
Fighting Botnets in an Internet Service Provider
Environment

Morten Knutsen

If you don’t control your mind, someone else will.
— John Allston

Abstract

Botnets are compromised hosts under a common command and control infrastruc-
ture. These nets have become very popular because of their potential for various
malicious activity. They are frequently used for distributed denial-of-service at-
tacks, spamming, spreading malware and privacy invasion. Manually uncovering
and responding to such hosts is difficult and costly.

In this thesis a technique for uncovering and reporting botnet activity in an internet
service provider environment is presented and tested. Using a list of known bot-
net controllers, an ISP can proactivly warn customers of likely compromised hosts
while at the same time mitigate future ill-effects by severing communications be-
tween the compromised host and the controller.

A prototype system is developed to route traffic destined for controllers to a sink-
hole host, then analyse and drop the traffic. After using the system in a live environ-
ment at the norwegian reasearch and education network the technique has proven
to be a feasable one, and is used in a incident response test-case, warning two big
customers of likely compromised hosts. However, there are challenges in tracking
down and following up such hosts, especially “roaming” hosts such as laptops.

The scope of the problem is found to be serious, with the expected number of
new hosts found to be about 75 per day. Considering that the list used represents
only part of the actual controllers active on the internet, the need for an automated
incident response seems clear.

Keywords: bots, botnets, network security management, incident response.

Preface

This thesis represents the conclusion of my masters degree at the Norwegian Uni-
versity of Science and Technology, where I have studied for 5 years at the Depart-
ment of Computer and Information Science.

I would like to thank UNINETT AS who have given me a great opportunity to work
with such an exiting subject matter, and everyone there involved in the project for
their support and useful insights. Special thanks go to my supervisor there, Vegard
Vesterheim and the UNINETT CERT team for coordinating the project.

I would also like to thank my supervisor at the university, Anders Christiansen
for taking on this project and providing, as always, lots of interesting views and
feedback on my work.

Finally, I would like to thank the people closest to me, my friends, family and loved
ones, whose support and kind words kept me going during these 20 weeks.

Trondheim, 16.06.2005

Morten Knutsen

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose . 2
1.3 Goal . 2
1.4 Approach . 3
1.5 Limitations . 3

2 Overview 5
2.1 TCP/IP . 5
2.2 IRC . 5
2.3 Border Gateway Protocol . 6
2.4 Dynamic DNS and DHCP . 6
2.5 Denial of Service . 8
2.6 Malware . 8

2.6.1 Worms . 8
2.6.2 Viruses . 10
2.6.3 Trojans . 10
2.6.4 Blended Threats . 10

2.7 Botnets . 10
2.7.1 Infection and Propagation 12
2.7.2 Command and Control 13
2.7.3 Purpose and Use . 15

2.8 Service Provider Environment 16
2.9 Related Work . 16

3 Methodology and Approach 19
3.1 Problem . 19
3.2 Approach . 20

4 The Prototype System 23
4.1 Rerouting Botnet Traffic . 23
4.2 Configuring the Sinkhole . 24

4.2.1 Hardware . 24

i

4.2.2 Software . 24
4.2.3 Setup . 24

4.3 System Overview . 25
4.4 The Storage Component . 26

4.4.1 Packet Layer . 26
4.4.2 Top Layer . 28

4.5 The Logging Component . 31
4.5.1 Design . 31
4.5.2 Implementation . 32

4.6 The Aggregation Component . 34
4.6.1 Design . 34
4.6.2 Implementation . 35

4.7 The Response Component . 36
4.7.1 Design . 36
4.7.2 Implementation . 39

4.8 The Presentation Component . 40
4.8.1 Design . 40
4.8.2 Implementation . 41

5 Observations and Results 43
5.1 Environment . 43
5.2 Traffic Characteristics . 43
5.3 Scope and Activity . 46
5.4 An Incident Response Test Case 50

5.4.1 University A . 51
5.4.2 University B . 53
5.4.3 Summary . 54

5.5 The Prototype System . 54
5.5.1 Storage . 54
5.5.2 Performance . 55
5.5.3 User Interface . 55
5.5.4 Interoperability . 56

6 Summary and Further Work 59

Bibliography 60

A BGP Configuration 65

B Configuration Scripts 67
B.1 iptables-drop-eth1.sh . 67
B.2 logrotate.conf . 67

