β = 1.0, time threshold = 200, stopping value = 100.
Our reference computer used 3,44 seconds to preprocess and 0,13 seconds to run the
level set segmentation.

Although the intensity of the tumour is very low and it has diffuse edges, the level
set filter manages to produce fairly good results on most parts of the tumour. As
seen in figure 6.13 (c), the tumour undersegments in the lower right corner due to
the slightly lighter tumour intensity. Altering the sigmoid filter in order to try to
extend the segmentation would result in oversegmentation in other parts of the contour.
Furthermore, the level set result is oversegmented, including areas not being part of the
tumour as seen in the upper part of figure 6.13 (e). Small details of the tumour are
captured fairly well by the level set filter on some parts of the tumour.

The result is not useful in any applications that demands high level of accuracy, but
should be very useful as an overall guide to where the tumour is located. Furthermore,
manual adjustment would be easy on some parts of the result, such as the part seen in
figure 6.13 (c). Other parts of the result, such as those seen in figure 6.13 (e) is not so
easy to improve manually.

Comments from the expert panel may be seen in table 6.4. Expert 2 stated that ”in
my opinion the result seems to trace some of the normal tissue.”

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 2 1
Oversegmentation 1 2 1
Undersegmentation 2 2 2
Wrong edges traced 2 3 2
Details missing 2 2 2
Is the result usable? yes yes yes
Manual adjustment required - 3 2

Table 6.4: Expert evaluation of segmentation result from dataset N378 - MRI (For a description
of the evaluation criteria, see section 1.8)
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Figure 6.13: Results of running FastMarchingLevelSetFilter on dataset N378 - MRI (a) Volume
representation of result (b) Original slice (x = 44) (c) Slice (x = 44) with result
(d) Original slice (x = 25) (e) Slice (x = 25) with result
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Dataset N378 - US

For results from the first US from the dataset N378, see figure 6.14. The master is
MRI and the parameters are: first US, master: MRI, seed = (30, 30, 30), time step =
0.0625, σ = 2.0, α = -2.0, β = 2.0, time threshold = 200, stopping value = 100. Our
reference computer used 3,44 seconds to preprocess and 0,14 seconds to run the level
set segmentation.

The result is on the overall slightly undersegmented. This is probably due to the
heavy smoothing of the ultrasound data. Furthermore, due to the some edges that lie
on the upper side as well as the lower side of the tumour itself (see figure 6.14 (e)),
the result has been oversegmented in these areas. Small details seems to be picked up
well by the level set segmentation, this is seen in the lower part of the tumour area in
figure 6.14 (e).

The result, as it stands, is not useful in any medical application where high precision
is required. Removing false edges of the result manually would improve the result
significantly and would probably make the result more useful.
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Figure 6.14: Results of running FastMarchingLevelSetFilter on dataset N378 - US (a) Volume
representation of result (b) Original slice (x = 40) (c) Slice (x = 40) with result
(d) Original slice (x = 36) (e) Slice (x = 36) with result
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6.3 Geodesic level set segmentation

Most general level set approaches have proven to perform well when used on objects with
a well defined contour. On the other hand, when used on objects with a more diffuse
contour or objects that have gaps in their contour, the boundary tends to ”leak”, and
thus producing incorrect results. The geodesic level set filter is based on the paper by
Caselles et al [7], which presented improvements to the original level set method in order
to solve the ”leaking problem”. This problem was related to cases where edges would
”leak” and not be continuous in an image. Their approach was to take some of the ideas
behind the energy minimization approach from the classic snake, and merge with the
level set method. They presented results that proved that their model performed better
than other level set models when dealing with images that had weak or missing edge
information.

6.3.1 Theoretical background

According to Caselles et al. [7] the traditional snake model, that relies on energy
minimization in order to detect a surface in an image, can be transformed into a geodesic
curve. A geodesic curve is the (local) minimal distance between two given points.

We’ll will present a short summary of how the snake model is transformed into the
geodesic curve. First, consider the classic snake model1 presented by Kass et al [18]:

E(C) = α

∫ 1

0
|C ′(q)|2dq + β

∫ 1

0
|C ′′(q)|2dq − λ

∫ 1

0
|∇I(C(q))|dq, (6.1)

where α, β, λ are real, positive constants and I is the input image. The parameters α
and β have control over the amount of smoothing of the snake (internal energy), while
λ draws the snake towards edges in an image (external energy). Solving a segmentation
problem using this snake model involves finding the curve C that minimizes the energy
E for some given α, β and λ. One of the problems with this model is that it cannot
segment more than one object at a time. This is not the case with the level set approach,
where changes in topology are handled implicitly. An another problem with the snake
model is that adjusting the parameters involves a trade-off between smoothness of the
snake itself and proximity to the object in the image. Caselles et al. [7] showed that
when by using the geodesic approach to solve the snake model, a regularization effect is
introduced by the use of curvature based curve flows. That means that the smoothing
is automatically handled by the way the problem is solved and there is no need for
this to be handled explicitly. Due to this, the parameter β that controls the high-order
smoothness of the curve, may be set equal to zero when transforming from the snake
model to a geodesic model. The smoothness of the curve will instead be taken care of
by the geodesic curve. With β = 0, (6.1) reduces to

E(C) = α

∫ 1

0
|C ′(q)|2dq − λ

∫ 1

0
|∇I(C(q))|dq. (6.2)

1The notation used here can be transformed into the notation used in chapter 5 (equation 5.1) by
replacing C(q) with v(s).
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Furthermore, a curve evolution equation is derived from the classical snake model:

∂C(t)
∂t

= g(I)κ ~N − (∇g · ~N) ~N, (6.3)

where κ is the Eucledian curvature and ~N is the unit inward normal to the curve. g(r)
is a function with the property that g(r) → 0 when r → ∞. The detected object may
then be extracted when equation (6.3) has reached a steady solution. Next, assume that
the curve C is the level-set of a function φ : [0, M ] × [0, N ] → R. This means that the
curve C coincides with the set of points φ = constant in a time crossing map of size
[M, N ], making φ an implicit representation of C. Each position in the time crossing
map contains a number, telling when the evolving curve will reach that position. It can
be shown [7], that if the planar curve C evolves according to

Ct = β ~N, (6.4)

for a given function β, then the embedding function φ should deform in the following
way:

φt = β|∇φ|, (6.5)

where β is computed on the level-sets. Furthermore, Caselles et al. proved that solving
the geodesic problem is equivalent to finding the steady state solution ∂φ

∂t = 0 of the
evolution equation:

∂φ

∂t
= |∇φ| div

(
g(I)

∇φ

|∇φ|
)

= g(I)|∇φ| div
( ∇φ

|∇φ|
)

+∇g(I) · ∇φ

= g(I)|∇φ|κ +∇g(I) · ∇φ, (6.6)

with the starting condition (φ(0, C) = u0(C)). The curvature term κ is equivalent to
div

(
∇φ
|∇φ|

)
, this is used in the above equation. The deduction has so far shown that

there exists a connection between the original snake model and a geodesic curve equation.
These results may then be used to find a level-set equation for use in segmenting objects.

First, consider the following level-set equation:

∂φ

∂t
= g(I)|∇φ| div

( ∇φ

|∇φ|
)

+ c g(I)|∇φ|

= g(I)(c + κ)|∇φ|, (6.7)

where

g =
1

1 + |∇(Î)|p .

