
Abstract

Shared displays are important tools for promoting collaboration. Ubiquitous comput-
ing presents new requirements for the design of shared display systems. Contextuali-
sation of information at shared displays is becoming more important.

The ability to rapidly create shared display systems is motivated by the fact that shared
displays play central roles in collaboration. Low level implementation issues, common
to shared display systems can be an obstacle for this. A toolkit for creation of such
systems is therefore needed to provide basic shared display functionality to developers.

This master thesis presents a toolkit for creating shared display applications on Ubi-
Collab, a platform supporting collaborative work in ubiquitous environments. The
work shows the development of the toolkit and how the toolkit can be used to create a
shared display system. The toolkit takes advantage of the opportunities the UbiCollab
platform provides on contextualisation of information.

i

ii

Preface

This master thesis was written for the Norwegian University of Science and Tech-
nology, Department of Computer and Information Science and Telenor Research and
Development, Trondheim, Norway in the spring of 2005.

The master thesis contains work done on creating a toolkit for development of shared
display systems on the UbiCollab platform, DISCOlab. The main results of this thesis
are the report, a prototype implementation of the DISCOlab toolkit, and demonstration
system using the prototype.

I wish to thank my project supervisors, Professor Dr. Monica Divitini at Department
of Computer and Information Science and Babak Amin Farshchian at Telenor for all
valuable support and feedback during this work. I would also like to thank Børge Setså
Jensen, Hans Steien Rasmussen and Anders Magnus Braathen in related UbiCollab
projects for good collaboration.

Trondheim, June 14, 2005

Carsten Andreas Heitmann

iii

iv

Contents

Preface iii

1 Introduction 1

1.1 Shared display . 1

1.2 Ubiquitous computing and groupware 2

1.3 Research focus and project goals . 3

1.4 Research method . 3

1.5 Relation to previous work . 4

1.6 Restrictions and challenges . 4

1.7 Report outline . 4

2 Introduction to shared displays 7

2.1 Location of people . 8

2.1.1 Shared by co-located people 8

2.1.2 Shared by distributed people 8

2.2 Type of support . 9

2.2.1 Formal . 9

2.2.2 Informal . 9

2.3 Time . 10

2.3.1 Synchronous . 10

v

vi CONTENTS

2.3.2 Asynchronous . 10

3 Problem elaboration 13

3.1 Identifying key dimensions in the scenarios 14

3.1.1 Shared display scenario . 14

3.1.2 UbiCollab scenario . 14

3.2 Discovery, advertisements and identification of entities 15

3.3 Information sharing and storing . 17

3.4 Implications for public versus private displays 20

3.5 Contextualising the information . 21

4 Related work 23

4.1 UbiCollab platform . 23

4.1.1 Platform architecture . 24

4.1.2 Communicating with the platform 26

4.2 KOALA - A shared display system 26

4.2.1 Using DISCOlab to develop KOALA 27

4.3 Toolkit properties . 28

4.4 Towards a toolkit for creation of shared display systems 30

5 Analysis 35

5.1 Defining system entities . 35

5.2 Discovery ofContent Servers andVisualising Displays 39

5.3 Information storing and sharing . 41

5.3.1 Asynchronous versus synchronous information sharing 42

5.4 Visualising content . 42

5.5 Protection of information . 44

CONTENTS vii

5.6 Peer-to-peer versus centralised approach 45

5.7 Contextualising the information . 46

6 Conceptual design 49

6.1 Conceptual model of DISCOlab . 49

6.1.1 Content Server . 49

6.1.2 Service . 50

6.1.3 Visualising Display . 50

6.2 API and communication . 51

6.2.1 API . 52

7 Prototype 53

7.1 Technology . 53

7.2 Content Server . 54

7.2.1 Service class . 55

7.2.2 ContentServer class . 55

7.3 Visualising Display . 57

7.4 Interaction between the Content Server and the Visualising Display . . 58

7.5 Integration with UbiCollab . 60

8 Demonstration 63

8.1 Messageboard application . 63

8.1.1 Messageboard on a Content Server 64

8.1.2 Client with Visualising Display 66

8.2 Extending the Messageboard, giving support for a PDA 67

8.3 A drawingboard application . 69

9 Evaluation 73

viii CONTENTS

9.1 Research method . 74

9.2 The conceptual model . 75

9.3 The prototype . 75

9.4 Simplifications in DISCOlab . 76

10 Conclusion 79

10.1 Summary of contributions . 79

10.2 Future work . 80

Bibliography 81

A Shared display scenario 85

B UbiCollab scenario 87

C UbiCollab API 91

D CD-ROM 95

List of Figures

3.1 Dimensions covered by the scenarios 15

4.1 Platform overview . 24

4.2 Platform architecture . 25

4.3 Architecture of KOALA . 27

4.4 Speakeasy data transfer . 32

4.5 Speakeasy aggregation . 32

5.1 Architecture without application library 37

5.2 Architecture with application library 38

5.3 DISCOlab: a part of the UbiCollab API 47

6.1 DISCOlab overview . 51

7.1 The Content Server interfaces . 54

7.2 The Content Server package . 56

7.3 The Visualising Display classes . 58

7.4 Initiation of a session using UbiCollab web service 59

7.5 Communication between Content Server and Visualising Display . . 60

7.6 Classes for UbiCollab communication and instantiations 62

8.1 The DISCOlab Messageboard . 65

ix

x LIST OF FIGURES

8.2 The DISCOlab Messageboard after sending messages 65

8.3 The DISCOlab Messageboard architecture 66

8.4 The default DISCOlab screen . 67

8.5 Messageboard for a PDA . 69

8.6 A drawingboard application . 71

9.1 Shared displays in DISCOlab . 74

Chapter 1

Introduction

Shared displays have recently gained a growing attention [OPCR03a]. To replace con-
ventional shared displays (paper-based) used by a community, eg. bulletin boards,
timetables, whiteboard, etc., with electronic shared displays can potentially overcome
the limitation of paper based artifacts, enrich the number of services offered to the
community, improve participation to community life and support new forms of coop-
eration.

1.1 Shared display

A shared display provides two or more people with the same view of some information,
like a document. Often the shared display has tools for manipulating the information,
for example by drawing on it. Shared display applications can roughly be divided
into two categories. Single display groupware that lets people gather around a single
physical, shared display, and lets them input sequentially or simultaneously to the
device. The other category is software that distributes a shared display onto several
physical devices, and allows people to be distributed and see the same display [Bak04].

To share information at shared displays you need an entity that shares the information
and an entity that displays the information. The entities can be on the same physical de-
vice. This depends on whether the shared display should be distributed or co-located.

To enhance collaboration, shared displays are important tools. Ubiquitous comput-
ing opens for even more possibilities. Despite a growing number of systems, some
of which have also been tried out in real settings, the wide-spread adoption of these
systems is far to come. One of the problems is high requirement for functional and
technical flexibility, ie. these systems must be able to grow with their community, both
in terms of new services that might be needed and in terms of new technical possibil-
ities, for example, for promoting interaction by using new mobile devices [DF04]. To
address this point we want to study the integration of shared displays into a platform

1

2 CHAPTER 1. INTRODUCTION

that offers support for collaborative work in a ubiquitous environment. To support easy
development of this systems, we want to focus on the development of a toolkit.

In [Gre04], Greenberg points out that in the domain of groupware there is a lack of
tools that support development of applications, unlike for example the user interface
domain where there for decades have been toolkits available for building GUI appli-
cations in a rapid and easy way. Because of this, a groupware developer has to spend
a considerable amount of work on low-level implementation issues such as network
protocol implementations, worrying about distributed systems issues, etc. The result
is that groupware applications become to hard to do, that developers spend their energy
in low-level implementation issues, ending up with a groupware having low function-
ality and usability.

The UbiCollab platform is developed to support collaboration in a ubiquitous comput-
ing environment. The UbiCollab platform consists of several platform services that
handle the management of collaborative efforts, people, resources, presence, privacy
and location. Shared display systems are important tools in collaboration. To provide
support for collaborating parties, contextualising the information is important, so that
participating members are aware of each other and can obtain important information
about the context the collaboration is done in. UbiCollab provides such information
and creating shared display systems on top on UbiCollab is therefore highly interesting
for improving the collaboration support.

An review of shared displays will be given in chapter 2.

1.2 Ubiquitous computing and groupware

Ubiquitous computing is a relatively new research area. The field is constantly un-
dergoing changes as new techniques and technology for ubiquitous computing are de-
veloped. The technology is in an early stage and standards are constantly changing.
This project is focusing on ubiquitous computing as a mean to enhance collaboration.
Collaboration via groupware is a well studied field and many different applications are
available for the users. However in a ubiquitous or mobile environment, few applica-
tions for collaboration are developed.

The term ubiquitous computing was first coined by the late Dr. Mark Weiser [Wei93]:

Ubiquitous computing is the method of enhancing computer use by mak-
ing many computers available throughout the physical environment, but
making them effectively invisible to the user.

The term groupware was defined by Ellis as [Ell99]:

Computer-based systems that support groups of people engaged in a com-
mon task (or goal) and that provide an interface to a shared environment.

1.3. RESEARCH FOCUS AND PROJECT GOALS 3

The term groupware refers to software that can be used by a group of people, collabo-
rating. The users of the groupware can be co-located or not co-located.

UbiCollab is a platform for supporting group collaboration in a ubiquitous environ-
ment. The vision and idea of UbiCollab is described in an article by Divitiniet al.
[DFS04].

1.3 Research focus and project goals

The goal of this project is to design and implement a toolkit for developing shared dis-
play systems that shall run on the UbiCollab platform. The toolkit is to be called DIS-
COlab, abbreviated fromshared DIsplay System for COllaborative work. Shared
display systems that run on the UbiCollab platform shall have access to the information
that the services at the platform provide. A toolkit can be defined as follows:

A collection of programming subroutine libraries that software developers
can use to make programming easier. Instead of rewriting all of the code
for common routines, toolkits provide pre-written routines [Ltd05].

DISCOlab should be an interface for developing shared display systems on top of
the platform. The focus of the research will be on what functionality such a toolkit
should offer to a developer. What properties do shared display systems share should
be identified.

Shared display systems will be one frequent software that will run on the UbiCollab
platform. A toolkit is therefore needed so developers do not have to implement func-
tionality that all these shared display systems have in common.

The expected results for the project are as follows:

• A toolkit for developing shared display systems on UbiCollab, with focus on
providing access to the UbiCollab services, should be developed.

• A demonstrator of a shared display system will be developed, using the toolkit.
This demonstrator will evaluate how the toolkit can be used to develop a shared
display system running on the UbiCollab.

1.4 Research method

The research method of this project is scenario driven and prototype based. The begin-
ning of the project will be used to do a literature review by studying existing literature
on shared displays to get an understanding of the research field. Two scenarios, in

4 CHAPTER 1. INTRODUCTION

appendix A and appendix B, are developed. Scenario “Shared display scenario” in
appendix A was developed in this master thesis as a mean to uncover requirements
to shared display systems. Scenario “UbiCollab scenario” was first developed by
[Sch04, Bak04, Gon04] and later extended by [SJH04, BR04]. These will be used
to analyse the domain of shared displays and what properties shared displays share.
This analyse should end up with requirements for DISCOlab. DISCOlab will then be
designed and implemented. A demonstrator will be developed using DISCOlab. The
demonstrator will be used to verify that DISCOlab can be used to develop a shared
display application.

1.5 Relation to previous work

This project is related to the previous work on the UbiCollab platform done by [Sch04,
Bak04, Gon04, SJH04, BR04]. The aim of this work is to use the functionality in the
UbiCollab platform by creating DISCOlab, for development of shared display systems
on the UbiCollab platform. DISCOlab will use the platform to provide information to
the users, helping them in the collaborating tasks by contextualising the information
in the shared display applications using the UbiCollab platform. The platform will be
used to offer the users transitions between shared display applications by offering an
API for this. Some time will be spent on reviewing the previous version of the platform
to improve architecture and implementation. These improvements should not remove
any functionality already provided.

1.6 Restrictions and challenges

Working on this project makes me dependent of co-workers results. The project is
building on previous work done on the UbiCollab platform and work done in parallel
with this project. DISCOlab should offer the functionality of the UbiCollab platform.
In relation to this, it is desirable that work done on the platform in this time period also
is incorporated in the toolkit.

The main challenge of the project is to be open-minded enough tothink new and
create an architecture generic enough, but still supporting development of shared dis-
plays. The domain of shared displays is vast and the properties of shared displays can
be many. Identifying good solutions is therefore a complex process.

1.7 Report outline

The rest of this report is organised in the following chapters:

1.7. REPORT OUTLINE 5

2 Introduction to shared displays: An introduction on shared displays is given. A
categorisation of shared displays is done referring to shared display systems.

3 Problem elaboration: Two scenarios are analysed ending up with a list of research
questions that a toolkit for shared display development should support.

4 Related work: Gives an overview of the work done on the UbiCollab platform
and a shared display client running on the platform. Then requirements for toolkits
supporting groupware development are presented and aspects of toolkits and creation
of toolkits are presented.

5 Analysis: A list of requirements for DISCOlab will be elaborated based on the
research questions in the chapter 3.

6 Conceptual design: A design of DISCOlab will be presented, defining a conceptual
model. An API for DISCOlab will be given.

7 Prototype: Based on the design in chapter 6 a prototype of DISCOlab will be
developed.

8 Demonstration: To demonstrate and evaluate how DISCOlab can be used to de-
velop a shared display, a simple demonstration application will be developed and
demonstrated using DISCOlab. To extend the demonstration, examples of other shared
display applications will be given and a discussion on how DISCOlab would be used
to implement the applications will be given.

8 Evaluation: An evaluation of the work will be done, looking into the research
method and the demonstrator’s ability to work as an evaluator of the prototype. Func-
tionality in the prototype and the conceptual model will be discussed along with short-
comings and simplifications in the work.

9 Conclusion: Presents a conclusion of the project with a summary of what has been
achieved. A list of future work will be also be presented.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to shared displays

In this chapter I will introduce the reader to shared display systems, so that the reader
can get an understanding of what kind of support DISCOlab should provide in devel-
oping shared display systems.

Prehistoric cave drawings, framed photographs, blackboards in classrooms,
posters, flip charts, road-signs and point-of-purchase displays are all vi-
sual forms of communication that play a vital role in the way we under-
stand, navigate and behave in the environment. They offer a rich resource
around which conversations and group activities are structured, comple-
menting verbal communications and shaping group dynamics. They act as
important cultural reference points in the construction of shared meanings,
beliefs, desires and the memory of groups and communities [OPCR03b].

All the displays mentioned above can be categorised to be shared displays. Today more
and more of these displays have been digitalised. In our daily life we do not often
even notice that the displays have transformed to be digital displays. For instance,
the screens at metro stations have changed from being mechanical to digital screens
in many places. The advantage of this is not only that each display does not have to
be maintained on-site, but also that the display can be used in different settings and
for different purposes, for example in case of an emergency at the metro station. The
screens can be used to give valuable information to metro customers.

I have chosen to organise the work in this chapter into three main dimensions,lo-
cation of people, type of support and time. The dimensions have been chosen
because these dimensions address the domain of shared displays, covering all systems.
Remember that the dimensions are used analytically and that systems refered to in the
text often have functionality that belongs to different dimensions.

7

8 CHAPTER 2. INTRODUCTION TO SHARED DISPLAYS

2.1 Location of people

The location of people plays an important role in requirements to a shared display and
what functionality it should provide. By location of the people it is most often refered
to if people areco-located or distributed.

2.1.1 Shared by co-located people

Shared displays that is shared by co-located people can be of many types. Such can
be information-screens in public spaces that provide information to customers, users,
etc. Another example of shared display of such a type can be a public screen that is
used for community building, e.g. the KOALA system [DF04]. Some displays for
co-located people are specifically design to support collaborative tasks. Electronic
whiteboards support this, where users can draw and make illustrations for colleagues.
A presentation tool on a projector is also an example of a shared display used to sup-
port collaboration and information sharing. [SHH04] presents Caretta, a system that
integrates personal and shared spaces to support face-to-face collaboration. Users of
Caretta can discuss and negotiate with each other in the shared space by manipulat-
ing physical objects, while they individually examine their ideas in their own personal
spaces. In [ASGH+99] an interactive landscape for creativity and innovation is pre-
sented, i-LAND. The environment has several digital surfaces available for co-located
collaborative work, an interactive electronic wall (DynaWall), an interactive electronic
table (InteracTable), and mobile and networked chairs with integrated interactive de-
vices (CommChairs).

2.1.2 Shared by distributed people

For people that is in different locations, other shared display applications can be used.
An example of such can be the Microsoft chatting tool, MSN [MSN], which include
many features like shared desktop, video conference, etc. and that gives support to
people in collaboration and information shared across locations. In [CF04] a system
for lightweight photo sharing, particularly via mobile devices, is presented. This pro-
vides people the possibility to easy share photos from mobile devices and on desktops.

