
Contents

1 Introduction 1

2 Previous work 3

2.1 Creation and Rendering of Realistic Trees 3

2.1.1 Skeletal parameters . 3

2.1.2 Surface parameters . 6

2.2 Geometric representation . 7

2.2.1 Spline curves . 7

2.2.2 The Hermite spline . 9

2.2.3 Generalized cylinders . 9

2.2.4 Framing a curve . 9

2.3 Geometry instancing . 11

2.3.1 Pseudo Instancing . 12

2.4 Textures . 15

2.4.1 Bump mapping . 15

2.4.2 Normal mapping . 15

2.4.3 MIP maps . 15

3 Approach and implementation 19

3.1 Creating a tree . 19

3.1.1 Generating a tree . 19

3.1.2 Rendering a tree . 23

3.2 Geometric representation . 23

3.2.1 Using the Hermite spline . 24

3.2.2 Framing the curve . 25

3.2.3 Defining the circle . 26

i

ii CONTENTS

3.3 Geometry instancing . 27

3.4 Optimizations . 28

3.4.1 Instance LOD . 31

3.4.2 Distance LOD . 32

3.4.3 MIP Maps . 32

3.4.4 View-frustum culling . 32

3.5 Textures . 33

3.5.1 Placing the texture patches . 33

3.5.2 Normal mapping . 34

3.6 Landscape . 35

3.7 Different tree types . 36

3.8 Wind . 37

4 Results and discussion 39

4.1 Storing vertices in a VBO . 39

4.2 Adding instance LOD . 40

4.3 Pseudo Instancing . 40

4.4 Precalculated blending functions . 42

4.5 Moving light calculation to fragment program 42

4.6 Adding normalsmaps . 43

4.7 Adding distance LOD . 43

4.8 Adding wind . 45

4.9 CPU vs. GPU . 46

5 Summary and conclusion 49

6 Future work 51

6.1 Segment Buffering . 51

6.2 Vertex Constants Instancing . 51

6.3 Animation . 52

6.4 Level of detail . 53

6.5 Culling . 53

6.6 Continuity of texture patches . 53

6.7 Shadows . 54

CONTENTS iii

Bibliography 55

A Cg Shader code 59

A.1 Vertex shader . 59

A.2 Fragment shader . 63

B Compiling the sourcecode 65

B.1 OpenGL, Cg and Glew . 65

C Tree type parameter file 67

D Binary distribution 69

E Screenshots and videos 71

List of Figures

2.1 Tree Diagram [JW95] . 4

2.2 Spline device used by shipbuilders and draftsmen to draw smooth shapes.
[oV04] . 8

2.3 Example of a spline that could never be defined by a one dimensional function. 8

2.4 Hermite blending functions. 10

2.5 Several spline segments interpolate the data points (asterisks) with C2 con-
tinuity. A strobe captures a disk as it passes along the curve. [Blo85] . . . 10

2.6 Curvature (left) and a Frenet frame (right). [Blo90] 11

2.7 Pseudo instancing rendering each instance at an individual position and in
an individual color. [NVI05] . 13

2.8 The GeForce 6800GT can hit over 3 million instances per second for tiny
meshes. [Zel04] . 14

2.9 Purely geometric 2,000,000 triangle detail mesh in 3D Studio Max. [Tec04] 15

2.10 5,287 triangle in-game mesh in 3D Studio Max. [Tec04] 15

2.11 Resulting normal-mapped mesh in game.[Tec04] 16

2.12 Normals on a plane surface (left). Normals adjusted according to the nor-
mal map (right). [Dre04] . 16

2.13 Aliased image [Wika] . 17

2.14 Anti-aliased image [Wika] . 17

3.1 nCurve = 50, nCurveBack = 10 . 21

3.2 Branches emerging smoothly from their parent stem. 22

3.3 A branch is rotated by a specific angle from its initial position defined by
the generated binormal (B) from section 3.2.2. Circle illustrates parent
branch seen from above. 22

3.4 Showing a branch lowered from its parent stem by downangle. 22

3.5 Data points interpolated by straight lines (left) and by splines (right). [Blo85] 24

v

3.6 Curves that are C0, C1, C2 continuous. [oE04] 24

3.7 Polygons resulting from twisting reference frames. [Blo90] 25

3.8 Reversed curvature vector at inflection point 26

3.9 Tree skeleton with safe vectors for each branch 27

3.10 The Frenet frame at perimetrically equal distances along the curve [Blo85] 28

3.11 Frenet frames sampled along branches of a tree. 29

3.12 The t and radians values stored as texture coordinates per vertex 29

3.13 The original Hermite blending function stored as float4 position values per
vertex . 30

3.14 The derivative of the Hermite blending function stored as float4 color values
per vertex . 30

3.15 Branches rendered as instances of a general cylinder 31

3.16 MIP-map of bark texture . 33

3.17 Illustration of a normal map texture.[Dre04] 34

3.18 Landscape rendered with the Height Map 3 Tutorial. [Hum02] 35

3.19 Tree growing out from a steep hillside with control points. 36

3.20 Tree growing out from a steep hillside. 37

4.1 Performance graph when storing vertices in a vertex buffer object 40

4.2 Performance graph when adding different level of detail to instances 41

4.3 Performance graph when adding pseudo instancing 41

4.4 Performance graph when precalculating blending functions 42

4.5 Performance graph when moving light calculation to fragment shader . . . 43

4.6 Performance graph when adding normal maps 44

4.7 Performance graph when adding level of detail from observer 44

4.8 Performance graph when adding wind (with and without distance LOD) . 45

4.9 Summary graph comparing the different stages of implementation 46

6.1 Deforming a Branch: equation [Pet01] . 52

6.2 SGI Billboard [SG98] . 53

6.3 SGI Billboard mask [SG98] . 53

Abstract

Over the last few years, the computer graphics hardware has evolved extremely fast from
supporting only a few fixed graphical algorithms to support execution of dynamic pro-
grams supplied by a developer. Only a few years back all graphics programs were written
in assembly language, a nonintuitive low level programming language. Today such pro-
grams can be written in high level, near written English, source code, making it easier to
develop more advanced effects and geometric shapes on the graphics card.

This project presents a new way to utilize today’s programmable graphics card to generate
and render trees for real-time applications. The emphasis will be on generating and
rendering the geometry utilizing the graphics hardware, trying to speed up the calculation
of naturally advanced shapes for the purpose of offloading the systems central processing
unit.

Preface

The autumn of 2004 I got into a project with Åsmund Nordstoga creating a parametric
tree rendering system for real-time applications. I found this part of visualizing natural
environments very interesting and satisfying and decided to write my thesis on this subject.
For this new project I wanted to explore and utilize the revolutionary new features the
pioneering computer graphics cards have to offer. I also wanted to improve the visual
quality of the trees rendered using our previous system.

Acknowledgements

The amount of hard work and thoroughness of this report and the application implemented
could not have been finished at the set dead-line without the help of some people.

I would especially like to thank my main supervisor, PhD candidate Jo Skjermo, for
guiding me through the implementation phase and the entire phase of writing this report.
Skjermo has given me ideas of what to include in the project and guidance on what may
or may not work.

I would also like to thank Kristian Eide at Systems In Motion for valuable input and some
interesting discussions.

Finally I would like to thank Ben Humphrey at GameTutorials.com for making his source
code available to be able to jump start this project, getting into implementing the really
interesting part of the code that really mattered for the results achieved.

Chapter 1

Introduction

Many papers have been written on rendering trees. Creation and Rendering of Realistic
Trees by Weber and Penn [JW95] emphasize on speed and simplicity in defining tree
types, while Modeling the Mighty Maple by Bloomenthal [Blo85] attach importance to
making the trees look more real and natural. This project will emphasize on rendering
the stems making up a tree as real as possible while still keeping a frame rate acceptable to
real-time simulation. I will focus on drawing trees close-up, meaning that the observer is
within a 100 meter radius of the tree being rendered. The project will look to techniques
of utilizing the GPU (Graphics Processing Unit) to offload the workload on the CPU
(Central Processing Unit). The project will try to combine the parametrical system
proposed by Weber and Penn with the idea of representing branches by spline curves as
proposed by Bloomenthal. Even though leafs at times is an essential part of a tree, this
has not been implemented in this project. The reason for this is that I would like to focus
on rendering curved stems without covering them with billboard leafs done in so many
projects before. Further references to a tree in this report refers to all the stems making
up the tree, meaning its trunk and branches. Implementing leafs is proposed as future
work and should not be a difficult task to combine with the existing code.

The next chapter is meant to give the reader a presentation of some of the previous work
done within rendering trees on a computer and other techniques to enhance visual realism
of a virtually generated scene. In chapter 3 I will present my approach of implementing
a real-time system for rendering trees using the techniques described in chapter 2, as well
as some other techniques for optimizing the execution of the program. Chapter 4 renders
the results from testing the application implemented and discusses the data collected.
Chapter 5 will try to summarize the report and finally chapter 6 will propose future work
relevant to this project.

1

Chapter 2

Previous work

This chapter is meant to give the reader a understanding of some of the work done in
the field of simulating trees on a computer in three dimensions, as well as background
information on other techniques within real-time visualization relevant to this project.

2.1 Creation and Rendering of Realistic Trees

One of the more famous and discussed articles within the field of rendering trees on a
computer is Creation and Rendering of Realistic Trees by Weber and Penn [JW95]. This
article presents a model to create and render trees based on a few parameters describing
the features of a certain tree type. The advantage of this approach is the speed up of
using parameters instead of advanced natural evolution algorithms when constructing
a tree. Building a stem using parameters only requires a few calculations and can be
done iteratively while trees constructed using for example L-systems1 use time-consuming
recursive algorithms. Hence systems such as proposed by Weber and Penn, with today’s
hardware, may be used for real-time rendering.

2.1.1 Skeletal parameters

A single stem in Creation and Rendering of Realistic Trees is created by gluing together
smaller near-cylindrical segments, where each cylinder has its own reference frame ro-
tated a certain degree from the previous cylinder in the stem (see figure 2.1). The cen-
ter of each cylinder defines the skeleton of the stem. The number of near-cylindrical
segments is defined by the parameter nCurveRes. The n in front of the parameter al-
ways refer to its recursive level, and if there is a V at the end of a parameter name it
stands for variation. If nCurveBack is zero the z-axis of each segment on the stem is

1Aristid Lindenmayer (1925-1989) introduced a string rewriting system for cellular interaction which
was later applied to plants and trees. The notion of rewriting is central to L-systems where the basic idea
is to define complex objects by successively replacing parts of a simple object using a set of rewriting
rules or productions. [LA90]

3

2.1. CREATION AND RENDERING OF REALISTIC TREES

Figure 2.1: Tree Diagram [JW95]

4

CHAPTER 2. PREVIOUS WORK

rotated away from the z-axis of the previous segment by (nCurve/nCuveRes) degrees
about its x-axis. If nCurveBack is nonzero, each of the segments in the first half of the
stem is rotated (nCurve/nCurveRes/2)) degrees and each in the second half is rotated
(nCurveBack/nCurveRes/2)) degrees. This makes it possible to form simple S shaped
stems. In either case a random rotation random(nCurveV/nCurveRes) is also added for
each segment.

nBranches defines the maximum number of child stems that a stem can create over the
length of all its segments. In the article by Weber and Penn the number of successive
child stems (really ”grandchildren”) is computed as

stems = stemsmax ∗ (0.2 + 0.8 ∗ (lengthchild/lengthparent)/lengthchild,max)

for the first level of branches, and

stems = stems ∗ (1.0− 0.5 ∗ offsetchild/lengthparent)

for further levels of branches.