C Code Listing for the Prototype System 69
C.1 alert.py . 69

C.2 sniff.py . 77
C.3 report.py . 80
C.4 util.py . 86
C.5 packets.sql . 87
C.6 aggregated tables.sql . 89
C.7 status org.mhtml . 91
C.8 ip detail.mhtml . 93
C.9 botstatus.mhtml . 96
C.10 alert.mhtml . 101
C.11 plot org history.mhtml . 103
C.12 plot score ip.mhtml . 105
C.13 plot controllers history.mhtml . 107
C.14 plot pie chart.mhtml . 109

List of Figures

2.1 The IP and TCP headers . 6
2.2 Dynamic DNS-updates . 7
2.3 Distributed denial-of-service attacks. 9
2.4 A typical botnet . 11
2.5 Bot configuration . 13
2.6 IRC-based control. 14
2.7 Commanding botnets through IRC. 15

3.1 Rerouting botnet traffic using BGP. 20

4.1 Overview of the prototype system. 25
4.2 The storage system, with the packets table in the bottom layer. . . 27

5.1 A breakdown of the TCP SYN traffic by top 5 TCP destination ports. 45
5.2 Number of unique source IP addresses seen by day. 48
5.3 Number of controllers on the list on a daily basis. 50
5.4 Number of unique source IP addresses seen by day for University A. 51
5.5 Number of unique source IP addresses seen by day for University B. 53
5.6 Screenshot from the web frontend, showing a breakdown per or-

ganisation. 56
5.7 Screenshot from the web frontend, showing the most active hosts

for a given organisation. 57
5.8 Screenshot from the web frontend, providing detail on the given IP

address. 57

iv

List of Tables

4.1 The data stored in the packets table. 28
4.2 The data stored in the ip_seen table. 29
4.3 The data stored in the period_data table. 29
4.4 The data stored in the org_stats_day table. 29
4.5 The data stored in the alerts table. 30
4.6 The data stored in the controllers table. 30
4.7 The data stored in the controllers_stats_day table. 30

5.1 Data breakdown by IP protocol. 44
5.2 TCP Data breakdown by TCP flags. 44
5.3 Breakdown of TCP SYN traffic by top 5 TCP destination ports. . . 45
5.4 Breakdown of TCP SYN/ACK traffic by top 5 TCP source ports. . 46
5.5 Breakdown of TCP SYN traffic by TTL values. 46
5.6 Results from the abuse team at University A. 52

v

vi

Chapter 1

Introduction

This thesis presents the problem of botnets in general and botnet agents in an ISP-
environment in particular. It presents and realises an approach suitable for use by
an ISP for identifying agents and warning customers in a quick and automated
fashion.

This chapter presents the motivation for this work, what we hope to accomplish
and the approach and limitations that specify our work. The rest of the thesis is
divided into 5 chapters in the following manner:

• Chapter 2 presents an overview of the situation, introduces terms and con-
cepts and discusses some related work.

• Chapter 3 expands on the problem, and presents the methodology and ap-
proach.

• Chapter 4 details the prototype system, discussing design decisions and im-
plementation.

• Chapter 5 presents the observations and results of testing the prototype sys-
tem on live traffic data.

• Chapter 6 summerizes the work and draws some conclusions. In addition
areas for further work is presented.

1.1 Motivation

In todays service provider environment there is an ever increasing number of threats
to be faced [5], and the nature of these threats are getting worse by the day. Where
there used to be script-kiddies seeking recognition of their skills, there are now or-
ganised criminals seeking economic gain through spamming, identity theft, credit
card fraud and extortion to name a few.

1

A lot of this activity is related to the command and control of huge armies of
infected hosts behaving like autonomous (ro)bots, thus the name botnets. In fact,
some claim that 70% of all spam originate from such botnets [15, 25]. And while
the community have gradually become aware of the threat posed by worms, viruses
and denial-of-service attacks, the botnets as such have traditionally not received the
same attention, though arguably they are as severe a threat.1 This threat stems from
the sheer potential inherent in a network of thousands of hosts. The packet potential
is what make these nets highly attractive to people with malicious intent.

For service providers, the main concerns are possible lawsuits, breach of service
level agreements and the manual work of combating denial-of-service attacks.

It is reasonable to assume that at any given moment there are a number of such
infected hosts in the network of any ISP acting as bots, and that most customers
are unaware of their compromised state. These hosts are, in effect, ticking bombs
waiting to go off.

