
Preface

This thesis is a documentation of our experimental work on using commodity

graphics hardware for medical image segmentation. It is inspired by our pilot

study, ”The GPU as a Computational Resource in Medical Image Processing”,

carried out at NTNU fall 2004. The work has been carried out at the Department

of Computer and Information Science, at the Norwegian University of Science

and Technology (NTNU), and in cooperation with SINTEF Health Research. The

thesis is written by Harald Ueland and Martin Botnen1, with professor Richard

E. Blake at NTNU as teaching supervisor, and with guidance from Jon Harald

Kaspersen at SINTEF.

We want to thank Richard E. Blake and Jon Harald Kaspersen for valuable

advices and inspiration. We also give thanks to Arild Wollf at SINTEF for fur-

ther motivation, and Trond Hagen, also at SINTEF, for giving us a framework

that made programming GPUs more easily. This turned out to be very useful

during our implementation. All data sets used in this work have been supplied by

SINTEF.

The thesis is written in English using LATEX. All code and programming func-

tions mentioned in the text are presented in TypeWriter typeface.

Trondheim, June 2005

Harald Ueland Martin Botnen

1{ueland — martibo}@idi.ntnu.no

iii

Abstract

Modern graphics processing units (GPUs) have evolved into high-performance

processors with fully programmable vertex and fragment stages. As their func-

tionality and performance are still increasing, more programmers are appealed

by their computational power. This has led to an extensive usage of the GPU

as a computational resource in general-purpose computing, and not just within

applications of the entertainment business and computer games.

Large volume data sets are involved when it comes to medical image segmenta-

tion. It is a time consuming task, but is important in the process of detection and

identification of special structures and objects. In this thesis we investigate the

possibility of using commodity graphics hardware for medical image segmentation.

By using a high-level shading language, and utilizing state of the art technolgy like

the framebuffer object (FBO) extension and a modern programmable GPU, we

perform seeded region growing (SRG) on medical volume data. We also implement

two pre-processing filters on the GPU; a median filter and a nonlinear anisotropic

diffusion filter, along with a volume visualizer that renders volume data.

In our work, we managed to port the Seeded Region Growing (SRG) algorithm

from the CPU programming model onto the GPU programming model. The GPU

implementation was successful, but we did not, however, get the desired reduc-

tion in time consume. In comparison with an equivalent CPU implementation, we

found that the GPU version is outperformed. This is most likely due to the over-

head associated with the setup of shaders and render-targets (FBO) while running

the SRG. The algorithm has low computational costs, and if a more complex and

sophisticated method is implemented on the GPU, the computational capacity

and the parallelism of the GPU may be more utilized. Hence, a speed-up in com-

putational time is then more likely to occur compared to a CPU implementation.

Our work involving a 3D nonlinear anisotropic diffusion filter strongly suggests

this.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 2

2 Background and Related Work 3

2.1 The Graphics Processing Unit (GPU) 3

2.1.1 The Graphics Pipeline . 4

2.1.2 The GPU Programming Model 4

2.1.3 Hardware Constraints . 7

2.2 High-Level Shading Languages . 10

2.2.1 The Cg Language . 10

2.3 Medical Image Segmentation . 13

2.3.1 Seeded Region Growing . 15

2.4 Related Work . 16

2.4.1 Filtering on the GPU . 17

2.4.2 Image Segmentation on the GPU 19

2.5 CustusX . 21

3 Design 23

3.1 Hardware Platform . 23

3.2 Software . 23

3.2.1 Graphics Library . 23

3.2.2 A General GPU Framework 24

3.2.3 Framebuffer Object Extension 24

3.2.4 Image Format and Textures 25

3.2.5 Alpha-Testing . 27

3.3 Filtering on the GPU . 27

3.3.1 Median Filter . 28

vii

3.3.2 Anisotropic Diffusion Filter 28

3.4 Seeded Region Growing on the GPU 31

3.4.1 Exclude . 32

3.4.2 Set Seed . 32

3.4.3 Grow Region . 32

3.4.4 Termination . 33

3.4.5 Shade Segmented . 33

4 Implementation 35

4.1 Excluding Fragments . 37

4.2 Seed Determination . 39

4.3 Grow Region . 40

4.4 Shade Segmented . 40

4.5 Computation Mask . 41

4.6 Termination . 41

4.7 Filters . 42

4.7.1 Median Filter . 43

4.7.2 Nonlinear Anisotropic Diffusion Filter 44

5 Visualization 47

5.1 Volume Rendering . 47

5.2 Rotation . 49

5.3 Examples . 53

6 Results 55

6.1 Test Setup . 55

6.1.1 Hardware Platform . 55

6.1.2 Graphical User Interface . 55

6.1.3 Test Data Sets . 56

6.1.4 Relevant Structures . 56

6.1.5 Achievement and Evaluation of the Results 57

6.2 Results . 58

6.2.1 Aorta . 58

6.2.2 Brain Tumour . 59

6.2.3 Cerebral Cortex . 61

6.2.4 Liver . 61

6.2.5 Kidneys . 62

6.3 Comparison with CPU Implementation 63

6.4 Result Visualizations . 64

7 Conclusions 73

7.1 Discussion . 73

7.2 Final Conclusions . 75

8 Future Work 77

8.1 Further Implementations . 77

8.2 Integration into CustusX . 78

Bibliography 79

A Seeded Region Growing - Cg Shaders 83

A.1 Exclude . 83

A.2 Set Seed . 84

A.3 Grow Region . 85

A.3.1 Grow Region 3D . 85

A.3.2 Grow Region 3D Using a Delta Value 86

A.3.3 Grow Region 2D . 87

A.4 Shade Segmented . 88

B Filtering - Cg Shaders 89

B.1 Median filter . 89

B.2 Anisotropic Diffusion Filter . 91

B.2.1 2D Implmentation . 91

B.2.2 3D Implementation . 93

B.3 Threshold . 95

List of Figures

2.1 The graphics hardware pipeline architecture. 4

2.2 The graphics hardware pipeline based on the OpenGL API. 5

2.3 The GPU programming model . 6

2.4 Programmable graphics pipeline . 6

2.5 The GPU memory layout . 8

2.6 The CPU and GPU analogy . 9

2.7 The scatter and gather property . 9

2.8 The execution of a GPU program 10

2.9 Simple threshold Cg program . 11

2.10 Assembly code for the threshold shader 11

2.11 Segmentation with snakes . 15

2.12 A segmentation of the cerebral cortex 21

2.13 Custus X . 22

3.1 Framebuffer Object architecture . 26

3.2 OpenGL fragment tests . 27

3.3 The approximate version of median filtering. 28

3.4 Overview of our seeded region growing algorithm. 31

4.1 UML class overview . 36

4.2 Optimization in the Exclude-shader. 39

4.3 Optimization in the Median-shaders. 43

4.4 2D Sobel Operators. 44

4.5 3D Gradient Operator. 45

5.1 Stages in the volume visualization 48

5.2 Rendering and blending a volume 50

5.3 Rendered volumes . 53

xi

6.1 Screen shot of the GUI . 56

6.2 Measuring total time spent in hardware. 58

6.3 Image slice from data set A1 . 60

6.4 Result of using the anisotropic diffusion filter. 60

6.5 Segmentation of aorta in data set A1. 64

6.6 Segmentation of aorta in data set A2. 65

6.7 Segmentation of aorta in data set A3. 66

6.8 Segmentation of aorta in data set A4. 67

6.9 Segmentation of brain tumour in data set H1. 68

6.10 Segmentation of cerebral cortex in data set H1. 69

6.11 Segmentation of liver in data set A2. 70

6.12 Segmentation of kidneys in data set A4. 71

List of Tables

2.1 Relevant standard library functions in Cg. 13

6.1 The data test sets that we use. 57

6.2 Segmentation settings and achieved computation times. 59

xiii

Chapter 1

Introduction

In this chapter we present reasons for using the GPU for general purpose com-

puting, and specifically why medical image segmentation can benefit from using

graphics hardware.

1.1 Motivation

The main application of graphics processing units (GPUs) has been in enter-

tainment business and computer games, enabling fast rendering of anti-aliased,

textured and shaded geometric primitives. As their performance and functional-

ity have been increasing and now give support for floating-point computations,

and the existence of compilers for high-level programming languages, many new

algorithms and applications have been suggested. These try to take advantage of

the parallelism and vector processing capabilities of the GPUs.

The reasons for focusing on GPU implementations are numerous. One reason

is that, if you are already planning to visualize your data, you can remove uneces-

sary data stream from the central processing unit (CPU) to the GPU. The GPU

offers a parallel model for programming with internal parallel operations which

practically is a broad vector model with varying vector and matrix sizes, and the

implementations are often small and surveyable. The GPU also has a bigger slope

with respect to performance, measured in GFLOPS, than the CPU, and it gives

access to high internal bandwidth. When programming, we only have to focus on

exploiting this internal bandwidth. If more bandwidth is needed, a very big cluster

of CPUs would be necessary. At last, GPUs offer the possibility of transparent

compression and efficient improvement in the later generations of hardware.

1

2 1.2 Thesis Outline

Using the GPU as a co-processor can in light of this improve many medical

image processing tasks. The CPU is relieved and can be used for other tasks as

the GPU is left with much of the computational work. Medical image segmenta-

tion is a very time consuming task where an enormous amount of data must be

processed. As the segmentation often serves as a basis for further computations

and examinations, a speed-up in this step will have a large impact on the overall

process of many medical image processing tasks. Hopefully, a possible, small loss

in accuracy by using the GPU instead of the CPU is acceptable, and many medical

tasks may find an advantage in segmenting data quicker.

Seeded region growing (SRG) is a simple, surveyable algorithm that we believe

can be mapped onto the GPU. Of course, the preferred segmentation method

varies with the actual problem, but for many cases SRG can produce acceptable

results with its low computational costs.

1.2 Thesis Outline

In Chapter 2 we start with some general theory about the GPU, before we move

on to medical image segmentation and look at some existing, related work that

are relevant for our task. This is followed by Chapter 3, where we deal with the

design of our segmentation application. Here we mention the hardware platform

that we operate within, and present the technology and software methods that will

be used in our implementation. The chapter is completed with an overview of how

the different filtering techniques and the seeded region growing algorithm can be

mapped onto the GPU. In Chapters 4 and 5, we give a detailed description of our

implementation of SRG and how the data are visualized, respectively. Then we

present our results in Chapter 6 prior to discussions and conclusions in Chapter

7, and remaining, future work in Chapter 8.

Chapter 2

Background and Related Work

2.1 The Graphics Processing Unit (GPU)

Traditionally, graphics processing units, GPUs for short, were designed and used

almost exclusively to perform graphics-oriented tasks. From being a simple mem-

ory device, a modern GPU is now a fully programmable parallel processor. It

consists of two programmable hardware units and a number of units that are not

directly accessible to the application developer. Modern graphics cards have an

enormous amount of processing power which could be harnessed for doing different

calculations and visualizations. The computation power of graphics hardware has

increased at a higher rate than that of general purpose hardware, and its cost has

dropped so much that it has become available in every PCs on the marked. Today,

commodity graphics hardware is used in production of video games and computer

generated movies, computer aided design and scientific visualization, and even to

solve non-graphics-related problems. By exploiting the GPU, some problems may

be accelerated by over an order of magnitude over the CPU. For example, a 3 GHz

Pentium 4 CPU has a theoretical performance of 6 GFLOPS whilst 40 GFLOPS

has been observed for the GeForce 6800 Ultra from NVIDIA1 [16].

Throughout this work we will use the terms pixels, voxels, texels and fragments.

A pixel is an atomic part of a 2D image whilst a voxel is the corresponding part

of a 3D volume. A texel is a part of a texture and will be equivalent to pixels in

the design. A fragment is what the GPU fragment processor operates on, and will

be used interchangeably with pixel when this is appropriate in the context.

1Observed on a synthetic benchmark.

3

4 2.1 The Graphics Processing Unit (GPU)

2.1.1 The Graphics Pipeline

The GPU uses a pipeline architecture to process multiple fragments in parallel.

Several units are working in parallel on different vertices and fragments at different

stages of their transformations into pixels. GPUs are optimized for 4-component

vector operations, with both MIMD2 (vertex) and SIMD3 (pixel) pipelines. Figure

2.1 shows the graphics hardware pipeline architecture, split into three functional

stages.

Application

Stage

3D Vertices
Geometry

Stage
2D Vertices

Rasterization

Stage

Pixels

Figure 2.1: The graphics hardware pipeline architecture.

The application stage outputs 3D vertices. Every vertex has some attributes at-

tached to it. This include 3D position, orientation, texture coordinates and colour.

Mathematical operations are calculated on those values at the different stages in

the pipeline. In the geometry stage, projection transforms transform these ver-

tices into 2D primitives. Finally, the rasterization process computes pixel values to

form the final image by interpolating the attributes of the incoming vertices. Tex-

els can be computed from pre-stored textures and texture coordinate attributes.

They can be combined with the colour attributes of the fragments for any com-

putation purposes. The resulting pixel value is written into the framebuffer either

by replacing or blending with the old value.

2.1.2 The GPU Programming Model

As of today, there are two major 3D APIs. OpenGL, which we are using in our

work, is maintained by the OpenGL Architectural Review Board (ARB4) com-

posed of several companies. The second API, DirectX, is maintained by Microsoft

2Multiple Instructions/Multiple Data.
3Single Instruction/Multiple Data.
4See http://www.opengl.org/about/arb.

2.1 The Graphics Processing Unit (GPU) 5

Corporation, but is compatible with the Windows operating system only. DirectX

is very popular in the gaming industry. Figure 2.2 shows the graphics pipeline

based on the OpenGL API.

Application

Model-View
Transform

Lighting
Projection
Transform

Clipping
Primitive
Assembly

Rasterization
Texture Fetching &
Other Per-fragment

Operations
Framebuffer

Figure 2.2: The graphics hardware pipeline based on the OpenGL API.

As mentioned, the GPU consists of two programmable hardware units. This means

that stages in the graphics pipeline are made explicit to the application program-

mer, and developers can write their own shaders where they specify the operations

they want to be executed on a per-vertex and -fragment basis during the render-

ing. Such vertex- and fragment programs, also called shaders, can be written in

high-level programming languages that most modern GPUs support. Examples of

such high-level languages are given in Section 2.2.

The programmable processors in the processing pipeline are the vertex proces-

sor and the fragment processor. Figure 2.3 shows the GPU programming model.

The programmable parts are shaded.

When you make a CPU application that utilizes graphics hardware, you will

normally issue calls to the hardware via a 3D API. The API will translate these

calls into a stream of GPU commands and data, all of which are sent to the GPU

front end across the CPU/GPU boundary. Once the transfer has been completed,

CPU and GPU execution can continue asynchronously.

The programmable vertex processor is a unit that operates on incoming ver-

tices. It performs traditional vertex and normal transformations, texture coor-

dinate generation and transformation, lighting and colour material applications.