Here, Î is a Gaussian smoothed version of the input image I and p = 1 or 2. The
equation (6.7) is an old model, proposed in an earlier paper by Caselles et al. [6]. The
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problem with this model is that it works well on ideal edges (g = 0), but not so well
on diffuse edges. In the newer paper [7], Caselles et. al proposed an extension to (6.7),
based on the results from the deduced connection between the snake model and geodesic
curve flow. This extension takes especially care of diffuse edges, enabling the level set
segmentation to stop at these edges as well as the strong ones. Similar to the connection
between (6.4) and (6.5), it can be shown [7] that the flow

φt = (c + κ)|∇φ|
is equal to the curve evolution

Ct = (c + κ) ~N,

where ~N is the inward normal to the curve. Using this result when comparing the
old model (6.3) with the new (6.7), one sees that the new model has one extra term,
∇g · ∇φ. This term is responsible for attracting the curve towards the boundaries of
objects. This works because ∇g points towards the middle of an edge. An example of
how this attraction force works is shown in figure 6.15. In addition, the old model (6.3)
doesn’t take into consideration possible gaps that might appear in contours in an image.
This is handled by the new model as well.

To summarize the theoretical background shown in this section, we present the new
model for use with level set segmentation that were proposed by Caselles et al. [7]:

∂φ

∂t
= |∇φ| div

(
g(I)

∇φ

|∇φ|
)

+ c g(I)|∇φ|, (6.8)

which is equivalent to

∂φ

∂t
= g(c + κ)|∇φ|+∇φ · ∇g. (6.9)

The extra term, ∇φ ·∇g, pulls the boundary back if it passes an edge in the image, thus
leading to a more robust segmentation of edges in the given image. The advantage of
this model is that it takes the best features from the snake model and combines with
the automatic handling of topological changes of a level set. This model is implemented
in the itk::GeodesicActiveContourLevelSetImageFilter.

6.3.2 Implementation

Figure 6.17 shows an overview of the different steps in the GeodesicLevelSetFilter. First,
the input image is passed through the itk::CurvatureAnisotropicDiffusionImageFilter, that
smoothes the image while preserving edge information. Next, the smoothed image
is passed through the itk::GradientMagnitudeRecursiveGaussianImageFilter before it is
send to the itk::SigmoidImageFilter. The former extracts edge information while the
latter enhances specified ranges of image intensity. The itk::FastMarchingImageFilter
creates a map, showing how the boundary should evolve based on the seed points.
This map, along with the output from the sigmoid filter is processed in the
itk::GeodesicActiveContourLevelSetImageFilter that performs the segmentation itself.
Finally, the output is passed through a threshold filter, the itkBinaryThresholdImageFilter,
that outputs the segmented boundary of the input image.
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Figure 1. Geometric interpretation of the attraction force in 1D.

Figure 6.15: 1D example showing the effect of the attraction force (a) original 1D signal I (b)
smoothed signal Î (c) the derived stopping function g. The arrows show how the
term ∇g · ∇φ points toward the center of the edge [7].

An overview of the different methods can be seen in figure 6.16. Below is a list of
the most important parameters along with a brief description of their purpose. The
curvature term is fixed to be 1.0 in this implementation.

• Seed: Sets the initial seed point. This is typically in the center of the region to
be segmented

• InitialDistance: The initial radius of the object to be segmented

• Sigma (σ): Controls the amount of smoothing of the input image

• SigmoidAlpha (α): Controls the width of the intensity window of the sigmoid
filter

• SigmoidBeta (β): Controls the center of the intensity window of the sigmoid filter

• PropagationScaling: Controls how much the evolving boundary is allowed to
propagate during the segmentation process

• InputFileName and OutputFileName: Set the filenames of the input and output
image, respectively
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#GeodesicLevelSetFilter()
+<<static>> New()
+~GeodesicLevelSetFilter()
+Run()
+SetInputFilename()
+SetOutputFilename()
+SetSeed()
+SetInitialDistance()
+SetSigma()
+SetSigmoidAlpha()
+SetSigmoidBeta()
+SetPropagationScaling()
+SetDebugOutput()

GeodesicLevelSetFilter

Figure 6.16: The GeodesicLevelSetFilter class.
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Figure 6.17: Flowchart of the GeodesicLevelSetFilter class.
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6.3.3 Results

This section will present the results achieved with the GeodesicLevelSetFilter. We will
try to present the strengths and weaknesses with this segmentation approach.

Dataset N241 - MRI

For results from the first MRI (T1) from the dataset N241, see figure 6.18. The master
is US and the parameters are: seed = (40, 40, 40), initial distance = 10, σ = 1.0, α =
-1.5, β = 2.0, propagation scaling = 1.0. Our reference computer used 6,53 seconds to
preprocess and 9,56 seconds to run the level set segmentation.

On some parts of the tumour, such as the on seen in figure 6.18 (c), the geodesic
level set segmentation has managed to trace the tumour contour almost perfectly. On
other parts, as in figure 6.18 (e), the result is undersegmented. This is due to the fact
that the intensity distribution of the tumour lie close to the intensity distribution of
the surrounding tissue. Adjusting the sigmoid filter to compensate for this would result
in the filter to pick up more of the surrounding tissue not belonging to the tumour.
Furthermore, the level set seems to have picked up small details of the tumour well.

The result gives a good overview of the scope of the tumour, but is not useful in
medical applications where precision is required. Manual modification of the result
would probably not yield much better result, either.

Comments from the expert panel may be seen in table 6.5.

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 2
Oversegmentation 1 1 1
Undersegmentation 2 3 2
Wrong edges traced 1 1 2
Details missing 3 3 -
Is the result usable? yes yes yes
Manual adjustment required 2 2 2

Table 6.5: Expert evaluation of segmentation result from dataset N241 - MRI (For a description
of the evaluation criteria, see section 1.8)
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(a)

(b) (c)

(d) (e)

Figure 6.18: Results of running GeodesicLevelSetFilter on dataset N241 - MRI (a) Volume
representation of result (b) Original slice (x = 46) (c) Slice (x = 46) with result
(d) Original slice (x = 32) (e) Slice (x = 32) with result
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Dataset N241 - US

For results from the first US of the dataset N241, see figure 6.19. The master is US and
the parameters are: seed = (45, 50, 55), initial distance = 5, σ = 2.0, α = -1.7, β = 2.0,
propagation scaling = 100.0. Our reference computer used 6,53 seconds to preprocess
and 14,78 seconds to run the level set segmentation.

Even if the data is heavily disturbed by noise, the geodesic level set filter has managed
to find the contour of the tumour. The segmentation result is slightly undersegmented
along the entire contour due to the initial smoothing. Furthermore, the filter has been
influenced by some irregularities in the tumour area, such as the hole in the lower part
seen in figure 6.19 (e). This happens because the geodesic filter heavily relies on the
edge information from the preprocessing stages.

The result should be very useful as it stands. Performing some manual modifications,
such as guiding the result away from small intensity irregularities would certainly yield
a much better result.

Comments from the expert panel may be seen in table 6.6.

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 1 1 1
Undersegmentation 1 2 3
Wrong edges traced 1 1 2
Details missing - 1 -
Is the result usable? yes yes yes
Manual adjustment required 1 1 2

Table 6.6: Expert evaluation of segmentation result from dataset N241 - US (For a description
of the evaluation criteria, see section 1.8)
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(a)

(b) (c)

(d) (e)

Figure 6.19: Results of running GeodesicLevelSetFilter on dataset N241 - US (a) Volume
representation of result (b) Original slice (x = 46) (c) Slice (x = 46) with result
(d) Original slice (x = 32) (e) Slice (x = 32) with result
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Dataset N351 - MRI

For results from the first MRI (T1) of the data set N351, see figure 6.20. The master
is US and the parameters are: seed = (55, 55, 50), initial distance = 10, σ = 1.0, α =
-1.5, β = 2.0, propagation scaling = 1.0. Our reference computer used 14,58 seconds to
preprocess and 34,55 seconds to run the level set segmentation.

The relatively uniform distribution of intensities in the tumour, along with relatively
sharp edges has resulted in a very good geodesic level set result. The contour is slightly
undersegmented, this is probably due to the initial smoothing. We see that small details
are picked up very well by the filter, this is best seen in the upper right part of the
tumour in figure 6.20 (e).

