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Preface

The important thing is not to stop questioning. Curiosity has its own reason for existing.
One cannot help but be in awe when he contemplates the mysteries of eternity, of life,
of the marvellous structure of reality. It is enough if one tries merely to comprehend a
little of this mystery every day. Never lose a holy curiosity.

– Albert Einstein

This thesis is the result of a collaboration between students Petter Braute and Jorg Rødsjø. It was
written during the fall 2004 and spring 2005 at Institutt for Datateknikk og Informasjonsvitenskap
(IDI), NTNU, Norway, with Magnus Lie Hetland as main teaching supervisor. We have also recieved
invaluable help from Geir Kjetil Sandve from IDI and Finn Drabløs from the Institute of cancer
research and molecular medicine. The thesis is our finishing work for a M.Sc. in complex computer
systems.

Our work is based on problems in the field of molecular biology, and the reader should have some
basic knowledge on this area. A basic understanding of graphs is also needed to get the most out of
our report. A short brush-up on graphs can be found in appendix C.

We would like to thank each and every one supporting us throughout the process of writing this
thesis. It could not be done without your help, and we owe you our deepest gratitude!
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Abstract

We discuss various ways to approach the guilty by association concept, identifying three increasingly
complex ways to represent protein–protein interaction neighborhoods. We present ways to measure
similarities between the neighborhoods, concentrating on requirements, algorithms, speed and where
relevant, implementation and testing.

We develop a method that, based on the annotations of neighboring proteins, predicts the functions of
unannotated proteins. Under good conditions, the method yields a Spearman correlation coefficient
of 0.7 with direct function similarity measurements between proteins. This indicates that it may be
a reliable method for protein function prediction. Results from tests show that wide comparisons
are slightly time expensive, so future work on optimization would be interesting.

We implement a tool for viewing, exploring and comparing protein–protein interaction neighbor-
hoods. The tool dynamically downloads new data from internationally acclaimed databases, and
the tool utilizes our new method for predicting protein function.

New words that we feel need further explanation are written in bold. This means that a definition
of the word can be found in appendix A.
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Chapter 1

Introduction

Education is the best provision for the journey to old age.

– Aristotle

The medical industry relies heavily on developing new drugs for the future – drugs that help us
fight the seemingly more and more aggressive diseases we are so vulnerable to. In this struggle for
finding new, effective drugs, target discovery has become an important method. Simply put, target
discovery is about finding proteins that are linked to a given disease. This is not an easy task,
but several hypotheses claim that predicting the function of targets may be a step on the way to
discovering new drugs. [Knowles and Gromo 2003]

Predicting the function of unknown proteins has been a goal for scientists for a long time. One
method for predicting how unclassified proteins behave is based on studying the proteins they interact
with instead of the actual "mystery protein" itself.

1.1 Background and Motivation

In the past decades, scientists have completed the sequencing of several key genomes. In recent years,
understanding the functions of the genes has turned out to be a very important area of research
[Deng et al. 2002], and various approaches to inferring gene and protein function have been produced
(see section 1.3 for an overview on related work).

Proteins play an important role in all species, and they often express themselves in groups, coop-
erating to complete a common objective. These interactions between proteins can occur between
proteins with both similar and different functions. Several biotechnical networks have been dis-
covered based on research on interacting proteins, containing both annotated and unannotated
proteins and the interactions between them. These large networks form the base of our research.
Several publicly available databases with protein–protein interactions exist today, and we will take
advantage of one such database, and try to predict the function of the many unannotated proteins
whose functions are still unknown.



2 1.2 Objectives

For computer scientists like us, the problem addressed presents an opportunity for research on many
interesting methods and techniques applicable on graphs. This thesis is basically a collaborative
study of graphs – their structure, complexity and range of uses.

1.2 Objectives

Our goal is to apply tools and methods from IT to analyze networks of protein–protein interactions.
We seek to offer new insight for biologists concerning functional connections between proteins in
various species, enabling them to do research on genes in, say yeast, and apply the new knowledge
on humans. We seek to do this by offering a tool for predicting the function of unannotated proteins.

1.3 Related Work

Apart from various in vivo approaches to determining gene and protein function, several in silico
methods have been introduced in literature and computer systems. In vivo techniques are based on,
for example, disabling the expression of specific genes in mice (as the mouse genome is more than
95% homologous to that of humans), followed by an analysis of the outcome. This is done in order
to determine the function of these genes [Winston 2005]. In silico approaches are much more related
to our kind of research, and range from textmining to detailed analyses of gene products:

• Chromosomal proximity analysis
As mentioned before, sequencing of genes and proteins has been conducted over the past
decades, resulting in many genes, and even entire genomes, with fully described gene sequences.
Analysing these data gives biologists more information about genes, based on the assumption
that genes with similar sequences, and genes encoded close to each other in the DNA behave
similarly.

• Phylogenetic proximity analysis
A phylogenetic tree represents the evolution of genes and proteins in various genomes. The
mutations are often amino acid-replacements, -insertions and -deletions. Techniques used to
estimate the phylogenetic profile of a gene based on its sequence string are used to predict
its function, as genes closely related in a phylogenetic tree can be assumed to have similar
functionality.

• Gene Ontology proximity
A technique that will prove very similar and helpful to our work is Gene Ontology proximity
analysis. As we will describe later, proteins may be annotated in various namespaces classifying
their function, the biological processes they participate in, and the cellular components in which
they operate. Defining distances between such categories offers a way to measure the similarity
between the gene products classified by them. This type of research was being conducted by,
amongst others, Ph.D. student Einar Ryeng at NTNU as we wrote our thesis, and this was of
great help during our work.
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Our work is based on predicting protein function based on protein–protein interaction neighborhoods,
but none of the above uses this kind of data to achieve this. The concept of inferring protein function
based on its interacting neighbors is often called guilty by association. This concept has also been
subject to previous research: Deng et al. [2002, 2004] developed a model that uses Markov random
fields to find the probability that a given unannotated protein has a given function. Schwikowski
et al. [2000] attempted to do the same by analyzing the frequencies of its neighbors having a certain
function. Another technique is one described by Hishigaki et al. [2001], applying chi-square statistics.
Many of the mentioned methods apply statistical approaches to model the connection between the
function of a protein, and that of its neighbors. This thesis will show that our methods are somewhat
different, presenting novel methods to achieve our goal.
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Chapter 2

Method

There is no method but to be very intelligent.

– T. S. Eliot

We need to be conscious of what choices we make, and how we make them as the work on our thesis
progresses. This chapter will describe the methods we used during our work, and the reasons for
using them. We also feel the need for a short discussion on the definition of science, how our method
relates to it and fits into the context of IT research. Questions regarding validity and replicability
are also answered.

2.1 Methodological Foundation

IT research is a diverse subject – encompassing everything from a classical hypotetical-deductive
approach, to research more inspired by social sciences. One of the reasons behind this is that
within the field, articfacts are both made and studied, and researchers can contribute to both
activities. This is opposed to what can be defined as "Natural Science" [March and Smith 1995],
e.g. traditional research in physical, biological, social and behavioral domains where reasearchers
only try to understand reality. In information technology, it is possible to both make and study
research objects. We are not saying that all research within these fields is natural science, nor are
we saying that no IT-research is natural science – only that within IT there is a lot of room for doing
something else than understanding reality.

Our method is closer to what has been dubbed design science. This is research which "attempts to
create things that serve human purposes" [March and Smith 1995]. Our "human purposes", (i.e., the
motivation behind our thesis) can be found in sections 3.3 (requirements) and 1.1 (background and
motivation). Of course, not all creation of artifacts that serve human purposes is research. What
makes it design science, is that it produces and applies knowledge of tasks or situations in order to
create effective artifacts. If we accept science as the production of credentialed, i.e. documented
knowledge, then design science must be an important part of it. Our work has, for a large part, been
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concerned with building a tool that uses the results of natural science to extract new (and hopefully
credentialed) knowledge from protein-interaction research.

Design-research can be divided in two phases – building and evaluating. Building is the process where
the artifact is constructed for a given purpose. Evaluation is the process of finding out how well it
perfoms. The practical part of our build-process is descirbed in chapter 5 (implementation). The
ideas behind the implementation and the construction of the implemented algorithms are described
in chapter 4 (algorithms). We have to a certain degree performed our own evaluation (see chapter
6), but since we were not the originators of the problem to be solved, it is impossible for us to give
a fair evaluation. This is because evaluation is related to intended use, and we are not the intended
users. It would take an expert biologist to give the program a fair evaluation. Our advising biologist
has been closely involved in the design-process and, to a certain extent, the evaluation process. It is
fair to assume that our tests are not completely irrelevant, but still, they may not be good enough
to make any real judgement of how well our solution solves the stated problem.

2.2 Statistical Methods

We were drawn to statistical resampling methods by their elegant simplicity and our access to
resonably fast computers. These methods involve either sampling or scrambling the original data a
large number of times. What we have used are randomization tests. They are based on scrambling
the order of the original data. To give a quick example, we can imagine that we have two sets of
numbers, and that comparing them gives a certain correlation score. What randomization involves is
to randomly scramble one of the sets, check for correlation, and see how it compares to the original
correlation coefficient. This is repeated many times. This will yield a measurement of what the
chances of obtaining a correlation coefficient which is equal or better to the original one by pure
chance. The higher the number of scrambling and re-calculation of correlation coefficients, the more
sure you can be of the result. For a more complete discussion on such methods, see J.Manly [1997].

2.3 Validity

A common questing when engaging in research is one of validity. That is - what do we think we are
measuring, and is it what we are looking for? The first question is easy to answer: We think we are
measuring protein similarity. Are we actually measuring this? As noted later in this chapter, this
is hard for us to judge. The test we have done in chapter 6 give some evidence that we are on the
right track, but as discussed in section 7.1, we are aware of the possibility that the measurements
may in some cases be less relevant.

2.4 Reliability and Replicability

Will someone else, doing what we have done in this thesis, get the same results? Our algorithms
should be explaned in enough detail for anyone to reproduce if someone should want to doublecheck
the output from our implementation. Another solution would be to compare the algorithms in the
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report to the actual implementation. We have included the source code to all of our programs on the
attached CD, to make it possible to compare the code to the description of the algorithms. However,
replicating our exact results will be impossible as our input data is updated on a regular basis and
we have not kept archives of the old versions. Still, the results should be very similar.

2.5 Data Collection

All the data in our thesis come from external databases – mainly BIND and GO (see sections
3.2.3 and 3.2.1). This means we have no control over the input data. For us as non-biologists,
this makes life a lot easier when designing our software. We are aware that the data may not be
perfectly accurate, but this is beyond our control, and we can not do anything beyond stating the
uncertainty, and thus our results. This being said, we consider our data sources to be fairly good
and under constant improvement. Our algorithms will therefore give increasingly better results as
the interaction data becomes "better", i.e., more accurate.

2.6 The Research Process

At the beginning of the thesis we knew very little about the problem area. We did know a bit about
graphs, but that was about it. Our first step was to brush up on our knowledge of biology. This
was mostly done with the help of The Cartoon Guide to Genetics [Gonick and Wheelis 1991]. The
next step involved getting to know what the problem area was, and what our advisors saw as our
assignment. This was a long and iterative process. We had semi-regular meetings with our advisors
for over a year where we discussed various aspects of the problem and its solutions. Many ideas were
proposed, and many were rejected. At first we worked with fairly simple ideas. Then we moved on
to more interesting and complex ones as we became more proficient within the problem domain.

Abstracting the data was a fairly simple task, as representing protein-interactions as a graph is a
very common and obvious strategy. Abstracting the problem into the general idea of comparing
neighborhoods of proteins was a part of our advisors’ idea from the start, so we did not ponder
this for too long either. The problem we were left with was how to compare the neighborhoods
of different proteins. What we have come up with as a solution to this problem is presented in
this thesis. Regarding the question of how we have come up with it is more difficult. Algorithm
construction and software design have been described as more of an art than an engineering task
[Gomes et al. 2002; Warr and O’Neill 2005], and thus it is hard to describe in detail. This art is
some times associated with, or referred to, as creativity [Streitz et al. 1999]. One aspect of this
thesis which we feel has been helpful in this regard, is having worked in a fairly heterogenous team
in which participation was ecouraged. As Warr and O’Neill [2005] says: "the larger the number of
ideas produced, the greater the probability achieving an effective solution."
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Chapter 3

Analysis

Nearly all men can stand adversity, but if you want to test a man’s character, give him
power.

– Abraham Lincoln

Our first step to understanding the problem at hand was to analyse what kind of data we had at
hand, the structure of the problem itself, and take it from there. This chapter introduces the data
sources we used in our project, introduces various ways to look at the problem, and finally debates
what sort of answers we are really looking for.

For example, how can neighborhoods be compared to each other? How do we even compare the
neighbors themselves? And what does it really matter if two proteins have similar neighborhoods?

3.1 Modelling the Problem Area

In biotechnology, the guilty by association principle is based on the way proteins work in living
organisms: They often express themselves in groups, as proteins only perform bits and pieces of the
overall biological process they are participating in. It is therefore plausible that these interacting
proteins have functions that are related (but not necessarily similar) to each other. This assumption
is the basis of our entire thesis, and we can only embrace this as the truth at the current moment,
and use our results to see wether it was in fact a plausible idea. As described in chapter 2, this
thesis is a learning process, and we don’t have all the facts available from the beginning.

Instead of thinking of protein–protein interaction networks, let us for a while consider a human-
human friendship network. What we want to do is to find out what kind of person A is based
on knowledge about his friends. A naïve approach would be to assume that however they behave,
so does A. In our case, though, this is too much of a simplification. We cannot assume that if a
protein interacts with another protein, they have the same functionality. Similarly, in our friendship
analogy, we cannot assume that A is a white sheep just because his friends are.

It would seem we need a model to simulate the neighborhoods and the functions of proteins in it.
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This could for example be achieved by neural networks learning what protein–protein interaction
neighborhoods normally look like. We have, however, used another approach where we do not need
to model these connections. The basic idea is to find a protein with a similar neighborhood, and
assume similarity between this one and our unknown protein. We will describe this in mathematical
notation:

We let Fα and Fβ denote the functions of the two proteins α and β. Further, we let N(·) return
the neighborhood of a protein, and finally, f(·) models the relationship between the function of a
protein and its neighborhood. So, for the two proteins α and β, we have...

Fα = f(N(α))
Fβ = f(N(β))

Now, what if the only thing we know about α is its neighborhood? Theoretically, we can, to a certain
extent, reveal the functions of α by looking at its neighborhood and a similar (') neighborhood (that
of β):

N(α) ' N(β) ⇒ Fα ' Fβ

So, the conclusion so far is that since the neighborhood of a protein α is believed to reveal information
(but not necessarily similarity) about the functions of α, the similarity between the neighborhood of α
and the neighborhood of β should tell us something about the similarity between α and β themselves.
Therefore, this thesis will be an attempt to measure similarities between pairs of neighbors, those
of α and β.

3.1.1 Comparing Neighborhoods

We have now stated that we can reveal functions of a protein α by finding a protein β with a similar
neighborhood. This, in turn, means that we need to find a way to compare neighborhoods. We define
a neighborhood by the set of vertices within a maximum distance of n steps away from a given vertex,
which we will call the base of the neighborhood. For example, we call the neighborhood of first
order N1(α), meaning the set of vertices that are directly connected to the base α. We also define
Nn

i (α) as the i’th neighbor in the n degree neighborhood of α. Expanding the neighborhood, we
can define the neighborhood of second order as described in equation 3.1, simply meaning the set of
vertices either directly connected to α, or connected to it by 2 steps.