Often shared displays for distributed users provide more information about the other
users of the application. This to improve the conditions for collaboration and aware-
ness between the users of the application. This can be information of who is interacting
with the application, where the users are, their presence, i.e. if they are available or
how they can be contacted, user profiles, pictures or metaphors communicating the
motional state the user, etc.

2.2. TYPE OF SUPPORT 9

2.2 Type of support

Shared display systems can be said to support two types of interaction and collabora-
tion between people,formal andinformal.

2.2.1 Formal

Formal collaboration is characterised by being intended, scheduled in ad-
vance, having an agenda [Far02].

Shared display systems that support formal collaboration are many. Maybe one of
the most common shared displays that is in use in this setting today is the projector
showing a presentation. Another group of applications to gives this support has been
meeting tools for distributed personal, like Netmeeting [Net]. Both this tools are used
having an agenda and are scheduled in advanced. Neither of them induce collabora-
tion, but instead support it when it is needed.

In [NC005], a video conferencing system, MultiView, is presented. MultiView sup-
ports collaboration between remote groups of people. Video conferencing systems are
characterised by being intended, scheduled in advance, having an agenda an are thus
most often supporting formal collaboration.

2.2.2 Informal

Informal collaboration consists of spontaneous and unplanned interac-
tions that occur frequently and transparent within the organisations. Infor-
mal collaboration is crucial for developing working and social relations,
and for long-term learning [Far02].

The shared display systems that support informal collaboration provide support to trig-
ger interaction between people and to initiate information exchange. They also mediate
awareness information between people, not presence at the same location.

In [HRS04], an instant message system for informal collaboration on large, shared
displays is presented. [DF04] presents a shared display promoting informal cooper-
ation and presence in a community of people sharing physical spaces in their office
spaces. [MIEL99] presents an augmented whiteboard interface designed for informal
office work, Flatland. The work support long-term, informal use of whiteboard in an
individual office setting.

10 CHAPTER 2. INTRODUCTION TO SHARED DISPLAYS

2.3 Time

Collaboration between people is always related to a time scale. Some collaboration
must be done synchronously and some collaboration is done asynchronously. [QN001]
presents an integration of a collaboration-friendly Internet protocol, WebDAV, that
was used to implement a groupware system which can support document-centric asyn-
chronous collaboration activities, e.g., collaborative document authoring, collaborative
document management, etc., as well as an industrial strength product, Lotus Same-
Time [lot] to provide synchronous collaboration support, e.g., team awareness, instant
messaging, shared whiteboard, and IP audiovideo conferencing.

2.3.1 Synchronous

Synchronous can be defined as follows:

A type of two-way communication that occurs with virtually no time de-
lay, allowing participants to respond in real time. Also, a system in which
regularly occurring events in timed intervals are kept in step using some
form of electronic clocking mechanism [Syn].

Synchronous collaboration with shared display applications is as stated above collab-
oration that happends in real time. Systems that support this binds peers and com-
municate their actions in no time delay. Such systems can be synchronised white-
boards, media spaces that synchronises video from two locations so that participants
in meetings can view each other, desktop sharing where several people can view and
manipulate the same file at the same time.

A typical group of synchronised shared display applications are; media spaces - computer-
controllable networks of audio and video equipment used to support synchronous col-
laboration [Gav92]. Media spaces are applications that give small real time video
captures or periodic pictures of members of a group. Through media spaces members
of the group can observe what the others are doing, if they are in-office, their mood, if
they are busy or available for dialog or interaction, etc. A simplification of this is also
available that use avatars and virtual reality to provide the same effect [Gre96].

2.3.2 Asynchronous

Asynchronous can be defined as follows:

A type of two-way communication that occurs with a time delay, allow-
ing participants to respond at their own convenience. Literally not syn-

2.3. TIME 11

chronous, in other words, not at the same time. Example of an application
of asynchronous communication is electronic bulletin board [Asy].

The asynchronous support in shared displays is needed when the communication and
collaboration not is emergent and participants can respond when they are available.
Such system can be a messageboard, a shared calendar system, etc. What is typical for
a system like this is that an emitter of some information emits what it wishes to inform
others of, and the receivers can read or get the information when they need it, sees it
or have time to consume the information.

The Plasma Poster [CNLH03] and the Community Wall [Gra03] are examples of ap-
plications offering asynchronous sharing of information. They are designed to enable
people to post and annotate information onto a large public display available to a com-
munity of users. The Dynamo system in [BIF+04] is a similar system. Users can drag
their digital media (e.g. video clips, text files, digital images, PowerPoint slides, audio
files and documents) onto the Dynamo surface, where it can be displayed, interacted
with, organised, copied and left for others.

Summary

In this chapter I have explained key dimensions characterising shared display systems
and presented some examples on shared display systems that gives support in different
kinds of collaboration. In the further research I will keep these dimensions in mind.

12 CHAPTER 2. INTRODUCTION TO SHARED DISPLAYS

Chapter 3

Problem elaboration

A toolkit for developing shared display systems is to be designed and implemented,
DISCOlab. To create such a toolkit it is important that all situations where such a
toolkit is to be used have been investigated. I will go through two scenarios that are
interesting for this project. The scenarios are being used as a mean to uncover require-
ments for DISCOlab.

When developing a toolkit that should support a developer in creating shared display
systems, the discussed dimensions in chapter 2 must be taken into consideration. The
toolkit must provide functionality to the developer covering the dimensions that the
developer is creating applications along. The dimensions have been used to generate
the scenario in appendix A and to verify that the scenarios covers the domain of shared
display systems. However, the dimensions are not suited to elaborate research ques-
tions around. To elaborate research questions I have chosen to organise the scenario
analysis into sections regardingDiscovery, advertisements and identi�cation of en-
tities, Information sharing and storing, Implications for public versus private
displays. andContextualising the information.

This organisation has been done because; The toolkit is to support collaboration in a
ubiquitous environments. This requires it to support dynamic discovery, advertisement
and that the system is able to identify entities. A shared display system is created
with the mission to share information between peers. This issue must therefore be
addressed. Further the devices will often be used in both private and public spaces.
This superimpose requirements as giving support to a much wider range of shared
display systems and increased support for flexible use of the toolkit. DISCOlab is
created to be used on top of UbiCollab and will take advantage of the possibilities
this offers on contextualisation of information. It is therefore important that this is
investigated.

For each section, the scenarios will be discussed and related research questions will be
formed based on the discussion. The research questions will form a foundation for the

13

14 CHAPTER 3. PROBLEM ELABORATION

analysis and the design of DISCOlab.

The first scenario was developed by [Sch04, Bak04, Gon04] having focus on collabo-
ration and later reviewed and extended introducing concepts like location and privacy
by [SJH04, BR04]. The second scenario is developed in this project, having focus
on shared displays illustrating several different types of collaboration through separate
shared display systems. The scenarios can be found in appendix A and appendix B.

3.1 Identifying key dimensions in the scenarios

A high level description of the scenarios will be done in the section, identifying key
dimensions of shared displays in the scenarios. These key dimensions are the same as
I have described in the previous chapter, chapter 2.

3.1.1 Shared display scenario

This scenario, see appendix A, has examples covering all dimensions for a shared
display. Two types of shared display systems are presented in the scenario. The first is
a messageboard and the second is a presentation and drawing tool.

The messageboard hanging in the office is a shared display that is used both for co-
located and distributed people. The screen itself is only used by co-located people
to view information on, but distributed people can send messages to it; this way the
messageboard is becoming a hybrid of the two dimensions.

The messageboard shared display is mostly giving informal support for the users. The
users can send messages to the messageboard that can induce informal collaboration.
A messageboard is also an asynchronous shared display system. This because mes-
sages can be sent to the messageboard and viewed at a later time.

The presentation and drawing tool is a synchronous application. All information is
shared real-time and can not be viewed later. The application is mainly supporting
distributed collaboration. It is supporting co-located collaboration also, in the way that
users in the same location can have their own screen and control it from their laptop,
etc. In distributed environment users can all get the same information at the same
time, only limited by the device capabilities and infrastructural limitations. The tools
are giving support to formal collaboration.

3.1.2 UbiCollab scenario

In this scenario some of the dimensions are covered.

3.2. DISCOVERY, ADVERTISEMENTS AND IDENTIFICATION OF ENTITIES15

This scenario has examples of people using a shared display to collaborate on the same
location as well as in distributed locations.

Brian. She uses the client to display the slides she has prepared on the
projector. The projector shows the file on the display, her representation
widget lights up and she uses the PDA to remotely control the presenta-
tion. A small snapshot of the current window shows up on her display
while she taps through the remote control commands. During their dis-
cussion Brian takes his turn of arguing. He accesses the remote control
window on his PDA and jumps to some previous slides of the presenta-
tion.

In this example the shared display is used for co-located collaboration. The same
screen is used by several participants and is also controlled by all of them. The follow-
ing example covers distributed collaboration. Here, two screens are synchronised and
the screens can be controlled from both locations.

Checking his available devices, she can see that he has a display appli-
cation similar to the one in the projector. She says to Steve that she’ll
synchronise their displays, so that he can also see the current slide. She
selects the two devices in Ubi- Client, and synchronises them. Steve sees
the slide showing up on his screen.

In both examples the collaboration is formal. It also is synchronous. Thus, the informal
type of collaboration and the asynchronous time aspect are not covered by the scenario.

Figure 3.1: Dimensions covered by the scenarios

3.2 Discovery, advertisements and identification of entities

A shared display system has entities that share and display information. How these
entities should be discovered by the system and how these entities advertise themselves
must be addressed.

16 CHAPTER 3. PROBLEM ELABORATION

Sylvia notices that the meeting room is equipped with a projector. She
searches for the device with the UbiClient, the client comes up with the
closest alternatives and she adds the projector to the meeting. She acti-
vates the projector, and it lights up and displays a welcome-screen, and a
representation of her and Brian.

Having a shared display system running in a ubiquitous environment makes it impor-
tant that entities can be discovered dynamically as devices move through the environ-
ment. Some kind of support for dynamic discovery must therefore be supported. The
attributes used in such a discovery mechanism must also be carefully considered so
that the entities can be searched for in a sensible way. For instance, should there be
possible to search directly for projectors by location or should you search for devices
capable of showing the content you want to share and display? The discovering process
address two aspects of the system. One is related to the entity sharing some content.
Here it should be detectable what kind of sharing is done. The other is the discovery
of visualising entities. Related to that are questions like, what kind of capabilities do
the visualising entity have and can it visualise what the sharing entity shares.

Pepe is a Colombian consultant the company has hired for this project. He
is working hand on with the building of the services the company is doing
in Colombia. Before the weekend he downloaded the presentations that
the others had added to the meeting. This way he can follow the presen-
tations without having his laptop connected to the platform this morning.
As the presentations proceed he can see at his mobile phone what pages
and documents that are been displayed and discussed. Pepe is moving
back and forth in the presentations and listens while the others speak.

This is an example of a presentation tool that shares information in several ways. In ad-
dition of having a visual view of the actual synchronised presentation, a synchronised
presentation event queue is offered. The actual presentation is presentable for devices
with displaying capabilities, but Pepe’s mobile phone does not have the necessary ca-
pabilities. The issue here is how to discover what capabilities display devices have.
A decision on automatically offer the suitable services or not, based on the device
capabilities must be taken.

An entity that shares some content must relate to the fact that in a ubiquitous envi-
ronment there are many types of devices with different displaying capabilities. The
sharing entity should therefore offer the content that it shares in a way that makes it
possible for devices to select what content or part of content they wish to visualise.
Content that is to be shared should be defined in some kind of entity, for example a
service with a description.The sharing entity should therefore have some definition of
what services it offers and some description.
With different kinds of devices running in the system, it is probable that the devices are
running on different platforms. DISCOlab must consider this when choice on technical
solutions is done.

3.3. INFORMATION SHARING AND STORING 17

A shared displays system will consist of several entities. At least an entity that is
responsible for the sharing of information is needed. In addition an entity that visualise
the content must be present. These two entities can be running in the same host.
Bakkevoll [Bak04] also defines an interaction client, see section 4.2, that is used to
control a client visualising content. However, each entity defined in the system must
have clearly defined roles of responsibilities. It is important to identify a sensible
structure of how the entities in the system should collaborate and the responsibilities
and authorities in such a collaboration between entities.

This allows us to formulate the following research questions related to discovery, ad-
vertisements and identification of entities:

A-1: What entities do we have in the shared display system?

A-2: How letting a shared display present information tailored to different types of
devices?

A-3: How should the sharing entity communicate with several types of devices possi-
bly running on different platforms?

A-4: How should the content that is to be visualised be associated with the entity
doing the displaying of the content?

A-5: What kind of discovery mechanism would be most sensible? (E.g. Search for
closest projector or for closest device capable of displaying the content that is to
be shared?)

A-6: How to discover what capabilities display devices have?

A-7: Should the appropriate services for visualising content be automatically selected
based on device capabilities?

3.3 Information sharing and storing

In this section an analysis of the scenarios will be done with respect to how information
should be shared and stored in a shared display system.

Sylvia notices that the meeting room is equipped with a projector. She
searches for the device with the UbiClient, the client comes up with the
closest alternatives and she adds the projector to the meeting. She acti-
vates the projector, and it lights up and displays a welcome-screen, and a
representation of her and Brian. She uses the client to display the slides
she has prepared on the projector. The projector shows the file on the dis-
play, her representation widget lights up and she uses the PDA to remotely
control the presentation. A small snapshot of the current window shows
up on her display while she taps through the remote control commands.

18 CHAPTER 3. PROBLEM ELABORATION

This scenario part illustrates several interesting ideas that a shared display system must
consider. The first thing is the relation of the content that should be displayed by
a display and the display itself, here the projector. The content, here a presentation
file, is added to the projector by the UbiClient. How should the content that is to be
displayed be associated with the entity doing the displaying of the content, must be
considered. Another issue is where the content in the system should be stored and how
should it be sent to the entity displaying the content. What entity in the system should
save or keep the content and be responsible for the sharing must be addressed.

Using the PDA to control the presentation makes the PDA to be a remote control for
the projector. Hence, the presentation tool running on the projector is both controllable
by a PDA and is displaying content on another device. This makes it necessary to let
the presentation tool to be communicating with several devices at the same time. This
implicates that the presentation tool has several services for different devices. In this
example the PDA is used to control the presentation and the projector to display it.

In the UbiClient Sylvia gets a snapshot of the presentation running on the projector. To
do this, both displays, the UbiClient and the projector, should synchronise the content.
How the synchronisation should be done and what entity that should do the synchro-
nisation must be considered.

Brian uses his UbiClient to invite Steve to the meeting. At the time, Steve
is in the company cafeteria, logged on with his PDA. A message pops up
on his screen, asking him to join the meeting with Sylvia and Brian.

Getting information on members of a collaboration instance is addressed in this ex-
ample. Such information is provided by the UbiCollab platform. DISCOlab should
provide this information to a shared display. The communication with the platform
should be straight forward. The platform offers ways, following established standards
of communication over the network. A review of how this can be done can be found
in section 4.1.2.

This Monday morning John wakes up half an our late and sends a message
to the job that he is running late and that the meeting has to be postponed
an hour, to 9.00 am.

When Sylvia gets to the office she can see Johns message at the office’s
whiteboard, that runs a messageboard application.

Sending a message to the whiteboard in the office is an example of asynchronous use
of the shared display. Information can be shared both in asynchronous and in syn-
chronous ways. This kind of support sets different requirements to a system. For
asynchronous sharing, some persistent data store should be present that keeps the in-
formation if the entity keeping the information shuts down. The entity doing the shar-
ing of asynchronous information must also be running even if no clients are running.

3.3. INFORMATION SHARING AND STORING 19

This because an asynchronous sharing entity must handle information that might not
be accessed at a specific time instance, but in some future moment.

In situations where synchronous sharing is to be done other requirements must be ful-
filled. Requirements to response time and throughput of the system must be addressed.
Synchronous sharing can be very load intensive on the entity doing the sharing. Risk
for bottlenecks reducing the performance of such a system gets high. Architectural
aspects such as centralised versus peer-to-peer must be considered in systems for syn-
chronised sharing to reduce risk of bottlenecks, but also for making it easier for impul-
sive sharing of content at a peer.

She uses the presentation mode of the big whiteboard hanging on the wall.
Halfway through the presentation John has a question and asks Sylvia if
she him going one slide back. John uses his laptop to control the presenta-
tion and points at some figures in the slide asking Sylvia. Sylvia redirects
the question to Mary at the other side of the table. Mary was the one de-
signing the figures that John found questionable. Mary uses her laptop
and switches the shared display to drawing mode. The display is synchro-
nised with the other computers throughout the session. She maximises the
screen so everyone can have a good look and she starts explaining while
she draws.

Several aspects are covered by this example. First is how the sharing of content should
be initiated and given access to by other people. In a shared display system many en-
tities can be present that are subscribing to some content being shared. These entities
must have some configuration information associated to them. E.g. a client connected
to a synchronisation server need to have some preference settings and subscribing in-
formation along with what capabilities it has. It also needs to be recorded what access
rights it has. What entity that should have responsibility of storing such information
and how the information is to be stored must be addressed.