The length of a child branch is calculated as:

lengthchild = lengthtrunk ∗ lengthchild,max∗
ShapeRatio(Shape, (lengthtrunk − offsetchild)/(lengthtrunk − lengthbase)))

for the first level of branches and

lengthchild = lengthchild,max ∗ (lengthparent − 0.6 ∗ offsetchild)

for further levels of branches. offsetchild is the position in meters for a child stem along
the parents length from the base. lengthbase is the length of the bare area at the base of
the tree. The length of the trunk is calculated:

lengthtrunk = (0Length± 0LengthV) ∗ scaletree.

If nDownAngleV is positive, the z-axis of a child will rotate away from the z-axis of its
parent about the x-axis with the angle (nDownAngle± nDownAngleV) degrees.

If nRotate is positive, a child stem is rotated about the z axis, relative to the previous
child by the angle (nRotate± nRotateV) forming a helical distribution.

Using a normalized position along the trunk from 0.0 to 1.0 the shape parameter defines
the overall tree shape according to the formula ShapeRatio(shape,ratio):

Shape Result

0 (conical) 0.2 + 0.8 * ratio

1 (spherical) 0.2 + 0.8 * sin(p * ratio)

2 (hemispherical) 0.2 + 0.8 * sin(0.5 * p * ratio)

3 (cylindrical) 1.0

5

2.1. CREATION AND RENDERING OF REALISTIC TREES

4 (tapered cylindrical) 0.5 + 0.5 * ratio

5 (flame) ratio/0.7 if ratio<=0.7

(1.0 - ratio)/0.3 if ratio>0.7

6 (inverse conical) 1.0 - 0.8 * ratio

7 (tend flame) 0.5 + 0.5 * ratio/0.7 ratio<=0.7

0.5 + 0.5 * (1.0 - ratio)/0.3 ratio>0.7

2.1.2 Surface parameters

Flare (increased radius) exists along the base of many trees to support their massive
weight and height and is computed with the value of y being a normalized position along
the trunk:

flareZ = Flare ∗ (100y−1)/100 + 1

where y = 1− 8 ∗ Z, and limited to the value of zero.

Lobes specifies the number of peaks in the radial distance about the perimeter along the
base. Preferably it should be a odd number to avoid symmetry along the base. LobeDepth
defines the depth of the lobes, using the formula: lobeZ = 1.0 + LobeDepth ∗ sin(Lobes ∗
angle).

The stem radius is given for the trunk and branches respectively:

radiustrunk = lengthtrunk ∗Ratio ∗ 0Scale

radiuschild = radiusparent ∗ (lengthchild/lengthparent)
Ratiopower

The radius is also tapered along its length according to the nTaper variable using the
formulas:

nTaper Effect

0 Non-tapering cylinder

1 Taper to a point (cone)

2 Taper to a spherical end

3 Periodic tapering (concatenated spheres)

The periodic tapering is mainly used for modelling cactus. For a normalized position Z
from 0 to 1 along the length of a stem, the following equations compute radiusZ , the
tapered radius in meters:

unit taper = nTaper
unit taper = 2− nTaper
unit taper = 0

0 ≤ nTaper < 1
1 ≤ nTaper < 2
2 ≤ nTaper < 3

6

CHAPTER 2. PREVIOUS WORK

taperZ = radiusstem ∗ (1− unit taper ∗ Z)

and when 0 ≤ nTaper < 1
radiusZ = taperZ

or when 1 ≤ nTaper ≤ 3

Z2 = (1− Z) ∗ lengthstem

depth = 1
depth = nTaper − 2

(nTaper < 2) or (Z2 < taperZ)
otherwise

Z3 = Z2

Z3 = |Z2 − 2 ∗ taperZ ∗ int(Z2/(2 ∗ taperZ) + 0.5)|
nTaper < 2
otherwise

radiusZ = taperZ

radiusZ =
(1− depth) ∗ taperZ+

depth ∗ sqrt(taper2
Z − (Z3 − taperZ)2)

(nTaper < 2) and (Z3 ≥ taperZ)
otherwise

Together the variables radiusZ , lobeZ and flareZ defines the radius at any point along
the stem.

2.2 Geometric representation

Objects which have been formed by the randomness of natural evolution, often take the
shape of curved forms. For this reason curves are often used to represent the skeleton of
three-dimensional organic forms such as tree limbs. Probably the most common way to
make a shape follow the trajectory of a certain curve is to let a two-dimensional shape
make up the outer boundary of the object and then move the center of the shape along the
curve. This section will describe the methods used for creating a geometric representation
of a tree.

2.2.1 Spline curves

In the mathematical subfield of numerical analysis a spline is a special curve defined
piecewise by polynomials. The term spline comes from the flexible spline devices used by
shipbuilders and draftsmen to draw smooth shapes. [Wikb]

Curves defined by polynomials have a clear advantage over curves defined by functions
as polynomials can be multivalued with respect to any dimension. For example the curve
shown in figure 2.3 could never be defined by a function.

Cubic polynomials are on the form

x(t) =
n∑

i=0

ai ∗ ti

7

2.2. GEOMETRIC REPRESENTATION

Figure 2.2: Spline device used by shipbuilders and draftsmen to draw smooth shapes.
[oV04]

Figure 2.3: Example of a spline that could never be defined by a one dimensional function.

8

CHAPTER 2. PREVIOUS WORK

where t is limited to the range [0,1] and n defines the degree of the polynomial. Each
polynomial is multiplied by a constant ai called a control point. Any point on the curve
is then determined by the polynomials, control points and the value of t. In three-
dimensional space y(t) and z(t) have similar functions for defining a point.

2.2.2 The Hermite spline

A cubic Hermite spline, named in honor of Charles Hermite, is a third-degree spline with
each polynomial of the spline in Hermite form. The Hermite form consists of two control
points and two control tangents on each for each polynomial. On each subinterval, given
a starting point p0 and an ending point p1 with starting tangent m0 and ending tangent
m1, the polynomial can be defined by

p(t) = (2t3 − 3t2 + 1)p0 + (t3 − 2t2 + t)m0 + (−2t3 + 3t2)p1 + (t3 − t2)m1

where
t ∈ [0, 1]

The four Hermite basis functions can be defined as blending functions between the control
points

H0(t) = 2t3 − 3t2 + 1
H1(t) = t3 − 2t2 + t
H2(t) = −2t3 + 3t2

H3(t) = t3 − t2

to give the polynomial as

p(t) = H0(t)p0 + H1(t)m0 + H2(t)p1 + H3(t)m1

2.2.3 Generalized cylinders

Agin [Agi72] defines a generalized cylinder as a space curve (a class of curves including
the spline) and a cross sectional contour perpendicular to the curve. As J. Bloomenthal
[Blo85] suggests, the ”surface of a tree limb, then, may be considered a generalized cylinder
with a circular cross section (”disk”) of varying radii”, as illustrated in figure 2.5.

2.2.4 Framing a curve

When you want a shape to follow a curve, the shape has to be rotated and moved in order
to follow the direction and orientation of the curve. Another way to see this is when the
shape is moved to a position along the curve, the shape exists in its own local coordinate
system, which is the original system in which it is defined, and in the coordinate system
for the entire object. In order to represent the shape in this latter coordinate system, axial
information regarding the shapes local coordinate system has to be calculated for every

9

2.2. GEOMETRIC REPRESENTATION

Figure 2.4: Hermite blending functions.

Figure 2.5: Several spline segments interpolate the data points (asterisks) with C2 conti-
nuity. A strobe captures a disk as it passes along the curve. [Blo85]

10

CHAPTER 2. PREVIOUS WORK

step along the curve. This is called framing the curve. The technique implies creating a
reference frame at each sampling point along the curve, represented by three orthogonal
vectors that define the position and orientation along the central axis of the cylinder
[Blo90].

The Frenet frame is one of the more intuitive reference frames. It consists of the three
vectors; a tangent to the curve, T, a principal normal, N, and a binormal, B. All these
vectors can be computed analytically based on a three-dimensional cubic curve, like the
Hermite curve. T is simply the velocity vector, i.e. the derivative of the curve. N is often
computed as

N = (V ×Q× V)/(|V ×Q× V |)

where Q is the acceleration of the curve, i.e. the derivative of the velocity. The binormal
B is then computed as B = T ×N .

Figure 2.6: Curvature (left) and a Frenet frame (right). [Blo90]

2.3 Geometry instancing

When rendering large scenes consisting of many objects the bottleneck is often the drivers’
throughput to the graphics card resulting in CPU overhead and poor performance. This
happens because the Graphics API such as Direct3D and OpenGL are not designed to
efficiently render a small number of polygons thousands of times per frame [Wlo04]. This
is where the technique known as instancing becomes useful. Geometry Instancing takes
advantage of the fact that many of the objects in the scene is similar, and therefore can
be defined only once and then later referred to as instances of that object, only with
different attributes. These attributes may be the model-to-world transformation matrix
which places the instance in the scene, color information telling the fragment shader in
which color to paint the object or small deforming information telling for example the
vertex program to deform this instance slightly using a certain formula.

”A geometry packet is an abstract description of a piece of geometry, where the geometric
entities are expressed in model space without any explicit reference to the context in which
they will be rendered.” [Car05] This packet may contain any kind of general data repre-

11

2.3. GEOMETRY INSTANCING

senting the object, but do not contain information describing any individual attributes.
General data may be vertices, indices, bounding box a.s.o.

”A geometry instance is a geometry packet with the attributes specific to the instance.”
[Car05] In addition to contain a link to the general object of which it is an instance, it
contains the additional attributes making it ”unique” in the scene. This may be model-
to-world matrix, color information a.s.o.

A geometry batch is a collection of geometry instances. The advantage of this comes
obvious when such batching is supported in hardware, as it is by the GeForce 6 Series
GPUs. This is called ”Batching with Geometry Instancing API” and ”offers a flexible and
fast solution to geometry instancing.” [Car05]

There exists several ways to upload the vertex data to the GPU. Static batching is the
fastest, but least flexible way to instance geometry. The vertices are generated once during
initialization of the program and stored in a vertex buffer and uploaded to the GPU. For
every instance the whole or parts of this vertex buffer is drawn, setting the different
attributes for each instance in between the draw-calls. Dynamic batching is slower, but
more flexible as the vertex buffer is streamed to the GPU memory every frame. This
makes it possible to modify the geometry information on the CPU before sending it, but
may provide a transfer overhead if the data is large and/or slow to generate. A hybrid
implementation exists called ”Vertex constants instancing” where several instances are
stored in a vertex buffer object (VBO), but with a different constant for each instance so
the vertex program knows which instance the vertex belongs to, and can manipulate it
according to the constant and other additional attributes stored in the GPU memory.

Geometry instancing is currently only supported by the Direct3D API (DirectX 9), but
a fairly good substitute exists for OpenGL called Pseudo Instancing.