N2(α) = N1(α) +
⋃
i

[
N1(N1

i (alpha))
]

(3.1)

Various ways of comparing neighborhoods will be an important issue to be addressed throughout
the rest of our thesis. We will look at various approaches to compare neighborhoods, as a naïve
approach is likely to result in little or no biological relevance. One example of over-simplifying is
considering neighborhood similarity as "binary", that is either equal or not. Due to data sources
with varying levels of detail and accuracy, this way of comparing neighborhoods will probably yield
no interesting results. We will still describe this way of comparing neighborhoods in section 4.2.1
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as an introduction to the more advanced ways of modelling neighborhood comparisons. Partial
similarity is a more interesting, if not to say the only interesting approach to the problem. However,
this adds to the complexity of the problem, with new questions arising, like how to measure the
degree of partial similarity, how to penalize differences etc.

3.2 Data Sources

To have something to test out methods on, we need data, and preferably lots of it. For our compu-
tations we are first of all dependent on a network containing protein–protein interactions. For some
of the calculations we describe later, we also need annotation data for the proteins in the interaction
network. Finally, we will also need metadata for the annotations, describing these in detail, revealing
connections between the annotations as well. Here we present the data we have been dealing with
throughout our project. See figure 3.1 for a simple overview of the data we are working with.

genomes

protein-protein interactionsannotated proteins

orthology

un-annotated proteins

Figure 3.1: Illustration of gene products – genomes, proteins and protein–protein interactions. Some
proteins are un-annotated, some are annotated, and some are orthologous.

3.2.1 Protein–protein interactions: BIND

Several publicly available protein–protein interaction databases exist. Appendix B contains a com-
plete list of the databases we have explored during our work. A summary of the dimensions of some
of the databases we have explored can be found in table 3.1.

Because of the large amount of data available, we have decided to concentrate on only one of these.
The Biomolecular Interaction Network Database (BIND) [Bader et al. 2003] has become our database
of choice, because (a) we were made aware of the data early in the project, (b) the size of the data
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Data source (See Appendix B) Registered interactions
BIND 64,053
HPRD 25,758
HPID 15,540,018
UniProt/Swiss-Prot 54,964
Fly GRID 28,407
Yeast GRID 25,915
Worm GRID 4,453

Table 3.1: Dimensions of data sources

is not dauntingly large, nor is it so small it becomes uninteresting,(c) the data is stored in an easily
readable format and is available through anonymous ftp, and (d) the data is updated regularly,
resulting in relevant data for our queries. In fact, BIND contains more than 120,000 interactions,
but only 64, 053 are protein–protein interactions. Other interactions are interactions between genes,
DNA, RNA, small molecules and complexes. We concentrate on the interactions between proteins,
and will therefore exclude other interactions from the input data. Table 3.2 shows an example of
the data available from BIND. One line represents one interaction between two gene products. Each
gene product us uniquely identified by a Gene Identifier (GI). For information about which species
the gene products belong to, an additional file is available, connecting the numbers in the row a-tax
and b-tax to the names of species (See table 3.3).

rg-id b-id a-type a-db a-acc a-id a-tax b-type b-db b-acc b-id b-tax ab
510 74259 protein GenBank AAA48688 211526 9031 protein GenBank AAA48688 211526 9031 yes
510 74258 protein GenBank AAA48688 211526 9031 protein GenBank AAA48688 211526 9031 yes
510 74257 protein GenBank AAA48688 211526 9031 protein GenBank AAA48688 211526 9031 yes
511 171207 gene GenBank NP_010934 6320855 4932 gene GenBank NP_011656 6321579 4932 yes
512 38505 protein GenBank NP_572669 24641148 7227 protein GenBank NP_650025 21356363 7227 yes
513 221661 small-molecule BIND NA 172 0 protein GenBank NP_000445 4507149 9606 yes
513 247047 small-molecule BIND NA 172 0 protein GenBank NP_000445 4507149 9606 yes
514 233626 small-molecule BIND NA 17523 0 protein GenBank NP_851380 30794362 9913 yes

Table 3.2: Subsection of BIND data source. Columns "a-id" and "b-id" contain gene product
identifiers.

tax-code Species
11065 Dengue virus type 2 (NGC-prototype)
11066 Dengue virus type 2 (strain PR159/S1)
11070 Dengue virus type 4
11072 Japanese encephalitis virus
11073 Japanese encephalitis virus strain SA-14
11077 Kunjin virus
11084 Tick-borne encephalitis virus
11088 Tick-borne encephalitis virus (WESTERN SUBTYPE)

Table 3.3: Subsection of BIND taxonomy information

Figure 3.2 shows the neighborhood degree distribution of the protein–protein interaction subgraph
of BIND. The histogram is represented with a logaritmic y-axis for clarity.
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(a) 6264 proteins have 5 interacting proteins. 1
protein has 1044 interacting proteins.

(b) Several interactions may be stored in BIND
between two unique proteins. 7, 537 proteins have
only 1 unique interacting neighbor protein. The
highly connected protein from (a) has 205 unique
neighbors.

Figure 3.2: Histogram of BIND neighborhood degree. The highest degree protein is Tat from the
Human immunodeficiency virus 1 genome, with a whopping 1044 interacting proteins, or 205 unique
ones.

3.2.2 Protein Clustering: Clusters of Orthologous Groups (COG)

As species evolve, proteins change through mutations. Two species, once identical, contain different
versions of proteins and genes that were originally the same. Genes and proteins contained in
different species, but evolved from the same starting point are called orthologous (See figure 3.3).
These proteins contain precious information, because we can assume functional similarity between
most orthologous genes. Clusters of Orthologous Groups (COG) [Tatusov et al. 1997] is a "framework
for functional and evolutionary genome analysis", originally consisting of 720 clusters, each cluster
containing orthologous individual proteins or sets of paralogs.

We haven’t studied the structure of COG much during our work, it will merely be used as a theoretical
foundation for some scenarios for protein–protein prediction presented in section 4.2.

3.2.3 Protein Annotation: Gene Ontology (GO)

Proteins do not necessarily have to be orthologous to perform the same functions. Classification
systems can categorize proteins into groups based on several factors. BIND is updated with data
from a multitude of sources including journal submissions, public submissions, reviewing scientific
literature and pre-publication datasets. Most of the proteins have one or more classifications in the
Gene Ontology classification-system (GO)[Ashburner et al. 2000]. GO makes it possible to compare
proteins in one species with proteins from a completely different species, regardless of homology.
Each protein can be assigned to one or more GO categories. These categories are arranged in a



14 3.2 Data Sources

...AGTGCCATG...

...AGTGCCATG... ...AGTGCCATG... ...AGTGCCATG...

...AGTGCCATG...
mutation

mutation

mutation mutation

Yeast insulin gene Human insulin gene Chimp insulin gene

Figure 3.3: Orthologous genes in a phylogenetic tree.

DAG structure, and maintained by the Gene Ontology Consortium. Their goal is:

(...) to produce a controlled vocabulary1 that can be applied to all organisms even as
knowledge of gene and protein roles in cells is accumulating and changing.

This tells us that GO is exactly what we are looking for, namely a cross-species language for classi-
fying genes and proteins.

GO is structured as a graph, with the vertices representing categories, and the edges describing the
relationship between them. GO is divided into three separate namespaces, each modelled by its own
DAG. The three DAGs are biological process (BP), cellular component (CC) and molecular function
(MF). The levels in the three Gene Ontology trees describe in increasing detail the function, biological
process and cellular component of the categorized protein. As figure 3.4 shows, this means that a
protein categorized as GO:0051288 (meaning its molecular function is NADH binding), automatically
implies that the protein in addition, though more general, is a GO:0050662 coenzyme binding protein,
a GO:0048037 cofactor binding protein, and so on.

Namespaces and relationships

The vocabulary of the cellular component ontology consists of terms such as chromosome and nu-
cleus. Cellular components are pysical and measurable. A molecular function is defined as the action
characteristic of a gene product.2 In layman’s terms it can be described as entities which do not
endure but rather occur, for example "decoy death receptor activity" and "lactase activity". Bio-
logical process and molecular function are closely related. The Gene Ontology consortium defines
a biological process as "a phenomenon marked by changes that lead to a particular result, mediated
by one or more gene products", and clarifies by saying that "a biological process is accomplished via
one or more ordered assemblies of molecular functions".

1Whether the GO should be described as an ontology or as a structured vocabulary is open for debate [Smith et al.
2003].

2GO uses "gene products" to refer to any protein or RNA encoded by a gene.
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GO:0051288
NADH binding

GO:0030976
Thiamin pyrophosphate binding

GO:0050662
Coenzyme binding

GO:0048038
Quintome binding

GO.0030170
Pyridoxal phosphate binding

GO:0048037
Cofactor binding

GO:0005488
Binding

GO:0003674
Molecular function

GO:0048039
Ubiquinone binding

GO:0000035
Acyl binding

GO:0000166
Nucleotide binding

Figure 3.4: A subsection of the Molecular Function Gene Ontology tree.

The relationship between two nodes in a GO DAG can be either part-of or is-a. Is-a relations are
used to describe the relationship between a child term and a parent term, where the child term is an
instance of, or a type of the parent term. For instance, terminal glycosylation is a subclass of protein
glycosylation just like a blaster-rifle is a subclass of weapon. Part-of relations are more complicated.
GO uses the term in two different ways. The first is necessarily is-part. This means that wherever
the child exists, it is as part of the parent. Whenever the child exists, so does the parent. But
the parent can exist without the child. The second meaning is necessarily is-part and necessarily
has-part. This means that neither the child nor the parent can exist without the other. The part-of
relationships in GO are usually of the type necessarily is-part.

When populating the GO DAGs, we were faced with the problem of what to do with the different
links between the nodes. Should we ignore the "part-of" relationship, should we treat it as an "is-a"
relationship or should we assign it some special meaning? After consulting our biologist, we decided
to ignore the difference between the two types of links, and treat them as equal. Another alternative
would be to ignore the "part-of"-relationship altogether. Changing the code to do this would be
trivial.

Using GO

Even though GO seems to fit our needs perfectly, it is not without its flaws. One issue is the
growth of GO. The bigger GO gets, the more useful it will potentially be to researchers. At the
same time, the larger it gets, the harder it becomes to maintain consistency and semantic integrity
through manual inspection and curation. Every time someone adds a node in one of the DAGs,
the curator needs to understand both the node in question, and its relationship to the entire GO to
avoid redundancy and to make sure that the right links are established.

Arguments have also been made against the clear division between the DAGs and the fact that
GO uses only two types of links between nodes and that this could lead to loss of possibly useful
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information. [Smith et al. 2003]

Since the proteins in the BIND-interactions are classified in the GO-hierarchy, the choice of GO
was an obvious one. Flat files linking proteins directly to one or many GO categories are readily
available for download, and table 3.4 shows an example of the layout.

GI (Gene Identifier) GO
14250896 0015036
494929 0005179
494929 0005576
494929 0006006
494929 0007582
17509323 0006730
17509323 0004089
17509323 0008270
17509323 0016829
22095023 0006468

Table 3.4: Subsection of protein GI-to-GO category file

The description of the relations between various GO categories is maintained by the Gene Ontology
Consortium, and the definitions can be downloaded in the format shown in table 3.5.

id: GO:0000051
name: urea cycle intermediate metabolism
namespace: biological_process
def: "The chemical reactions involving any of the intermediate compounds involved in the urea cycle,
a cyclic metabolic pathway that converts waste nitrogen in the form of ammonium to urea."[ISBN:0198506732]
subset: gosubset_prok
is_a: GO:0008152 ! metabolism
relationship: part_of GO:0006807 ! nitrogen compound metabolism

id: GO:0000052
name: citrulline metabolism
namespace: biological_process
def: "The chemical reactions involving citrulline, N5-carbamoyl-L-ornithine, an alpha amino acid not found in proteins." [ISBN:0198506732]
subset: gosubset_prok
is_a: GO:0000051 ! urea cycle intermediate metabolism
is_a: GO:0019794 ! nonprotein amino acid metabolism

id: GO:0000053
name: argininosuccinate metabolism
namespace: biological_process
def: "The chemical reactions involving argininosuccinate, 2-(Nw-arginino)succinate, an intermediate in the ornithine-urea cycle,
where it is synthesized from citrulline and aspartate." [ISBN:0198506732]
is_a: GO:0000051 ! urea cycle intermediate metabolism

Table 3.5: Subsection of GO data source

3.2.4 Data Abstraction

This far, we have been talking about proteins, protein–protein interactions, genes and genomes. To
be able to work on the huge amounts of data present in the databases described in section 3.2, we
will look at the data from a more abstract point of view; as vertices and edges in a network. The
data is abstracted as described in table 3.6.

3.3 Requirements

The requirements for our project were a set of quite fuzzy specifications. The project was very
research-oriented, as opposed to being a strict development-project. Therefore, we are unable to
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Biological meaning Abstraction
Proteins One protein is identified by its GI identifier, and

is represented by one vertex in the graph.
Genomes All proteins, regardless of genome membership,

are stored in one graph. The protein taxonomy
is an attribute labelling each protein indicating
to which genome it belongs.

Protein–protein interactions Protein–protein interactions are represented as
unweighted, undirected edges in the graphs.

Gene Ontology categories The GO categories to which a protein belongs
are attributes of the vertex in the interaction
network. The internal structure of GO cate-
gories is also stored in a separate DAG

Gene Ontology category relations Edges in the GO DAG represent is-a and part-of
relations between GO categories.

Table 3.6: Abstraction

state a set of precise requirements, but rather discuss what goals we thought we had to achieve. The
requirements are the results of discussions with biologist Finn Drabløs.

We have identified three relevant types of searches that the methods we are about to describe should
support. The input in all of them is one un-annotated protein α, in addition to either (a) the same
genome as α is in, (b) a user specified genome, or (c) all genomes available. Some protein–protein
interactions are inter-genome interactions (interactions between proteins in different species), and
the user should be able to select whether these interactions are included in the search.

We are not interested in exact similarities between neighborhoods, we are rather interested in queries
returning neighborhoods with the highest score or smallest distance to that of α. Further, k-nearest
neighborhoods searches (finding the k best candidates) are probably the most interesting type of
searches.

Finding an optimal way of scoring neighborhoods is not a simple task, there are many considerations
to be done. First of all, we have the question of how wide we define the neighborhood to be. Theo-
retically, all vertices in a connected graph are the neighbors of each other (besides from the vertex
itself). It is not hard to see that a query with a neighborhood size this large won’t be an interesting
query. However, we may assume that neighbors far away from the base of the neighborhood are less
interesting than neighbors close to it. This implies that some sort of weighing is most likely the way
to go, one that weighs similar neighbors many steps away from the base less than neighbors close to
the base.

Level dissimilarities should also be considered. For instance, if both proteins α and β are connected
to γ, but by another number of steps, some penalty to the similarity of the neighborhoods should
be given. The best match would be if both α and β were the same number of steps away from γ,
but as minor flaws in the input data could be enough to corrupt interaction steps (e.g. by faulty
experiments), our algorithms should include some way to preserve some score even if the distances
are unlike. Some weight dependent on the neighbors’ differences in distances from the two bases is
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likely to be a good solution.

As seen in figures 3.2 (p. 13) and 7.2 (p. 66), the neighborhood degree of the proteins in BIND vary all
the way from only one to more than a thousand direct neighbors. This means that we may encounter
three different comparisons: Comparing two dense neighborhoods, two sparse neighborhoods, and
one dense to one sparse neighborhood. Consider two pairs of proteins about to be compared to each
other. The first pair has two densely populated neighborhoods, while the proteins in the other pair
both have very sparse neighborhoods. If the resulting similarity-score or -distance is normalized,
say by dividing the result by the number of neighbors on which it is based, the two comparisons
could easily return similar values. But would this be correct? It could result in comparisons based
on very slim neighborhoods (say, with only one connected neighbor) could return unjustifiably high
similarities. Still, not normalizing results is likely to blindly favour large neighborhoods in an additive
scoring-scheme (as more neighbors will add to the score). This is a dilemma that will be considered
later.
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Algorithms

I have yet to see any problem, however complicated, which when you looked at in the
right way, did not become still more complicated.