Programs that are intended to run on this processor are called vertex shaders or

vertex programs. Vertex shaders can be used to specify a completely general se-

quence of operations to be applied to each vertex. On the other hand, they can

not perform graphics operations that require knowledge of other vertices at a time

or that require topological knowledge, e.g. perspective division, backface culling

6 2.1 The Graphics Processing Unit (GPU)

Application3D API

GPU Front End
Primitive
Assemply

Rasterization &
Interpolation

Raster
Operations

Framebuffer

Programmable

Fragment

Processor

Programmable

Vertex Processor

3D
API
Calls

GPU
Commands &
Data Stream

Vertex
Index
Stream

Assembled
Polygons,
Lines &
Points

Pixel
Location
Stream

Pixel
Updates

Pretransformed
Vertices

Transformed
Vertices

Rasterized
Pretransformed
Fragments

Transformed
Fragments

CPU/GPU Boundary

Figure 2.3: The GPU programming model [6].

and depth range.

The processor operates on one vertex at a time. Its design is focused on

the functionality needed to transform and light a single vertex. The output of

the vertex processor is sent through subsequent stages of processing before the

fragment processor performs its operations. This is shown in Figure 2.4.

Application
Vertex

Processor

Fragment

Processor

Primitive Assembly,

Clipping, Perspective

Projection, Viewport

Mapping, Polygon

Offset, Polygon

Mode, Shade Mode,

Culling and

Rasterization

Framebuffer

Textures

Figure 2.4: Programmable graphics pipeline. The application has control of both the
vertex- and fragment processor, indicated by the lines connecting them.
Arrows represent data streams.

The fragment processor operates on fragments values and their associated data.

The fragment processor is intended to perform operations on inputs from the

rasterization stage. This include operations on interpolated values, texture access

2.1 The Graphics Processing Unit (GPU) 7

and texture application, fog, colour sum and point size. Programs that run on

this processor are called fragment shaders or fragment programs. Fragment shaders

can be used to specify a completely general sequence of per-fragment operations

to be applied to each fragment passing through the processor. Every fragment

is invisible to all the others, so the fragment shaders can not perform graphics

operations that require knowledge of other fragments. This programmable unit

can only write to the framebuffer. It does not have read capability. However, it

does have the capability of texture lookup.

We have implemented our segmentation algorithm on the NVIDIA GeForce

6200 GPU with 128 MB of video memory. The GeForce 6 series shader architecture

consists of two shading units per pixel. This superscalar architecture delivers

a twofold increase in pixel operations in any given clock cycle. With 16 pixel

pipelines and 8 pixel shader operations per pixel, this means 128 pixel shader

operations per clock cycle [7]. This shows that a GPU based solution is likely so

accelerate computations when they can be done on independent elements, i.e. the

computations can be mapped onto a streaming model.

2.1.3 Hardware Constraints

In order to produce efficient and running GPU code, there are a number of hard-

ware induced properties and constraints that need to be considered. The GPU

memory layout and how this memory is accessed is crucial when writing programs

that are intended to run on graphics hardware. It is also important to know where

performance bottlenecks in a graphics application may be located. They may re-

side on the CPU or the GPU. An overview of the current GPU memory layout is

shown in Figure 2.5.

The GPU memory is divided into Video Memory and On-Chip Cache Mem-

ory, a design that very much impacts the way in which texture memory can be

efficiently accessed.

When a shader is executed, it operates on one vertex or fragment at a time.

The fragment processor can read from anywhere in the input textures but it can

only output on the very pixel it operates on. The processor is said to be able to

gather but not scatter, as depicted in Figure 2.7. The vertex processor on the other

hand, can change vertex positions, texture coordinates, and a few other values.

The newest graphics cards have the ability to also read from texture memory from

the vertex processor.

8 2.1 The Graphics Processing Unit (GPU)

CPU

System Memory

Video Memory

Geometry

Commands

Framebuffer

Textures

On-Chip Cache Memory

Pre-T&L
Cache

Vertex Shading
(T&L)

Post-T&L Cache

Triangle Setup

Rasterization

Fragment
Shading

and Raster
Operations

Texture
Cache

Figure 2.5: The GPU memory layout [8].

To see the differences between CPU- and GPU programming we also have

to consider the GPU state access. There are no global registers incorporated in

any current hardware. All registers are temporary and reset before each record

is processed. This stateless property makes it difficult to implement even sim-

ple algorithms that need to store values after each calculation, like counting or

averaging. To overcome this, calculated values after each rendering pass have to

be output to the render-target and read back to texture memory before the next

pass. Using the render-to-texture extension (See Section 3.2.3), the output from

the fragment processor is automatically rendered to a bound texture. This texture

is then input in the next pass. The CPU and GPU analogy is depicted in Figure

2.6.

When it comes to data transfer between the CPU and GPU, current hardware

uses AGP5 or PCI Express technology to communicate between main memory and

video memory. This communication is expensive and therefore it is important to

keep as much computation on the GPU for as long as possible.

5Accelerated Graphics Port

2.1 The Graphics Processing Unit (GPU) 9

// A CPU implementation

int img[IMG_SIZE];

// Impossible in the same GPU program.

for (int i=0; i<IMG_SIZE; i++) {

img[i] = Do some calculations;

...

}

// The GPU analogy

for all pixels in image

do

// Fragment program

Perform per-pixel operations

done

Figure 2.6: The CPU and GPU analogy. On the GPU, there is a lack of the random
access write capability of high-level arrays. A fragment program maps to
loop internals over all pixels.

Figure 2.7: Left: Scatter write to different parts of the render target. Right: Gather
read from different parts of render input.

10 2.2 High-Level Shading Languages

2.2 High-Level Shading Languages

Programs on GPUs have traditionally been written in assembly code, which de-

notes a lot of work. A high-level programming language raises the level of abstrac-

tion so that low-level issues, e.g. register allocation, is at no concern for the pro-

grammer. It also gives the programmer the ability to develop GPU programs with

familiar constructs and syntax with no thought to hardware details. Several com-

pilers of high-level shading languages have been released, such as OpenGL Shading

Language (glslang), BrookGPU and the high-level metaprogramming language Sh

[22, 4, 3, 9]. Cg is also a high-level shading language developed by NVIDIA cor-

poration [6].

Generally, a program written for the GPU is compiled to GPU assembly code,

loaded and executed as listed in Figure 2.8.

Compile program

Download program to the GPU

Enable shader/processor

Render geometry

Disable shader/processor

Display result

Figure 2.8: The compiling and execution of a GPU program.

Once a program is bound, it will execute in all subsequent drawing calls for every

vertex (for vertex programs) and fragment (for fragment programs).

2.2.1 The Cg Language

Cg, C for Graphics, offers the ability to write programs that can be compiled into

optimized GPU code, either in advance or on demand at run time. Cg is based

on C, and much of the syntax for declarations, function calls and datatypes are

similar. As GPUs normally have at least two programmable processors, and CPUs

normally have one processor, there are of course some differences. However, the

basic idea is the same: ”Just as C was derived to expose the specific capabilities of

processors while allowing higher-level abstraction, Cg allows the same abstraction

for GPUs.” [6]. This makes it possible for developers to focus on the ideas,

concepts and the effects which they want to create with less attention to the

2.2 High-Level Shading Languages 11

hardware implementation. Cg programs are portable by the fact that they can

run on any operating system, platform and graphics hardware. The reason for

that is among other things that it is a functional language rather than hardware

implementation specific.

Figure 2.9 and Figure 2.10 show a simple Cg shader that does basic threshold-

ing and the corresponding GPU assembly code.

void threshold(

float2 texCoord : TEXCOORD0,

uniform float threshold,

out float4 color : COLOR,

uniform samplerRECT texture)

{

color = texRECT(texture, texCoord);

color.rgb = color.rgb * step(threshold, color.r);

}

Figure 2.9: Cg shader performing simple thresholding.

DECLARE threshold;

TEX R0, f[TEX0], TEX0, RECT;

SGER H0.x, R0, threshold;

MULR o[COLR].xyz, R0, H0.x;

MOVR o[COLR].w, R0;

END

Figure 2.10: Assembly code for Cg shader shown in Figure 2.9.

Additional Advantages

Compared to the other high-level shading languages, Cg has some advantages.

First of all, it gives support for both of the hardware APIs, DirectX and OpenGL.

Cg also uses binding semantics, i.e. pre-defined structures, that are used when

sending data packets between the application and a vertex program, and for ver-

tex shader to fragment shader communication. The binding semantics represent

an easy accessible way of communicating between the different processing units.

12 2.2 High-Level Shading Languages

Vertex attributes such as colour, normal vector, and texture coordinates are ex-

amples of what is contained in the binding sematics between the API and the

vertex shader. These attributes can then be transformed, and the output from

the vertex shader is stored in the binding semantics between vertex shader and

fragment shader. The fragment shader gets colour values and texture coordinates

as varying input, and colour and depth values are its output.

Language Profiles

All CPUs support essentially the same set of basic capabilities, and a common

programming language like C supports this set on all CPUs. However, GPU pro-

grammability has not quite yet reached this same level of generality. Different

graphics hardware and the vertex- and fragment processors support different ca-

pabilities. Cg addresses this by introducing the concept of language profiles. A Cg

profile defines a subset of the full Cg language that is supported on a particular

hardware platform or API. These optional language features include certain con-

trol constructs and standard library functions. The language profiles also defines

the precision of the float, half and fixed datatypes. Examples are the DirectX 9

vertex- and fragment profiles and the OpenGL ARB vertex- and fragment profiles.

Useful Standard Library Functions and Special Operators

In addition to the binding semantics, the Cg language has some built-in functions

like geometric, mathematical, and texture map functions that simplify the GPU

programming even more. These are for the most optimized for programming the

GPU and are executed very quickly, hence it is efficient to use them whenever

possible. Some examples of the standard library functions that are relevant for

our implementation are given in Table 2.1.

Conditionals are not effectively implemented on the GPU as it tends to run

at the same speed as if both the if and the else part were executed, so the

crux for faster Cg code is to avoid them whenever possible. If conditionals can

not be avoided, the most effective condition is the step-function. This function

can be used if a result depends on a comparison of two values, and is efficiently

implemented in hardware.

The texRECT-function is a standard non-projective texture lookup, where samplerRECT

is the texture sampler, and the float2 denotes a two-vector texture coordinate.

Cg has a special operator called the swizzle operator, which is denoted by a dot

2.3 Medical Image Segmentation 13

Function Description

abs(x) The absolute value of x.

all(x)
Returns true if every component
of x is not equal to 0. Returns
false otherwise.

any(x)
Returns true if any component
of x is not equal to 0. Returns
false otherwise.

exp(x) Exponential function, ex.
max(a, b) Maximum of a and b.

min(a, b) Minimum of a and b.
step(a, x) 0 if x < a, 1 if x >= a.

texRECT(samplerRECT tex, float2 s)
2D RECT nonprojective. Returns
a float4 value.

Table 2.1: Relevant standard library functions in Cg.

(.). It makes it possible to rearrange, repeat, and omit the components within a

vector to form a new vector. The elements are addressed by the characters x, y, z

and w, respectively, but r, g, b and a can be used in the same manner. For example,

float4(a, b, c, d).yxzz yields the vector (b, a, c, c). You can create a

vector of a scalar in a similar way, where a.xxxx yields the vector float4(a, a,

a, a). This operator is implemented efficiently in the GPU hardware with no

performance penalty.

When the swizzle operator is used on the left hand side of an assignment

statement, it serves as a write mask operator, e.g. color.ra = float2(1.0f,

0.5f); sets the red component to 1.0 and the alpha value to 0.5 and leaves the

other components unchanged.

Using vectors instead of scalars is highly appreciated when programming GPUs,

as they can perform four arithmetic operations as quickly as one single operation.

Hence, a more vectorized code is preferred, although the compiler tries to vectorize

the source code for you.

2.3 Medical Image Segmentation

Image segmentation is a difficult task, and in order to achieve good results, several

issues must be dealt with. Hence, much effort in research has addressed these

problems, and this has led to an emergence of many segmentation techniques and

14 2.3 Medical Image Segmentation

algorithms. Despite this, image segmentation remains as a grand challenge in

computer vision, and no segmentation technique is superior to other. Thus, the

choice of technique must be based on the actual problem.

The main goal of image segmentation is to subdivide the image into its disjoint

regions or objects. In medical image segmentation, the algorithms operate on

2D intensity images, or 3D data, from medical scanners, e.g. X-ray, Magnetic

Resonance (MRI) and Computed Tomography (CT) scanners. We can distinguish

between four popular segmentation techniques that are used on such intensity

images.

• Threshold techniques are based on local pixel information and are useful

when the intensity levels of the objects fall squarely outside the range of

levels in the background.

• Edge-based methods try to detect contours in an image. Blurring may

introduce some difficulties in connecting broken contour lines.

• Region-based methods. Here, neighbouring pixels of similar intensity

levels are usually grouped to form connected regions in the image. This is

the image partitioning part. Adjacent regions are then merged under some

criterion involving perhaps homogeneity or sharpness of region boundaries.

This method may cause fragmentation if the merging criteria is too stringent,

and may overlook blurred boundaries and overmerge if the criteria is too

lenient.

• Connectivity-preserving relaxation-based segmentation methods,

usually referred to as active countour models, use the concept of energy min-

imization. An initial boundary shape represented in the form of spline curves

is guided by various shrink and expansion operations according to some en-

ergy function. Snakes are active contour models. Areas of application in-

clude detection of edges, lines, and subjective contours, motion tracking and

stereo matching [21]. Figure 2.11 illustrates the use of the active contour

model on an MR brain image slice.

The tasks in medical image segmentation usually involve separating bones, tis-

sue and blood. But it is also used for detecting specific structures, e.g. aneurysms

and tumours. In the following section, a region-based method, known as Seeded

Region Growing, is examined.

2.3 Medical Image Segmentation 15

Figure 2.11: Snake segmenting gray-matter/white-matter interface and ventricles in
an MR brain image slice. The initial contour is shown in the leftmost
image. [23]

2.3.1 Seeded Region Growing

Seeded region growing was first introduced by Adams and Bischof in [1]. It is

based on conventional region growing, where the general approach is to compare

one pixel to its neighbours, and if a homogeneity criterion is satisfied, the pixel is

said to belong to the same class as one or more of its neighbours. However, the

mechanism of seeded region growing is closer to that of watershed segmentation.

The Basics of the Algorithm

The algorithm starts off with a set of points, known as seeds. These seeds are

grouped into n sets, A1, A2, ..., An. From these sets, the regions inductively grow,

and for each step of the algorithm, one pixel can be added to one of the sets. We

look at the state of the sets Ai after m steps, and let T be the set of unallocated

pixels that border with one or more of the regions.

T = {x 6∈
n
⋃

i=1

Ai|N(x) ∩
n
⋃

i=1

Ai 6= ∅}. (2.1)

If x ∈ T and N(x), the immediate neighbours of x, meets just one set Ai, then

we define i(x) ∈ {1, 2, ..., n} to be that index such that N(x) ∩ Ai(x) 6= ∅. δ(x) is

then defined as how different x is from the region it adjoins:

δ(x) = |g(x)− mean
y∈Ai(x)

[g(y)]| (2.2)

where g(x) is the gray value at the point x. If N(x) meets more than one region,

16 2.4 Related Work

then i(x) is set to the i that minimizes δ(x). Accordingly, a z ∈ T is taken so that

δ(z) = min
x∈T

δ(x) (2.3)

and this z is added to Ai(z), and step m + 1 is thus completed. Alternatively,

the x can be classified as a boundary pixel, and added to a set of already-found

boundary pixels, B, for display purposes.

The algorithm runs until all the pixels have been allocated, and Equation (2.2)

and Equation (2.3) give a segmentation with homogeneous regions that fulfil the

connectivity constraint.

