
Preface

This master thesis is written with guidance from the research group for
Artificial Intelligence and Learning (AIL) at the Department of Com-
puter and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU). This master thesis is the completion
of the master of technology degree in computer science.

The goal of this thesis is to develop a knowledge acquisition method for
the knowledge-intensive case-based reasoning system TrollCreek. This
includes studying the state-of-the-art knowledge acquisition modelling
methods, analysing them and suggesting a method for TrollCreek.

I would like to thank my supervisor Agnar Aamodt for giving me a
chance to learn a something completely new and for insisting on that
there is no such thing as stupid questions. Without his guidance this
thesis would not have been possible.

I would also like to thank my family and friends for supporting me.

Trondheim 14. June 2005

Elise Bakke

i

Contents

1 Introduction 1
1.1 Background and motivation 1
1.2 Goal . 2

2 Research Approach 4
2.0.1 Thesis Approach . 4

2.1 Cohen’s Framework for Evaluation in AI Research 5

3 Related Research 8
3.1 Newell’s knowledge level . 8

3.1.1 The Principle of Rationality and Knowledge 9
3.2 Knowledge Level Modelling 10

3.2.1 Two-Step Rationality 11
3.2.2 Structuring Knowledge 12

3.3 Components of Expertise . 14
3.3.1 Conceptual vs. pragmatic viewpoint 15
3.3.2 Perspectives On Knowledge 15
3.3.3 The Tasks Perspective 16
3.3.4 The Model Perspective 17
3.3.5 The Method Perspective 20
3.3.6 Problem Solving Methods 23
3.3.7 Relating task feature to solutions 23

3.4 CommonKADS . 24
3.4.1 Principles . 24
3.4.2 Problem solving . 26
3.4.3 Knowledge Categories 26
3.4.4 The Knowledge Structure in CommonKADS 27
3.4.5 The CommonKADS Expertise Model 29
3.4.6 Various Modelling Methods 32
3.4.7 Further Development 33

3.5 Protégé . 34
3.5.1 Protégé: fundamental ideas 35
3.5.2 Method to Task . 35

ii

3.5.3 The Developing Protégé 36
3.5.4 Ontology Modelling in Protégé 38
3.5.5 Recent extensions . 39

4 The ki-CBR system TrollCreek 40
4.1 Knowledge Intensive Case-Based Reasoning 40

4.1.1 The CREEK ki-CBR Framework 41
4.2 TrollCreek . 41

4.2.1 Map View . 42
4.2.2 Frame View . 43
4.2.3 The CBR Process and Explanation Engine 46
4.2.4 Similarity Measurements 46
4.2.5 Existing Modelling Approaches In TrollCreek . . . 47
4.2.6 The Predefined Ontology Model in TrollCreek . . . 48

5 Comparison and Analysis 52
5.1 Problem Solving Methods 52

5.1.1 Different Problem Solving Methods 52
5.1.2 Task Decomposition Methods 56
5.1.3 Task Execution Methods 58
5.1.4 Combining the PSM with TrollCreek 59

5.2 TrollCreek and KL-modelling frameworks 60
5.2.1 A Case Is Not A Case 60
5.2.2 CommonKADS + TrollCreek 60
5.2.3 CoE + TrollCreek . 62

6 Result 64
6.1 Choices Made . 64

6.1.1 Focus in TrollCreek 64
6.1.2 The Three Perspectives on Knowledge 65
6.1.3 Competency Questions 73
6.1.4 The Different Types of Models 73
6.1.5 The Nature of the TrollCreek KA Modelling Method 73
6.1.6 The Unified ki-CBR Case 74
6.1.7 CommonKADS vs. CoE 74

6.2 A Knowledge Acquisition and Modelling Method in Troll-
Creek . 75
6.2.1 Task . 76
6.2.2 Model . 79
6.2.3 Method . 82
6.2.4 Executing the TrollCreek KA modelling Method . . 83

6.3 Using The TrollCreek KA Modelling Method 84
6.3.1 Task . 84
6.3.2 Model . 87

iii

6.3.3 Method . 95
6.3.4 Executing the Model 97

7 Discussion, Evaluation, Further Work and Conclusion 98
7.1 Discussion . 98
7.2 Evaluation . 99

7.2.1 Evaluation According to goals 99
7.2.2 Evaluation According to Cohen 99

7.3 Further Work . 103
7.3.1 TrollCreek . 104
7.3.2 KA Method for TrollCreek 105

7.4 Conclusion . 105

iv

Chapter 1

Introduction

"Knowledge-acquisition builds a consolidated model of an ex-
pert’s problem solving behaviour in the terms of knowledge".

— Walter Van de Velde [dV93]

This thesis proposes a knowledge-acquisition method for the knowledge-
intensive case-based reasoning system TrollCreek [Aam04]. The method
exploits the possibilities in the TrollCreek knowledge editor (i.e. the
GUI, the top ontology). To get the desired results an extensive study of
state of the art knowledge-acquisition methods is needed. The knowledge-
acquisition method is based on the knowledge from studying the exist-
ing methods and systems. There exist several methods and modelling
principles for handling general domain knowledge. However, there are
not many methods for handling situation specific knowledge (i.e. cases).

1.1 Background and motivation

The background for this thesis is the focus in the AIL group at IDI
NTNU on building models of the real world in order for expert sys-
tems to reason (both using model based and case based reasoning). The
AIL group has participated in the development of TrollCreek knowledge
editor. TrollCreek is a knowledge-intensive case-based reasoning tool.
TrollCreek utilizes both a case-base of previous experiences and general
domain knowledge. This makes it a challenge to develop a knowledge
acquisition-method for TrollCreek (as the existing approaches focuses
on general domain knowledge).

In general this field was started in the early 1980s and had a high level
of activity in the early 1990s. However, several of the most prominent

1

researchers in the field have moved their primary research activity onto
other fields of study. The field of knowledge acquisition and modelling is
also not currently "active" at NTNU. There are no classes taught on the
subject. This represents quite a challenge. In order to even start work-
ing with the knowledge-acquisition, a great deal of literature studies
had to be done. It is a broad, abstract field that one had to get the grasp
of before starting to write the thesis. Some of the results are presented
in chapter 3.

Ole Martin Winnem wrote a master thesis in 1996 [Win96]. He made
the CREEST workbench, based on the KREST [Ste93] a workbench for
the components of expertise framework. However, TrollCreek has come
a long way since 1996. TrollCreek has been implemented in Java and
new features have been added. The graphical user interface is radically
different and the top ontology constantly evolving. His work has been
an inspiration to this thesis, but very little of the work could actually be
used in the thesis.

A larger inspiration was an article by Aamodt [Aam01]. This article
started the process of modelling the contents of case based reasoning
systems (CBR). However, this was a start and needed to be elaborated
upon in order to start working with the knowledge acquisition and mod-
elling for knowledge intensive CBR.

There exists two documents describing modelling in TrollCreek (dis-
cussed later in section 4.2.5). However, these are ad hoc solutions with
no real focus on the knowledge acquisition perspective.

The development of the Java version of TrollCreek has been done based
on previous versions. However, there has been no specific focus on
knowledge level(KL)-modelling and the higher level process of knowledge-
acquisition. It is a great and inspiring challenge to bring the knowledge-
acquisition / knowledge level modelling perspective into TrollCreek again.
This became a major motivational factor. It is also great to be able to
learn a new side of artificial intelligence and learning.

1.2 Goal

The main goal of this thesis is to suggest a knowledge acquisition mod-
elling method for TrollCreek. This is to be done by looking at already ex-
isting frameworks in the knowledge acquisition and modelling research
based on a study of state of the art international knowledge acquisition
and modelling methods. In the original problem description for this the-
sis knowledge level-modelling, "Components of Expertise" and Protégé

2

are mentioned. During the study of the related research I also found it
necessary to include the "CommonKADS" framework.

3

Chapter 2

Research Approach

In this thesis the result will be a knowledge acquisition method and an
example of the method used. In addition a large amount of work will
go into literature studies on the matter of knowledge acquisition. There
will be no implementation, as this thesis is concerned with knowledge
level modelling [Ste90].

This thesis uses the proof of technology concept which is a design ori-
ented research.

2.0.1 Thesis Approach

To realise the higher level goal of proposing a knowledge acquisition
method, our research approach is to be used:

1. Describe the international related research

(a) The knowledge level

(b) KL modelling

(c) Components of Expertise

(d) CommonKADS

(e) Protégé

2. Introduce TrollCreek

3. Compare and analyse methods encountered

4. Define the choices made in this thesis

4

5. Describe the KA method for TrollCreek

(a) Utilizing the lessons from related research

(b) According to the choices made

(c) Utilizing the features in TrollCreek (GUI, top-ontology++)

6. Give an example of the method in use

(a) Define an example domain

(b) Make an actual model in TrollCreek

7. Discussion, evaluation, further work and conclusion

These concrete sub-goals will be addressed in the following chapters.

2.1 Cohen’s Framework for Evaluation in AI Re-
search

Paul Cohen [CH88] introduced a framework for evaluating artificial in-
telligence (AI) research. To some extent it is possible to use some of the
principles already when planning the research approach. Cohen empha-
sises the importance of describing why one has made the choices made
in the research. These choices being why we do the research, why our
tasks are illustrative, why our methods and views are an improvement
and so on [CH88]. In artificial intelligence it is not only the performance
of the programme.

Cohen defined a cycle with five different stages in AI research. Cohen
also introduced sets of evaluative questions and experiment schemas
corresponding to the five stages. The five different stages are [CH88]:

1. Refine the research topic to a "task" and a view of how to accom-
plish the task

2. Refine the view into a specific method

3. Develop a program that implements the method

4. Design experiments to test the program

5. Run the experiments

5

In this thesis there will not be an implementation of a whole system.
The methodology for knowledge acquisition will be developed for an al-
ready existing system TrollCreek. The underlying CREEK framework
has already been evaluated using Cohen’s framework in Aamodt’s doc-
toral dissertation [Aam91].

Strong guidelines what "task" the research shall attack has already
been given through the description of my master thesis ("knowledge-
acquisition and modelling for knowledge-intensive CBR"). Within the
same description lies also the guidelines to what "view" to take to the
task (when specifying which methodologies/existing frameworks (like
i.e. knowledge level modelling and components of expertise) to take a
look at). A refinement of the general view guideline happens in the
choices made in section 6.1.

However, the second stage defined by Cohen is definitely the most rel-
evant for this thesis, thus it is not a perfect match. It is still neces-
sary to use common sense when evaluating. It seems like Cohen has
been thinking of a machine internal algorithm when defining the term
method. The method developed through this thesis has a human as the
user. However, the criteria presented by Cohen in [CH88] for evaluating
methods are:

1. How is the method an improvement over existing technologies?

(a) Does it account for more situations (input)?

(b) Does it produce a wider variety of desired behaviours (out-
put)?

(c) Is the method expected to be more efficient (space, solution
time, development time, and so on)?

(d) Does it hold more promise for further development (for exam-
ple, because of the introduction of a new paradigm)?

2. Does a recognized metric exist for evaluating the performance of
your method (for example, is it normative, cognitively valid)?

3. Does it rely on other methods? (Does it require input in a particu-
lar form or pre-processed input? Does it require access to a certain
type of knowledge base or routines?)

4. What are the underlying assumptions?

5. What is the scope of the method?

6

(a) How extendible is it? Will it easily scale up to a larger knowl-
edge base?

(b) Does it exactly address the task? Portions of the task? A class
of tasks?

(c) Could it or parts of it be applied to other problems?

(d) Does it transfer to complicated problems (perhaps knowledge-
intensive or more or less constrained or with complex inter-
actions)?

6. When it cannot provide a good solution, does it do nothing or does
it provide bad solutions or does it provide the best solution given
the available resources?

7. How well is the method understood?

(a) Why does it work?

(b) Under what circumstances, won’t it work?

(c) Are the limitations of the method inherent or simply not yet
addressed?

(d) Have the design decisions been justified?

8. What is the relationship between the problem and the method?
Why does it work for this task?

It is important to have these criteria in the back of the head when pro-
ceeding with this thesis. Instead of implementing an own system for
the knowledge acquisition method, it is a method made for TrollCreek
system. However, several aspects of the evaluation are very relevant for
this thesis.

7

Chapter 3

Related Research

There are several important systems and methodologies in the field of
knowledge acquisition and knowledge modelling. Newell introduced the
knowledge level [New82] and set the standard for a new way of thinking
within knowledge acquisition. This chapter will first introduce Newell’s
knowledge level (in section 3.1), before discussing a more practical ap-
plication of the knowledge level in Knowledge Level Modelling (in sec-
tion 3.2). Several frameworks and systems already use KL modelling.
We introduce some of them by discussing the Components of Expertise
(section 3.3) and the CommonKADS (section 3.4) frameworks, before
introducing the Protégé knowledge acquisition programme (in section
3.5).

The related research described here makes up the state-of-the-art within
international knowledge acquisition and modelling.

3.1 Newell’s knowledge level

Allen Newell introduced the term "knowledge level" already in 1982
[New82]. Based on the standard practice in the artificial intelligence
community, Newell proposed a new level in addition to the standard
computer system levels. Traditionally a computer system is described
as having different levels, ranging from bottom and up as shown within
the bottom five boxes in 3.1. The different levels have different medi-
ums and behaviour laws. The behaviour laws that govern how the level
uses the medium. As an example, while the device level consists of
transistors and resistors, the circuit level looks at the devices as cir-
cuits (the medium) and i.e. Krichoff ’s laws govern the behaviour of the
circuits. In comparison the symbolic level looks at computers as the sys-

8

tem, symbols and expression as the medium, memories and operations
as the components with sequential interpretation as the behaviour laws
[New82].

Figure 3.1: The computer’s system levels (adapted from [New82]

Newell was the first to introduce the notion of the knowledge level
[New82]. The knowledge level enables us to observe the computer sys-
tem from the outside. An external observer gains an external view on
the systems behaviour. The knowledge level is shown in 3.1. At the
knowledge level, the system is an agent. The agent consists of both a
physical body and a body of knowledge. How knowledge is encoded is
a concern for the symbol level. The knowledge level does not need to
know this. The agent also has a set of goals and a set of actions. A goal
is a certain a state of the world that the agent strives to achieve. The
actions are actions the agent can perform to reach a goal. An extremely
important feature with Newell’s knowledge level is the complete lack of
structure in knowledge.

3.1.1 The Principle of Rationality and Knowledge

According to Newell [New82] the agent behaves according to the princi-
ple of rationality:

Principle of rationality
If an agent has knowledge that one of its actions will lead to
one of its goals, and then the agent will select that action.

Newell defines the term knowledge in close connection with the princi-
ple of rationality. The agent processes knowledge in order to decide on
what action to take. According to Newell, knowledge is what is ascribed

9

to an agent so that it acts according to the principle of rationality. This
illustrate how the knowledge level distances it self from the symbolic
level and views the system subjective from the outside. An important
feature with the knowledge level is that the amount of knowledge is not
important to determine if a system might be at the knowledge level or
not. The important feature is how the system utilizes its knowledge.
In many ways, knowledge is the specification of what the symbolic level
should be able to do. The symbolic level holds the representation of
knowledge (the system at the symbolic level being the computer).

Figure 3.2: Core terms from the principle of rationality (adapted from
[dV93])

Newell also introduces what he calls the extended principle of rational-
ity [New82], by adding auxiliary principles. However, even Newell rec-
ognizes the "radical incompleteness" that characterizes the knowledge
level. In many situations, the pure form of the principle of rationality
fails to determine behaviour uniquely.

By taking a knowledge level approach to a system one might focus on
knowledge contents instead of worrying about the underlying architec-
ture, implementation or organization [Aam01].One will able to focus on
what a system does and why it does what it does. One might be able to
predict and understand system behaviour without knowing the imple-
mentation of knowledge at the symbolic level.

3.2 Knowledge Level Modelling

However, when dealing with real world applications, the pure form of
knowledge level has several weaknesses. The knowledge level uses
knowledge only as a resource for accomplishing a goal. Knowledge has
no structure at the knowledge level, which makes it hard to analyse
knowledge at the knowledge level. The knowledge level also uses an
ideal form of rationality. It assumes an ideal world and an agent with
no physical or worldly constraints. This is a coarse simplification of the
real world, and not applicable in real world scenarios. Even if Newell
uses the extended principle of rationality and recognizes the fact that
knowledge never is finite, it is impossible to use it efficiently in the real
world.

10

Knowledge Level (KL) modelling uses a modified version of Newell’s
knowledge level. As shown in figure 3.3 the KL modelling is an activity
and a fictious level between the pure knowledge level and the symbolic
level.