– Poul Anderson

After the analysis of the problem and available data in chapter 3, we will now present our methods
for neighborhood similarity searches. This chapter consists of three main parts in addition to some
introductory material. These three main sections describe our results based on three different sce-
narios with increasing levels of complexity. The first perspective describes neighborhood similarity
searches with uniquely labelled proteins and the use of COG. The two next perspectives are more
interesting, and take advantage of GO data to achieve the same. Only results from the last per-
spective will be used in implementations and testing, as the two former are meant as introductory
material to the third.

This chapter contains formulas and a style of writing that requires the reader to understand the
notation described in Appendix A. We recommend referring to this while reading chapter 4.

4.1 The Three Perspectives

We will outline three perspectives for neighborhood similarity searches, and will in the following
sections describe how we propose our neighborhood simiarity-problem be solved in the individual
scenarios. The three perspectives demand increasingly complex solutions, but they are also increas-
ingly interesting in nature. The two first perspectives are mainly meant as introductory material
to the third, which will be described in higher detail. This is a result of our iterative approach
described in chapter 2. Still, reading sections 4.2 and 4.3 is important for understanding section 4.4.

The structure of the interaction network is the same in all three perspectives, but more information
about the proteins is added in (2) and (3). The main idea is the same in all perspectives: As
described in section 3.1, we will assume functional similarity between proteins α and β if their
neighborhoods are similar. The difference between the three scenarios is how to calculate similarity
between the neighborhoods.
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1. Networks with Unique Protein Labelling (section 4.2)
When looking at the protein–protein interaction network with only unique labelling of proteins,
we will use COG to compare the neighborhoods. For each neighbor to a protein ϕ, we will
try to find ortholog proteins in another genome, and assume functional similarity for proteins
connected to these orthologs. This scenario will probably not yield much interest, as we believe
too few matches will occur to assume functional similarity of the bases. Still, this chapter is
meant as an introduction to our concepts of neighborhood similarity searches.

2. Networks with Categorical Protein Labelling (section 4.3)
Categorical labelling of nodes opens for more interesting searches. Proteins in neighborhoods
will in this scenario be treated as similar if they belong to the same GO category. Many
neighbors in the same GO classes will give high degrees of similarity between the two neigh-
borhoods.

3. Networks with Structured Categorical Protein Labelling (section 4.4)
In the third, and most interesting perspective, we will add structural information about the
GO categories, meaning we can determine degrees of protein similarity based on the relative
nearness of the various GO categories.

Figure 4.1 explains what we wish to achieve, and what can be achieved by the three perspectives.
Figure 4.1a illustrates the problem common for our entire thesis. We have a protein (here labelled
"?") of which we know little - only which proteins it interacts with. We cannot assume any function
based on the functions of the neighboring proteins alone. Figure 4.1b illustrates what we can achieve
by perspectives 1 and 2 - finding neighborhoods with equal function. Finally, figure 4.1c describes
our ultimate goal: Assigning protein function based on functionally similar neighbors.

?

Unknown function of base protein

(a) Unknown protein (labelled
"?") with interacting neighbors

Predicted function of protein based on identical 
functional neighbourhoods

(b) Assigning protein func-
tion/orthogonality by looking at
identical neighborhoods

Predicted function of protein based on similar
functional neighbourhoods

(c) Assigning protein func-
tion/orthogonality by looking
at similar neighborhoods

Figure 4.1: Protein neighborhood similarity. The various shapes of the proteins illustrates different
functions.



Algorithms 21

4.2 Networks with Unique Protein Labelling

This first scenario is a fairly simple one: We wish to consider proteins with many orthologous
neighbors as more similar than those with few orthologous neighbors. This chapter will be a rather
theoretical approach to a solution. As a simplification of the COG database, we will assume that we
have available a function CQ→S(α) that, given the input (a protein α that belongs to the genome
Q), returns the protein from the genome S that belongs to the same COG as α. We assume that
this can be achieved in constant time, for instance by a lookup in a hash table.

4.2.1 Measuring Neighborhood Similarity

Consider a "mystery" protein ϕ of which we know very little. We wish to reveal information about
its function in the genome Q. We do not have any known orthologs, we only know which proteins
it interacts with.

The first problem we wish to solve is to find proteins with identical N1 neighborhoods to that of
ϕ, in a given genome S. As this requires the potential targets to have neighbors in the same COG
as those in the neighborhood of ϕ, the vast majority of the nodes in the genome we are searching
will not be of interest. A naïve approach would sequentially compare all neighborhoods in S, but
taking advantage of the constraints we have, we can perform this search a lot faster: We can simply
start from all elements in N1(ϕ), distributing points to all of their neighboring nodes in the target
genome:

Algorithm 1
potentials = array()
result = array()
for each α in N1(ϕ)

for each β in N1(CQ→S(α))
P (β) += 1
potentials.put(β, P (β))

for each β in potentials
if P (β) = |N1(ϕ)|

result.put(β, P (β))

Algorithm 1 returns the array result, in which all members would be a protein with a neighborhood
completely orthologous1 to that of ϕ. In the example in figure 4.2, β2 has recieved points from all
three CQ→S(αi), leaving it with three points, meaning all its neighbors are orthologous to one of
ϕ’s neighbors. What we have done here is to substantiate that ϕ and β2 have functional similarity,
based on the fact that their neighbors are orthologous (and thus functionally similar).

Nevertheless, finding proteins in a genome with a completely identical orthologous neighborhood
to a query node is not very interesting. This is because the protein–protein interaction networks

1By an orthologous neighborhood, we mean that all the proteins in the neighborhoods are pairwise orthologous.



22 4.2 Networks with Unique Protein Labelling

i

i

i

(a) Find N1(ϕ)

CQ S( 2)

0

1

2

CQ S( 0)

CQ S( 1)

(b) Find CQ→S(α)

4

30

CQ S( 2)

0

1

2

CQ S( 0)

CQ S( 1)

2

1

(c) Find N1(CQ→S(α)), add 1 point to
each neighbor

Figure 4.2: Algorithm 1: Finding proteins in S with orthologous neighborhoods to ϕ
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often are based on experiments with far from perfect results. Interactions are often either missing,
superfluous or inaccurate. Attempting to make a more interesting model of the problem, we will
now extend this algorithm to find neighborhoods that are partially similar to that of the query node.
This is shown in algorithm 2a.

Algorithm 2a
result = array()
for each α in N1(ϕ)

for each β in N1(CQ→S(α))
P (β) += 1
result.put(β, P (β))

By using algorithm 2a, result will contain all β’s with a score higher than 0. This time, all β’s in
figure 4.2 would be in result, and we could take note of β4 as a relatively interesting node as well
as β2.

However, if a potential hit βi has more neighbors than ϕ – neighbors that have nothing to with
the neighborhood of ϕ, its score should be smaller than that of βj with the exact same size of the
neighborhood as ϕ. We therefore introduce a penalty for superfluous nodes if these are not orthologs
to any of ϕ’s neighbors. This is implemented by penalizing potential β’s after the positive scoring
has been distributed. This is explained in algorithm 2b.

Algorithm 2b
result = array()
for each α in N1(ϕ)

for each β in N1(CQ→S(α))
P (β) += 1
result.put(β, P (β))

for each β in result
P (β) = 2 ∗ P (β)− |N(β)|

Algorithm 2b is a simple, but powerful improvement from 2a: It subtracts one point from the score for
each uninteresting2 neighbor the potential hits β have. This is done by subtracting (|N1(β)|−P (β))
from the score (Uninteresting neighbors = Total number of neighbors - interesting neighbors). So,
the total score should be P (β)− (|N1(β)|−P (β)) = (2∗P (β)−|N(β)|. Still, we can improve search
results by allowing for deeper searches for similar neighbors. We keep the penalty for superfluous
neighbors only in the N1-neighborhood of the potential orthologs. Our recommendation for this
implementation is described in Algorithm 3.

As we can see from algorithm 3, proteins are scored based on how far away from the base in question

2Not orthologous to any of ϕ’s neighbors
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Algorithm 3
result = array()
define D ∈ N ≥ 1 //depth of search
for each α in ND(ϕ)

for each β in Nd(CQ→S(α))
dα = distance from α to ϕ
dβ = distance from β to CQ→S(α)
P (β) += 1

2

(dα+dβ−2)

result.put(β, P (β))
for each β in result

P (β) = 2 ∗ P (β)− |N(β)|

they are, halving the distributed score for each step. The fallof-factor of 1
2 is not a definite solution,

and may be changed in order to achieve better results. The factor is used to simulate the falloff of
interest as we traverse the neighborhood levels: Ortholog direct neighbors are important, ortholog
neighbors farther away give less information, and distribute less points. In algorithm 3, two direct
neighbors will yield a score of 1. As in algorithm 2b, result will be an array of proteins and their
scores.

4.2.2 Discussion

The algorithms just presented is a simple example of how we can find proteins with similar neigh-
borhoods. It has one obvious advantage over the techniques we are about to present - that of
speed. The technique used in all algorithms in this section ensure that we find the proteins with
similar neighborhoods in O(n2) time, where n is the size of the neighborhoods. Although O(n2)
may not be a good result in itself, values for n are normally low, and all the algorithms do is to
increment a counter for each step, so there is no heavy calculations involved. We therefore predict
that these algorithms should run very fast if implemented wisely (for instance, by ensuring that
CQ→S() functions are constant time lookups, and graph traversal is fast.).

The most important drawback is simply the information content of the results. We suspect that
little new information can be found by using these algorithms, because COG information is mainly
available on well-known, annotated genomes. In the following chapters, we will therefore leave COG,
and base our similarity measures on GO instead.

4.3 Networks with Categorical Protein Labelling

Say we are still interested in finding proteins with similar neighborhoods to ϕ, but the only thing
describing a protein is its categories as described in GO. This immediately poses a problem: Unlike
COG, which connects proteins from genomes, GO is a vocabluary used to annotate proteins. This
means that we cannot take the neighborhood of ϕ as a starting point, because there are no direct
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connections between it and the proteins we are searching for. Since the potential targets may be
anywhere in the search genome, we have to use sequential searches to find them, as long as we don’t
perform any indexing, of course. Since this perspective is only an introduction to neighborhood
similarities, we will not discuss indexing techniques at this point.

In this chapter, we will describe how we can measure the similarity between protein neighborhoods
based on their GO categories, with one important simplification: We will not take advantage of
the structure of GO. As an effect, we will not be able to assume any similarity between a protein
categorized as category Ai and one classified as Aj , even if these categories are closely linked in one
of the GO DAGs. This is, of course, a restrictive constraint, but we are doing it in order to explore
more aspects of protein neighborhood similarity measuring.

4.3.1 Measuring Neighborhood Similarity

As mentioned above, we can’t use the GO structure in this perspective. So, the only thing indicat-
ing direct protein similarity would be an identical GO classification between the two. At present
time, there are more than 18,000 GO categories defined. We therefore assume that trying to align
proteins with each other based on GO categories alone won’t be sufficient, as the quality between
various classifications will vary, resulting in proteins that in reality are alike, will recieve no score
for similarity. This is, however, a problem that will be solved in the next perspective.

We will in this chapter introduce a distance based measure of neighborhoods instead of a scoring
based approach as described in the first perspective.

Because we need to search all proteins for neighborhood similarity, we assume the need for some
sort of indexing if our method is to be sufficiently time-efficient (although we will not discuss it in
great detail). We will therefore strive to produce metric distances, as this makes the use of more
indexing methods possible. Distance functions can be defined as metric if they satisfy all following
three requirements:

• Symmetry
d(a, b) = d(b, a)

• Positivity
d(a, b) > 0 a 6= b
d(a, a) ≡ 0

• Triangularity
d(a, c) ≤ d(a, b) + d(b, c)

In simple terms, this implies that a function measuring the distance between two points must
(a) return the same distance between two points independently of the direction in which we are
"travelling", (b) always return distances greater than 0, unless source and destination are the same,
and (c) not allow for routes between points that are shorter than the direct route from source to
destination. In our case, proteins are the points, and distances between them represent the similarity
of their neighborhoods.
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The first idea is to generate a binary string based on the first-order neighborhood of a protein α. For
each category Ai, we find out whether α has a neighbor classified as Ai. If it has, the bit in string
position i is a 1. If not, it produces a 0. As mentioned in section 3.2.3, proteins are classified by
none, one or many GO categories. So the neighborhood string of protein α would generate n binary
1s for each neighbor, n ≥ 0. The distance between two proteins (or, more precicely, between their
neighborhoods), could be expressed as the hamming distance between their strings. However, the
method is in its current state only able to compare direct neighborhoods. We will in the following
section describe similar, but slightly more advanced methods.

4.3.2 Distance Metrics

We wish to define a distance function d(α, β) returning the distance between two proteins α and
β, based on their neighborhood classifications. In stead of generating binary strings, we will now
find the distance (in number of interactions) from α to the closest protein classified as a given Ai to
define its position in dimension i. That means, if α and β have the exact similar distances to the
closest protein of categories A0, A1, . . . , Am,m = |GO|, then d(α, β) = 0. Increasing functional
differences between the proteins will theoretically result in an increasing d(α, β).

First, let A0,A1, ...,Am be the universe of categories in GO. Secondly, let J(α, Ai) be the smallest
number of interaction steps from α to a protein classified as Ai.

L1 Distance

If we opt to use the L1 distance, also known as Manhattan distance, we would end up with the
following distance function. All Lp distances are metric.

dL1(ϕ, α) =
m∑

i=0

(|J(ϕ, Ai)− J(α, Ai)|) (4.1)

L2 Distance

Another approach is to use the L2 distance, the Euclidean distance. We would get...

dL2(ϕ, α) =

√√√√ m∑
i=0

[J(ϕ, Ai)− J(α, Ai)]
2 (4.2)

Selected Sample L2 Distance

It may not be likely that a complete comparison of all m categories is an interesting approach for
biology research. Instead, we assume we want to compare only a selected range of J(. . .) functions,
in contrast to comparing all of them. The most interesting ones to compare is likely to be the ones
with the lowest values for ϕ. The number of interesting comparisons is assumed to be dependent on
each query case, and should therefore be a parameter n ∈ [1,m] selected by the user.
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First, we define the set S by the following induction:

S ⊆ A | (x ∈ S ∧ y 6∈ S ⇒ J(ϕ, x) ≤ J(ϕ, y)) (4.3)

The set S now contains the n categories with lowest values for J(ϕ, . . .). We can then define the
distance function dselL2(n, ϕ, α):

dselL2(n, ϕ, α) =

√√√√ n∑
i=0

((J(ϕ, Si)− (J(α, Si))
2, |S| = n (4.4)

Canberra Distance

Still, our selected distance function has a rather serious flaw: It returns the same distance between
two points independent on their relative J()-values. For example, J(ϕ, Si) = 2 and J(α, Si) = 4
gives the same distance as if J(ϕ, Sj) = 102 and J(α, Sj) = 104. Because of the nature of the
protein–protein interaction networks, similar neighbors far away from the protein in question should
weigh less than similar neighbors in the immediate vicinity. The Canberra distance can be considered
a relative Manhattan distance, since it is given by the absolute difference between the values divided
by their absolute sum. It is defined in equation 4.5 and seems to fit our needs quite well.