1.2 Purpose

This thesis aims to show that service providers can utilize the knowledge of known
botnet controllers to proactivly warn customers of controlled hosts, thus increasing
awareness and possibly mitigating future ill-effects. By automating the detection
and incident response, the operational security staff can get more work done in less
time while making informed choices, resulting in an improved network security
management process, and hopefully more satisfied customers.

1.3 Goal

Our goal is twofold. First, we want to learn more about the prevalence and be-
haviour of botnet agents in a typical large service provider environment. To this
end we want to quantify and plot collected data. Secondly, we want to develop
a working prototype system able to identify controlled hosts, collate information
and take operational action supporting the incident response workflow. This system
should:

• Gather, store and analyze packet data relating to the controlled hosts.

• Lookup administrative information related to the host.

• Automatically take operational action, at least by issuing warnings to the
appropriate personnel with the customer in question.

1We realize of course that the various threats are interconnected; hosts infected by malware may
become bots as a result. Similarly, an attacker may use a bot to start spreading new malware.

2

• Generate reports to support the operational staff.

• Utilize escalation and aggregation techniques to improve the incident re-
sponse process.

1.4 Approach

Our approach utilizes a list of known controllers compiled through forensic anal-
ysis. We route traffic destined for the controllers to a sinkhole host, where we
analyze and store the packet data. This provides some immediate mitigation, as the
data is dropped meaning the botnet agents can no longer connect to their controller
hosts.

The packet data is then used to automatically classify the compromised hosts ac-
cording to a measure of risk. Aggregated data is used to generate reports and take
operational action.

1.5 Limitations

Our approach assumes that the service provider is able to get or compile a list of
known controllers. It is reasonable to assume that the properties of such a list has a
big influence on the value of a system such as ours. The more controllers on the list,
the greater the number of controlled hosts that can be identified. However, the list
also needs to be kept current with respect to recent controller activity. Depending
on the rate with which controllers change their adressess keeping the list up to date
could prove vital. Even though such a list might be hard for some service providers
to acquire, the general approach as such is equally applicable to any setting where
traffic destined for a number of rouge hosts can be utilized.

The operational action taken is governed in large part by the policies of the service
provider. However, even with a rapid response blackholing (disconnecting) the
affected hosts, a system such as ours can never hope to contain worms or other
rapid malware, for that other approaches are more suitable [49, 22].

Similarly, our approach cannot hope to do more than mitigate distributed denial-
of-service attacks, again more specialized approaches exist e.g. [16, 28].

3

4

Chapter 2

Overview

This chapter presents the concepts necessary for the proper understanding of the
thesis, including definitions of commonly used terms. In addition related work on
botnets and routing techniques is explored.

2.1 TCP/IP

The Transmission Control Protocol (TCP) [36] and the Internet Protocol (IP) [35]
are two of the most important protocols in the layer based Internet protocol suite.
IP is a data-oriented protocol for communication between source and destination
hosts. It uses blocks of data referred to as packets in an unreliable fashion. These
packets may arrive damaged, out of order, duplicated or dropped in transit. TCP is
built on top of IP and provides programs on computers on the network to connect
to each other, and send data over this connection. TCP guarantees that the data will
be ordered and intact when it arrives. It also allows distinctions between services
through the concept of port numbers. The TCP and IP headers are shown in figure
2.1.

2.2 IRC

Internet Relay Chat (IRC) [34, 19] is an Internet protocol developed in 1988 for
realtime text-based discussion in virtual chat-rooms called channels. It was loosely
based on ideas from a similar system called RELAY on Bitnet/EARN. It uses a
client/server model with the server being the host of the channels and providing
the message delivery, pushing messages to clients. Servers can also interconnect to
form large IRC-networks.

5

Source Port

Version Header Len Type of Service Total Length

Identification Flags Fragment Offset

Time To Live Protocol Checksum

Source IP Address

Destination IP Address

Options

Sequence Number

Acknowledgement Number

Data Offset

Checksum Urgent Pointer

Padding

Padding

Options

Reserved WindowU A P R S F

Destination Port

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 2.1: TCP/IP headers. Top: The IP header (v4). Bottom: The TCP header.

The clients are usually interactive software programs like the popular mIRC [20]
for Windows. However clients can also exist in the form of automated scripts or
sets of scripts, called bots in IRC-terms, from the word robot. Their use is often of
an administrative nature, such as access control and logging.