This result is one of the best results produced by the segmentation methods we have
investigated. It is certainly useful in a medical perspective, particularly in situations
where precision is required.
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(a)

(b) (c)

(d) (e)

Figure 6.20: Results of running GeodesicLevelSetFilter on dataset N351 - MRI (a) Volume
representation of result (b) Original slice (x = 61) (c) Slice (x = 61) with result
(d) Original slice (x = 40) (e) Slice (x = 40) with result



100 Chapter 6 Level set segmentation

Dataset N351 - US

For results from the first US of the dataset N351, see figure 6.21. The master is US and
the parameters are: seed = (60, 75, 50), initial distance = 5, σ = 2.5, α = -1.0, β = 1.0,
propagation scaling = 100.0. Our reference computer used 14,41 seconds to preprocess
and 41,55 seconds to run the level set segmentation.

Being one of the most corrupted ultrasound data in our set of test data, this is a
real challenge to the level set filter. Some parts of the tumour has a relatively uniform
distribution of intensity compared to the rest of the image, leading to the geodesic level
set finding a good contour (as seen in figure 6.21 (c)). Other parts, such as the one
seen in figure 6.21 (e), have lighter/non-uniform intensity distributions and the result is
heavy undersegmented.

Although being undersegmented, the result gives an overview of the tumour. The
result is not useful in any medical application where precision is required.
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(a)

(b) (c)

(d) (e)

Figure 6.21: Results of running GeodesicLevelSetFilter on dataset N351 - US (a) Volume
representation of result (b) Original slice (x = 51) (c) Slice (x = 51) with result
(d) Original slice (x = 75) (e) Slice (x = 75) with result
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Dataset N359 - MRI

For results from the first MRI (T1) of the dataset N359, see figure 6.22. The master
is US and the parameters are: seed = (55, 50, 65), initial distance = 20, σ = 2.5, α =
-2.0, β = 2.5, propagation scaling = 100.0. Our reference computer used 13,31 seconds
to preprocess and 21,5 seconds to run the level set segmentation.

The non-uniform distribution of the tumour intensity makes the job of the geodesic
level set real hard. The input data has to be heavily smoothed and some edge information
is easily lost in this process. We see that the level set filter has managed to trace the
contour fairly well in figure 6.22 (c), although being undersegmented on some parts.
Furthermore, the bright area in figure 6.22 (c) has not been included by the filter, this
is because this particular area has a strong edge. As seen in figure 6.22 (e), more diffuse
parts of the tumour has not been picked up by the filter at all, this is due to the lack of
edge information in the input image.

Although not including all parts of the tumour, this result gives an indication of the
shape and scope of the tumour. It would probably take a lot of manual modifications
in order to improve the result significantly.

Comments from the expert panel may be seen in table 6.7. Expert 2 stated that ”in
the sense of usability, this result may very well be used during surgery planning and to
some degree during guided surgery.”

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 1 1 1
Undersegmentation 3 2 3
Wrong edges traced 2 2 -
Details missing 2 2 3
Is the result usable? yes yes yes
Manual adjustment required - 3 2

Table 6.7: Expert evaluation of segmentation result from dataset N359 - MRI (For a description
of the evaluation criteria, see section 1.8)
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(a)

(b) (c)

(d) (e)

Figure 6.22: Results of running GeodesicLevelSetFilter on dataset N359 - MRI (a) Volume
representation of result (b) Original slice (x = 48) (c) Slice (x = 48) with result
(d) Original slice (x = 77) (e) Slice (x = 77) with result
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Dataset N359 - US

For results from the first US of the dataset N359, see figure 6.23. The master is US and
the parameters are: first US, master: US, seed = (55, 50, 65), initial distance = 20, σ =
2.5, α = -1.5, β = 2.0, propagation scaling = 10.0. Our reference computer used 13,34
seconds to preprocess and 27,08 seconds to run the level set segmentation.

Due to the lack of edge information as well as the large amount of noise in the data,
the geodesic level set has only partly succeeded in tracing the contour of the tumour.
The result is partly oversegmented, as seen in figure 6.23 (c), as well as undersegmented
in areas where the intensity of the tumour is larger than the overall.

The result is only useful as an indication of the scope of the tumour. Manual
modifications would be very labour-intensive.

Comments from the expert panel may be seen in table 6.8. Expert 2 stated that the
result was ”slightly undersegmented. Regarding usability, see previous data set (N359 -
MRI)).

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 2
Oversegmentation 1 1 2
Undersegmentation 2 3 3
Wrong edges traced 2 2 2
Details missing 2 2 3
Is the result usable? yes yes yes
Manual adjustment required - 3 3

Table 6.8: Expert evaluation of segmentation result from dataset N359 - US (For a description
of the evaluation criteria, see section 1.8)
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(a)

(b) (c)

(d) (e)

Figure 6.23: Results of running GeodesicLevelSetFilter on dataset N359 - US (a) Volume
representation of result (b) Original slice (x = 59) (c) Slice (x = 59) with result
(d) Original slice (x = 83) (e) Slice (x = 83) with result
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Dataset N360 - MRI

For results from the first MRI (T1) of the dataset N360, see figure 6.24. The master is
MRI and the parameters are: seed = (45, 45, 55), initial distance = 10, σ = 1.0, α =
-1.4, β = 3.0, propagation scaling = 1.0. Our reference computer used 8,05 seconds to
preprocess and 0,75 seconds to run the level set segmentation.

Although the intensity of the tumour is very similar to the surrounding tissue, the
geodesic level set has succeeded in tracking the contour of the tumour. If the result is
compared with the result from the fast marching level set result (see figure 6.11 (c)),
we see that the ”leaking problem” is not an issue for this filter. This means that the
extra term in the geodesic level set filter, designed to handle diffuse edges and edges
with gaps is performing well in this situation. Furthermore, the result is somewhat
undersegmented (the hole seen in figure 6.24 (e)), this is due to the intensity deviation
from the overall intensity of the tumour. The result also seems to include small details
of the tumour well.

This result may very well be used in medical applications, due to the fact that the
resulting boundary coincides with the tumour with high precision. Performing some
small modifications of the result, that is to e.g. remove the hole seen in figure 6.24 (e)
will yield an almost perfect result.

Comments from the expert panel may be seen in table 6.9. Expert 2 stated that
”some normal tissue was included.”

Criterion Expert 1 Expert 2 Expert 3
Misplacement 1 1 1
Oversegmentation 1 2 1
Undersegmentation 2 2 2
Wrong edges traced 1 2 2
Details missing 1 3 2
Is the result usable? yes yes yes
Manual adjustment required - 3 1

Table 6.9: Expert evaluation of segmentation result from dataset N360 - MRI (For a description
of the evaluation criteria, see section 1.8)
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(a)

(b) (c)

(d) (e)

Figure 6.24: Results of running GeodesicLevelSetFilter on dataset N360 - MRI (a) Volume
representation of result (b) Original slice (x = 37) (c) Slice (x = 37) with result
(d) Original slice (x = 29) (e) Slice (x = 29) with result
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Dataset N360 - US

For results from the first US from the dataset N360, see figure 6.25. The master is MRI
and the parameters are: seed = (45, 33, 55), initial distance = 5, σ = 2.0, α = -1.5, β =
2.0, propagation scaling = 1.0. Our reference computer used 7,92 seconds to preprocess
and 3,38 seconds to run the level set segmentation.

The geodesic level set segmentation has failed to pick up large parts of the tumour
contour and this is probably most due to the lack of edge information. The left side of
the tumour, with a relatively strong edge as seen in figure 6.25 (c) and (e), has resulted
in a fairly good edge detection. On the other hand, where the edge is weak it has
resulted in both a very undersegmented result (slice c) and some oversegmented parts
in the upper part of the tumour (see figure 6.25 (e)).