Dcanberra(ϕ, α) =
m∑

i=0

(
|J(ϕ, Ai)− J(α, Ai)|
|J(ϕ, Ai) + J(α, Ai)|

)
(4.5)

Selected Sample Canberra Distance

Like the selected sample L2 distance, we can derive a selected sample Canberra distance as well, for
the same reasons as for selected sample L2 distance. We still have the set S as defined in equation
4.4. Selected sample Canberra distance will then be defined as...

dselcanberra(n, ϕ, α) =
n∑

i=0

(
|J(ϕ, Si)− J(α, Si)|
|J(ϕ, Si) + J(α, Si)|

)
(4.6)

Other Metrics

Other distance functions may also be considered, such as the Squared Chord distance and the
Squared Chi-squared distance. We have, however, not looked into these options in any specific
detail.

Dsquaredchord(ϕ, α) =
m∑

i=0

(√
J(ϕ, Ai)−

√
J(α, Ai)

)2
(4.7)
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Dsquaredchisquared(ϕ, α) =
m∑

i=0

(
(J(ϕ, Ai)− J(α, Ai))2

|J(ϕ, Ai) + J(α, Ai)|

)
(4.8)

4.3.3 Indexing

As this second perspective of our three also is an introduction to the third perspective, we haven’t
performed any hands-on testing of these distance functions, neither for speed nor biological relevance.
Still, it doesn’t require a lot of testing to see that a sequential search throughout en entire genome
will be time-consuming to say the least. We therefore include a short discussion on potential indexing
methods one could use to boost the performance.

BoostMap [Athitsos et al. 2004] is a method that is originally meant to be used in image and
video data retrieval. This application does however have a fundamental similarity to our problem:
Distance measures are used to range similarities between vertices. The difference is that vertices in
our case is proteins, and image-data in their case. The method is used to rapidly find approximate
nearest neighbors to a vertex based on preserving some, but not all information about the distances.
Without having done any more research on the use of BoostMap, we think that it may very well be
of good use if one should choose the distance-metrics-approach to comparing protein neighborhoods.

As with the first perspective, this approach was meant as an introduction to the field of neighborhood
comparisons, and we have thus not prioritized improving the methods. The research done on this
technique has mainly been a good tool for learning the inns and outs of neighborhood similarity.
Finally, in the next section, we arrive at the method we have spent most time on developing. Leaving
distances as a measure between neighborhoods, and yet again introducing scoring schemes, we will
continue to use GO, but also use GO metadata to perform the calculations.

4.4 Networks with Structured Categorical Protein Labelling

As mentioned, the method in section 4.3 has one serious simplification that needs to be taken into
consideration: Because the annotations of various proteins have been proved through experiments
with varying precision, the similarity distances will be wrong in many cases: Proteins classified
as Thiamin pyrophosphate binding will not be treated as similar to proteins classified as Cofactor
binding, even though these categories are very similar, and indeed closely related in the GO Molecular
Function DAG.

4.4.1 Measuring Neighborhood Similarity

We now take advantage of all the data available from both BIND and GO. The technique we are
about to explain should be robust to differing levels of input quality, and enable the user to choose
how deep and accurate searches to run.

Consider two proteins α and β with the neighborhoods N1(α) = {Aa,Ab} and N1(β) = {Ac,Ad},
respectively. Our goal is to score the similarity of these neighborhoods to determine whether the two
proteins in question can be assumed to have a functional similarity. With the methods described in
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section 4.3, none of the categories would be considered equal, and the neighborhoods would yield
high distances (based on how far away the identical categories are from the two bases). To improve
our results, we will now attempt to make use of the hierarchical arrangement of the GO categories
to better describe the similarities between two proteins. With this information, we attempt to score
the similarity between the various GO categories, and use these scores to align the neighbors for an
optimal neighborhood similarity score. The category Aa may not be equal to category Ad, but they
may have a certain degree of similarity.

Overview

We first give a short version of the technique, since the process is quite intricate. Figure 4.3 shows an
overview of the entire process. This should make the detailed description in the following chapters
easier to understand. The main idea is to first pair each neighbor of α and β with each other,
scoring their individual similarities. Obviously, this is a task that will be performed many times
(O(n2) for comparing two neighborhoods size n), and needs to be computed quickly. Sections 4.4.2
and 4.4.3 explains how this neighbor-neighbor comparison is done. After this, we want to match
pairs of neighbors from each neighborhood such as to produce the highest score possible for the two
neighborhoods. We do this by building a weighted bipartite graph between the two sets (being the
two neighborhoods). This part is described in section 4.4.4. Finally, a function is applied to the
score of the matched pairs, returning the final score that will represent the similarity between the
neighborhoods. Section 4.4.4 also describes this final step of the process.

4.4.2 Comparing Neighborhood Members: GO Distance Functions

Basically, this first step means building a complete, weighted bipartite graph with α’s neighbors on
one side and β’s neighbors on the other. Each edge will be given a weight representing the similarity
between the two neighbors it connects. This similarity is based on Gene Ontology, and we will now
discuss ways to define it.

We will begin with introducing similarity measures between two singly classified proteins, by which
we mean that each protein is classified by only one GO category. Initially we will begin by describing
what output is desired given different conditions: The highest similarity would be the result of the
two categories being highly detailed (i.e., far away from the root node), and close to each other. On
the other hand, if they were not as detailed (i.e., closer to the root), though still close to each other,
a lower score would be expected, as this tells us much less regarding their similarity. Also, even if
both categories are highly detailed, but far from each other, a low similarity should be expected as
they are not similar at all.

A reasonable approach for obtaining these outputs is to discover what the two GO categories have
in common. If the categories belong in the same GO DAG (BB, CC, MF), we can easily find
their common ancestors, or more accurately, their common superordinates. This is a simple matter
of an intersection between the two sets of superordinates. Now, the most interesting common
superordinate will represent the level of similarity between the two categories, and consequently,
between the two proteins. See figure 4.5 for illustration. The most interesting node is found either
by its level of detail or statistical significance. Finding the most interesting category is discussed in
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?

similarity

(a) We wish to find the similarity be-
tween two proteins α and β.

(b) We find their neighbors, in this ex-
ample only directly connected neigh-
bors.

(c) We build a bipartite graph based on
the neighborhoods.

GO-similarity
GO: 0005820
GO: 0003932
GO: 0029792

GO: 0005820
GO: 0002470

(d) Weighing the edges in the graph is
done by comparing GO categories in the
various neighbors.

X

2.9 0.8 0.0

1.2 1.3 0.0

1.5 1.9 0.0

(e) Scores are represented as costs
in a maximize-cost-version of the
assignment-problem. Lacking neigh-
bors in one neighborhood yield zeros in
the matrix (rightmost column in the ex-
ample)

similarity: f([2.9, 1.9, 0.0])

(f) The selected costs are fed to a
function returning the similarity of the
two original neighborhoods. A naïve
function could be f(a0, a1, ..., am) =Pm

i=0 ai

Figure 4.3: Overview of neighborhood similarity calculation
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(a) High GO sim-
ilarity score

(b) Low GO simi-
larity score

(c) Low GO simi-
larity score

Figure 4.4: Scoring situations for GO similarity. The boxes represent nodes in one of the GO DAGs.
The two dark boxes represent the categories of the two proteins.

section 4.4.3, but first we will have to expand our model to include proteins classified by more than
one GO category, as most proteins are.

We recall that every protein is classified by none, one or many Gene Ontology categories. With
multiply classified neighboring proteins, the question of scoring the proteins gets a bit more complex.
How can we now define the similarity between the proteins? What we will do is to select the two most
similar GO categories and use the common ancestors of these as the measure of protein similarity.
The naïve way to find the two most similar categories would be to make an m · n matrix, m =
the number of GO categories classifying protein Ni(α), and n = the equivalent for protein Nj(β).
Now, filling this matrix would involve the GO comparison explained above (and described in figure
4.5) for each matrix cell. Finally, one would choose the best score. Analysing figure 4.6, we quickly
find that this might turn out to be a major bottleneck, as the mean number of GO categories per
protein in BIND is 6.84. The mean matrix size would be 6.842 ≈ 47. Performing the computations
described earlier 47 times for each protein pair in the neighborhood we want to score will be hairy
at best, epecially if we include more than one neighborhood level in the comparisons. We need to
find a better approach.

Our refined method for scoring proteins classified as more than one category is almost identical to
the method for comparing two proteins classified as one category. The difference is that instead
of finding the superordinates of each protein’s category, we find the union of all its categories’
superordinates. This is a matter of adding all categories and their superordinates into a set. Elements
already contained will consequently not be duplicated. The next step is equal to that of the first
method: find the intersection of the two sets. Finally, we return the most interesting category from
the produced intersection. This method is will return the same value as comparing all categories
iteratively and returning the best candidate from the matrix.

Figure 4.7 describes how two proteins classified as more than one GO-category are scored: We
assume the topmost category in the figure is the root in the Molecular Function Gene Ontology
tree. (a) shows four marked categories. The yellows are the categories describing protein Ni(α),
the blues describe protein Nj(β). In (b) and (c), we mark the union of the superordinates of the
respective classes, before we in (d) find the intersection of the two sets. This intersection defines the
similarity between the two proteins. We can now return the most interesting category from this set,
and extract a score value from it.
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(a) The yellow and blue markers define the cate-
gories of proteins Ni(α) and Nj(β). Protein Ni(α)
is classified as a NADH binding, and protein Nj(β)
is a Nucleotide binding.
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(b) The superordinates of Ni(α)’s category.
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(c) The superordinates of Nj(β)’s category.
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(d) The intersection of sets produced in (b) and
(c), producing the set of common superordinates.

Figure 4.5: Protein smilarity by Gene Ontology analysis with single category. The figure shows the
calculation of the common superordinates of the two categories. This is done in 3 steps: In (b),
we find the superordinates of the first category, and in (c), we do the same for the other category.
Finally, in (d), we find the intersection of the results from (b) and (c).
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Figure 4.6: GO classification count histogram

4.4.3 Selecting the Most Interesting GO Category

The final step in the scoring of two neighboring proteins is selecting the most interesting node from
the set of common superordinates. We have devised two techniques for this: (a) level selection and
(b) statistical selection. Level selection is based on the fact that nodes far away from the root node in
the GO DAG (i.e., with a high level) bear more information than nodes close to the root. Statistical
selection, on the other hand, selects the least probable GO category based on protein annotation
counts. We wish for both methods to return a 0 score for the three GO categories Biological Process,
Cellular Component and Molecular Function, as no similarity can be deduced from annotations with
only these in common. In contrast, proteins with common annotations with a lot of information
content will be scored higher.

GO Level Selection

Scoring the proteins by highest detail level selection is quite simple, we simply return the level in
which the most specific element in A is located (Where A is the set of common superordinates of
both proteins). This ensures several things. First, proteins with poorly determined categories (i.e.,
at a low level in the GO tree) will score low, as will proteins whose categories became separate at an
early level in the GO tree (As their most specific common superordinate is at a low level). On the
other hand, higly detailed classifications will result in a high similarity if the categories have highly
detailed common superordinates. As an improvement to only returning the highest level, we suggest
returning the log value of the returned value, as the differences become less and less interesting the
more detailed they get. A log value would give the user a better feeling of the importance of the
scores. In the case depicted in figure 4.7, the similarity would be scored 2 - the level of the most
specific category in figure 4.7d. A general definition of this scoring scheme would be as given in
equation 4.9.
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(a) The yellow and blue markers define the cate-
gories of proteins Ni(α) and Nj(β). Protein Ni(α)
is both a NADH binding and a Pyridoxal phos-
phate binding. Protein Nj(β) is an Ubiquintone
binding and a Nucleotide binding.
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(b) The union of the superordinates of Ni(α)’s cat-
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(c) The union of the superordinates of Nj(β)’s cat-
egories.
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(d) The intersection of sets produced in (b) and
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Figure 4.7: Protein similarity by Gene Ontology analysis with multiple categories. The figure shows
the calculation of the common superordinates of the categories. We have implemented both this
method and the naïve way described above (comparing all m ·n categories iteratively). Our method
appeared to be faster than the naïve approach by orders of magnitude. We have measured empirically
speedup factors of > 20 by using the improved method.



Algorithms 35

Slevel(Ai) = log2 (L (Ai)) (4.9)

L (Ai) is the number of steps from category Ai to the root node in the corresponding GO DAG,
and Ai is the GO category we want to score.

Statistical Selection

An alternative approach to selecting the most interesting GO category from the set of common
superordinates is to select the least probable category instead of selecting the most specific one.
This is done by initially counting the number of known proteins classified as each category, or
subcategories of it. Now, we can assume the probability for a random protein α belonging to a given
category Ai is as described in equation 4.10.

P (Ai) =
number of proteins classified as Ai

number of proteins in DAG
(4.10)

Therefore, we can choose the category with the smallest amount of "participants" as the most
interesting category. To achieve a score of zero if two categories have only a root node in common,
and higher scores the more interesting the common superordinates are, we define

Sstatistics(Ai) = − log [P (Ai)] (4.11)

We implemented this by pre-processing the proteins described and annotated in BIND. When a gene
or protein is classified as Ai, the GO category Ai increases its count by 1, as do all the superordinates
of Ai. Now, the most relevant GO category in the intersection from figure 4.7d will be the one which
minimizes P (Ai), and thus maximizes Sstatistics(Ai).

Our approach to defining the similarity between proteins by their GO annotations highly resembles
methods developed by others. Resnik [1995], Lin [1998] and Jiang and Conrath [1997] describe quite
similar techniques. The method described by Resnik is made for evaluating semantic similarity in
natural language using WordNet [Miller 1995]. WordNet can be compared quite easily to the Gene
Ontology DAGs. In WordNet, english nouns, verbs, adjectives, and adverbs are linked in an is-a
hierarchy. For example, the words nickel and dime are both subsumed by coin [Resnik 1995].

For comparing the results of our two developed similarity measures, we selected a random GO node
and compared it to all other GO nodes in its DAG. Using FuSSiMeg [Couto et al. 2003], we compared
the same proteins with Resnik [1995], Lin [1998] and Jiang and Conrath [1997]. We plot the scores
to see whether they correlate. See figure 4.8 for the plot.

We have also calculated Pearson correlation coefficients between our two methods and the three
others. The results are illustrated in table 4.1. The correlation coefficient between our two techniques
is 0.733. As the correlation coefficients in the table show, our methods are correlated with the three,
mostly to Resnik. We suspect the differences may arise from both the fact that we use different
calculations, and a small size of annotation data on which we base our statistics. We will continue
using our own scoring models, mainly because we haven’t found implementations of the three, apart
from the web-interface provided by FuSSiMeg.
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(a) Jiang Conrath scoring (b) Resnik scoring

(c) Lin scoring (d) Our statistical scoring

(e) Our level scoring
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Figure 4.8: The figure shows a plot of the similarity between all nodes in the Cellular Component
Gene Ontology tree and GO:0005873 (Plus-end kinesin complex). The plot compares our methods
to the more known algorithms by Resnik, Lin and Jiang and Conrath. The output is sorted by
our level-method, which explains the strictly increasing property of the corresponding plot, and the
rather varying property of the others.

In the smaller figures above, the plots are displayed in individual diagrams for clarity.

Braute Rødsjø: Level Braute Rødsjø: Stats
Resnik 0.907 0.778
Lin 0.856 0.749
Jiang 0.589 0.451

Table 4.1: Correlation coefficients for level similarity
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Incomparable proteins

One issue that may render us incapable of comparing neighboring proteins is the fact that the Gene
Ontology hierarchy is not described in a single DAG, but as three separate DAGs (Biological Process,
Cellular Component and Molecular Function). This is because these biological domains are (as the
GO consortium states) "considered independent of each other.” This requires us to work in parallel
with three different Gene Ontology DAGs - BP, CC and MF.