When sharing some content, there can be many situations where a sharing entity do not
want to let others take control of the sharing. This can for example be in a presentation.
Some mechanisms should be present to restrict people from taking the control. This
might not be at question on the toolkit level, but in the application layer. Another
issue related to protection is to have the possibilities to decide what parties should
have access to the information you are sharing and what kind of access it should be.
Sometimes a sharing party only want to give read access to a drawing session on a
whiteboard and most of the time such a session only should be visible for a limited
group. DISCOlab should have ways of setting access rights to the content being shared.

This allows me to formulate the following research questions in relation to information
sharing and storing:

B-1: Where in the system should the content be saved?

20 CHAPTER 3. PROBLEM ELABORATION

B-2: Where and how should configurations be saved?

B-3: What entity should be doing the synchronising of content?

B-4: How to route and handle the information sent to a shared display system?

B-5: How should the content be sent to the entity visualising the content?

B-6: How should sharing of content be initiated?

B-7: How to support asynchronous and synchronous information sharing?

B-8: How to keep asynchronous information in the system?

B-9: How should the synchronising be done?

B-10: How to handle several people trying to control the same application?

B-11: How to protect the content that is being shared or protect the way it is being
shared, e.g. restrict others from taking control of a presentation?

B-12: How to communicate with the platform?

B-13: Should the architecture be peer-to-peer or centralised?

3.4 Implications for public versus private displays

Having a shared display for public use is not the same as having it for private use.
Public displays can have a big and diverse user group with demands for different func-
tionality in opposition to a private display. This raises different requirements for public
versus private displays.

Steve opens an audio connection to the meeting room and Brian fills him
in on their problems. Steve then wants to look at the slides and searches
for a shared display using his UbiCollab client. The system finds a display
in the cafeteria but it is unavailable for him. He then decides to startup his
laptop to use its shared display capability.

This is an interesting example of sharing a presentation with a collaborating party.
How should Steve access the presentation in the example? Should a person install
the required application to show a presentation prior to a presentation or should the
required applications be fetched from a location when needed?

A shared display used by the same user will probably be used by a few applications.
With this type of use there will not be a problem to install the applications that are
needed to visualise some content that is being shared. In a public room however, a
shared display will probably be used for visualising multiple types of content. This

3.5. CONTEXTUALISING THE INFORMATION 21

because the user groups in public rooms have different needs. In a ubiquitous environ-
ment many users will have the need of visualising some content on a public screen.
The screen should have possibilities to do this regardless of not having visualised that
type of content before.

Another issue that must be considered is how people should access information on
public shared displays. Should people be able to give input to these kinds of displays,
should they log in to the display and should it be possible that these displays can
be controlled from remote locations? There probably should be ways of controlling
the content sharing on public shared displays. This should be done both locally and
remotely, depending on the type of content sharing.

A public display like the one hanging in the cafeteria have potentially many users with
different requirements for the display. How should a sensible architecture support this
type of use. Public shared displays should have ways of displaying unfamiliar content
in any time at any place. This is a major issue that needs to be addressed in the design
of DISCOlab.

This allows me to formulate the following research questions in relation to implications
for public versus private displays:

C-1: Should a person install a the required application to show a presentation prior
to a presentation or should the required applications be fetched from a location
when needed?

C-2: How should information be accessed at public displays?

C-3: How should a public display support visualising different content to a user group
with different demands?

3.5 Contextualising the information

The shared display system should run on UbiCollab and should in respect to that have
en effective way to contextualise the information shared in the system. Below, an
example from the scenario “Shared display scenario” illustrates this:

Mark also has been seeing through presence information and context in-
formation displayed in the application which colleges that have been ac-
tive and contributing to the meeting. He can see that all the others, except
Pepe, are gathered at the main office in Oslo.

DISCOlab should take use of the services that are offered by UbiCollab. The informa-
tion that can be associated to material being shared by a shared display application, can
be collaboration instance information, resource information, privacy information filter-
ing the content being shared, etc. The services that run on UbiCollab for this should be

22 CHAPTER 3. PROBLEM ELABORATION

accessible from DISCOlab, so a developer can use the services together with DISCO-
lab to develop shared display systems. An example of using the privacy services can be
to use the privacy service to automatically refuse visualising of sensitive information
on public displays.

When a user wants to share some content with the collaboration instance he is a mem-
ber of, this should be easy to do. Another example using the services at UbiCollab is;
a user that subscribing to some content should have the possibility to get the content
sent to the nearest display the user has available. An API for a shared display should
provide this functionality to a user.

This allows me to formulate the following research questions:

D-1: How should shared content be associated with collaboration information?

D-2: How should the basic services of UbiCollab be used to give contextual informa-
tion?

D-3: How should DISCOlab provide easy access to the shared content in a contextu-
alised way?

Summary

The scenario analysis has raised a set of questions and discussions around these. These
questions and discussions form a basis for the analysis and the design of DISCOlab.
It is important that questions in this chapter are considered when analysis of the func-
tionlity and design of DISCOlab is done, so that the result of this project is a toolkit
that has the needed functionality.

Chapter 4

Related work

In this chapter I will first present the previous work done on the UbiCollab platform.
This work is highly relevant for my project because DISCOlab should use the platform
in the development of a shared display systems. After a review of the work done on
the platform, I will present some related work in the field of toolkit development.

4.1 UbiCollab platform

The platform was developed by [Sch04] the spring of 2004. The work done by [Sch04]
builds on a previous version of the platform as reported in [DFS04]. UbiCollab pro-
vides support for collaboration in a ubiquitous environment. It does however not have
the responsibility of providing the actual services for specific type or domain of collab-
oration (like instant messaging, cooperative programming etc.). That is, the platform
enables support for usage and management of such services, but does not provide such
specific collaborative services itself.

UbiCollab consist of several native platform services, see figure 4.1. These provide
the support for collaboration in a ubiquitous computing environment. By keeping the
platform clean like this, the generality of the platform is ensured and the focus can
be on developing new kinds of collaboration support instead of reinventing existing
collaborative services. Adding new kinds of collaboration support is done by creating
new services that are plugged into the platform.

To represent the abstract collaboration concept, Schwarz uses a collaboration instance.
This is an entity which is meant to capture a real world activity, or context, of collab-
oration between people and resources they use. A person entity represents a human
participant while a resource can be a physical device or electronic information. By
creating a conceptual model centred around the collaboration instance several issues
can be solved fairly easy. This gives a focus point for all the services and tie the whole
platform together as a coherent system. Another important aspect with this solution

23

24 CHAPTER 4. RELATED WORK

is that it enables resources and other entities to be connected to several collaboration
instances. It also enables collaboration instances to be aggregated with others and still
maintain their components.

Figure 4.1: Platform overview

4.1.1 Platform architecture

The platform consist of modular services that cooperate with each other but run inde-
pendently, see figure 4.2. The most complex and advanced service is the collabora-
tion server which provides the main functionality that enables collaboration between
clients. The directory service is another important service. It provides basic resource
management and is used to provide information on which resources are available at
a given time. It collects information on which resources are available from resource
collectors which run on the clients. This is a good solution since it enables dynamic
adding and removing of resources as the device collectors discover or lose devices.

The presence service saves presence values to a user. A user’s presence value will be
set to some kind of context. A context can be a collaboration instance or a service
used for collaboration. This separation of user presence values makes the presence
information more accurate.

When it comes to the location service and the privacy service these are under devel-
opment. Developing the location service was started the fall 2004 by [SJH04] and is
continued by Setså Jensen [SJ05]. The location service has the responsibility of find-
ing positions and locations of users and resources in the environment. A position is

4.1. UBICOLLAB PLATFORM 25

Clients

Privacy

Service

Directory

Service

Collaboration

Server

Presence

Service

Clients

Location

Service

Position

Service

Resource

Collectors

Figure 4.2: Platform architecture

here refered to be a point in space, while location is some place in space connected to
a context. The location service should give answers to where resources and users are
in space. It should associate this information to the different contexts the users and
resources are in.

Braathen and Rasmussen started to work on the privacy service the fall 2004 [BR04]
and have continued their work the spring of 2005 [BR05]. Privacy is an important
issue in ubiquitous computing because the system is everywhere and keeps monitoring
the user. The privacy service is a central service that keeps privacy profiles on users.
It will work as a proxy for the other services, so that the system can be sure that the
requester is an authorised entity. The collaboration server is an authorised service, but
before distributing any information to a requester it will have to go through the privacy
service.

26 CHAPTER 4. RELATED WORK

4.1.2 Communicating with the platform

Internally the platform is communicating between the native services over SOAP [SS00,
SOA]. Each service is a UPnP enabled service running independently of the other ser-
vices in the platform. UPnP is short for Universal Plug ’n Play and offers pervasive
peer-to-peer network connectivity of PCs of all form factors, intelligent appliances,
and wireless devices, by supporting dynamic discovery of devices [UPn].

On the UbiCollab server it is defined an API. This API makes it possible for clients
to communicate with the server over webservices. The communication is done over
SOAP. DISCOlab will use this API to access the services the platform has. The API
can be found in appendix C.

4.2 KOALA - A shared display system

KOALA is a shared display system that lets you use different kinds of devices to
display PDF presentations. It was developed by [Bak04] the spring 2004.
KOALA is relevant to this project because it is an example of a system DISCOlab is
to provide support to develop. I will in this section make a review of the KOALA
architecture.

Architecture

Bakkevoll defines three entities in his design. A shared display client, a shared display
server and an interaction client. These can be seen in figure 4.3.

The shared display client is the entity visualising the content to a user. It is running
on a display device. The shared display client can receive inputs from a user. It is
connected to the UbiCollab platform and has access to information in it. The shared
display client is visible to the platform.

Synchronisation of content is done by the shared display synchronisation server. This
is a server only visible to shared display clients. Shared displays communicate via the
shared display server.

A last entity in the system is an interaction client. This is a client that can control
the a shared display client. The interaction client sends commands to a shared display
client, which execute the command and forwards the change to the shared display
server. An interaction client also has access to the UbiCollab platform and is visible to
the platform.

The content sharing in KOALA is done in a centralised fashion. Bakkevoll made this
decision because the UbiCollab platform had a centralised architecture. Further he

4.2. KOALA - A SHARED DISPLAY SYSTEM 27

Figure 4.3: Architecture of KOALA

assumed that this approach made the forwarding of updates easier for the clients. This
because various clients tends to have different interests of updates and the filtering
of messages would be better to have on a centralised server than in each device. He
emphasises that the shared display clients should be kept simple, not to make resource
constrained devices overloaded.

The communication with the platform and the interaction clients is done over SOAP.
The KOALA display is UPnP enabled. This makes the display discoverable by the
platform and interaction clients that is searching for a display to show a presentation
at.

4.2.1 Using DISCOlab to develop KOALA

When developing KOALA having a toolkit like DISCOlab would be beneficial. Bakkevoll
has in the evaluation pointed at some weaknesses with KOALA and I will in the fol-
lowing point out that these weakness might been avoided having a toolkit available.

Yet there are several problems with the design. If a shared display client
is made that supports more sophisticated functionality, like annotating or
editing a document, problems will arise. First, there is a problem when
a shared display client in use is synchronised with another shared display
client. The client would have to send the whole state, as the server does
not have a representation of the state. Furthermore, a system with locking
the server to make updates would have to be made, otherwise the clients
would end up with inconsistent states.

28 CHAPTER 4. RELATED WORK

In his work, Bakkevoll designed a shared display system capable of just supporting
what it was do support. With that design future improvements and extensions on func-
tionality will be difficult as pointed out by Bakkevoll. If a toolkit was used to develop
the KOALA system, Bakkevoll would not have to worry about such low level imple-
mentation burdens, as those should be handled by the toolkit.

KOALA displays information about who is controlling it in the lower right
corner. Only the last action is displayed here, and this is a weakness.
The text may change while the a user is looking the other way, so the
information is easy to miss. At the same time, it contains no information
about when the action was performed. A more sophisticated approach
would be to display more than one action, and perhaps use fading and
colour to give a visual cue about how much time has passed since the
action was performed. This is left as future work.

The KOALA system has received much attention in infrastructural work and less in the
design and giving support for collaboration through visual queues, etc. A developer
that is to create groupware and that do not have tools for doing this, is often spending
the energy on infrastructural problems, low-level implementation and distributed data
processing [Gre04]. If this already was provided by a toolkit, Bakkevoll could have
used his resources on providing more functionality to KOALA that would ease and
enhance the collaboration for users of KOALA.

4.3 Toolkit properties

Much work is done on developing collaborative groupware. However, much of this
work has been consisting in re-inventing low level implementation solutions. Creating
groupware is an complex task, a task getting even more complex every time low level
functionality has to be developed.
Toolkits for developing groupware should therefore be developed. Greenberg [Gre04]
have some arguments for what such a groupware toolkit should be characterised by:

• Be embedded within a familiar platform and language in common
use so that people can leverage their existing knowledge and skills.

• Remove low level implementation burdens common to all group-
ware platforms (e.g., communications, data sharing, concurrency
control, session management).

• Minimise housekeeping and other non-essential tasks.

• Encapsulate successful design concepts known by the research com-
munity into programmable objects so they can be included with little
implementation effort.

4.3. TOOLKIT PROPERTIES 29

• Present itself through a concise API that encourages how people
should think about groupware.

• Make simple things achievable in a few lines of code, and complex
things possible.

[Gre04]

Further on Greenberg presents some common elements to real time distributed group-
ware applications. He identified these elements that should be available to program-
mers:

• A run-time architecture automatically managed processes, their in-
terconnections, and communications; thus programmers did not have
to do any process or communications management. This came for
free.

• Session managers let end-users create, join, leave and manage meet-
ings. A selection of session managers came as pre-packaged inter-
faces, and the programmer could use these “out of the box”. How-
ever, the programmer could craft their own session manager if they
wished.

• A small set of groupware programming abstractions let a program-
mer manage all distributed interactions. Through an RPC-like mech-
anism, the programmer could broadcast interaction events to se-
lected participants. Alternatively, the programmer could manage in-
teraction via a shared data model: programmers would then think
about groupware as a distributed model-view-controller system. Lo-
cal user actions would change data in the shared model, and remote
processes would detect these and use the altered data to generate the
view.

• Finally, groupware widgets were included that let programmers add
generic groupware constructs of value to conference participants.
Our first widgets were telepointers, which a programmer could add
with a single line of code. Later widgets included awareness widgets
such multi-user scrollbars and radar views.

[Gre04]

Creating toolkits is an advanced process. The toolkit designer does not write applica-
tions, but writes software to be used in applications; the details of those applications,
what they will do, how they will do it, and who will use them, are not available at the
time when the toolkit is being written [DE00].

Dourish and Adwards [DE00] define aspects of infrastructural flexibility in relation
with toolkits development.Data distribution concerns the ways in which the compu-
tational representations of data are available to participants in the system.Consistency

30 CHAPTER 4. RELATED WORK

control handles access to distributed data to maintain consistency in each users view.
Access to the data store may be governed by permission settings, by roles, or by op-
portunity.Sessions might arise through the individual actions of collaborators, or may
be set up explicitly, and might be managed on an invitation basis, or regulated by an
individual.

In [Dou95], Dourish outlines three aspects of flexibility in the design of CSCW sys-
tems.Static �exibility refers to the extent to which the system can support a variety of
collaborative needs (such as synchronous or asynchronous work).Dynamic �exibility
reflects a systems ability to respond to the changing circumstances of a collaborative
session (such as changes in group membership).Implementation �exibility refers to
the ability of a system to operate over a range of implementation substrates (such as
different forms of network or network topology, or different approaches to data store
management).

Software toolkits ease the implementation of software systems by providing reusable
components and behaviours designed to be applicable in a range of circumstances. As
well as reducing effort and speeding application development, this reuse of software
components also offers a common conceptual framework for application development,
which can aid both application designers and users. The components themselves arise
out of common patterns of software structure that occur across a range of applications
in a particular domain. objects. Applications are constructed using these components
as building blocks [DE00].

4.4 Towards a toolkit for creation of shared display systems

The publication “Supporting Extensible Public Display Systems with Speakeasy” [BEN+03]
presents, Speakeasy, a framework for supporting extensible public displays. Speakeasy
is characterised by the following two characteristics:

• Supports construction of applications that can use new devices, services and
networks, without requiring anya priori specialised knowledge.

• Supports indirectly collaborative use of public display systems by permitting use
of public displays over geographically distributed participants.

It is pointed out that a Extensible Public Display System needs to fulfill the following
requirements:

1. It needs to be able to display virtually arbitrary content. It is pointed out that this
is an unworkable approach because new content types is appearing all the time.

2. In order to interact with devices and services on the network, public displays
must be able to dynamically discover them as they appear. Thus, the public
display must support a wide range of discovery protocols.