The result does not give a very good indication of the tumour scope, and is therefore
not very useful in a medical context. Manual modifications would probably be very
labour-intensive.
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(a)

(b) (c)

(d) (e)

Figure 6.25: Results of running GeodesicLevelSetFilter on dataset N360 - US (a) Volume
representation of result (b) Original slice (x = 35) (c) Slice (x = 35) with result
(d) Original slice (x = 51) (e) Slice (x = 51) with result
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Dataset N378 - MRI

For results from the first MRI (T1) from the dataset N378, see figure 6.26. The master
is MRI and the parameters are: seed = (30, 30, 30), initial distance = 5, σ = 1.5, α =
-1.0, β = 2.5, propagation scaling = 100.0. Our reference computer used 3,41 seconds
to preprocess and 9,53 seconds to run the level set segmentation.

On the overall, the geodesic level set filter has detected the boundary of the tumour
well. The result is undersegmented in some parts, as can be seen in the lower parts
of the tumour in figure 6.26 (c) as well as figure 6.26 (e). Where edge information is
strong, as the transition between bright and dark tissue as seen in figure 6.26 (c), the
result is very good. As seen in figure 6.26 (e), the boundary is oversegmented due to
the similarity in intensity between the tumour and the surrounding tissue.

The result is useful as a guide to the overall shape and size of the tumour, but is not
very useful in applications where high precision is required.
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(a)

(b) (c)

(d) (e)

Figure 6.26: Results of running GeodesicLevelSetFilter on dataset N378 - MRI (a) Volume
representation of result (b) Original slice (x = 45) (c) Slice (x = 45) with result
(d) Original slice (x = 34) (e) Slice (x = 34) with result
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Dataset N378 - US

For results from the first US from the dataset N378, see figure 6.27. The master is MRI
and the parameters are: seed = (30, 30, 30), initial distance = 5, σ = 2.0, α = -2.0,
β = 2.5, propagation scaling = 100.0. Our reference computer used 3,42 seconds to
preprocess and 12,31 seconds to run the level set segmentation.

Although the original ultrasound data is corrupted by noise and the uniformity of
the tumour intensity is relatively low, the geodesic level set filter has traced the contour
very well on most parts of the tumour. Due to the initial smoothing the result is slightly
undersegmented, this can be best seen in figure 6.27 (c). In some parts of the tumour
that has been very corrupted by noise, the level set segmentation has also been able to
trace the contour fairly well. Furthermore, if the result in figure 6.27 (c) is compared
with the result of the fast marching level set (figure 6.14 (c)), we can see that the
problem with the small areas detected outside the tumour has been removed with the
use of geodesic level set.

The result gives a fairly good impression of the overall structure and scope of the
tumour. Therefore it is definitively useful in medical applications, although not where
high precision is required.
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(a)

(b) (c)

(d) (e)

Figure 6.27: Results of running GeodesicLevelSetFilter on dataset N378 - US (a) Volume
representation of result (b) Original slice (x = 38) (c) Slice (x = 38) with result
(d) Original slice (x = 32) (e) Slice (x = 32) with result
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6.4 Canny edge level set segmentation

Canny edge detection is a variant of edge detection that has proven to be very robust
to white noise. The idea is to make the speed term as well as the advection term of
the level set equation to depend on Canny edges in the input image. This variant of
the level set method also requires the user to present an initial model, while the two
previous methods we have described grow from seed points.

The Canny edge detector has three optimality criteria:

• detection criterion — no important edge in an image should be missed and the
detector should not produce any false results

• localization criterion — meaning that the distance between the actual and detected
position of an edge should be minimal

• one response criterion — there should be only one response per edge

6.4.1 Theoretical background

The algorithm of the Canny edge detector is given below:

1. Smooth the image with a Gaussian (with scale σ)

2. Estimate local edges

3. Locate the strongest part of these edges

4. Compute the edge magnitudes

5. Threshold the edges to eliminate false responses

6. Repeat steps 1-5 with increasing values of σ

Smoothing the image (step 1) is done by convolving the image with a Gaussian
distribution. Local edges in direction n in an image can be found by convolving the
image with Gn, the first derivative of a Gaussian in the normal direction n:

Gn =
∂G

∂n
= n · ∇G. (6.10)

The local edges for each pixel in the image (step 2) are then estimated using the following
formulae:

n =
∇(G ∗ f)
|∇(G ∗ f)| . (6.11)

At this point, an edge is located at the local maximum of the image f convolved with
Gn:

∂

∂n
Gn ∗ f = 0. (6.12)



6.4 Canny edge level set segmentation 115

Substituting Gn from (6.10) into (6.12) results in:

∂2

∂n2
G ∗ f = 0, (6.13)

which gives the strongest part of an edge (step 3), that is the local maxima of the edge
in the direction perpendicular to the edge itself. This technique, named non-maximal
suppression, works by checking the edge information at each pixel. If the edge strength
at one or both of the two pixels’ neighbours (in the direction perpendicular to the edge)
is stronger than the first one, the pixel is marked for deletion. See figure 6.28. When
the entire image is checked, the edge information at marked pixels is set to 0.

Current boundary pixel

Pixels perpendicular
to edge direction
are inspected

Boundary in image

Figure 6.28: Non-maximal suppression [28].

Next, the magnitudes of the edges (step 4) are computed using the following equation:

|Gn ∗ f | = |∇(G ∗ f)|, (6.14)

and finally, each edge is passed through a simple threshold filter. This reduces the
sensitivity and makes the algorithm more robust by eliminating false responses (step 5).
These steps are then repeated at increasing scale levels (with different σ) [28].

The Canny edges returned by this algorithm are then used to guide the level set
equation. The idea is to force the expanding level set surface to move towards Canny
edges in the image. This is done by making both the advection term as well as the
propagation term dependent to these edges. First, the advection term is determined by
minimizing the squared distance transform from the Canny edges:

min

∫
D2 ⇒ D∇D, (6.15)

where D is a distance transform, containing information about the distance to an
object/objects of interest in an image. In our case the objects of interest would typically
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be Canny edges. Finally, the propagation term is simply set to be D. This will make
the surface of the level set expand towards Canny edges in the input image [16].

6.4.2 Implementation

An overview of the different steps in our implementation of the canny edge level
set filter can be seen in figure 6.29. The input image is first passed through the
itk::GradientAnisotropicDiffusionImageFilter, that smoothes the image while preserving
edge information. An initial model is used as a feature image. The model may either be
a binary image with some surface that already has been segmented, or it may be a sphere
with size and position given by the user. Internally in the Canny edge filter the squared
distance map (6.15) is calculated using the itk::DanielssonDistanceMapImageFilter. The
output from the itk::CannySegmentationLevelSetImageFilter is then passed through a
simple thresholding filter, the itk::BinaryThresholdImageFilter. The resulting image is
a binary image, representing the segmented surface.

Gradient
anisotropic
diffusion

filter

Canny 
Segmentation
Level set filter

Input

Output
Threshold 

filter

inputFilename

outputFilename
cannyThreshold
cannyVariance
advectionWeight

maximumIterations
initialModelIsovalue

Initial model

initialModelFilename
tumour_pos[3]
tumour_size[3]

smoothIterations
conductance

Figure 6.29: Flowchart of the CannyEdgeLevelSet filter.