When comparing two proteins, we can end up in several different situations:

1. None of the proteins are categorized in GO.

2. One protein is not categorized in GO.

3. The proteins are both categorized in GO, but they are not categorized in the same DAG (BP,
CC, MF).

4. The proteins are both categorized in GO, and only share one DAG.

5. The proteins are both categorized in GO, and share more than one DAG.

Cases 1 through 3 are not very interesting, as they leave us unable to say anything about similarity,
and we must simply return a 0 score. Case 4 does not result in any special considerations, as it
leaves us with only one DAG to work with. Case 5, on the other hand, gives us a problem. Which
one should we use? Our solution is to run a search in all the DAGs the proteins have in common,
and return the result from the DAG which yields the highest score.

4.4.4 Scoring the Neighborhoods

We have now built and weighted a complete, bipartite graph connecting the two neighborhoods.
Our next challenge is to find the best alignment of the neighbors in the two neighborhoods. Inspired
by Kelley et al. [2003], we considered using sequence alignment methods. Kelley et al. used global
sequence alignment methods to match metabolic pathways in protein–protein interaction networks.
However, there is a significant difference between pathways and neighborhoods - the relevance of
order. While the sequence in which the proteins appear in a pathway is highly relevant, it is not in
neighborhoods. We therefore found that weighted bipartite matching would be better suited for our
purpose. In many ways similar to sequence alignment, bipartite matching will not care about the
order in which the data appears.

Figure 4.9 explains our progress so far. All the edges in the bipartite graph are now weighted, and
we only need to connect pairs of proteins from each side of the bipartite graph. The result we
want to achieve is that all the proteins from the smallest neighborhood are connected to one, and
only one, protein from the largest neighborhood. This means that some proteins from the largest
neighborhood will not be a part of the matching, and will thus not contribute to the final scoring of
the neighborhoods.

As we learned from the first perspective we discussed in section 4.2, information content of neighbors
decreases as the distance from the bases increases. If we use the same technique as in section 4.2, we
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(a) The original neighborhood of two proteins α and β.
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(b) The neighborhoods connected and represented as a complete bipartite graph

Figure 4.9: Protein neighborhoods converted to a bipartite graph. This example is somewhat
simplified, as many proteins are classified as more than one GO category. The principle is still the
same.
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would have to multiply the weights in the bipartite graph by a distance factor before matching the
graph. This distance factor should decrease as the difference between the level of the two vertices
increases. Also, it should decrease when their absolute level increases. We choose the smallest of
the two levels for this second penalty. In effect, this means that two proteins with levels p and q,
respectively, should be penalized by some factor of |p− q| and min(p, q). We suggest the following
multiplication factor for weights:

penalty(p, q) =
(

1
2

)|p−q|+min(p,q)−1

(4.12)

For instance, the edge between two proteins both at level 1, would be multiplied by
(

1
2

)|1−1|+1−1 =(
1
2

)0 = 1. Logical, as two neighbors close to their respective bases are likely to contain a lot of
information. Another example would be two proteins at levels 1 and 2. Their score would be
multiplied by 1

2 , effectively penalizing the edge for connecting two proteins at different levels. The
third example is two proteins at levels 2 and 3. These will be both penalized for being at different
levels, and for being generally farther away from the bases. Their multiplication factor will be 0.25.
The factor 1

2 is chosen with no biological foundation, and may be adjusted to increase or decrease
the amount of falloff.

We now have a bipartite graph, connected with edges weighted by an algorithm that is based on GO
categories, and multiplied with factors dependent on the levels of the proteins. We define the data
we now have as an assignment problem, and calculate the maximum possible score obtainable
by solving the assignment problem for maximum cost. This score finally represents the score of the
similarity between the neighborhoods.

Interpreting the score

How to interpret the data coming from the matching of the bipartite graph is an important issue
we need to address. The scores returned by the algorithm will have no direct semantic meaning.
So, there is no way of telling whether a given neighborhood score is a good one indicating high
probability of functional similarity between two proteins. A solution could be to provide a list of
proteins with well-known functions, and display the similarities of their neighborhoods. We have not
been able to get this kind of data, though we still think this may be a good approach (See "Future
work" on page 67 for more information). Still, our method is not useless. As mentioned in section
3.3, we anticipate wide searches throughout entire genomes to be performed. This kind of searching
will in any case return a large number of similarity scores, and the user may refer to the scores as
relative to each other, indicating how interesting the various hits are compared to each other. This
can for instance be done in a search for the k-nearest neighborhoods, where the scores themselves
are not very interesting, but the order of the output is. This way, one does not have to be too much
concerned about what a score of 18.5 really means biologically.

This concludes the presentation of the algorithms. We have put a lot of effort into implementing
this technique, and the following chapters will concentrate on this, and on results available from this
implementation. A further discussion on the quality of this technique will be presented in chapters
6 (results) and 7 (discussion).



Chapter 5

Implementation

We have implemented a fully working system for protein function prediction based on protein–protein
interaction networks. The application implements our methods from section 4.4.

Our program is based on a client-server model. We were looking for a way to easily split the
development into two separate parts, as we are two developers collaborating. This was meant to
speed up the development process in order to make a prototype available early. Developing the parts
separately would hopefully lead to a higher productivity and less administration overhead. It would
also give us the power to use the techniques and language skills each of us was most comfortable
with. It would be an effective division of the project into two smaller parts which could for the
most part be developed independently of each other. Based on these thoughts and a run-through of
personal skills, we decided that the user-interface would be implemented in Java and that the server
would be implemented in Python.

For later use, the client-server model can be dropped in favor of a more monolithic application. This
would reduce all network overhead, which at some times has been a problem for us.

5.1 Overview

What we ended up with was a program where the division between logic and user interface was
almost where we wanted it to be. In an ideal world, the client would not know anything about
BIND or GO - and would only be a general graph-browser. Unfortunately, time did not permit
this. The client has knowledge of the interactions in BIND and the GO categories each protein is
classified as, but it does not use them for anything apart from specifying the search. For a long
time, the client did some of the work needed to compare the neighborhoods of proteins, something
we knew was not very elegant. What we wanted to do, was to move as much of the logic from the
client to the server as possible. Concidering the amount of time we had left at this point, we had to
make a choice – either keeping some of the logic in the client, or moving it to the server. If we chose
to move it to the server, we needed a working graph library. As noted in section 7.2, this is not
very hard, but it would nevertheless take some time. We therefore made a decision to try to move
the logic, and use one of the packages we had earlier looked when concidering how to represent the
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DAGs of GO. A quick look at the two candidates (NetworkX and pygraph), left NetworkX as the
winner, as it seemed to have the best documentation. NetworkX perfomed well, and we were able
to move almost all of the logic from the client to the server in a short amount of time. We concider
this to be a good trade-off, even though it introduced the dependancy to NetworkX.

When developing the application in two parts like this, we needed something to glue them together.
We both had positive experiences using XML-RPC [Winer 1999]. We had some minor problems
with different data-types in Python and Java, but all in all the experience has been a good one.

An schematic overview of how the client, server and input data work together and how data flows
can bee seen in figure 5.1.

BIND
interactions GOBIND

annotations
BIND

taxonomy

BioGraph
Java client

BioLogue
Python serverXML-RPC

Figure 5.1: Client-server model: The schematic shows the connections between the data sources and
the two main modules: BioGraph, the Java client GUI, and BioLogue, the Python RPC server.

5.2 BioLogue - The RPC server

The most important modules to implement in our project were without a doubt the algorithms
we present in chapter 4. The two first scenarios, described in sections 4.2 and 4.3 are meant as an
introduction to the problem area, and these are not implemented. We have focused on implementing
the more interesting methods described in section 4.4. We will not go into detail regarding these,
since we feel that they are described thoroughly in the earlier chapters. What we will describe
are the supporting cast of our algorithms. These include the tool for browsing the protein–protein
interactions and specifying searches, the tool for parsing the GO data (DAG functionality) and the
matching algorithms used in solving the assignment problem. The implementation of these will be
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presented here.

5.2.1 Directed Acyclic Graph Library for GO

When starting the project, we soon realized that we needed some kind of graph library to represent
the GO-tree. Initially we were under the impression that GO was represented as a tree, but after
looking more closely at it we found it to be a DAG. The quest then became to find a package for
Python with support for DAGs. We looked at both Pygraph [Istvan] and NetworkX [Bold et al.].
Both packages had support for directed graphs, and could probably have been made to work in our
system with some modifications and additions. Still we chose to implement our own library. The
reasons for this were as follows:

1. Learning how a graph-library could be implemented

2. Adding functionality into own code is easier than in existing code

3. Offering the possibility to optimize code for our problem domain

4. Having a DAG library one understands the ins and outs of could be very useful for later

The graph-library was inspired by Guido van Rossum’s essay "Implementing Graphs" [van Rossum].
The essay only talks about undirected graphs, but the example is easily changed to work for a DAG,
being directed. The DAG is implemented as a hash table containing other hash tables. At first our
implementation read the structure of the GO-tree from a flat text-file downloaded from the GO-
website [Ashburner et al. 2000]. Basic DAG functionality such as building, traversing and searching
was added, and the three DAGs making up GO were populated using data from file. Next, we
implemented an algorithm comparing GO nodes based on the height of the lowest common ancestor
in the DAG (see figure 4.7). The first step in optimization was to store the DAGs on disk, so we did
not need to populate them for each run of the program. This made a significant difference in run-
times, but still there was probably a lot to finetune. The solution was to run a comparison through
Python’s profile module [Roskind] to see what it could tell us. See table 5.1 for the initial results,
showing the most time consuming methods. Note that since the profiler does not run alongside
Psyco [Rigo 2004], the run-times are used for comparison with later tests, not absolute measuring.
For absolute run-times, see later in this chapter.

number of calls total time time per call cumulative time function
1 0.000 0.000 0.023 compareNodes
1 0.000 0.000 0.019 getCommonAncestors
488/2 0.008 0.000 0.019 getAncestors
372 0.006 0.000 0.009 getParents

Table 5.1: The most time-consuming methods in the first run.

While scoring two random nodes in the BP DAG, the profiler gave us a hint that the method
"getAncestors" was being called a lot, and taking up a lot of time. The slash in the first column in
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row three of the table denotes that the method is recursive, and that two initial calls have resulted
in 488 recursive calls. At this point, "getAncestors" traversed the tree upwards from a node, and
returned everything it found. Since the GO DAGs do not need to be modified while the program
is running, this information could be pre-calculated, and stored in a dictionary for future use. A
dictionary-lookup should be a lot faster than traversing every node from the search-nodes and up.
So the DAG-library was changed to store all ancestors for all nodes in a dictionary. The program
was then run again with the same nodes, resulting in the profile we see in table 5.2.

number of calls total time time per call cumulative time function
1 0.000 0.000 0.004 compareNodes
1 0.000 0.000 0.003 makeSearchDag
26 0.001 0.000 0.002 getChildren
263 0.001 0.000 0.001 append
. . . . .
. . . . .
2 0.000 0.000 0.000 getAncestors

Table 5.2: The 4 most time-consuming methods in the second run plus the time of getAcestors

As we can see, we have now reduced the number of calls to getAncestors to only 2, and thus the
run-time has been reduced. At this point we did not do any exact measuring of run-time apart
from noting that the 488 recursive calls had been reduced to two lookups in a hash-table. The next
step was to examine the reason for the 263 list-appends (from table 5.2), which turned out to be
completely pointless and could be removed.

A relatively easy and effective way to optimize Python programs is to use Psyco. As Psyco is not
the subject of this thesis we will just say that it is a Just-In-Time compiler, and agree with David
Mertz when he says: "Explaining Psyco is relatively difficult, but using Psyco is far easier" [Mertz
2002]. We wanted to see what Psyco could do for our algorithm. At the same time, we wanted to see
how fast the new set-class in Python 2.4 (implemented in C) would be compared to the old set-class
(implemented in Python). To get a feel for how big an improvement we got from pre-calculating
all ancestors in the trees, we also measured run-time with and without the ancestors pre-calculated
and stored in a hash table.

The test was run on two randomly chosen nodes in the CC DAG and two in the BP DAG. The
reason for using two different DAGs, was that we wanted to see if the different tests would affect
DAGs of different sizes in different ways. CC has around 1500 nodes and BP has around 10000
nodes.

To examine the two different implementations of Set, we can look at line 1 vs. line 5 in both tables
5.3 and 5.4. The run-times seem almost identical, so for our case, the C-implementation did not
speed things up considerably. For a while we attributed this to the fact that Psyco was speeding
up the Python-implemented Set, but comparing lines 2 and 6 in the same tables showed pretty
much the same thing. At least for this case, we can conclude that it makes little difference which
set-implementation we choose. Since the difference is so small, we will only use the runs with the
C-implementation for the rest of this section.



Implementation 45

AncestorsInDict Psyco set/Set Time
Yes No set 0.000437
Yes Yes set 0.000222
No No set 0.000623
No Yes set 0.000282
Yes No Set 0.000430
Yes Yes Set 0.000223
No No Set 0.000700
No Yes Set 0.000298

Table 5.3: Run-times for comparing two nodes in the CC DAG. AncestorsInDict determines whether
are precalculated for each node. Psyco tells whether Psyco is enabled. Set means we have used the
Python implementation of the datatype set, while set is the C-implementation. Time is measured in
seconds based on an average of 1,000 runs on an Intel P4 3Ghz with 512MB RAM running WinXP
and Python 2.4

AncestorsInDict Psyco set/Set Time
Yes No set 0.000476
Yes Yes set 0.000243
No No set 0.002730
No Yes set 0.001157
Yes No Set 0.000463
Yes Yes Set 0.000256
No No Set 0.003292
No Yes Set 0.001211

Table 5.4: Run-times for comparing two nodes in the BP DAG
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When looking at the difference between having the ancestors of each node pre-calculated and travers-
ing the DAG for each method call we expected to see a big difference. Comparing lines 1 and 3 (or 2
and 4) in table 5.3 we notice a slight decrease in run-time when using the pre-calculated ancestors.
Looking at the same lines in table 5.4 shows us that traversing the DAG for every call to getAnces-
tors scales horribly, whereas the pre-calculated approach hardly notices the fact that BP is around
six and half times bigger than CC. Pre-calculated wins by a mile.

Examining lines 1 and 2 in both tables show us that with two lines of code, Psyco cut the run-time
for both DAGs in half. A rather nice speed-up concidering it only involves two lines of code.

A further reduction of the number of unneccessary method-calls and some nit-picking reduced the
time of the fastest call (line 2 in table 5.4) to 0.000100. Considering that fine-tuning this algorithm
is not the main point of our thesis, we were satisfied with this run-time.

All the tests were done with the level-based comparison of GO-categories (see section 4.4.3). The
reason for this was that the statistical selection (see section 4.4.3) was not implemented at this time.
Since the statistical-selection also uses pre-calculated values to measure similarity, the run-times
should not be very different.

5.2.2 Weighted Bipartite Matching

Our approach to comparing two neighborhoods in section 4.4.4 was to view it as the assignment
problem. When searching for a solution to the problem, we first came upon the Hungarian method
[Kuhn 1955; Fukuda and Matsui 1992]. We implemented the method in Java, which worked perfectly,
although it was much too slow for our needs. Our next attempt was to try the Branch and Bound
approach to solving the problem. This was also implemented in Java, and turned out to be even
slower than the Hungarian method. We were sure that there had to be a faster way of solving such
a classical problem. After some searching, we found a promising article describing An efficient cost
scaling algorithm for the assignment problem [Goldberg and Kennedy 1995]. Reading the article, we
soon figured out that implementing it ourselves would probably take more time than we had. After
some more searching, we found a working implementation in C [Goldberg 2002]. This implementation
is called CSA (Cost Scaling Algorithm). It took a little tinkering for it to run on our system, but
when it did, it outperformed the two previous methods by orders of magnitude.