2.3.1 Pseudo Instancing

In Cg2, external environment variables in the vertex and fragment programs are stored
using the uniform type qualifier. It conveys that the variable’s initial value comes from
an environment that is external to the specified Cg program. When we render geometric
instances using the static batching method we must provide each instance with its ”unique”
attributes through external variables. As with GLSL3, setting these variables for each
instance adds a lot of driver work since the driver must map abstract uniform variables
into real physical hardware registers. Zelsnack [Zel04] states that constant updates on the
hardware side can incur hardware flushes in the vertex processing engine. In OpenGL one
can instead use persistent vertex attributes to store variables. Zelsnack says that these
”API calls are very efficient on the driver side; they don’t require validation or potentially

2Cg stands for ”C for graphics” and is based on the popular C programming language. The Cg
language makes it possible for you to control the shape, appearance, and motion of objects drawn using
programmable graphics hardware. [FK03]

3The OpenGL Shading Language has been designed to allow application programmers to express the
processing that occurs at programmable points of the OpenGL pipeline. [Ope04]

12

CHAPTER 2. PREVIOUS WORK

Figure 2.7: Pseudo instancing rendering each instance at an individual position and in an
individual color. [NVI05]

13

2.3. GEOMETRY INSTANCING

complex remapping. They are also very efficient on the hardware side; they do not result
in hardware flushes in the vertex processing engines.”

One drawback however using this method is, as Zelsnack [Zel04] mentions, there are
few such persistent vertex attributes and therefore not enough to store attributes for
skinning as an example. The technique is not as good as the similar instancing technique
supported by Shader Model 3.0 GPUs by Direct3D. ”The major difference is that the
Direct3D instancing API reduces the number of DrawIndexedPrimitive() calls from many
to one. This DrawIndexedPrimitive() call reduction has a large performance benefit in
Direct3D. In OpenGL, the application still calls glDrawElements() (or the like) for every
instance. This isn’t too much of a performance hit because glDrawElements() is very
efficient in OpenGL.” [Zel04] This method will however require more draw-calls and are
more likely to produce CPU overhead when the number of instances increases.

Figure 2.8: The GeForce 6800GT can hit over 3 million instances per second for tiny
meshes. [Zel04]

As Zelsnack shows, the pseudo instancing technique works very well with instances con-
sisting of a small number of vertices. This can have a clear advantage when drawing trees,
as a single branch typically consists of a small number of vertices.

14

CHAPTER 2. PREVIOUS WORK

Figure 2.9: Purely geometric 2,000,000
triangle detail mesh in 3D Studio Max.
[Tec04]

Figure 2.10: 5,287 triangle in-game
mesh in 3D Studio Max. [Tec04]

2.4 Textures

2.4.1 Bump mapping

The main idea with bump mapping is making a flat surface look more detailed than
it geometrically is. Bump mapping is a per-pixel (or per-texel) lightning calculation,
calculating the light intensity based on the light model being used and the information
in the given pixel on the texture (also often referred to as a texel). The great advantage
lies in the speed of the light calculation compared to processing more geometrical detailed
data.

There are many ways to represent bump mapping and normal mapping is one of the most
popular ones.

2.4.2 Normal mapping

A detailed mesh might consist of several millions of triangles. This is not renderable in
real-time. When reduced to a few thousand triangles it is renderable, but has lost a lot of
detail (see figures 2.9 and 2.10). Instead we render a map of normals specifying only the
change in the normal when the model was reduced to fewer polygons. When calculating
the light for a texel on the model we use the normal map as a lookup table for adjusting
the normal used in the calculation at that point (see figure 2.12).

2.4.3 MIP maps

A technique called MIP-mapping (’multum in parvo’) is used to render many textures
faster and more accurately at the same time. Instead of using one full-scaled texture

15

2.4. TEXTURES

Figure 2.11: Resulting normal-mapped mesh in game.[Tec04]

Figure 2.12: Normals on a plane surface (left). Normals adjusted according to the normal
map (right). [Dre04]

16

CHAPTER 2. PREVIOUS WORK

Figure 2.13: Aliased image [Wika] Figure 2.14: Anti-aliased image [Wika]

at all times, MIP-mapping makes a full-size version, a half-size version, a quarter-size
version, etc, and uses the correct one corresponding to the distance from the observer to
the object being rendered. This technique was developed as the result of having to put
many textures out on the limited graphics card memory at the same time when rendering
a scene. Since not all textures have to be rendered with the same amount of detail at the
same time, some textures can be rendered with lower detail. For example when a object
is far away from the viewer, the texture does not need to have the same level of detail as
if the object was rendered up-close. Another purpose of MIP-maps is the undesired effect
of aliasing when rendering a scaled texture. If we look at a chess board in perspective we
get this undesired effect where the resolution is too low to render the detail of the texture.

Figure 2.13 illustrates the visual distortion which occurs when anti-aliasing is not used.
Notice that near the top of the image, where the checkerboard is very distant, the image
is impossible to recognize, and is displeasing to the eye. By contrast, figure 2.14 is anti-
aliased. The checkerboard near the top blends into gray, which is usually the desired effect
when the resolution is insufficient to show the detail. Even near the bottom of the image,
the edges appear much smoother in the anti-aliased image. [Wika]

17

Chapter 3

Approach and implementation

This chapter will describe the approach taken for implementing the tree rendering system.

3.1 Creating a tree

Fully constructing a tree can be divided into two stages; generating the tree and rendering
the tree. First we have to do the necessary calculations for individualizing each tree, like
how many branches the tree has, how long each branch should be, where they will be
placed along their parent branch a.s.o. When all this is defined, we can start rendering
the tree by defining the vertices, faces and textures for the tree.

The tree generating system implemented is a parametric system based on some of the
parameters proposed by Weber and Penn in Creation and Rendering of Realistic Trees
[JW95]. This section describes the most important features for my approach on how a
tree is constructed based on the parameters from Weber and Penn.

3.1.1 Generating a tree

The process of generating a tree is based on a set of calculations which can be divided
into two separate groups. Some calculations only have to be calculated once for each tree,
while others, depending on possible external changes, may vary during interaction with
and execution of the application. Many parameters are fixed for a certain tree and only
depend on the parameters defining the tree type. Parameters such as the start radius per
stem (radiusstem), length of a stem (lengthstem)1 and number of branches (stems) are all
examples of parameters calculated once when the application initializes the forest of trees.
The article by Weber and Penn does not really specify the number of branches to spawn
from the trunk. The decision fell on the intuitive formula:

stemstrunk = 0Branches± 0BranchesV

1either lengthtrunk or lengthchild depending on whether it’s a trunk or branch

19

3.1. CREATING A TREE

For level 1 and further I use the formulas presented in Creation and Rendering of Realistic
Trees and quoted in section 2.1.1.

The second group of parameters are those calculated when external forces make an impact
on the structure of the tree. These represent the placement and orientation of the tree and
hence all its branches. Parameters which effect these transformations are variables such
as downangle (downn) and curvature (nCurve and nCurveBack). These variables can for
example be altered to simulate wind (see section 3.8), and therefore must be recalculated
per frame (or as often as desired for the animation).

The skeleton for each tree in this system is represented by a Hermite spline (see section
3.2.1). Each spline is defined by 4 control points/vectors controlling the start tangent,
start point, end point and end tangent of the spline. These control points are calculated
somewhat differently for the trunk and the branches of the tree.

Generating the trunk

The start tangent for the trunk is calculated using the formula:

tangentstart = roottangent ∗ lengthstem

where roottangent is the normal given as an input vector to the tree, identifying in what
direction the tree should start growing. This feature will be explained in more detail in
section 3.6. The vector is multiplied with the length of the trunk to get a significant effect.

The start point for the trunk is given by the position of the tree in world space coordinates.
All coordinates for the control points are given in world space coordinates. The alternative
would be to specify the coordinates in object space (meaning the local coordinate system
for each branch) and sending the transformation matrix world-to-object to the vertex
shader. The latter alternative has not been tested, but the reason for transforming them
on the CPU is that we save one matrix operation per vertex on the GPU, which becomes
significant when rendering many trees. We also save some time in the fragment shader,
not having to transform both the eye position and the light vector into object space since
we already have the matrix for transforming the tangent space normal into world space
(see section 3.5.2).

The end point of the trunk spline is simply calculated using the formula:

positionend = [sin(nCurve), cos(nCurve), 0] ∗ lengthstem + treeposition

The end tangent is a bit more sophisticated since it has to take into account the nCurveBack
parameter. The formula adds the vector from the nCurve parameter with a vector cal-
culated from nCurveBack and ends up with a scaled middle vector:

tangentend = Normalize([sin(nCurve), cos(nCurve), 0] +

[sin(nCurveBack), cos(nCurveBack), 0]) ∗ lengthstem

A tree with nCurve set to 50 and nCurveBack set to 10 would look like the tree in figure
3.1.

20

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.1: nCurve = 50, nCurveBack = 10

Generating the branches

The branches are generated recursively by spawning new children from their parent stem.
The branch start tangent and position are calculated given the parametric (t) position at
the parent stem where the child is spawned and the control points for the parent stem.
Since the start tangent is set equal to its parent tangent at the position it is spawned, the
new branch smoothly emerges out of the parent stem (see figure 3.2).

tangentstart = parenthermite tangent ∗ lengthstem

To be able to generate the end point and tangent for a branch a orientation matrix has to
be calculated. First a rotation matrix is generated in order to align the tangent-axis2 to the
Hermite tangent at position t at its parent stem. This matrix is then multiplied by a new
rotation matrix rotating the branch around the parent stem (using nRotate±nRotateV)
to the right angle where the stem should be placed (see figure 3.3).

The same matrix is then further multiplied by a rotation matrix lowering the branch so
that it grows out of its parent stem at a certain angle (referred to as downangle in the
article by Weber and Penn) as in figure 3.4.

When the orientation matrix is constructed the end tangent and position points are cal-

2In Creation and Rendering of Realistic Trees this axis is the z-axis following the skeleton of the tree.
In this implementation I’ve chosen it to be the y-axis since most simulators use y as up in their virtual
world.

21

3.1. CREATING A TREE

Figure 3.2: Branches emerging smoothly from their parent stem.

Figure 3.3: A branch is rotated by a
specific angle from its initial position
defined by the generated binormal (B)
from section 3.2.2. Circle illustrates
parent branch seen from above.

Figure 3.4: Showing a branch lowered
from its parent stem by downangle.

22

CHAPTER 3. APPROACH AND IMPLEMENTATION

culated using the formulas:

positionend = Morientation∗[[sin(nCurve), cos(nCurve), 0] ∗ lengthstem + parenthermite position]

tangentend = Morientation ∗Normalize([sin(nCurve), cos(nCurve), 0] +

[sin(nCurveBack), cos(nCurveBack), 0]) ∗ lengthstem

This rotation matrix is then passed on to the next level of branches to be spawned from
this particular stem.

Parameters not implemented

Creation and Rendering of Realistic Trees speaks about a special mode for the nCurveV
variable. When this variable is negative, the stem is formed as a helix. This is fairly easy
to implement when using the technique proposed by Weber and Penn, as each segment
along the stem is rotated individually. This is however not possible when the shape of the
stem is determined purely by a single Hermite spline curve defined by the implemented
approach. This feature would have to be implemented in Cg as an additional feature to
the vertex program, creating an additional Frenet frame following the helix and combining
this frame of reference with the frame following the spline curve.