A pseudo-code is given in Algorithm 1. It uses a sequentially sorted list (SSL),

i.e. a linked list of objects, that stores the pixel adresses of T , and sort the elements

by their δ-value.

Algorithm 1 Seeded region growing using boundary flagging.

Label seed points
Put the neighbours of seed points on the SSL
while SSL is not empty do

Remove the first point y, from the SSL
if all neighbours of y which are labeled have the same label (not boundary
label) then

Label y with the same label
Update this region’s mean value
Add the neighbours of y which are neither already set nor already in the
SSL to the SSL according to their value of δ

else
Flag y with boundary label

end if
end while

2.4 Related Work

Although we touch upon a relative new area of research, there exist some recent

publications that are highly relevant to our work. Various filtering techniques and

segmentation algorithms have been implemented successfully on the GPU, some

achieving great speed-ups with respect to time consume, compared to equivalent

CPU implementations.

2.4 Related Work 17

2.4.1 Filtering on the GPU

Filtering is a major part of the visualization pipeline and is broadly used for

improving images, reducing noise and enhancing detail structure. For example,

low pass filters can reduce the noise of sampled medical volume images, and high

pass filters can be used for edge extraction.

Linear filtering

Hopf et al. have implemented 3D convolution using graphics hardware in [17].

They take advantage of separable convolution kernels, and combine a 2D and

a 1D convolution kernel. This means that the implementation consists of a 2D

convolution on each slice in the volume, followed by a 1D convolution in the

remaining direction.

Hopf et al. also show how hardware based wavelet filtering can be done by

mapping the computations onto the OpenGL graphics pipeline in [18, 20]. Wavelet

decomposition decomposes a set of data into a set of wavelet coefficients by using

a mother wavelet, e.g. the Daubechies wavelet or the Haar wavelet. On the other

hand, wavelet reconstruction recreates the data set from the coefficients. Wavelet

decomposition and reconstruction are often implemented by applying convolution

and down- and up-sampling steps to the volume data. As we have seen, graphics

hardware is able to perform convolution, and together with the ability to scale

bitmaps by arbitrary factors, we have what we need for the implementation. The

fact that graphics hardware has memory systems that can be addressed very fast,

is something that wavelet analysis can benefit from, since it for the most is a

memory bound problem.

Hadwiger et al. present a general approach for hardware filtering in [14, 15].

They represent the different filter kernels as textures, and not as colour values,

which allows filtering with arbitrary high-resolution kernels.

Nonlinear filtering

Preprocessing volume data by means of morphological operators using graphics

hardware were performed by Hopf et al. in [19]. Unlike some filters that are

based on linear combinations of the input data, these operators do not flatten

the contours of the original data. The morphological operators map well onto

the graphics hardware, since the per-fragment operations can perform maximum

18 2.4 Related Work

and minimum blending in the framebuffer. Hopf et al. decompose the structuring

element into one-dimensional filters. This makes it possible to run through the

algorithm in three passes, one for each direction.

Viola et al. introduce hardware-based nonlinear filtering in [30]. They have im-

plemented median filtering, bilateral filtering and rotating mask filtering. Due to

hardware limitations, their median filtering approach differs from histogram based

approaches. They perform a binary search on the voxel values within a 5×5×5

filter mask to find the median. The bilateral filter is much like convolution-based

smoothing, except that the contribution of voxels with values that significantly

differ from the centre voxel’s value is eliminated. Viola et al. implemented the

Gaussian case of the bilateral filter. The rotating mask filter divides the operator

mask into sub-regions, and the mean and the dispersion are calculated for each

of these regions. The output value of the voxel is then set to the mean of the

sub-region with the lowest dispersion. The authors used six different sub-regions.

To reduce the number of texture fetch instructions, they decomposed their initial

single-pass approach into six passes which increased the performance by a factor

of 3.29.

Results

Overall, the authors of the different papers report good results. Some noticeable

artifacts are mentioned in [17] due to that pixel fragments read from the frame-

buffer are clamped to [0,1] before they can be written back to the framebuffer

or into the texture memory. These artifacts disappeared completely when using

post-convolution and bias to map the expected results to the interval [0,1] just be-

fore the clamping takes place. In [19], the authors report no precision loss at all,

although one might expect this due to limited framebuffer depth. This is because

the morphological operations only use integer operations and the range of the re-

sults does not exceed the domain. However, the limited framebuffer depth does

have an impact on the results in [18, 20]. The results showed only single bit errors

in images of size 5122, when complete wavelet decomposition and reconstruction

were applied, using a framebuffer with a depth of 12 bits per base colour. With

only 8 bits per base colour, the loss of accuracy was much greater. The hardware-

based implementations of the mentioned filtering techniques consume less time

than their equivalent software implementations. A 3D convolution on a data set

of size 2563 with a kernel of size 53 is approximately 5.88 times faster in hardware

2.4 Related Work 19

than in software according to [17]. In [18, 20], Hopf et al. report on filter times

that differ with factors up to 5.2 and 2.8 for 2D wavelet reconstruction and de-

composition respectively. By performing three different morphological operations

in one cycle, filtering speed-ups of 15 times and more are reported in [19]. The

median filter of Viola et al. in [30] shows a speed-up by a factor of 1.97, while the

bilateral filter and the rotating mask filter have speed-up factors of 1.52 and 7.26

respectively.

2.4.2 Image Segmentation on the GPU

When it comes to using the GPU for segmentation purposes, the main focus so

far has mostly been at level-sets and threshold based methods.

Threshold Based Segmentation

In [30], Vioala et al. have implemented simple thresholding on pre-filtered data

sets. They found that this method produce an acceptable result for particular

segmentation purposes, e.g. segmentation of the vessel structure of the liver.

Compared to a software version, their segmentation algorithm on graphics hard-

ware turned out to be 8.73 times faster. They also tried to send the segmented

data back to main memory in compressed form. This increased the time in graph-

ics hardware. However, it decreased the transfer time back to main memory with

a factor of 20 and did not change the segmented result significantly.

Like Viola et al., Yang et al. have performed thresholding on graphics hard-

ware in [32]. This is followed by morphological operations to smooth the object

boundaries and remove spurious pixels. These two steps were implemented com-

pletely on the GPU by means of register combiners and blending technology. The

register combiners were used when calculating square differences between pixels,

and the results were written to the alpha channel. Then the alpha test was used

to perform pixel thresholding. The erosion was implemented by setting the output

pixel to the minimum of the corresponding input pixel and its eight neighbouring

pixels, correspondingly the dilation used the maximum value for the output pixel.

The hardware-based implementation proved to be over five times faster than a

software version.

20 2.4 Related Work

A Segmentation Method Based on Seeded Region Growing

Another presentation of a hardware-based segmentation method of structures from

measured volume data is given by Sherbondy et al. in [26]. The algorithm is based

on seeded region growing with a merging criteria that is based on Perona and

Malik nonlinear diffusion metric. This criteria made the seeds merge into regions of

similar intensity but with slower diffusion into voxels against high gradients. First,

the user inserted the seeds, and a visualization of the calculations was given as the

algorithm progressed. This made it easy for the user to see how the parameters

affected the result, and the visualization was also efficient because the results

were already in the video memory. Sherbondy et al. also made the algorithm even

more efficient by using a computational masking technique. For each pass of the

algorithm they only looked at a subvolume that contained all the voxels that had a

chance of getting entered by a seed during that pass. This subvolume was obtained

by a dilation of the segmented volume in each direction. The authors report on

high performance gains, even without the computation masks, and compared to

an optimzed CPU-based solution the algorithm ran 10-20 times faster.

Level-Set Implementations

A general-purpose segmentation tool that relies on interactive deformable models

implemented as level-sets, is described by Cates et al. in [5]. This software ap-

plication, called GPU-based interactive segmentation tool, GIST, is applicable to

commodity graphics cards. Cates et al. map a 3D level set solver onto the GPU.

This PDE6 solver can give immediate respons to the user on the parameter set-

tings, because it computes level set surface models at interactive rates. A region

based speed function makes sure that the model grows into regions where the data

is consistent with the desired segmentation and to contract in regions where it is

not. This allows the user to intuitively specify the behaviour of the deformable

model. The level-set solver in GIST achieved a speedup of a factor of 10-15 times

over an optimized CPU-based solver.

Figure 2.12 shows a rendering of a cortical brain surface segmentation from

a 256×256×175 MRI volume using GIST. The complete segmentation required

no preprocessing of the data and took 5 minutes using a small, spherical surface

(placed by the user) as the initial model. This type of segmentation is impractical

to compute on ordinary, CPU-based solvers because of the size and complexity

6Partial differential equation

2.5 CustusX 21

Figure 2.12: A segmentation of the cerebral cortex from a 256×256×175 MRI volume.
[5]

of the solution. Compared with ITK7, the same cortical segmentation typically

takes more than an hour.

Level set segmentation using graphics hardware is also found in [25] by Rumpf

et al.

2.5 CustusX

To help surgeons plan and perform minimal invasive surgical procedures, research

scientists at Sintef are developing a navigation system called CustusX. In a close

collaboration with radiologists and surgeons, the developers create a system based

on techniques from navigation, 3D visualization and advanced medical image pro-

cessing. The system as a whole consists of a dual processor, an optical position

sensing system, and the actual software which is cross platform compatible. The

surgeons are able to control the images with the surgical instruments so that the

instruments are viewed in relation to the anatomy. CustusX may also be used for

post-operative controls and educational purposes.

The segmentation of the volume data is performed by a module in the system

arichitecture that uses the open source libraries of ITK. The segmented data are

rendered into a 3D scene where it is possible to set the opacity of each of the

segmented objects. The visualization is generated by means of the Visualization

Toolkit8 (VTK) from Kitware Inc.

7Medicine Insight Segmentation and Registration Toolkit, http://www.itk.org.
8http://www.vtk.org

22 2.5 CustusX

Figure 2.13: Surgeons in action using CustusX. Image screen to the right. [28]

Chapter 3

Design

3.1 Hardware Platform

With the enormous computation power of modern graphics hardware, and the

fact that this growth has exceeded Moore’s law, optimal performance is reached

by utilizing the current state of the art graphics card. While developing our

application, we will run the system on an Intel Pentium M 1.4 GHz processor

with 512 MB of RAM using a NVIDIA GeForce FX Go 5200 64 MB graphics

card. The final tests will run on an AMD XP 2200+ CPU with 512 MB RAM and

a NVIDIA GeForce 6200 128 MB card. This GPU is capable of 128 pixel shader

operations per clock cycle, and is the newest hardware series from NVIDIA. The

vertex and fragment profiles used are the OpenGL NV vertex program3 (vp40)

and OpenGL NV fragment program3 (fp40) respectively. They are new profiles

introduced in the Cg 1.3 version.

3.2 Software

In this section we present the technology and software methods we are exploiting

in our graphics application, and restrictions imposed on the design of the GPU

seeded region growing system.

3.2.1 Graphics Library

Cg supports both the DirectX and OpenGL APIs. Even though OpenGL is known

for its large overhead in render-context switching, which especially is an issue when

23

24 3.2 Software

using P-Buffers [31] for off-screen rendering, we use this API to manipulate the

graphics state in our system. In addition, OpenGL is a cross-platform API whilst

DirectX is a Microsoft Windows specific library. It is desirable that our graphics

application will run under other operating systems than Windows XP, in particular

under Mac OS. In our implementation, we use a new OpenGL extension, which

is described in Section 3.2.3, and at the time of writing this is only supported in

the latest Windows display drivers from NVIDIA.

3.2.2 A General GPU Framework

Sintef has developed a general GPU framework that incorporates both Cg and

OpenGL Shading Language (see Section 2.2) for use with OpenGL. It wraps Cg

functions and data, and offers simple functions for loading and initializing shader

programs, and for enabling and disabling them when rendering graphics. We have

used this framework with some minor modifications in our implementation.

3.2.3 Framebuffer Object Extension

When rendering graphics with OpenGL, a render-target must be used. This target

determines the dimension and capabilities of the graphics pipeline. The number of

channels (RGBA) present in the render-target determines how much information

can be output per pixel. If the target has a depth buffer, the depth information

can also be used as output.

Under normal display operations, the graphics card outputs the rendered graph-

ics to the framebuffer. This buffer is allocated in video memory and is directly

tied to what is seen in the application window on the screen. Often, you do not

want the size of the output to be limited by the current window size.

Under several circumstances, it is necessary or useful to render to an off-screen

buffer. This could be for creating dynamic textures, and other feedback effects

such as procedural texturing and image processing. With off-screen rendering,

render-to-texture can be used for creating dynamic texture data. As discussed in

Section 2.1.3, calculated values after each rendering pass are often needed in the

next pass. This could be overcome by copying data from the framebuffer back into

texture memory, but this is very time-consuming, and hence the render-to-texture

extension is desirable.

Pixel buffers (pbuffers) are widely used as off-screen render-targets. A pbuffer

3.2 Software 25

is a render surface with a set of properties chosen explicitly at run time. But

this buffer consumes video memory and usually has its own OpenGL context, and

therefore makes switching between pbuffers expensive. In addition, each pbuffer

has its own depth, stencil and aux buffers. Thus, these buffers can not be shared

between pbuffers. It is possible to bind the colour and depth buffer of a pbuffer

as a texture (render-to-texture). This is window system specific, and portable

applications need to create a separate pbuffer for each renderable texture.

A new1 OpenGL extension called a Framebuffer Object (FBO), defines a simple

interface for drawing to render-targets others than the buffers provided to the GL

by the window-system. It only requires a single OpenGL context, so switching

between framebuffers is faster than switching between pbuffers. Additionally, the

format of a frambuffer object is determined by texture or renderbuffer format. One

of the advantages in using this extension, is that renderbuffer images and texture

images can be shared among framebuffers, e.g. share depth buffers between colour

targets. This saves memory. It is also an easy task to switch render-target back

to the window-system.

A framebuffer object is a collection of logical buffers: colour, depth, stencil and

accumulation buffers. The render-targets are called framebuffer-attachable images

and can be off-screen buffers (renderbuffers) and textures. The framebuffer object

architecture is shown in Figure 3.1.

The state object defines where output of GL rendering is directed, and is equiv-

alent to window system drawable. The renderbuffer contains a simple 2D image

that stores pixel data resulting from rendering. The renderbuffer can be used for

colour, depth or stencil information, dependent on the attachment point2. When

a framebuffer object is bound, its attached images are the source and destination

for fragment operations.

3.2.4 Image Format and Textures

The main challenge in our segmentation system is to perform segmentation on 3D

data efficiently. The 3D data is read from a raw datafile, and each slice is uploaded

to the graphics card as a 2D texture using the OpenGL function glTexImage2D.

At the time of writing, rendering to 3D textures using the FBO extension is not

1Approved by ARB on January 31, 2005.
2State that references a framebuffer-attachable image. One each for colour, depth and stencil

buffer of a framebuffer.

26 3.2 Software

Color Attachment 0

Framebuffer Object

…

Color Attachment n

Depth Attachment

Stencil Attachment

Other State

Texture Objects

Texture
Image

Renderbuffer
Image

Renderbuffer Objects

Figure 3.1: The Framebuffer Object architecture showing the logical buffers and at-
tachable images [12].

supported in the graphics drivers provided by NVIDIA3. We are working with

gray-scale images, and data in the input files are luminance values, each pixel

consisting of one unsigned byte. The textures have RGBA format, and each pixel

luminance value are copied to the RGB channels by means of the glTexImage2D4

function, and attaching 1.0 for alpha. Similar yields for 2D images.