4.4. TOWARDS A TOOLKIT FOR CREATION OF SHARED DISPLAY SYSTEMS31

3. A public display must not only be used to view and manipulate media and con-
tent, but also control devices and services. Thus, the controls for such services
and devices must be integrated into a display’s framework.

All of the above enumerated requirements represents different dimensions ofdynam-
ically extensibility: the ability for a display system to acquire new functionality not
specifically built on creation time. Such extensibility is crucial for supporting evolu-
tion of the system: the ability to adapt to change - such as the presence of new devices.

The publication further presents two ways to achieve such dynamically extensibility.
One way is to have an centralised approach where new versions of the display system
is dropped supporting new protocols, device types, data types and so forth.

The other approach is decentralised. Speakeasy takes this approach and has a peer-
to-peer “marketplace” of services. Rather than relaying upon the original developers
to establish standards of compatibility to devices and services, Speakeasy requires the
service or device to provide the new data type or protocol behaviour to the display
from the device itself.

Speakeasy defines a small, fixed set ofmeta-interfaces. The idea is that rather than
attempting to define some large collection of standards for how every foreseeable de-
vice or service should inter-operate, the meta-interfaces defines the ways in which
components acquire new behaviour. These meta-interfaces are as follows:

• Data transfer: used to extend clients to new data transfer protocols and new
media handling abilities. A data transfer is realised setting up a source and a
sink. The source sends an endpoint object to the sink. The endpoint object
enables the sink to reproduce the data send from the source, see fig 4.4.

• Aggregation: used to allow clients to acquire new discovery protocols and op-
erate over new network transports. The aggregation is done through aggregated
components that contain other components, e.g. file systems, discovery proto-
cols which appear to contain all of the components discoverable through that
protocol, etc. Further aggregates can act as “bridges” to new types of networks,
fig 4.5.

• Meta-data: used to allow clients to query the capabilities and attributes of com-
ponents on the network. The information is organised in simple key-value pairs,
with no special organisation imposed on either the keys or the values. The meta-
data is primarily intended for human consumption.

• Control: used to allow components to deliver new, custom user interfaces for
controlling them to applications and users.

32 CHAPTER 4. RELATED WORK

Figure 4.4: Speakeasy data transfer

Figure 4.5: Speakeasy aggregation

Speakeasy is moving towards being a toolkit for shared displays. It address require-
ments like dynamically extensibility and creates a flexible framework for shared dis-
play systems. However, Speakeasy supports creation of standalone systems and no
collaborative platform for contextualisation of information is provided.

4.4. TOWARDS A TOOLKIT FOR CREATION OF SHARED DISPLAY SYSTEMS33

Summary

In this chapter we have looked into the UbiCollab platform. The architecture of Ubi-
Collab has been described and important concepts have been presented. We have
looked into how the focus could have been on providing better collaborative support in
KOALA if a toolkit had been used to develop the system. Finally, important properties
of toolkits have been presented.

34 CHAPTER 4. RELATED WORK

Chapter 5

Analysis

Based on the research questions in chapter 3 and the related work in chapter 4, entities
in a shared display systems will be defined and a set of requirements will be outlined.

5.1 Defining system entities

This section will address research questions A-1, A-2, B-3 and B-9.

A shared display system consists of several entities with different tasks. Each entity
should have clearly defined tasks and responsibilities. These entities must be identified
and defined by DISCOlab, so that a developer can take them in use without difficulties.

The use of displays always demands an entity that does the visualisation of informa-
tion, a visualising display. It is also needed an entity that does the sharing of the
information, let us call this a content server. This can for instance be a synchronis-
ing server for a real-time sharing application or a message server for an asynchronous
sharing application. Thus, a content server should handle tasks like synchronisation of
content. The way the synchronisation is done is left to the developer using DISCOlab.
This because the synchronisation is dependent on the application to be developed. In
addition some ability to control the sharing must be present. The KOALA architecture
defined an interaction client for this.

It is important to separate between the concept of an entity and a physical device.
One physical device can have several entities running or the entities in the sharing
display system can be running on different devices. This depends on the nature of the
application. For instance, an application for presentation sharing can have the sharing
entity on the client with a visualising entity running in the same client. The sharing
entity can at the same time share information to other visualising entities running on
other clients. The presentation can have an interaction client - a control panel, that
sends commands to the content sharing entity.

35

36 CHAPTER 5. ANALYSIS

An interaction client is not necessarily very different from a visualising entity. Both
entities have a software client that interact with the sharing entity. The interaction
client sends information to the sharing entity and the visualising entity receives infor-
mation. Both entities can use the same protocols to exchange information and establish
contact with a sharing entity. There are however some differences that makes it natural
to let DISCOlab define both entities. An interaction client have aspects like protection
and access control to the content being shared. This will be discussed more in section
5.5.

To let visualising and controlling entities easily be separated in the system, let devices
with different capabilities and users with different desires be supported, a sharing en-
tity should divide the sharing and controlling of the sharing entity into reasonable
tasks. These tasks can be handled by entities calledservices. A service can for in-
stance be a control service that handles the control of a presentation. Another service
would be the presentation itself. The third service defined could be an event log for
what is happening in the presentation. This way an entity with access-rights and ca-
pabilities can subscribe to all services. A limited device, i.e. a mobile phone, would
maybe only subscribe to the event log. While a public monitor without input interface
would only subscribe to the presentation and the event log. The visualising entity and
interaction client should be defined by such services. The service would define ways
of exchanging the information to be shared, how to control a sharing session, handle
access control and protection, etc.

Another entity that could be present in the system could be an application library hav-
ing downloadable applications, see figure 5.2. From the library an entity can fetch an
application on demand and run it locally. This will make it possible to search in the
system for applications capable of sharing, visualising or controlling specific file for-
mats or media formats. If the supporting application exists an entity can display it on
the fly without any previous configuration. Another advantage is that a system man-
ager do not have to install applications or updates on each client, but can limit it to one
or a few instances. This makes maintenance easy. Another option is to let the appli-
cation be installed on the entity doing the sharing of some content. An entity wishing
to visualise or control some content can get the application to visualise or control the
content from the sharing entity directly. This will work in an architecture where shar-
ing entities will be running independent of visualising clients. In an architecture that
supports the initiation of sharing in a more add-hoc fashion with a peer-to-peer shar-
ing of content, the system either has to have all applications installed into the sharing
entity or a well known library that the system can get applications to do the sharing,
visualising and controlling of some content sharing.

Thus, the most flexible solution will be to have sharing entities that have interfaces
to the visualising and interaction entities and that the sharing entity can connect to an
application library if it does not have the applications to do the sharing. However, this
solution will be very complex and to ambitious for this master thesis. Instead the more
simple but still powerful solution having sharing entities with the needed applications
already installed should be chosen, as in figure 5.1.

5.1. DEFINING SYSTEM ENTITIES 37

Figure 5.1: Architecture without application library

38 CHAPTER 5. ANALYSIS

Figure 5.2: Architecture with application library

5.2. DISCOVERY OFCONTENT SERVERSAND VISUALISING DISPLAYS 39

Requirements

DISCOlab should define the following entities:

R-1: Content Server: Does the sharing of some content. The Content Server is defin-
ing one or more services that the content sharing and controlling are divided into.
The Content Server can run on the same host that is doing the visualisation of
content or on a separate host. It should do the synchronisation of the content.

R-2: Service: A Service is defined by the Content Server and thus promoted and
managed by the Content Server. A Service should be a program that visualise or
controls sharing of some content. The Service should also define methods that
makes it possible to interact or control a service without running the program
defined by the Service. Services can be separated either into Services for control,
for sharing and an event log or for device types.

R-3: Visualising Display: The visualisation should be done by a display. The visu-
alising display should be part of a client that runs on a device. The Visualising
Display should define a content-pane on which it can display Services. This
content-pane should be used both to visualise content and to control the content
being visualised. A developer implements a GUI-client and adds the Visualising
Display to the client. The developer can decide size and other attributes of the
Visualising Display depending of the device it should run on.

The tasks description of the entities is preliminary. More requirements will be given
to each entity during the analysis.

5.2 Discovery ofContent Serversand Visualising Displays

In this section research question A-5, A-6, A-7 are addressed.

Since the toolkit is to be used in an ubiquitous environment, discovery of the system
entities must be done dynamically. The Content Servers and Visualising Displays
must advertise their presence when they are running, so that a user who wants to use
either a Visualising Display or a Content Server for a specific task can find it easily.
The Visualising Display and Content Server must be discovered through the UbiCollab
platform. Visualising Displays and Content Servers with different attributes describing
the capabilities they have, resolution, file format support, media support, location,
available etc. It should be possible to include criterias based on attributes that describe
such an entity. A set of configuration attributes should be defined in the entities making
them searchable.

For a user or a device it should be possible to subscribe to a Content Server or one
or more of its Services. This makes it possible for an user to subscribe to a Content

40 CHAPTER 5. ANALYSIS

Server and always get the shared information from the Content Server independent
of what device the user is working on. The user should then get the Services that the
device is capable of displaying excluding any Services the user explicitly has refused to
subscribe to. A device should get access to the Services it is capable of visualising. The
decision on what Services the device is capable of visualising is upon the Visualising
Display to decide. The decision will be based on the service description submitted
from the Content Server to the Visualising Display. The issue in relation to discovery,
is how this subscribing information should be stored in the system? For the device the
solution is straight forward. The device can choose what content it should subscribe
to and un-subscribe to for each session. Remotely this can be done the same way,
by letting the device take the initiative to contact the Content Server. For the user
this is somehow more complex. A user can choose to subscribe and un-subscribe to a
Content Server in one session, but some subscribing might be interesting for the user
to have a longer duration, for instance subscription to a messageboard for the project.
When the user subscribe and un-subscribe in the same session there is no problems. It
is for the longer lasting sessions that the subscribing information must be stored and
accessed in a sensible way. Different alternatives are available. A user can have a
configuration file on the UbiCollab platform that among other things have subscribing
information. This solution however makes it necessary to alter the platform a bit and
add some functionality to it. The positive thing with this solution is that it is easy to
find such information for users and it does not load the system more than necessary.
A configuration file can also be used by other future applications. Another solution
is to have a subscriber list on each of the Content Servers. On login a client with a
Visualising Display will automatically search through the available Content Servers to
see if the user is subscribing to any of them. This solutions omits altering the platform,
but makes the searching for subscribing information much more bothersome.

Due to time restrictions the feature of subscribing to Services will be left for future
versions of the toolkit. The solution will complicate the work of developing a first
version of the toolkit, while a subscribing feature will not be highly dependent of how
the toolkit is designed in this version.

Requirements

R-4: The Content Server and Visualising Display should be dynamically discoverable
by the UbiCollab server. Thus, they must run software that is supported by the
platform for this use.

R-5: The Content Server and Visualising Display must have a description list or a set
of methods that reveals information about the entity. This list must be formed in
a way that makes it searchable.

R-6: A Visualising Display shall decide automatically what Service it will subscribe
to.

R-7: Subscribing to Services will only be done in one session. The possibility for
a user or device to subscribe to Services over several sessions is left as future

5.3. INFORMATION STORING AND SHARING 41

work.

5.3 Information storing and sharing

This section is answering the research questions A-3, B-1, B-2, B-4 and B-12.

In a shared display system, information is to be shared. The sharing can either happen
in a distributed or a co-located way. In distributed sharing the sharing is done on
multiple hosts with one or more spectators on each host, while co-located is when
the sharing is done on one host with several spectators. In co-located spectators can
send information to one host visualising the information shared by the spectators. The
toolkit should support both types of sharing. The discovery of the other host to share
information to is covered by the previous section.

Having the distributed sharing is complicated compared to having a co-located shar-
ing. When distributed sharing is to be done several requirements are raised to the
system. The system must have the capacity to carry out the sharing. It also must
have effective ways of communicate over network and on different kinds of platforms.
The toolkit should implement platform-independent communication protocols for ex-
changing information. This to make the exchange of information possible between
devices running on different platforms, which is normal in a ubiquitous environment.

To communicate with the UbiCollab platform, the toolkit should use the standard in-
terfaces that is defined by the platform. The protocols already in use should be used to
communicate over. See section 4.1.2 for more details.

The specific sharing of content should follow well established standards. This can for
instance be to use RTP for video-streaming, H.323 for VoIP, etc. I will not go further
into this subject, because this is a matter for the developer actually using the toolkit to
support such a sharing Service.

How information should be stored in the system depends on the information to be
stored. The information to be shared has to be stored in a way fitting to the nature of
the content. For instance a messageboard needs to save the messages in a persistent
way so that messages not are lost if a the message server goes down. Such a persistent
memory can be a database at the Content Server. The choice on how to store the
information to be shared is left to the developer because this entirely depends on the
nature of the content being shared.

Other information to be saved by Content Server or the Visualising Display is config-
uration information. This information should be saved in persistent memory in either
a configuration file or a database. For a Visualising Display a configuration file should
be used. The Content Server should use a configuration file if the information to be
saved is fairly static and a database should be used if the information is frequently
changed.

42 CHAPTER 5. ANALYSIS

5.3.1 Asynchronous versus synchronous information sharing

Research question B-8 is treated here. In addition, the research question B-7 that
is about how to support both asynchronous and synchronous information sharing is
answered partly here, the rest of the analysis is fragmented throughout the chapter
because the answer to the research question affects many aspects in the analysis.

Asynchronous information separates from synchronous information sharing. When
asynchronous information is to be shared in the system the system must have some
Content Server(s) that can receive and transmit the information independent of if any
clients running a Visualising Display are present in the system. With synchronous
information sharing the Content Server only has to be running when there exists clients
with the Visualising Display in the system that are or want to subscribe to the Content
Server’s Service(s). Thus, the toolkit should design the Content Server in such a way
that it can be run independently of any Visualising Displays. It should also be possible
to have Content Servers that are started on demand in situations where this is desired.

Because asynchronous information not is consumed by the receiving end at the same
time as it is sent, a developer developing an asynchronous Service should save the
information in persistent memory like a database at the Content Server. This way
asynchronous information can be kept in the system.

Requirements

R-8: For communication between Content Servers, Visualising Displays, platform-
independent communication protocols should be used. The best solution will be
to use the same protocols already in use in the UbiCollab platform.

R-9: The configuration information and other information related to the different en-
tities in the system must be saved in persistent memory, either as configuration
files or in a database.

R-10: The Content Server should be run independent of any Visualising Displays. It
should also be possible to start a Content Server on demand. The Content Server
should keep asynchronous shared content.

5.4 Visualising content

In this section research questions A-4, B-5, B-6, C-1, C-2 and C-3 are answered.

The toolkit shall be used to develop ubiquitous shared display applications to be used
in different settings and with different purposes. The shared display to be developed
can be an asynchronous messageboard, a real-time video streamed conference, a pre-
sentation synchronised with several types of devices. This sets high demands on how

5.4. VISUALISING CONTENT 43

the content being shared is to be visualised and to the association between Content
Servers and Visualising Displays.

The visualisation of content has to be flexible. A device should not be limited to only
show one specific type of content, but have the possibility to show all content that a
device is capable of showing only limited by hardware resources. Hence, a device
capable of showing some information should be able to access the shared information
and visualise it without having to install software on the client previous to the session.
The advantages of this are several. First of all a user can access information that is
shared with him without worrying if he can access it with the software he has installed.
A user can take use of public displays running a client with a Visualising Display and
get the content that is shared with him. Public displays can be used by a diverse user
group with different needs. All this is only restricted by hardware capabilities and that
there exists in the system a Content Server that shares the information wanted.

How to accomplish this visualising of content anytime-anywhere? The Visualising
Display is to have a content-pane to show the content that is being shared and the con-
trol panels that is needed to control the shared content. Two solutions on how to access
content anytime-anywhere are present.

1. The Visualising Display can control the content-pane locally. With this solution
the visualising display has to download plug-ins when needed, to visualise the
content. For each Content Server the Visualising Display is subscribing to the
Visualising Display will download a plug-in that can visualise the content at the
Content Server. The plug-ins will be visualised on the content-pane in a way
similar to the window concept.

2. The other solution is to let the Content Server control graphic containers that
forms a Service. A Visualising Display will load these Services formed as
graphic containers remotely. A graphic container can be different types of panels
or canvases used to visualise graphics on. This way the graphic containers has to
be controlled using some kind of remote controlling mechanism. All interaction
with the graphic container will be handled remotely by the Content Server.

Choosing between the two solutions the second one seems like the easiest solution to
implement. This solution can easily be implemented using a middleware language.
Little configuration and un-complex initial work is to be performed for Visualising
Displays and Content Servers with this solution. With the first solution more an ad-
vanced implementation is needed. The handling of downloading and running plug-ins
dynamically can be complex. Also how to send all semantic information about the
content that are being shared can be a complex task. The second solution is therefore
chosen as the best solution in this thesis. This because the task of implementing the
first solution can become too time consuming. For future work it is left to evaluate if it
will be more effective to implement the first solution and if so improve the toolkit by
implementing this solution.