CSA came to our attention rather late, after we had implemented both the Hungarian method and
the branch and bound-approach. Luckily, CSA turned out to be a major lifesaver for our project.
As we have described, the Hungarian Method and the Branch and Bound-approach are hopelessly
slow. Several seconds for comparing two neighborhoods with less than 20 neighbors would simply
not be sufficient for our needs.

Figure 5.2 shows running times for our implementation of the Hungarian method and CSA given
several random complete bipartite graphs with varying sizes. As we can see, CSA outperforms our
implementation of the Hungarian method by orders of magnitude.

When incorporating CSA into our system, we made some minor changes to its make-file in order to
make it compile on Windows. The C code was compiled using GCC on both Windows and Linux,
using Cygwin [Faylor and Vinschen] to make GCC accessible on Windows. The downside of using
CSA is that it is implemented in C, and the rest of our project uses Python and Java. To integrate
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(a) Speed of Hungarian implementation (b) Speed of CSA implementation

Figure 5.2: Implementations of weighted bipartite matching: The graph shows the time consumed
to find the optimal matching for different values of n (Number of neighbors included in the search)
with the Hungarian method and CSA

CSA, we concidered wrapping it into a Python module using tools such as SWIG [Beazley] or Pyrex
[Ewing]. We did not end up doing this, mostly due to lack of time and lack of experience using C.
As far as we can tell, wrapping CSA would take a conciderable amount of time. This was mainly
because its coding style made it unsuitable for conversion into a library. To use CSA, we came up
with another solution. CSA only accepts well-formed problems in the DIMACS-format [DIMACS].
What we did first was to convert our bipartite graph into the DIMACS-format and store it as a
textfile. We then opened a pipe to the command line, and ran CSA thorugh it, redirecting the textfile
to standard input and capturing the output through the same pipe. The output is then parsed to
extract the result of the CSA run. This is all done using libraries built into Python (os.popen).

5.3 BioGraph - The Interaction Network Explorer

To explore the large amounts of data available from the BIND database, we implemented a graphical
user interface we call BioGraph. This reads data downloadable from the BIND webside [Bader
et al. 2003]. BioGraph is a Java application and is mainly a front-end to the various modules
we have implemented. We will therefore not go into the same levels of detail when describing its
implementation. What is important about it, is that it is a very flexible application meant to be
expanded by others. This is done by defining the key functionality as plug-ins. The application
currently has 4 plug-ins. They perform simple tasks such as looking up a specific GI from the data
source to more complex tasks of comparing neighborhoods with help from the Python server. Making
other plug-ins, or changing the existing ones, is an easy task. It simply involves making a class that
extends the plugins.Plugin Java class, and place the compiled version in plugins/install. The
class is described in figure 5.3.

As figure 5.3 shows, there are 5 methods in the abstract class Plugin, all are quite self-explanatory:
The method run() is invoked by the system when the user presses the button for the plug-in, and
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/*
 * Created on Nov 28, 2004
 *
 */
package plugins;

import java.awt.event.WindowListener;

/**
 * @author petterbr
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public abstract class Plugin extends javax.swing.JDialog implements WindowListener {

public Plugin(String name) {
super();
setResizable(false);
setTitle(name);
addWindowListener(this);
setDefaultCloseOperation(Plugin.HIDE_ON_CLOSE);
setLocationRelativeTo(null);

}
/**
 * 
 * @return String giving the user a clue abouot what the plug-in does.
 */
public abstract String getToolTipText();
/**
 * 
 * @param graph - Send by the main BioGraph application, containing all 
 * nodes currently available in memory.
 * 
 * For accessing proteins in persistent storage, use

 BioGraph.getGraphFactory().getInstance()
 * (by Singleton pattern) 
 */
public abstract void run(Graph graph);
/**
 * 
 * @return name of the plug-in, to be displayed on plug-in button in BioGraph 
 */
public abstract String getPluginName();
/**
 * 
 * @return icon image, to be displayed on plug-in button in BioGraph
 */
public abstract String getImage();

}

Figure 5.3: Plug-in Java interface
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this typically opens a new window with settings for the plug-in.

Persistence is also handled by the plug-in approach. We have made two plug-ins for getting input
from BIND and GO – one that reads from the files directly available from the sources on the Internet,
and one that uses an SQL database as a buffer. The first plug-in loads all available data into memory
as startup, and is therefore quite memory-intensive, but gives a better experience for the user once
the application has started. New data source providers can also be created, by implementing the
persistence.DataSourceProvider java interface and placing the compiled class in the persistence
folder.

BioGraph is equipped with a configuration file called biograph.properties, in which the user can
change settings such as which data source provider to use, how to connect to the Python RPC
server, where to obtain datafiles from, etc.

Figure 5.5 shows the internal structure of the most important parts of BioGraph.

5.4 Licensing

At the moment, our application (the Python server and the Java client) is licensed under GPL [Free
Software Foundation 1991a]. This is because we have compiled the CSA-algorithm to be used on
Windows using Cygwin [Faylor and Vinschen]. If a need arises to do something that the GPL does
not allow, the CSA-algorithm could be either re-implemented or just compiled using another set of
tools, e.g., MinGW [Peters et al.] (which is public domain). Our choice to use Cygwin was one
of comfort. CSA compiled with relative ease under Cygwin, and our first attempts to use MinGW
were not met with success. Even so, we think compiling without the links to cygwin1.dll should
be relatively easy if the need should arise. The sources for CSA are included in our program. They
are almost identical to the version we downloaded, except for a slight change in the make-file to
make it compile using gcc in Cygwin. Should one choose to remove the dependencies to Cygwin, the
application would no longer be licenced under GPL, and could be concidered public domain, except
for NetworkX which is LGPL (see below). All we ask is props to us if you find the program useful.

NetworkX is licenced under LGPL [Free Software Foundation 1991b]. In short terms, this means
that it in it self has the same license as GPL [Free Software Foundation 1991a], but it does not infect
the rest of the application with the GPL. Should you wish to redsitribute our application, you only
need to include the sources to NetworkX. As noted in 7.2, this dependancy can be removed with out
too much work should it become neccecary.
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(a) Build 651 (b) Build 723 (c) Build 1044

(d) Build 1268

(e) Build 1736

Figure 5.4: Various builds of BioGraph. Protein interaction data is dynamically read from the BIND
database, and proteins are annotated by Gene Ontology.
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Figure 5.5: BioGraph system design
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Chapter 6

Results

Don’t tell people how to do things. Tell them what to do and let them surprise you with
their results.

– George S. Patton

This chapter presents results coming from our algorithms in chapter 4, and our implementations
from chapter 5. This chapter includes testing of output data from the algorithms and programs.
The tests are performed for two reasons: (a) To find out whether our methods return relevant,
interesting results, and (b) to find out whether or not they do this at reasonable speeds.

6.1 Information Content

Chapter 4 on algorithms ended with us not knowing how to give semantic meaning to the output
from the algorithms: There is no theoretical way to describe the quality of the output. Therefore,
we try an empirical approach. We have selected a number of interesting proteins with a sufficient
number of interacting neighbors in BIND. These proteins were compared and scored, resulting in
the matrix shown in the following tables. We used both level- and statistic-based scoring schemes
as described in sections 4.4.3 and 4.4.3, and increasing number of neighborhood levels to include in
the calculation.

In an ideal world, we would compare these results to opinions from a biologist to see whether
there is a correlation. We haven’t been able to do this, but instead, we used the direct protein–
protein scoring algorithm (originally used as part of the neighborhood similarity measure) with the
same set of proteins. Thus, we produce two sets of results: (a) Scores based on neighborhood
information only, and (b) scores based directly on the proteins themselves. This will be used as a
test case indicating the quality of our neighborhood-based scoring algorithms, and we assume that
the correlation between these results will indicate how well our algorithms actually perform.

We will also use this experiment to determine what neighborhood-size we recommend using for
comparing neighborhoods. We will do this by running the same tests with increasing numbers of
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neighborhood levels. We will stop this when the correlation between the neighborhood-results and
the direct results decrease.

Tables 6.1 and 6.2 are the results of the direct scores between the proteins. This has not used any
neighborhood information, only GO similarities.

GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 3,02
5453830 2,25 3,40
7705592 0,99 1,67 3,09
4504191 3,02 2,25 0,74 3,02
4557761 3,02 2,25 0,99 3,02 3,61
4506017 2,25 2,25 1,20 2,25 2,25 3,83
4758952 0,96 0,96 0,96 0,45 0,96 3,13 4,01
4757930 1,77 0,99 0,99 1,80 1,77 1,98 0,96 2,93
14327896 1,77 0,99 0,99 1,80 1,77 1,98 0,96 2,18 2,82

Table 6.1: Direct scores between selected proteins (statistical scoring scheme).

GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 3.32
5453830 3.00 3.32
7705592 2.58 3.00 3.17
4504191 3.32 3.00 2.58 3.32
4557761 3.32 3.00 2.58 3.32 3.32
4506017 3.00 3.00 2.81 3.00 3.00 3.81
4758952 2.00 2.00 2.00 2.00 2.00 3.00 3.17
4757930 2.58 2.58 2.58 2.58 2.58 2.81 1.58 2.81
14327896 2.58 2.58 2.58 2.58 2.58 2.81 1.58 2.81 2.81

Table 6.2: Direct scores between selected proteins (level scoring scheme).

The tables 6.3 and 6.4 show neighborhood scores with one neighborhood level.

To see whether we get better scores with a higher number of neighborhood levels, we performed the
same tests for N2(·) searches. The results are shown in tables 6.5 and 6.6.

We have calculated both Spearman and Pearson correlation coefficients between the results from
the neighborhood-scores and the direct scores. Table 6.7 shows the results. As we can see from the
table, the most interesting connection is between direct scoring and statistical neighborhood scoring
with one level. We therefore calculated p-values using randomization (see section 2.2) for these
coefficients, and both values have a p-value of << 0.0001, found by the randomization technique
run with 10 million iterations. In these, no random permutations resulted in higher coefficients for
Spearman correlations, and 15 for Pearson.

Figure 6.1 shows a visual representation of the results from direct proteins similarity and neighbor-
hood similarity with one level as input.
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GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 26.71
5453830 17.25 30.4
7705592 4.39 4.56 3.5
4504191 10.97 10.34 4.57 14.87
4557761 17.36 13.11 4.57 12.5 19.7
4506017 9.1 9.96 4.88 9.91 9.08 14.11
4758952 4.65 4.62 2.16 4.25 4.53 6.76 11.25
4757930 9.57 13.17 4.56 9.39 8.64 9.34 4.2 14.75
14327896 14.23 16.21 5.33 10.65 12.16 9.55 4.16 11.68 25.82

Table 6.3: neighborhood scores between selected proteins using statistical scoring, and one level of
neighborhood as input.

GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 26.24
5453830 29.3 28.82
7705592 5.39 5.17 6.75
4504191 12.81 12.17 5.61 13.55
4557761 19.46 18 5.61 13.23 19.87
4506017 12 12.34 5.98 12.17 12 14.07
4758952 8.58 8.8 4.91 8.17 8.58 8.81 9
4757930 11.49 12.49 5.75 11.56 11.39 12.49 8.17 12.81
14327896 19.12 19.1 6.39 11.78 16.95 11.61 8.17 11.81 21.37

Table 6.4: neighborhood scores between selected proteins using level scoring, and one level of neigh-
borhood as input.

GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 160.89238
5453830 97.29502 338.43719
7705592 88.52146 90.79898 195.21995
4504191 143.48575 169.54535 131.18252 248.8271
4557761 142.93446 143.03194 115.78714 196.22822 200.97136
4506017 140.75588 277.33805 180.15234 223.57689 182.45111 2771.2644
4758952 135.48969 272.51724 179.75498 220.1326 178.55544 2639.23283 2652.16875
4757930 120.82371 258.18381 158.07057 202.77767 166.95484 587.3588 584.63588 604.96952
14327896 136.14799 241.45283 172.3047 220.6579 186.40512 661.89195 658.39705 582.11834 678.66086

Table 6.5: neighborhood scores between selected proteins using statistical scoring, and two levels of
neighborhood as input.
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Figure 6.1: Neighborhood score vs. direct score
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GI / GI 4557757 5453830 7705592 4504191 4557761 4506017 4758952 4757930 14327896
4557757 109.31468
5453830 95.48908 220.67284
7705592 88.47906 104.08009 131.64507
4504191 105.80722 153.72821 117.16254 167.69322
4557761 106.47997 127.00276 110.63882 138.33692 139.2734
4506017 101.8479 213.93163 130.16983 161.94288 132.84277 1747.77545
4758952 101.64723 212.62606 130.16983 161.63685 132.6421 1660.50865 1662.13939
4757930 99.6652 208.15175 126.15596 158.50949 130.02748 364.69452 363.98302 365.98101
14327896 102.14336 205.2935 128.00925 162.20994 134.05688 423.3535 423.15283 363.14851 425.39873

Table 6.6: neighborhood scores between selected proteins using level scoring, and two levels of
neighborhood as input.

Pearson Spearman
Level-scoring, 1 level 0.54 0.62
Stats-scoring, 1 level 0.64 0.71
Level-scoring, 2 levels 0.47 0.25
Stats-scoring, 2 levels 0.48 0.30

Table 6.7: Correlation coefficients

The correlation coefficients indicate that our method does indeed yield interesting results. It proves
that even with no annotation data on a given protein, it can, with the right amount of protein–protein
interaction data, find similarities with other proteins with a high level of confidence. It also tells
us that we should not recommend using neighborhood-levels higher than 1 with the current version
of the algorithms, as the correlation coefficients already are decreasing when using 2 neighborhood
levels.

Still, these results may be slightly misleading. All proteins here have reasonably similarly sized
neighborhoods, and in the real world, when comparing entire genomes, the output would probably
be less correlated. A discussion on this problem is included in chapter 7.

6.2 Robustness

The input data for our function prediction methods – the protein–protein interaction networks and
GO classification of the proteins – are prone to errors: Interactions between proteins may be false
positives and/or false negatives, Gene Ontology classifications may be inaccurate, either simplified
or directly misleading. To find out how stable our methods are, we generated a "mutated" genome
derived from a sufficiently described genome. We iteratively applied noise to the new genome,
logging the similarity between a protsin and all proteins in the mutated genome for each mutation
step. Mutation steps simulate errors in the data, and include the following (See figure 6.2 for
examples):
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1. Deletions of protein–protein interactions

2. Deletions of proteins (and incident edges)

3. Additions of protein–protein interactions

4. Simplification of protein classifications (A random GO classifier is replaced by one of the
superordinates of the original classifier)

Since the mutations listed simulate errors in prior research, we do not know to which extent these
errors occur. The chances of errors are dependent on the quality of the experiments previously
performed on the proteins. Thus, we will simply select a likelihood of 10% for each of the listed
mistakes to occur. Eventually, the mutated genome will turn into complete rubbish, but what we
are interested in finding, is the limit where we can still rely on our methods for predicting protein
function. We can then discuss whether this limit indicates a robust method.

(a) Deletions of protein–protein interactions (b) Deletions of proteins (And incident edges)

(c) Additions of protein–protein interactions

GO: 0050662
GO: 0030170
GO: 0043039

GO: 0048037
GO: 0030170
GO: 0043039

(d) Simplification of protein classifications (A ran-
dom GO classifier is replaced by one of the super-
ordinates of the original classifier)

Figure 6.2: Examples of genome mutations.
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6.2.1 The Test Case

Arabidopsis thaliana is a plant, described by approximately 800 protein–protein interactions in BIND.
We chose this genome because of its suiting size (not to small, nor to large), and started running
the mutations. For each mutation, we compared the protein Nuclear receptor coactivator 3 (GI
23396777 - randomly chosen from BIND) to all proteins in Arabidopsis thaliana. We then calculated
correlation coefficients between the first output (before any mutations) for each iteration. We assume
the coefficients describe well the degree of similarity between the two sets. We kept mutating the
genome until both pearson and spearman correlation coefficients dropped below 0.5.