It is obvious that the texture data contains redundant information, since the

luminance values are copied to each of the three RGB colour channels. As will

be discussed in Section 3.4, only one channel needs to store the actual luminance

value. The remaining three channels will be used for intermediate results and

meta data in the segmentation process.

3The FBO specification includes the ability to rendering to 3D textures, but since this is an
OpenGL extension, the graphics vendors may omit some of the functionality.

4The internal texture format GL RGBA must be used in order to have four colour components
in the textures. Using this internal format in conjunction with GL LUMINANCE as pixel format,
each luminance value is converted to floating point, and then assembled into an RGBA element
by replicating the luminance value three times for red, green, and blue, and attaching 1.0 for
alpha.

3.3 Filtering on the GPU 27

3.2.5 Alpha-Testing

Alpha-testing is part of the OpenGL graphics pipeline. Based on a fragment’s

alpha value, a fragment is either discarded or it passes through this test stage.

The application developer specifies an alpha test function and a reference value

to which incoming alpha values are compared. If the comparison passes, the

incoming fragment is drawn, conditional on subsequent stencil and depth-buffer

tests. If the comparison fails, no change is made to the framebuffer at that pixel

location. Figure 3.2 shows the different tests that can be enabled in OpenGL.

If fragments that are irrelevant to computation can be identified in advance

and weeded out before they are processed by the fragment shader, it may result

in a performance gain. An exclude shader will first be executed and exclude those

fragments that are not wanted for further processing by setting an unique alpha

value for those fragments. Later the alpha test function will discard them before

a fragment shader executes.

Fragments
(from previous stages)

Scissor
Test

Alpha

Test

Framebuffer
Stencil

Test

Depth

Test

Figure 3.2: Tests that can be enabled in OpenGL, and which are applied to fragments
in the graphics pipeline. If a test fails, no change is made to the framebuffer
at that pixel location.

3.3 Filtering on the GPU

We want to map two different filtering techniques on the GPU for pre-processing

our image data, i.e. median filtering and a nonlinear anisotropic diffusion filter.

We start off with solutions for the 2D case which are easily extended for usage on

3D data.

28 3.3 Filtering on the GPU

3.3.1 Median Filter

Median filtering is usually done by taking an operator mask, e.g. a 3×3 mask,

and setting the centre value to the median of the pixel values within this mask.

However, the GPU has limited options for sorting values. Several conditionals

are needed as well, something that is not recommended for usage on GPUs with

respect to time consume. We therefore seek to implement an approximate version

of median filtering. This version finds the horizontal median of the values within

the operator mask, and then finds the vertical median. It does in some cases not

find the correct median, but it guarantees, however, to find at least one of the two

values closest to the median. This is generally good enough in most cases. The

basis of the algorithm is depicted in Figure 3.3.

3 7 1

2 0 9

9 4 11

x 3 x

x 2 x

x 9 x

x x x

x 3 x

x x x

Horizontal median Vertical median

Figure 3.3: The approximate version of median filtering using a 3×3 operator mask.
In this exampe the median should actually be 4, but 3 is one of the two
closest values to the median. The Xs are don’t-care values.

For each fragment beeing processed, we need two additional texture lookups,

the two closest neighbours. Then we must find the median of the neighbouring

values and the center pixel. The algorithm must run in two passes, one for the

horizontal median, and one pass for the vertical median.

3.3.2 Anisotropic Diffusion Filter

We base our nonlinear anisotropic diffusion filter on the method described in [11].

The advantage of this filtering technique is that it smooths within regions while

preserving or sharpening the edges. The diffusive process can be formulated as in

Equation (3.1).

∂I(x, t)

∂t
= ∇ · [c(x,∇I(x, t)] (3.1)

3.3 Filtering on the GPU 29

The vector x represents the coordinates, t is used for enumerating iteration steps,

and I(x, t) is the image intensity. The strength of the diffusion is controlled by

c(x,∇I(x, t)) which depends on the magnitude of the image gradient, and is given

in Equation (3.2).

c(x,∇I(x, t) = exp

(

−

(

|∇I(x, t)|

κ

)2
)

(3.2)

The κ, or conductance, is a parameter value that defines how much impact the

gradient value will have on the smoothing process. Low values will give a better

sharpening effect than with high values.

The algorithm is run in a user-specified number of iterations, and for the 2D

case the pixel values will be updated according to Equation (3.3)

I(t + ∆t) ≈ I(t) + ∆t ·
∂I(t)

∂t
(3.3)

The integration constant, or time step, ∆t, is user-defined and determines the

iterative approximation of stability. There is no limitation for the lower bound

of ∆t. A small value results in a good approximation of the continous case, but

requires many iteration steps. It can be shown that

∆t ≤
1

1 + n
|ci = 1, i ∈ {1, · · · , n}, (3.4)

i.e. the maximum time step in a 3D case using 6-connectedness is 1/7. The

diffusive process is given in Equation (3.5).

30 3.3 Filtering on the GPU

∂

∂t
I(x, t) = div [c(x, t) · grad I(x, t)]

= ∇ · [c(x, t) · ∇I(x, t)]

=
∂

∂x

[

c(x, t) ·
∂

∂x
I(x, t)

]

+
∂

∂y

[

c(x, t) ·
∂

∂y
I(x, t)

]

=
1

∆x2
[c(x +

∆x

2
, y, t) · (I(x + ∆x, y, t)− I(x, y, t))

− c(x−
∆x

2
, y, t) · (I(x, y, t)− I(x−∆x, y, t))]

+
1

∆y2
[c(x, y +

∆y

2
, t) · (I(x, y + ∆y, t)− I(x, y, t))

− c(x, y −
∆y

2
, t) · (I(x, y, t)− I(x, y −∆y, t))]

= φeast − φwest + φnorth − φsouth. (3.5)

A pseudo-code for the implementation is given in Algorithm 2. For each frag-

ment processed, the colour, i.e. gray-level value, is added a value calculated from

the diffusive process multiplicated by ∆t. ∆x and ∆y are set to 1 for simplicity,

and the image gradients are calculated using the Sobel operators. The number of

iterations is controlled by the user.

Algorithm 2 Pseudo-code for the 2D anisotropic diffusion filter. Shows how each
fragment will be processed.

Input texture
Input κ
Input ∆t

gradient← find gradient using Sobel operators
c← exp (−(gradient/κ)2)
φeast ← texture[x + 1, y]− texture[x, y]
φwest← texture[x, y]− texture[x − 1, y]
φnorth ← texture[x, y − 1]− texture[x, y]
φsouth ← texture[x, y]− texture[x, y + 1]
diffusionTerm← c ∗ (φeast − φwest + φnorth − φsouth)

return texture[x, y] + ∆t ∗ diffusionTerm

The 2D anisotropic diffusion filter is easily extended to 3D. This is not de-

scribed here.

3.4 Seeded Region Growing on the GPU 31

3.4 Seeded Region Growing on the GPU

Our seeded region growing algorithm differs from the original that we looked at

in Section 2.3. First of all we have to operate within the constraints of the GPU,

and try to map the general algorithm onto the graphics hardware. The operations

we perform must be generic for each fragment, and as seen in Section 2.1.3, we

can only do write operations in relation to one fragment at a time, although we

can perform many texture lookups. The algorithm must also have an iterative

behaviour, since GPUs do not allow recursion.

Figure 3.4 shows an overview of our seeded region growing algorithm, where

each rectangle represents a fragment shader. We start off with Exclude for ex-

cluding fragments with values that are not within a threshold interval. Then

user-specified seeds are set, and these seeds grow into one or more regions. It is

worth noticing that if two or more regions meet, they will automatically be merged

into one region as we do not distinguish the regions from each other, i.e. we will use

only one label for the initial seeds. After termination of the GrowRegion-shader,

ShadeSegmented will take care of how the result will be displayed.

Exclude

SetSeed

GrowRegion

Termination?

Iterations

ShadeSegmented

Figure 3.4: Overview of our seeded region growing algorithm.

The SRG algorithm is useful and will give good results when the intensity

32 3.4 Seeded Region Growing on the GPU

levels of the objects of interest are relative uniform. Additionally, the regions must

not merge smoothly with other regions. Then, more sophisticated segmentation

algorithms, like level-sets, must be applied. Anatomical structures like the aorta,

some tumours, the cerebral cortex and the kidneys are examples of objects that

are expected to be well segmented with the SRG algorithm. The liver, on the

other hand, is releative hard to segment as it merges smoothly with other tissues.

The algorithm will follow the same scheme for both the 2D and 3D case. In

the following sections, a description of each step is given.

3.4.1 Exclude

The user selects an upper and a lower threshold value so that only fragments with

intensity values within this interval are considered by the region growing process.

This shader will then go through all the fragments, and label those with intensity

values not within the threshold interval as excluded. They do not need to be

further processed.

3.4.2 Set Seed

This shader will label user-selected fragments as seeds. There is no option that

allows for addressing an individual fragment, i.e. all of the fragments will be

evaluated, and the texture coordinates will be matched with the user-specified

input data. For the 3D case, however, one slice can be addressed alone, so we do

not have to run through the entire volume data in order to set the seed points.

Hence, only the slices that eventually will contain a seed point will be sent to this

fragment shader.

3.4.3 Grow Region

This shader will make the seeds grow into one or more regions. Fragments with

values that are not within the threshold interval have already been excluded for

further processing, so basically what this shader has to do is to check if the current

fragment has at least one seed as a 4- or 6-connected neighbour, for the 2D and 3D

case respectively. If so, the current fragment is also labeled as seed. This is how

fragments iteratively are labeled seeds and finally will constitute the segmented

region.

3.4 Seeded Region Growing on the GPU 33

We will make it possible for the user to define a tolerance value as well. As

seen in Algorithm 3, this value can be used when new seeds are added. Then a

new seed is only added if the difference between the current fragment’s intensity

value and a neighbouring seed’s intensity value is less than or equal this tolerance

value. This option can prevent adding fragments as seeds when their intensity

values differ substantially from the values of their neighbouring seeds, although

they are within the threshold interval. The 2D case is easily extended to three

dimensions by adding two extra texture lookups, each in the texture slice above

and below the current 2D texture.

To segment large regions or subvolumes, many iteration steps of the GrowRegion-

shader are needed, but that also depends on the number of seeds that the user

has initiated. More scattered seed points defined initially, will lead to faster con-

vergence.

3.4.4 Termination

With respect to termination of the GrowRegion-shader, we will consider two

different strategies. One option is to let the user specify the number of iterations.

The other option will let the shader run until there are no more changes, i.e. no

more seeds are added.

3.4.5 Shade Segmented

As some of the RGBA-channels are likely to be used for storing intermediate re-

sults, this shader is needed to display the segmentation result properly, as the

visualizer and OpenGL use all three colour channels when rendering. The shader

may also be used to shade the segmented data for increased realism of the visual-

ization.

34 3.4 Seeded Region Growing on the GPU

Algorithm 3 Pseudo-code for the GrowRegion-shader.

Input Texture current
Input Texture above
Input Texture below
Input Texture coordinates (x, y)
Input δ

if current[x− 1, y] is a seed then
diff ← abs(current[x, y]− current[x− 1, y])
if diff < δ then

Mark current[x, y] as seed
end if

else if current[x + 1, y] is a seed then
diff ← abs(current[x, y]− current[x + 1, y])
if diff < δ then

Mark current[x, y] as seed
end if

else if current[x, y − 1] is a seed then
diff ← abs(current[x, y]− current[x, y − 1])
if diff < δ then

Mark current[x, y] as seed
end if

else if current[x, y + 1] is a seed then
diff ← abs(current[x, y]− current[x, y + 1])
if diff < δ then

Mark current[x, y] as seed
end if

{Only for the 3D case}

else if above[x, y] is a seed then
diff ← abs(current[x, y]− above[x, y])
if diff < δ then

Mark current[x, y] as seed
end if

else if below[x, y] is a seed then
diff ← abs(current[x, y]− below[x, y])
if diff < δ then

Mark current[x, y] as seed
end if

end if

return current[x, y]

Chapter 4

Implementation

In Section 2.3.1 we described the basics of the Seeded Region Growing (SRG)

algorithm and gave the mathematical fundamentals together with an algorithm

showing how to merge unlabeled pixels to regions. We base our GPU implemen-

tation on the design given in Section 3.4, which try to map the original SRG

algorithm to a GPU implementation. Concrete instances of Exclude, SetSeed,

GrowRegion and ShadeSegmented are presented in detail in the following sec-

tions. Since each shader operates on a single fragment, and we are mainly dealing

with 3D volumes, the shaders may process millions of fragments. And when iter-

ating this to grow a region, it is essential to do optimizations in order to achieve

acceptable results. We will focus our implementation along two axes: time and

quality, the former beeing our main concern. The most important optmization is

to remove conditionals, i.e. avoid if-statements. Loops are completely unaccept-

able. The different optimization techniques are discussed in the coming sections.

The programming language for the image segmentation system we are de-

veloping is C++, and Microsoft Visual Studio C++ .NET is used as developer

environment. The GUI module of this system uses Qt1, a cross-platform, open

source C++ application development framework. Figure 4.1 shows a high-level

UML class diagram of the most important components of the application.

The main part of the application, is the ImageProc class. This is the actual

graphics class where all OpenGL calls are issued. The Framebuffer Object Exten-

sion (FBO), is used as off-screen render-targets. To be able to develop GPU pro-

grams in a high-level language, a Cg framework is implemented. The ShaderLib

module is a general C++ shader framework written by Sintef, and was examined

1http://www.trolltech.com

35

36

GUI

On-Screen RenderTarget

QGLWidget

-FBO

ImageProc

ImageIO
Qt

ShaderLib

Figure 4.1: An UML class overview of the graphics application.

in Section 3.2.2. The shaders are loaded and compiled at run-time. All Cg pro-

grams developed are attached in Appendix A and B. The QGLWidget class is a

Qt-class for rendering OpenGL graphics. Different image formats are supported

by the application, and the loading and saving of image data is handled by the

ImageIO module.

Dealing with 3D data, OpenGL 3D textures could be utilized. But the graphics

card used under development and its driver did not support render-to-3D-texture,

so this was not investigated. Instead, the volume is loaded as a set of 2D RGBA

texture slices into texture memory. There are many reasons for using 3D textures

in preference to 2D textures. The input data is 3D volumes, and when slicing a

volume into 2D textures, the data may only be processed in one particular plane,

e.g. the xy-plane. This makes it difficult to visualize the volume in all directions

when blending is used. Additionally, it is often desriable to present for the user

the slices in all three planes. Using 3D textures, we can simply access voxels by

three-dimensional (x, y, z) coordinates, but using several 2D textures we first have

to bind the texture corresponding to the z-coordinate2, and then lookup texels

with (x, y) coordinates.

The segmentation algorithm needs several user-defined parameters. This in-

clude seed points, threshold values and number of iterations. In response to this,

we have developed a graphical user interface that makes this parameter setting

easier. In addition, if the user is not satisfied with the segmentation result, it is

an easy task to start from the beginning and tune the parameters. The GUI also

makes it possible to investigate the segmentation result seen as a 3D rendered

2If each slice lies in the xy-plane.