An overview of the different methods in the CannyEdgeLevelSetFilter class may be
seen in figure 6.30. The most important parameters and a description of these may be
seen below:

• Conductance: Controls the strength of the smoothing of the input image

• SmoothIterations: Controls the number of smoothing iterations the input image is
run through

• CannyThreshold: Only Canny edges above this value is used
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#CannyEdgeLevelSetFilter()
+<<static>> New()
+~CannyEdgeLevelSetFilter()
+Run()
+SetInputFilename()
+SetOutputFilename()
+SetConductance()
+SetSmoothIterations()
+SetCannyThreshold()
+SetCannyVariance()
+SetAdvectionWeight()
+SetInitialModelIsovalue()
+SetMaximumIterations()
+SetTumourPos()
+SetTumourSize()
+SetInitialModelFilename()

CannyEdgeLevelSetFilter

Figure 6.30: The CannyEdgeLevelSetFilter class.

• CannyVariance: Determines how much the input to the Canny Edge filter should
be smoothed

• AdvectionWeight: Sets the weight of the advection term in the level set equation

• InitialModelIsovalue: The feature image, that is the initial model, is thresholded
with this value

• MaximumIterations: The maximum number of iterations this filter will run. The
filter will either stop after this maximum or when it has reached a default error
rate

• TumourPos and TumourSize: If no initial model is given by its filename, the user
defines the position and size of a sphere that is used as an alternative, initial model

• InitialModelFilename: The feature input to the Canny edge filter is specified with
this parameter. If no filename is given the filter will assume that the user has
specified the size and position of the tumour instead

• InputFilename and OutputFilename: These parameters set the filenames to read
from and write to
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6.4.3 Results

The best results from the use of the fast marching and geodesic level set filters was
used as input for the canny edge level set filter. The goal was not to improve the overall
segmentation result, but to see if it was possible to improve the detection of small details
of the tumour.
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Dataset N241 - MRI

For results from the first MRI from dataset N241, see figure 6.31. The master is MRI
and the parameters are: conductance = 1.0, smoothing iterations = 5, canny threshold
= 15, canny variance = 1, advection weight = 10, isovalue = 0.5, max iterations = 100.
Our reference computer used 5,72 seconds to preprocess and 7,89 seconds to run the
level set segmentation.

The initial model (figure 6.31 (c)) is from running the geodesic level set. As seen in
figure 6.31 (d), the canny edge level set filter has not managed to improve the result at
all, the result is in fact worse than the original. The reason for the bad edge detection is
probably due to the lack of strong edge information in the original MRI data (figure 6.31
(b)).

(a)

(b) (c) (d)

Figure 6.31: Results of running CannyEdgeLevelSetFilter on dataset N241 - MRI (a) Volume
representation of result (b) Original slice (x = 42) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N241 - US

For results from the first US of the dataset 241, see figure 6.32. The master is MRI and
the parameters are: conductance = 3.0, smoothing iterations = 5, canny threshold = 7,
canny variance = 1, advection weight = 10, isovalue = 0.5, max iterations = 100. Our
reference computer used 5,83 seconds to preprocess and 7,41 seconds to run the level
set segmentation.

The initial model is from the geodesic level set filter, see figure 6.19. We see from
figure 6.32 (d) that the canny edge level set filter tries to adjust to the local edges, but
the yielded result is not better than the original. This is probably due to many local
edges in the image.

(a)

(b) (c) (d)

Figure 6.32: Results of running CannyEdgeLevelSetFilter on dataset N241 - US (a) Volume
representation of result (b) Original slice (x = 35) (c) Slice with initial model
(geodesic level set) (d) Slice with result



6.4 Canny edge level set segmentation 121

Dataset N351 - MRI

For results from the first MRI (T1) of the dataset N351, see figure 6.33. The master is US
and the parameters are: conductance = 1.0, smoothing iterations = 5, canny threshold
= 40, canny variance = 5, advection weight = 10, isovalue = 0.5, max iterations = 10.
Our reference computer used 12,78 seconds to preprocess and 8,42 seconds to run the
level set segmentation.

The initial model is from the geodesic level set filter seen in figure 6.20. Here, the
preprocessing by the canny edge level set filter has produced result that is slightly more
rounded off, but the result has not improved in any significant degree.

(a)

(b) (c) (d)

Figure 6.33: Results of running CannyEdgeLevelSetFilter on dataset N351 - MRI (a) Volume
representation of result (b) Original slice (x = 52) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N360 - MRI

For results from the first MRI (T1) from dataset N360, see figure 6.34. The master is
MRI and the parameters used are: conductance = 1.0, smoothing iterations = 5, canny
threshold = 7, canny variance = 5, advection weight = 10, isovalue = 0.5, max iterations
= 100. Our reference computer used 7,05 seconds to preprocess and 11,64 seconds to
run the level set segmentation.

The initial model is the output of the geodesic level set filter seen in figure 6.24. In
this case, it seems like the canny edge has partly succeeded in producing a more accurate
contour. For example, as seen in the lower left part of the tumour, the canny edge filter
has traced the two sharp corners better than the geodesic level set filter. On the overall
the result has become worse, for instance it introduce a hole in the center of the tumour
in figure 6.34 (d).

(a)

(b) (c) (d)

Figure 6.34: Results of running CannyEdgeLevelSetFilter on dataset N360 - MRI (a) Volume
representation of result (b) Original slice (x = 37) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N360 - US

For results from the first US of the dataset N360, see figure 6.35. The master is MRI
and the parameters are: conductance = 2.0, smoothing iterations = 5, canny threshold
= 7, canny variance = 5, advection weight = 10, isovalue = 0.5, max iterations = 100.
Our reference computer used 6,98 seconds to preprocess and 9,88 seconds to run the
level set segmentation.

The initial model was taken from the output of the fast marching level set filter,
see figure 6.12. After preprocessing with the canny edge filter it seems like the filter
has managed to improve some parts, like the smoothing out of the rough edge on the
left side of the tumour (see figure 6.35 (c)). On the other hand the canny edge filter
has made other parts of the result worse as seen in the lower left part of the tumour in
figure 6.35 (d), where the correctly traced contour from figure 6.35 (c) is moved away
from the edge.

(a)

(b) (c) (d)

Figure 6.35: Results of running CannyEdgeLevelSetFilter on dataset N360 - US (a) Volume
representation of result (b) Original slice (x = 39) (c) Slice with initial model
(fast marching level set) (d) Slice with result



124 Chapter 6 Level set segmentation

6.5 Laplacian level set segmentation

This variant of level set segmentation uses edges detected by Laplacian filtering of the
input image. The idea is to attract the expanding level set surface to these edges. As
with the canny edge level set filter, this filter also requires an initial model to be provided
by the user. This may be done either as giving an already segmented image as input,
or specify the size and position of an initial sphere.

6.5.1 Theoretical background

Laplacian edge detection tries to locate zero-crossings of the second derivative of edges
in an image. This is accomplished by convolving the input image with the Laplacian
operator. For 3D images, the operator is defined as:

∇2g(x, y, z) =
∂2g(x, y, z)

∂x2
+

∂2g(x, y, z)
∂y2

+ +
∂2g(x, y, z)

∂z2
(6.16)

The operator has the same properties in all directions and is therefore invariant to
rotation in the image. Many discrete approximations of the Laplacian exists, the
following matrix is an example for 2 dimensions:

h =




0 1 0
1 −4 1
0 1 0


 . (6.17)

6.5.2 Implementation

Gradient
anisotropic
diffusion

filter

Laplacian
Level Set

filter
Input

Output

Threshold
filter

inputFilename
diffusionIterations

diffusionConductance

initialModelIsovalue
propagationWeight
maximumIterations

initialModelFilename
tumourPos[3]
tumourSize[3]

Initial model outputFilename

Figure 6.36: Flowchart of the different steps in the LaplacianLevelSetFilter.