2.3 Border Gateway Protocol

The Border Gateway Protocol (BGP) [38] is a routing protocol for inter-domain
routing in the Internet. It maintains a table of IP prefixes that describe reachability
between different autonomous systems (AS). An AS is a collection of IP networks
under a common control and routing policy, typically an ISP or a very large organ-
isation. Each such AS has a unique AS number (ASN) that identifies the network
on the Internet. For every prefix in the BGP routing table there is an associated
next-hop address, that can be used to direct traffic to a specific node.

2.4 Dynamic DNS and DHCP

The Domain Name Service (DNS) [30] provides name-to-address lookups on the
Internet and is a crucial part of Internet infrastructure at the service level. To map a

6

192.168.1.15

a.

b.

192.168.1.24 dyndns.org

....

....
foo.bar. A 192.168.1.15
....

....

....
foo.bar. A 192.168.1.24
....

....

....
irc.mydomain. A 192.168.1.15
....

....

....
irc.mydomain. A 192.168.1.24
....

dyndns.org192.168.1.24192.168.1.15

irc.mydomain.dyndns.org

1

2
3

1, 4

2 3

Figure 2.2: a. A host with a dynamic IP address changes it’s address and no-
tifies the dyndns-service who updates the relevant records. b. The hostname
irc.mydomain.dyndns.org is to point to 192.168.1.24 instead of 192.168.1.15. A sim-
ple notification and the records are updated.

hostname to an IP address the DNS-server(s) for your domain must contain at least
one A-record (address record) describing the mapping such as:

www.yourdomain.com. A 192.168.1.10

However, for the big number of host on the Internet with dynamic IP addresses,
managing hostnames can be somewhat daunting, if you are even allowed to do so
by your service provider.

Hosts often obtain their dynamic IP addresses from a DHCP server. DHCP stands
for Dynamic Host Configuration Protocol [12] and provides a client host with infor-
mation required to connect to the network. It can allocate IP addresses in different
fashions, one of which is dynamic allocation where each host gets a IP address
from a pool, for a given period of time (lease time). When the lease expires, the
host might or might not be assigned the same IP address.

To address the needs of people with dynamic hosts who want a static hostname
some providers are offering simple DNS-management. Services such as dyn-
dns.org [1] and no-ip.com [47] provide hostname to IP-mappings that are simple
to administer, free and anonymous. This enables people to quickly update their
record with their new IP address when needed, as shown in figure 2.2.

7

2.5 Denial of Service

Denial-of-service (DoS) [39] attacks are not new, and exist in a number of forms
[29]. In a DoS attack a network entity attempts to deny the legitimate use of some
service by causing the target to receive unwanted traffic of some sort. In a tra-
ditional flooding attack for instance, the attacker floods the target with as many
packets as possible with the goal of consuming enough resources to cause the ser-
vice in question to stop responding or be severely hampered.

Attackers often use the technique of spoofing their IP address by forging the header
of the IP packet to make it seem as if the packet originated from some other loca-
tion. Spoofing is also used in a so called reflective attack where the attackers spoof
the IP address of the victim and sends a number of packets to some intermediate
hosts, which in turn reply to the target host. These intermediate hosts will assume
that their replys got lost in transit and will try to resend the acknowledgement pack-
ets, normally 4 times. Thus, such an attack is capable of packet multiplication. For
each packet sent from an attacker, a multiple is received at the target. This makes
it a potent attack.

When several attacking entities combine their efforts to attack the same target entity
this is known as a distributed denial-of-service (DDoS) attack. It can wreak havoc
on network resources due to the amount of data involved. Figure 2.3 illustrates the
concept.

For a more detailed look at the development and trends in DoS technology refer to
[17, 16].

2.6 Malware

Malware is a term referring to computer software with malicious intent. This sec-
tion will briefly explore some of the different types of malware commonly seen on
the Internet today.

2.6.1 Worms

The term worm was first coined by science fiction writer John Brunner back in
his 1975 novel “Shockwave Rider”, but it wasn’t until 1988 that computer worms
caused anyone to raise an eyebrow, with the Internet Virus [14].

Worms are software programs using exploits in an operating system or service to
rapidly and autonomously propagate across a number of hosts. After infecting
one host a worm will employ various scanning techniques to find other potentially
vulnerable hosts and attempt to infect them. After infection the worm could deposit

8

a.

b.