4.1 Excluding Fragments 37

volume.

When an input file (single slice or volume) is loaded, the OpenGL library

is first initialized and then the image data are sent to the video memory using

the glTexImage2D OpenGL call as described in Section 3.2.4. Subsequently, the

framebuffer objects are allocated, and each 2D texture is attached to its own

framebuffer object. All rendering is applied off-screen on one framebuffer object at

a time, and the render output is written to the FBO’s attached texture. Feeding

the updated textures from one part of the segmentation process into the next

step, this creates a ”running” intermediate result that ultimately becomes the

final result. The CPU side of the system is outlined in Algorithm 4.

All GPU programs are fragment shaders, since no vertex transformations are

required. All shaders have at least two inputs and one output. These are the

texture sampler (samplerRECT), the interpolated texture coordinates bound to

TEXCOORD0, and the fragment’s output colour bound to COLOR. texRECT is used

to do texture lookups. The texRECT can be used with non-power-of-two textures.

In OpenGL this is achieved by using GL TEXTURE RECTANGLE NV as the texture

target for all textures. After a Cg program is bound, each texture is mapped to a

quadrangle (GL QUAD) and rendered.

4.1 Excluding Fragments

We let the user define an upper and a lower threshold value, so that only fragments

with values within this threshold interval will be further processed. As seen in

Appendix A.1, the Exclude-shader checks if the b-component of the colour is

within this interval. As we only work on gray scale images, we could have used the

r- or the g-component, but the r-component will be used for intermediate results

later. Hence, we may avoid some confusion by using the b- or g-component. The

alpha channel, color.a, will be set to 1.0 (the maximum) if the value is within the

threshold interval, and 0 if not, and at the same time all fragments are assigned

the value 1.0 to the r-component. The reasons for this will become evident in the

following sections.

Instead of using conditionals like the if-statement, we use Cg’s step-function

reffered to in Table 2.1 to directly calculate values. Since all meta data values

have either a value of 0 or 1.0 (e.g. seed, not seed), this function is suitable to use

because the output is either 0 or 1.0. So the fragment’s a-component, color.a, is

38 4.1 Excluding Fragments

Algorithm 4 Pseudo-code for the CPU side of the Seeded Region Growing sys-
tem. As will be described in Section 4.5, alpha-testing can dramatically reduce
the amount of fragments processed.

Input lowerThreshold, upperThreshold
Input Seed points

LoadImageData()
InitOpenGL()
UploadTextures()
InitFBO()

for all textures t do
BindFBO(t)
ExcludeFragments(lowerThreshold, upperThreshold)

end for

for all seed points (x, y, z) do
BindFBO(z)
SetSeed(x, y)

end for

EnableAlphaTest()
for all textures t do

BindFBO(t)
if performOcclusionQuery then

repeat
GrowRegion()

until no more fragments are rendered
else

for i = 1 to numberOfIterations do
GrowRegion()

end for
end if

end for
DisableAlphaTest()

4.2 Seed Determination 39

assigned 1.0 if the fragment’s intensity value is within the threshold interval, and 0

if not. Figure 4.2 shows the equivalent expression using if- and else-statements.

There is no short-circuiting in Cg, so both sides of && will always be evaluated.

//These expressions...

half f = step(lThreshold, color.b) * step(color.b, uThreshold);

color.ra = half2(1, f);

//...are equivalent to:

if(color.b >= lThreshold && color.b =< uThreshold){

color.ra = half2(1, 1);

}

else{

color.ra = half2(1, 0);

}

Figure 4.2: Optimization in the Exclude-shader, using the step(a, x) function

4.2 Seed Determination

The next shader to run is the SetSeed-shader. This shader receives the coordi-

nates of seed points from the user and the corresponding fragments are labeled

as seeds. This is done by setting the r-component of the fragment’s colour to 0.

Since we cannot address a fragment directly, this shader must check each frag-

ment’s coordinates in order to find out if it corresponds to a seed point. For the

3D case, however, we can address each slice individually so that we do not have

to run through all the slices.

To see if a fragment has the matching coordinates with the user input, we had

to do some adjustments. This was due to that the GPU operates on float values,

so that a check for exact equality is not an option. Hence, we check if the fragment

coordinates lie within ±1 of the user-defined seed point coordinates.

The r-component, color.r, is used for labeling seeds. In the Exclude-shader,

we saw that the r-component of all the fragments were initially assigned the value

1.0. So a fragment is labeled as seed by setting this component to 0. In this way

we can easily distinguish between seeds and other fragments.

40 4.3 Grow Region

4.3 Grow Region

The Exclude-shader has set the alpha value to 1.0 if the fragment’s gray level

value was within the threshold interval. This makes it possible for us to only send

the fragments that have the value 1.0 in the alpha channel to the GrowRegion-

shader. A more thorough description of this process will be given in Section 4.5.

Thus, we know that the fragments that are processed fulfil the gray value crite-

rion. The shader now only checks if there are any seeds in a 4- or 6-connected

neighbourhood in the 2D and 3D case, respectively. This is performed by multi-

plying the r-component of all the neighbour fragments. Since their color.r-value

is either 0 or 1.0, the product of them will be 0 if at least one of them is a seed,

and 1.0 if not. This value is then assigned to the current fragment’s r-component

indicating if it in this pass became a seed or not.

We implemented an alternative GrowRegion-shader as well. In addition to

checking if at least one neighbour pixel is a seed, it also makes a constraint that

the luminance value of the current fragment and a neighbouring seed do not differ

with more than a user-defined value. The objective for this is to prevent the

segmentation to leak through weak interfaces. As described in Section 2.3.1, the

original SRG algorithm updates the mean of the corresponding region after a seed

is added. This value then determines which region a new seed point will belong

to, or if it is a boundary pixel. Implementing an updated region average value

is more difficult on a GPU, as described in Section 2.1.3. Appendix A.3.2 shows

the code for this shader. In comparison to Algorithm 3, we are avoiding a lot of

unnecessary if-statements.

The execution of this shader must be iterated in order to discover large regions.

A single pass will at most include six new seed points per seed point; four in

the current slice, and one in the slice above and below. To prevent processing

fragments that have already been labeled as seeds, we first check the r-value and

discard the fragment for further proceessing if it is already a seed. As will be

seen in Section 4.6, this can also help us deciding when the iteration loop should

terminate.

4.4 Shade Segmented

This shader is run when the GrowRegion-shader has terminated, and is used for

displaying purposes only. The user can decide if he wants to view the segmented

4.5 Computation Mask 41

regions in relation to the rest of the data or not. This is indicated by the variable

keepUnsegemented, and if it is set to 1.0 the segmented regions are scaled in red

and the rest is scaled in blue3. If it is set to 0, only the segmented regions will be

displayed in gray scale. This shading is also neccessary to perform because of the

meta data that is stored in some of the colour channels.

4.5 Computation Mask

As discussed in Section 4.1, the Exclude-shader excludes fragments that lie out-

side the given threshold interval. The GrowRegion-shader takes advantages of

this as only fragments that lies within the threshold interval are processed. The

observation that there are relatively few voxels in the volume that need to be com-

puted using the GrowRegion-shader, leads to an optimisation. Using the alpha

test described in Section 3.2.5 as a computation mask, the amount of fragments

processed by the region growing shader can be dramatically reduced.

The Exclude-shader assigns the value 0 to the a-component of all fragments

which luminance value does not lie within a user-defined threshold interval. Before

the GrowRegion-shader executes, alpha-testing is enabled and the alpha test

function only passes fragments whose alpha-value is 1.0. This is achieved through

the OpenGL call glAlphaFunc(GL EQUAL, 1.0). The fragment shader will then

only process potential seed points.

4.6 Termination

It is necessary to iterate execution of the GrowRegion-shader to let the re-

gion grow. The number of iterations can be user-defined, or the loop may ter-

minate based on some criterion. Our application has both alternatives. Based

on the region of interest, the user can specify the number of iterations that the

GrowRegion-shader will iterate the volume (or slice in case of 2D). If this value

is too conservative, the region will not be fully segmented. On the other hand,

if the number of iterations is too many, time is wasted because the shader may

execute even if no more seeds are added. The automatic approach is based on

finding the amount of fragments that were actually rendered and written to the

frambuffer in a rendering pass. OpenGL supports this through an occlusion query.

3This is because blending is performed individually on all three RGB-components.

42 4.7 Filters

As the name implies, this extension is normally used to quickly decide whether

polygonal objects are visible and need to be rendered based on their mutual occlu-

sions. The application can query the pixel count, i.e. number of fragments written

to the framebuffer. If the returned value does not change between two consecu-

tive rendering passes, this means that no further changes will occur henceforward,

and the rendering loop may terminate. We have exploited the occlusion query

extension in our implementation to automatically decide when to terminate the

region growing. The Cg discard statement terminates execution of the program

for the current fragment and suppresses its output. This is done if a fragment

already is a seed. When no more seeds can be added, no changes are made in

the frambuffer, and hence a constant number of fragments are written. This is

detected by means of the occlusion query returning the same pixel count for two

consecutive rendering passes. Algorithm 5 shows how this is performed.

Algorithm 5 Using occlusion query to terminate the region growing. The
GrowRegion() discards fragments that are already seeds. When two consecutive
rendering passes write the same number of pixels to the framebuffer, the loop is
terminated.

lastP ixelCount← 0
pixelCount← 0
GenerateOcclusionQuery(query)

repeat
lastP ixelCount← pixelCount
BeginOcclusionQuery(query)

GrowRegion()

EndOcclusionQuery(query)
pixelCount← GetOcclusionQueryPixelCount(query)

until lastP ixelCount 6= pixelCount

4.7 Filters

We have implemented the two filters described in Section 3.3, i.e. median filtering

and a nonlinear anisotropic diffusion filter. We will now take a closer look at these

implementations. The source code of the shaders is given in Appendix B.

4.7 Filters 43

4.7.1 Median Filter

The 2D median filter is implemented using two Cg shaders. To be able to per-

form median filtering on 3D data, we execute the 2D filter on each of the image

slices. The first, medianH, finds the horizontal, one-dimensional median of three

consecutive horizontal pixel values, and assigns the value to the centre pixel of the

three. The following shader, medianV, then finds the vertical median in the same

manner. This makes sure that each pixel will be assigned the median value within

a 3× 3 mask, only with the small errors discussed in Section 3.3.1. It is desirable

to avoid using conditionals for calculating the median of the three intensity values.

Inspired by sorting networks, we thus found the median using only min and max

operations. Figure 4.3 illustrates this difference.

/*Finding the median of a, b and c*/

//Using only min and max operations...

median = max(min(a, b), min(max(a, b), c));

//Instead of writing...

if (a < b) {

if (b < c) {

median = b;

}

else {

median = max(a, c);

}

}

else {

if (a < c) {

median = a;

}

else {

median = max(b, c);

}

}

Figure 4.3: Optimization in the Median-shaders, using only min and max operations
for calculating the median.

44 4.7 Filters

4.7.2 Nonlinear Anisotropic Diffusion Filter

The basics of this filter were discussed in Section 3.3.2. We started off with

implementing the filter for the 2D case, and then extended it for usage on 3D

data. The user specifies the number of iterations, the conductance κ and the

time step, ∆t. The last two are sent to the diffusion shader as a 2-vector uniform

parameter, k step = float2(k, step). The shader is then executed in each

iteration step, and the luminance value of each fragment is added the product of

the time step, i.e. k step.y, and the value returned from the diffusive process

function, dI.

The dI-function calculates the φdirection values as in Equation (3.5) by con-

secutive calls to the gradient function grad and the diffusion function c. The

grad-function calculates the gradient value of the fragment using Sobel operators.

The c-function calculates the diffusion strength according to Equation (3.2), using

the gradient value and the κ value, i.e. k step.x.

1 0 -1

2 0 -2

1 0 -1

1 2 1

0 0 0

-1 -2 -1

hx : hy :

Figure 4.4: The 2D Sobel operators.

The Sobel operators that we use for calculating the gradient values for 2D data

are depicted in Figure 4.4. In the 3D case, we use the filter depicted in Figure 4.5

in each of the three directions. In order to get a scalar gradient value, we sum up

the absolute value of the directional components.

4.7 Filters 45

0 1 0

1 4 1

0 1 0

0 0 0

0 0 0

0 0 0

0 -1 0

-1 -4 -1

0 -1 0

0 -1 0

-1 -4 -1

0 -1 0

0 0 0

0 0 0

0 0 0

0 1 0

1 4 1

0 1 0

Figure 4.5: The 3D gradient operator, used for each direction

46 4.7 Filters

Chapter 5

Visualization

We have developed a volume renderer that is able to visualize a 3D volume in an

acceptable way. The output of the Seeded Region Growing is also visualized as

a 3D volume and makes the inspection of the segmentation result easier. In this

chapter we investigate the techniques used to render 3D volumes and look on some

examples obtained by our volume renderer. There exist a plethora of visualization

methods in the literature. We base our implementation on a GPU based volume

renderer using textures and blending that is easy to implement [27].

5.1 Volume Rendering

The method described in [27] makes use of 3D textures. But the technique is

straightforward using 2D textures aswell. The volume data is first uploaded to

the video card as 2D textures. Each slice is sampled from a particular plane, e.g.

the xy-plane. Then multiple planes parallel to the image plane are used to sample

the textures and sent to the geometry-processing unit. The GPU is exploited

for interpolating the 2D texture coordinates provided at the polygon vertices and

for reconstructing the texture samples by interpolating within the texture slices.

In the final stage, the pixel values are blended into the framebuffer in order to

approximate the continous volume integral.

While using 2D textures, every polygon vertex is given a point in texture

space. The GPU maps the values from the texture onto the polygon surface by

interpolating the texture coordinates. Each polygon is modeled as a square1 and

is drawn parallel to the projection plane in the screen space at different depths.

1GL QUAD

47

48 5.1 Volume Rendering

Figure 5.1 depicts the stages in the volume visualization on the GPU.

2D Images

Geometry2D Textures

Blending

3D Visualization

Figure 5.1: Stages in the volume visualization using 2D textures and blending on the
GPU.

With volume rendering, it is possible to make the internals of the volume to be

visible by assigning optical properties like colour and opacity to the voxel data.

The opacity of a surface is a measure of how much light penetrates through the

surface. An opacity of 1.0 (α = 1.0) corresponds to a completely opaque surface

that blocks all light incident on it. On the other hand, a surface with an opacity

of 0 is fully transparent; all light passes through it. The transparency of a surface

with opacity α is given by 1− α.

If we want to use blending, we need a way to apply opacity as part of the

rendering process. If we regard the fragment beeing rendered as the source pixel

and the framebuffer pixel as the destination, we can combine these values in various

ways. If we represent the source and destination pixels with the four-element

RGBA arrays

5.2 Rotation 49

s = (sr, sg, sb, sa), (5.1)

d = (dr, dg, db, da) (5.2)

then a compositing operation replaces d with

d′ = (brsr + crdr, bgsg + cgdg, bbsb + cbdb, basa + cada) (5.3)

where the arrays of constants b = (br, bg, bb, ba), c = (cr, cg, cb, ca) are the source

and destination blending factors respectively.