Stem splits, leafs, pruning and vertical attraction are parts of Creation and Rendering of
Realistic Trees which have not been considered in this project.

3.1.2 Rendering a tree

When drawing the tree, each stem is responsible for drawing itself and calling the draw
routine for all its attached child stems. Each draw routine is responsible for uploading the
control points and other information it should specify for drawing that particular branch or
trunk to the GPU program. These parameters are precalculated variables like radiusstem,
lengthstem, nTaper, Lobes, LobeDepth, Flare from [JW95] and the safe vector3. The
draw routine then sends a draw call with the level of detail in which the stem should
be rendered, which links to an offset in a vertex buffer object (VBO) for this particular
stem. The GPU then calculates the position for every vertex based on calculations of the
parameters radiusZ , flareZ and lobeZ from [JW95]. This will be explained in more detail
in section 3.3.

3.2 Geometric representation

This section describes the approach taken for constructing a geometric representation of
the splines defining the tree.

3explained in section 3.2.2

23

3.2. GEOMETRIC REPRESENTATION

3.2.1 Using the Hermite spline

When defining the skeleton of a natural form, many types of splines could be used. Repre-
senting the tree skeleton as straight lines would look unnatural and Bloomenthal stresses
the importance of the curve having ”C2 continuity” meaning that the curve have contin-
uous second derivative. [Blo85] This becomes useful when constructing the limbs surface
and will be explained in more detail later.

Figure 3.5: Data points interpolated by straight lines (left) and by splines (right). [Blo85]

The most important feature is however that the curve is C1 continuous, meaning that the
curve has a continuous tangent defined along the entire curve so that multiple curves can
be merged at any position while keeping the basic shape smooth.

Figure 3.6: Curves that are C0, C1, C2 continuous. [oE04]

The reason for choosing the Hermite spline over splines like the Bezier spline is the simple
and intuitive control over the tangents at the end points. When for example a new
branch is spawned at some position along its parent stem, the parents’ tangent can easily
be calculated at this given position representing the start tangent for the new curve. The

24

CHAPTER 3. APPROACH AND IMPLEMENTATION

two branches will then have C1 continuity and the transition will look natural as in figure
3.2.

3.2.2 Framing the curve

One important feature of framing a curve is the twisting of the reference frame along the
curve. The orientation of the shape that is swept along the curve is determined by the
normal and binormal. Some natural forms look more natural if twisted to some degree
and others do not. Two problems with the standard method of calculating the Frenet
frame arise. Wherever the curvature vanishes, such as at points of inflection or along
straight sections of the curve, the double derivative is zero and hence the normal and
binormal are undefined. Also, on either side of an inflection point the curvature vector
can reverse direction, inflicting a violent twist in a progression of Frenet frames (see figure
3.8). [Blo90]

Figure 3.7: Polygons resulting from twisting reference frames. [Blo90]

A C2 continuous curve would solve the problem of the reversed curvature at inflection
points, but would not solve the problem of the binormal not being defined wherever the
acceleration is zero. As R. L. Bishop suggests, there is more than one way to frame a
curve [Bis75]. In order to minimize the twisting of sequential disks Bishop introduces the
idea of minimizing the rotation of sequential disks along the curve. The frame is defined
by first picking a single unit vector B1(0) which is orthogonal to the unit tangent vector
T(0), and then extending B1 along the curve by the rule that B′

1(t) is a linear combination
of B1(t) and T(t). The second vector in the frame if the tangent plane is then simply
defined by B2(t) = T (t) × B1(t). The next frame is then defined by applying a rotation
which rotates the previous edge direction into the next edge direction by a rotation about
an axis determined by their cross-product. [OKR04]

A clear constraint to this way of framing a curve is that this method does not work
analytically, meaning it can not be calculated for any arbitrary point along the curve
without having to calculate the propagating vectors from zero to that point.

One way to solve both these problems while keeping the analytical property of the frame
is to use a so called ”safe vector” when generating the normal vector. The safe vector
would always have to satisfy the rule S 6= T , meaning that the safe vector could never
be parallel to the tangent vector. As long as we can prevent this, the normal vector can

25

3.2. GEOMETRIC REPRESENTATION

Figure 3.8: Reversed curvature vector at inflection point

be calculated by the cross product of the safe vector and the tangent generating a vector
orthogonal to the tangent vector of minimal twist from the safe vector.

B(t) = T (t)× safeV ector

When generating the branches for the tree we can assume that the curve representing the
branch will be rotated within a plane, so choosing a vector orthogonal to this plane would
be safe since we can guaranty that the tangent will never be parallel to this vector (see
figure 3.9).

One problem with this solution is however if we were to implement wind blowing from
any angle. If the wind was strong enough to bend a branch so that its tangent coincide
with the safe vector, we would be in trouble. One way to solve this would be to generate
two safe vectors, one at the start of the branch and one at the end, and then in the
vertex shader interpolate between these two vectors depending on where we are on the
stem. This would remove the limitation of having to draw the branches in a plane. As an
advanced wind model has not been implemented, this was not needed.

3.2.3 Defining the circle

Since its impossible to model a completely smooth circle using polygons, the circle which
defines the outer boundary of each stem is defined by a certain number of vertices placed
a certain distance from the center of the stem. The circle is constructed using the coor-

26

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.9: Tree skeleton with safe vectors for each branch

dinates of the Frenet frame plane using the following formulas:

p(x) = cos(rad)
p(y) = 0
p(z) = sin(rad)

where
rad ∈ [0, 2π〉

This circle is then sampled at equal intervals along the curve (see figure 3.10) and posi-
tioned using the current Frenet frame (see figure 3.11).

3.3 Geometry instancing

This project has implemented static batching as this is the most straight forward and
intuitive method to do instancing, and also the fastest method supported by OpenGL.
Instance attributes are stored in persistent vertex attributes as texture coordinates and
uploaded from the client program to the GPU using the pseudo instancing technique. The
per vertex parameters for each instance is stored as texture coordinates, vertex position
information and vertex color information. The object properties for circulating the stem
from 0 to 2 ∗ π is stored in the x parameter in the texture coordinates, while the t value
specifying at what position we are along the spline is stored in the y value (figure 3.12).

As an optimization, the blending functions for the Hermite curve can be stored as fixed
values since we already know the t value. The only values we need are the ones for the

27

3.4. OPTIMIZATIONS

Figure 3.10: The Frenet frame at perimetrically equal distances along the curve [Blo85]

current value of Hermite and its derivative (figure 3.13 and 3.14). These are stored as
float44 Cg parameter values (x,y,z,w) as vertex position and color information for each
vertex.

The geometric packet sent to the GPU then looks like this:

Binding Semantics Name Corresponding Data
TEXCOORD0 Per vertex parameters t and rad
POSITION Hermite blending function
COLOR Hermite derivative blending function

3.4 Optimizations

When rendering a scene consisting of several million vertices, not having to draw them all
usually speeds up the frame rate. Storing multiple versions of the same geometry is often
used since the objects do not have to be drawn in full detail in all circumstances. This
kind of optimization if called level of detail (LOD).

4float4 is a predefined vector data type provided by the Cg Standard Library. This is a packed array
which tells the compiler to allocate the elements of packed arrays so that vector operations on these
variables are most efficient. If two input vectors are stored in packed form, programmable graphics hard-
ware typically performs three-component or four-component math operations - such as multiplications,
additions, and dot products - in a single instruction. [FK03]

28

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.11: Frenet frames sampled along branches of a tree.

Figure 3.12: The t and radians values stored as texture coordinates per vertex

29

3.4. OPTIMIZATIONS

Figure 3.13: The original Hermite blending function stored as float4 position values per
vertex

Figure 3.14: The derivative of the Hermite blending function stored as float4 color values
per vertex

30

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.15: Branches rendered as instances of a general cylinder

3.4.1 Instance LOD

Normally a tree with many recursive branches, the outer branches are smaller and shorter
than their parent branch. To represent their form we do not need as many vertices or
faces to make them look good. Therefore we can distinguish between different levels of
recursions when drawing the individual branches of a tree. The results show that this
leads to faster rendering since the scene contains fewer vertices per tree and in total. To
achieve this we store multiple versions of a standard stem in the vertex buffer, and the
offset for each version in an array for later lookup.

The final VBO looks something like this

Instance level 0
Instance level 1 Level 2 Level 3 ...

The number of levels in the VBO is defined by the constant MAX RECURSIONS at
compile time. Each instance level contains enough vertices to be able to generate a stem
(meaning at least 1 segment and 3 points in a circle) and each vertex is made out of
the geometrical package described earlier. Both the number of segments per stem and
points defining the circle of the stem is divided by 2 for every new level. This means that
instances of level 0 consist of 4 times as many vertices as stems on level 1.

As a standard, each stem connected to a tree contains an identifier telling it at what level
of recursion this stem is at. The trunk would be at recursion level 0 and all its child stems
at level 1 a.s.o. When rendering an instance, the offset for this recursion level is fetched
from an array and used as an offset for the VBO in the draw call.

31

3.4. OPTIMIZATIONS

3.4.2 Distance LOD

To make even better use of the concept of level of detail, I implemented a simple algorithm
based on the distance from the observer to the tree. This distance is set as a parameter
for the tree and taken into consideration when choosing the level of detail when rendering
an instance.

The level of detail for a current tree is calculated using the formula

LOD = (integer)(distance2)/(252)

where distance is the distance between the camera and the tree. When rendering a branch
belonging to a tree, this LOD is added to the recursion level of the branch. The result is
that all branches at recursion level 1 for a tree which LOD variable is calculated to be 2
are rendered using instance level 3 from the VBO.

The result is that every tree within a 25 unit lengths5 radius is rendered in the highest
level of detail (level 0) and ending at the lowest level of detail6 at 50 unit lengths from
the observer. These two lengths was chosen based on looking at the trees in my imple-
mentation and choosing the closest distance (25 units) from where the transition from
one level to another was hardly noticeable. This implementation uses a screen resolution
of 800x600. Rendering at a higher resolution would mean that the transition would be
noticeable at a longer distance and would have to be redefined.

3.4.3 MIP Maps

Using MIP Maps is another way to speed up performance using different levels of detail.
This project uses MIP-mapping (see section 2.4.3) to render the textures for the different
stems. A typical MIP-map texture for the bark on a tree would look like in figure 3.16.
The MIP-maps are precalculated and stored in DDS-files7.

3.4.4 View-frustum culling

View-frustum culling is a way of optimizing rendering when not all objects in a scene is
visible at all times. This technique consists of only drawing objects completely or partly
visible to the user. Although this is usually part of any graphics package, this has not
been implemented in this project to be able to run consistent benchmarking. Since we
draw all objects at all times, what we are looking at in the simulator has little or no effect
on the performance of the vertex shader. However if we look at an object close-up, a lot

5In Creation and Rendering of Realistic Trees and here measured in meters.
6The lowest level of detail is determined by the constant MAX RECURSIONS and is set at compile

time. For this compile it is set to 4.
7The Microsoft R© DirectDraw R© Surface (.dds) file format is used to store textures and cubic environ-

ment maps, both with and without mipmap levels. This format can store uncompressed and compressed
pixel formats, and is the preferred file format for storing DXTn compressed data. [MSD05]

32

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.16: MIP-map of bark texture

more work is done in the fragment shader occupying the processor with texture and light
calculations. To prevent any significant differences due to work done by the fragment
shader, all benchmarks are done looking at all the trees at the same time from a distance
and picking the lowest frame rate achieved.