Figure 3.3: KL modelling

In KL modelling there is a minimal structure to knowledge. Because of
the structure the KL models can also say something about the "what"
and "how" models of behaviour. KL modelling says something about the
structure used within knowledge in order to achieve a goal. It is not just
the "why" aspect of the systems behaviour [dV93]. This structure is the
reason for moving the KL modelling toward the symbolic level in 3.3. To
describe the new level there are several possible terms (i.e. "knowledge
use level" [Ste90]). The overall knowledge acquisition and modelling
community uses this modified version of Newell’s knowledge level.

3.2.1 Two-Step Rationality

In a real world setting, one has to make assumptions about the world.
Actions are the means the agent has to interact with the world. There-
fore, it is through actions the agent gains knowledge, and knowledge
gained will not be perfect. The new, modified organization of the knowl-
edge level, uses a two-step (tractable) rationality [dV93].

Newell (as mentioned in 3.1 and shown in figure 3.2) uses the pure form
of the principle of rationality. He uses the rationality to get from knowl-
edge to reason about the behaviour. In contrast the two step rationality,
as shown in figure 3.4. It reflects that a systems adequate behaviour is
both practical and rational [dV93].

11

Figure 3.4: The two-step rationality (adapted from [dV93])

The "practical" aspect of the rationality it is the first step. This is where
the configuration takes place. This is when the agent imposes structure
on knowledge and assigning roles for it to use in the reasoning. As il-
lustrated by fig 3.4, the configuration gives us the KL-model. Therefore,
the KL-model is a structured part of knowledge and it contains the way
an agent frames a task instance [dV93]. The configuration enables the
practical application of the principle of rationality. The "task features"
include the agent’s environment, how the agent interacts with it and
the additional restrictions. These task features is what separates one
task from the other tasks.

3.2.2 Structuring Knowledge

As mentioned earlier KL-modelling imposes a minimal form of structure
to knowledge (during the configuration). There are three main types of
knowledge [Aam91]. Figure 3.5 shows these.

Figure 3.5: The three knowledge types

These three main types represent different perspectives on knowledge.
By classifying knowledge according to these perspectives, knowledge at-
tains minimal form of structure. The different perspectives models dif-
ferent aspects of knowledge and results in different forms of KL-models.

12

Domain Knowledge

Domain knowledge looks upon knowledge as the facts about the world
that an agent needs to perform a task.

A domain model is a precise way to express what one assumes the collec-
tion of statements about the world to mean [dV93]. The domain model
uses "coherence" (i.e. a causal relation between cause and effect). This
makes up the model ontology. The ontology gives the model predictive
power.

Task Knowledge

The task perspective concentrates on the "what" aspect of the agent’s
behaviour, based on observations. It defines tasks by the goals the sys-
tem wants to fulfil and the tasks are decomposed into subtasks.

The task model gives us a way of dealing with the goals in a more precise
way. The task model deals with what it means to achieve a goal and how
the goals are interrelated. It captures how the goals are interrelated to
other goals [dV93].

Method knowledge

As the name suggests, the method knowledge is "how" to accomplish a
task. Problem-solving methods are the models using method knowledge
[dV93]. In many ways, the problem solving methods relates task and do-
main models to achieve goals. It describes the roles the models have to
play in order to achieve goals. A problem solving method differentiates
it self from task models because it can result in several task models and
be unspecified for several tasks.

Examples of use can be the instantiation and configuration that are
an important part of ProtégéI and ProtégéII (described in more detail
in section 3.5). Method knowledge is also used to some extent in the
CommonKADS framework.

Examples of use

Several approaches use KL modelling. One example is McDermott (in
[McD88]) who introduced the role-limiting problem solving methods as a
reasoning strategy. They introduced both problem solvers and knowledge-
acquisition (KA) tools. An example of KA tools introduced by them

13

(all the tools are described in more detail in section 5.1.1) is MOLE
[EEMT87] which uses the cover-and-differentiate method for classifica-
tion. The initial state is a set of one and more symptoms. The first
step is to determine the events that possible explains the symptoms
(cover) and identify information that will differentiate the candidates,
before applying it. They identify explicitly the different ways in which
the role-limiting problem solver uses inference from the knowledge base
[EST+95]. The role limiting method reduces the development task to
identifying what domain knowledge is required in order to fulfil each
role. However, the role-limiting method assumes that the behaviour
of the knowledge-based system can be defined in domain-independent
terms. In order for the role-limiting methods to be reusable, they have
to be general. This races a challenge when applying the method to a
specific application task. There will then be a gap between the gen-
eral method and the application task [EST+95]. Section 5.1.1 briefly
discusses possible problem solving methods.

Chandrasekaran introduced task-specific architectures [Cha87], [Cha86],
[Cha90]. He introduced the notion of generic tasks (GT). A generic task
also includes information about the domain structures needed to exe-
cute the task. Chandrasekaran felt that classification, data retrieval,
plan selection and refinement, state abstraction and adductive assem-
bly were in some sense re-usable subtasks [CJ93]. The GTs are compo-
nents in other, more complex problem-solving tasks.

This thesis looks at the KL-modelling frameworks Components of Ex-
pertise and CommonKADS. It has already been done initial research on
adapting Components of Expertise to knowledge-intensive case-based
reasoning [Aam01]. CommonKADS is the dominating KA methodology
in Europe. It is natural to have a look at both these. The thesis also
looks at Protégé the meta level KA program. Protégé is a very much
used system and has almost become the standard editor for ontology
modelling.

3.3 Components of Expertise

The CoE framework [Ste90] gives us a way to select expert system solu-
tion based on the task characteristics at hand. CoE enables us to make
a mapping between the conceptual feature, pragmatic constraints and
available knowledge to the components (i.e. problem solving methods,
domain models and task structures). A componential framework decom-
poses the knowledge level description into many different components.
Compared to CommonKADS, the Components of Expertise (CoE) frame-

14

work is more informal. The CoE framework is used for example in the
KREST workbench (another name for the same workbench is COMMET
[Ste93]).

3.3.1 Conceptual vs. pragmatic viewpoint

Each task and subtask can be viewed from both a conceptual and a
pragmatic viewpoint. From the conceptual viewpoint, task is character-
ized as a problem that needs to be solved (i.e. diagnosis, interpretation,
planning, and design). In contrast, the pragmatic viewpoint concen-
trates on the constraints in the tasks. These constraints are a product
of the environment where the system operates or from the epistemo-
logical limitations. Example of such limitations can be time and space,
observation and formation. From these epistemological limitations fol-
lows pragmatic constraints in the system.

3.3.2 Perspectives On Knowledge

CoE expertise also uses the three different perspectives on knowledge
(as seen in figure 3.5). Usually the three perspectives are used in a
spiral movement (as shown in figure 3.6). By doing it this way the de-
scriptions of each perspective will be progressively refined [Ste93].

Figure 3.6: The progressively refining description of each perspective

In short, one might say that the task perspective specifies WHAT needs
to be done by the problem solver (the major tasks and subtasks in the
application), the model perspective specifies WHAT knowledge is avail-
able and the methods describe HOW and WHEN knowledge is going to
be applied.

A more detailed description of the three perspectives is given in the next
sections.

15

3.3.3 The Tasks Perspective

A task still is something that needs to be accomplished. The CoE frame-
work assumes that there is a detailed analysis of the task [Ste90]. In
a real world situation there is most likely a conglomerate of mutual de-
pendent tasks to e dealt with.

There is a distinction between the domain acquisition tasks (acquir-
ing domain models) and the application tasks (developing case models).
There is also a clear distinction between the solution tasks (have no fur-
ther subtasks) and the decomposition tasks (possible to split/decompose
into further sub-tasks).

Task Structure

All the tasks can be decomposed into subtasks with input-output re-
lations between them (task decomposition). This makes up a treelike
structure (as shown in figure 3.7), a part-subpart hierarchy showing
how tasks relates to subtasks. However, the task decomposition does
not say anything about the interdependencies between tasks (i.e. hori-
zontally in the hierarchy). This aspect is handled by the control meth-
ods.

Figure 3.7: CoE task decomposition

The task decomposition approaches the decomposition in a top-down to
achieve the first subtask. Sometimes not all tasks are executed for each
situation (case). A task structure might be an AND/OR tree. Human
users (as opposed to the system executing every task) might even exe-
cute some of the tasks in the task structure [Ste91]. The control flow
diagram (will be introduced in section 3.3.5) governs the control struc-
ture and decides what tasks to be executed in what sequence.

When looking at i.e. medical diagnosis, car problem diagnosis or com-
puter diagnosis, there are several similar features. It is then possible to
construct a generic diagnosis task based on the observations [Ste91].

16

Model Dependency Diagram

In the task perspective the model dependency diagram uses both target
models (models that tasks have an impact on), source models (models
that a task consults) and the interface between them. The model de-
pendency diagram illustrates the data flow relationship between the
models and the tasks. Input interfaces and source models have pointers
going to a task. In contrast, the target models and output interfaces
have pointers coming from a task.

Figure 3.8: A model dependency diagram (adapted from [Ste91])

The model construction operators (shown in figure 3.8) have a one-to-
one connection to tasks. Moreover, in the implemented system, when
clicking on the model construction operator, it shows the problem solv-
ing method. The connection is also a one-to-one relation between tasks
and methods.

3.3.4 The Model Perspective

Domain knowledge in CoE is referred to as models. A model makes
an abstraction from certain aspects of the reality [Ste93]. In a classi-
ficatory model, a model relates the features to the classes and enables
the classification. However, there are several ways of making general
distinctions between models:

Domain vs. Case Models

It is possible to make a distinction between two main types of models
[Aam01][Ste90]. These are the case and domain models:

• Case models

17

– models of the CURRENT problem-solving situation

– problem solving state descriptions

– part of the working memory

Please note that the case model in CoE is different from the case
in case-based reasoning (as discussed in section 5.2.1).

• Domain models

– makes up the contents of knowledge base

– consists of all knowledge that is part of the long-term memory

– more abstract than the case models

– expands the case model by interference or data gathering [Ste90]

– fixed on a particular application

– valid for several case models

The ontology models are a special class of domain models. The ontology
constraints the vocabulary used in other models.

Type of Case Models

The case models are a set of facts about the situation. The different
models can be discriminated between based on what kind of facts they
are modelling [Ste91]. For instance, facts about temporal properties are
grouped into temporal models and so on. The distinction between the
different case models will not be visible in the symbolic level, according
to Steel. Steels also mention a set of different models:

• Component model (describe component and its subcomponents)

• Descriptive model (models the system in terms of its features)

• Classificatory model (specifies what class a system belongs to)

• Connection model (connections between the parts of the system)

• Temporal model (identifies ordering of action in the system)

• Spatial model (physical location of object in space)

• State model (parts of the system being in a certain state)

• Causal model (identifies causal relationships between states)

• Behavioural model (describes process)

18

• Functional model (functionality of system)

In addition to these it is also possible to make a deviation model (de-
scribes how the system derives from what is expected). The elements of
a model might be shown in a hierarchical structure (for instance a class
hierarchy, a components organized in modules and so on).

The type of model built can be decided by the types of questions asked
to build the model and the type of task used (classification, description,
selection, configuration and so forth).

Types of Domain Models

Domain models contain domain-specific knowledge. The problem solv-
ing method uses domain specific knowledge to construct the case models
(at the knowledge level the PSM are regarded as domain independent)
[Ste91].

In the KREST workbench there are not clearly expressed a predefined
set of models. However, there are two main categories (closely connected
to the methods discussed later 5.1.3).

Expansion Model The expansion model contains knowledge that en-
ables an expansion of the model [Ste91]. The resulting model has at
least the same number of elements as the one before [Win96].

Examples of expansion domain models are [Win96]:

• Descriptive domain model

• Functional domain model (contains functional hierarchy as well as
functions)

• Component domain model (constraints on the components)

• Connectivity domain model (constraints on the connections be-
tween the components)

• Descriptive domain model (constraints on the features the client
may have)

Mapping Model As the name suggest, the mapping model maps from
one model to another. They are used to construct or modify a set of
target models (case models), based on mapping of elements from other
source models.

19

Steels identify three different models:

• Description-to-class model (maps a set of description into a class)

• Function-to-component model (maps a functional model to a com-
ponential model)

• Symptom-to-malfunction model (maps symptoms to malfunctions)

Form vs. Contents

It is also possible to make a distinction between the form and the con-
tent of a model [Ste93].

• The form handles the structure of the model.

• The content refers to the actual element within the model.

Model Dependency Diagram

A model dependency diagram (shown in figure 3.8) shows what is needed
to construct a new case model. It illustrates the dependencies between
the various domain model types. The model dependency diagrams are
organized in abstraction hierarchies. This implies that it is possible to
decompose a model construction activity into a more detailed level.

3.3.5 The Method Perspective

From a knowledge level, perspective methods organize and execute the
model construction activities. As mentioned, the method perspective
tries to answer HOW knowledge is used and WHEN it is used [Ste91].
As mentioned earlier methods are algorithms that specify how a task
gets accomplished. The method contains several activities (some of
them might be tasks themselves) and a control flow over activities. The
activities have an impact on or consult models. Each model and inter-
face plays a specific role in the method. A method uses models to fill a
set of roles.

A method needs to do two things [Ste91]:

1. Map task onto the model construction activities represented in the
model dependency diagrams

2. Impose a control structure on various tasks

20

Methods

The control diagram is a description of the methods that impose control
over tasks. Aamodt [Aam01] defines four different types of methods :

• Task decomposition
decomposes the task it is applied to. They divide tasks into sub-
tasks and regulate the flow between them.

• Task execution
executes the task directly. It describes how a task is solved with-
out further decomposition, without further sub-tasks getting ac-
complished.

• Control methods
controls the sequence in which the subtasks are executed. The
sequence is controlled by the interdependencies between the sub-
tasks.

• Mapping
maps tasks to model decompositions.

According to Steels [Ste93] the methods can be decomposed into even
more categories. These can be shown as a hierarchical tree. This is
shown in figure 3.9.

Figure 3.9: Method hierarchy in CoE

21

Steels differentiate between the acquisition methods that acquire in-
formation through user interactions. The solution methods are decom-
posed into acquire, infer and present methods. The inference methods
use other models to infer new models. These can be splitted into ele-
ments and set methods.

However, as stated by the differences between Steels and Aamodt, there
are several ways of doing this. It is not a goal to have every method
represented in the workbench. It would be an extremely large number
of methods. An ideal situation would be to use the hierarchy of methods
that the user needs. This would be more manageable for the user and
possible for the developer of the workbench.

The control Flow Diagram

The method depicting the control structure to the tasks is the control
(flow) diagram. As shown in figure 3.10, the control diagrams are finite
state automata [Ste93]. The states correspond to the activities (sub-
tasks) in a 1-1 fashion. The transitions corresponds to the control flow
(also 1-1 relations), where the conditions regulate when control flows
from one state to the other. The control diagram also contains a start,
succeed and fail finite states.

Figure 3.10: The CoE control diagram

A transition between tasks occurs when the activity implementing one
subtask has finished [Ste91].

22

3.3.6 Problem Solving Methods

According to Steels [Ste90] the problem solving methods applies the do-
main knowledge to the tasks. In general, they perform two distinct
functions. The problem solving methods divide a task into subtasks or
solve the task directly.

Example of Problem Solving Methods

There is not one unique problem solving method for every task. In ad-
dition, when a task is decomposed, each new task has to be analysed
in turn. There are several possible problem-solving methods. However,
some examples might be:

• linear search

• top-down refinement

• association (between feature and class)

• differentiation

• weighted evidence combination

• distance computing

It is important to notice that each of these methods needs its own type of
domain knowledge. An example might be the distance metric needed for
distance computing, the hierarchical structure needed by the top-down
refinement and so on.

In general the way the tasks are decomposed (the task structure), is
essential to the whole analysis.

3.3.7 Relating task feature to solutions

As mentioned earlier, CoE enables the mapping from conceptual fea-
tures, pragmatic constraints of a task and the available knowledge to
components.

When selecting the most appropriate problem solving method, both the
conceptual (specifies the input-output relation) and the pragmatic as-
pect (distinguishing between the different methods) plays an important
role. Both aspects are still important when selecting and acquiring the
domain model. However, an additional choice when it comes to the
depth of how knowledge is represented. The problem-solving method

23

has a set of roles that need to be filled with specific domain knowledge.
One might use domain models as the viewpoint for domain theories. The
domain theories are more underlying and sought after in deep (knowl-
edge) expert systems. A problem solving method only uses a part of
these theories and might need additional heuristics [Ste90]. However,
both the domain model viewpoint and the role viewpoint are comple-
mentary and are used according to what knowledge one has access to.