44 CHAPTER 5. ANALYSIS

In this version of the toolkit only subscribing to one Content Server will be possible.
For future versions it should be possible to subscribe to Services from different Content
Servers. This way you can tailor your Visualising Display by pick Services. For
instance if you want to have a presentation you can pick a presentation Service from
the presentation Content Server and a sound conference Service from a sound Content
Server. Because the this version of the toolkit will focus on making a toolkit that
can provide basic mechanisms for developing a shared display system and the time is
restricted this feature will not be implemented, but is left as future work.

Requirements

R-11: The visualisation is to be done by remotely controlling the graphic containers in
the Visualising Display. It is left to the Content Server to decide how to visualise
the content in graphics containers that shall be on the Visualising Display.

R-12: A Visualising Display can only subscribe to Services from one Content Server
at the time.

5.5 Protection of information

The analysis on protection of information is based on research questions B-10 and
B-11.

Sharing information with others sets some requirements to protection of the content
being shared. Restrictions to information access can be: who can see the content being
shared, who can manipulate the information, who can control the information and who
can grant the privileges to change protection attributes.

Regarding access to viewing content being shared, it would be natural to grant this
right to all members of a collaboration instance. There should be implemented an au-
thorisation procedure that checks if a person or a device trying to subscribe to a Content
Server in a collaboration instance is member of the same collaboration instance.

When sharing information it is not always sensible to let the persons with access to
view the information, have access to change or control the information sharing. For
instance if you are having a presentation. You might want to let the collaboration
instance view the presentation, but you still want to be the only one that can control
and decide want to be shown in the presentation. It should be a list of members that
have the access to control or change the information being shared.

Granting privileges to change the protection attributes must also be possible. The user
with default privileges to do this, should be the user adding a Content Server to the
collaboration instance or the content that is being shared in the collaboration instance.
Some times this person would like to give this privilege to other persons. The toolkit

5.6. PEER-TO-PEER VERSUS CENTRALISED APPROACH 45

should implement that the Content Server is maintaining a list of what persons that
have the privileges of changing protection attributes.

Another situation that also has to be taken into consideration is the protection of Vi-
sualising Displays. When a Visualising Display is used at public screens there has to
be some mechanism that makes sure that an active session can not be interrupted. It
also must be possible to interrupt default sessions. Thus, there should be possible to
set Visualising Displays as interruptible or not interruptible.

Requirements

R-13: The toolkit should implement protection of the content being shared in the Con-
tent Server. The protection should be at the service level. Protection should
cover read access to content, control and manipulation and granting privileges
to change protection attributes.

R-14: There should be possible to set Visualising Displays as interruptible or not in-
terruptible.

5.6 Peer-to-peer versus centralised approach

This section exclusively answer research question B-13.

The arguments for having a peer-to-peer or a centralised architecture are many. The
toolkit is to support development of shared displays systems, benefiting sometimes on
having a peer-to-peer architecture and sometimes a centralised architecture.

Shared displays systems that could be supported with a peer-to-peer architecture are
systems that are shared real-time . By this, it is meant systems that are used to share
information by one peer to other peers for instance in a collaboration instance. If a
person wants to share a presentation, that person can start up the sharing and other
peers can connect.

Other types of applications that need a more permanent and asynchronous Service
running, might profit from being run in a centralised architecture. This can for instance
be messageboards and blogs. These Services need to run independent of any person
using them.

When deciding on having a peer-to-peer or centralised architecture the performance of
each alternative must also be considered. The toolkit is to be used for development of
shared display systems on top of the UbiCollab platform. The performance has to be
scaled to the number of users of the platform.

With a centralised architecture the Content Server can be a bottleneck. This if the
the Content Server’s Services are popular and/or at the same time are load intensive.

46 CHAPTER 5. ANALYSIS

Such systems would benefit of being run peer-to-peer. This way the load will be more
distributed in the network. With a centralised architecture overloaded Content Servers
can be duplicate to handle high service demands.

Having a centralised architecture makes the Content Servers more complex. They
have to be able to serve several sessions at the same time having logic for handling
multiple collaboration instances sharing content on one Content Server. In a peer-to-
peer solution this would not be necessary. With that solution a Content Server would
be dedicated and owned by a collaboration instance.

In many systems the Content Servers must run independent of any Visualising Dis-
plays subscribing to their Services. This makes a centralised architecture favourable.
The peer-to-peer alternative has some performance advantages that would be good to
have. A good alternative to a pure centralised alternative could therefore be to have
a hybrid between centralised and peer-to-peer architecture by including application li-
braries mentioned in section 5.1. This way applications with asynchronous Services
could run on centralised servers while applications with synchronous Services could
be fetched from centralised application libraries on demand and run in a peer-to-peer
fashion. However, this alternative is complex and will be too ambitious for this thesis.
A centralised approach is therefore chosen for the toolkit. The hybrid architecture can
be developed in parallel with the application libraries discussed in section 5.1.

Requirements

R-15: The architecture of the toolkit should be centralised. This because many of
the applications in the system will be asynchronous and therefore needs servers
running independent of clients visualising the content being shared in the appli-
cation.

5.7 Contextualising the information

In this section research questions D-1, D-2 and D-3 will be analysed and given an
answer.

In UbiCollab all information is gathered around the concept collaboration instance. A
shared display system should also use the collaboration instance as the unifying term.
All information that is shared in a collaboration instance should be easy to associate
with a shared display if any with capabilities to visualise the information exist in the
system.

It is important that DISCOlab uses the existing services in the system. For instance
should the privacy service be used to filter content that is being shared and be the
service that provides the protection of the content.

An API for communicate with the Content Server must be defined. This API should

5.7. CONTEXTUALISING THE INFORMATION 47

UbiCollab

Native service
 Native service
 Native service
 Native service

DISCOlab

Content Servers

API

DISCOlab

Visualising

Display

DISCOlab

Visualising

Display

Figure 5.3: DISCOlab: a part of the UbiCollab API

integrate the services that are on the UbiCollab platform. A developer should use this
API when he is developing shared display systems on top of UbiCollab. The API
should extend the API already present at the platform and keep the UbiCollab API
gathered at one place. The DISCOlab should be visible to the users as one of the core
services that UbiCollab provide.

With this solution we offer a consistent API located at one place to the developer for
all functionality on the UbiCollab platform. A developer can access the DISCOlab
functionality and at the same time access the basic services at the UbiCollab platform.
It is less complex to contextualise the shared information and get context information
from the shared information. We will then have a system as in figure 5.3.

Requirements

R-16: The DISCOlab API should be integrated with the UbiCollab API.

R-17: The basic services of UbiCollab should be used to contextualise the shared
information.

R-18: It should be easy for a developer to obtain context information, ie. collaboration
instance, presence of users, locations, resources, etc., concerning the shared dis-
play application and the collaboration that is taking place in the shared display
application.

48 CHAPTER 5. ANALYSIS

Summary

In this chapter an analysis has been done on how a toolkit should provide the necessary
features to a developer wanting to develop a shared display system for the UbiCollab
platform needs. The analysis has been based on the research questions raised in the
Problem Elaboration, chapter 3. All research questions have been treated in this chap-
ter. The decisions made in the analysis will form the basis for the design DISCOlab
presented in the following chapter.

Chapter 6

Conceptual design

In this chapter the conceptual design of DISCOlab will be presented. The design
decisions done should reflect the requirements that were elaborated in the analysis.

6.1 Conceptual model of DISCOlab

From the entities defined in the analysis a conceptual model has been elaborated. Fig-
ure 6.1 presents the system entities and the basic communication links. DISCOlab
defines three basic entities as described in requirements R1-R3. Also solutions that
implements requirements R5, R6, R7, R9, R10, R11, R12, R14 and R15 will be pre-
sented in this section.

6.1.1 Content Server

The Content Server is the entity that handles the sharing of some content. The Content
Server does this by defining one or more Services that handle and actually do the
sharing of some content. When a user wants to use one or more of the Services that the
Content Server has, the interested part can download a description list of the services
with information regarding the services, address information and what device they are
designed for. A description of the Content Server is accessible for clients and what
type of content the Content Server support is defined.

The Content Server is independent of Visualising Displays. It will share content in a
centralised fashion. The Content Server can be ran from anywhere in the network, as
long as it is visible to the UbiCollab platform.

49

50 CHAPTER 6. CONCEPTUAL DESIGN

6.1.2 Service

A Service is shared by Content Server. A Service should share the content, control the
content and interact with the content. An event log from the interaction with the Ser-
vice could also be provided. It is in the Service a developer defines the application the
developer is to develop. The Service should work as an interface from DISCOlab and
UbiCollab to the application. The Service interface will be downloaded by Visualising
Displays that will run the application defined in the Service remotely. The applica-
tion defined in the Service should have a graphical representation that the Visualising
Display can visualise.

A Service should in addition to be represented graphically as an application have a
UPnP representation that makes it accessible for devices not running Java or not im-
plementing a Visualising Display.

All information that is saved in a Service should be stored in either files or in database.
This is left to the developer of the application to decide, because this is highly appli-
cation dependent.

6.1.3 Visualising Display

A Visualising Display is a client side interface for visualising information shared by
the Service. The Visualising Display is a GUI component that handles all interaction
and visualising of a Content Server’s Services. The Visualising Display can only be
connected to one Content Server at the same time. This can in future versions be
expanded to support several connections.

The communication between a Visualising Display, and the Content Server and it’s
Services is abstracted for the developer. A developer should only need to focus on
implementing a client that has a Visualising Display, implement an application with a
Service interface that is added to a Content Server. The Visualising Display’s size and
type of device should be sat. Also should the Visualising Display have attributes telling
whether the Visualising Display is a public or private display and if it is interruptible
or not.

When a Visualising Display downloads a description of the Content Server’s Services
it will by default visualise the Service it has capabilities to visualise. Restrictions on
the capabilities will typically be size of screen, bandwidth and other hardware limita-
tions. The Visualising display should be connected to a Content Server on a session-to-
session basis. It will not in this version be possible to subscribe a Visualising Display
to a Content Server over several sessions. If this feature is wanted by a developer, this
can be developed in the application implementing a Visualising Display.

Configuration information for the entities in the system will be hard coded and/or saved
in configuration files.

6.2. API AND COMMUNICATION 51

UbiCollab platform

ContentServer

VisualisingDisplay

N x Service

WebServices

UPnP

SOAP

JAVA RMI

UPnP

SOAP

API

Figure 6.1: DISCOlab overview

6.2 API and communication

In this sections requirements R4, R8, R13, R16, R17 and R18 will be covered.

The entities in the system needs to have ways to communicate and exchange infor-
mation. As seen in figure 6.1, the Content Server is accessible through the UbiCollab
platform API. The same is for the Visualising display. The platform API should defin-
ing methods that is relevant for initiation and setup of the subscription of content from
a Content Server to a Visualising Display.

Using the web service of the platform to contact Content Servers and Visualising Dis-
plays makes it easy to integrate the DISCOlab entities with the rest of the platform.
This also makes it easy to use the basic services of UbiCollab to contextualise the
information and the entities in DISCOlab. A developer will at the same time only
have to deal with one API when using the platform and DISCOlab. When a session is
initiated between a Content Server and a Visualising Display the communication will
proceed peer-to-peer between the two peers, or a Content Server and a device that gets

52 CHAPTER 6. CONCEPTUAL DESIGN

the Services over some platform independent middleware protocol.

A Content Server and Visualising Display should have a dynamic discovery mecha-
nism like the UbiCollab services, so that the UbiCollab platform can discover Visual-
ising Displays and Content Servers dynamically.

DISCOlab should use the basic services to contextualise information and the enti-
ties. For instance, a Content Server must be member of a collaboration instance to
be subscribable to a Visualising Display, the same is for Visualising Displays and the
information that should be shared by a Content Server. The location service gives lo-
cation information on Visualising Displays. For protection of information, DISCOlab
should use the privacy service to filter the information and entities of DISCOlab. The
requirement that the entities must be members of a collaboration instance, makes it
easy to access the context information that a sharing session should have.

6.2.1 API

The DISCOlab API should be located with the UbiCollab API at the same web service.
This will make it easier to contextualise the information and also will it be better for
developers using UbiCollab. The API should provide the following basic DISCOlab
functionality:

• Searching for a Content Server that supports sharing of some specified content.

• Adding and removing content to a Content Server.

• Subscribe and unsubscribe a Visualising Display to and from a Content Server.

For the rest of information retrieval and protection the basic services of UbiCollab
should be used. The privacy service will filter the information and content that is to
be shared by a Content Server. The location service will handle search queries such
as “find closest Visualising Display to user X” and give location information through
user and resource profiles. For getting information in one context, the collaboration
instance will provide this information. The collaboration instance will also provide
information on the users and resources associated with it. Furthermore it will give
presence information on the users. Putting the DISCOlab entities in a contextualised
setting is done in the DISCOlab API. To access the API, information relevant to the
user-session and collaboration instance must be submitted. This information will be
used to deduce contextual information relevant to a sharing session.

Summary

A design of DISCOlab is presented. This design is to be implemented so that a devel-
oper can use DISCOlab to easily develop shared display applications on UbiCollab.

Chapter 7

Prototype

In this chapter I will present the prototyped version of DISCOlab with the implemented
solutions. I will present important interfaces and key objects in the architecture to
explain how they work and how they shall be used to develop a shared display system.
I will also state the reason for my solutions. First I will give a short description of the
technology used, then I will explain the Content Server and Visualising Display along
with the components. Finally, I will describe how the interaction between the Content
Server and Visualising Display is done.

The prototype implements the architecture presented in the design. A Content Server
has been created with a Service that defines the application. Furthermore a Visualising
Display that can display the application defined by the Service is implemented. DIS-
COlab is implemented as a proof-of-concept and more work has to be done to make it
a fully functionable and error handling system.

7.1 Technology

For the implementation of DISCOlab, Java 2 Standard Edition version 1.4.2 [J2S] has
been used. Today Java can run on almost any device and is thus more or less platform
independent. Java has also been used in the implementation of the UbiCollab platform
and it was natural to continue the use of Java in the platform.

To make the Content Server and Visualising Display dynamically discoverable, the
Universal Plug and Play (UPnP) [UPn] framework has been used. The CyberLink
UPnP API [Cyb] provided the functionality to do this. The motivation behind using
UPnP for dynamic discovery is the fact that UPnP has been used in previous UbiCollab
project and is the only dynamic discovery mechanism supported by the platform. UPnP
uses SOAP [SS00, SOA] for communication. SOAP is platform independent and thus
contributes to the arguments for using UPnP. To extend DISCOlab to support other
discovery protocols will not require much work and can be done if it is necessary.

53

54 CHAPTER 7. PROTOTYPE

Since a Visualising Display should support to display any type of information without
pre-session configuration and installation of software, a way of dynamically download
program code and run it on the fly was needed. To do this Java Remote Method Invo-
cation (RMI) [RMIa] was used. This because Java already was in use to implement the
software and also because Java RMI has the functionality needed and that it is platform
independent.

The communication with the UbiCollab platform is done over the web services at the
platform.

7.2 Content Server

The Content Server is the server side part of DISCOlab. It is here the shared display
application should be defined and where all synchronisation and sharing of information
should take place. The Content Server is built up around two important interfaces, the
ContentServer and the Service, see figure 7.1. I will first describe the Service and then
the Content Server.

Figure 7.1: The Content Server interfaces

7.2. CONTENT SERVER 55

7.2.1 Service class

The Service class is the entity and interface where the developer shall define the shared
display application. The Service class is an abstract class that will be a super class for
the application core class. From the Service class the developer can access and set
all necessary information to handle sessions with the different collaboration instances
that use the application, get information for each user, set up configurations that a
Visualising Display can access to personalise the application, add one or more visual
representations of the application, etc.

The Service has several important classes that it uses and is dependent on to distribute
the application developed. These are RemoteContainer, DISCOlabContainer and Ses-
sion, see figure 7.1. The RemoteContainer is used by Java RMI as communication
medium. The RemoteContainer includes a DISCOlabContainer and is downloadable
by clients. The DISCOlabContainer is a graphical component that serves as the inter-
face for the shared display application. It is an abstract class that will be implemented
by the graphical front-end of the shared display application. The DISCOlabContainer
can be downloaded through the RemoteContainer and be visualised by the Visualis-
ingDisplay. A shared display application can and should support several device types
with different display capabilities. For each display that is supported by the applica-
tion, a developer should implement a new DISCOlabContainer and define it in a sep-
arate RemoteContainer. In the RemoteContainer the developer can specify the device
type. When a Visualising Display is subscribing to a Content Server it will download
the corresponding RemoteContainer that has a DISCOlabContainer with the graphical
interface suitable for the device type.

The Session class is the class that handles the active Sessions in the Service and Con-
tentServer. The class is used by the Service for routing of messages and updates to the
correct collaboration instance.