3.5 Textures

3.5.1 Placing the texture patches

To make the texture of the bark more natural, the scaling for each individual stem has
to be calculated and each vertex mapped to a set of texture coordinates. This mapping
depends on the radius and length of the stem, and is calculated per vertex on the GPU
as follows:

tex(x) = rad
2∗π∗bradi+1c

tex(y) = t ∗ lengthstem

2

where rad is the property for circulating the stem, t the property specifying at what
position we are on the curve and radi the radius of the stem at this point on the curve
calculated based on lobe, flare and radiusZ parameters from the article by Weber and
Penn [JW95].

33

3.5. TEXTURES

3.5.2 Normal mapping

The normal information in a normal map is for practical reasons often stored in a texture
as RGB values. This leads to easier implementation since ordinary image formats are
already supported by most APIs (like OpenGL). The change in the normal is stored as
three vectors, X, Y and Z represented by the corresponding values of R, G and B in the
texture.

Figure 3.17: Illustration of a normal map texture.[Dre04]

Since the direction of a normal is defined in the range [−1, 1] while the RGB values are
defined in the range [0, 1], the color value must be expanded to the range of the normal
vectors by the formula:

vector = 2.0 ∗ (colorV alue− 0.5)

Since the normal vectors are defined in tangent space8, meaning they are defined in the
space represented by the face being rendered, the normal to be modified must exist in
the same space. Normally vertices exist in either world- or object-space. For calculating
Phong shading we need the position of the light, eye position and the normal. Two
alternatives exists; one is to transform the light- and eye- coordinates to tangent space;
the other alternative is to transform the normal map coordinates to world- or object-space.

8The tangent space of differential manifold M at a point x ∈ M is the vector space whose elements
are velocities of trajectories that pass through x. The standard notation for the tangent space of M at
the point x is TxM . [Pla05]

34

CHAPTER 3. APPROACH AND IMPLEMENTATION

This all depends on what is more convenient. For this project the last method is the most
effective since we already have the vectors representing tangent space (vectors T, N and B
from section 2.2.4) and hence the matrix to convert any vector in tangent space to world
space. All we have to do is construct the tangent-to-world matrix in the fragment shader
based on the three interpolated vectors from the vertex shader and multiply the normal
fetched from the normal map with this matrix. We can then use this new normal vector
to calculate the Phong shading (since the light vector and eye position is given in world
coordinates). Code for these calculations are rendered in appendix A.2.

3.6 Landscape

To be able to see the trees in a more natural environment, I added a landscape to the scene
and placed the trees in the terrain. The implementation of the landscape is from a Height
Map9 3 tutorial written by Ben Humphrey at GameTutorials.com [Hum02]. The tutorial
shows how to effectively render a Height Map using VBOs and multitexturing10 for adding
detail to the ground. Although the landscape is implemented as a static VBO, it does
have an impact on the frame rate when rendering the scene. However the vertices making
up the landscape are not processed by the implemented vertex shader, so no calculations
are done for these vertices. The landscape is not included in the benchmark tests in the
next chapter, except when testing wind.

Figure 3.18: Landscape rendered with the Height Map 3 Tutorial. [Hum02]

9A Height Map is height data stored in a certain format where the values represent the height for
consecutive points in a two dimensional plane.

10Multitexturing means that you are displaying several textures at the same time on triangles. The
drawback of having to display several textures on the same triangle(s) using many passes is that the
graphic card will transform many time the same triangles and vertices, whereas it can transform them
only once and apply many texture on it at the same time using multitexturing, which is obviously faster.
[Pd05]

35

3.7. DIFFERENT TREE TYPES

To make the trees appear to grow naturally out of the ground their are standing on, the
first tangent vector for the trunk of each tree is parallel to the normal at the point where
the tree is placed. This makes the first disc of the trunk lie in the same plane as the
terrain and slowly rotate towards the direction of the end tangent as shown in figure 3.20
and illustrated in figure 3.19.

Figure 3.19: Tree growing out from a steep hillside with control points.

3.7 Different tree types

Using the parameters from Creation and Rendering of Realistic Trees its pretty easy
to construct individual trees based on a variety of different tree types. By defining a
set of parameters for a tree type, parameters such as lengthstem, radiusstem nTaper,
nCurve and nCurveBack will be individual features for each tree. In addition we can
define many sets of parameters to create completely different tree types. The application
implemented supports such parameter sets as input to the program. The files containing
tree type information must be stored in the Microsoft Windows .INI file format11. The
implementation uses a class for reading .INI files written by Clauss and Hill [AC01]. The
different files containing tree type information are then given as command line parameters
to the program at start up, separated with space or comma. Example:

11Files with the extension .INI was originally invented by Microsoft for storing configuration information
for MS-Windows. In addition, many applications have their own .INI files. In Windows 95 and Windows
NT, .INI files have been replaced by the Registry, though many applications still include .INI files for
backward compatibility.

36

CHAPTER 3. APPROACH AND IMPLEMENTATION

Figure 3.20: Tree growing out from a steep hillside.

fasttreerendering ../treetypes/default.tsp ../treetypes/japan.tsp

An example on the content of a parameter file is given in appendix C.

Instead of calling the configuration files .INI they are renamed to .TSP (Tree System
Parameters) without changing the basic .INI file format.

Apart from the standard parameters from the article by Weber and Penn, additional
parameters are implemented. Among these are parameters for specifying the texture used
for each tree type. The user can specify both the standard texture used for the tree
type and the normal map texture (by parameters material and materialNormal). The
user can also specify the ambient, diffuse and specular color used in the Phong shading
calculation for each tree type (by parameters Ka, Kd and Ks). See appendix C for an
example.

3.8 Wind

Although not the main purpose of this project, I experimented with simulating wind by
modifying the control points for each tree. The approach involves altering the nCurve
parameter for the trunk. Since all control points are defined in world space, when mod-
ifying the main trunk all other control points for the attached branches will have to be
recalculated. Of course the main trunk would not move much unless in the case of a
hurricane. This approach was chosen to see what impact having to recalculate all control

37

3.8. WIND

points of every tree had on performance. The new nCurve value is calculated as follows:

nCurve = cos(windCircle) ∗ nCurve/2 + nCurve

where windCircle is a variable augmented by a certain value every frame and randomly
generated for each tree.

Preferably a more accurate and realistic wind model should be implemented. Such a
model is proposed in the future work chapter in section 6.3.

Tests show that the proposed method of moving all per vertex transformations to the
GPU has a clear advantage when dealing with animation. The results of this benchmark
test can be seen in the next chapter.

38

Chapter 4

Results and discussion

This chapter will present the most important results found using the implementation
described earlier.

For comparable benchmarks, all tests are run on a Pentium 4 3.0GHz with a GeForce
6600GT PCI Express x16 using NVIDIA graphics drivers version 71.84.

Screen resolution: 800x600x16
Maximum number of segments per instance: 20
Maximum number of points making up the circle: 10

These maximum values mean that each stem can consist of a maximum of 20 segments
along its length, and a maximum of 10 vertices defining the circle of each stem. A trunk
at instance level 0 will typically have 200 vertices (20 segments and 10 points) defining it,
while a branch at level 1 will consist of only 25 vertices (10 segments and 5 points) when
using the instance LOD method.

The benchmarks are presented in the order they were implemented, meaning that each
stage includes the previously presented methods and techniques.

4.1 Storing vertices in a VBO

The upper graph in figure 4.1 shows the frame rate when we specify a memory area (filled
with vertices) to be drawn once for every instance. The lower graph shows the frame
rate when we calculate the values for each vertex individually for all instances during
run-time and send them one-by-one to the GPU for processing. Even though the vertices
are calculated on the CPU, their value is the same as in the vertex buffer object (VBO).
So placing them according to the spline defining the branch is done on the GPU in both
cases. The graph shows that storing vertices in a VBO and uploading it once to the GPU
has a clear advantage over uploading each vertex separately. This means that we instead
of executing commands hundreds of times per branch, we draw a branch with a simple
command. Even though it might be difficult to see from the graph, the advantage of

39

4.2. ADDING INSTANCE LOD

Figure 4.1: Performance graph when storing vertices in a vertex buffer object

this technique is actually larger when drawing many instances. When drawing around a
hundred trees (equivalent to 11.014 instances for the tree type used in the benchmark)
the frame rate is nearly doubled when using a VBO. When surpassing 56.271 instances
the curves tend to coincide, which is due to driver bound for both methods, meaning that
the CPU has trouble feeding the GPU with draw-calls.

4.2 Adding instance LOD

As expected the frame rate increases a great deal when drawing smaller branches with
fewer details. The interesting part of the graph in figure 4.2 is the steep increase from
25 trees to 10 trees and then the graph goes flat. This is probably due to the bottleneck
in the CPU, not able to feed enough draw-calls to the GPU. So if the driver was able
to let through more commands we would see an even higher frame rate for a few trees
with many branches. This means this approach works best for advanced trees with many
branches, rather than many simple trees.

4.3 Pseudo Instancing

Pseudo Instancing has a clear advantage over uniform variables when updating the vari-
ables per instance. The speed up is nearly doubled when rendering around 8.000 instances
(see figure 4.3).

40

CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2: Performance graph when adding different level of detail to instances

Figure 4.3: Performance graph when adding pseudo instancing

41

4.4. PRECALCULATED BLENDING FUNCTIONS

4.4 Precalculated blending functions

This benchmark only tests the gain in removing calculation of the blending functions from
the vertex program. The two tests run identical code on the CPU, the only difference is
in the vertex program where the calculation of the two Hermite blending functions are
removed and replaced by the input from the vertex and color information for the current
vertex.

Precalculating the blending functions on the CPU when generating the instances amounted
to a speedup shown in the graph in figure 4.4. As expected the advantage is minor and
only becomes significant when the number of vertices in the scene becomes sufficiently
high.

Figure 4.4: Performance graph when precalculating blending functions

4.5 Moving light calculation to fragment program

This benchmark test was performed to measure the speed-up of moving the light calcula-
tion to the fragment program instead of for simplicity running it in the vertex program.
For calculating the light, the standard algorithm of Phong was implemented in both the
vertex shader, calculating the light per vertex only and interpolating between the vertexes,
and in the fragment shader, calculating the light based on interpolated normals from the
vertex shader.

For a small number of instances the curves in figure 4.5 are almost concurrent. This is
probably due to a bottleneck in the vertex shader since the CPU manages to send more
draw-calls than the vertex program can process. Between 5.506 and 14.000 instances there

42

CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.5: Performance graph when moving light calculation to fragment shader

is a clear advantage of letting the fragment program deal with the light calculation. The
curves come together again at the end of the graph, which is due to CPU bound, meaning
that the CPU fails to run as many draw-calls as the GPU can handle.

4.6 Adding normalsmaps

Normal mapping do come with a cost in performance, although its surprisingly small.
Even so, calculating light has to be done anyhow, so adding one texture lookup and a
matrix operation does not affect the shader much. If the algorithm for calculating the
light had been more advanced, like ray tracing or advanced shadow algorithms, one could
expect a bigger difference (see figure 4.6).