All the aspects discussed in this section have been conceptual. However,
there are pragmatic aspects of domain knowledge as well, addressing
the constraints in the domain. Like the conceptual aspects, the prag-
matic aspects might also bee viewed from two different viewpoints. The
aspects can be used in problem solving or as needed for driving the prob-
lem solving.

3.4 CommonKADS

CommonKADS is a framework aimed at constructing knowledge level
models. CommonKADS is a synthesis of the KADS 4-layer model of ex-
pertise combined with aspects from Components of Expertise [WdVSA93].
CommonKADS is a very detailed, formal framework.

3.4.1 Principles

There are several important underlying principles in CommonKADS
framework. One of them is the knowledge application principle. This
principle states that [WdVSA93]:

Knowledge Application Principle Effective real-world prob-
lem solving is viewed as the rational (or at least, rationable)
application by an agent of appropriate domain- and task spe-
cific knowledge.

Another important principle is the modelling principle. The modelling
principle recognizes the modelling activity as the heart of the knowl-
edge engineering. The central model in CommonKADS is the expertise
model. The expertise model models what knowledge is being applied to
carry out a task. This illustrates the problem solving behaviour of the
agent.

However, there is a whole suite of models in the CommonKADS method-
ology. These are [WdVSA93]:

• Organization Model (analyse an organization)

24

• Task Model (captures the global task within the organization)

• Agent Models (describes agent tasks)

• Expertise Model (agent competence involved in realizing the over-
all task

• Communication Model (communicating amongst agents)

• Design Model (structure and mechanism of the things involved in
the task)

Figure 3.11: The different models in CommonKADS (adapted from
[WdVSA93])

All the models have different purposes, different moments in time. They
are related to each other as shown in figure 3.11. The expertise model
will be used as a guide later in this master thesis.

CommonKADS also uses the knowledge level principle (see section 3.1,
3.2), the role limiting principle (ascribing particular role to a compo-
nent), the principle of differentiated (two-step) rationality 3.2 and cate-
gorizes knowledge into domain, task and inference knowledge (as intro-
duced in section 3.2).

25

CommonKADS have to be able to handle different strength couplings
between the different categories of knowledge (i.e. task-domain cou-
pling). This implies that CommonKADS has to be able to model multi-
ple ontologies and

3.4.2 Problem solving

A case model is the product of the problem solving in CommonKADS.
The case model summarizes what the agent understands of the reality.
According to Newell’s (section 3.1) goals are defined as the desired state.
The case model contains enough information for the system to conclude
if a problem has been solved / a goal has been reached.

3.4.3 Knowledge Categories

The primary epistemological categories in CommonKADS are domain,
task and inference knowledge. These categories are vital to describing
the knowledge level.

Domain Knowledge

As mentioned in subsection 3.2.2, domain knowledge expresses relevant
knowledge about the systems. Domain knowledge refers to both the
system and its class of systems. In KADS-I framework, domain knowl-
edge was not handled properly. KADS-I used primitive representational
terms and meta classes. However, CommonKADS here uses the ideas
from the CoE who focuses on the domain ontology and domain models.

There are two important features that the ontology should have (ac-
cording to Lenat and Guha)[LG90].The ontology should be able to make
the distinctions needed in the task environment (epistemological ade-
quacy). The ontology should also be able to handle efficient problem
solving (pragmatic adequacy). However, these two features might be
conflicting. One solution is to use the simplest notions on the domain,
and put a number of pragmatic abstractions on top of this simple ontol-
ogy. This will enable a more effective reasoning. Such a coherent collec-
tion of statements is a certain viewpoint on the domain and is called a
domain model [WdVSA93].

26

Task Knowledge

Task knowledge still specifies tasks and goals of the task. A goal of
a case is a specification of the case model. In CommonKADS the task
definition and task body contain the goal and the different aspects of the
task. The task body contains how a task is achieved. A task definition
contains what needs to be achieved. A task is described by an abstract
input-output description.

Inference Knowledge

Interference knowledge specifies the possible basic interferences in do-
main knowledge. They are quite similar to the interference rules in
logic where one can derive new information from axioms (domain knowl-
edge).

3.4.4 The Knowledge Structure in CommonKADS

There are several ways of structuring knowledge in CommonKADS. The
structure within the agent plays different roles during the problem solv-
ing.

Intra-category Structure

The expertise model in CommonKADS divides knowledge into domain,
task and inference knowledge. It follows naturally from these three
categories that there is also three different internal structures. Do-
main models and the interrelations between them structures the do-
main knowledge. The interferences the domain models take a part of
govern these. This makes up the domain structure. The interference
structure is the structure of the interference knowledge. The depen-
dencies among the basic inference make up the interference. This is the
most primitive view on the application [WdVSA93]. The task knowledge
is structured as a task structure. This task structure is all contained in
the top-level task body. This task body contains the decomposition into
several sub-tasks. The basic tasks are linked either to the basic infer-
ence or to basic axioms.

27

Inter-category Structure

In the expertise model the different categories of knowledge are also
related to each other. This is called the inter-category structure. The re-
lations between the different elements of different knowledge categories
are called knowledge roles. In short a knowledge role is the knowledge
item in combination with the vocabulary to talk about the knowledge
item [WdVSA93]. One is also able to differentiate between knowledge
roles by differentiate between static and dynamic knowledge items. The
dynamic ones are characterised by the fact that they change during the
problem solving process. One is able to manipulate the dynamic knowl-
edge items. The static ones are not affected by the problem solving
process, even if they are being used.

Problem Solving Knowledge

CommonKADS also supports problem solving knowledge. This is knowl-
edge about a how to model an application, describing a way to solve a
class of problems. Since this is knowledge about a specific application
(problem solving), the problem solving knowledge is not a fourth knowl-
edge category. It is just meta knowledge about how it is possible to build
a good model. It is purely epistemological. The problem solving knowl-
edge can be divided into to sub-categories [WdVSA93]:

• Problem solving method (possible to organization of the different
types of knowledge). in general a problem solving method consists
of a number of possible actions and some way of determining how
these actions are ordered in time.

• Strategic knowledge (what kind of model fits a given task environ-
ment)

There are different notions of what problem solving knowledge really
is. Examples of "problems" that differentiate the notions are the gen-
eral performance task (what grain-size tasks the methods are applied
to) and the way the methods are described. For the general performance
task KADS-I composes it into several generic tasks, while CoE can ap-
ply the problem solving methods to any task. When it comes to the
way the methods are described KADS-I uses Interpretation Models to
encapsulate the methods. KADS-I also uses knowledge differentiation
and problem space hypothesis [WdVSA93].

In CommonKADS a problem solving method is a prescription of the way
a certain task definitions can be satisfied [WdVSA93]. The problem

28

solving method in CommonKADS specifies/rationalize a relationship be-
tween the task definition and the task body. It also opens for recursive
problem solving, as the method might lead to new problems.

3.4.5 The CommonKADS Expertise Model

As shown in figure 3.12 the expertise model in CommonKADS consists
of several different components.

Figure 3.12: The different components of the expertise model (adapated
from [WdVSA93])

The expertise model contains two types of knowledge. The application
knowledge is how the system is able to reason about the domain knowl-
edge, while the problem solving knowledge is how the system internal
knowledge.

Domain Knowledge

In the expertise model the domain knowledge contains a wide range
of components. These are shown in figure 3.13. One might make a
distinction between the static (case independent) and dynamic (case de-
pendent) knowledge. Static knowledge is the domain models, while the
case model is dynamic knowledge. In CommonKADS there are two lev-
els in the modelling language. There are the basic domain language (ba-
sic model ontology and the basic model schemata) and the statements
within a single domain (domain model schemata, ontology and axioms
(meta data)).

29

Figure 3.13: The components in the domain knowledge (adapted from
[WdVSA93]

The model ontology is the meta description of the elements in the do-
main model. The ontology describes the vocabulary that represents
the domain (however, it does not say anything about the structure). A
modelling schema describes the structure of the entities in the domain
model. The relations between different domain knowledge components
(in an expertise model) are shown in figure 3.14.

30

Figure 3.14: The relations between the various domain knowledge com-
ponents in an expertise model (adapted from [WdVSA93])

Inference Knowledge

The inference knowledge in the expertise model follows the same prin-
ciple as in 3.4.3. Generally, the reasoning process in a knowledge-based
system usually consists of a number of inference steps. The inference
uses static domain knowledge to relate items to the case model [WdVSA93].
In CommonKADS the interference relation creates relations between
different dynamic domain knowledge roles. The interference relations
are non-directional. The interference structure is in many ways a model
of the reasoning process.

Task Knowledge

In the expertise model task knowledge still follows the same principles
as mentioned in 3.4.3. However, the task definition in the expertise
model consists of goal, case roles, task specification. The task body con-
tains the sub-goals, the sub-tasks and the task expression.

In the expertise model one distinguishes between the composite tasks
(further decomposable), transfer tasks (tasks of interaction with world)
and the primitive tasks (directly linked to interferences)[WdVSA93].

31

Problem Solving Knowledge

The problem solving knowledge in the expertise model still follows the
same principles as described in section 3.4.4. In the expertise model the
problem solving method contains a goal, a task characterization, control
roles, sub-goals, definition and a task expression schema [WdVSA93].
In the expertise model it is possible to utilize a combination of several
criteria, use sub-goals, test criteria and list several assumptions that
the method uses. Only under these assumptions is the method accept-
able.

However, it is the task features that determine how adequate a prob-
lem solving method and a model in general are. CommonKADS solves
this by using a library of models and re-usable model components. The
library uses task feature as index.

3.4.6 Various Modelling Methods

CommonKADS gives support to various modelling methods by using
libraries of generic components (various level of granularity) and pro-
viding modelling tools.

The generic components (the basic components for defining a model)
offered by CommonKADS are:

• Problem solving methods

• Instantiated problem solving methods

• Generic tasks

• Inference structures

• Generic domain models

The modelling methods provided by CommonKADS are:

• Bottom-up assembly from expertise data

• Model assembly around a problem solving method

• Model assembly from generic components

• Top-down task decomposition

• Knowledge differentiation

• Structure mapping

32

3.4.7 Further Development

The overall goal for the CommonKADS project still is to create a uni-
fied framework for knowledge modelling in knowledge-based system ap-
proach [WdVSA93]. The further development of CommonKADS moves
in two directions. One branch uses libraries of re-usable models (the
CommonKADS library), while the other branch uses formal models and
a formal modelling language (FML for CommonKADS expertise mod-
els). There are two levels of the formal modelling language. One level
to use when implementing models, while there is another level for con-
ceptual design.

IBROW

The IBROW EU (information society technologies) project is a spin-off
from CommonKADS. The IBROW project is an intelligent broker for
handling web requests. The customers buy classes of knowledge by us-
ing libraries of problem-solving methods. The problem-solving methods
were accessible on the Internet. The customer could select, adapt and
configure the methods to fit the customer’s domain better. The goal was
to make knowledge-system technology available in larger scale by using
library.

Because of the IBROW project, the Unified Problem-solving Method
Development Language (UPML) was developed. The goal of UPML
is to be able to make it possible to semi-automatic reuse and adapta-
tion when describing and implementing architectures and components.
UPML is a framework for developing knowledge-intensive reasoning
systems (based on libraries and generic problem-solving components.
UPML provides an editor for writing specifications based on Protégé-
2000 [CM01].

In IBROW the library of software components are extremely important.
IBROW defines the library by using the UPML architecture [WvAAJ03].
The library consists of the three component types task, problem solv-
ing method (PSM) and domain model. The library defines two types
of PSMs: problem decomposers (decompose task into subtask) and rea-
soning resources (primitive operators). The ontology acts as glue in the
UPML architecture, used to tie the pieces together. Thus, there are a
Task Ontology (conceptualization of a particular of a goal specification),
a PSM ontology (adding terminology needed to describe the PSMs) and
the Domain ontology (domain specific terminology). In UPML mapping
between the different ontologies are done by using bridges. IBROW also

33

has a library for heterogeneous PSMs (heterogeneous problem decompo-
sition methods and reasoning resources that share a common ontology)
and a library for configurable PSMs (one or more generic problem solv-
ing problem solving components).

3.5 Protégé

Protégé is a knowledge acquisition program (as shown in screen shot in
figure 3.15). Protégé is a knowledge acquisition Meta tool for building
conceptual models, a knowledge engineering workbench. Protégé is not
a tool for building experts systems directly. It builds other tools that
are tailor made to assist the knowledge acquisition for expert systems
[Mus89].

Figure 3.15: Administrating classes in the current version of Protégé

34

3.5.1 Protégé: fundamental ideas

The Protégé system has undergone major changes over a period of 16
years. However, some features and ideas remain unchanged. These
fundamental ideas about knowledge-based system have made up the
base of the Protégé system.

• The end user of a knowledge base is a domain expert, not neces-
sarily a knowledge engineer.

• The domain-specific knowledge acquisition tools generated from
underlying domain model or ontology

• The knowledge engineer does the structural domain modelling and
tool design. The domain expert fills in detailed domain knowledge.

• One should capture domain knowledge declaratively, without and
references to a specific problem solving method or inference

• The inference methods can be isolated as problem solving methods
or as plug in applications

However, Protégé is based on class-subclass connection. Protégé con-
tains little causal relations.

3.5.2 Method to Task

The central concepts in Protégé is tasks and methods. Musen et al
[PTM93] defines tasks as an activity/an abstraction of an activity in
the real world. A task accepts a type of input and produces an output,
decided by what domain the task is applied to. However, the task in
it self does not give any knowledge requirements.The task does not say
anything about how the output is produced. This is not until a method
solves a task the knowledge requirements are set.

A method imposes a task decomposition to tasks. The task decomposi-
tion results in subtasks. The subtasks are then either solved by mech-
anisms (methods that does not decompose tasks any further) or further
decomposed by methods. in ProtégéII a mechanism is a black box, that
given the inputs of subtasks produces the output of that subtask.

What methods becomes a mechanism or not is decided by if decompos-
ing the method does not provide corresponding mechanisms for each
subtask that can easily be reused. Then the method is not decomposed
and becomes a mechanism. There is no restriction on using the mech-
anisms directly on the tasks that has not been decomposed [PTM93].
The methods doing the task decomposition only enumerates the tasks.

35

It does not specify the execution ordering or any other control specifi-
cation. Mechanisms are method independent, reusable and limited to
solving resulting subtasks. The control details can be presented only
at the method level[PTM93]. There is a clean distinction between the
input/output specification of the task and the control specification for a
method. The division enables the two method manipulation operations:
method configuration (electing appropriate solve each subtask, verify-
ing the relationships between the method-level and mechanism-level)
and method assembly (viritual creation of a new method). These two
method manipulation operations are the building blocks of ProtégéII
[PTM93].

3.5.3 The Developing Protégé

Protégé has undergone a continuous development since Mark Musen
first introduced the meta-tool in 1987. Figure 3.16 shows the develop-
ment of protégé.

Figure 3.16: The history of Protégé as illustrated by Musen[GMF+02]

As one can see from figure 3.16, there has been three major develop-
ments in the Protégé program. In short the major differences are:

ProtégéI

The initial version of Protégé introduced the notion of generating knowl-
edge acquisition tools from structured meta-knowledge. Protégé used
a specific problem-solving method called episodic skeletal-plan refine-
ment (ESPR). ESPR assumes that a top-down modelling of the task

36

hierarchy of plan components. ESPR was used to make method spe-
cific knowledge bases (for use with skeleton planners only). Protégé
lacked a formal semantic that would enable the use in different settings
[GMF+02]. Due to ESPR ProtégéI used the semantics of the target ap-
plication area [Mus93].

ProtégéII

The limitations, due to the assumptions in ProtégéI, called for a gener-
alization of the system. ProtégéII does not presume the use of ESPR
or any other particular problem solving method. The developer might
choose what method to use from a library (reuse of problem-solving
methods as components). This enables the possibility of using the method
most suitable for each domain and the application requirements.

In ProtégéII, the ontology plays an important role and the ontology uses
a more formal representation language (frame based). It is able to gen-
erate knowledge acquisition tools from any ontology (in contrast to just
being able to use instantiations of ESPR). ProtégéII operates under the
assumption that the ontology is more durable than the knowledge bases
[GMF+02], a "downhill flow" assumption.

Protégé/Win

The Protégé/Win version was an attempt to broaden the user commu-
nity and make the system easier to use. Protégé/Win had some new
features (such as ontology inclusion), however it was mostly the same
features as in ProtegeII [GMF+02].

Protégé2000

Protégé2000 is the current version of the Protégé system. In Protégé2000,
there is a strong focus on scalability. The system is able to handle the
development of larger knowledge bases than its predecessors are. It
is a single tool with more flexible knowledge-model. Protégé2000 is
also more extensible, both the system in general and the user inter-
face [GMF+02]. UMPL uses a version of Protégé2000 is for to create
specifications in UMPL (as mentioned in section 3.4.7).