Since only the luminance is recorded in the original images, the fragments

sent to the framebuffer do not have any opacity information. But, instead of

mapping each luminance value to an opacity value, we use the colour information

directly to perform blending. The source and destination blending factors are

b = (sr, sg, sb, sa) and c = (1, 1, 1, 1)− (sr, sg, sb, sa) respectively. This means that

black (0, 0, 0) is fully transparent whilst white (1, 1, 1) is completely opaque.

5.2 Rotation

The geometry is rendered from farthest to nearest with respect to the current

orientation of the volume. Our visualizer supports rotation around all three axes,

and hence care must be taken when rendering the quadrangles to perform blending

in the right order. Figure 5.2 shows how the geometry is rendered and blended

from farthest to nearest along the z-axis.

The order in which the geometry is rendered depends on the relative direction

of the axis perpendicular to the image plane (z-axis) and the projection plane

(screen). If the basis orientation of the object is as depicted in Figure 5.2 and

the camera is oriented in origin pointing along the negative z-axis, we define the

textures which are rendered farthest and nearest as texfar and texnear respectively.

The depth interval is [−zfar, znear] = [−numOfSlices/2, numOfSlices/2]. In

short, texfar is mapped to the quadrangle at −zfar and texnear is mapped to the

quadrangle at znear. But, if a rotation of (±90,±270] degrees is carried out around

the x- or y-axis, the order in which the textures are rendered, must be reversed.

Tracking this shift in rendering order is not as straightforward as it may seem at

50 5.2 Rotation

Figure 5.2: Rendering and blending a volume along the z-axis.

first glance. An arbitrary combination of rotations around the x- and y-axis may

require to render in reverse order. Instead of directly tracking the rotations, we

can look at the orientation of the axis through the object perpendicular to the

image plane (the object’s z-axis in model space) with respect to the projection

plane. If we define a normalized direction vector d = (0, 0, 1) in model space, and

let this go through the same transformations as the object being visualized, we

can simply check the sign of d′.z where d′ is the transformed vector. If d′.z ≥ 0

we have the situation depicted in Figure 5.2. Otherwise, if d′.z < 0 the rendering

order is reversed, and texfar is mapped to the quadrangle at znear and texnear

is mapped to the quadrangle at −zfar. Checking the sign of this z-component

only require us to check the sign of the 11th element in the current model view

transformation matrix. To see why, consider Equation 5.4 on how 3D primitives

are transformed.

p′ =













x′

y′

z′

1













= Mp

=













α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

0 0 0 1

























x

y

z

1













(5.4)

5.2 Rotation 51

p’ is the transformed point, M is the transformation matrix and p is the point in

model space. Inserting the direction vector d into Equation 5.4 gives

d′ =













x′

y′

z′

0













= Md

=













α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

0 0 0 1

























0

0

1

0













=













α13

α23

α33

0













(5.5)

Hence, we see that d′.z = α33 is the 11th element of the model view transformation

matrix M. In OpenGL, the model view transformation matrix can be fetched

through a call to the OpenGL function glGetFloatv with GL MODELVIEW MATRIX

as a parameter.

It is desirable to rotate the object in screen space, i.e. around a fixed co-

ordinate system. The user controls the rotation by moving the mouse. There

is no simple way to handle this in OpenGL, since each transformation actually

changes the coordinate system of the model with respect to that of the camera.

A transformation carried out later will then transform the object with respect to

the object’s local coordinate system, not the fixed screen or viewing coordinate

system. What is needed, is a way to store the transformations carried out on the

object, in particular the rotation transformations. Quaternions may be used for

this, but in our implementation we use a more direct and simpler approach. The

root cause of the problem is that OpenGL matrix operations postmultiply onto

the matrix stack, thus causing transformations to occur in object space. To affect

screen space transformations, we need to premultiply. OpenGL does not provide

a mode switch for the order of matrix multiplication, so we need to premultiply by

hand. We implement this by retrieving the current matrix after each frame. We

then multiply new transformations for the next frame on top of an identity matrix

and multiply the accumulated current transformations (from the last frame) onto

those transformations. This is summarized in Algorithm 6.

A problem when using 2D textures manifest itself when it comes to rotation.

When viewing the volume such that each image slice is perpendicular to the view-

52 5.2 Rotation

ing plane, the object will be less visible. In fact it will disappear when the slices

are parallel to the xz-plane in world space. This is because each slice is rendered

and blended along the z-axis. A solution to this is either to use three different

texture sets sampled from all three different planes, or to utilize 3D textures.

Algorithm 6 Rotation around a fixed coordinate system in OpenGL.

Require: curMatrix {Current model view transformation matrix}

LoadIdentity()
PerformTransformations() {Changes the matrix on top of the matrix stack}
MultiplyMatrix(curMatrix) {Multiply matrix on top of stack with curMatrix}
RenderGeometry()
curMatrix← GetCurrentModelviewMatrix()

5.3 Examples 53

5.3 Examples

Figure 5.3 shows four volumes rendered by our application.

(a) Rendered volume of a human’s head. (b) A visualization of a segmented aorta.

(c) Rendered volume of phantom data. (d) Segmentation of the cerebral cortex.

Figure 5.3: Four volumes rendered by our graphics application.

54 5.3 Examples

Chapter 6

Results

This chapter gives a survey of how and under which conditions the segmentation

results are achieved. This is followed by a presentation of the actual results.

6.1 Test Setup

We start off by looking at the hardware platform of our test system. Then we take

a look at the different volume data sets that we use, and which of the anatomical

structures that are of interest to us. To round off this section, we mention what

we will measure in our tests, and how these measurements are achieved.

6.1.1 Hardware Platform

All tests will run on an AMD XP 2200+ CPU with 512 MB RAM and a NVIDIA

GeForce 6200 128 MB graphics card. This GPU is capable of 128 pixel shader

operations per clock cycle, and is the newest hardware series from NVIDIA. The

vertex and fragment profiles used are the OpenGL NV vertex program3 (vp40)

and OpenGL NV fragment program3 (fp40) respectively. They are new profiles

introduced in the Cg 1.3 version.

6.1.2 Graphical User Interface

The segmentation algorithm needs several user-defined parameters. This include

seed points, threshold values and number of iterations. In response to this, we

have developed a graphical user interface that makes this parameter setting easier.

In addition, if the user is not satisfied with the segmentation result, it is an easy

55

56 6.1 Test Setup

task to start from the beginning and tune the parameters. The GUI also makes

it possible to investigate the segmentation result seen as a 3D rendered volume.

Figure 6.1 shows a screen shot of the GUI.

Figure 6.1: A screen shot of the GUI.

6.1.3 Test Data Sets

We have received data material from Sintef Health Research for testing our GPU

implementation of seeded region growing. The data sets reveal anatomical struc-

tures within the abdominal area and the head, and were captured using Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI) scanners respectively.

Table 6.1 gives a complete overiew of our data sets. Each volume has been given

a unique identifier in order to distinctively address each data set. The size of

the volume is also given, both in the various dimensions and with respect to the

number of voxels. This becomes relevant when measuring the efficiency.

6.1.4 Relevant Structures

We will focus our segmentation on some anatomical structures in the different sets

of medical volume data. In the abdominal area it will be the aorta, the liver, and

6.1 Test Setup 57

Set ID Set Type Acquisition Method Volume Size Number of Voxels

A1 Abdomen CT 256×256×350 22937600
A2 Abdomen CT 256×256×176 11534336
A3 Abdomen CT 256×256×176 11534336
A4 Abdomen CT 256×256×129 8454144
H1 Head MRI (T1 weighted) 256×256×179 11730944

Table 6.1: The data test sets that we use.

the kidneys that we will concentrate on. We also want to test our implementation

on a brain tumor and the cerebral cortex from the volume data of the head.

6.1.5 Achievement and Evaluation of the Results

In [29], Udupa et al. suggest to focus on three factors for evaluating a segmen-

tation algorithm, namely efficiency, accuracy and precision. When evaluating our

implementation, the main attention will be to the time consume of the algorithm.

This is because we are not interested in checking the overall performace of the

algorithm per se, but merely in the efficiency of implementing it on the GPU.

Udupa et al. also argue that both human operator time and computational

time need to be considered when characterizing the efficiency. We will focus on

the computational time, i.e. the time consume of an execution of the algorithm.

So the metric for efficiency will in our case be the time it takes for the GPU to

complete its computational tasks.

The time consume will be measured using various input. First of all, the

size of the volume data will have a large impact. However, the number of initial

seed points and their position will also affect the computation time, as a high

number of scattered seeds leads to faster convergence. The same goes with the

threshold interval, as it defines how many fragments that are excluded from further

processing. Finally but not least, using different number of iterations will of course

affect the total time consume.

The time will be measured using the Windows specific ftime function. The

total time spent in hardware will be calculated as depicted in Figure 6.2. In

this way we will try to count the actual processing time on the GPU, but some

overhead is included due to shader and render-target (FBO) setup.

For a comparison, we will do some equivalent tests on a CPU implementation

of seeded region growing. The CPU version will be equivalent to our GPU imple-

58 6.2 Results

Time line

Exclude Set Seed
Grow

Region

Shade

Segmented

Stop

Timer

Stop

Timer

Start

Timer

Stop

Timer

Start

Timer

Stop

Timer

Start

Timer

Start

Timer

Total time spent in graphics hardware

Figure 6.2: Measuring total time spent in hardware.

mentation in the way that voxels are processed. Thus, the CPU version will have

an iterative behaviour and process all voxels. This is different from the traditional,

recursive implementation.

6.2 Results

In this section we present the results of running our GPU based SRG algorithm.

We will use different input volumes in order to segment out the various structures

mentioned in Section 6.1.4. All segmentation results obtained for each structure

are covered in the following sections. In Table 6.2, the parameters used in all

segmentation tests, in addition to time consume, are given. In Section 6.4 visual-

ization of the results are shown.

6.2.1 Aorta

The aorta was segmented in all abdominal data sets. This structure is quite easy

to segment using the SRG algorithm because of the relative uniform intensity

levels. In addition, the aorta does not smoothly merge into other regions, but

forms a distinct region separated from the surrounding matter. A slice from data

6.2 Results 59

Set
ID

Structure
Seed

Points
Threshold
Interval

Delta Slices
Itera-
tions

Time
(ms)

A1 Aorta 9 [0.57, 1.0] - 1-260 50 9563
A1 Aorta 9 [0.57, 1.0] - 1-260 74 1 16613

A1 Aorta 1 [0.57, 1.0] - 1-260 200 2 44654
A2 Aorta 9 [0.6, 1.0] - 30-174 50 4186

A2 Aorta 9 [0.6, 1.0] 0.05 30-174 50 6390
A3 Aorta 10 [0.54, 1.0] - 1-140 50 4065

A4 Aorta 5 [0.7, 1.0] - 1-127 50 4667

H1
Brain

Tumour
4 [0.45, 0.85] 0.035 80-110 30 926

H1
Cerebral
Cortex

8 [0.45, 1.0] 0.05 40-152 80 9253

A2 Liver 8 [0.43, 0.56] 0.04 105-167 3 35 911
A4 Kidneys 2 [0.495, 1.0] - 1-129 55 5118

Table 6.2: Segmentation settings and achieved computation times.

set A1 is shown in Figure 6.3. No preprocessing was required to achieve good

results. Except for data set A2, no delta value was used. Segmenting this data

set using the ordinary SRG algorithm resulted in over-segmentation, where part

of the spinal marrow was erroneously included in the segmentation result. This is

caused by the weak interface between the aorta and the spinal marrow. A delta

value of 0.05 was used to correct this.

As seen in Table 6.2, using more seed points, the algorithm leads to faster

convergence. Row 2 and 3 prove this. In these two experiments, the segmentation

settings, except the number of seed points, were identical. Using occlusion query

to terminate the region growing, the time spent to converge using only a single seed

point, was almost three times the time using 9 seed points. Faster convergence is

also achieved when the seed points are more scattered.

6.2.2 Brain Tumour

The brain tumour in data set H1 was a hard task for our algorithm. The voxels

within the tumour had gray values ranging from approximately 0.45 to 0.85. This

is a large interval, and the surrounding voxels of the tumour have similar intensity

1Occlusion Query was used.
2Occlusion Query was used.
3Volume also narrowed down in the x- and y-coordinate, from 29 to 170 and 79 to 215,

respectively.

60 6.2 Results

Figure 6.3: Slice from data set A1 showing the clear distinction of the aorta with
surrounding matter.

values. Hence, to prevent the seeds from growing outside the tumour, we had to

make some restrictions.

The head in the data set was surrounded by voxels with low gray level values.

Hence, we first did some basic thresholding on the original data in order to elimi-

nate these voxels. We used a threshold value of 0.35. In order to smooth the gray

values in the tumour while preserving the edges, we used our anisotropic diffusion

filter with a κ-value of 0.2, time step of 0.1, and 10 iterations. This effect is shown

on one of the image slices in Figure 6.4.

(a) Input image slice. (b) Filtered image slice.

Figure 6.4: Result of using the anisotropic diffusion filter with a κ-value of 0.2 and
with 10 iterations.

When using occlusion query for termination of the algorithm, we found that the

seeds grew into the matter outside the tumour. To prevent this from happening, we

specified a number of iterations that the algorithm was allowed to run. In addition,

6.2 Results 61

we only considered a subvolume of the head, instead of the entire volume. The

constraint was in the z-direction, i.e. we specified which slices we wanted to look

at.

The algorithm leads to faster convergence when using many, scattered seed

points. We started with four seed points, all placed within the tumour, but within

different image slices. We used a delta value of 0.035 to prevent seeds growing

into voxels with values much different from their own.

Figure 6.9 shows the resulting volume and the segmentation of one of the image

slices. There are some spurious holes within the segmented part of the slice. This

is most likely due to that the delta value was used. However, without it a much

less distinct segmentation of the tumour would occur.

6.2.3 Cerebral Cortex

The cerebral cortex was successfully segmented using our SRG implementation.

This structure was quite sensitive to the input parameters, and most tests resulted

in over-segmentation where part of the cranium was erroneously included. The

final segmentation was achieved by a preprocessing step consisting of anisotropic

diffusion filtering followed by the SRG using a small delta value. Parameters for

the diffusion filter was κ = 0.07, ∆t = 0.1, and 5 iterations. Number of iterations

for the region growing was manually set to 80. We also tested the segmentation

using occlusion query. This resulted in 318 iterations and over-segmentation.

6.2.4 Liver

It is complicated to isolate the liver using the seeded region growing algorithm,

and much more complex methods are actually needed in order to get acceptable

results. Although the intensity levels of the voxels are similar whithin the region,

much of the surrounding voxels also have approximately the same distribution of

intesity levels. We did, however, put our implementation to this difficult test.

We used data set A2 and performed some pre-processing consisting of anisotropic

diffusion filter with κ = 0.07, ∆t = 0.1, and 5 iterations. Then we inserted 8 seed

points into the liver region, and set the upper and lower threshold values to 0.43

and 0.56 respectively.

To restrict the seeds from growing outside the liver, we narrowed down the

volume. As with the brain tumour, we only let some slices be taken into account,

62 6.2 Results

i.e. slices 105 through 167. But, in this case we also cut out a subvolume in the x-

and y-direction, constraining the seeds to grow within pixel 29 through 170 with

respect to the x-direction, and 79 through 215 for the y-direction. We also set the

number of iterations to 35, something that reduced the effect of over-segmentation

since the seeds were not allowed to grow for too long. The delta value, which we

set to 0.04, also helped reducing this effect.