TCP SYN
TCP SYN/ACK

192.168.1.89

192.168.1.89

Figure 2.3: a. The host 192.168.1.89 is the victim of a traditional direct flooding at-
tack from multiple sources. b. This time the host is the victim of a reflective attack and
is bombarded by response traffic from well connected sites such as www.amazon.com.
Attackers spoof the targets IP address to achieve this.

some sort of payload to suit the attacker such as code to perform DDoS attacks, as
was the case with the now famous worm Code Red [13]. The MS Blaster worm of
August 2003 is another example of this approach [7].

A lot of early worms suffered from bad code and/or design which hampered their
propagation. This was considered by many to be just luck on the part of the
community and some warned of the potential for “better”, dangerous, more fast-
spreading worms [43, 42]. These “flash worms” would use a precompiled list of
vulnerable hosts to kick-start the propagation for example. The Saphire/Slammer
worm [31] showed that fast-spreading worms were a real threat infecting more than
90% of all vulnerable hosts on the Internet within 10 minutes using a vulnerability
in MS SQL Server. Though not very well written and despite having a non-existent
payload it still represents a milestone in worm development for its speed.

There is a lot of material available on computer worms. A taxonomy is given in
[48] and a survey of recent worms can be found in [21].

9

2.6.2 Viruses

The distinction between viruses and worms might not be very clear, however gen-
erally a virus can infect files on offline hosts and usually requires some interaction
on the part of the user.

E-mail viruses have been particularly popular in the recent years due to the number
of vulnerabilities in the Microsoft Outlook Express mail client. These viruses have
a topological advantage when spreading as they often use the address book of the
infected client as their new targets, and don’t have to do any random scanning as
worms traditionally have done.

2.6.3 Trojans

The Trojan horse is well known for its role in the Trojan War, when it allowed the
Greeks to capture the city of Troy. In computer terms a trojan is a malicious pro-
gram that disguises itself as some harmless program or better yet, one that promises
to rid someones computer of other malware.

Trojans do not replicate as worms and viruses do, but they can be very dangerous
and often open backdoors, leaving infected hosts accessible and controllable for
attackers. Keyloggers and other software designed to snoop on users privacy are
also commonly deployed as trojans.

2.6.4 Blended Threats

The distinction between different forms of malware is growing ever thinner as dif-
ferent types and techniques are combined to form what is known as blended threats.
One such combination of techniques could be having a trojan as the payload of a
worm or virus for instance. Such malware represents a very serious threat to in-
ternet security as they have a multitude of attack and replication techniques and
combine the “best” features of other malware.

In fact, the topic of this thesis can be seen as such a threat. The bot software often
combines techniques from other malware to form an all-in-one package to scan,
exploit and control hosts on the Internet.

2.7 Botnets

There seem to be different uses of the term bot in the current network security liter-
ature. Some consider a bot to be a specific, malicious computer program acting as
an agent. This is similar to the notion of an IRC-bot as described earlier. However,

10

Controller D

Controller A

Controller B

Controller C

Bot

Bot

Master

Bot Bot Bot Bot

Bot Bot

#0wn3d @

irc.0wn3d.dyndns.org

Figure 2.4: A typical botnet, consisting of a private channel on an IRC-network using
a dynamic DNS-service. Four servers are linked together to form an IRC-network.
The bots all join a specific channel and await further commands from the master
attacker.

for the purpose of this thesis we shall use the more general definition: A bot is
a compromised host under the command and control of an attacker. Thus, a net-
work of such hosts under a common command and control infrastructure becomes
a botnet. When referring to the actual piece of software making remote control
possible, we shall use the term bot software. One commonly used infrastructure
for botnets is IRC, in which case the bots manifest themselves as actual IRC-bots
for the purpose of command and control, and form a botnet in a channel. However,
as discussed in section 2.7.2, there are other possible control infrastructures.

Figure 2.4 shows a typical botnet structure. The compromised hosts often join
a specific channel on an IRC-server, often hosted using a dynamic DNS-service.
The attacker then joins the same channel and communicates with the bots through
various textual commands. A more detailed look at the botnet structure is given in
later sections, starting with section 2.7.1.

Botnets are not new and have often been mentioned in connection with distributed
denial-of-service attacks, as in [17]. For more information on botnets an alternative
overview is given in [37]. Some other resources are [23, 45, 27, 26].