37

3.5.4 Ontology Modelling in Protégé

There is actually a guide on how to build an ontology in Protégé [NM00]
written by Noy and McGuinness. The guide is a hands-on explanation
of how to model in Protégé with no particular focus on knowledge acqui-
sition modelling. The guide builds on experiences from using Ontololin-
gua and Chimeara in addition to Protégé. The guide defines five reasons
for making an ontology [NM00] (from the Protégé perspective):

• Sharing common understanding of the structure of information
among people or software agents

• Enabling reuse of domain knowledge

• Making explicit domain assumptions

• Separating the domain knowledge from operational knowledge

• Analysing domain knowledge

The main elements in the modelling approach in Protégé are to [NM00]:

1. defining classes in the ontology

2. arranging the classes in a taxonomic (subclass-super class) hierar-
chy

3. defining slots and describing allowed values for these slots

4. filling in the values for slots and instances

The knowledge-engineering methodology in the guide consists of seven
steps:

1. Determine the domain and scope of the ontology (using compe-
tency questions)

2. Consider reusing existing ontology

3. Enumerate important terms in the ontology

4. Define the classes and the class hierarchy

5. Define the properties of classes-slots

6. Define the facets of the slots

7. Creating instances

38

3.5.5 Recent extensions

Protégé is still very alive and used. It is more or less the leading mod-
elling tool in Europe. And much of its popularity is for instance conected
to the fact that it is quite simple to add plug ins. One example of re-
cent extensions is the implementation of the PROMPT framework for
Protégé [NM03]. PROMPT is a uniform framework for working with
different ontologies. PROMPT aligns, compares and merges different
ontologies. It also maintains different versions of the ontologies and
translates between different formalisms. PROMPT is an extension to
the Protégé ontology-editing environment.

Protégé evolves through the involvement of international users that
adds capabilities and extends the program.

39

Chapter 4

The ki-CBR system
TrollCreek

This chapter is an introduction to the knowledge intensive case-based
reasoning (ki-CBR) system TrollCreek. The chapter starts with a short
introduction to ki-CBR, before going into the TrollCreek system. Impor-
tant features in the TrollCreek system are used later when introducing
the knowledge acquisition and modelling method for TrollCreek. The
tools/different views, a short introduction to the CBR process and simi-
larity measurements, the existing modelling approaches and the prede-
fined top-ontology will give the reader an understanding of the system.

4.1 Knowledge Intensive Case-Based Reasoning

Knowledge intensive case-based reasoning (ki-CBR) is a machine learn-
ing technique. What makes ki-CBR unique is the combination of a case
base and general domain knowledge. The combination enables ki-CBR
systems to use both semantic and pragmatic criteria when reasoning.
Several other pure CBR systems are only able to perform reasoning with
syntactical criteria. Ki-CBR systems are able to match for example two
cases with different names, but the same meaning (based on the deep
domain knowledge in the domain ontology).

As shown in figure 4.1, ki-CBR is in between the pure CBR and the pure
MBR (model based reasoning). Ki-CBR uses elements from both MBR
and CBR.

40

Figure 4.1: KI-CBR compared to CBR and MBR

4.1.1 The CREEK ki-CBR Framework

The CREEK framework is an example of such a ki-CBR framework.
CREEK is a collection of modules all integrated in a conceptual basis
in the General Domain Model [Aam04]. Each module represents a sub-
model of knowledge. The main modules are:

• object-level domain knowledge model (real world relations and en-
tities)

• strategy level model

• meta level modules (one for combining CBR and MBR, one for com-
bining different learning methods)

Situation specific experiences are stored in the frame-based case base.
The concepts are submerged in an interconnected knowledge model.

4.2 TrollCreek

Figure 4.2: TrollCreek

TrollCreek is a java based realisation of parts of the CREEK architec-
ture. TrollCreek is developed by Trollhetta. TrollCreek consists of a
knowledge editor application (as shown in figure 4.3) and a case match-
ing module.

41

Figure 4.3: The TrollCreek knowledge editor

There are several different ways of looking at the TrollCreek knowledge
base. There are different "views" visualizing different aspects of the
knowledge base. The "views" also supplies the user with different ways
of manipulating the knowledge model. However there are differences
between the views:

4.2.1 Map View

The map view (as shown in figure 4.4) visualizes the relationships be-
tween entities (as nodes with links connecting them), and the entities
in it self. The user might manipulate the knowledge model by adding
entities from the "entity list" and deleting entities from the visualisa-
tion.

When using the "build tool" the user might manipulate the actual knowl-

42

Figure 4.4: Example of a TrollCreek map view

edge model (adding/deleting relations).

Event though this might sound/look like domain knowledge purely the
graph also includes cases and states as nodes. It is

4.2.2 Frame View

The frame view (shown in figure 4.5) enables the user to display (using
select tool) and change the properties of (build tool) of entities. It is also
possible to change/add/delete relationships.

The case view gives the same options for modifying the case as the frame
view. However, it pops up as an independent window (shown in figure
4.6).

In the CREEK framework and in TrollCreek there are strong couplings
between the cases and the domain ontology. TrollCreek assumes utiliz-
ing general domain knowledge to enrich the cases. The cases are com-

43

Figure 4.5: Screen shot from TrollCreek showing the frame view

pletely submerged into the ontology [Aam04]. However, TrollCreek is
also able to do pure case matchings in addition to the ki-CBR matching
involving general domain knowledge.

44

Figure 4.6: A screen shot of a case view from TrollCreek

45

4.2.3 The CBR Process and Explanation Engine

In CBR the current situation is compared with previously experienced
cases (stored in a case-base). CBR adapts the previous cases to fit
the situation and proposes a solution. Aamodt explains in his article
[Aam04] the explanation engine in the CBR process. It is a three step
process that

1. activates relevant parts of the knowledge model

2. generating and explaining the derived information (within the ac-
tivated knowledge structure)

3. narrowing down and selecting a conclusion that matches the goal

The three step explanatory engine gets repeated for retrieve, reuse and
retain. The explanation engine is specialized for each of the four system
tasks. (The Revise task is not defined in TrollCreek. It still has to be
preformed by i.e. a domain expert.)

Figure 4.7: The CBR process (from [Aam04])

4.2.4 Similarity Measurements

As TrollCreek is today, the attributes need to be identical in the initial
attribute matching process (syntactical). As described in [Aam04] the
equation for sim(f1, f2) is just given by:

sim(f1, f2) =

{
1 if f1 = f2

0 otherwise

An important feature with this similarity metric is that it only treats
symbolic matching.

There is also a simple numerical measurement for comparing two nu-
merical values. It just takes the differences between the numbers and
normalizes an updateActivationStrength.

The explanatory matching is more complex and in the second stage of
the matching process.

46

4.2.5 Existing Modelling Approaches In TrollCreek

Today, there exist two documents aiding the user when modelling in
TrollCreek.

The TrollCreek Tutorial

The TrollCreek tutorial [BSAB04] is a more technical description of how
to use TrollCreek. This tutorial contains detailed information about
the different views. It also contains how to use the different tools in
TrollCreek.

However, there is a section on "How to model in TrollCreek". The tu-
torial defines a knowledge model as the resulting structure after given
the system the knowledge needed to reason about cases. The tutorial
goes defining a simplified methodology, with three steps:

• Making taxonomy
extract terms about the domain they are modelling and entering
it into the system

• Building a causal model
building a model describing the cases and effects.

• Adding cases
adding the concrete previous experiences.

When making the taxonomy the tutorial also includes a step where
one should also make other hierarchies (i.e. compositional hierarchies).
A taxonomy usually only includes has-subclass and has-instance rela-
tions. The compositional hierarchies would include i.e. has-part and
subclass of. It will be more correct to call them ontologies. The making
of the ontology defines the vocabulary for later use. It is some overlap
between the different steps.

The tutorial uses examples from the car domain throughout the whole
tutorial. It also illustrates the modelling approach in the car domain.
However, the modelling approach is highly superficial.

Modelling in the petroleum Engineering Domain

This document is also written as a practical tool for modelling in Troll-
Creek. It is an ad hoc solution in order to complete the practical side
of modelling. The document is a tool for the engineer not interested in
knowledge acquisition, just interested in making a model that works.

47

The document starts with explaining how to download the tool, explain-
ing what a TrollCreek model is and how to build ontology and cases. It
continues with how to compare the cases and how to test the model.

This document defines a TrollCreek model as a bi-directional graph of
entities and the relations between them. A core model consists of a
structural model that shows the subclasses, the part and the instances
of the entities. The relations can be divided into subclasses (structural,
implicational, associative, temporal or role (not yet implemented)). The
different relations have different strengths. Since the graph is bi-directional
i.e. the "has subclass" relation automatically has a "is subclass of" rela-
tion and so forth.

In TrollCreek there already is a default "top level-ontology". This has
to be expanded in each case by adding new levels downwards. The
document goes on describing the building an ontology process click by
click. It goes on explaining the structure of cases for the oil-drilling do-
main (containing characteristics, observed parameters, solution path,
outcome and the operators experience or lessons learned).

4.2.6 The Predefined Ontology Model in TrollCreek

As already mentioned, there is a predefined ontology in TrollCreek.
This ontology is the basis of every model made in TrollCreek, and it
is shown in figure 4.8. All the relations in the predefined top-ontology
is "has-subclass" relations. (The screen shot shows the model called
Taxonomy. However, the model might contain other relations that has-
subclass and has-instance. It might there for be more correct to call it
an ontology.)

As can be seen from the TrollCreek screenshot in figure 4.8 the root
node "thing" is decomposed into "relation", "entity" and "descriptive
thing". The ontology describes how the knowledge is structured in Troll-
Creek, and it is therefore important to have a look at the three different
branches:

48

Figure 4.8: The top-ontology in TrollCreek

49

Relation

Figure 4.9 shows the definition of different types of relations in this part
of the ontology. The relations govern the relationships between entities
when modelling the real world domain.

Figure 4.9: The "relation" branch of the TrollCreek ontology

Entity

The entity branch shown in figure 4.10 contains both task knowledge
and domain knowledge (following the principles in section 3.2). Besides
tasks the entity branch contains environment, physical and metal ob-
jects, state, process, role and context (domain objects). In this version of
the taxonomy there is discrimination between the case and its contents.
There is a separation between the framework of the actual contents is

50

Figure 4.10: The "entity" branch of the TrollCreek ontology

put into and the actual contents (the situation). Section 7.3 presents a
possible solution.

Descriptive Thing

Both "entity" and "relation" is a description of the real world, of external
things. However, "descriptive things" (as shown in figure 4.11) describes
the systems internal things. The problem solving uses these. One ex-
ample is the case structure.

Figure 4.11: The "descriptive thing" branch of the TrollCreek ontology

51

Chapter 5

Comparison and Analysis

This chapter contains the possible solutions to the knowledge acquisi-
tion and modelling task in TrollCreek, a knowledge intensive CBR sys-
tem. These possible solution are based on related research. The last
part of this chapter handles the possibilities of combining modelling ap-
proaches and ideas from the KA-modelling frameworks Components of
Expertise and CommonKADS.

5.1 Problem Solving Methods

The problem solving method within the KA system is the interference
engine. The problem solving method decides on identification, selec-
tion and implementation of a sequence of actions in order to fulfil a
goal within a domain[McD88]. There are at least two different cate-
gories of problem solving methods. There are the weak methods and
the role-limiting methods. The role-limiting methods are not so broad
as the weak methods. However, the role-limiting methods have little
task-specific control knowledge. This makes the role limiting methods
a good foundation for KA tools. It enables the developer to know in ad-
vance the control knowledge a method will use. It is also possible to
know what kind of task-specific knowledge will be needed [McD88].

5.1.1 Different Problem Solving Methods

John McDermott compares different problem solving methods used in
KA tools in [McD88]. All the problem-solving methods are role-limiting
methods. McDermott introduces 6 KA tools with their respective prob-
lem solving methods. McDermott lists the different characteristics with

52

the tasks that make that particular KA tool and problem solving method
possible to use. He also mentions what types of task-specific knowledge
the experts have to provide to each KA tool / problem solving method
[McD88]. The following tables summarize McDermott’s findings:

KA tool MOLE
Builds Diagnostic expert systems
Role-limiting method cover-and-differentiate

Task characteristics

1. Identifiable set of problem states/events
(explained and accounted for)
2. Exhaustive set of candidate explanations
3. Discriminating information for candidate
explanations
4. Only one candidate explanation applicable
at any time per event

Experts must provide
1. Complaints/abnormalities
2. Explanations
3. Differentiation knowledge

Table 5.1: MOLE KA tool with problem solving method

53

KA tool YAKA
Builds Diagnostic expert systems

Role-limiting method cover-and-differentiate and
qualitative reasoning

Task characteristics

1. Set of problem states/events
(explained and accounted for)
2. Model of normal functioning system
3. Qualitative equations between state variables
4. External candidate explanations affecting
equations
5. Discriminating information for candidate
explanations
6. Only one fault is applicable at any time per event

Experts must provide

1. Library of generic equations and faults
2. Structural model of system
3. Refinements of functional model
4. Description of faults
5. Differentiation knowledge

Table 5.2: YAKA KA tool with problem solving method

KA tool SALT
Builds Constructive expert systems
Role-limiting method cover-and-differentiate

Task characteristics

1. Procedures specifiable to determine starting point
2. Constraint and remedies specified by changes to
design
3. Not high level of conflict between design
extensions

Experts must provide
1. Procedures for obtaining initial value
2. Procedures for obtaining constraints
3. Local remedies for violated constraints

Table 5.3: SALT KA tool with problem solving method

54

KA tool KNACK
Builds Expert systems (WRINGERs)
Role-limiting method acquire-and-present

Task characteristics
1. Report used to document task
2. Small set of concepts cover all reports for a task
3. Report is essential mean for documenting task

Experts must provide
1. Domain model
2. Sample report
3. Sample information gathering strategies

Table 5.4: KNACK KA tool with problem solving method

KA tool SEAR
Builds RIME methodology systems
Role-limiting method developers define a set of methods

Task characteristics

1. No role-limiting method suitable
2. Possible to define a set of methods for performing
tasks
3. Challenging to decide what to do next based on
task details

Experts must provide 1. Collection of problem-solving methods

Table 5.5: SEAR KA tool with problem solving method

KA tool SIZZLE
Builds Expert systems
Role-limiting method extrapolate-from-similar-case

Task characteristics

1. Large collection of validated cases available
2. Notion of overall similarity between different cases
3. Knows how to adjust case solution to match case
changes in the case problem
4. The nature of the problem is to determine needed
quantities of resources for some process (precise
nature of process not well understood)
5. A large set of factors to be considered
6. Quality of solution can be classified as better or
worse

Experts must provide
1. Sized cases
2. Case indexing knowledge
3. Extrapolation knowledge

Table 5.6: SIZZLE KA tool with problem solving method

55

A SIZZLE built system will use its task-specific knowledge to guide it
through an iteration of steps [McD88]:

1. Ask for enough information about a specific sizing problem in or-
der to identify other, similar solved cases in the knowledge base.

2. Use the differences between the solved and the unsolved case to
extrapolate a new solution from a known solution.

The expert builds a sizer by building a indexing discriminating tree of
case features when specifying the sizing cases and user models. The
rule generator provides this capability (translates source files of case
features, cases and user resource demand. There is also an included
feature in the sizer that permits the user to define their own sizing
cases and test their performance on the system.

5.1.2 Task Decomposition Methods

There are also other general problem solving methods (PSM) than the
ones mentioned by McDermott [McD88]. Some PSMs might even ap-
ply to non-construction tasks. A definite example of such PSM is the
methods used for task decomposition. This section introduces a couple
of task decomposition methods. They are all possible solutions to the
task decomposition part of the TrollCreek KA method. These methods
were introduced as a part of the CommonKADS library in [ABB+93], in
appendix E.

Divide-and-Conquer

"The control of a large force is the same principle as the con-
trol of a few men: it is merely a question of dividing up their
numbers."

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel
Giles (1910)

Divide-and-conquer decompose a task into subtasks. These subtasks
are handled independently. The result from each subtask makes up the
total solution of the task. The control between the subtasks is sequen-
tial. One way of using divide-and-conquer is to divide the functions up
into groups. Divide-and-conquer is fits a wide variety of tasks (i.e. con-
struction tasks, diagnosis, generic and so forth).

The divide-and-conquer algorithm [CLRS01]:

1. Divide the problem into subproblems

56

2. Conquer the subproblems by solving them recursively

3. Combine solutions to subproblems into the solution for the origi-
nal paradigm

Divide-and-conquer helps coping with the complexity of the task. It
is easier to handle small, independent parts than handling the whole
problem. The method is simple and widely used. However, divide-and-
conquer is less appropriate when the tasks interfere a lot with each
other.