The algorithm finished in 911 ms, and the resulting images are shown in Fig-

ure 6.11. There are some obvious signs of over-segmentation, in spite of the con-

straints. One problem was that the seeds grew into the tissue that surrounded the

ribs. This was inevitable, but the constraint for the x-direction, together with the

low number of iterations, reduced this aspect. And of course there are some other

small regions and spurious voxels that should not have been part of the region

of interest. Still, the liver segmentation performed better than we expected. The

various input parameters that we used and the resulting time consume are shown

in Table 6.2.

6.2.5 Kidneys

We experimented with segmenting the kidneys in data set A4. They were relatively

distinct from the surrounding matter, and were for the most only in direct contact

with blood vessels. So it was an appropriate task for our algorithm.

After placing a seed in each of the kidneys, the upper and lower thresholds

were set to 0.495 and 1.0 respectively. The algorithm was then executed on the

entire volume, and the seeds were allowed to grow for 55 iterations. The total

time spent in graphics hardware summed up to 5118 ms.

In this case we did not need to use a delta value nor considering only a sub-

volume in order to get acceptable results. Table 6.2 summarizes the details from

this segmentation, and Figure 6.12 shows the results. The kidneys are nicely seg-

mented with parts of the blood vessels included. Some extra matter around the

blood vessels of the kidney to the right is also included, since it has the same level

of intensities. There are some holes and gaps within the segmented kidneys, due

to that the intensity levels of these voxels are much lower than the rest of the

kidneys.

6.3 Comparison with CPU Implementation 63

6.3 Comparison with CPU Implementation

The seeded region growing algorithm does not involve operations with high com-

putational intensity, and hence much of the computation time when running the

SRG on the GPU will be overhead associated with shader- and render-target

(FBO) setup. For each iteration of the GrowRegion-shader, a new FBO must

be bound and three 2D textures4 must be specified for the shader, for all image

slices beeing processed by the algorithm. Thus, more computations performed per

pixel is likely to be more efficient on the GPU. A non-optimal CPU implementa-

tion of the SRG algorithm was tested against our GPU based solution. This CPU

implementation tries to reflect the GPU method in that all pixels are processed

and new seed points are sought in a 6-neighbourhood. This is iterated in order

to grow the region. Surprisingly, the GPU implementation was less efficient than

the CPU approach. An experiment using data set A1 was carried out on both

the GPU and CPU implementations. Same parameters were used in both tests.

The GPU/CPU ratio with respect to time consume was approximately 1.135. The

same segmentation results were achieved in both approaches. On the other hand,

the GPU ran approximately 1.26 times faster than the CPU when segmenting the

aorta in data set A3. This experiment involved fewer texture slices (140 vs. 260)

than the experiment using data set A1, and thus less overhead was required per

iteration.

An additional experiment involving more computations was carried out on

data set A1. A CPU version of the nonlinear anisotropic diffusion filter was

implemented and tested against the GPU implementation. Now the GPU was

approximately 6 times faster than the CPU7. This supports the claim that more

computations performed per fragment is likely to accelerate on the GPU. Much of

this advantage stems from the graphics hardware’s ability to perform more than

one floating-point operation per clock cycle.

4Above, current, below.
59 seeds, 50 iterations. CPU/GPU time: 8332/9433 ms.
610 seeds, 50 iterations. CPU/GPU time: 4967/4006 ms.
75 steps used. CPU/GPU time: 24366/4046 ms.

64 6.4 Result Visualizations

6.4 Result Visualizations

In this section, rendered volumes of the segmentation results discussed in Section

6.2 are shown. Each figure consists of the rendered volume and some selected

slices to better visualize the quality of the segmentation.

(a) Segmentation of the aorta in data set A1
after 50 iterations.

(b) Segmentation of the aorta in data set A1
using occlusion query, 74 iterations.

(c) Part of image slice from data set A1. (d) Segmentation of (c).

Figure 6.5: Segmentation of aorta in data set A1.

6.4 Result Visualizations 65

(a) Segmentation of the aorta in data set A2
after 50 iterations. No delta value used. The
segmentation leaks through the weak inter-
face between the aorta and the spinal mar-
row.

(b) Segmentation of the aorta in data set A2
after 50 iterations. Delta value of 0.05 used
to correct over-segmentation.

(c) Part of image slice from data set A2. (d) Segmentation of (c).

Figure 6.6: Segmentation of aorta in data set A2.

66 6.4 Result Visualizations

(a) Segmentation of the aorta in data set A3 after 50 iter-
ations.

(b) Part of image slice from data set A3. (c) Segmentation of (b).

Figure 6.7: Segmentation of aorta in data set A3.

6.4 Result Visualizations 67

(a) Segmentation of the aorta in data set A4 after 50 iter-
ations.

(b) Part of image slice from data set A4. (c) Segmentation of (b).

Figure 6.8: Segmentation of aorta in data set A4.

68 6.4 Result Visualizations

(a) Segmentation of the brain tumour in
data set H1 after 30 iterations. Complete
volume rendered.

(b) The brain tumour isolated.

(c) Part of image slice from data set H1. (d) Segmentation of (c).

Figure 6.9: Segmentation of brain tumour in data set H1.

6.4 Result Visualizations 69

(a) Segmentation of the cerebral cortex in
data set H1 after 80 iterations.

(b) Segmentation of the cerebral cortex in
data set H1. Complete volume rendered.

(c) Part of image slice from data set H1. (d) Segmentation of (c).

Figure 6.10: Segmentation of cerebral cortex in data set H1.

70 6.4 Result Visualizations

(a) Segmentation of the liver in data set A2 after 35 iter-
ations.

(b) Part of image slice from data set A2. (c) Segmentation of (b).

Figure 6.11: Segmentation of liver in data set A2.

6.4 Result Visualizations 71

(a) Segmentation of the kidneys in data set A4 after 55
iterations.

(b) Part of image slice from data set A4. (c) Segmentation of (b).

Figure 6.12: Segmentation of kidneys in data set A4.

72 6.4 Result Visualizations

Chapter 7

Conclusions

In this Thesis, we have looked at the possibility of using the graphics processing

unit for medical image segmentation. By using state of the art technology, e.g. the

framebuffer object extension, seeded region growing (SRG) has been successfully

implemented on commodity graphics hardware, along with two pre-processing

filters, i.e. median filter and nonlinear anisotropic diffusion filter. In addition, we

created a volume visualizer. Overall, however, our main attention has merely been

to the segmentation task.

7.1 Discussion

Nowadays, the GPUs are fully programmable parallel processors that in some cases

can outperform the CPU with over an order of magnitude. Their big slopes with

respect to performance, measured in GFLOPS, and the high internal bandwidth

with a memory system that can be addressed very fast, make them appealing

to programmers. In addition, the GPU relieves the CPU, so it can be left with

other tasks. If the results are to be visualized, data transfer from CPU to GPU is

avoided, since the data already resides on the graphics card.

General-purpose GPU programming requires an effort in mapping a problem

within the hardware constraints of the GPU. Special care must be taken, since the

basic way of CPU programming is altered. All operations performed on a fragment

must be general so that it can be performed on every fragment, i.e. there can be

no indivdual per-fragment operations, and a write operation is only allowed for

the record in process. The fact that there are no global registers makes the task

even harder for some problems, e.g. averaging and counting.

73

74 7.1 Discussion

Despite this, we found a solution for mapping the seeded region growing al-

gorithm onto the GPU, hoping to fully utilize its parallelism and enormous com-

putational power. Our GPU implementation consists of four shaders that are

consecutively executed to grow reigons based on user-defined seed points, thresh-

old interval and connectivity criteria. If required, a delta value may be used to

prevent the segmentation to leak through weak interfaces.

The implementation gave the anticipated segmentation results. SRG is a sim-

ple algorithm that performs well when the voxels within the region of interest have

similar luminance values that also are releative different from the surrounding vox-

els. There are also low computational costs associated with using it. Despite this,

we have succeeded in segmenting structures from different medical volume data

sets.

When looking at the time consume, CPU implementations perform better. An

optimized, recursive CPU implementation only processes the smallest number of

necessary voxels. Basically, the GPU must process all voxels. There is no simple

way for the GPU application to specify which voxels to process. We have devel-

oped a CPU reference implementation of the SRG algorithm. This non-optimal

implementation tries to reflect the GPU based solution. The GPU version was

less efficient than this CPU implementation, due to the overhead associated with

shader- and render-target (FBO) setup, and the fact that the SRG algorithm has

low computational costs and performs few per-fragment operations. The SRG

implementation was not able to fully utilize the GPU’s computational power.

More complex tasks involving higher computational intensity like the anisotripic

diffusion filter, performed better on the GPU. In this case, more floating-point

operations were performed per fragment, and the graphics card’s computational

capacity and parallelism were more utilized.

The current NVIDIA display driver does not yet support render-to-3D-texture

using the framebuffer object extension (FBO). Utilizing 3D textures, the overhead

associated with render setup may decrease and result in a performace gain. Also,

the fact that C evaluates boolean expression in a short-circuiting manner, can

reduce the computation time. This is not supported by Cg.

7.2 Final Conclusions 75

7.2 Final Conclusions

We have ported the seeded region growing algorithm from the CPU programming

model to the GPU programming model, and thus implemented an iterative version

of SRG on the GPU, hoping for a speed-up in time consume. The segmentation

results were as expected, restricted by the constraints of the algorithm. Anatomi-

cal structures like the aorta, a brain tumour, the cerebral cortex, the kidneys and

the liver have been successfully segmented by our GPU based SRG application.

However, the CPU implementation performed slightly better than the GPU im-

plementation when measuring the computation time. But, reducing the number

of image slices (textures), less overhead was required per iteration of the region

growing process, and the GPU version required less computation time than the

CPU. A volume renderer was also implemented and incorporated in our graphics

application. This was used to visualize the volumes before and after segmenta-

tion, and contributed to an easy inspection of the segmentation results. We used

a simple and easy-to-implement method based on 2D textures and blending in

OpenGL.

When designing the SRG shaders, much effort has been on optimizations.

Having in mind the amount of data being processed when dealing with volume

data, optimized algorithms are clearly required to achieve acceptable results. We

have succeeded in implementing an optimized region growing algorithm which does

not include any conditionals, nor loops. Also, the alpha-test has been used as a

computation mask reducing the amount of data being processed. Weeding out

fragments by initially executing an exclude-shader in one render pass, resulted in

a performace gain, and the GrowRegion-shader only had to consider potential

seed points. The GPU is more utilized when algorithms can be structured as

streaming computations, meaning that a kernel is independently evaluated on each

input value. The performance gain is even more evident when more computations

are performed per fragment. This was proved when comparing a CPU and GPU

implementation of the compute-intensive anisotropic diffusion filter. For this task,

the GPU outperformed the CPU by a factor of 6. Thus, more sophisticated

segmentation methods like level-sets and active contours or surfaces are likely to

accelerate on GPUs.

76 7.2 Final Conclusions

Chapter 8

Future Work

From our literature study in [2], we moved on to implement seeded region growing

on the GPU. We have also implemented two pre-processing filters, i.e. median

filter and nonlinear anisotropic diffusion filter, in addition to a volume renderer.

8.1 Further Implementations

An interesting approach for further implementations is to consider more complex

segmentation methods, to fully exploit the computational resources of graphics

hardware. In relation to this, we find active contour or surface models, and level-

set based methods particularly appealing. The latter is based on the numeric

of weak solutions to surface propagation and involves computations for solving

a partial differential equation on a volume. This can surely benefit from the

parallelism and computational power offered by GPUs.

The basic SRG algorithm could be extended to include more complex merging

criteria, e.g. gradient values and other global or local image characteristics. In

addition, the merging criteria could be expressed as a diffusion process.

As discussed in Chapter 5, our volume renderer only exploits 2D textures, and

some viewing artifacts exist as a consequence of this. Utilizing 3D textures for

volume visualization would be an improvement. An animation of the segmenta-

tion evolution is also an interesting future challenge. This would allow a user to

observe the segmentation in real time, and cancel the running if the results are

not acceptable. This should not affect the running time of the segmentation, and

should potentially lead to fully utilization of the GPU’s computation units.

77

78 8.2 Integration into CustusX

8.2 Integration into CustusX

Since the CPU based version of seeded region growing turned out to be faster than

the GPU implementation in some cases, a direct integration into CustusX seems

somehow useless. However, a GPU framework that incorporates different filtering

and more complex segmentation methods, may serve as a module within CustusX.

It may also turn out to be possible to use the GPU for other medical tasks that

need a high amount of processing power, e.g. volume to volume registration.

Bibliography

[1] R. Adams and L. Bischof. Seeded Region Growing. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16:641–647, 1994.

[2] M. Botnen and H. Ueland. The GPU as a Computational Resource in Medical

Image Processing, 2004.

[3] I. Buck. Brook Spec v0.2. http://merrimac.stanford.edu/brook/, 2003.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, P. Hanrahan, M. Houston, and

K. Fatahalian. BrookGPU. http://graphics.stanford.edu/projects/brookgpu.

[5] J. E. Cates, Aa. E. Lefohn, and R. T. Whitaker. GIST: an interactive, GPU-

based level set segmentation tool for 3D medical images. Medical Image

Analysis, 8:217–231, 2004.

[6] NVIDIA Corporation. Cg Toolkit. http://developer.nvidia.com/Cg, 2004.

[7] NVIDIA Corporation. Technical Brief: The GeForce 6 Series of GPUs, 2004.

[8] NVIDIA Corporation. NVIDIA GPU Programming Guide, 2005.

[9] M. McCool et al. Sh: A high-level metaprogramming language for modern

GPUs. http://libsh.org, 2003.

[10] R. Fernando, M. Harris, M. Wloka, and C. Zeller. Programming Graphics

Hardware. NVIDIA Corporation, 2004.

[11] G. Gerig, R. Kikinis, O. Kübler, and F.A. Jolesz. Nonlinear Anisotropic

Filtering of MRI Data. IEEE Transactions on Medical Imaging, 11(2):221–

232, June 1992.

[12] S. Green. The OpenGL Framebuffer Object Extension. NVIDIA Corporation,

2005.

79

80 BIBLIOGRAPHY

[13] M. Hadwiger, C. Berger, and H. Hauser. High-Quality Two-Level Volume

Rendering of Segmented Data Sets on Consumer Graphics Hardware. IEEE

Visualization, 2003.

[14] Markus Hadwiger, Thomas Theußl, Helwig Hauser, and Eduard Gröller.

Hardware-accelerated high-quality reconstruction on pc hardware. In VMV

’01: Proceedings of the Vision Modeling and Visualization Conference 2001,

pages 105–112. Aka GmbH, 2001.

[15] Markus Hadwiger, Ivan Viola, Thomas Theußl, and Helwig Hauser. Fast

and flexible high-quality texture filtering with tiled high-resolution filters. In

Vision, Modeling and Visualization 2002, pages 155–162, nov 2002.

[16] M. Harris. GPGPU: General-Purpose Computation on GPUs. EG 2004,

2004.

[17] M. Hopf and T. Ertl. Accelerating 3D Convolution using Graphics Hardware.

In Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99).

IEEE Computer Society, 1999.

[18] M. Hopf and T. Ertl. Hardware-Based Wavelet Transformations. In Workshop

of Vision, Modelling, and Visualization (VMV ’99). infix, 1999.