7.2.2 ContentServer class

The ContentServer class is the part of the Content Server that handles all application
independent functionality in the Content Server, in contrast to the Service class which
is highly application dependent. The ContentServer class is created with the mission
to support the Service class in distributing the application and handle communication.
It is the interface for the ContentServer package that can be seen in figure 7.2. The
ContentServer class takes care of creation of new sessions that are created when a
collaboration instance needs the services of the Content Server. It also prepare the
RemoteContainers in the Service class to be downloaded by clients.

56 CHAPTER 7. PROTOTYPE

Figure 7.2: The Content Server package

In figure 7.2 the UPnP interface, ContentServerDevice, can be seen. This class is the
central class for the package. It sets up UPnP communication and defines the Basic-
Service. The BasicService is the class that handles communication with the UbiCollab
platform and that is implementing the functionality in the Content Server API. Fur-
thermore the package is defining the class RMIServer. This class is responsible for
making the shared display application defined in the Service downloadable for clients.

The Content Server API is accessible through the UbiCollab API and is used by the
UbiCollab API to initiate and set up sessions with the Content Server. The Content
Server has the following interfaces to support this:

• checkContentType: Tells if the Content Server supports the submitted content
type or not.

• register: Registers a collaboration instance to the Content Server.

• unregister: Unregisters a collaboration instance from the Content Server.

• addContent: Adds the content to a collaboration instance session in the Content
Server, specified with a url.

• removeContent: Removes the content from a collaboration instance session
specified in an url.

• getRMIDescription: Returns a xml description of the Content Server’s appli-
cations and information needed to connect and download the applications.

7.3. VISUALISING DISPLAY 57

7.3 Visualising Display

The Visualising Display is the client side part of DISCOlab. A Visualising Display can
be implemented by a client and displayed. It has a graphical front-end that is visualis-
ing the application that has been subscribed to and downloaded from a Content Server.
The subscription to a Content Server can be invoked remotely or locally through the
UbiCollab web service.

In the figure 7.3 the components of a Visualising Display can be viewed. The class
VisualisingDisplay is the interface class that visualises the shared display application
that is downloaded to the client. The class is a graphical container. The Visualis-
ingDisplay class lets you configure it with user settings and information about the
collaboration instance, both previous to a session but also during the session. The Vi-
sualisingDisplay feeds the downloaded DISCOlabContainer with this information so
that the downloaded shared display application can get access to the user information
and contextualise and personalise the application to the user. It also has methods to
update the Visualising Display. A Visualising Display can be sat to be updated with a
preferred refresh rate.

To support the functionality in the Visualising Display several components has been
created as seen in figure 7.3. The VisualisingDisplayDevice is a UPnP enabled device
that is the central component in the Visualising Display. The VisualisingDisplayDe-
vice advertises itself to the network and starts up a UPnP service, the BasicService,
that will handle the communication with the UbiCollab platform. It also creates a
RMIClient that can download Java RMI objects, ie. RemoteContainer, and export a
VisualisingDisplay to the RMIServer specified in the Content Server.

The BasicService specifies a few methods that functions as the interface to the Visual-
ising Display and that supports remote invocation of sessions with a Content Service.
These are as follows:

• subscribeToContentServer: Receives a url and description of a Content Server
and connects the Visualising Display to it. Initiates download of the application
distributed by the Content Server.

• unsubscribeToContentServer: Teares down the connection with a Content
Server and resets the Visualising Display so it is prepared for a new session.

58 CHAPTER 7. PROTOTYPE

Figure 7.3: The Visualising Display classes

7.4 Interaction between the Content Server and the Visual-
ising Display

To enable communication between Content Server and Visualising Display, remote
invocation of the VisualisingDisplay, and to download the application from a remote
location, several steps have to be taken in the system. I will in this section introduce to
the reader how this is done in DISCOlab.

To initiate a session between a VisualisingDisplay and a Content Server the steps il-
lustrated in figure 7.4 are followed. A client gets access to the entities through the
UbiCollab web service. See section 7.5 for the web service methods for doing this.
First a user searches for a Content Server that supports the content to be shared. If
found, the user adds the Content Server to the collaboration instance, before the user

7.4. INTERACTION BETWEEN THE CONTENT SERVER AND THE VISUALISING DISPLAY59

connects a client running a Visualising Display to the Content Server. The user can use
the UbiCollab web service to search for a client running a Visualising Display. The
search can have different criterias such as location or name of Visualising Display.
After the Visualising Display has subscribed to the Content Server, the application
version at the Content Server that the Visualising Display can display will be sent to
the display and visualised at the screen.

Figure 7.4: Initiation of a session using UbiCollab web service

When a Content Server gets a request to register a new collaboration instance, it reg-
isters RemoteContainers at the RMIServer for that collaboration instance, see figure
7.5. When a Visualising Display is asked to subscribe to a Content Server in BasicSer-
vice, it forwards the RMI description xml file to the RMIClient which in turn connects
to the RMIServer. When the RMIClient connects to the RMIServer it downloads a
RemoteContainer, using Java RMI. The RemoteContainer lets the Visualising Display
register itself to the RMIServer that adds the Visualising Display to the Session ob-
ject of this collaboration instance (each collaboration instance keeps a session object).
The Session object updates the Visualising Display by adding the shared display ap-
plication graphical front-end, the DISCOlabContainer, to the Visualising Display. The
DISCOlabContainer is sent to the Visualising Display and visualised at the client’s
screen.

60 CHAPTER 7. PROTOTYPE

Figure 7.5: Communication between Content Server and Visualising Display

7.5 Integration with UbiCollab

As mentioned above, the UbiCollab web service is used to initiate all sessions be-
tween Content Servers and Visualising Displays. The UbiCollab web service will pro-
vide access to DISCOlab entities at the same level as other services and components
of UbiCollab. This makes it easy for developers to use information and get context
information related to DISCOlab.

This is the UbiCollab web service that should for communication with DISCOlab en-
tities:

• searchContentServer: Searches for a Content Server that can share content of
a specified type or functionality, eg. PDF files or whiteboard.

• addContentToContentServer: Adds content to a Content Server, eg. a PDF
file that should be shared.

• removeContentFromContentServer: Removes some specified content from
the Content Server.

• sunscribeToContentServer: Subscribes a Visualising Display to a Content Server.

• unSubScribeFromContentServer: Unsubscribes a Visualising Display to a Con-
tent Server.

7.5. INTEGRATION WITH UBICOLLAB 61

The developer should use the web service of UbiCollab to get contextual information
about the entities built on DISCOlab. Such information can be; what collaboration
instances does Content Server X be a member of? Where is the closest Visualising
Display to user Y? An overview of the Web services can be found in appendix C.

DISCOlab offers a class, WebService, for communicating with the Web service at
UbiCollab. In figure 7.6, the WebService class along with the classes CollaborationIn-
stance, Person and Resource can be seen. The last three classes instantiate: a collabo-
ration instance, a user or person in UbiCollab, and a resource, which can be a physical
or logical resource, eg. a PDA, PDF document, etc. The collaboration instance will
keep information on all resources and persons that are members of the collaboration
instance.

62 CHAPTER 7. PROTOTYPE

Figure 7.6: Classes for UbiCollab communication and instantiations

Summary

In this chapter I have presented the prototype of DISCOlab. We have seen that a
toolkit is developed that can be used to implement shared display applications on the
UbiCollab platform. DISCOlab can be accessed through the UbiCollab web service.
In the next chapter I will demonstrate how DISCOlab has been used to create a shared
display application.

Chapter 8

Demonstration

To demonstrate how DISCOlab can be used to create a shared display application, a
Messageboard has been developed. I will in this chapter first describe how I used DIS-
COlab to implement the Messageboard. The Messageboard was implemented to verify
that a shared display system can be implemented using DISCOlab, and to illustrate a
relevant subset of features DISCOlab provide to the developer. The Messageboard
is only implemented for a personal computer, while DISCOlab is designed to sup-
port other devices as well with the only requirement that the devices run Java. I will
therefore give a hypothetic description of how DISCOlab would be used to extend the
Messageboard, to give support to a PDA, to illustrate that a DISCOlab application can
be extended to give support to several types of devices.

To demonstrate that DISCOlab can be used for other types of applications as well,
I will present a hypothetical drawingboard application and describe how a developer
would use DISCOlab to implement it.

8.1 Messageboard application

The demonstrator is demonstrating one type of shared display application that can be
developed on DISCOlab. The dimensions the demonstrator follows are: asynchron
communication, that is both co-located and distributed and it supports informal collab-
oration. By co-located communication I mean that the Messageboard will give support
to users that are co-located, but not present at the location at the same time.

First I will describe the Messageboard and how it is implemented on a Content Server,
then I will give a description of a client implementing a Visualising Display for visu-
alisation of the Messageboard.

63

64 CHAPTER 8. DEMONSTRATION

8.1.1 Messageboard on a Content Server

The Messageboard application is an applications that gives users of a collaboration
instance the possibility to send messages to the collaboration instance from different
locations. In figure 8.1 the Messageboard can be seen in the Visualising Client. The
Messageboard is implemented for personal computers.

As the reader can see in figure 8.1, the Messageboard application has three parts. These
are from upper left the collaboration instance section of the window, the message list
and finally the message input section in the lower right corner.

Under the DISCOlab Messageboard logo, the user that is logged into the client is dis-
played. The user’s presence in the collaboration instance is also displayed to the user,
so that the user knows how he is perceived by the other members of the collaboration
instance. The presence information on the user is deduced from the collaboration in-
stance, since the collaboration instance is the context in which the user is. Finally the
location of the user is presented. The location is to be queried from the location service
at the UbiCollab.

The context information that is provided in the Messageboard is accessed over the web
service interface at UbiCollab. This is done through the WebService class that is pro-
vided by DISCOlab. The results of the queries is used to build objects representing
entities in the UbiCollab platform, like Collaboration Instance, Person and Resource.
Location information should be access through the Person object. Presence informa-
tion is deduced from the Collaboration Instance in which a person is member of.

I will point out that this demonstrator has the purpose to demonstrate also how contex-
tual information can be gotten from the UbiCollab platform and used by DISCOlab. At
the time present the services presence service and location service is not fully devel-
oped, thus the location- and presence information is not fully obtainable. Therefore,
for the demonstration, fake locations and presence values are feed into the configura-
tion of the Visualising Display to illustrate how the information could be used if the
service was fully functional. All other information is obtained from the UbiCollab
platform.

The collaboration instance is showed in the top left corner section. Here, all the mem-
bers of the collaboration instance is visible. For each person in the collaboration in-
stance the user can see the name, presence and location. Also the colour on each
person will change dependent on what presence the user has. For this application there
are three presence levels; offline which is indicated by red, away which is indicated by
blue and present which is indicated by black.

In the message list, the messages will be displayed along with which user submitted it
and what time the message was sent to the Messageboard, see figure 8.2.

8.1. MESSAGEBOARD APPLICATION 65

Figure 8.1: The DISCOlab Messageboard

Figure 8.2: The DISCOlab Messageboard after sending messages

Implementing the Messageboard using DISCOlab

When implementing the Messageboard I had to follow the following steps.

As seen in figure 8.3 I first created the classes that realised the Service and the DIS-
COlabContainer. These was the MessageBoardService and the MessageBoardPanel.
From each of this classes I developed the Messageboard. The MessageBoaredService
is the class that handles all updates and forwards messages to the correct collaboration

66 CHAPTER 8. DEMONSTRATION

instance while the MessageBoardPanel is the application’s graphical front-end.

The Messageboard sends the messages over UPnP using SOAP. Each message is re-
ceived at the Content Server and handled by the MessageBoardService. The Message-
BoardService looks up the correct Session using the collaboration instance as identi-
fier and updates the correct MessageBoardPanel. The MessageBoardService works as
a server and the MessageBoardPanel as a client or client side application.

A question that the reader must have raised by now is how the Messageboard gets
the collaboration instance information and the user information and how this can be
updated in the Visualising Display. The DISCOlabContainer has an abstract method
that the MessageBoardPanel realise. This is a update method. In this method all
dynamic updates will be done. This method is called by the Visualising Display every
time it is refreshed.

Figure 8.3: The DISCOlab Messageboard architecture

8.1.2 Client with Visualising Display

The client is a graphical window that has added the Visualising Display as it’s only
component. It will be ran at a personal computer and will because of that only be ca-
pable of showing DISCOlabContainers that are accessed through a RemoteContainer
that is accessible for devices of typepersonal computers. The client will after startup,
be waiting for remote invocations. The client has not implemented any features for lo-
gin or local controlling, although this is supported by the Visualising Display. This
because I consider it out of the scoop of this project and that the time available is
limited.

8.2. EXTENDING THE MESSAGEBOARD, GIVING SUPPORT FOR A PDA67

The login to the client will be done from a remote location, using a UbiCollab client
that has the needed capabilities. The information submitted from the remote location
like the user that logs into the client and what collaboration instance the user is using
the client in, will be used to configure the Visualising Display. This will in second
hand be used by the Messageboard to contextualise the application for the user. This
is done through previous mentioned interfaces like the DISCOlabContainer and the
Service, see chapter 7.

In figure 8.4 the default DISCOlab screen in a Visualising Display can be seen, previ-
ous to a session with a Content Server.

Figure 8.4: The default DISCOlab screen

I emphasise that the client with the Visualising Display is a generic client for all types
of DISCOlab applications, ie. the client is not implemented to support only the Mes-
sageboard, but will visualise any application that has implemented the interfaces de-
fined at the Content Server, the DISCOlabContainer and the RemoteContainer.

If the client was to switch between or from another application, this is done by sub-
scribing to the Content Server implementing the other application.

8.2 Extending the Messageboard, giving support for a PDA

In this section I will describe how a developer would proceed to implement support for
a PDA, in the Messageboard, by using DISCOlab.

Before the PDA can visualise any content from a Content Server, it needs to implement
the Visualising Display. This can be done by adding the Visualising Display to a
graphical window at the PDA, using Java. The PDA also needs to have the Java 2

68 CHAPTER 8. DEMONSTRATION

Platform, Micro Edition (J2ME) [J2M] and the J2ME RMI Optional Package, (RMI
OP) [RMIb] installed to run DISCOlab. Now, let us say that this is done and that we
want to add functionality to the Messageboard, so that a Visualising Display at a PDA
can subscribe to it.

In figure 8.5 we can see how the Messageboard could look like at the PDA. The Mes-
sageboard is looking similar to the version implemented for the personal computer,
but is scaled down to PDA screen resolution and can handle other input devices than a
personal computer.

The Messageboard is already implemented in the Content Server. What is missing
is a GUI application front-end that is adapted to the PDA. The GUI application front
end should be created as a sub class of DISCOlabContainer. The GUI should be built
using standard Java Swing components and be display in an appropriate way for a
PDA. The GUI needs also take into consideration the input devices of the PDA and
use listeners that communicate with these. The application logic does not need to
be changed, since this is independent of the device type. When this is done, the class
implementing the DISCOlabContainer should be added to a RemoteContainer with de-
vice type sat to PDA. After the RemoteContainer and the DISCOlabContainer classes
are implemented, the RemoteContainer can be added to the Service that is added to the
RMIServer by the ContentServer class.

When this is done, the PDA should be capable to subscribe to the Content Server
having the Messageboard, and use the application in a similar way as the personal
computer.

8.3. A DRAWINGBOARD APPLICATION 69

Figure 8.5: Messageboard for a PDA

8.3 A drawingboard application

The Messageboard is an application that is asynchronous and mainly giving support for
informal collaboration. It can be a trigger for more formal collaboration by providing
a medium that people can switch to more formal collaboration by using, for instance a

70 CHAPTER 8. DEMONSTRATION

drawing tool to illustrate some ideas.

I will in this section describe how DISCOlab would be used to implement a drawing-
board. The reason for which I choose a drawingboard, is that this in contrary to the
Messageboard is a synchronous application, giving formal support. The drawingboard
can be used both by co-located and distributed parties, while the Messageboard would
mainly be used by distributed people or co-located, but asynchronous - at different
points in time - present at the location of the Messageboard. By using the drawing-
board and the Messageboard as demonstration I will illustrate that DISCOlab can be
used to develop applications following all the dimensions discussed in chapter 2.

In figure 8.6 we can see how the drawingboard can look like on the DISCOlab client.
To implement the drawingboard on a DISCOlab Content Server the following steps
must be taken. For the drawingboard itself a free-ware application could be used. The
drawingboard should be added or created as a DISCOlabContainer and the necessary
steps must be taken to integrate it with DISCOlab, like adding it to a RemoteContainer
that is handled by a Service implementation.

In the Service subclass implementation, let us call it DrawingBoardService, the syn-
chronisation of the different drawingboards has to be done. The Service manages a
list with all the sessions on each collaboration instance. From this list the Service can
get all the clients subscribing to the drawingboard server, and hence update them when
events occur in the drawingboard. The DrawingBoardService should have a thread
checking all the drawingboard clients if there have been any updates. An update is
set as a flag in the drawingboard at the client side. This can be checked by the Draw-
ingBoardService. When an update is detected, the DrawingBoardService will update
all other Visualising Displays in the collaboration instance that is subscribing to the
drawingboard.