Progressive-Refinement

As the name suggests the progressive-refinement method is a contin-
uing process of gradually refinement of the task. Iteration makes the
granularity of the task description gradually finer. First one makes the
abstract task. Then one presents the solution. Then one refines the
task by adding more details, which produced a more detailed solution
and so on. The control is sequential. However, iterative loops refining
the abstract description might be necessary.

This method differentiates it self from i.e. divide-and-conquer by not
decomposing the task into subtasks (that then constructs the final solu-
tion). The Progressive-refinement works on the total solution each time
(when refining the solution). It does not decompose the task into partial
tasks, but each step produces a more detailed description.

Example of the progressive-refine method used is the hierarchical-design
(when applied to design tasks) and hierarchical-planning (when applied
to planning tasks) [ABB+93].

Propose-and-Revise

Propose-and-revise decomposes a task into three subtasks:

1. proposing a in initial solution

2. assessing the proposed solution

3. revising the solution (based on the assessment)

The control is sequential, except if it is impossible to revise the proposed
solution because it is to fare off. Then there will be a loop in the control
flow.

57

This method is a perfect match with CBR (explained in section 4.2.3).
However, it only handles the reasoning part of the CBR cycle. It is not
concerned with the learning part of the CBR process.

5.1.3 Task Execution Methods

Another important breed of PSM are the task execution methods. They
execute the leaf nodes of the subtask hierarchy (the non-decomposable
tasks). Aamodt mentioned these methods in [ABB+93].

When executing a task the task has to be either further decomposed,
or if that is not possible the task has to be executed. For the actual
execution, there are two possible types of methods for doing this: the
mapping methods and the expansion methods.

Mapping methods

Mapping methods use one or more case models to define case models
(new single or a new set), illustrated by figure 5.1.

Figure 5.1: Mapping method uses a mapping (domain) model to con-
struct target model (adapted from [Ste91])

One example of such models is the mapping from a problem case model
to a solution case model [ABB+93]. Other examples are:

• Linear-Mapping (maps many input descriptors of a task to one
output descriptor)

58

• Differentiation (identifies the most discriminating hypothesis on
a differential, uses this to support evidence)

• Top-Down-Refinement (use domain class tree for downwards, step-
wise discrimination)

• Weighted-Evidence-Combination (weights evidence item accord-
ing to relative importance to each hypothesis)

• Similarity-Matching (uses metric to compute similarity between
source and target case)

Expansion Methods

The expansion methods change the contents of case models. It devel-
ops a single case model. Constraint-Propagation is an example of such
a method. Expansion method modifies the case model by propagation
constraints imposed by the domain model.

5.1.4 Combining the PSM with TrollCreek

There are several possible ways of combining the problem solving meth-
ods with TrollCreek. However, there will be some problem solving meth-
ods more suitable than others. TrollCreek, being a ki-CBR system (men-
tioned in detail in section 4.2), will not have the same need to use i.e.
quantifiable equations in order to reason about a domain. The most ob-
vious possible solution is SIZZLER and the "extrapolate-from-similar-
case" problem solving method. Section 6.1.2 discusses this in more de-
tail. However, the KNACK KA-tool handles reports. When applying
TrollCreek when building a system for i.e. the oil-drilling domain, daily
drilling reports will be a important part of the knowledge. It might then
be a possible solution.

When modelling in TrollCreek it is possible to combine several task de-
composition and execution methods. All though divide-and-conquer is a
favourite task decomposition method, just as a combination of Weighted-
Evidence-Combination and some other method is for execution method.
However, the TrollCreek system already has the execution built into it.
It is used every time a case is matched.

In section 3.4.7 I introduced IBROW with its library structure and use of
UPML. IBROW combines several PSMs using libraries (one for hetero-
geneous PSMs and one for configurable). The library structure allows
IBROW to choose between several methods each time. This is one of
many possible ways of including a variety of generic PSMs in a system.

59

5.2 TrollCreek and KL-modelling frameworks

In chapter 3 several KL-modelling frameworks were introduced. There
are several possible ways of combining these frameworks with Troll-
Creek. However, the most relevant solutions would be to combine Troll-
Creek with CommonKADS (in section 3.4) or CoE (in section 3.3). This
section discusses these two solutions briefly, before a choice will be made
and the result described in more detail in section 6.2.

5.2.1 A Case Is Not A Case

It is important to be aware of the bewildering use of the word "case". A
case in the CoE setting is not the same thing as a case in TrollCreek.
A case in TrollCreek is more a part of the domain model in CoE (it is
NOT the same thing as a case in the case model!). The CoE case model
is the current description of the world, the situation as it is at THAT
particular moment in TrollCreek. The system is working on at that
moment the situation. To make the confusion complete, the current
situation (the CoE case model) will be the "current situation" case in
TrollCreek (when running the program).

This is extremely important to have in mind when discussing the com-
bination of TrollCreek and both CommonKADS and CoE.

5.2.2 CommonKADS + TrollCreek

As mentioned in section 3.4.1 the CommonKADS framework contains a
whole suite of models. When trying to combine the principles of Com-
monKADS with TrollCreek, the focus is the expertise model. The exper-
tise model is the model that captures the agents competence involved
in realizing the overall task. In the TrollCreek sphere, there will not be
use for the more organizational oriented/higher level models.

The three Types of Knowledge

As mentioned TrollCreek has domain knowledge, relations between the
entities and task knowledge in the ontology. Domain knowledge and
interrelations (governed by inference knowledge) between them makes
up the internal structure of the domain model in CommonKADS. The
tasks are organized in a task-subtask hierarchy.

60

One difference between the knowledge structure in TrollCreek and Com-
monKADS is that the TrollCreek ontology contains all three different
types of knowledge. Just as in CommonKADS, in TrollCreek a task-
subtask hierarchy organizes the tasks. Interference knowledge is rep-
resented trough the relations between the entities in the domain for ex-
ample trough a "causes" relationship. In CommonKADS, there is much
more separated structure to knowledge. In the TrollCreek ontology is
a spaghetti western when it comes to mixing taxonomy, typology and
terms in one network.

The CommonKADS Expertise Model

The Expertise Model can be divided into application and problem solv-
ing knowledge (as mentioned in section 3.4.5). In many ways, the exper-
tise model resembles the ontology in TrollCreek. The expertise model
divides knowledge into system internal reasoning and the more external
reasoning (given domain knowledge). Therefore, the expertise model
has a different structure to its domain knowledge than the TrollCreek
ontology.

TrollCreek being a ki-CBR system, the cases play an extremely impor-
tant role. In TrollCreek the cases are described as a part of the ontology
structure. CommonKADS have "Case Models", a subpart of the domain
knowledge. Cases are also introduced under the "Domain terms". As
explained in 5.2.1 the term case is not used the same way in Troll-
Creek and CommonKADS. However, it could be possible describe so-
lutions/lessons learned through problem solving knowledge as it is de-
fined in CommonKADS (in section 3.4.4). The "problem solving method"
can contain a sequence of actions (for example lessons learned trough
cases).

In CommonKADS the domain taxonomy is a part of the domain ontol-
ogy (as seen in figure 3.13 on page 30). TrollCreek does not have a clear
division with several hierarchies. The TrollCreek ontology consists of a
non-uniform hierarchy. CommonKADS has larger differences between
the domain typology, taxonomy and terms. There is a strict difference
between the typology (defines what kind of concepts, what types of do-
main knowledge one has) and the taxonomy it self (a type hierarchy).

Modelling Methods in CommonKADS

If CommonKADS is chosen as the modelling framework to merge/apply
to TrollCreek there are several important features to look at/learn from.

61

As mentioned in section 3.4.6 CommonKADS has several generic com-
ponents presented in a library. CommonKADS also provides several
modelling methods. These could be the basis for developing the mod-
elling approach in TrollCreek if chosen. It might even be a thought to
introduce library also in TrollCreek.

5.2.3 CoE + TrollCreek

Section 3.3 introduces the Components of Expertise (CoE) framework.
The framework decomposes the knowledge level description into com-
ponents. It is an alternative to combine the CoE with TrollCreek.

The Three Types of Knowledge

As mentioned in section 3.3 the CoE framework handles knowledge ac-
cordingly to the three perspectives in figure 3.6. Domain knowledge is
referred to as models and it is easily identified in the TrollCreek on-
tology (discussed in section 4.2.6). The same goes for task knowledge.
Even the methods are introduced under the "Process" child node of "En-
tity". They are introduced under the "entity" node in the TrollCreek
taxonomy (as explained in section 4.2.6).

CoE makes distinctions between the case models and the domain mod-
els (described in section 3.3.4). The domain model enlarges the case
model. The domain model is a fixed part of the application, while the
application builds up the case model. In TrollCreek the domain and
case models are integrated as a parts of the same ontology model. How-
ever, as explained in section 5.2.1 the "case" in the CoE case model is
not the same as the case definition in TrollCreek. This is two completely
different things.

There are three very important diagrams in the CoE framework. It is
possible to use them in a modelling approach for TrollCreek. The model
dependency diagram (described in section 3.3.4 and 3.3.3) is the link
between the task and the model perspective. As described, the model
dependency diagram shows the relations between the models and the
tasks in addition to how they participate in models. This diagram would
come in handy for TrollCreek.

The task diagram shows the decomposition of the tasks into subtasks
(as explained in section 3.3.3). In TrollCreek this task-subtask hierar-
chy possibility is already an integrated part of the TrollCreek ontology.
It is possible to make a hierarchy within the ontology of tasks and sub-
tasks.

62

Event though there were no way of representing explicit method knowl-
edge in the TrollCreek top-ontology, a solution is proposed in section
6.1.2. It is possible to apply the method perspective to TrollCreek. The
control diagram depicts the control flow between the tasks in Troll-
Creek.

It is also possible to use a wide variety of problem solving methods in
CoE (as mentioned in section 3.3.6). When choosing the problem solv-
ing method in CoE it is important to look at both the pragmatic and
conceptual aspect (explained in section 3.3.7).

63

Chapter 6

Result

This chapter contains the results produced in this thesis. It contains a
section on the choices made as a result of the comparison and analysis
mentioned in chapter 5.The next sections are the concrete knowledge
acquisition modelling method in TrollCreek (section 6.2) and example
of the method applied in TrollCreek (section 6.3).

6.1 Choices Made

This section explains the exact choices made based on the comparison
and analysis in chapter 5.

6.1.1 Focus in TrollCreek

In order to limit this master thesis to some extent one has chosen to
have a look at the knowledge acquisition and modelling in connection
with ki-CBR and more pure modelling approach (as shown in figure 6.1).
This will utilize both deep and shallow knowledge. Even if reasoning
using pure CBR is possible in TrollCreek, this will not be the focus of
this thesis.

Figure 6.1: Thesis focus when modelling in TrollCreek

64

6.1.2 The Three Perspectives on Knowledge

Section 3.2 introduces the three types of knowledge. They are illus-
trated in figure 3.5. Section 4.2.6 describes how task and domain knowl-
edge are structured under the "entity" in the TrollCreek ontology. The
methods are introduced under "Process", a child node of entity.

The predefined top-ontology is just a framework. To be a complete model
one has to elaborate the top-ontology. The user will need add tasks into
a task hierarchy, just as the user expands the domain model. However,
the "method node" should be added as an extension of the top-ontology.
It is easy to overlook the node in the top-ontology all together. It is hid-
den as a child node to "process". The problem solving methods are quite
generic, and a more detailed decomposition of them should be included
in the top-ontology.

Refinement the method node in the top-ontology

The decomposition of the method node does not exist in the top-ontology
as it is today. A possible refinement is proposed here. The subclasses of
the "method node" are the actual methods divided into categories. There
are several ways of dividing the methods into categories. One such
division was introduced by Aamodt[Aam01] and discussed in section
3.3.5 (task decomposition, task execution, control methods and mapping
methods). This is a part of the foundation of our method decomposition.

With our decomposition, the method node would get decomposed into
several several "has-subclass" relations (as shown by screen shot 6.2) at
the top level of the decomposition.

The mapping methods will be a subclass of task execution methods (il-
lustrated in figure 6.5). This goes against the division of methods in
[Aam01], but follows more the basic principles from the components of
expertise framework [Ste91].

However, the different methods will be sub classified into a more de-
tailed description of sub-parts. When decomposing a method into more
details, the resulting sub classification will not be a pure subclass of the
original method node. The detailed sub classification of the methods will
be a part of the method and will have "has submethod" relations. The
"has submethod" relation was added to the "Structural Relation" node
in the top-ontology in TrollCreek (shown in figure 6.3) and the inverse
to the "Structural Relation (inverse)" node. The simplest solution is to
use the "New Relation Type" button in the knowledge editor (shown in
figure 6.4).

65

Figure 6.2: Method decomposed into task decomposition, task execution
and control methods.

This is illustrated in figure 6.5 by the detailed decomposition of the
Propose-and-Revise method.

For more detailed description of modelling, see [BSAB04].

Refining the task node in the top-ontology

The task node in the top-ontology also needs refinement. However, un-
like the method node, there is no standard task decomposition. The
task hierarchy will be created by the task decomposition part of the KA
modelling method (described in section 6.2.1).

However, the tasks in the task-subtask hierarchy will not use the "has
subclass relation". It is necessary to add a new type of relations. This
will also be a structural relation. Figure 6.6 shows the result.

Structuring the KA Modelling Method

In this thesis the KA modelling method for TrollCreek is structures af-
ter the three different perspectives on knowledge (task, model, method)
(discussed as a possible solution in section 5.2.3).The recommended prob-
lem solving method for i.e. task decomposition modelling will be defined

66

Figure 6.3: The "has submethod" relation when added to the TrollCreek
top-ontology

in the next sections. The task execution methods are already included
in TrollCreek (used at run time). It will therefore not be that important
for this thesis. However, TrollCreek would benefit from a larger degree
of freedom choosing all the methods. The proposed method sub classifi-
cation needs further work (discussed in section 7.3). One option is also
to include a library-oriented view into TrollCreek.

When following the thoughts of Aamodt, there are the four types of a
method in a CBR system (explained in section 3.3.5). The following
sections discuss the choices made.

67

Figure 6.4: The "New Relation Type" button opens the "New Domain
Relation window.

68

Figure 6.5: The method subclassified in the top-ontology in TrollCreek.

69

Figure 6.6: The "has subtask" relation placed in the relation hierarchy

70

Task Decomposition Method

The task decomposition methods (explained in section 5.1.2) are an ex-
tremely important part of the KA method. The task decomposition
method decides what approach to take when making the task-subtask
hierarchy. Being a ki-CBR system the "propose-and-revise" (discussed
in section 5.1.2) method seems to be the ideal match. The propose-
assess-revise steps are a perfect match to the already existing CBR pro-
cess (explained in section 4.2.3).

However, it might already seem like a relative of propose-and-revise
method is already in use in TrollCreek in the underlying case matching
process (at runtime). Since this KA method is a form of KL-modelling,
it is not bound by implementation constraints. From a user perspective,
the divide-and-conquer method is more intuitive when dividing tasks to
sub-tasks. The control flow is simpler and more understandable from a
user perspective. It is an important consideration to have the simplicity
for the end user in mind. This is users not interested in KA-methods
from academic perspectives.

The methods will be presented in detail in the top ontology (as described
earlier in 6.1.2 and shown an example of in figure 6.5). For an experi-
enced user, it is possible to choose personal task decomposition method
amongst the methods represented in the top-ontology. It is even possi-
ble to add new methods (by using the knowledge editor in "build" mode
and adding entities when in map view (explained in section 4.2.1).

However, one have chosen to use the divide-and-conquer as task decom-
position method described in section 6.3. This is because the method
is simple, intuitive and effective for the user. The method has to be a
useful tool, not a burden/overhead for the user. There is no need to use
a more complicated method than one has to. The user is still able to
chose what task decomposition method he or she wants to use.

Task execution method

TrollCreek handles task execution at run time (i.e. through the case-
matching process (that includes elements from both "weighted evidence"
and "similarity matching")). From the KA modelling perspective, the
implementation of runtime execution methods is more or less a black
box. The important features are just the input to the box and the out-
put from the box.

However, some features from the task execution methods (explained in
section 5.1.3) might come in handy when building the model dependency

71

diagrams (MDD). This is especially true for the mapping methods. For
example, linear mapping is an important feature to be included in the
KA modelling method.

There are several important methods in CommonKADS that is useful in
TrollCreek. Section 3.4.6 explains some of them briefly. The difference
between top down and bottom up is definitive an important asset to the
KA method in TrollCreek.