Figure 6.3: Mutation resistance

The results are shown in figure 6.3, where the blue line is spearman correlation, and the green line
is pearson. We see from the plot that after 17 mutations, the correlation coeffisients drop below 0.6,
a correlation level we consider so low that the results are uninteresting. At this point, 40% of the
interactions and proteins in the mutated genome have been removed, changed or otherwise mutated
(as described in the previous section).

Concidering the destructive mutations our genome has been exposed to, and the relatively slow
decay of correlation, we conclude by regarding our methods to be relatively robust to erroneous
changes in the genomes, an advantage if one wants to use them on less accurate data.
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6.3 Performance

We have tested our algorithm to see how fast it will perform, and we have tested neighborhood-
neighborhood similarity calculations with a selection of proteins with varying sized neighborhoods.
The results from these measurements are shown in table 6.8. Looking back at figure 3.2 on page
13 (and the numbers it is based on), we find a mean neighborhood size (N1) of 10 proteins. Also,
genome sizes vary from hundreds of proteins to a few thousands, plus three genomes larger than
10.000 proteins. The average size of a genome is 319 proteins.

1 5 10 20 50 100 678
1 0.05 0.05 0.06 0.06 0.08 0.13 3.68
5 0.06 0.06 0.07 0.09 0.16 3.83
10 0.06 0.07 0.10 0.18 4.12
20 0.09 0.14 0.25 4.87
50 0.23 0.41 6.28
100 0.60 8.38
678 45.98

Table 6.8: Speed of neighborhood comparison. The table shows time (sec) needed to score the
similarity between two neighborhoods with varying sizes.

We assume the user uses N1 neighborhoods in the comparisons, as a result of our recommendations
from section 6.1. Experiments have also shown that the mean size of a N1 neighborhood is 10
proteins. We see from table 6.8 that comparing two neighborhoods where |N1| = 10 will take
0, 06 seconds. This means that an average total time for finding k-nearest neighborhoods in a
random genome will be 0.06sec/protein · 300proteins ≈ 18sec. However, if searching through the
largest genome, that of Drosophila Melanogaster, with 35, 744 proteins, the calculations will take
0.06sec/protein · 35, 744proteins ≈ 35minutes. Drastically higher, but still times we should be able
to live with. It seems our tool may be a valuable asset to finding similar neighborhoods.

Also, the times above are calculated on the server-side, meaning traffic between the server and client
is not included. Still, empirical tests have shown that network overhead is very small, and will not
increase the time much.

6.4 Optimizations

As the performance results from section 6.3 shows, our application performs well under normal cir-
cumstances. However, if one should choose to include more levels of neighborhoods when searching,
run-times would increase drastically. We will therefore discuss some approaches to optimizing the
algorithms, and discuss whether these can speed up the performance of our application.
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6.4.1 Overestimating Weights

The operation we thought would be most time-consuming – the matching of the bipartite graph -
is done very fast with CSA. Profiling our application showed that the bottleneck was the weighting
of the bipartite graph. So, what we tried to do was find a way to efficiently overestimate the score
of a neighborhood without weighing every edge in the bipartite graph. The idea was to quickly
skip neighborhoods that yield too low or otherwise uninteresting estimates, when a large k-nearest
neighborhoods search is being run.

Let α and β be the two proteins of which we want to compare the neighborhoods. |Nx(α)| =
m, |Nx(β)| = n. Our goal is to find the best score any of the m · n edges in the bipartite graph
can theoretically obtain. We let this optimal weight be called ŵ. The number of edges that will be
kept in the matching of the graph is equal to the smallest value of m and n, so the best score the
neighborhood now can achieve, will be:

Ŝ(α, β) = ŵ ·min(m,n) (6.1)

So, how can we find ŵ? Normally, when calculating one weight w, we find the union of all of Ni(α)’s
neighbors and all of Ni(β)’s neighbors, and intersect these two sets. This is in itself equivalent to
selecting the two best GO matches from the two neighbors and using these as a measure. This
method is very fast, it is repeating it m · n times for each neighborhood that is slow. Now, the
overestimate is calculated by treating all the proteins in N(α) as one, and all in N(β) as one. The
same weighing-algorithm is run on these two "virtual proteins", and the result: The equivalent to
selecting the two best GO matches from the two neighborhoods (instead of two neighbors). This is
indeed the best score any pair of neighbors could obtain, and we have calculated ŵ.

To explain the difference between calculating weights w the normal way and calculating ŵ, see figure
6.4. Figure 6.4a shows the normal way of calculating one of the m · n weights. In figure 6.4, we see
that all proteins on each side are compared to each other in one step, finding ŵ. The figure also
illustrates the calculation of Ŝ(α, β) = ŵ ·min(m,n). In this case, min(m,n) = 2.

Now, if the user is running a k-nearest neighborhoods search over a genome A, the overestimate
can be calculated for each protein neighborhood being scored. If Ŝ is smaller than k values already
calculated, we can discard the neighborhood and move on to the next, without calculating its real
score.

Speedup factor

The speedup factor achieved by the method just described will depend on several factors. We will
estimate it based on a k-nearest neighborhood search, meaning we wish to find the k most similar
neighborhoods to that of α. We let G define the size of the genome we are searching through.
Further, we let n̄ be the mean neighborhood size. goSim denotes the amount of time needed to
compute one weight in the bipartite graph, and goSimEstimate(n) the time to calculate Ŝ. Finally,
we let csa(n) represent the time needed to match the bipartite graph (used when calculating the
real score, not the overestimate).
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wi GO: 0005820
GO: 0003932
GO: 0029792

GO: 0005820
GO: 0002470

(a) Normal calculation of weights wi, 0 ≤ i < (m ·
n)

GO: 0005820
GO: 0003932
GO: 0029792

GO: 0005820
GO: 0002470

GO: 0005339
GO: 0002470

GO: 0005820
GO: 0010980

GO: 0037710
GO: 0001997
GO: 0018929

ŵ

(b) Optimized evaluation of ŵ

Figure 6.4: Optimization by overestimation

The time needed to perform the k-nearest neighborhoods without the overestimate optimization
would be as defined in equation 6.2. The explanation is pretty straight forward: To compare α’s
neighborhood to all neighborhoods in the genome, we have to sequentially perform n̄2 weighings
plus matching with csa(n), and do this a total of G times.

tnormal = G · (n̄2 · goSim + csa(n)) (6.2)

With the optimization, however, we must in addition run the overestimate calculation (goSimEstimate(n))
for each neighborhood comparison. This adds to the total time needed, but only in K

G cases do we
have to calculate the real score (the cases where the overestimate makes it to the top-K scores). The
needed time with the overestimation method is shown in equation 6.3

toptim = G · goSimEstimate(n) +
K

G
· tnormal (6.3)

This gives us a speedup factor of...

speedup =
toptim

tnormal
=

G · (n̄2 · goSim + csa(n))
G · goSimEstimate(n) + K

G ·G · (n̄2 · goSim + csa(n))

=
n̄2 · goSim + csa(n)

goSimEstimate(n) + K
G · (n̄2 · goSim + csa(n))

By profiling our implementations, we have found the values for goSim, goSimEstimate(n) and
csa(n) under different conditions (varying values for n). The plots in figure 6.5 shows expected
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speedup factors for various values of k, G and n̄. As the figures show, we can expect quite good
speedup factors if the algorithm works as intended.

However, we have made one simplification we must concider first: We haven’t taken false positives
into consideration. That is, K

G should be higher, depending on how often the overestimate determines
that a score needs to be calculated "for real", when in fact it shouldn’t have been. If the overestimates
are too far off, we cannot use the optimization technique at all. This is because the overestimates
would trick the algorithm into thinking that a pair of neighborhoods will get a high score, making
it calculate the similarity with the exact algorithm, only to find out it didn’t yield that high a score
anyway.

Figure 6.5: Expected theoretical speedup factors. Blue lines: k = 5. Green lines: k = 20. Red lines:
k = 50.

We have implemented the overestimate method to find out whether the estimated scores are way
off. The results, unfortunately, indicated that they are. In fact, so much that most of the neigh-
borhoods would be estimated to be amongst the top k, while most of them in reality are not. We
calculated overestimates and actual scores for 200 random neighborhoods. Then we calculated the
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overestimate/real score ratios, and plotted these in a histogram. The histogram is shown in figure
6.6. As we can see, all overestimates are higher than the real scores (so it is in fact an overestimate),
but unfortunately, most of them are far too high. Many overestimates are 4 times the real score, and
far too many scores would be assumed to be interesting and re-calculated with the exact algorithm.
The result is an increase in total run-time rather than a decrease. We cannot simply reduce the
overestimates by a constant factor, as we could no longer guarantee it being an overestimate. This
could lead to false negatives – faulty assumptions that a neighborhood score is too low to make it
to the top K, and thus return incorrect results in a k-nearest neighborhoods search.

Figure 6.6: Histogram: Speedup/real score ratios

Unfortunately, our overestimation method will not help us speed up the methods at all. The only
way it could help, is if we adjust the overestimates to line up better with the actual results and
accept some missed results due to false negatives. We could in this case obtain some speedup as
a tradeoff to some false negatives. We have not had the time to look into this matter during our
thesis, and this will therefore be discussed briefly in section 7.2 on future work.

6.4.2 Memoization

Our algorithm has an advantage that we feel we cannot leave unexploited: When comparing one
protein to a set of many proteins, many of the same calculations are repeated. Especially direct
GO-similarity between neighbors (calculating the weights in the bipartite graph) is a task performed
often, and we thought we could achieve a relevant speedup factor by memoizing results from these
calculations. This is easily implemented by checking whether we have calculated this weight earlier.
Temporary results are stored in a hash-structure, and retrieved if they exist.

We have not calculated a theoretical speedup factor for this approach at all, but we have run the
algorithm both with and without the optimization. The results were, however, not happy reading.
We could in most cases not detect any significant speedup-factor. This is probably because the
calculations doing the weighing are already fast, and hash-lookups also take some time. We may
have achieved some better results by denying the hash-structure to grow too large, as this may make
it slightly slower. This could be done with a LRU cycling-approach, but we anticipate this will slow
the memoizing down even more. We will therefore not do anything more with this idea.



Chapter 7

Discussion

People ask for criticism, but they only want praise.

– W. Somerset Maugham

The results from the previous chapter need to be analysed for us to produce a conclusion of our
work. This chapter discusses the output from the tests performed, and suggests possible ways things
could be made better, describing some future work we see the need for.

7.1 Discussion of Results

The correlation coefficients obtained from section 6.1 indicates that something is indeed working.
However, one aspect of the scoring that may lead to bad results is that our scoring-algorithm
accumulates weights from the bipartite graph to calculate the score for two neighborhoods. Larger
neighborhoods will result in constantly higher scores. This is, to a certain extent, a positive effect
– Larger neighborhoods have more information about the base than very small neighborhoods, but
it leads us to the question of validity. Are we measuring the similarity of neighborhoods, or are we
measuring the amount of research that has been done on a given protein? We cannot be sure if a
protein is a part of few interactions because it is not very popular amongst researchers or if it is
just not part of many interactions. The same goes for proteins that take part in a large number of
interactions. For us to be able to tell these two cases apart, BIND would have to include some kind
of score for the ’popularity’ of each protein amongst researchers. BIND does currently support such
a feature.

Another option would be to normalize scores by dividing scores on the size of the neighborhoods,
but this would also be unjust. This way, very small, uninteresting neighborhoods could compete
against large, meaningful neighborhoods. We therefore do not recommend doing this.

Another issue we feel the need to discuss is what to do with neighborhoods that have different
sizes (at same depths). Given two neighborhoods N1(α) (with three neighbors) and N1(β) (with
four neighbors), we could after the weighted bipartite matching end up with a graph like figure 7.1.
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GO:0051263

Level 1

GO:0051259
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GO:0018209
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GO:0044267
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GO:0042405
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GO:0016829

Level 1

GO:0003824

Level 1

Weight: 2

Weight: 4

Weight: 7

Figure 7.1: Two proteins with different size neighborhoods

We want to give a higher score to equal-size neighborhoods than to unequal size neighborhoods
e.g. figure 7.1. So the question of penalizing different-size neighborhoods came up. After lengthy
discussion we decided to ignore the problem, since a 4 · 4 neighborhood would have one more link
than a 3 · 4 neighborhood, and this gives an implicit penalty as the 4 · 4 one would get a higher score
than the 3x4 one.

Even after taking the problems of our method into account, we believe that it to a certain extent
shows that neighborhood similarity can be used to predict protein-functions, and that our tool can
do so within a resonable amount of time.

Figure 7.2: Neighborhood / annotation count plot
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7.2 Future Work

Our work has been mainly concentrated on applying Gene Ontology protein similarity searches on
a protein–protein interaction dataset. We see that there are many possibilities for future work on
our and similar areas. Applying techniques like chromosomal proximity, phylogenetic proximity and
coexpression analysis on protein–protein interaction networks instead of the gene ontology approach
may very well be interesting. Also, testing our results for biological relevance has not been a major
concern in our project, and may be a good starting point for others with similar ideas.

We feel that the results from our work are promising, and therefore hope that someone will pick up
where we left off. Further research into how the scoring-algorithms can be improved is also inter-
esting, not least by finding some way to solve the neighborhood size – neighborhood score correlation
problem explained in section 7.1.

We also suggest trying to filter the data from BIND to see if this yields better results. Only
including experimentally verified interactions data, and excluding predicted interactions could make
it a more accurate and valuable input. Currently, we have found no way of differentiating between
experimentally verified interactions and predicted ones, but what BIND does plan to offer, is a
field called "Publication Quality". The field is part of the specification, but not yet implemented.
Another possibility of excluding less interesting interactions, is the field "Publication Opinion".
This is not implemented either, but will contain either support, dispute or none. Filtering out the
disputed interactions could possibly make the network more accurate. Also, as figure 7.2 shows, a
good portion of the proteins we have are both poorly annotated and have few neighbors. Washing
these out of the input data might be a good approach to improving results, as these proteins are
likely to be poorly researched and may result in misleading scores.

As noted earlier, merging the server and client could make the overall application more streamlined
and easier to deploy.

A possibility for making the statistical selection (see section 4.4.3) better, is to increase the amount
of data the statistics are based on. Instead of only using data from BIND, one could use a larger
data set. Assuming these annotations are mostly correct, we could probably improve the statistical
selection.

As noted in the license discussion (see section 5.4), a re-compilation of the CSA-code to remove the
dependency on Cygwin is something that could be performed without too much hassle, and would
remove the constraints imposed by the GPL [Free Software Foundation 1991a].

Wrapping CSA into a C-module that can be imported in Python would remove the command-line
solution we use to make CSA work. It could also probably be useful for others looking for a solution
to the assignment problem.

Removing the dependancy on NetworkX would make installation of our program easier. Either
modifying the DAG library to make it do the job of NetworkX, or implementing a graph library to
take the place of NetworkX would not require too much work. Either way we do not believe it would
affect performace of our program.
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Appendix A

Notation and Terminology

Symbol Explanation
A,B, C... Genomes
Q Genome containing query protein
S Genome to be searched

α, β, γ... Proteins
ϕ Query protein
Aj Gene ontology category j

Nn(α) n’th degree neighborhood of protein α
(The set of all nodes a maximum of n steps away from α)

Nn
i (α) i’th neighbor in the n’th degree neighborhood of protein α

(Used for iterating over neighborhoods)
|Nn(α)| Absolute value of Nn(α)

(The number of n-degree neighbors to α)

P (α) Scoring for protein α in point-distribution system from section 4.2
CA→B(α) Putative ortholog of α (originally located in A), located in B

We assume only one orthologous protein exists per genome B.
J(α, Ai) Distance in number of jumps from the protein

α to the closest protein of category Ai

Slevel(A )) Score for the GO category A using level scoring scheme.
Sstatistics(A )) Score for the GO category A using statistical scoring scheme.
S(α, β) Total similarity score for the neighborhoods of proteins α and β.