4.7 Adding distance LOD

The advantage of adding a simple level of detail algorithm based on the distance from
the observer should be clear. This implementation is optimal when rendering around 150
trees (or around 8.000 instances) as shown in figure 4.7. If the trees were more spread in
the landscape, this improvement would of course be more significant. For this benchmark
the trees were placed semi-randomly using the formula

43

4.7. ADDING DISTANCE LOD

Figure 4.6: Performance graph when adding normal maps

Figure 4.7: Performance graph when adding level of detail from observer

44

CHAPTER 4. RESULTS AND DISCUSSION

p(x) = random((int)(1.0/density ∗ number of trees)))− 0.5/density ∗ number of trees
p(y) = 0
p(z) = random((int)(1.0/density ∗ number of trees)))− 0.5/density ∗ number of trees

using a density of 0.9.

4.8 Adding wind

Figure 4.8: Performance graph when adding wind (with and without distance LOD)

We see from the graph in figure 4.8 that when removing the distance level of detail
algorithm it doesn’t seem to matter whether or not we recalculate the control points
every frame. This is probably because the CPU is not the bottleneck in these cases,
since the GPU has a lot more vertices to process than when using distance LOD. When
we include the distance LOD algorithm, we see the real cost of recalculating the control
points. This cost is however not that big when rendering a few trees, but as expected
become more significant when we need to recalculate over 20.000 branches. This test
shows that the technique of storing and recalculating the control points on the CPU is a
good alternative to doing all the calculations on the GPU when we render under 20.000
instances.

For this benchmark, the landscape was included in the render. The highest frame rate
achieved using this test bed when rendering the landscape alone was 88 FPS. This is why
all the graphs go flat when exceeding 87 FPS.

45

4.9. CPU VS. GPU

4.9 CPU vs. GPU

A previous paper written by Nordstoga and myself called ”Parametric tree-rendering”
[KN04] implements, among other things, some of the same functionality as this project
based on the article by Weber and Penn. Kjær and Nordstoga however focuses purely on
rendering trees using the CPU, calculating all vertex positions ”on-the-fly”while rendering.
Using techniques such as display lists1 the implementation reaches frame rates up to 159
FPS (on a modified GeForce 6800LE). Running the same benchmark in our test bed
(using a GeForce 6600GT) the frame rate reaches 91 FPS. This is equivalent to rendering
a hundred trees using this fast tree rendering system since the total number of vertices in
the scene is the same in both cases. However display lists have the disadvantage of being
static, meaning that the geometry can not be altered without having to regenerate whole
or large parts of the geometry every frame. In comparison, using the implementation from
Kjær and Nordstoga rendering a hundred trees, recalculating each tree every frame, gave
a frame rate of 5 FPS in our test bed (see first pillar in figure 4.9). This is a more fair
comparison to the implementation done in this project when we compare the performance
of the CPU to the GPU since in both cases, calculating and placing the vertices in the
scene is done for every vertex for each frame individually.

Figure 4.9: Summary graph comparing the different stages of implementation

The graph in figure 4.9 shows the frame rate of different stages of the implementation
rendering 100 trees. From the graph it is easy to see that implementing VBO, instance

1OpenGL display lists are used to ”extract” and store only the OpenGL specific commands when
drawing an object. This usually results in faster drawing of the object since all the code in between the
OpenGL commands are omitted. One restraint however is that a display list is static and not dependent
on other variables. Therefore when calling the display list the object(s) will be drawn in the same way
as when it was created, i.e. the shape can not be animated.

46

CHAPTER 4. RESULTS AND DISCUSSION

LOD, pseudo instancing and distance LOD had the largest impact on improving the
frame rate. Precalculating the blending functions and moving the light calculations to
the fragment shader had a larger impact as the number of vertices grew. Implementing
normal maps resulted in slower performance as more texture lookups have to be performed
for every normal calculated. However using normal maps improved the visual quality a
great deal when looking at the trees from a short distance.

47

Chapter 5

Summary and conclusion

Using today’s GPU power this project has shown that it is possible to draw natural
looking trees defined using a few simple parameters and formed by the smooth features
of the Hermite spline. I have shown that using techniques such as pseudo instancing,
vertex buffer objects, level of detail per instance, level of detail based on distance from
observer and other minor optimizations are clearly applicable for speeding up real-time
tree rendering.

Comparing with the implementation presented by [KN04], there is a clear advantage of
drawing trees using the GPU when you want external forces, such as wind, to alter the
geometry. In comparison, rendering a hundred trees, there is a speed up from 5 FPS to 43
FPS. The comparison also shows that display lists may be favorable when drawing static
objects.

Drawing instances using VBOs instead of single vertices and using the Pseudo instancing
technique had a great impact on performance, nearly doubling the frame rate for certain
number of instances.

Adding level of detail based on the observers distance from each tree also had a great
impact on performance, especially when rendering a large forest of widely spread trees.

Implementing precalculation of the Hermite blending functions emitted to a minor speed
up when rendering a large number of vertices. What we can conclude from this is that the
GPU calculates these type of functions extremely fast on its own, but as these calculations
do not do need to be recalculated for every vertex, they can profitably be precalculated
on the CPU in advance.

I’ve shown that using normal mapping greatly increases the viewing pleasure and realism
with minor performance cost. Placing the trees in a landscape, the user is able to get a
feel of walking around in a small forest of trees using the mouse and arrow keys. Using the
flexibility of the Hermite spline the trees seem to be growing naturally out of the ground,
no matter the angle of the ground.

49

Chapter 6

Future work

This chapter will propose and briefly discuss additions and enhancements relevant to the
implementation presented in this report.

6.1 Segment Buffering

To achieve an ever higher frame rate, Jon Olick suggests a technique called ”Segment
Buffering” [Oli05]. The problem with many static scenes containing many objects of the
same material is that they are often bound by render-state changes such as transform
changes, light map texture changes, or vertex stream changes. This is for example the
case when drawing a tree with this fast tree rendering solution. Since all branches require
individual draw-calls with texture changes, this produces driver and thus CPU overhead.
Studies made by Wloka [Wlo04] shows that a 1 GHz CPU can render only around 10.000
to 40.000 batches per second in Direct3D or around 4.000 batches per frame on a modern
CPU, meaning that without segment buffering we could only draw around 4.000 branches
in a scene in real-time, which is also the limit using pseudo instancing in OpenGL. To
make use of segment buffering, this project would have to be implemented using Direct3D.
A single tree or maybe even an entire forrest of similar trees could then be drawn sending
only one single draw call.

6.2 Vertex Constants Instancing

To make use of instancing to a further degree the project could be implemented using
vertex constants instancing. This means buffering multiple instances into one vertex
buffer, indexing each vertex with a number defining which stem/spline this vertex belongs
to. The vertex program would then have to fetch the correct control points based on this
index and move the vertex according to the remaining values of the vertex. Although this
might be faster because you could draw an entire level of branches in one draw call, it
requires a much more advanced vertex shader and memory lookups, which would result

51

6.3. ANIMATION

in slower performance for the vertex shader.

6.3 Animation

One enhancement which usually make a scene more lively is adding animation. A widely
discussed issue in real-time visualization of trees is animation based on influence from
natural forces like wind.

Since all the trees are build out of a skeleton of control points, animating the trees only
affects the CPU when having to calculate the new position for the control points. In a
normal software rendering system one would have to move every vertex for every tree,
occupying the CPU with vertex calculations. As these calculations are now moved to the
GPU we could add more realistic animation features to run on the CPU, as more advanced
wind models. A fast and efficient wind model was proposed in the article ”Animating
Trees” used in the animation of trees for the movie Shrek [Pet01]. Each branch is bend
according to a force sampled at the tip of the branch. The bend factor has the same
direction as the force and increases over the length of the branch.

bi = b ∗ (i/(n− 1))2

The idea is to preserve the distance between the control vertices for each branch so that
the branch only changes direction and not form.

Figure 6.1: Deforming a Branch: equation [Pet01]

A way of implementing this would be to generate key-frame-trees (sets of different control
points per tree) and then in the vertex shader interpolate between the control points by a
time-variable specified by the program. This technique is called ”Key-Frame Interpolation”
[FK03] and the formula for interpolating between two key frames is:

blendedPosition = positionA ∗ (1− f) + positionB ∗ f

52

CHAPTER 6. FUTURE WORK

Figure 6.2: SGI Billboard [SG98] Figure 6.3: SGI Billboard mask [SG98]

6.4 Level of detail

The level of detail algorithm implemented in this project takes into account the level
of recursion for each instance/branch and the distance from the viewer. The algorithm
simply switches between vertex objects with different number of vertices associated with
it. This does not lead to a smooth transition between the different levels of detail as the
viewer moves closer and further away from the trees as it would using techniques such as
geomorphing. However, defining the switch at a sufficient distance, the switch is hardly
noticeable. Another improvement that could be done when the trees are viewed from a
distance is the switch to billboards. This implies drawing a sprite representing the general
shape of the tree instead of drawing the actual geometry defining the tree.

GPU Gems 2 presents a technique for better transition between billboards inside and
outside our viewing frustum [Wha05]. By simulating alpha transparency via dissolve one
could fade out the billboards at a distance near the boundary of the far clipping plane.
The technique is basically to replace the normal billboard mask with a noise texture and
then slide the alpha test for this noise texture from 1 to 0 when dissolving the billboard.
This process is used in SpeedTreeRT, a C++ Application Programmer’s Interface (API)
package for real-time foliage creation [IDV].

6.5 Culling

The only culling done in this project is the standard culling performed by OpenGL by
removing the faces which normal points away from the viewer. A natural improvement
would be to implement culling algorithms to avoid drawing the trees outside the viewing
frustum. Techniques such as octree culling with each tree (or even each branch) repre-
sented as a node with a bounding box would be a respectable candidate [MH98].

6.6 Continuity of texture patches

Currently there is a discontinuity in the texture patches between connecting stems. This
might be fixed using a parameter for specifying where on the texture patch we should
start drawing. The idea would be starting to paint the texture at the position t where

53

6.7. SHADOWS

the stem emerges multiplied by the length of the parent stem:

parentt ∗ parentlength

This would however not be exactly accurate as the scaling of the texture for the child
stem is smaller than that of the parent stem. Calculating the scaling factor would solve
this problem, amounting to the formula:

parentt ∗ parentlength ∗ (scaleparent/scalechild)

6.7 Shadows

Shadows from a tree is not uncommon in nature and could be simulated by for example
projecting the tree object onto the ground plane. Self shadowing could be simulated in
the fragment shader by altering the diffuse color depending on what recursion level the
stem rendered is at and what position (t) along the stem the face being rendered is at,
making it darker as we approach the center and bottom of the tree. This effect would of
course be more relevant after implementing leafs as the tree would cast more shadows.
An interesting approach is proposed by [AMP01].