Since the implementation of the drawingboard has not been done, it is difficult to say
that this is a working example. However, say that the implementation is done and
working, we will have two DISCOlab applications running on two Content Servers. A
collaboration instance that would like to use the applications would be able to search
for Content Servers that can send messages and that the users can make illustrations
on.

Say that there are two users having some informal collaboration on the Messageboard
and they decide to follow up on some ideas that one of them has. He wants to illustrate
his idea and suggest that they use the drawingboard. He will search for the drawing-
board, and send it to the Visualising Display of his colleague and his own Visualising
Display. When he has made his illustrations they can switch back to the Messageboard
and go on discussing his idea.

8.3. A DRAWINGBOARD APPLICATION 71

Figure 8.6: A drawingboard application

Summary

In this chapter a demonstration of what DISCOlab can do, has been done. The demon-
strator shows that a Messageboard application can be implemented and run as a Con-
tent Server. The Content Server is dynamically discoverable by the UbiCollab plat-
form. A client to the platform can access the Content Server through the UbiCollab
web service.

With the Messageboard demonstrator I have verified that DISCOlab is a working im-
plementation of the toolkit. I have illustrated how DISCOlab can be used to add sup-
port to the Messageboard to support not only visualisation of the Messageboard on a
personal computer, but also on a PDA. This shows that DISCOlab can support several
types of devices.

Furthermore I have discussed how DISCOlab can be used to create a synchronised
drawingboard. This has been done to show that DISCOlab support not only creation
of one application, but can support implementation of several types of applications,
covering the dimensions of a shared display discussed in chapter 2.

The Messageboard shows that DISCOlab contextualises the information. The context
information is not lost when switching from one application to another, ie. from the

72 CHAPTER 8. DEMONSTRATION

Messageboard to the drawingboard.

Finally, we can see in the demonstrator that DISCOlab can dynamically be detected
by the UbiCollab platform. Users can search for Content Servers that have the needed
functionality when the user needs it. A device running a client with a Visualising Client
can be detected by the UbiCollab platform, and a user can search for a Visualising
Display by location and get the information on the closest Visualising Display. The
user can display all information that is supported by a Content Server in the UbiCollab
environment on that display, as long as it is supported by a Content Server.

Chapter 9

Evaluation

The thesis resulted in the development of a toolkit called DISCOlab, that supports the
creation of shared display systems on top of the UbiCollab platform. A prototype has
been developed, see chapter 7, based on a conceptual model, see chapter 6. A shared
display system was developed as demonstrator, see chapter 8, using the prototype to
demonstrate and evaluate how the toolkit could be used to create a shared display
system on UbiCollab.

In the introduction chapter the following expected results for this master thesis were
defined:

• A toolkit for developing shared display systems on UbiCollab, with focus on
providing access to the UbiCollab services, should be developed.

• A demonstrator of a shared display system will be developed, using the toolkit.
This demonstrator will evaluate how the toolkit can be used to develop a shared
display system running on the UbiCollab.

In DISCOlab the focus has been to create a flexible infrastructure to build shared dis-
play systems on. This has been achieved by building the toolkit on the UbiCollab. By
using UbiCollab we have seen that contextualisation of information has been achieved.
Furthermore, DISCOlab has provided UbiCollab support to: let users of the platform
to get access to shared displays where you need them - when you need them, eg. send
the drawing board to your colleague’s screen so he can illustrate what he means, and
developers to build such systems on top of UbiCollab without focus on low level im-
plementation issues, ie. communication, session management, device identifying, etc.
DISCOlab does not give specific support to any type of shared display application in
itself, ie. there is no tools in DISCOlab that supports you in implementation of typical
shared display features like multiple mice pointers, synchronising screens, etc.

Typical shared display features have not been the focus of several reasons. Because
DISCOlab was to support so many different types of shared display applications, the

73

74 CHAPTER 9. EVALUATION

domains would be too large to provide specific support for all types of shared displays.
Furthermore, many toolkits exists today that give this support, so this functionality
was already provided. The idea is that developers instead can use the toolkits to im-
plement the support in the application and integrate the application on DISCOlab that
will provide the developer with a infrastructure supporting shared displays and contex-
tualisation of information, see figure 9.1. If DISCOlab was to give support to specific
shared display systems, the scope of support that DISCOlab would provide would be
too wide and had to be reduced, for instance only giving support to synchronous real-
time applications for formal collaboration.

Figure 9.1: Shared displays in DISCOlab

9.1 Research method

The research method in the project has been scenario based and prototype driven.
Scenarios have been used to elaborate a set of research questions to build the analysis
and the design. A toolkit prototype was developed and a demonstration system was
used to evaluate the toolkit prototype.

Using scenarios to drive the research has been a method working well. The scenarios
have illustrated many aspects of shared display systems. They have been a driver to
identify requirements and functionality that the toolkit needed to support in different
types of shared displays. Furthermore, the scenarios put UbiCollab in perspective to
the toolkit. However, the scenarios might not be covering important aspects that should
have been looked into and thus have been overlooked since the focus has been on the
scenarios.

Using a demonstration system as an evaluator of the toolkit prototype has been an ef-
fective way of evaluating the prototype. Using the prototype to create a demonstrator
highlighted how the prototype was in use and short-comings that it had. It has been
verified by implementation that the prototype can be used to implement a shared dis-
play system. Most of the work when developing the demonstrator has been lied down
in GUI issues, even though some time was used on bug fixing in the prototype and
adding some low level functionality, like better support for dynamic updates, better
session management, etc. However, the evaluator had limited functionality, ie. not

9.2. THE CONCEPTUAL MODEL 75

covering all dimensions of shared displays discussed in chapter 2. Because of this, it
has not been proven that the prototype gives support to functionality not covered in the
demonstration system.

9.2 The conceptual model

The research questions where all addressed in the analysis. The analysis raised 18
requirements to DISCOlab, see chapter 5. All requirements have been looked into and
have been included in the design of the toolkit.

The conceptual model developed has been experienced as a good solution when imple-
menting the prototype. The division into the defined entities,Content Server, Service
andVisualising Display, gives support to separate the functionality in DISCOlab and
provides basic components that UbiCollab recognises, ie. the Content Server and Vi-
sualising Display are incorporated as components in the UbiCollab platform and in the
platform’s web service.

DISCOlab has a weakness that is does not provide any peer-to-peer connectivity be-
tween screens and mobile devices. Visualising clients should have capabilities to com-
municate with devices when they come into range, over protocols like Bluetooth [Blu],
similar to the Speakeasy system presented in section 4.4. This so that the mobile de-
vices could be used to control the screen and initiate sessions at the screen.

9.3 The prototype

The prototype implements the conceptual model presented in the design, chapter 6.
However, some issues have been left out in the implementation because of limited
time for implementation, making it important to focus on core functionality.

In section 4.3, a list of toolkit properties was presented. DISCOlab implement most of
these properties:

• DISCOlab has been implemented in a familiar and well known programming
language, Java.

• It removes low level implementation burdens like session management, commu-
nication, adaptation to UbiCollab, data sharing, etc.

• It presents itself through a concise API and makes things achievable in a few
lines of code, things that would otherwise be complex.

I will say that DISCOlab satisfies the properties well. However, the programming API
could be more intuitive and easy to use. Because of the experience level, some unfore-
seen implementation issues came up. This this can have lead to that the functionality

76 CHAPTER 9. EVALUATION

has been spread on too many interfaces in the toolkit. It can also be confusing for
a developer to know what information that is dynamically sat in the Visualising Dis-
play and how to implement this and use it in the shared display application that is in
development.

Creating a Visualising Display that would run at a client has been a good solution. This
way the developer do not need to alter clients when a new shared display system is
developed. A client can be implemented with as many Visualising Displays as needed.
This way a client can subscribe to several Content Servers at the same time, eg. if a
user wants to use the Messageboard and the drawing board at the same time.

However, some functionality has been left out. A Visualising Display can not set the
display interruptible or not interruptible, requirement R-14. The Visualising Display
should support to download and run programs without any pre-session configuration.
However, using Java RMI requires the Visualising Display to have local access to the
class files of the application that it is to visualise. This was discovered at the end of
the implementation. This can be solved by installing the required class files previous
to a session or the class files can be downloaded when needed. The last solution is the
best. How much work that must be done to fix this problem is difficult to estimate. A
revision must be done in the future that solves this problem.

To protect the information shared in a Content Server, it is required that the Content
Server is added to the collaboration instance that the content is being shared. Other
protection like filtering of information and visibility of other members of the collab-
oration instance should be implemented in the privacy service. However, DISCOlab
should have provided support for giving access to alter and control shared display ses-
sions in DISCOlab. This feature has been left out, because of time restrictions, and is
left for future work.

9.4 Simplifications in DISCOlab

Several simplifications have been done in DISCOlab. In the analysis I presented an
idea having a application library with shared display applications. This simplification
was done to reduce complexity of the task. In retrospect this was a good decision. To
implement such a structure would be very time consuming and superimpose many new
challenges that would be difficult to solve in the time frame of the project.

In relation to the application library it was also discussed if DISCOlab should have a
central or peer-to-peer architecture. Centralised was chosen. For the time being, this
seems like a good solution, because this lets asynchronous applications be available
when no peers use them. In addition, the probability of having overloaded Content
Servers in the system is low. This because each Content Server can give support for
one application, having several Content Servers in UbiCollab.

The location, privacy and presence services have not been used in the project, because

9.4. SIMPLIFICATIONS IN DISCOLAB 77

the services are not fully functional at the time of implementation. The location service
was under construction when the implementation of DISCOlab was finished. So was
the privacy service. This made it difficult to integrate the work done in those services
into DISCOlab. The location of people has therefore been hard coded and functionality
has to be added to access this information at UbiCollab in the future. To create support
for fetching information from the location service, should not be much work. The
WebService class must add functionality to request information from the UbiCollab
web service and set this in the Person and Resource classes, see figure 7.6. When a
fully functional privacy service is available at UbiCollab, adaptions must be done in
DISCOlab to fully utilise what the service has to offer . At the present time, the extent
of this is difficult to estimate. DISCOlab is prepare to handle a working presence
service.

Summary

In this chapter I have looked at the work from critical point of view. Because of limited
experience in a complex field and time restrictions, the result has some limitations.
However, the end product is a working prototype that give core functionality to build
shared display applications on UbiCollab.

78 CHAPTER 9. EVALUATION

Chapter 10

Conclusion

In this project we have developed a toolkit for shared display systems on the UbiCol-
lab platform. The work has been focused on providing an infrastructure to developers
that abstracts away low-level implementation issues and that provides functionality to
contextualise information in shared display systems, using the UbiCollab platform.
Low-level properties that shared display systems have in common have been inves-
tigated and a set of requirements were elaborated based on scenario driven research.
These requirements were used to develop a conceptual model. The conceptual model
was implemented in a prototype. The prototype was used to create a demonstrator,
used to evaluate the work.

10.1 Summary of contributions

During this project the following contributions have been made:

• Presented research in the field of shared display systems and toolkits for group-
ware.

• Presented a conceptual model for a toolkit providing support for creation of
shared display systems on the UbiCollab platform.

• A prototype has been implemented, providing support to developers of shared
display systems.

• The prototype has been integrated in the UbiCollab platform and its’ web ser-
vice.

• A demonstration has been given, illustrating how the prototype can be used to
develop a shared display system.

79

80 CHAPTER 10. CONCLUSION

10.2 Future work

Through the project several simplifications have been done. These simplifications are
summarised in the list below. The simplifications are left for future work and can be
investigated to improve the functionality of the toolkit.

• Evaluate if an application library for dynamically downloading of applications
when needed by a Content Server or Visualising Display is a better solution than
the present solution, see section 5.1.

• Extend the toolkit, having a subscriber list in DISCOlab, making it possible to
subscribe a Visualising Display to a Content Server over several sessions, ie. the
Visualising Display remembers what Content Servers the user is subscribing to,
see section 5.2 requirement R-7.

• Evaluate if it will be more effective to implement dynamically plug-in down-
loading, instead of remote controlling the contentpane, as in todays solution,
in the client and if so, improve the toolkit by implementing this solution, see
section 5.4 and requirement R-11.

• Solve the class files problem in RMI, described in the evaluation, see section
9.3.

• Add functionality for protection and access control to the content shared in DIS-
COlab, requirement R-13.

• Add functionality to support the location service in DISCOlab, see section 9.4.

• Integrate DISCOlab with the privacy service, see section 9.4.

Bibliography

[ASGH+99] Norbert A. Streitz, Jiirg GeiBler, Torsten Holmer, Shinichi Konomi,
Christian Miiller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and
Ralf Steinmetz. i-land: an interactive landscape for creativity and innovation.
In Conference on Human Factors in Computing Systems. Proceedings of
the SIGCHI conference on Human factors in computing systems: the
CHI is the limit, pages 346 – 353, Pittsburgh, Pennsylvania, United States,
1999. CHI.

[Asy] Definition of asynchronous. http://www.trainingfinder.org/cdc_lingo.htm.

[Bak04] Anders Bakkevold. A shared display system for a ubiquitous computing en-
vironment. Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet,
2004.

[BBC97] P.J. Brown, J.D. Bovey, and X. Chen. Context-aware applications: From the
laboratory to the marketplace.IEEE Personal Communications, 4:58–64,
1997.

[BEN+03] Julie A. Black, W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and
Trevor F. Smith. Supporting extensible public display systems with Speakeasy.
In Kenton O’Hara, Mark Perry, Elisabeth Churchill, and Daniel Russel, edi-
tors,Public and Situated Displays. Social and Interactional Aspects of
Shared Display Technologies, volume 2, pages 359–386. Kluwer Academic
Publishers, 2003.

[BIF+04] Harry Brignull, Shahram Izadi, Geraldine Fitzpatrick, Yvonne Rogers, and
Tom Rodden. The introduction of a shared interactive surface into a communal
space. InComputer Supported Cooperative Work. Proceedings of the
2004 ACM conference on Computer supported cooperative work, pages
49 – 58, Chicago, Illinois, USA, 2004. ACM Press New York, NY, USA.

[Blu] Bluetooth. http://www.bluetooth.com.

[BR04] Anders Magnus Braathen and Hans Steien Rasmussen. Preserving privacy
in a ubiquitous collaborative environment: Extending the UbiCollab platform.
Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet, 2004.

81

82 BIBLIOGRAPHY

[BR05] Anders Magnus Braathen and Hans Steien Rasmussen. Preserving privacy
in UbiCollab: Extending privacy support in a ubiquitous collaborative envi-
ronement. Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet,
2005.

[CF04] Scott Counts and Eric Fellheimer. Supporting social presence through
lightweight photo sharing on and off the desktop. InConference on Human
Factors in Computing Systems. Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 599 – 606, Vienna, Austria,
2004.

[CNLH03] E.F. Churchill, L. Denoue Nelson, P. L., Murphy, and J. Helfman.Public
and Situated Displays, Social and Interactional Aspects of Shared Dis-
play Technologies, chapter The Plasma Poster Network. Kluwer Academic
Publishers, 2003.

[Cyb] CyberLink for java. http://sourceforge.net/projects/cgupnpjava/.

[DA99] Anind K. Dey and Gregory D. Abowd. Toward a Better Understanding of
Context and Context-awareness.GVU Technical Report, College of Com-
puting, Georgia Institute of Technology., 22, 1999.

[DE00] Paul Dourish and W. Keith Edwards. A tale of two toolkits: Relating infras-
tructure and use in flexible cscw toolkits.Computer Supported Cooperative
Work (CSCW), 9(1), March 2000.

[DF04] Monica Divitini and Babak A. Farshchian. Shared displays for promoting in-
formal cooperation: an exploratory study. In F. Darses, R. Dieng, C. Simone,
and M. Zacklad, editors,6th International Conference on the Design of
Cooperative Systems - Scenario-based Design of Collaborative Systems
(COOP'2004), pages 211–226, Hyeres, France, May 2004. IOS Press, Ams-
terdam, The Netherlands.

[DFS04] Monica Divitini, Babak A. Farshchian, and Haldor Samset. UbiCollab: Col-
laboration support for mobile users. InProceedings of the 2004 ACM sym-
posium on Applied computing. ACM, 2004.

[Dou95] Paul Dourish. Developing a reflective model of collaborative systems.ACM
Transactions on Computer-Human Interaction, 2(1):40–63, 1995.

[Ell99] C.A. Ellis. Workflow technology. In M. Beaudouin-Lafon, editor,Computer
Supported Co-operative Work, pages 29–54. John Wiley Sons, 1999.

[Far02] B.A. Farshchian. Presence technologies for informal collaboration. In R.e.
al., editor,Emerging Communication: Studies on new technologies and
practices in communication. IOS Press, 2002.

[Gav92] William W. Gaver. The affordances of media spaces for collaboration. In
Proceedings of the 1992 ACM conference on Computer-supported coop-
erative work, pages 17 – 24, Toronto, Ontario, Canada, 1992. ACM confer-
ence on Computer-supported cooperative work, ACM Press New York, NY,
USA.