Control methods

Even if the task decomposition process in itself is sequential, the se-
quence of the subtasks still has to be decided. There might be some
interdependencies between the subtasks. When one is modelling the
control diagram (as described in more detail in section 6.2.3) the control
flow is decided.

Mapping

The model dependence diagram handles the mapping. Model depen-
dency diagrams (MDD) is discussed in section 3.3.4 and 3.3.3. There is
no need to define a specific general mapping method in TrollCreek since
it already exists in the TrollCreek system. The mapping methods will
wary from situation to situation. The different mapping methods are
described in the proposed new top-ontology in section 6.1.2 and shown
in figure 6.5. However, the mapping from task to model decomposition
usually is a quite intuitive process.

However, in for instance in CommonKADS there is a limitation to only
mapping tasks to methods in a 1-1 fashion (in the model construction
operator). This limits the MDD and reduces the power to express rela-
tions. The limitation is mostly an implementation choice, and there is
no need to implement that constraint in the TrollCreek KA modelling
method. The user is able to associate several method with a task.

SIZZLER

As introduced in section 5.1.1 in table 5.6, the SIZZLER KA tool is a
great match for a ki-CBR system. However, SIZZLE and extrapolate-
from-similar-case(ESC) would be an addition to already existing meth-
ods in the case-matching process in TrollCreek.

72

TrollCreek, being a ki-CBR system is already built up around cases, a
case-base, similarity measurements between the cases and a revise pro-
cess. TrollCreek also models domains where there are a large number
of factors to be considered (i.e. the oil drilling domain) and handles pro-
cesses often not well understood and to determine needed quantities (i.e.
torque pressure to avoid a stuck pipe event in the oil-drilling domain).
In TrollCreek, it is possible to decide if a solution is incrementally worse
or better than another solution during the revise process.

However, it is weakness that the ESC seems to handle only quantitative
extrapolations. This might suggest that it would be a great addition to
already existing problem solving approaches in TrollCreek. This is to
de discussed in further detail in 7.1. The experts already provide the
cases, the case indexing knowledge and the extrapolation knowledge
in TrollCreek. These elements will allow the sizer to extrapolate from
solved to unsolved case.

6.1.3 Competency Questions

The idea of using competency questions was introduced in [NM00] and
discussed in section 3.5.4. By making a list of questions, the system
should be able to answer helps the user determine the actual scope of
the domain. This idea might come in handy when modelling in Troll-
Creek as well.

6.1.4 The Different Types of Models

As explained in section 3.3, there are several types of models in the
components of expertise framework. However, in TrollCreek all domain
knowledge is organized in the TrollCreek ontology. Instead of using
completely different types of models for the KA modelling (i.e. during
making the model dependency diagram), one only uses different seg-
ments of the TrollCreek ontology. This also goes for the different case
models (the current ki-CBR case is also represented in the TrollCreek
ontology).

6.1.5 The Nature of the TrollCreek KA Modelling Method

This KA modelling method for TrollCreek is a supplement to the already
existing modelling tutorials (introduced in section 4.2.5). The existing
tutorials are more practical and detailed when it comes to actual using

73

the TrollCreek editor. They are at the level of "point-and-click" instruc-
tions to modelling. The KA modelling approach will not be at that level
of detail when it comes to the "clicking" aspect to modelling in the Troll-
Creek editor. However, some practical tips and challenges that one came
across while modelling, will be included also in section 6.3.

The nature of modelling in general implies an iterative process. The
TrollCreek KA modelling method is no exception. It might be necessary
to repeat several steps as one refines the model. For instance, it is easy
to get into a situation where one has to add more tasks as the domain
model building uncovers new needs. Adding cases to the TrollCreek
case-base can also make a change in the domain model inevitable. This
is illustrated in section 6.3.

6.1.6 The Unified ki-CBR Case

As shown in section 4.2.6, the top-ontology in TrollCreek today has a
caothic way of handling cases. The case structure node is located as a
subclass of Representational Structure (shown in figure 4.11) Under the
entity node (explained in section 4.2.6) there is a division between the
case and the case contents (the actual situation).

This is discussed in more detail in section 7.3.1. However, strong indi-
cations from the AIL group here at IDI indicates that this will be fixed
in the next version of the ontology. We therefore chose to use the new,
improved structure for the example (section 6.3).

6.1.7 CommonKADS vs. CoE

The perhaps most obvious difference between CommonKADS and CoE
is that CoE is less formal. It also does not contain many "extra features"
like i.e. organizational models. The higher-level models would be great
in a broader more higher level system. However, it might seem that the
needs of the TrollCreek system are more down to earth and informal.

The strict hierarchical system of domain knowledge in CommonKADS
expertise model would impose more structure to the knowledge in Troll-
Creek. If applied to TrollCreek the structure would most definitely kill
the confusion around the taxonomy and ontology terms. However, the
existing framework of top ontology in TrollCreek would not handle the
structural change to good. In addition, the limitations would impose
unnatural limitations to the modelling abilities.

74

The use of case models in CoE fits TrollCreek perfectly. As a ki-CBR
system TrollCreek might use the case model in the problem solving pro-
cess. In the model construction approach to problem solving the model
is considered at each step of the problem solving. This fits perfectly with
the CBR problem solving cycle (explained in section 4.2.3).

There is also several features that resembles each other when compar-
ing CoE and CommonKADS. Such a resemblance is the natural result of
CommonKADS being a combination of KADS and CoE. However, even
if I have chosen to use CoE as the master influence on the knowledge
acquisition method in TrollCreek, it is still possible to borrow important
features from CommonKADS as well. It is for instance possible to play
with the idea of a library when doing further research/development on
TrollCreek.

It is possible to repeat the different steps of the process as many times
as the modeller would like (explained in section 6.1.5).

6.2 A Knowledge Acquisition and Modelling Method
in TrollCreek

The KA method is the initial knowledge modelling process. The goal of
the modelling is to develop a conceptual model for later use. It enables
communication within the development team and aids the further de-
velopment and design of the system. KL modelling (explained in section
3.2) takes place between the knowledge level and the symbolic level.
The KL-modelling presents the knowledge in an intuitive way. And it is
at the symbolic level the KL components get implemented. However, the
implementation is not the concern of this thesis. I only utilize already
existing features in the TrollCreek knowledge editor.

TrollCreek contains a predefined ontology that is a part of every model
produced in TrollCreek (explained in section 4.2.6). It is natural to elab-
orate on this ontology when starting a model. When using the Troll-
Creek framework, even for KA, the predefined ontology is an important
feature.

An intuitive way of doing the modelling is first to use a top-down ap-
proach, before switching to bottom-up when handling the cases (for in-
stance when having a series of time dependent cases that one relates
to a "parent" case). When starting the modelling, it is natural to con-
tinue the already existing organization in the TrollCreek ontology. As
explained in section 4.2.6 there is a division into relation, entity (both
representing external things) and descriptive thing (internal).

75

It would have been a didactic move to present the analysis (task de-
composition and model dependency diagrams) and the design (deciding
the form of the model and the nature of the method that achieve each
task). However, in this setting I have found it more useful to divide
the KA method accordingly to the three perspectives of knowledge task,
model and method. Within the different perspectives will be divided
into identify (initial knowledge analysis), model (a paper based model)
and realise in TrollCreek (building it in TrollCreek).

6.2.1 Task

The task handling process is in many ways the backbone of the KL-
modelling process. The tasks one wants to accomplish first have to be
identified, then decomposed into subtasks (here: using the divide-and-
conquer method (as explained in section 6.1.2)). The task decomposition
will result in a task-subtask hierarchy (as used in CoE explained in
section 3.3.3).

Identify Tasks

When modelling in TrollCreek, one handles at least two different cate-
gories of tasks. There is a clear division between the domain acquisition
tasks (in the design phase, express fixed knowledge about the domain)
and the application tasks (used in CoE to develop case models (a CoE
"case" is explained in section 5.2.1), handling the input/output contents
of a case model to a running application). In this initial modelling, it is
the domain acquisition tasks the KA modelling method has to identify.

These initial tasks are higher-level tasks, the root node of the following
task-subtask hierarchy. They do not go into any details. Example of
such tasks might be for instance "prevent downtime situations" from the
oil-drilling domain, "production planning" from the production domain.

Then it is time to decompose the root tasks into subtasks, resulting in
the task-subtask hierarchy. As discussed in section 5.1.2 and section
6.1.2, the divide-and-conquer method is our preferred method for de-
composing the tasks in section 6.3. However, due to the nature of the
task decomposition in the predefined top-ontology (described in section
6.1.2) the user is able to chose between several possible task decompo-
sition methods for the modelling.

As long as a task is splittable and the task decomposition is feasible, the
task decomposition will continue. When a task no longer is decompos-
able, it is considered to be a solution task. When looking at the overall

76

task hierarchy, the solution nodes will be the "leaf nodes" (at the bottom
of the hierarchy).

The divide-and-conquer method we have chosen to use, divides the root
tasks into subtasks. The subtasks will be decomposed until the decom-
posed tasks are solution tasks. The subtasks will then be ready to be
solved recursively. The solutions of the subtasks make up the overall
solution to the root node. However, in TrollCreek it is also possible to
execute decomposable tasks (in runtime) in the higher levels (discussed
in detail in section 7.3.1).

Modelling - Task-Subtask Hierarchy

It is easy to picture the nodes and leaf nodes in a hierarchical tree struc-
ture. The task-subtask hierarchy will be made during the decomposi-
tion. It will be beneficial to the user to make/draw a model on paper
before entering it into the TrollCreek knowledge editor. The overhead
is minimal as the structure is already being made through the decom-
position.

An example of divide-and-conquer is the division of "production plan-
ning" into "acquire operation", "identify machines", "order machines"
and "present production flow" [Ste93].

Realise in TrollCreek

In TrollCreek the graphical user interface in the knowledge editor gives
us a user friendly way of presenting the task-subtask hierarchy, and it
is easy to model the hierarchy. In the already predefined ontology in
TrollCreek Task is a subclass of Entity (that in turn is a subclass of
Thing). This is shown in figure 6.7.

77

Figure 6.7: Task placed in the overall TrollCreek ontology

Just as tasks are a subclass of entity, a task is an instance of Symbol
(just as i.e. environment, situation, parameter, role is).

It is easy to add new tasks by using the tools described in section 4.2.
By using the build tool when in map view (explained in section 4.2.1), a
new entity is added by just clicking. Then it is possible to open the frame
view (explained in section 4.2.2) for the new entity and adding it to the
task-subtask hierarchy (by adding relations). However, it is important
to remember that a relation in TrollCreek is bidirectional. When a new
subtask is added, there will be a "has subtask" relation from the orig-
inal task to the subtask AND the subtask will (automatically) have a
"subtask of" relation back to the original task.

This procedure will be shown in more detail through an example in sec-
tion 6.3.

78

6.2.2 Model

A model in the TrollCreek KA modelling method characterises domain
specific knowledge and the interdependencies between the domain spe-
cific knowledge. As explained in section 3.3.4, there is a clear division
between the case model and the domain models in a CoE framework.

Identify Models

A ki-CBR Test Case It is useful to think through at least one test
ki-CBR case. The process of identifying the different components of a
ki-CBR case (i.e. the "relation-type" and the "value" from figure 4.6 on
page 45) uncovers several important terms to include in the domain
model and much about the structure of the current situation.

The Current Situation (the CoE Case Model) As mentioned in
section 5.2.1 the CoE case model contains the current case, the current
situation in runtime (and there are several different types as shown
in section 3.3.4). TrollCreek will be working on the current situation
case in runtime. The actual ki-CBR cases in the case database will be
domain knowledge. The only features one needs to be concerned with is
the input and output of the case model, as the case model will be used
later in the model dependency diagrams.

The case model in this TrollCreek KA modelling method will be the
"snapshot" of the current situation in runtime. For example, the state
of the world when running problem solving in real-time.

Competency Questions Another important issue is the scope of the
ontology. The scope is heavily dependent upon what the model is going
to be used for and how much knowledge is needed about the domain. An
important aid when defining the scope is the use of competency ques-
tions (discussed in section 6.1.3). By defining a set of questions your
system should be able to answer, the user is able to define the scope of
the domain model more accurately. In this initial stage, it is important
to be critical what is really needed in the ontology. This will save a lot
of work in later stages. The use of such questions will be illustrated
through the example in section 6.3.

The Actual Domain Model During the previous steps, the user has
already identified several important central concepts in the domain.

79

The domain model includes BOTH the previous experiences (ki-CBR
cases) and general domain knowledge. With the exception of a few ini-
tial cases (to be discussed later), the user can concentrate on general
domain knowledge in this initial part of modelling.

Through the test ki-CBR case, some of the important terms have al-
ready been identified. However, it is possible to add more in addition to
the ones in the initial ki-CBR case. Traditionally concepts in the domain
model are closely connected to objects in the domain. The concepts are
even most likely nouns (while the relations are verbs) when describing
the domain. It is also crucial to have in mind how the different entities
are connected also.

Modelling

Model Dependency Diagram As explained in section 3.3.4 and 3.3.3,
the model dependency diagram (MDD) connects the tasks to the mod-
els needed in the CoE KL-modelling. In the TrollCreek KA modelling
method it is possible to connect several tasks to a model (as discussed in
section 6.1.2). It overcomes the imitating 1-1 implementation constraint
in CommonKADS.

The MDD illustrates the process of making new models, by showing
what model are being used (both case and domain models) and the
model construction activities (tasks) that creates a target model from
the source models. The different models (see section 3.3.4) going into
the MDD will be an excerpt from the ontology in TrollCreek (explained
in section 6.1.4).

The MDD need only to exist in a paper version at it is more a aid to clear
the thoughts and help the user see how the methods and the tasks are
interlaced. A notation used by Steels in [Ste91] draws double framed
boxes when it is domain models in the MDD. While the case models are
depicted with only a single frame.

An example of the MDD process will be shown in section 6.3.

Paper version of the Ontology In TrollCreek the much discussed
top ontology (in section 4.2.6) already exists. It lays down a clear guide-
line for how the domain knowledge should be represented in the Troll-
Creek system. Even if Steels divides into types of domain models (ex-
plained in section 3.3.4, the TrollCreek ontology incorporates all the
different domain models in one network (i.e. descriptions, symbols, so-
lutions and so forth). The ontology it self contains both terms in the

80

domain and the effects they have on each other (causal relations). It
is time saving to use the appropriate relations defined in the already
existing top-ontology in TrollCreek (introduced in section 4.2.6) when
modelling. However, it is possible to add new relations also. These has
to be specially treated when realising the model in TrollCreek.

The domain modelling is first done in a top-down fashion to capture all
relevant, general traits with the modelling domain. It will be a contin-
uance of the already existing top-ontology in TrollCreek. This top-down
approach will be done when during the initial modelling and preparing
the system for use. It will also include adding some initial cases (in
order to build a small initial case database).

The ontology is structured as an extended version of the already existing
top ontology. The extension follows the same pattern and is connected to
the already existing nodes in the top-ontology. However, the modelling
task might seem a bit overwhelming. Experience has shown it is easier
model when thinking of the different parts of the ontology thorough the
same "aspects" used in MDD. It is easier to model a whole domain when
for instance starting with the physical aspect, then the states aspect,
the causal relations before connecting the initial ki-CBR case.

Realise in TrollCreek

The TrollCreek knowledge editor is a valuable tool when realising the
paper ontology in Troll Creek.

Top-down The paper version of the ontology already contains the
general traits (both terms and the interconnections between them). To
realise the paper based model is just to add the concepts and make the
relations between them by using the different views in TrollCreek (for
instance by using the map view (see section 4.2.1) and the build tool to
add entities and drawing the relations between). By using the correct
relations (in section 4.2.6) already in the paper based version, putting
the model into TrollCreek does not present a difficult challenge. How-
ever, if the user has defined new relations that are not predefined in
TrollCreek, the user has to add the relations to the ontology model (ex-
ample of this is shown in section 6.1.2. By being critical when copying
the paper-based version into TrollCreek, it is possible to rethink the de-
sign and catch errors at an early stage. It is a great opportunity to add
a "safety valve" to the modelling.

81

Bottom-up When actually running the application, the experiences
encountered during runtime will have to be added to the ki-CBR case-
base. (There will be a transition from the CoE case model to domain
model.) It will also be necessary to add other ki-CBR cases i.e. ki-CBR
test cases. These will be added in a bottom-up fashion by using the
TrollCreek editor by starting with the most specific ki-CBR cases and
grouping them into more general ki-CBR cases. This will be useful when
presenting time series of ki-CBR cases [JAS02], [Bak04]. The modeller
starts with the leaf nodes, working her way upwards in the hierarchy,
until the branch is ready to be connected to the predefined top-ontology.
This results in an iteration, as it then becomes necessary to add new
elements to the domain model.