11

2.7.1 Infection and Propagation

There are a myriad of ways bot software can infect a computer system, such as:

• Through an e-mail attachment, possibly by tricking the user into executing
malicious software.

• Through a website, possibly by tricking the user into downloading and exe-
cuting malicious software.

• Through file transfer after some successful exploit, for example by a worm
or another bot.

We shall refer to such methods of infection and propagation as the attack vectors
of the bot software. The first two cases often require some conscious action on the
part of the user, a common technique is to trick the user into believing that he is
installing some anti-viral or spyware removal software. However, it is quite possi-
ble to become infected through browsing a website or previewing a mail, given the
“right” client software (e.g. through Active X-controls).

In the last case the bot software is transfered after some known vulnerability in a
given program or operating system has been exploited to gain privileged access.
This transfer is often accomplished by using Trivial File Transfer Protocol (TFTP),
HyperText Transfer Protocol (HTTP) or File Transfer Protocol (FTP).

The malicious bot software is typically variants of software readily available on
the internet, customised and configured to the attackers liking with regard to what
control channels to use, what tasks the software should be able to perform and so
on. Some use a plugin-based architecture to make it easy to customise and extend,
for instance with a new propagation module when a new vulnerability appears.
Figure 2.5 is a screenshot of a program for the Windows-platform showing the
ease with which such configuration can be done.

Once active, the bot software fully installs itself, possibly disguising itself as some
sort of important system service and configures the system to launch the bot soft-
ware automatically on the next system startup. On Windows systems this is usually
done by modifying .ini-files or through setting registry keys (e.g.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run).

Bot software often contain modules or plugins to scan address ranges for vulner-
able hosts and to exploit common, popular vulnerabilities. As such bots often
generate large amounts of “noise” compared to an average workstation, and some
botnet controlled host might be found and cleaned up on the basis of such traffic
anomalies. Commonly used ports are the well-known 135/TCP and 445/TCP as
shown empirically in [46]. These target Windows services with known exploits on
the DCE Locator and DS Service, respectively.

12

Figure 2.5: A typical, easy-to-use frontend for configuring bot software on the
Windows-platform, in this case the Evilbot.a software.

2.7.2 Command and Control

When such bot software is run it will set up a connection to a predefined hostname,
to allow it to be remotely controlled. The hostname will often be using some sort
of dynamic DNS-service to make it convenient to change the actual IP address
behind the hostname if the server needs relocation. The control channel can take
different forms, the most common of which is an IRC-based connection. The bot
software joins a specific channel, often using a secret key and waits for an attacker
to command it. It might also require the attacker to identify himself through some
shared secret before allowing such commands. Figure 2.6 shows how such an IRC-
based connection might proceed.

The commands are passed to clients through setting the channel topic, or by us-
ing commands prefixed with ! or ., such as in figure 2.7. Note how the attacker
identifies himself through the !login-command, before launching an UDP packet
storm.

However, there are other ways to remote control a bot. Some other techniques
include:

• Peer-to-peer communication (P2P) gives an obvious benefit in that no cen-
tralised server means no single point of failure. This also means mitigation
techniques using routing could be somewhat complicated as the notion of

13

Figure 2.6: 1. Bot joins the channel using secret key. 2. Attacker joins channel
using secret key. 3. Attacker optionally identifies himself to bot. 4. Attacker executes
commands.

traffic towards a specific controller fails.

• Instant messaging is gaining popularity and might be a viable option for
control of botnet agents. Similarly to IRC, an attacker would have to build
a profile or group with all the compromised hosts as contacts. Scalability
would be a concern.

• Socket-based communication is certainly an option and would give bot soft-
ware authors the ability to customise their control and command methods.
However, it is also complex and time consuming compared to using an ex-
isting protocol.

In addition attackers can utilise encrypted communication channels [11] or tun-
nelled communication to covert their traffic. In fact, a fork of the popular Agobot
(and/or Phatbot) software [24] has been controlled through the WASTE chat net-
work. The WASTE network uses a P2P protocol that supports encryption. [4].
The particular fork of the bot software did not implement the encryption routines
however.

14

Figure 2.7: An actual botnet in a IRC-channel, showing how commands are used
[44].