Figure 6.36 shows an overview of the different steps in the LaplacianLevelSetFilter.
First, the input image is passed through the itk::GradientAnisotropicDiffusionImageFilter,
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that smoothes the image and preserves edge information. The initial model that is
required by the level set filter, may either be provided as a file by the user, or the user may
specify the size and position. If this is done, our filter will construct a sphere and pass it
the Level set filter. Next, internally in the itk::LaplacianSegmentationLevelSetImageFilter,
edge information is extracted from the input using the itk::LaplacianImageFilter. The
output is passed through a thresholding filter, the itk::BinaryThresholdImageFilter that
outputs the final surface.

For a class diagram of the LaplacianLevelSetFilter, see figure 6.37. The different
parameters along with a brief description of these may be found below:

• DiffusionIterations: The number of iterations the diffusion filter should process the
input image

• DiffusionConductance: The strength of the diffusion filtering

• PropagationWeight: Controls how much the initial surface is allowed to expand
during the segmentation process

• InitialModelIsovalue: Specifies the thresholded value used on the initial model

• MaximumIterations: How many iterations the segmentation process is allowed to
run

• TumourPos and TumourSize: If specified, use these dimensions and position to
construct a sphere and use this as an initial model

• InitialModelFilename: If specified, use this file as an initial model

• InputFileName and OutputFileName: Specifies the filenames to read and write from,
respectively

#LaplacianLevelSetFilter()
+<<static>> New()
+~LaplacianLevelSetFilter()
+Run()
+SetInputFilename()
+SetOutputFilename()
+SetDiffusionIterations()
+SetDiffusionConductance()
+SetPropagationWeight()
+SetInitialModelIsovalue()
+SetMaximumIterations()
+SetTumourPos()
+SetTumourSize()
+SetInitialModelFilename()

LaplacianLevelSetFilter

Figure 6.37: The LaplacianLevelSetFilter class.
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6.5.3 Results

As with the canny edge level set filter, the best results from the fast marching and
geodesic level set filters are used as input to the laplacian level set filter. The goal is
to improve the result, particularly with focus on detecting small details in the tumour
contour.
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Dataset N241 - MRI

For results from the first MRI (T1) from the dataset N241, see figure 6.38. The master
is MRI and the parameters are: diffusion iterations = 5, diffusion conductance = 2,
propagation weight = 100, isovalue = 0.5, max iterations = 50. Our reference computer
used 5,69 seconds to preprocess and 2,73 seconds to run the level set segmentation.

The initial model used here is taken from the geodesic level set filter, see figure 6.18.
The laplacian filter has not managed to improve the segmentation result significantly. It
has however managed to pick up a lot of local edges in the lower left part of the tumour,
as seen in figure 6.38 (d). This is probably due to the fact that the lacplacian filter has
a tendency to get stuck in local edge information. On the other hand, it seems like the
result has improved slightly on the right part of the tumour.

(a)

(b) (c) (d)

Figure 6.38: Results of running LaplacianLevelSetFilter on dataset N241 - MRI (a) Volume
representation of result (b) Original slice (x = 45) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N241 - US

For results from the first US from the dataset N241, see figure 6.39. The master is MRI
and the parameters are: diffusion iterations = 5, diffusion conductance = 3, propagation
weight = 100, isovalue = 0.5, max iterations = 50. Our reference computer used 5,67
seconds to preprocess and 3,08 seconds to run the level set segmentation.

The initial model used here is from the geodesic levels set filter (figure 6.19). Because
the edge information from the original ultrasound data is heavily corrupted by noise, it
seems like the laplace filter get stuck in local edges. The result has not been improved.

(a)

(b) (c) (d)

Figure 6.39: Results of running LaplacianLevelSetFilter on dataset N241 - US (a) Volume
representation of result (b) Original slice (x = 48) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N351 - MRI

For results from the first MRI (T1) from the dataset N351, see figure 6.40. The master
is US and the parameters are: diffusion iterations = 5, diffusion conductance = 2,
propagation weight = 100, isovalue = 0.5, max iterations = 50. Our reference computer
used 12,74 seconds to preprocess and 6,91 seconds to run the level set segmentation.

The initial model used here is from the geodesic levels set filter (figure 6.20). The
laplacian filter has managed to improve the original result slightly. As can be seen in
figure 6.40 (d), the small details in the upper part of the tumour has been picked up by
the filter. The reason is probably that the edge information is very strong and not too
influenced by noise as in many other cases.

(a)

(b) (c) (d)

Figure 6.40: Results of running LaplacianLevelSetFilter on dataset N351 - MRI (a) Volume
representation of result (b) Original slice (x = 42) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N360 - MRI

For results from the first MRI (T1) from the dataset N360, see figure 6.41. The master
is MRI and the parameters are: diffusion iterations = 5, diffusion conductance = 2,
propagation weight = 100, isovalue = 0.5, max iterations = 50. Our reference computer
used 7,02 seconds to preprocess and 3,75 seconds to run the level set segmentation.

The initial model used here is from the geodesic levels set filter (figure 6.24). The
laplacian filter has managed to improve the tracing of small parts of the contour such
as the one seen on the upper part as well as the one in the lower part of the tumour
in figure 6.41 (b). The filter has not managed to improve the false detected part in the
upper, right corner of the tumour in figure 6.41 (b).

(a)

(b) (c) (d)

Figure 6.41: Results of running LaplacianLevelSetFilter on dataset N360 - MRI (a) Volume
representation of result (b) Original slice (x = 46) (c) Slice with initial model
(geodesic level set) (d) Slice with result
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Dataset N360 - US

For results from the first US of the dataset N360, see figure 6.42. The master is MRI
and the parameters are: diffusion iterations = 5, diffusion conductance = 3, propagation
weight = 100, isovalue = 0.5, max iterations = 50. Our reference computer used 6,89
seconds to preprocess and 3,91 seconds to run the level set segmentation.

The initial model used here is from the geodesic levels set filter (figure 6.12). As
the case was with the laplace result seen in figure 6.39, the filter has got stuck in small
edges in the ultrasound image and does not produce a better result.

(a)

(b) (c) (d)

Figure 6.42: Results of running LaplacianLevelSetFilter on dataset N360 - US (a) Volume
representation of result (b) Original slice (x = 34) (c) Slice with initial model
(fast marching level set) (d) Slice with result
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6.6 Comparison of results

In this section we will provide a short comparison of results from the FastMarchin-
gLevelSetFilter and the GeodesicLevelSetFilter. This section is included in order to better
understand the difference of the two segmentation filters.

In dataset N241 - MRI, see figure 6.43(a), we see that the intensity distribution of
the tumour lie close to the intensity distribution of the surrounding tissue. In such
cases the FastMarchingLevelSetFilter, see figure 6.43(b), tends to ”leak”, producing false
responses. The GeodesicLevelSetFilter on the other hand, deals with this problem very
well and would be the filter to prefer in such cases, see figure 6.43(c).

(a) (b) (c)

Figure 6.43: Comparison of results from dataset N241 - MRI (a) Original slice (x = 46) (b)
Result from the FastMarchingLevelSetFilter (c) Result from the GeodesicLevelSet-
Filter.

In dataset N351 - MRI, see figure 6.44(a), we see that the intensity distribution of
the tumour is relatively uniform. In such cases the FastMarchingLevelSetFilter, see figure
6.44(b), as well as the GeodesicLevelSetFilter produce good results, see figure 6.44(c).

(a) (b) (c)

Figure 6.44: Comparison of results from dataset N351 - MRI (a) Original slice (x = 37) (b)
Result from the FastMarchingLevelSetFilter (c) Result from the GeodesicLevelSet-
Filter.

In dataset N351 - US, see figure 6.45(a), we see that the tumour has a non-uniform
intensity distribution. In such cases the FastMarchingLevelSetFilter (see figure 6.45(b))
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faces great problems due to the missing edge information. This is better handled by
the GeodesicLevelSetFilter (see figure 6.45(c)), that produce much better results in such
cases.