A concrete example of modelling will be shown in section 6.3.

6.2.3 Method

The method perspective (described before in section 3.3.5) attaches meth-
ods to tasks and describes the control flow in diagrams. The method
describes how to the task is organized (task decomposition) and exe-
cuted (task execution). At the knowledge level, a method organizes and
executes the model construction activities [Ste91].

Identify Method Algorithms

As introduced in section 6.1.2, divide-and-conquer method has been cho-
sen for task decomposition in this example. The task runtime execution
is already a part of the existing TrollCreek framework, and the control
and mapping is handled otherwise (choices made in section 6.1.2). To
some extent, these decisions in cooperation with the MDD and control
flow diagram govern the control flow.

However, in general it is possible to use also other methods than the
ones predefined by the ontology. Then the method has to be added into
the TrollCreek architecture. The user is also free to use whatever meth-
ods she or he likes for model decomposition. The runtime executions are
included in the TrollCreek system and not so easy to change.

One special case of methods is the causal relations within the domain
model. These govern the causal relations between the different con-
cepts. To some extent, these might function as control methods in the
domain. However, this is more a part of the implementation of the do-
main knowledge than the control flow of the system.

82

Method - Control Flow Diagram

The control flow diagram is a state automata, with a range states (final
or not) and transitions (the control flow) as described in section 3.3.5.
The conditions makes up the control flow and regulate when the tran-
sitions between states takes place. When creating the diagram the dif-
ferent tasks are the states. The nodes in i.e. the task decomposition
hierarchy will be independently executed and the solution will recur-
sively make up the total solution of the root task (when having used
divide-and-conquer for task decomposition). Due to the interwindings
in the tasks, they will have to be executed in a special sequence. This
control flow is depicted in the control flow diagram.

When it comes to the execution in runtime, the CBR process (sequential
but cyclic as described in section 5.1.2) is already an integrated part
of TrollCreek. This is done in the implementation and will not be of
concern in this KA-modelling.

The control flow diagram is an important tool, even if it is just paper
based. By checking the subtask sequences, the users might check the
correctness of the task decomposition as well. It becomes another safety
valve for the modeller to check that everything works properly and that
the causal relations between the concepts are correct.

Realise in TrollCreek

If any new methods were identified during the "identify" stage they will
have to be added to the ontology. This is done by just adding new nodes
to the method node in the ontology (a possible version described in sec-
tion 6.1.2).

The control flow diagram will be realised in TrollCreek by using the
causal relations. This is done by altering the relations in the domain
model between the concepts (for instance adding i.e. "causes" relations).

6.2.4 Executing the TrollCreek KA modelling Method

By executing the top-level KA tasks, the subtasks will be recursively ad-
dressed. This leads to the system acquiring all the models. In addition,
by executing the tasks the system actually changes the contents of the
target models.

Using the TrollCreek system would include adding new experiences/ki-
CBR cases and case matching. The ki-CBR cases will be added in a

83

bottom-up fashion in runtime. The case matching is a way of testing if
the method really works. It is also possible to revise the models previ-
ously made.

6.3 Using The TrollCreek KA Modelling Method

This section contains a practical example on how to model in Troll-
Creek using the KA modelling method layout introduced in section 6.2.
The illustration of the TrollCreek KA modelling method is easies done
through an example.

However, it is important that the example is simple enough. The goal of
this example is to illustrate the method, not to model a complex domain
to perfection. The nature of the example also has to be so that the reader
is not caught up in details.

This example follows the modelling of the electric appliances domain.
Imagine being unfamiliar with the wide range of electrical appliances
that surrounds us in everyday life. If one had no prior knowledge on
how to operate such mysterious electrical appliances, one might need a
guide. The modelling task is then to give an example of such a modelling
process, creating a "Electrical Appliances for dummies" model.

As mentioned earlier, the goal of this example is not to make a com-
plete guide of every electrical appliance in the world. The guide starts
small with introducing the newbie to a water boiler, before expanding
the model with the big and scary video recorder (VCR).

It is possible to expand the domain even further later.

6.3.1 Task

The task identification and modelling follow the framework from section
6.2.1.

Identify and model

It is important to have in mind the expansion possibilities when defin-
ing what the root task is. A possible expansion would be to add for
instance instructions for fixing the same mysterious electric appliances.
It is also possible to add more appliances (for both fixing and operat-
ing). The later point is illustrated through a "operate VCR" task and
the "modify electric appliances". It illustrates the AND/OR nature of

84

the task tree. It is possible to operate a water boiler without operating
a VCR at the same time.

The actual root task for this limited example is the "operate electric ap-
pliances" node. As one divided the tasks into subtasks, the hierarchical
model emerged. Figure 6.8 shows the paper version of the decomposi-
tion.

Figure 6.8: The paper version of the task hierarchy

Realise in TrollCreek

To realise the hierarchy (in figure 6.11) one added nodes to the already
predefined top-ontology in TrollCreek by using the build tool in map
view. When choosing the build tool one is able to add new entities to
the model by just clicking in the map view (explained in section 4.2.1).
It is also possible to easily make new relations between the entities by
dragging lines between them when having selected "Building relation"
in the window shown in figure 6.9 and chosen what kind of relation to
make.

If an error occurs during the "clicking-and-making-entities-frenzy", it is
easy to delete an entity. When using the "select tool", just right click
and choose "delete entity" as shown in figure 6.10.

85

Figure 6.9: When the build tool is selected, this window appears, en-
abling us to make both new entities and new relations.

Figure 6.10: Deleting an entity by using the select tool

Figure 6.11 shows the result of entering the paper-based model into
TrollCreek.

86

Figure 6.11: The task hierarchy in TrollCreek

6.3.2 Model

The electric appliances example then goes on to the next knowledge
perspective, the model perspective introduced in section 6.2.2.

Identify Models

Just as with tasks, the first step is to identify the different models.

A ki-CBR Test Case To initialise the process a first electric appliance
ki-CBR test case is created. (NB: notice the difference between the term

87

"ki-CBR case" and the term "case" (CoE). This is to avoid the confusion
described in section 5.2.1).

Case name Thing1
Case type Appliance case
Status Solved
Relation-type Value Importance Predictive strength
instance-of water boiler characteristic indicative
has-state not working characteristic indicative
has-state socket plugged in characteristic indicative
has-solution power turned off characteristic indicative

Table 6.1: The initial appliance ki-CBR test case

The Current Situation (the CoE Case Model) The case model in
this scenario is the operation of an electric appliance. As seen from the
initial case in table 6.1, the different input parameters will be the states
(turned on, plugged in and so forth) of the electric appliance. The output
from the case model would be if the thing is working or not.

Competency Questions Competency questions help limiting the scope
of the model. In this scenario, the system only has to answer a couple of
questions:

• How does the user operate the electric appliance?

• When an electric appliance is not working, what has been done
wrong?

The limited scope of this model is due to the nature of the example, as
mentioned in the start of this section. The example is just to illustrate
the KA modelling method. It is not supposed to incorporate the hand-
books for all the electric appliances in the world.

The Actual Domain Model As explained the domain model contains
objects from the domain. The case in table 6.1 already introduces some
important features in the domain. The findings in the initial case shows
us the need for the values "water boiler" (instance of something), "not
working", "plugged into socket" (both states) and "not turned on" (both a
state and solution). The initial case also uses the relations "instance-of",
"has-state" and "has-solution".

The domain model will be worked on incrementally as more findings get
revealed and added.

88

Modelling

The modelling will also this time be done on paper. It is easy to scribble
something and change ones mind when only on paper yet. The limit
becomes much more higher the instance the modelling gets transferred
to more time consuming medium (like the modelling in TrollCreek).

Model Dependency Diagram The model dependency diagram (MDD)
connects tasks to models. And here it is possible to make as many as
one wants. For the Operate Electric Appliances (OEA) domain we start
with an MDD that describes how the models are connected in order to
create a descriptive CoE case model. The important trick to doing this
is to add a section of the domain model in stead of adding separate types
of domain models.

Figure 6.12: The MDD for creating an OEA case model

The first MDD model (shown in figure 6.12) was directly connected to
the task tree created earlier (connecting operate electric appliance task
to the model activity operator.

However, the next MDD (figure 6.13) shows more TrollCreek internal
functions. This is just so that the modeller has thought through the
process in TrollCreek as well. The modeller is aware of the states and
causal relationships being used internal in TrollCreek. By connecting
both the reasoning and the propose solution task to the model construc-

89

Figure 6.13: The MDD for poropose a solution

tion activity, this example show how it is possible to connect more than
one task.

Notice the use of single and double boxes as described in section 6.2.2.

Paper version of the Ontology The previous steps uncovered the
need for several instances (both states and relations). Now is the time
to put them into system. As mentioned in section 6.2.2, one way of
starting the modelling is to look at the different aspects of the domain
uncovered in the used views in the MDDs.

This example first modelled the physical aspects of the electrical appli-
ances, then the statuses and the case. The causal relations were added
at the end. The result is shown in figure 6.14.

The arrows with no name in figure 6.14 is "has-subclass" relations and
the "h-i" relations are "has-instance" relations. This paper version of
the ontology will inevitable be a bit chaotic. However, the impression
gets better as the ontology gets realised in TrollCreek (next section).

90

Figure 6.14: The paperversion of the ontology

Realise in TrollCreek

Then it is time to realise the ontology in TrollCreek. As mentioned in
section 6.2.2 it is important to use this step as a safety valve. This is
achieved for instance by being critical when copying the paper model
into TrollCreek. This is an unique possibility to notice errors in a early
stage of the modelling. To correct it in the paper model is not as time
consuming as having to correct an error in the finished TrollCreek ver-
sion of the ontology.

Top-down The first top down modelling is done by adding the enti-
ties and relations previously identified. This is done by expanding the
already existing predefined top-ontology. It is easier to open a new view,
adding the entities from the entity list ("Thing" as the ultimate root
node) and expanding the ontology from there. It was also useful to in-
clude only the nodes I actually used in the view. This simplified the
view and made the model more user-friendly. The result is shown in the
following figures.

As explained in section 6.1.6, the example uses the next version of the
ontology with only one case node. The examples does not use the "situ-
ation node".

91

Figure 6.15: The physical aspect of the OEA model

92

Figure 6.16: Realising the state aspect (with some causal relations)

93

Figure 6.17: The domain model realised in TrollCreek (with a intial
ki-CBR testcase)

94

Bottom-up As described in section 6.2.2 when adding new cases a
bottom up modelling takes place. For instance, if one adds the case
in table 6.2, there is a need to add a "radio" entity to the ontology (in
addition to the case).

Case name Thing2
Case type Appliance case
Status Solved
Relation-type Value Importance Predictive strength
instance-of radio characteristic indicative
has-state not working characteristic indicative
has-state power turned off characteristic indicative
has-solution socket not plugged in characteristic indicative

Table 6.2: Additional appliance ki-CBR test case

Figure 6.18: The domain model after adding the case thing2

Figure 6.18 shows the domain model after the radio case is added.

6.3.3 Method

This section follows the pattern introduced in section 6.2.3.

95

Identify method algorithms

The first step in the method perspective is to identify the methods used.
Since we have consequently used divide-and-conquer during this exam-
ple there have not been any new methods introduced.

The casual relationships have already been introduced in the domain
model, so there are no new ones introduced at this point.

Modelling the control flow diagram

The control flow diagram for the operate water boiler is quite simple. It
contains a start state, a "put into socket" state, a "turn power on" state
and a success state ("working") and a fail state ("not working"). Figure
6.19 illustrated the control flow diagram.

Figure 6.19: The control flow diagram in this example

The "working" (success) and "not working" are final states.

Realise in TrollCreek

There is no new methods added to the top-ontology in TrollCreek. There-
fore, there are no need for making extra entities.

As seen by the control flow diagram (figure 6.19) and the domain model
with causal relations (in figure 6.18), the control flow is been taken
care off by the relations to the different states. For instance the "power
turned on" has a "causes sometimes" relation to "working". This is due
to the fact that it also need the "socket plugged in" state in order to work

96

(as shown in figure 6.19).However, the "power turned off" has a "always
causes" realtion to "not working" state (failure).

6.3.4 Executing the Model

To test the model made, one should add an additional unsolved case and
do a case matching to check that the model works as it is supposed to
and is able to answer the competency questions. However, due to the
choice in section 6.1.6 this is not possible with in this example. The case
and situation has to be unified (as explained in section 7.3.1).

An example of a case that could have been added is shown in table 6.3.

Case name Thing3
Case type Appliance case
Status Unsolved
Relation-type Value Importance Predictive strength
instance-of water boiler characteristic indicative
has-state not working characteristic indicative
has-state power turned on characteristic indicative
has-solution socket plugged in characteristic indicative

Table 6.3: A possible additional ki-CBR test case.

The reasoning would be done in runtime in the TrollCreek system.

97

Chapter 7

Discussion, Evaluation,
Further Work and
Conclusion

7.1 Discussion

This thesis presented a possible KA modelling method in TrollCreek.
However, there are always viable alternatives to the choices made in
this method. The KA modelling method has to be adapted to the antici-
pated extensions and the application one has in mind. The development
of the ontology will also be an iterative process.

This thesis presents a method that is very focused on the TrollCreek
system. A more general method would also fit other ki-CBR systems.
The method would only need to be lifted to a higher level of abstraction.
If the method contained fewer details on how to model in the tool, the
method would be more general. It would have been possible to assume
that the user already is familiar with the tool at hand.

However, due to the TrollCreek connection to the AIL group here at IDI,
it was natural to use the TrollCreek system. By being able to show the
reader a concrete example of using the method to model (section 6.3),
the method described in this thesis is accessible to a larger group of
users. It is possible for users that know nothing about Newell’s knowl-
edge level to use the method for modelling.

The TrollCreek system is continually evolving and with it some parts of
the KA modelling method has to change. This is specially the "realise
in TrollCreek" parts of the method. As TrollCreek evolves, this method

98

will also need to evolve. The method will never be completely finished.
There always has to bee room for improvement.

7.2 Evaluation

There are different ways of evaluating the method. The first approach
is to look at the predefined goals and evaluation from them. The second
approach is to evaluate according to a more formal framework. The two
approaches are discussed in the following sections.

7.2.1 Evaluation According to goals

The mail goal in this thesis was to suggest a knowledge-acquisition
modelling method for TrollCreek (from section 1.2. We have based this
method upon the study of state of the art method in the knowledge-
acquisition and modelling research community. The related research
was presented in chapter 3 and included a description of Newell’s knowl-
edge level (section 3.1), knowledge level modelling (in section 3.2) before
presenting knowledge model frameworks like Components of Expertise
(in section 3.3), CommonKADS (in section 3.4) and Proégé (in section
3.5). Then we introduced the ki-CBR system TrollCreek in chapter 4,
before comparing different problem solving methods and analysing the
different frameworks combined with TrollCreek (possible solutions) in
chapter 5. The choices made (presented in section 6.1), the resulting
method (presented in section 6.2) and an example of use (in section 6.3)
are presented in chapter 6 "Result".

This disposition of the thesis follows the guidelines presented in section
2.0.1 and presents a solution to the main goal from section 1.2. This pro-
cess and research approach has worked extremely well for this type of
thesis. This has been a natural way of working. Since the field of knowl-
edge acquisition was relatively unknown material when one started this
thesis, chapter 3 was an important ingredient to understanding the
field. Moreover, it proved to be a great difference between just read-
ing an article and actually understanding the article well enough to be
able to write about the subject.

7.2.2 Evaluation According to Cohen

Besides evaluating the work done according to the goals set and the
research approach chosen, it is important to view the method in the

99

light of a more standardised approach. A more standardised evaluation
aids the later users in how the research should proceed, and makes the
results replicable. In AI research, in general there has been a vague
methodology. A formal evaluation was not the standard practice until
Cohen introduced his framework in [CH88], it was fare more common
to build a system and relying on the code being informative.

However, the Cohen’s evaluation framework was introduced already in
section 2.1 and can be used to give a more formal evaluation of the
method proposed in section 6.2.

How is the method an improvement over existing technologies?

Before this KA modelling method for TrollCreek, there existed no for-
mal approach to KA modelling in TrollCreek. The modelling approaches
that existed were based on an ad-hoc solution without the KA perspec-
tive.

Does it account for more situations (input)? The new KA mod-
elling method has more or less the same input to TrollCreek as the ex-
isting approaches. However, the new paper based models (i.e. the model
dependency diagram and the control flow diagram) depicts new aspects
of the modelling. The user has to think through the same information
in new ways. So, even if the actual input is more or less the same, the
way it is structured is different from existing approaches.