[19] M. Hopf and T. Ertl. Accelerating Morphological Analysis with Graphics

Hardware. In Workshop on Vision, Modelling, and Visualization VMV ’00.

infix, 2000.

[20] M. Hopf and T. Ertl. Hardware Accelerated Wavelet Transformations. In

Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’00,

2000.

[21] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.

International Journal of Computer Vision, pages 321–331, 1988.

[22] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shading Language.

3Dlabs, Inc. Ltd, 2004.

[23] T. McInerney. Topology Adaptive Deformable Surfaces for Medical Image

Volume Segmentation. IEEE Transactions on medical imaging, 18, 1999.

BIBLIOGRAPHY 81

[24] T. C. Pedersen. Segmenting Medical Images on the GPU. University of

Aarhus, 2005.

[25] M. Rumpf and R. Strzodka. Level Set Segmentation in Graphics Hard-

ware. In Proceedings of IEEE International Conference on Image Processing

(ICIP’01), volume 3, pages 1103–1106, 2001.

[26] A. Sherbondy, M. Houston, and S. Napel. Fast Volume Segmentation With

Simultaneous Visualization Using Programmable Graphics Hardware. IEEE

Visualization, 2003.

[27] A. Shetty, A. Nitin, Ashwin K., Pramod C., and Venkatesh N. GPU based

Volume Rendering of Medical Images. Philips Medical Systems, Philips In-

novation Campus, Bangalore.

[28] SINTEF. Navigasjonssystemet CustusX. http://www.sintef.no, 2005.

[29] Jayaram K. Udupa, Vicki R. LaBlanc, Hilary Schmidt, Celina Imielinska,

Punam K. Saha, George J. Grevera, Ying Zhuge, L. M. Currie, Pat Molholt,

and Yinpeng Jin. Methodology for Evaluating Image Segmentation Algo-

rithms. volume 4684, pages 266–277. SPIE, 2002.

[30] Ivan Viola, Armin Kanitsar, and Meister Eduard Gröller. Hardware-based

nonlinear filtering and segmentation using high-level shading languages. In

Proceedings of IEEE Visualization 2003, pages 309–316. G. Turk, J. van Wijk,

K. Moorhead, oct 2003.

[31] C. Wynn. Using P-Buffers for Off-Screen Rendering in OpenGL. NVIDIA

Corporation.

[32] R. Yang and G. Welch. Fast Image Segmentation and Smoothing Using

Commodity Graphics Hardware. Dept. of Computer Science, University of

North Carolina at Chapel Hill.

82 BIBLIOGRAPHY

Appendix A

Seeded Region Growing - Cg

Shaders

A.1 Exclude

void exclude(

half2 texCoord : TEXCOORD0,

uniform half uThreshold,

uniform half lThreshold,

out half4 color : COLOR,

uniform samplerRECT texture)

{

color = texRECT(texture, texCoord);

half f = step(lThreshold, color.b) * step(color.b, uThreshold);

color.ra = half2(1, f);

}

83

84 A.2 Set Seed

A.2 Set Seed

void setSeed(

half2 texCoord : TEXCOORD0,

uniform half2 seedPoint,

out half4 color : COLOR,

uniform samplerRECT texture)

{

color = texRECT(texture, texCoord);

half2 lower = seedPoint + half2(-1, -1);

half2 upper = seedPoint + half2(1, 1);

if (texCoord.x > lower.x && texCoord.x < upper.x &&

texCoord.y > lower.y && texCoord.y < upper.y)

{

color.r = 0;

}

}

A.3 Grow Region 85

A.3 Grow Region

A.3.1 Grow Region 3D

void growRegion3DNormal(

half2 texCoord : TEXCOORD0,

out half4 color : COLOR,

uniform samplerRECT up,

uniform samplerRECT current,

uniform samplerRECT down)

{

color = texRECT(current, texCoord);

if (color.r == 0)

discard;

color.r = texRECT(current, texCoord + half2(-1, 0)).r *

texRECT(current, texCoord + half2(1, 0)).r *

texRECT(current, texCoord + half2(0, -1)).r *

texRECT(current, texCoord + half2(0, 1)).r *

texRECT(up, texCoord).r *

texRECT(down, texCoord).r;

}

86 A.3 Grow Region

A.3.2 Grow Region 3D Using a Delta Value

void growRegion3D(

half2 texCoord : TEXCOORD0,

out half4 color : COLOR,

uniform half delta,

uniform samplerRECT up,

uniform samplerRECT current,

uniform samplerRECT down)

{

color = texRECT(current, texCoord);

if (color.r == 0)

discard;

half4 w = texRECT(current, texCoord + half2(-1, 0));

half4 e = texRECT(current, texCoord + half2(1, 0));

half4 n = texRECT(current, texCoord + half2(0, -1));

half4 s = texRECT(current, texCoord + half2(0, 1));

half4 u = texRECT(up, texCoord);

half4 d = texRECT(down, texCoord);

half r = (w.r + step(delta, abs(color.b-w.b))) *

(e.r + step(delta, abs(color.b-e.b))) *

(n.r + step(delta, abs(color.b-n.b))) *

(s.r + step(delta, abs(color.b-n.b))) *

(u.r + step(delta, abs(color.b-u.b))) *

(d.r + step(delta, abs(color.b-d.b)));

color.r = r;

}

A.3 Grow Region 87

A.3.3 Grow Region 2D

void growRegion(

half2 texCoord : TEXCOORD0,

out half4 color : COLOR,

uniform samplerRECT texture)

{

color = texRECT(texture, texCoord);

if (color.r == 0)

discard;

half r = texRECT(texture, texCoord + half2(-1, 0)).r *

texRECT(texture, texCoord + half2(0, -1)).r *

texRECT(texture, texCoord + half2(1, 0)).r *

texRECT(texture, texCoord + half2(0, 1)).r;

color.r = r;

}

88 A.4 Shade Segmented

A.4 Shade Segmented

void shadeSegmented(

half2 texCoord,

out half4 color : COLOR,

uniform half keepUnsegmented,

uniform samplerRECT texture)

{

color = texRECT(texture, texCoord);

color.rgb = half3(color.b*(1-color.r),

color.b*(1-color.r)*(1-keepUnsegmented),

color.b*color.r*keepUnsegmented +

color.b*(1-color.r)*(1-keepUnsegmented));

}

Appendix B

Filtering - Cg Shaders

B.1 Median filter

void medianH(

in half4 texCoord : TEXCOORD0,

out half4 color : COLOR,

uniform samplerRECT texture)

{

half a = texRECT(texture, texCoord + half2(-1, 0)).r;

half b = texRECT(texture, texCoord + half2(0, 0)).r;

half c = texRECT(texture, texCoord + half2(1, 0)).r;

half med = max(min(a, b), min(max(a, b), c));

color = half4(med, med, med, 1);

}

void medianV(

in half4 texCoord : TEXCOORD0,

out half4 color : COLOR,

uniform samplerRECT texture)

{

half a = texRECT(texture, texCoord + half2(0, -1)).r;

89

90 B.1 Median filter

half b = texRECT(texture, texCoord + half2(0, 0)).r;

half c = texRECT(texture, texCoord + half2(0, 1)).r;

half med = max(min(a, b), min(max(a, b), c));

color = half4(med, med, med, 1);

}

B.2 Anisotropic Diffusion Filter 91

B.2 Anisotropic Diffusion Filter

B.2.1 2D Implmentation

float grad(samplerRECT decal, float2 texCoord)

{

float hx = 0;

hx += texRECT(decal, texCoord + float2(-1, -1));

hx -= texRECT(decal, texCoord + float2(1, -1));

hx += 2.0f*texRECT(decal, texCoord + float2(-1, 0));

hx -= 2.0f*texRECT(decal, texCoord + float2(1, 0));

hx += texRECT(decal, texCoord + float2(-1, 1));

hx -= texRECT(decal, texCoord + float2(1, 1));

hx /= 4.0f;

float hy = 0;

hy += texRECT(decal, texCoord + float2(-1, -1));

hy += 2.0f*texRECT(decal, texCoord + float2(0, -1));

hy += texRECT(decal, texCoord + float2(1, -1));

hy -= texRECT(decal, texCoord + float2(-1, 1));

hy -= 2.0f*texRECT(decal, texCoord + float2(0, 1));

hy -= texRECT(decal, texCoord + float2(1, 1));

hy /= 4.0f;

return abs(hx) + abs(hy);

}

float c(float gradient, float k)

{

float innerProd = (gradient/k)*(gradient/k);

return exp(-innerProd);

}

float dI(samplerRECT decal, float2 texCoord, float k)

{

92 B.2 Anisotropic Diffusion Filter

float gradient = grad(decal, texCoord);

float c_ = c(gradient, k);

float e = c_*(texRECT(decal, texCoord + float2(1, 0)) -

texRECT(decal, texCoord + float2(0, 0)));

float w = c_*(texRECT(decal, texCoord + float2(0, 0)) -

texRECT(decal, texCoord + float2(-1, 0)));

float n = c_*(texRECT(decal, texCoord + float2(0, -1)) -

texRECT(decal, texCoord + float2(0, 0)));

float s = c_*(texRECT(decal, texCoord + float2(0, 0)) -

texRECT(decal, texCoord + float2(0, 1)));

return (e - w + n - s);

}

void main(

float2 texCoord : TEXCOORD0,

out float4 color : COLOR,

uniform float2 k_step,

uniform samplerRECT texture)

{

float col = texRECT(texture, texCoord);

float gray = col + k_step.y*dI(texture, texCoord, k_step.x);

color = float4(gray, gray, gray, 1);

}

B.2 Anisotropic Diffusion Filter 93

B.2.2 3D Implementation

float grad(samplerRECT lower,

samplerRECT current,

samplerRECT upper,

float2 texCoord)

{

float hx = 0;

hx += texRECT(current, texCoord + float2(-1,-1));

hx += texRECT(current, texCoord + float2(-1, 1));

hx += 4.0f * texRECT(current, texCoord + float2(-1, 0));

hx += texRECT(upper, texCoord + float2(-1, 0));

hx += texRECT(lower, texCoord + float2(-1, 0));

hx -= texRECT(current, texCoord + float2(1, 1));

hx -= texRECT(current, texCoord + float2(1,-1));

hx -= texRECT(upper, texCoord + float2(1, 0));

hx -= texRECT(lower, texCoord + float2(1, 0));

hx -= 4.0f * texRECT(current, texCoord + float2(1, 0));

hx /= 8.0f;

float hy = 0;

hy += texRECT(current, texCoord + float2(-1, -1));

hy += texRECT(current, texCoord + float2(1, -1));

hy += 4.0f * texRECT(current, texCoord + float2(0, -1));

hy += texRECT(upper, texCoord + float2(0, -1));

hy += texRECT(lower, texCoord + float2(0, -1));

hy -= texRECT(current, texCoord + float2(1, 1));

hy -= texRECT(current, texCoord + float2(-1, 1));

hy -= 4.0f * texRECT(current, texCoord + float2(0, 1));

hy -= texRECT(upper, texCoord + float2(0, 1));

hy -= texRECT(lower, texCoord + float2(0, 1));

hy /= 8.0f;

94 B.2 Anisotropic Diffusion Filter

float hz = 0;

hz += texRECT(upper, texCoord + float2(-1, 0));

hz += texRECT(upper, texCoord + float2(0, -1));

hz += texRECT(upper, texCoord + float2(1, 0));

hz += texRECT(upper, texCoord + float2(0, 1));

hz += 4.0f*texRECT(upper, texCoord);

hz -= texRECT(lower, texCoord + float2(-1, 0));

hz -= texRECT(lower, texCoord + float2(0, -1));

hz -= texRECT(lower, texCoord + float2(1, 0));

hz -= texRECT(lower, texCoord + float2(0, 1));

hz -= 4.0f*texRECT(lower, texCoord);

hz /= 8.0f;

return abs(hx) + abs(hy) + abs(hz);

}

float c(float gradient, float k)

{

float innerProd = (gradient/k)*(gradient/k);

return exp(-innerProd);

}

float dI(samplerRECT lower,

samplerRECT current,

samplerRECT upper,

float2 texCoord,

float k)

{

float gradient = grad(lower, current, upper, texCoord);

float c_ = c(gradient, k);

float e = c_*(texRECT(current, texCoord + float2(1, 0)) -

texRECT(current, texCoord));

float w = c_*(texRECT(current, texCoord) -

B.3 Threshold 95

texRECT(current, texCoord + float2(-1, 0)));

float n = c_*(texRECT(current, texCoord + float2(0, 1)) -

texRECT(current, texCoord));

float s = c_*(texRECT(current, texCoord) -

texRECT(current, texCoord + float2(0, -1)));

float up = c_*(texRECT(upper, texCoord) -

texRECT(current, texCoord));

float down = c_*(texRECT(current, texCoord) -

texRECT(lower, texCoord));

return (e - w + n - s + up - down);

}

void main(

float2 texCoord : TEXCOORD0,

out float4 color : COLOR,

uniform float2 k_step,

uniform samplerRECT lower,

uniform samplerRECT current,

uniform samplerRECT upper)

{

float col = texRECT(current, texCoord);

float gray = col + k_step.y *

dI(lower, current, upper, texCoord, k_step.x);

color = float4(gray, gray, gray, 1);

}

B.3 Threshold

void main(

float2 texCoord : TEXCOORD0,

uniform float threshold,

out float4 color : COLOR,

uniform samplerRECT texture)

96 B.3 Threshold

{

color = texRECT(texture, texCoord);

color.rgb = color.rgb * step(threshold, color.r);

}

	Introduction
	Motivation
	Thesis Outline

	Background and Related Work
	The Graphics Processing Unit (GPU)
	The Graphics Pipeline
	The GPU Programming Model
	Hardware Constraints

	High-Level Shading Languages
	The Cg Language

	Medical Image Segmentation
	Seeded Region Growing

	Related Work
	Filtering on the GPU
	Image Segmentation on the GPU

	CustusX

	Design
	Hardware Platform
	Software
	Graphics Library
	A General GPU Framework
	Framebuffer Object Extension
	Image Format and Textures
	Alpha-Testing

	Filtering on the GPU
	Median Filter
	Anisotropic Diffusion Filter

	Seeded Region Growing on the GPU
	Exclude
	Set Seed
	Grow Region
	Termination
	Shade Segmented

	Implementation
	Excluding Fragments
	Seed Determination
	Grow Region
	Shade Segmented
	Computation Mask
	Termination
	Filters
	Median Filter
	Nonlinear Anisotropic Diffusion Filter

	Visualization
	Volume Rendering
	Rotation
	Examples

	Results
	Test Setup
	Hardware Platform
	Graphical User Interface
	Test Data Sets
	Relevant Structures
	Achievement and Evaluation of the Results

	Results
	Aorta
	Brain Tumour
	Cerebral Cortex
	Liver
	Kidneys

	Comparison with CPU Implementation
	Result Visualizations

	Conclusions
	Discussion
	Final Conclusions

	Future Work
	Further Implementations
	Integration into CustusX

	Bibliography
	Seeded Region Growing - Cg Shaders
	Exclude
	Set Seed
	Grow Region
	Grow Region 3D
	Grow Region 3D Using a Delta Value
	Grow Region 2D

	Shade Segmented

	Filtering - Cg Shaders
	Median filter
	Anisotropic Diffusion Filter
	2D Implmentation
	3D Implementation

	Threshold