54

Bibliography

[AC01] Shane Hill Adam Clauss. Implementation of the cinifile class. 2001. 36

[Agi72] Gerald Jacob Agin. Representation and description of curved objects. PhD
thesis, 1972. 9

[AMP01] Fabrice Neyret Alexandre Meyer and Pierre Poulin. Interactive rendering of
trees with shading and shadows. In Eurographics Workshop on Rendering 2001,
June 2001. 54

[Bis75] R. L. Bishop. There is more than one way to frame a curve, volume 82 of Amer.
Math. Monthly, pages 246–251. March 1975. 25

[Blo85] Jules Bloomenthal. Modeling the mighty maple. In Proceedings of the 12th
annual conference on Computer graphics and interactive techniques, pages 305–
311. ACM Press, 1985. v, vi, 1, 9, 10, 24, 28

[Blo90] Jules Bloomenthal. Calculation of reference frames along a space curve. Graph-
ics gems, 1:567–571, 1990. v, vi, 11, 25

[Car05] Francesco Carucci. GPU Gems 2, chapter Inside Geometry Instancing, pages
47–67. Addison-Wesley, 1st edition, 2005. 11, 12

[Dre04] Søren Dreijer. Bump mapping using cg, 2004.
http://www.blacksmith-studios.dk/projects/downloads/bumpmapping_

using_cg.php. v, vi, 16, 34

[FK03] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003. 12, 28, 52

[Hum02] Ben Humphrey. Height Map 3 Tutorial, 2002.
http://www.gametutorials.com/. vi, 35

[IDV] IDV. SpeedTree.
http://www.idvinc.com/. 53

[JW95] Joseph Penn Jason Weber. Creation and rendering of realistic trees. In Com-
puter Graphics, pages 119–128. ACM Press New York, NY, USA, 1995. v, 1, 3,
4, 19, 23, 33

55

http://www.blacksmith-studios.dk/projects/downloads/bumpmapping_using_cg.php
http://www.blacksmith-studios.dk/projects/downloads/bumpmapping_using_cg.php
http://www.gametutorials.com/
http://www.idvinc.com/

BIBLIOGRAPHY

[KN04] Andreas Solem Kjær and Åsmund Nordstoga. Parametric tree-rendering. De-
sember 2004. 46, 49

[LA90] Przemyslaw Lindenmayer Aristid, Prusinkiewicz. The algorithmic beauty of
plants. Springer, Verlag, 1990. 3

[MH98] Andreas Varga Markus Hadwiger. Visibility culling. Proseminar Wis-
senschaftliches Arbeiten, 1998. 53

[MSD05] Microsoft MSDN. Dds files, 2005.
http://msdn.microsoft.com/archive/en-us/directx9_c_summer_03/

directx/graphics/reference/ddsfilereference/ddsfileformat.asp. 32

[NVI05] NVIDIA. Nvidia sdk code samples, 2005.
http://download.developer.nvidia.com/developer/SDK/Individual_

Samples/samples.html. v, 13

[oE04] The University of Edinburgh. Computer graphics, lecture 10, curves and
surfaces, 2004.
http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/lect10.ppt.
vi, 24

[OKR04] John F. Hughes Olga Karpenko and Ramesh Raskar. Epipolar methods for
multi-view sketching. Eurographics Workshop on Sketch-Based Interfaces,
Grenoble France, 2004. 25

[Oli05] Jon Olick. GPU Gems 2, chapter Segment Buffering, pages 69–73. Addison-
Wesley, 1st edition, 2005. 51

[Ope04] OpenGL.org. Opengl shading language, 2004.
http://www.opengl.org/documentation/oglsl.html. 12

[oV04] University of Virginia. Cs 445 / 645 introduction to computer graphics, lecture
22, hermite splines, 2004. v, 8

[Pd05] Planet-d.net. Multitexturing with opengl, 2005.
http://tfpsly.planet-d.net/english/3d/multitexturing.html. 35

[Pet01] Scott Peterson. Animating trees. Silicon Valley ACM SIGGRAPH, 2001.
http://silicon-valley.siggraph.org/MeetingNotes/shrek/trees.pdf.
vi, 52

[Pla05] PlanetMath.org. Definition of tangent space, 2005.
http://planetmath.org/encyclopedia/TangentSpace.html. 34

[SG98] Inc. Silicon Graphics. Billboard, 1998.
http://www.sgi.com/products/software/performer/brew/billboard.html.
vi, 53

56

http://msdn.microsoft.com/archive/en-us/directx9_c_summer_03/directx/graphics/reference/ddsfilereference/ddsfileformat.asp
http://msdn.microsoft.com/archive/en-us/directx9_c_summer_03/directx/graphics/reference/ddsfilereference/ddsfileformat.asp
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/samples.html
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/samples.html
http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/lect10.ppt
http://www.opengl.org/documentation/oglsl.html
http://tfpsly.planet-d.net/english/3d/multitexturing.html
http://silicon-valley.siggraph.org/MeetingNotes/shrek/trees.pdf
http://planetmath.org/encyclopedia/TangentSpace.html
http://www.sgi.com/products/software/performer/brew/billboard.html

BIBLIOGRAPHY

[Tec04] Unreal Technology. Unreal engine 3, 2004.
http://www.unrealtechnology.com/html/technology/ue30.shtml. v, 15,
16

[Wha05] David Whatley. GPU Gems 2, chapter Toward Photorealism in Virtual Botany,
pages 7–25. Addison-Wesley, 1st edition, 2005. 53

[Wika] Wikipedia. Anti-aliasing.
http://en.wikipedia.org/wiki/Anti-aliasing. v, 17

[Wikb] Wikipedia. Spline curve.
http://en.wikipedia.org/wiki/Spline_curve. 7

[Wlo04] Matthias Wloka. Batch, batch, batch: What does it really mean? Presentation
at Game Developers Conference 2003, March 2004. 11, 51

[Zel04] Jeremy Zelsnack. Glsl pseudo-instancing. Technical report, NVIDIA Tech-
nical Report, http://download.developer.nvidia.com/developer/SDK/

Individual_Samples/DEMOS/OpenGL/src/glsl_pseudo_instancing/docs/

glsl_pseudo_instancing.pdf, 2004. v, 12, 14

57

http://www.unrealtechnology.com/html/technology/ue30.shtml
http://en.wikipedia.org/wiki/Anti-aliasing
http://en.wikipedia.org/wiki/Spline_curve
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/src/glsl_pseudo_instancing/docs/glsl_pseudo_instancing.pdf
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/src/glsl_pseudo_instancing/docs/glsl_pseudo_instancing.pdf
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/src/glsl_pseudo_instancing/docs/glsl_pseudo_instancing.pdf

Appendix A

Cg Shader code

A.1 Vertex shader

Listing A.1: Vertex Shader� �
1 // Function for calculating the flareZ variable from Weber and Penn
2 f loat getFlareZ (f loat f l a r e , f loat Z) {
3 f loat y = 1 − 8 ∗ Z ;
4 i f (y<0)
5 y = 0 ;
6 return f l a r e ∗ (pow(100 , y) − 1) / 100 + 1 ;
7 }
8

9 // Function for calculating the radiusZ variable from Weber and Penn
10 f loat getRadiusZ (f loat Z , f loat nTaper , f loat radiusStem , f loat

lengthStem) {
11 f loat un i t t ape r = 0 ;
12 i f (nTaper < 1)
13 un i t t ape r = nTaper ;
14 else i f (nTaper < 2)
15 un i t t ape r = 2 − nTaper ;
16 else i f (nTaper < 3)
17 un i t t ape r = 0 ;
18 f loat taperZ = radiusStem ∗ (1 − un i t t ape r ∗ Z) ;
19 f loat radiusZ = 0 ;
20 i f (nTaper < 1)
21 radiusZ = taperZ ;
22 else i f (nTaper <= 3) {
23 f loat Z2 = (1 − Z) ∗ lengthStem ;
24 f loat depth = 0 ;
25 i f ((nTaper < 2) | | (Z2 < taperZ))
26 depth = 1 ;
27 else

59

A.1. VERTEX SHADER

28 depth = nTaper − 2 ;
29 f loat Z3 = 0 ;
30 i f (nTaper < 2)
31 Z3 = Z2 ;
32 else
33 Z3 = abs (Z2 − 2 ∗ taperZ ∗ (int) (Z2 / (2 ∗ taperZ) + 0 .5

)) ;
34 i f ((nTaper<2) && (Z3 >= taperZ))
35 radiusZ = taperZ ;
36 else {
37 f loat sq r t1 = taperZ ∗ taperZ − (Z3 − taperZ) ∗(Z3 − taperZ)

;
38 f loat sq r t2 = sqrt (sq r t1) ;
39 radiusZ = (1−depth) ∗ taperZ + depth ∗ sq r t2 ;
40 }
41 }
42 return radiusZ ;
43 }
44

45 void main (f loat4 btab : POSITION, // Hermite blending function
46 f loat4 d btab : COLOR, // Hermite derivative blending
47 // function
48 f loat2 objectProp : TEXCOORD0, // Variables t and rad
49 f loat3 c t r l p 0 : TEXCOORD1, // Start tangent
50 f loat3 c t r l p 1 : TEXCOORD2, // Start position
51 f loat3 c t r l p 2 : TEXCOORD3, // End position
52 f loat3 c t r l p 3 : TEXCOORD4, // End tangent
53 f loat3 sa f eVec to r : TEXCOORD5, // The safe vector
54 f loat3 param1 : TEXCOORD6, // First set of parameters
55 f loat3 param2 : TEXCOORD7, // Second set of parameters
56

57 out float4 oPos i t i on : POSITION, // Vertex position in
58 // projection view space
59 out float3 objectPos : TEXCOORD0, // Vertex position in
60 // world space
61 out float2 oTexCoord : TEXCOORD1, // Texture coordinate for

the
62 // current vertex
63 out float3 N vec : TEXCOORD2, // The normal vector
64 out float3 T vec : TEXCOORD3, // The tangent vector
65 out float3 B vec : TEXCOORD4, // The binormal vector
66 // used to calculate the
67 // tangent-to-world matrix
68

69 uniform float4x4 modelViewProj) // The modelview
70 // projection matrix
71 {

60

APPENDIX A. CG SHADER CODE

72 // The following variables are rendered for easier reading
73 // of the code and actually make the code a bit slower
74 f loat radiusStem = param1 . x ;
75 f loat lengthStem = param1 . y ;
76 f loat nTaper = param1 . z ;
77 f loat l obe s = param2 . x ;
78 f loat lobeDepth = param2 . y ;
79 f loat f l a r e = param2 . z ;
80

81 f loat t = objectProp . y ;
82

83 //Make hermite
84 f loat3 her , d her ;
85

86 float4x3 contro l po intsM =
87 float4x3 (c t r lp0 , c t r lp1 , c t r lp2 , c t r l p 3) ;
88 her = mul(btab , contro l po intsM) ;
89 d her = mul(d btab , contro l po intsM) ;
90

91 // finding the normalized tangent:
92 // T pointing along the curve
93 T vec = normalize (d her) ;
94

95 // finding the normalized d cross safe vector:
96 B vec = cross (T vec , sa f eVecto r) ;
97 B vec = normalize (B vec) ;
98

99 // finding a third perpendiculat vector:
100 // N perpendicular to both T and B
101 N vec = normalize (cross (B vec , T vec)) ;
102

103 // we want to move to the correct point on the Hermite curve
104 // as tabulated in (her[ix][0],her[ix][1],her[ix][2])
105 f loat3 C vec = her ;
106

107 // at this point T,B,N describes the coordinate system
108 // we will use at the position C
109 // N will act as x-axes
110 // B will act as y-axes
111 // T will act as z-axes
112

113 // setting up the matix that will take us to the
114 // Frenet frame located at this t-point
115 // M=|N,B,T|
116