Does it produce a wider variety of desired behaviours (output)?
The output from the TrollCreek system will be the same. However,
the additional paper based models (for instance model dependency dia-
grams, control flow diagram) is also output form the method. The paper
based version act as a safety valve and saves the modeller time. It also
depicts new sides of the system in new ways.

Does it hold more promise for further development? The method
opens up for the possibility of adding new KA features in TrollCreek in
the further development. This will be discussed in section 7.3.1.

100

Does a recognized metric exist for evaluating the performance
of your method?

There is no pure performance metric for i.e. the execution of the meth-
ods. The method is concerned with modelling. The performance of the
modeller will be heavily dependent upon the modeller’s skills, the mod-
ellers experience and the complexity of the modelling domain. However,
the method has a clear structure that follows the natural cognitively
way of thinking. The method is also normative when it comes to mod-
elling in ki-CBR domains more in general.

Does it rely on other methods? (Does it require input in a par-
ticular form or pre-processed input? Does it require access to a
certain type of knowledge base or routines?)

The method requires the user to have a mental knowledge base about
the domain. It is this knowledge that gets modelled through the KA
modelling method for TrollCreek. The user has to know the tasks in the
domain, the entities, the relations and the control flow between them.

What is the underlying assumptions?

The underlying choices for the KA modelling method in TrollCreek are
presented in section 6.1. To some degree, these are the underlying as-
sumptions for the method. For instance, the method assumes that the
TrollCreek top-ontology is being used (a fixed version with "case" as one
node). The method also assumes the reasoning to be a TrollCreek in-
ternal process. All the underlying assumptions are closely connected to
the presented choices in section 6.1.

What is the scope of the method?

The scope of the method is to handle the KA modelling from the stage
of identifying the components, modelling them on paper, before actu-
ally doing the modelling in TrollCreek. The method handles the three
knowledge perspectives (task, model and method).

How extendible is it? Will it easily scale up to a larger knowl-
edge base? As long as the domain is possible to model in TrollCreek,
the method is able to handle the modelling. For extremely complicated
domains with a large number of tasks and interrelated entities, the

101

modelling would take some more time. However, the safety valves in
the method would prevent errors and save time for the modeller in the
larger perspective.

Does it exactly address the task? Portions of the task? A class
of tasks? The method addresses the predefined scope. The tasks in
the method are closely connected to KA modelling approaches. Besides
doing the modelling, there were no specific predefined tasks.

Could it or parts of it be applied to other problems? The method
is domain independent. It is extremely possible to apply it to other,
more complex domains than the one illustrated in section 6.3. It might
also be possible to use the method for other KA modelling tools to some
extent. The method has to be individualised for each tool, as it contains
quite specific "how to model" in the tool descriptions.

Does it transfer to complicated problems (perhaps knowledge-
intensive or more or less constrained or with complex interac-
tions)? The method is made for knowledge-intensive case-based rea-
soning. This already is "complicated" problems. It handles interrela-
tions and interactions within the domain during the modelling.

When it cannot provide a good solution, does it do nothing or
does it provide bad solutions or does it provide the best solution
given the available resources?

If the user is not able to provide i.e. the model dependency diagram, it
is still viable to make the model in TrollCreek. Some of the KA perspec-
tive gets lost together with some of the understanding and safety valve.
However, the user might still be able to model an adequate solution in
TrollCreek. If the user is not able to do the modelling in TrollCreek, the
user would still have the paper versions of the modelling. These can be
used later and produce an excellent solution later as well.

How well is the method understood?

The question can be decomposed into four sub questions:

102

Why does it work? It works because it takes into account BOTH
the KA aspect and the practical part of modelling in TrollCreek. The
method assures that the KA perspective is being taken care of in the
modelling.

Under what circumstances, will it not work? The method will
not work if the modeller has wrong knowledge about the domain or
lacks important knowledge about the entities and the interrelations.
The method will not automatically work for other ki-CBR KA modelling
tools than TrollCreek.

Are the limitations of the method inherent or simply not yet ad-
dressed? The limitations of the method is inherent as they lye in the
nature of the task. The method is a knowledge acquisition modelling
method for TrollCreek. If the user does not have enough, correct infor-
mation to model in TrollCreek, this becomes a limitation for the system.
If the user uses another system for modelling than TrollCreek, this is
also a limitation because the method is developed for the TrollCreek
system.

Have the design decisions been justified? The design decisions is
based on a study of related research (in chapter 3) and features of the
TrollCreek system (in chapter 4). The options are discussed in chapter
5 and the choices are concretely justified in section 6.1.

What is the relationship between the problem and the method?
Why does it work for this task?

There is a close relationship between the problem and the method. The
method is specially crafted for the ki-CBR system TrollCreek and the
problem was to create a method for KA modelling for knowledge-intensive
CBR. The method works for this task as it considers the KA perspective
in addition to the "usual" modelling considerations.

7.3 Further Work

There are several point uncovered thought this thesis that could be im-
proved upon. However, due to the limited period a master thesis is,
these ideas might be continued in further research. It is natural to

103

divide the further research into two categories. There is further de-
velopment/research on the TrollCreek tool, and there is research on the
TrollCreek KA method. These will be addressed in the next subsections.

7.3.1 TrollCreek

When looking at TrollCreek from the knowledge acquisition modelling
perspective, there are several issues to be dealt with. The handling
of method knowledge was perhaps the most severe. In section 6.1.2 I
proposed a possible solution. However, later development of the Troll-
Creek top-ontology has to incorporate the changes and elaborate upon
the methods (figure 6.5 illustrates the detailed decomposition of the
Propose-and-Revise method).

The end user will get more control of the problem-solving methods. Nat-
urally, different methods fit different types of domains. However, there
is a trade-off between user freedom and the risk of malfunction. The
user has to know what she is doing when modifying the methods to fit
a domain. If later extensions include also modifies versions of the task
execution methods, this is even more important. The task execution
methods have directly impact on the runtime behaviour of TrollCreek.

An idea much introduced through the CommonKADS framework is the
thought of generic components in a library. This thought can be im-
plemented into TrollCreek to some degree. The user will save time by
using a library of general components. The future developers of Troll-
Creek should consider the library idea thoroughly.

I mentioned the SIZZLE problem solving method in section 5.1.1 and in
section 6.1.2. The method uses quantitative extrapolations. In Troll-
Creek today, the matching at attribute level has to be identical (de-
scribed in section 4.2.4). The symbolic matching mechanism returns
only 0 or 1. In the later explanation process, there is partial matching.
However, SIZZLE (or the extrapolate from similar case method) could
be a great addition in the first initial matching process. It should at
least be considered when planning new extensions to TrollCreek.

As mentioned in section 4.2.6 and section 6.1.6, the current version of
the TrollCreek top-ontology the cases and its case and its contents is
divided into two. This will be integrated into one in the next version
of the TrollCreek top-ontology. To separate between the actual contents
(the situation) that define what actually happens in real life and the
framework it is put into, disturbs the discrimination between internal
and external things.

104

It is quite unclear how TrollCreek actually handles the task execution
from a KA modelling point of view (section 6.2.1). In the next version of
TrollCreek, this point needs to be made clearer. If TrollCreek executes
decomposable tasks (in runtime) in the higher levels, the system has a
strategy for handling these tasks. Intuitively, the system has to be able
to move down the task hierarchy and finally executing the leaf nodes.

In more long-term plans, it is worth looking at the possibility of adding
model dependency diagrams and control flow diagrams. They would
then have even larger impact on the modelling. Instead of being paper
based, they could play an even more important role modelled in the
system.

7.3.2 KA Method for TrollCreek

There are several possibilities for future work on the KA method as well.
One course of action is to open up for a more organized reuse of ontology
in TrollCreek. It could be quite simple to add a task for ontology reuse
when developing the model (as described in section 6.2.2).

Another important feature is how the method has to evolve in parallel
with the TrollCreek system. Changes in TrollCreek will also invoke
changes in the KA method for TrollCreek, as the "realise in TrollCreek"
part of the method will change.

One extremely important factor is the actual user. The user has to feel
that this approach is an improvement. If the user feels that the KA
method becomes just "red tape", the KA method has failed miserable.
The users time is valuable, and the overhead has to be minimal. This
is difficult to say much about before the method has been put into real
use. However, by using the method (as shown in section 6.3) has at least
checked that the method actually works and aids the KA. One solution
to the uncertainty of the KA method is to make a revised edition after
i.e. 6 months of active use.

7.4 Conclusion

This thesis contains a study of state of the art knowledge acquisition
modelling principles and methods for modelling general domain knowl-
edge. This includes Newell’s knowledge level, knowledge level mod-
elling, Components of Expertise, CommonKADS and the Protégé meta
tool. The thesis also includes a short introduction to the knowledge-
intensive case-based reasoning system TrollCreek. Based on this back-

105

ground knowledge, one did analysis and comparison of different possible
solutions. Then, after justifying the choices made, a knowledge acqui-
sition method for TrollCreek was created. The method was illustrated
through an example ("operate electrical appliances").

The concrete result of this thesis is the method presented in chapter 6.
The method gives a user the means to include the knowledge acquisition
perspective into modelling in the TrollCreek system. The method han-
dles the three different perspectives to knowledge (task, modelling and
method) in three phases of the modelling (identify, paper models and
realising in TrollCreek). Since this is not a traditional implementation
thesis, it is difficult to test i.e. the runtime performance of the method.
The user is human and the method is more a cognitive method for going
about the modelling in addition to realising it in the tool TrollCreek.

The testing of the method has been done through the example in section
6.3 and through extensive evaluation in section 7.2. The example uses
the "operate electric appliances" to illustrate the different aspects of the
TrollCreek KA modelling method. The evaluation evaluates the method
in two different ways. The first approach is through checking that every
aspect of the thesis goal and follows the research approach introduces
in chapter 2. The second aspect to the evaluation is a evaluation using
the framework introduced by Cohen [CH88] and discussed in section
2.1. This is a formal framework for evaluating methods in artificial
intelligence research. This gives us a way of looking at the results form
in a structured and formal way.

This thesis has introduced the knowledge acquisition perspective to the
ki-CBR system TrollCreek. It is a step towards a more conscious use
of the knowledge acquisition perspectives in the process of knowledge-
intensive case-based reasoning. The focus on the different aspects of
knowledge also uncovered several important features about the Troll-
Creek system it self and how it treats the domain knowledge (discussed
in section 7.3). This was especially connected to the organisation of the
predefined top-ontology and the representation of the three knowledge
perspectives.

The field of knowledge acquisition has lain dormant in the AIL group
at IDI. Thus, in many ways this thesis opened up the field again. Mod-
elling in the TrollCreek system has been done a lot. The innovation
continued by this thesis is the combination between the knowledge ac-
quisition and the knowledge-intensive CBR. By proposing a knowledge
acquisition method for TrollCreek, this thesis gives the knowledge ac-
quisition its renaissance at IDI and adds a new perspective to modelling
in TrollCreek.

106

Bibliography

[Aam91] Agnar Aamodt. A knowledge-intensive, integrated ap-
proach to problem solving and sustained learning, 1991.
Ph.D (Dr. Ing.) dissertation, NTNU, IDI.

[Aam01] Agnar Aamodt. Modeling the knowledge contents of cbr
systems. Proceeding of the workshop program at the fourth
International Conference on Case-Based Reasoning, Van-
couver, pages 32–37, 2001.

[Aam04] Agnar Aamodt. Knowledge-intensive case-based reasoning
in creek. Artificial Intelligence, LNAI 3155:1–15, 2004. Ad-
vances in case-based reasoning, 7th European Conference,
ECCBR 2004, Proceedings.

[ABB+93] Agnar Aamodt, Bert Bredeweg, Joost Breuker, Cuno Du-
ursma, Christiane Löckenhoff, Klas Orsvarn, Jan Top, An-
dré Valente, and Walter Van de Velde. The commonkads li-
brary. Document Id: KADS-II/T1.3/VUB/TR/005/1.0, CEC
Reference: Draft Deliverable D1.3a, Version 1, 1993.

[Bak04] Elise Bakke. Extended representation for case-based pre-
diction of unwanted events. Project report in TDT4745
“Kunnskapssystemer, fordypning”, Fall, IDI NTNU, 2004.

[BSAB04] Tore Brede, Frode Sørmo, Agnar Aamodt, and Ketil Bø.
Trollcreek - tutorial. Note by Trollhetta AS and IDI NTNU,
2004.

[CH88] Paul R. Cohen and Adele E. Howe. How evaluation
guides ai research: The message still counts more than the
medium. AI Magazine, 9(4):35–43, 1988.

[Cha86] B. Chandrasekaran. Generic tasks in knowledge-based
reasoning: High-level building blocks for expert systems
design. IEEE Expert, 1(3):23–30, 1986.

107

[Cha87] B. Chandrasekaran. Towards a functional architecture for
intelligence based on generic information processing tasks.
IJCAI-87 Milan, pages 1183–1192, 1987.

[Cha90] B. Chandrasekaran. Design problem solving: A task anal-
ysis. AI Magazine (winter), 11(4):59–71, 1990.

[CJ93] B. Chandrasekaran and T. R Johnson. Generic tasks and
task structures: History, critique and new directions. pages
232–272, 1993. From the book ’Second Generation Expert
Systems’, Springer-Verlag.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms Sec-
ond Edition. The MIT Press, 2001.

[CM01] M. Crubézy and Mark Musen. Upml validation and tool
support. Technical report, Stanford University, 2001.
Deliverable 25-05-2001 in the IBROW Project IST-1999-
19005.

[dV93] Walter Van de Velde. Issues in knowledge level modelling.
pages 211 – 231, 1993. From the book Second Generation
Expert Systems, Springer-Verlag.

[EEMT87] Larry Eshelman, Damien Ehret, John McDermott, and
Ming Tan. Mole: A tenacious knowledge-acquisition tool.
International Journal of Man-Machine Studies, 26(1):41–
54, 1987.

[EST+95] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A.
Musen. Task modelling with reusable problem-solving
methods. Artificial Intelligence, 79(2):293–326, 1995.

[GMF+02] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubézy, H. Eriksson, N. F. Noy, and S. W. Tu. The
evolution of protégé: An environment for knowledge-based
systems development, 2002. Technical report.

[JAS02] Martha Dørum Jære, Agnar Aamodt, and Pål Skalle. Rep-
resenting temporal knowledge for case-based prediction.
Advances in case-based reasoning; ECCBR 2002, LNAI
2416:174–188, 2002.

[LG90] Douglas B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference
in the CYC Project. Addison-Wesley, Reading, Mas-
sachusetts, 1990.

108

[McD88] John McDermott. Preliminary steps toward a taxonomy of
problem solving methods. pages 225–256, 1988.

[Mus89] Mark A. Musen. Automated support for building and
extending expert models. Machine Learning, 4:349–377,
1989.

[Mus93] Mark A. Musen. An overview of knowledge acquistion.
pages 405 – 427, 1993. From the book ’Second Generation
Expert Systems’, Springer-Verlag.

[New82] Allen Newell. The knowledge level. Artif. Intelligence,
18:87–127, 1982.

[NM00] Natalya Noy and Deborah L. McGuinness. Ontology devel-
opment 101: A guide to creating your first ontology. Tech-
nical report, Stanford University, 2000.

[NM03] Natalya F. Noy and Mark A. Musen. The prompt suite:
Interactive tools for ontology merging and mapping. Inter-
national Journal of Human-Computer Studies, 2003.

[PTM93] Angel R. Puerta, Samson W. Tu, and Mark A. Musen. Mod-
eling tasks with mechanisms. International Journal of In-
telligent Systems, 8:129–152, 1993. Medical Computer Sci-
ence Group, Knowledge Systems Laboratory, Stanford Uni-
versity.

[Ste90] Luc Steels. Components of expertise. AI Mag., 11(2):30–49,
1990.

[Ste91] Luc Steels. Knowledge system. An unpublished English
version of a textbook by Luc Steels, 1991.

[Ste93] Luc Steels. The componential framework and its role in
reusability. pages 273–298, 1993. From the book ’Second
Generation Expert Systems’, Springer-Verlag.

[WdVSA93] Bob Weilinga, Walter Van de Velde, Guus Schreiber, and
Hans Akkermans. Towards a unification of knowledge
modelling approaches. pages 299–335, 1993. From
the book ’Second Generation Expert Systems’, Springer-
Verlag.

[Win96] Ole Martin Winnem. Integrating knowledge level and sym-
bol level modelling - the creest workbench. Master’s thesis,
NTNU, 1996. Master thesis submitted at the Norwegian
University of Science and Technology, Department of In-
formatics.

109

[WvAAJ03] B. J. Wielinga, C. van Aart, A. A. Anjewierden, and W. N. H.
Jansweijer. Ibrow final report. Technical report, University
of Amsterdam, 2003. Final version 29-03-2003.

110