2.7.3 Purpose and Use

Botnets have a myriad of potential uses, which combined with their relatively easy
operation makes for their popularity. Some of the more common uses are [45]:

• Distributed denial-of-service attacks. Botnets are an ideal platform for
launching massive DDoS attacks due to the packet potential inherit in such
nets, and because the attacking hosts are topologically diverse making dest-
ination-end mitigation difficult without dropping all traffic to the target and
thus in effect denying it service.

The attacks are either used for economic gain through blackmailing, as has
been seen with online bookmakers or for take-downs of IRC-networks or
specific hosts (either for money or as part of some personal agenda).

• Spamming. Bot software often include the possibility to open generic prox-
ies (e.g. SOCKS). These can then be used to send spam and mails luring
people to provide sensitive information by pretending to be some trustwor-
thy person or official, so called phishing.

15

• Sniffing and keylogging. Bot software is often used to sniff packets sent
from the victims machine for sensitive information. Keylogging is an alter-
native approach that renders the effects of end-to-end encryption useless.

• Spreading new malware. Bots are the ideal platform to launch new mal-
ware, as a large number of hosts spreading malware simultaneously would
kickstart the propagation.

All these potential uses make the botnets popular enough to make some people
want to “rent” them, or their services. This is common in eastern Europe for in-
stance, and prices have been mentioned in the range of $20 to $200 for a typical
botnet in with a few thousand hosts.

2.8 Service Provider Environment

The work presented in this thesis is being done at Norwegian Internet service
provider UNINETT [3]. UNINETT provides universities, university colleges and
research institutions with network connectivity and services in addition to handling
other national ICT tasks. It is owned by the Norwegian Ministry of Education and
Research.

UNINETT has about 200 customers, and the network is used by between 200 000
and 300 000 hosts. They are liberal in their policies, and try to contact local repre-
sentatives at the customer in question before taking any action to disconnect a host,
except in grave cases.

2.9 Related Work

A case-study discussing the general methodology used to discover, track, and stop
IRC-controlled trojans is presented in [27].

In [26] more techniques are presented, focusing on NetFlow [9] and trying to lo-
cate possible controllers through traffic patterns. It also discusses some incident
response techniques and tools, though the focus is mostly on manual techniques. In
addition, although identifying infected hosts by examining controller traffic, this is
achieved using historical NetFlow data meaning the traffic will still reach the con-
troller. Thus there are no immediate mitigation gains and hosts have to be explicitly
quarantined in some way.

A lot of work has been done in the area of sinkholes and blackholes. A very inter-
esting technique is Remote Triggered Blackholes [10] combining BGP with null-
routing to create a rapid response tool to efficiently drop traffic based on destination
address. This technique is commonly used in a reactive manner to mitigate DDoS

16

attacks and is one of the foundations of our own technique, although arguably we
use it in a more proactive way.

Combining this type of blackholing with Unicast Reverse Path Forwarding (uRPF)
[8] allows rapid blackholing based on source address as well. A more detailed,
hands-on look at the various options for such discard routing including discarding
botnet control traffic is given in [40].

While there have been many recent contributions in the areas of DDoS mitigation
and worm containment, we are not aware of any work specifically rerouting and us-
ing botnet control traffic to identify infected hosts in customer networks. However,
the idea of placing sinkhole hosts on botnet command and control addresses is not
unique [23], and it is likely other service providers are trying similar methods.

In addition some work on uncovering botnets is presented in a recent whitepaper
[45]. Using a honeynet [41] the authors uncover botnet controllers and use spe-
cial software to observe and learn more about their activity. They tracked botnets
through the German Honeynet Project for four months. During this time botnets of
up to 50 000 hosts were seen, and in total more than 200 000 unique IP addresses
were seen. Their work presents a very useful insight into the operation of such
botnets. They are more focused on uncovering new botnets and forensic analysis,
and as such their approach complements our own, more incident response focused
approach.

17

18

Chapter 3

Methodology and Approach

In the previous chapter the various terms and concepts were presented, now it is
time to get back to the problem. This chapter restates and expands on the problem
and presents the approach taken in this thesis.

3.1 Problem

As seen in chapter 2, botnets are a potent threat to Internet Service Providers and
their customers on a number of levels. Gaining the packet potential of a few thou-
sand hosts is relatively easy, and the applications of such an army are many.

For UNINETT the problem is discovering infected hosts acting as part of one or
more botnets. Traditionally such hosts has been (perhaps by chance) found to
act in a strange manner, provoking further investigation. Hosts might also come
to attention through traditional abuse-channels or it might be blatantly obvious if
the host is part of a DDoS-attack. In the latter case it might require considerable
manual labour to address the problem.