117 float3x3 normalM = float3x3 (
118 N vec , T vec , B vec

61

A.1. VERTEX SHADER

119) ;
120

121 f loat rad = objectProp . x ;
122 f loat cosS , s inS ;
123 sincos (rad , s inS , cosS) ;
124

125 // Calculate the radius at the current t value
126 f loat radiusZ = getRadiusZ (t , nTaper , radiusStem , lengthStem) ;
127 // Calculate the lobe influence (if any)
128 f loat lobeZ = (l obe s==0) ? 1 : 1 + lobeDepth ∗ s i n (l obe s ∗ rad)

;
129 // Calculate the flare influence (if any)
130 f loat addFlare = (f l a r e ==0) ? 1 : getFlareZ (f l a r e , t) ;
131 // Calculate the final radius
132 f loat r ad i = radiusZ ∗ lobeZ ∗ addFlare ;
133

134 // Generate the position of the vertex from where on the circle
we are

135 f loat3 newPos = f loat3 (cosS ∗ radi ,
136 0 ,
137 s inS ∗ r ad i) ;
138

139 // Place the vertex according to the Frenet frame matrix
140 f loat3 normal = mul(newPos , normalM) ;
141

142 // Move the point along the spline to the right Hermite position
143 objectPos = normal + C vec ;
144

145 // Finally multiply the point with the modelview projection
matrix

146 oPos i t i on = mul(modelViewProj , f loat4 (objectPos , 1)) ;
147

148 // Generate the texture coordinates to send to the fragment
shader

149 oTexCoord = objectProp ∗ f loat2 (2 / (3 . 1 4∗ ((int) r ad i +1)) ,
150 lengthStem /2) ;
151

152 // Generate the vectors to send to the fragment shader
153 N vec = normalize (normal) ;
154 B vec = cross (T vec , N vec) ;
155 }� �

62

APPENDIX A. CG SHADER CODE

A.2 Fragment shader

Listing A.2: Fragment Shader� �
1 // Since the normals in the normal map are in the (color) range [0,

1] we need to uncompress them
2 // to "real" normal (vector) directions.
3 // Decompress vector ([0, 1] -> [-1, 1])
4 f loat3 expand (f loat3 v) { return (v−0.5) ∗2 ; }
5

6 void main (// The position of the vertex from the vertex shader
7 f loat3 po s i t i o n : TEXCOORD0,
8 // The texture coordinates for the vertex
9 f loat2 texCoord : TEXCOORD1,

10 // The normal vector from the vertex shader
11 f loat3 N vec : TEXCOORD2,
12 // The tangent vector from the vertex shader
13 f loat3 T vec : TEXCOORD3,
14 // The binormal vector from the vertex shader
15 f loat3 B vec : TEXCOORD4,
16

17 out float4 c o l o r : COLOR, // The color to paint the
texel in

18

19 uniform float3 globalAmbient , // Global ambient light in
the scene

20 uniform float3 l i gh tCo lo r , // Color of the light source
21 uniform float3 l i g h tPo s i t i o n , // Position of the light

source
22 uniform float3 eyePos i t ion , // Position of the observer
23 uniform float3 Ke , // The Phong emission
24 uniform float3 Ka, // The Phong ambient color
25 uniform float3 Kd, // The Phong diffuse color
26 uniform float3 Ks , // The Phong specular color
27 uniform float sh i n i n e s s , // The Phong shininess
28 uniform sampler2D barkTexture , // The bark texture
29 uniform sampler2D barkNormalTexture) // The normal map

texture
30 {
31 // Fetch and expand range-compressed normal
32 f loat3 normalTex = tex2D (barkNormalTexture , texCoord) . zyx ;
33 f loat3 normal = expand (normalTex) ;
34 // Reconstruct the Frenet frame matrix
35 float3x3 normalM = float3x3 (N vec , T vec , B vec) ;
36 // Transform the tangent-space normal-map-texture
37 // normal vector into world-space coordinates
38 normal = normalize (mul(normal , normalM)) ;
39

63

A.2. FRAGMENT SHADER

40 // Calculate direction vector needed for Phong shading
41 f loat3 objectPos = po s i t i o n . xyz ;
42 f loat3 eyeDi r e c t i on = normalize (eyePos i t i on − objectPos) ;
43 f loat3 l i g h tD i r e c t i o n = normalize (l i g h tP o s i t i o n − objectPos) ;
44 f loat3 ha l fAng le = normalize (l i g h tD i r e c t i o n + eyeDi r e c t i on) ;
45

46 // Compute emissive term
47 f loat3 emi s s i v e = Ke ;
48

49 // Compute ambient term
50 f loat3 ambient = Ka ∗ globalAmbient ;
51

52 // Compute the diffuse term
53 f loat d i f f u s eL i g h t = saturate (dot (l i g h tD i r e c t i o n , normal)) ;
54 f loat3 d i f f u s e = Kd ∗ l i g h tCo l o r ∗ d i f f u s eL i g h t ;
55

56 // Fetch the color of the bark texture
57 f loat3 t exe lCo lo r0 = tex2D (barkTexture , texCoord) . xyz ;
58

59 // Compute the specular term
60 f loat specu l a rL i gh t = saturate (dot (hal fAngle , normal)) ;
61 specu l a rL i gh t = pow(specu la rL ight , s h i n i n e s s) ;
62 i f (d i f f u s eL i g h t <= 0) specu l a rL igh t = 0 ;
63 f loat3 spe cu l a r = Ks ∗ l i g h tCo l o r ∗ specu l a rL i gh t ;
64

65 // Compute the final light at the current texel
66 c o l o r . xyz = (emi s s i v e + ambient + d i f f u s e + specu l a r) ∗ t exe lCo lo r0

;
67 c o l o r .w = 1 ;
68 }� �

64

Appendix B

Compiling the sourcecode

B.1 OpenGL, Cg and Glew

To compile the sourcecode for this project you need some additional files installed on
your system. These include the library files for OpenGL and the NVIDIA Cg Toolkit.
This toolkit can be downloaded from the NVIDIA web page http://developer.nvidia.
com/. You also need the The OpenGL Extension Wrangler Library1 which can be down-
loaded from http://glew.sourceforge.net/. The GLEW library is also included in the
NVIDIA SDK, so it should be sufficient if you have version 9.0 or later installed already.
To compile the project in Visual Studio .NET 2003 on a Win XP machine you need the
following files in their respective directories:

HEADER FILES

The following files must be available and preferably exist in the following locations:

glew.h installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Include/Gl

wglew.h installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Include/Gl

glu.h installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Include/Gl

gl.h installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Include/Gl

glaux.h installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Include/Gl

LIBRARY FILES

The following files must be available and preferably exist in the following locations:

glew32.lib installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Lib

glew32s.lib installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Lib

glu32.lib installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Lib

1The OpenGL Extension Wrangler Library (GLEW) is a cross-platform C/C++ extension loading
library. GLEW provides efficient run-time mechanisms for determining which OpenGL extensions are
supported on the target platform. [http://glew.sourceforge.net/]

65

http://developer.nvidia.com/
http://developer.nvidia.com/
http://glew.sourceforge.net/
http://glew.sourceforge.net/

B.1. OPENGL, CG AND GLEW

glaux.lib installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Lib

Opengl32.lib installed in ../Microsoft Visual Studio .NET 2003/Vc7/PlatformSDK/Lib

DLL FILES

The following files must be available and preferably exist in the following locations:

glu32.dll installed in C:/WINDOWS/system32

glew32.dll installed in C:/WINDOWS/system32

Opengl32.dll installed in C:/WINDOWS/system32

66

Appendix C

Tree type parameter file

[General]

shape=4

baseSize=0.1

scale=23

scaleV=2

ratio=0.015

ratioPower=0.13

lobes=3

lobeDepth=0.3

flare=1

recLevels=3

material=../materials/LondonPlaneBark.dds

materialNormal=../materials/LondonPlaneBarkNormal.dds

Ka={0.3,0.4,0.2}

Kd={0.8,0.8,0.8}

Ks={0.9,0.9,0.8}

[ParamLevel0]

0Curve=10

0CurveV=10

0CurveBack=0

0Rotate=140

0RotateV=0

0Length=1

0LengthV=0

0Taper=1

[ParamLevel1]

1Curve=0

1CurveV=90

67

1CurveBack=0

1Branches=10

1BranchesV=1

1Rotate=140

1RotateV=0

1DownAngle=60

1DownAngleV=0

1Length=0.3

1LengthV=0.05

1Taper=1

[ParamLevel2]

2Curve=-10

2CurveV=150

2CurveBack=0

2Branches=1

2BranchesV=1

2Rotate=140

2RotateV=0

2DownAngle=30

2DownAngleV=10

2Length=0.6

2LengthV=0.1

2Taper=1

[ParamLevel3]

3Curve=-10

3CurveV=150

3CurveBack=0

3Branches=0

2BranchesV=0

3Rotate=77

3RotateV=0

3DownAngle=45

3DownAngleV=10

3Length=0.4

3LengthV=0

3Taper=1

68

Appendix D

Binary distribution

A binary distribution of the implemented application can be found on the accompanying
compact-disc under the folder /bin. This distribution is compiled for Microsoft Windows
XP and requires a graphics card supporting VBO and programmable shaders. To run
the standard application simply run the .exe file. To run the demo including several tree
types, run the .bat file.

The different tree types are stored under the folder /treetypes and all the textures are
stored under /materials.

The observer view is controlled using the mouse, W, S, A and D keys on the keyboard
for moving forward, backward, left and right and the up and down arrow-keys for moving
up and down in the scene. By tapping space-bar twice the observer is taken for a ride
circling the landscape of trees.

69

Appendix E

Screenshots and videos

Video demonstrations1 can be found on the accompanying compact-disc under the folder
/videos.

1Videos using low detail consists of a maximum of 20 segments and 10 circle points per stem. High
detail has 24 segments and 32 circle points.

71

	Introduction
	Previous work
	Creation and Rendering of Realistic Trees
	Skeletal parameters
	Surface parameters

	Geometric representation
	Spline curves
	The Hermite spline
	Generalized cylinders
	Framing a curve

	Geometry instancing
	Pseudo Instancing

	Textures
	Bump mapping
	Normal mapping
	MIP maps

	Approach and implementation
	Creating a tree
	Generating a tree
	Rendering a tree

	Geometric representation
	Using the Hermite spline
	Framing the curve
	Defining the circle

	Geometry instancing
	Optimizations
	Instance LOD
	Distance LOD
	MIP Maps
	View-frustum culling

	Textures
	Placing the texture patches
	Normal mapping

	Landscape
	Different tree types
	Wind

	Results and discussion
	Storing vertices in a VBO
	Adding instance LOD
	Pseudo Instancing
	Precalculated blending functions
	Moving light calculation to fragment program
	Adding normalsmaps
	Adding distance LOD
	Adding wind
	CPU vs. GPU

	Summary and conclusion
	Future work
	Segment Buffering
	Vertex Constants Instancing
	Animation
	Level of detail
	Culling
	Continuity of texture patches
	Shadows

	Bibliography
	Cg Shader code
	Vertex shader
	Fragment shader

	Compiling the sourcecode
	OpenGL, Cg and Glew

	Tree type parameter file
	Binary distribution
	Screenshots and videos