BIBLIOGRAPHY 83

[Gon04] Pedro André Cravo da Silva Garcia Gonçalves. UbiClient: a mobile client
for an ubiquitous collaborative environment. Master’s thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2004.

[Gra03] A. Grasso.Public and Situated Displays, Social and Interactional As-
pects of Shared Display Technologies, chapter Supporting communities of
practice with large screen displays. Kluwer Academic Publishers, 2003.

[Gre96] Saul Greenberg. Peepholes: Low cost awareness of ones community. In
Companion Proceedings, pages 206–207, Vancouver, BC Canada, APRIL
13-18 1996. CH196.

[Gre01] Saul Greenberg. Context as a dynamic construct.HUMAN-COMPUTER
INTERACTION, 16:257–268, 2001.

[Gre04] Saul Greenberg. Toolkits and interface creativity. InInvited submission
to the Special Issue on Groupware, Multimedia Tools and Applications.
Kluwer, 2004.

[HRS04] IM here: public instant messaging on large, shared displays for work-
group interactions, Vienna, Austria, 2004. ACM Press New York, NY, USA.

[HT04] David M. Hilbert and Jonathan Trevor. Personalizing shared ubiquitous de-
vices. Interactions, 11(3):34 – 43, May + June 2004.

[J2M] Java 2 platform, micro edition (J2ME). http://java.sun.com/j2me/index.jsp.

[J2S] Version 1.4.2 of java 2 platform, standard edition (J2SE).
http://java.sun.com/j2se/1.4.2/index.jsp.

[LH98] P. Luff and C. Heath. Mobility in collaboration. InComputer Supported
Cooperative Work, pages 305–314. ACM, 1998.

[lot] Lotus corps. SameTime. http://www.lotus.com/home.nsf/welcome/ sametime.

[Ltd05] EDOX Solutions Ltd. Definition of toolkit, 2005.
http://www.edoxsolutions.co.uk/glossary_of_terms.htm.

[MIEL99] Elizabeth D. Mynatt, Takep Igarashi, W Keith Edwards, and Anthony
LaMarca. Flatland: new dimensions in office whiteboards. InConference
on Human Factors in Computing Systems. Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the limit,
pages 346 – 353, Pittsburgh, Pennsylvania, United States, 1999. CHI.

[MSN] Microsoft network (MSN). http://www.msn.com/.

[NC005] MultiView: spatially faithful group video conferencing, Portland, Ore-
gon, USA, 2005. ACM Press New York, NY, USA.

[Net] Microsoft netmeeting. http://www.microsoft.com/windows/netmeeting/.

84 BIBLIOGRAPHY

[OPCR03a] Kenton O’Hara, Mark Perry, Elizabeth Churchill, and Daniel Russell,
editors.Public and Situated Displays, Social and Interactional Aspects
of Shared Display Technologies, volume 2. Kluwer Academic Publishers,
2003.

[OPCR03b] Kenton O’Hara, Mark Perry, Elizabeth Churchill, and Daniel Russell.
Public and Situated Displays, Social and Interactional Aspects of Shared
Display Technologies, chapter Introduction to public and situated displays.
Kluwer Academic Publishers, 2003.

[QN001] Constructing a Web-based Asynchronous and Synchronous Collabora-
tion Environment Using WebDAV and Lotus SameTime, Portland, Ore-
gon, USA, 2001. ACM Press New York, NY, USA.

[RMIa] Java remote method invocation (Java RMI).
http://java.sun.com/products/jdk/rmi/.

[RMIb] J2me rmi optional package, (RMI OP).
http://java.sun.com/products/rmiop/index.jsp.

[Sch04] Christian Schwarz. UbiCollab - Platform for supporting collaboration in
a ubiquitous computing environment. Master’s thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2004.

[SHH04] Masanori Sugimoto, Kazuhiro Hosoi, and Hiromichi Hashizume. Caretta:
a system for supporting face-to-face collaboration by integrating personal and
shared spaces. InConference on Human Factors in Computing Systems.
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 41 – 48, Vienna, Austria, 2004. SIGCHI.

[SJ05] Børge Setså Jensen. Location-aware service for the UbiCollab platform. Mas-
ter’s thesis, Norges Teknisk-Naturvitenskapelige Universitet, 2005.

[SJH04] Børge Setså Jensen and Carsten Andreas Heitmann. Location-aware
service for the UbiCollab platform. Master’s thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2004.

[SOA] Simple Object Access Protocol (SOAP). http://www.w3.org/2000/xp/group/.

[SS00] K Scribner and M.C. Stiver. Understanding SOAP: The authoritative solution.
Technical report, SAMS Press, 2000.

[Syn] Definition of synchronous. http://www.trainingfinder.org/cdc_lingo.htm.

[UPn] Universal plug ’n play (UPnP). http://www.upnp.org/.

[Wei93] Mark Weiser. Some computer science issues in ubiquitous computing.Com-
munications of the ACM, 36 (7):75–84, 1993.

Appendix A

Shared display scenario

The following scenario was used as a guide in the development of a toolkit for shared
display systems at the UbiCollab platform.

It is assumed that the users of the application have logged in with a username and been
invited to the meeting described.

John is a project manager in a telecommunication company. Every Monday morning
the team has a meeting to discuss the progress in the project and make plans for further
advances. This Monday morning John wakes up half an our late and sends a message
to the job that he is running late and that the meeting has to be postponed an hour, too
9.00 am.

When Sylvia gets to the office she can see John’s message at the office’s whiteboard,
that runs a messageboard application. She can also see the reminder for the meeting
telling that the meeting is scheduled in meeting room 2 for 8.00 am. Finally, an easy
Monday morning she thinks for herself. She power on her laptop and starts preparing
for the meeting. She is going to present her advances on the project this morning.

At 9.00 am everyone is seated in the room and Sylvia can start her presentation.
She uses the presentation mode of the big whiteboard hanging on the wall. Halfway
through the presentation John has a question and asks Sylvia if she mind him going
back one slide. John uses his laptop to control the presentation and points at some
figures in the slide asking Sylvia. Sylvia redirects the question to Mary at the other
side of the table. Mary was the one designing the figures that John found questionable.
Mary uses her laptop and switches the shared display to drawing mode. The display
is synchronised with the other computers throughout the session. She maximises the
screen so everyone can have a good look and she starts explaining while she draws.
After a few minutes John is convinced and Sylvia can continue her presentation.

Mark is the next team member that is going to do a presentation. Mark is in Sweden
doing some fieldwork for the project. He has connected his laptop to the shared display
system the others are using. From Sweden he has been able to both look and listen to

85

86 APPENDIX A. SHARED DISPLAY SCENARIO

Sylvia’s presentation and the illustrations on the drawing board done by Mary. Mark
also has been seeing through presence information and context information displayed
in the application which colleges that have been active and contributing to the meeting.
He can see that all the others, except Pepe, are gathered at the main office in Oslo.
Mark starts to explain to the others how things are working out in Sweden using a
headset with microphone. The others listen interested and look at the slides. They can
see that Mark(in Sweden) is underlining important points with his mouse pointer.

Pepe is a Colombian consultant the company has hired for this project. He is working
hand on with the building of the services the company is doing in Colombia. Before
the weekend he downloaded the presentations that the others had added to the meeting.
This way he can follow the presentations without being connected to the platform this
morning. As the presentations proceed he can see at his mobile phone what pages and
documents that are been displayed and discussed. Pepe is moving back and forth in
the presentations and listens while the others speak.

After the presentations John concludes the meeting with some key points on the white-
board. He gives some instructions to the members and they agree upon a todo-list for
the week’s work. John saves the list on the meetings folder in the server.

Appendix B

UbiCollab scenario

The following scenario guided what was going to be implemented in the prototype and
what had to be simplified or left out. The scenario was used as a common link be-
tween the two groups. It is based on the scenario created in the master theses written
by Schwarz, Bakkevold and Goncalves. The reason for basing it on this scenario was
to show that their functionality was still provided after we implemented our enhance-
ments to the UbiCollab platform.

In this project it is assumed that all employees are connected to the UbiCollab plat-
form as long as some connection is available. The users are able to specify different
context settings according to their availability, group belongings and inter-human re-
lationships. The setting can be dynamically managed through different profiles.

Brian and Sylvia are both working at a telecommunication company. They are cur-
rently working on the same project, and Sylvia has some ideas which she would like
feedback on from Brian. Unfortunately he is busy for the rest of the day. She decides
to organize a meeting the next day.

Picking up her PDA, she opens the software client, UbiClient. She then creates a
meeting. The screen asks for time, place and people. She schedules the meeting with
Brian at 12 o’clock the next day at her office (room S, Telenor). She prepares some
slides for the meeting, and adds the relevant files to UbiCollab.

Brian is sent an email announcing the meeting. When he starts Ubi-Client, he can see
the meeting already added on the display of his PDA. He notices that Sylvia already
posted some topics for discussion and some slides are available too.

On Wednesday they meet as planned. They both use their UbiCollab clients on their
PDAs. When they enter the meeting room their status changes from “available” to
“in meeting”. Sylvia notices that the meeting room is equipped with a projector. She
searches for the device with the UbiClient, the client comes up with the closest alter-
natives and she adds the projector to the meeting. She activates the projector, and it
lights up and displays a welcome-screen, and a representation of her and Brian. She

87

88 APPENDIX B. UBICOLLAB SCENARIO

uses the client to display the slides she has prepared on the projector. The projector
shows the file on the display, her representation widget lights up and she uses the PDA
to remotely control the presentation. A small snapshot of the current window shows
up on her display while she taps through the remote control commands.

During their discussion Brian takes his turn of arguing. He accesses the remote control
window on his PDA and jumps to some previous slides of the presentation. His rep-
resentation widget lights up. But still some doubts remain about the feasibility of the
project. Brian suggests that they check with John, which is an expert on that technol-
ogy, and Sylvia agrees. He can see on her UbiClient that John is unavailable (picking
up children in kindergarden). They still need some help and decide to try contacting
Steve the projectmanager for the project. Brian uses his UbiClient to invite Steve to
the meeting. At the time, Steve is in the company cafeteria, logged on with his PDA. A
message pops up on his screen, asking him to join the meeting with Sylvia and Brian.
He confirms.

Steve opens an audio connection to the meeting room and Brian fills him in on their
problems. Steve then wants to look at the slides and searches for a shared display using
his UbiCollab client. The system finds a display in the cafeteria but it is unavailable
for him. He then decides to startup his laptop to use its shared display capability.

By glancing at the meeting information on her PDA, Sylvia can now see that Steve has
joined thanks to a new presence widget which just showed up. Checking his available
devices, she can see that he has a display application similar to the one in the projector.
She says to Steve that she’ll synchronize their displays, so that he can also see the
current slide. She selects the two devices in UbiClient, and synchronizes them. Steve
sees the slide showing up on his screen. He then examines the page and comments
on Sylvia’s remarks. Brian sees that the display is now being shared by all the three
participants.

Steve wants to print out the slides to have a hardcopy to look at and he tells Sylvia
and Brian to hold on while he does so. He uses his PDA and selects the document
containing the slides, and tells the PDA to print it on the nearest printer. The PDA tells
Steve which printer was chosen and shows him a map over where he is located and
where the printer can be found. The PDA asks him to confirm if the printing is ok.
Steve confirms and uses the map to find the printer.

At the same time Alice, which is working on a different project with Sylvia, is trying
to find Sylvia. She opens her UbiClient and see that Sylvia is logged in but busy in a
meeting in room S. Alice is able to get this information because Sylvia has configured
her profile for Alice to be able to see her location. Alice sends a message to Sylvia
telling her that she wants to meet during the afternoon for a discussion on their project.
The message will be displayed on Sylvias screen once the meeting has ended.

Just when Alice is finished typing out the message to Sylvia she gets a message on
her UbiClient telling her that George one of her co-workers on the project is passing
by in the hallway. She opens her office door and says hi. They talk about how things

89

are going and then move on to more work-related discussion. From this conversation
Alice gets the information she was going to query Sylvia about and she decides to
postpone her meeting with Sylvia. She uses her UbiClient to cancel the message she
had sent to Sylvia.

Brian asks Steve what he thinks about the idea. When Brian jumps to the previous
slide using his PDA, the same thing happens on Steves display. Steve thinks it is a
good idea, and he sees no counter arguments. Sylvia thanks Steve for his opinion and
valuable time, and Steve leaves the meeting. His presence widget changes, and the
audio connection ends.

Excited about the new idea, Brian and Sylvia continue their discussion. They still
need input from John on the feasibility of the project and they tell the system to notify
them once John is back in the office and available for discussion. Brian writes down a
minute of the meeting in a text editor, and saves it using the UbiCollab client.

The next day, Steve is interested in reviewing what happened in the meeting. Starting
UbiClient he accesses his meetings and taps the one he had with Brian and Sylvia.
Tapping on the meeting notes he discovers Brian’s topic minutes and reads them.

90 APPENDIX B. UBICOLLAB SCENARIO

Appendix C

UbiCollab API

The UbiCollab API:

• login(String userEmail, String password): Logs in a user to the UbiCollab
platform. Returns a key for the session.

• loginDevice(String deviceID, String password, String url) : Logs in a device
to the UbiCollab platform. Returns a key for the session.

• createCollabInst(String sessionKey, String collabInstName, String time,
String place, String noti�cationType): Creates a collaboration instance with
the submitted attributes. Returns a identification of the collaboration instance.

• createUser(String userEmail, String password, String �rstName, String
lastName): Creates a user profile in the UbiCollab platform.

• registerDevice(String deviceID, String password, String name): Registers
a device at the UbiCollab platform.

• addPersonsToCollabInst(String sessionKey, String[] userEmails, String col-
labInstID): Adds a list of persons to the collaboration instance. All persons
must be registered at the UbiCollab platform.

• addResourceToCollabInst(String sessionKey, String url, String type, String
friendlyName, String description, String collabInstID): Adds a resource to
the collaboration instance. The resource can be a device or any other resource
with an address.

• getCollabInstInfo(String sessionKey,String collabInstID): Returns a list of
all information on a collaboration instance. This can be resources in the col-
laboration instance, persons that are members and name, place and time of the
collaboration instance.

• getUserCollabData(String sessionKey, String userEmail) : Returns all col-
laboration instances of a user.

91

92 APPENDIX C. UBICOLLAB API

• getUserPro�le(String sessionKey, String userEmail): Returns the profile of
a user.

• getUserResources(String sessionKey, String userEmail, String searchstring,
int maxResults): Returns the resources associated with a user.

• justKeepAlive(String sessionKey): Tells the platform that the entity with the
given session key still is logged in.

• logout(String sessionKey, String userEmail): Logs out the user.

• removeUserFromCollabInst(String sessionKey, String userEmail, String
collabInstID): Removes a given user from the collaboration instance.

• removeResourceFromCollabInst(String sessionKey, String url, String col-
labInstID): Removes the given resource from a collaboration instance.

• searchPeople(String sessionKey, String searchString, int maxResults): Searches
for people registered in UbiCollab that fits the search string.

• searchResources(String sessionKey, String searchString, int maxResults):
Searches for resources visible or registered in UbiCollab that matches the search
string.

• searchResourcesClientPosition(String sessionKey, String searchString, String
clientPosition, String deviceType, int maxResults): Searches for a resources
based on the position of the client doing the query. The list of results is sorted
from the submitted position.

• setPresenceToCollabInst(String sessionKey, String userEmail, String col-
labInstID, String presencePercentage): Sets the presence to a collaboration
instance.

• addRelation(String sessionKey, String resourceURL, String type): Adds a
relation to a resource.

• getPosition(String sessionKey, String entityID, String requestingEntityID):
Returns the position of an entity in UbiCollab.

DISCOlab extension of the UbiCollab API:

• searchContentServer(String sessionKey, String searchString): Searches for
a Content Server that is capable of sharing the content specified in the search
string.

• addContentToContentServer(String sessionKey, String contentURL, String
contentServerURL, String collabInstID): Adds the content specified to a Con-
tent Server if the Content Server can share the content type.

93

• removeContentFromContentServer(String sessionKey, String contentURL,
String contentServerURL, String collabInstID): Removes the content speci-
fied if the content is added to the Content Server.

• subscribeToContentServer(String sessionKey, String visualisingDisplayURL,
String contentServerURL, String userName, String collabInstID): Con-
nects a Visualising Display to the specified Content Server if the Content Server
is member of the collaboration instance that the user is in.

• unSubscribeToContentServer(String sessionKey, String visualisingDisplayURL):
Disconnects the Visualising Display from a Content Server.

94 APPENDIX C. UBICOLLAB API

Appendix D

CD-ROM

Accompanying this report is a CD-ROM. It contains the following:

• A PDF version of this report.

• Source code for DISCOlab, the demonstrator and the UbiCollab platform.

• Javadoc for the DISCOlab toolkit.

95