Should include number of levels to search, and scoring scheme (statistical or level)
This is omitted for simplicity.

Ŝ(α, β) Overestimated similarity score for the neighborhoods of proteins α and β.

Table A.1: Notation
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• Annotated
Annotated proteins are, in contrast to unannotated proteins, categorized in fixed ways we will
describe later in the thesis.

• Assignment problem
The problem of finding a maximum (or minimum) weight matching in a weighted, bipartite
graph.

• Base
By base, we mean the core of a neighborhood - the protein that the neighborhood is based on.

• Correlation Coefficient
A measure of the strength of the similarity between two sets of variables.

• DAG
Directed, acylic graph

• GCC
Gnu Compiler Collection.

• Homolog
Indicates genetic relationship. See paralog and ortholog.

• In silico
Research performed via computer simulations

• In vivo
Research performed on living organisms (e.g. mice)

• Level
The level of a protein in a neighborhood denotes how many interaction steps we need to connect
it to the base of the neighborhood.

• make-file
File that is shipped with source code meant to instruct the compiler on what to do.

• Ortholog
Orthologous proteins share a common ancestor, but are no longer contained in the same
genome. See paralogs.

• Paralog
Paralogous proteins are, like orthologous proteins, mutated versions of the same ancestor, but
paralogs are, unlike orthologs, contained in the same genome.

• Psyco
Just in time-compiler for Python, used to speed up Python applications.

• XML-RPC
Remote procedure calling using HTTP as the transport and XML as the encoding.

Table A.2: Terminology
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Protein–protein interaction databases

There exists several databases for protein–protein interactions. These include the following: [Stacey]

1. BIND – Biomolecular Interaction Network Database
http://www.blueprint.org/bind/bind.php

2. DIP – Database of Interacting Proteins
http://dip.doe-mbi.ucla.edu/

3. PIM – Hybrigenics
http://www.hybrigenics.fr/

4. PathCalling Yeast Interaction Database
http://portal.curagen.com/pathcalling_portal/index.htm

5. MINT – a Molecular Interactions Database
http://160.80.34.4/mint/

6. GRID – The General Repository for Interaction Datasets
http://biodata.mshri.on.ca/grid/servlet/Index

7. InterPreTS - Protein–protein interaction prediction through tertiary structure
http://www.russell.embl.de/interprets/

8. STRING – predicted functional associations among genes/proteins
http://www.bork.embl-heidelberg.de/STRING/

9. Mammalian Protein–protein-protein interaction database (PPI)
http://fantom21.gsc.riken.go.jp/PPI/

10. InterDom – database of putative interacting protein domains
http://interdom.lit.org.sg/

11. FusionDB – database of bacterial and archaeal gene fusion events
http://igs-server.cnrs-mrs.fr/FusionDB/
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12. IntAct Project
http://www.ebi.ac.uk/intact/index.jsp

13. HPID – The Human protein–protein interaction Database
http://www.hpid.org/

14. ADVICE – Automated Detection and Validation of Interaction by Co-Evolution
http://advice.i2r.a-star.edu.sg/

15. InterWeaver – Protein–protein interaction reports with online evidence
http://interweaver.i2r.a-star.edu.sg/

16. PathBLAST – alignment of protein–protein interaction networks
http://www.pathblast.org/bioc/pathblast/blastpathway.jsp

17. ClusPro – a fully automated algorithm for protein–protein docking
http://nrc.bu.edu/cluster/

18. HPRD – Human Protein Reference Database
http://www.hprd.org/
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Appendix C

Basic graph concepts

Graphs theory is relied heavily upon throughout our thesis, and we therefore find it relevant to
include a short introduction to graphs here. This appendix will shed light on the various types of
graphs and properties that have proved relevant to our work.

A graph is a set of objects we call vertices and edges. The vertices are connected by edges. To be
more formal, we can say that a graph is a tuple (V,E), where V is a finite, non-empty set of vertices
and E a set of unordered pairs of distinct vertices.

A typical graph can be seen in figure C.1

E2E1

E3

E4

V2

V1

V3

V5

V4

Figure C.1: An example graph.

C.1 Properties of Graphs

A path in a graph is a sequence of vertices such that from each of the vertices there is an edge to
the previous vertex. The first vertice is called the start vertice, and the last the end vertice. A path
in figure C.2 would for instance be {(V 1, V 2), (V 2, V 4)}. Paths can be directed, meaning it is a a
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path where all the directed edges in the path point the same way. A cycle is a path where the start
vertice is also the end vertice.

A graph is said to be connected if it is possible to establish a path from any one vertice to any other
in the graph. A small worldian network or graph, is a connected graph with the property that any
node can be reached from any other node via a short number of connections.

C.2 Classes of Graphs

A directed graph is a graph where the set of edges E is a set of ordered pairs, so that one is a start
vertex and the other an end-vertex. Figure C.2 is a typical directed graph.

E2E1
E3

E4

V2

V1

V3

V5

V4

(a) A directed graph

E5

E2E1

E3

E4

V2

V1

V3

V5

V4

(b) A rooted tree

Figure C.2: Examples of graphs

A graph is acyclic if it contains no cycles. Figure C.2 is an example of an acyclic graph. An
unordered graph is a tree if it is both connected and acyclic. The tree is rooted if one vertex has
been designated as the root, and the edges have an orientation either away or towards the root. In
figure C.2 we see a rooted tree, with V1 as the root. If the graph is directed and acyclic, we call it
a DAG. DAGs have no paths starting at a given vertex, and somehow leading to the same vertex.
See figure C.2 for reference.
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User Manual for BioGraph and BioLogue

This appendix presents a user manual for our programs and their external dependancies.

D.1 Software and hardware requirements

This installation guide assumes a working knowledge of your platform of choice and experience with
installing and running programs on it.

Both the client and the server have been tested and found to run on both Windows XP and Linux.
It should be possible to make them both work on any platform which has access to Python 2.4 or
later, Java 1.4 or later and a working C compiler, e.g gcc. The client requires Java 1.4 or later. It
may work with earlier versions, but this has not been tested. The server requires Python 2.4 or
later. Our test have been run on an Intel P4 3GHz with 512MB RAM. The client needs at least this
much memory, but the server should run with 256MB, but this has not been tested.

D.1.1 Installing Java

If you do not have Java 1.4 or later on your computer, it can be downloaded from
http://java.com/en/download/manual.jsp. Choose the package that corresponds to your operating
system. We have for the sake of convenience included a Windows installer for Java 1.4 on the
attached CD. Run the installer and follow its instructions.

D.1.2 Installing Python

The latest version of Python can be downloaded from http://www.Python.org/download/. Choose
the right package corresponding to your platform and install Python. On Windows, the pre-compiled
package should work like a charm. Most (if not all) Linux-distributions will have a pre-compiled
Python-package as well. If you can’t find a compiled version of Python for your platform, you will
have to compile your own. Sources can be downloaded from the same location. We have used
Python 2.4 (both on Windows and Linux) in our testing and development. Our code should work
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well with newer versions of Python, although this has not been tested by us. We have for the sake
of convenience included a Windows installer for Python 2.4, and a source distribution of Python 2.4
on the attached CD.

When Python is installed, Python programs can be run by opening the desired .py-file in a file
explorer, or by typing
Python source.py
in a console window (granted, you have the Python installation directotry in your path-variable.

D.1.3 Installing NetworkX

NetworkX can be downloaded from http://sourceforge.net/projects/networkx/. You can choose
between a Windows installer or a source distribution. We have for the sake of convenience included
both the Windows installer and the source distribution on the attached CD. Important: Install
Python before you attempt to install NetworkX.

D.1.4 Installing our Software

Installing the software we have implemented is fairly straight-forward. Locate the directory Application
on the accompanying CD, and copy all the files to a desired location on your hard drive.

D.1.5 Installing Data Sources

Our application currently uses data gathered from BIND[Bader et al. 2003] and GO[Ashburner
et al. 2000]. The files are updated on a regular basis, and the user can download new versions of
the files and manually import them into our application. However, this is not necessary, nor is it
recommended, as the server automatically downloads the data sources it needs. Automatic updates
can be configured using the servers configuration file (see below). The four files the server and the
client use are:

• Annotations of proteins
ftp://ftp.blueprint.org/pub/BIND/data/bindflatfiles/GO/bindgo.1.csv.gz

• Protein–protein Interactions
ftp://ftp.blueprint.org/pub/BIND/data/bindflatfiles/bindindex/YYYYMMDD.ints.txt

• Taxonomy definitions
ftp://ftp.blueprint.org/pub/BIND/data/bindflatfiles/bindindex/YYYYMMDD.taxon.txt

• GO category definitions
http://www.geneontology.org/ontology/gene_ontology.obo

(YYYYMMDD represents the year, month and date the data was uploaded)
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D.1.6 Configuring the Server

The server is configured using a file named application/BioLogue/bioLogue.cfg. The file contains
several variables, and is read whenever the server is started. This means that you will need to restart
the server for configuration changes to take effect. For a further description of the variables, see the
file. This should be done before starting the server for the first time.

D.1.7 Configuring the Client

The client is configured using a file named application/BioGraph/biograph.properties. This file
behaves similarly to that of the server. The most interesting variables are rpchost and rpcport,
describing the address of the RPC server. Additionally, input locates the directory where Bi-
oGraph will look for its input data. If the user wants to run the server and client on sepa-
rate machines, the input files (ints.txt, taxon.txt and bindgo.1.csv, per default located in
application/BioLogue/data/), must be manually synchronized to a folder accessible to the client.
Additionally, the address of the server must be updated accordingly in the properties file. This
address is set to localhost as default.

D.1.8 Starting the RPC Server

The RPC server can be started by typing the command
python bioLogue.py
in a console window, optionally double-clicking on bioLogue.py from a file explorer. If the external
data soruces are missing, the files described in section D.1.5 will be downloaded automatically. The
time this will take depends on your Internet connection. If the files exist, startup time will be few
seconds. Note that network port 8000 must be open on the computer running the RPC server.

Important note if you are not running the server on Windows or Linux
The implementation of the CSA algorithm is as we have noted written in C. This means that it
will have to be compiled for each platform and architecture you wish to run the server on. We have
for the sake of convenience included a compiled version of CSA for Windows and Linux running
on x86 architectures in our distribution. These are found in the application/Biologue/lib directory
(csa_linux_x86 and csa_win_x86.exe).

D.1.9 Starting the Client

Start BioGraph by running the file biograph.bat (Windows systems only), or by typing into a
console window
java -cp xmlrpc-1.2-b1.jar;. main.BioGraph

The application should be up and running after some seconds, and the user may refer to the next
chapter for an introduction on using BioGraph.
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D.2 Using BioGraph

BioGraph is the front-end for our application. It gathers interaction- and annotation-data, links
the various modules together and displays the results for the user in an easy-to-understand manner.
Reading the following instructions before using the software is recommended.

D.2.1 The Main Window

The main window is divided into three parts: (1) The tools panel is on the top of the window, (2)
the plug-ins panel is on the right, and (3) the protein–protein interaction (PPI) explorer window
is on the bottom left (See figure 5.3 (p. 47) for reference). The following instructions are mainly
focused on the PPI explorer.

D.2.2 The PPI explorer

The protein–protein interaction explorer is the large, white window on the bottom left of the ap-
plication window. It automatically shows the first protein read from the database when BioGraph
starts. Proteins are depicted as circles with varying colours indicating which genome they belong
to. You will notice that some circles are larger than others. Large circles indicate proteins where all
available protein data has been read from the database: Annotations, genome data and interactions
to other proteins. Small circles indicate proteins not fully read yet, or chosen not to be shown by
the user. Figure D.1 shows an example of both.

Figure D.1: One expanded protein connected to three collapsed proteins

Expanding and collapsing proteins

Click on a small (collapsed) protein with the left mouse button to read all its data. This will result
in the protein expanding to a large circle, and its neighbors showing up as small circles. A tooltip
will also show the corresponding genome, annotations and neighborhood information for the protein.
The tooltip appears when the mouse cursor hovers over the protein. See figure D.2 for an example.

Left-click on the protein again to collapse it, hiding its information. When collapsing proteins, all
neighboring proteins that are not (a) expanded or (b) connected to another expanded protein, will
be hidden from view.
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Figure D.2: Tooltip showing information about a protein

Moving proteins

For a better view of the proteins, they can be dragged around the explorer window. Click-and-drag
the left mouse button to move proteins around. By simultaneously pressing the shift button on the
keyboard, un-expanded neighboring proteins will move along with the protein you are moving. This
is ideal for moving entire neighborhoods to another place in the explorer, giving a better view of the
data.

Selecting proteins

Proteins can be selected by the user. Do this by clicking on them with the right mouse button.
A blue circle will appear around all proteins that are selected. This command is also necessary
for running some of the plug-ins described in section D.2.3. For instance, before comparing two
neighborhoods for similarity, one must select the two proteins in the PPI explorer. Figure D.3 shows
an example of three selected proteins.

Figure D.3: Three selected proteins

One can also select several proteins simultaneously. Click-and-drag the right mouse button, creating
a rectangle over the desired proteins. When releasing the button, the proteins will be selected. Hold
the shift-button while doing this, and proteins will be un-selected instead.

Panning and zooming

The view can be panned and zoomed to give a better illustration of the data. Click-and-drag the
middle mouse button on an empty portion of the explorer to pan the view. Zoom in and out by
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rotating the mouse wheel up and down. The view will be centred on the area you are pointing
on. Panning and zooming can also be used by clicking the , and buttons above the
explorer. To pan up, down, left and right, click on the corresponding position on the button.

D.2.3 Running Plug-ins

All advanced functionality in BioGraph is implemented as plug-ins. All available plug-ins are listed
to the right of the PPI explorer window, and started by clicking its corresponding button. Some
plug-ins require the user to select proteins before starting, and will request the user to do so if it
hasn’t already been done. One example is the protein–protein comparing plug-in, which requires
that two proteins are selected in the explorer. The following sections describe the plug-ins that come
with the current version of BioGraph.

Find protein

The simplest plug-in is also a very helpful one. It finds any protein in the database based on the
corresponding Gene Identifier (GI) number. Type in the GI and press the search button. The plug-in
will find it, expand it and also select it, making it easy to notice for the user.

Compare protein to protein

This plug-in runs the algorithms described in section 4.4 and displays the score between two protein
neighborhoods. Start off by selecting the two proteins whose neighborhoods you want to compare.
After the plug-in is started, type the number of neighborhood levels you want to include in the
search (1 by default). Also, choose which information content measurement method you want to
apply (level or statistical method), and press the search button. If the RPC server is up and running,
the result should come within a fraction of a second.

Compare protein to genome

The user selects one protein before starting this plug-in, selects a genome to search, and the number
of neighborhood levels to include in the search. The plug-in then sequentially compares the selected
protein’s neighborhood to all the protein neighborhoods in the given genome, logging the similarities,
and finally writing them to an output file. This is so far the most valuable function implemented
in BioGraph, and gives researchers the possibility to discover unknown functional links between
proteins.

Compare protein to list

Similar to the previous plug-in, but this plug-in allows the user to submit a comma-separated list of
Gene Identifiers. The plug-in will sequentially compare the selected protein to the proteins in the
list, and write the results to disk.
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