(a) (b) (c)

Figure 6.45: Comparison of results from dataset N351 - US (a) Original slice (x = 53) (b)
Result from the FastMarchingLevelSetFilter (c) Result from the GeodesicLevelSet-
Filter.

In dataset N360 - MR, see figure 6.46(a), the tumour has a relatively diffuse contour.
Again we see that the FastMarchingLevelSetFilter (see figure 6.46(b)) produces small, false
responses due to the lack of edge information. And again, the GeodesicLevelSetFilter (see
figure 6.46(c)), manages to extract a better contour of the tumour.

(a) (b) (c)

Figure 6.46: Comparison of results from dataset N360 - US (a) Original slice (x = 42) (b)
Result from the FastMarchingLevelSetFilter (c) Result from the GeodesicLevelSet-
Filter.

6.7 Discussion

The image segmentation results presented in this chapter have proven level set methods
to be very useful in the context of medical images. In most cases where the image data
is fairly good such as the case is with most MRI data, the level set methods have yielded
good results. Furthermore, even with image data heavily corrupted by noise, such as the
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case often is with ultrasound data, level set methods have managed to produce relatively
good results.

The fast marching level set filter (section 6.2) produced good results from most of the
MRI data, and from some of the ultrasound data. Although the filter often managed to
trace the overall contour of the tumour fairly well, it often had problems when there was
little or weak edges. In the geodesic level set filter (section 6.3) this ”leaking” problem
has to a great extent been solved with the introduction of an extra term. This term
was designed to particularly take care of situations where edge information is missing
in the image, and results from the use of this filter also showed an improvement in such
situations.

The best results from the fast marching as well as the geodesic level set filter was
then used as input to the canny edge (section 6.4) and laplacian (section 6.5) level set
filter. The goal was to see if the results could be improved, with focus on the tracing of
small details. From the results, we see that little or no improvement was achieved, in
fact in most cases the results turned out worse than the original ones.

The number of free parameters is relatively the same in all level methods investigated.
Adjusting the parameters was mostly done by trying and failing to see which values
yielded the best results. Although we tried to find robust parameter values that could
be used in several situations, it turned out this was hard to achieve due to high variance
in the image characteristics.

The different level set filters were run on a Intel Pentium 4 – 3.0 GHz computer with
768 MB of RAM. The operation system was Windows XP Professional with Service
Pack 2. As seen from the description of the results, a large part of the computation
time was related to preprocessing. The first filter investigated, the fast marching level
set filter, had a computation time of typical 0,5 - 2,0 seconds. This is due to the
fast marching implementation that doesn’t compute values iteratively, but only runs
once. The computation time needed for the geodesic level set filter varies more, with a
maximum at 41,55 seconds. This is due to a more complex handling of image information
to compensate for missing or weak edge information. Furthermore, the computation
time needed by the canny edge level set filter lies around 10 seconds. The number of
iterations in adjustable by the user and hence the computation time will depend linearly
on this value. Finally, the laplacian level set filter used 3,0 - 7,0 seconds to refine the
segmentation result. As with the case is with the canny edge filter, the computation
time here is adjustable by the user.
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Visualization

In this chapter we will give a brief overview of the visualization software we developed as
part of this thesis. First we will describe the basic visualizer, followed by a description
of a more sophisticated visualizer we have partly implemented.

Early in our work with this thesis we soon discovered the need for some software
capable of visualization segmentation results. Although we found many commercial as
well as free software packages, including the CustusX software developed by SINTEF,
we was not find able to find any software that suited all of our needs. Either the software
were too complex, or it did not have the all the functionality we needed. Based on this
experience, we decided to develop a simple visualization tool on our own.

7.1 Basic visualizer

This section describes the first, basic version of the Visualizer tool. There are three
main requirements to the visualization software: First, it must be capable of 3D volume
visualization of MRI as well as ultrasound data. Next, it must be able to slice through
the volume in both x-, y- and z- direction. Finally, it must be able to display the result
from the segmentation overlayed on the volume data. In addition, all these functions
should have a simple user interface.

7.1.1 Implementation

The basic visualizer is implemented in C++ using the open-source visualization toolkit
VTK, see section 2.3.2. The reason for choosing VTK was that it seemed to cover all
the needs we had, and it is also a very popular, stable and well-documented toolkit for
use with scientific and medical visualization.

7.1.2 User interface

A screenshot of the visualizer may be seen in figure 7.1. The user may interact with
the visualizer with a combination of using the mouse and the keyboard. The mouse
controls the rotation, zooming and placement of the camera that the user sees through.
By pressing down the left mouse button and moving the mouse, the user may rotate
the camera in any direction. Pressing the middle mouse button down and moving the
mouse causes the camera to pan horizontally or vertically. Finally, by pressing the right
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Figure 7.1: Screenshot from the basic visualizer application.

mouse button down the user may zoom in and out. The user may move the slicers
through a combination of mouse and keyboard. Pressing either one of the keys ”1”,
”2”, or ”3” in combination with moving the mouse will cause the slicer in the x-, y- or
z- direction to move, respectively. Pressing ”4” and moving the mouse will alter the
opacity of the volume visualization, while ”5” will alter the opacity of the visualization
of the segmented result, that is the red surface in figure 7.1. Finally, it is also possible
to overlay a 2D version of the segmented result on the 2D slicers. The opacity of this
overlay may be altered with a combination of the ”6” key and moving the mouse. A
screenshot showing this feature may be seen in figure 7.2.

For convenience when documenting segmentation results, the user may choose to
output a screenshot using the ”x” key. Pressing the ”shift” key in combination with one
of the keys ”1”, ”2”, ”3”, outputs the content of the slicer in the x-, y- or z- direction,
respectively.
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Figure 7.2: Screenshot with segmentation result overlayed on slicers.

7.2 Advanced visualizer

This section describes a more advanced visualizer tool. This version was never fully
implemented, but we will give a brief description of the functionality the advanced
visualizer should have.

In addition to the functionality of the basic visualizer, the advanced visualizer should
offer:

• the possibility to access and execute the segmentation filters directly from the GUI
of the Advanced Visualizer.

• the possibility to adjust all the parameter values needed to execute the particularly
filter directly from the GUI of the Advanced Visualizer.

• the possibility to interactively set initial seed point(s) or an initial contour for the
segmentation algorithms if this is required by the filter.

• the possibility to generate a preview of the result at a lower resolution than the
original data set.

• the possibility to directly manipulate the evolving surfaces by dragging them
towards the tumour boundaries during filter execution.

We have implemented a prototype of the Advanced Visualizer. As seen in figure 7.3,
this Visualizer has access to filters from menus, and the parameters of each filter can be
adjusted in a GUI.
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Figure 7.3: Screenshot from the Advanced Visualizer application.
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Discussion and conclusions

We have investigated different methods for use in medical image segmentation, more
specific on how to segment tumours from MRI and ultrasound data of the human brain.
In this chapter we will summarize and discuss the most important aspects of the material
we have provided.

8.1 Discussion

During our work with this thesis, we have not been provided with manually segmented
images to compare our results with. Manual segmentation is a very labour-intensive
process and must also be done by experts to be able to produce satisfactory results. We
was therefore not able to evaluate our results by a numerical comparison to a ”perfect”
segmentation. Some of our results have been evaluated by experts, but because we had
limited time with them, only a few of our results have been evaluated this way. The rest
of the evaluation has been done by us. Because we do not have any medical background,
the results from our evaluation is less reliable. In some of the cases it is rather easy to
see the exact position of the tumour boundary, but in other cases, particularly with the
ultrasound images, the border of the tumour is often difficult to detect and can easily
be misplaced. We have nevertheless tried to give a thorough judgement of the results.

Because there was not a reliable snake implementation available in ITK, we have
implemented a somewhat simplified version of the GVF snake. The snake produced
very promising results, in some cases the tumour boundary was found with very high
precision, but in other cases the snake produced weaker results. It was often very sensible
to initialization.

We have implemented and testes four variants of the level set method. Two of the
methods gave very good results when used on the MR images and in some cases when
used on the ultrasound images. The second one of these methods gave slightly better
results than the first one in most cases, but is much slower. The other two variants of
the level set method were supposed to take as input an already segmented tumour and
try to improve this result. These filters did not give any good results.

Compared to the region growing method, which is a much simpler segmentation
approach, the active contour algorithms perform very good. The region growing
approach is only able to produce satisfactory results when the tumour is uniform and
clearly separated from the surrounding tissue and the background.
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The performance of the active contour filters we have tested depends strongly on the
quality of the underlying image and the result from the preprocessing. In cases where
the tumour is relatively uniform and is clearly separated from the surrounding tissue,
active contours are able to find the details of the boundary with very high precision.
In cases where the image is heavily corrupted by noise, the active contours are not
able to find the boundary that precisely. This is because the image is smoothed during
preprocessing. Even though we use smoothing filters that is suppose to preserve edge
information in the image, the edge information is smoothed due to the high amount of
noise.

In cases where the tumour lies close to other brain structures with similar intensity
distribution, the active contour methods get more problems than when the tumour is
clearly separated from the surrounding tissue. This is caused by weak tumour edges in
the transition between the tumour and the neighbouring brain structure. The active
contours now have to rely more on the shape of the surface, and the tumour rarely has
a completely circular shape (like most of the filters assume).

In some cases the active contour filters, particularly the snake, find the wrong tumour
edges because of inaccurate initialization. If the initial surface lies close to other edges
in the image, the surface has a tendency to converge towards this edge. This problem
can however be solved by allowing the user to guide the evolution of the surface during
filter execution.

Some of the same problems may be experienced if the tumour has a non-uniform
intensity distribution. There may occur a lot of edges inside the tumour causing
undersegmentation. The problem can be solved by applying more smoothing of the
image, but this often comes to the expense of that the tumour edges are smoothed as
well, resulting in an oversegmentation of the result.

We presented a selection of our results to a group of experts. The group consisted
of two surgeons and one researcher. On the overall, they were very satisfied with our
results. In particular they were positive surprised over the quality of the results we
have achieved on the ultrasound images. They also stated that a higher resolution on
the datasets may lead to even better results. For a segmentation result to be used for
navigation during surgery, it has to be very close to a perfect segmentation. The group
of experts pointed out that even if the boundary does not completely coincide with the
contour of the tumour, the result may very well be useful in other applications, for
instance as a help during surgery planning.

All of the active contour filters require the user to specify several parameters. This
can be a very time consuming task, and in order to be done effectively, it require the
user to understand how the parameter values influence the result. This may make the
filters difficult to use for surgeons.

The computation time needed for each of the level set filters was recorded. It turned
out that a large part of the computation time was related to preprocessing. This is
because a preprocessing filter works on the entire image, while in most cases an active
contour calculates values close to the evolving boundary. Due to this, a great part of
the computation time can be reduced by running the active contour filter on a cropped
version of the original dataset. The computation time also varies according to whether
the active contour calculates the result iteratively or not.
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8.2 Conclusions

The simplified snake we have implemented has given promising results. The snake
approach gives fairly good results in some cases, but has to be further developed and
tested. The fast marching level set and the geodesic level set approaches have generally
provided the best segmentation results. The former is faster to execute but the latter
produces slightly better results. We therefore recommend to use one of these two
approaches for brain tumour segmentation.

The results achieved in this report show that active contours are well suited for use
on segmentation of neuro tumours. Their ability to take both high- as well as low-level
information from an input image make them far more robust compared with more simple
segmentation methods such as region growing.
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Chapter 9

Future work

Through our work we have tested a set of segmentation methods on a selection of MR
and US images of brain tumours. We have found a couple of methods producing good
results in most of the test cases. The test cases consists of MR and US images of five
different tumour types, most of them are low grade tumours.

The snake algorithm has only been tested to a small extent and only with a simplified
three dimensional model. A more advanced model of the snake surface should be tested.
There exists other snake formulations that might perform better than the one we have
tested. This needs to be tested to a greater extent.

The algorithms we have tested have experienced some problems related to neighbour-
ing edges positioned close to the tumour edge. This has often caused the algorithms
to either under- or oversegment the tumour. To eliminate this problem a solution may
be to increase the user interaction. Level set algorithms initialised by seedpoints may
perform better if the number of seed points is increased. Methods that start evolving
from an initial contour, may benefit from a more sophisticated way to declare the initial
contour. It should also be tested if user guidance during snake evolution will lead to
better results.

The applications we have developed are stand-alone applications. They can easily be
integrated into existing software, like eg. CustusX. To be able to make them a useful tool
for surgeons and other medical personnel the applications should offer a user interface
that is intuitive and easy to use. They should also be integrated into an application
offering other functionality, like eg. registration.

To further improve the usability of the application, it would be beneficial to develop
a set of parameter values that work well on images with particular characteristics. This
would reduce the time and effort needed to adjust parameter values.

If the application is supposed to be used during surgical procedures, the computation
time of the segmentation algorithms should be reduced. This can make it possible to
give real-time feedback to the surgeon.
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Appendix A

Evaluation form

Evaluation form - segmentation results 

Dataset:     Result number:

Criterion 1 2 3 4 5 

Misplacement      

Oversegmentation      

Undersegmentation      

Wrong edges traced      

Details missing      

(1=low, 3=medium, 5=high) 

Overall impression: 

yes no 

Is the result usable?   

 1 2 3 4 5 

Manual adjustment required? 

(1=little, 3=medium, 5=much) 

Comments: 

Figure A.1: The form used for evaluation of segmentation results.
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Appendix B

Source code and datasets

The source code and the test datasets can be found on the enclosed CD. This appendix
provides a short description of the CD content.

B.1 Segmentation filters

Development of the segmentation filters requires ITK version 2.0. The segmentation
filters are located in the following folders:

• Segmentation/RegionGrowing

• Segmentation/GvfSnake

• Segmentation/FastMarchingLevelSet

• Segmentation/GeodesicLevelSet

• Segmentation/CannyEdgeLevelSet

• Segmentation/LaplacianLevelSet

Each filter is organized as follows:

• Segmentation/filtername — source code

• Segmentation/filtername/bin — executables

• Segmentation/filtername/Project — MS Visual Studio project files

The documentation of the segmentation filters is located in the following folder:

• Segmentation/doc
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B.2 Basic visualizer

Running the basic visualizer requires VTK version 4.4. Development of the basic
visualizer requires VTK version 4.4 and ITK version 2.0. The basic visualizer application
can be found in the following folders:

• BasicVisualizer/src — source code

• BasicVisualizer/doc — documentation

• BasicVisualizer/bin — executables

• BasicVisualizer/project — MS Visual Studio project files

B.3 Advanced visualizer

Running the advanced visualizer requires VTK version 4.4. Development of the
advanced visualizer requires QT version 3.3.3, VTK version 4.4 and ITK version 2.0.
The basic visualizer application can be found in the following folders:

• AdvancedVisualizer/src — source code

• AdvancedVisualizer/doc — documentation

• AdvancedVisualizer/bin — executables

• AdvancedVisualizer/project — MS Visual Studio project files

B.4 Datasets

Each of the five datasets N241, N351, N359, N360 and N378 is organized in the following
folders:

• Datasets/Nxxx/Master MRI/Fullsize — full-size MR and US data with MRI as
master

• Datasets/Nxxx/Master MRI/Subset — subset of the MR and US data with MRI
as master

• Datasets/Nxxx/Master US/Fullsize — full-size MR and US data with US as master

• Datasets/Nxxx/Master US/Subset — subset of the MR and US data with US as
master
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