This process is highly reactive in nature, it is not structured and involves a lot of
manual labour. Basically it means putting out fires as they appear. As a conserva-
tive estimate UNINETT might handle 10–15 botnet-related cases each month. For
big DDoS-events the man hours needed grows rapidly.

UNINETT also wants to get some kind of measure on the number of hosts under
botnet control in their AS and to better understand the distribution and characteris-
tics of these hosts.

19

Sinkhole host

List of
botnet controllers

Botnet traffic

BGP traffic

AS 224

Figure 3.1: Rerouting botnet traffic using BGP.

3.2 Approach

UNINETT has access to a list of known botnet controllers, compiled on the basis
of forensic analysis. This list is nothing more than a list of IP addresses of these
controller hosts, suitable for dropping traffic destined to these hosts.

By combining this list with a sinkhole host it is possible to collect information on
which hosts try to contact addresses on this list, and to store and process data on
botnet-related traffic. This is possible by using BGP to inject routes for each of the
addresses into our AS. The routes send all traffic to the sinkhole host. Figure 3.1
illustrates the approach.

This approach ensures that updates are handled in a quick, dynamic manner. Once
a route changes, these changes are reflected quickly throughout the AS.

Once packets arrive at the sinkhole they are stored and dropped. This ensures some
immediate mitigation benefits. Hosts under the command and control of the botnet
controllers on the list will no longer be able to participate in spamming or DDoS-
attacks for instance. In addition none of the hosts can be “upgraded” to serve as
controllers. Storing the packet data also enables UNINETT to gain insight into
infection rates and the characteristics of the botnet problem via aggregation and
statistics.

The hosts attempting to communicate with the controllers on the list are ranked ac-

20

cording to immediate risk. Using a numerical measure, a degree of risk is assigned
to each host for a given period of time. Influencing this measure are factors such as
activity level and destination port information. This is then used as the basis for the
incident response process, warning the customer in question of hosts that are likely
compromised. Of course, this approach enables integration with other systems in
measuring the risk or in taking more severe action towards a given host.

The approach provides a proactive, automatic means to handle possible botnet in-
fected hosts in a service provider environment, catering to storage, risk assessment
and incident response. It is simple, adaptive and provides immediate mitigation
benefits.

21

22

Chapter 4

The Prototype System

To realise the approach from the previous chapter a prototype system is built. This
chapter presents the work done developing and setting up the prototype system,
beginning with the techniques used for rerouting the traffic and configuration of the
sinkhole. This is followed by the software development work and the methodology
of monitoring, logging and incident response.

4.1 Rerouting Botnet Traffic

To gather and store the traffic destined for botnet controllers all known controller
addresses are routed to a sinkhole host. BGP is used to inject the routing infor-
mation into the network, setting the next-hop address to that of the sinkhole
host and ensuring the routing announcements do not escape the AS by setting the
no-export property. A typical configuration would be something like:

.

.

route-map bc-feed-in permit 10

description Filter Botnet controller routes

match ip address prefix-list bc-prefixes

match community 10

set ip next-hop z.z.z.z

set community no-export

.

.

The full BGP configuration is given in appendix A.

23

4.2 Configuring the Sinkhole

The basic setup and configuration of the sinkhole host will be discussed in this
section.

4.2.1 Hardware

The host is a typical workstation, given two network interface cards for the purpose
of being a sinkhole. The point of this, of course, is to separate the management traf-
fic (interactive sessions, SNMP etc.) from the packets to be logged and discarded.

The host has the following hardware specifications:

• Intel Pentium 4 1.8GHz CPU

• 512 MB RAM

• 80 GB IDE 7200 RPM HDD

• 2 100Mbit Full-Duplex Network Interface Cards (NICs)

4.2.2 Software

The host runs the Debian Sarge GNU/Linux operating system, maintained through
the cfengine software. The following other software is used for the prototype sys-
tem:

• Python, pylibpcap, mx.DateTime, pyPgSQL

• Perl, HTML::Mason, DBI

• tcpdump

• iptables

• PostgreSQL 7.4

4.2.3 Setup

The host was configured with a periodic tcpdump data logging on the sinkhole
interface. For this purpose the logrotate software was used to rotate the logs daily,
restarting tcpdump.

In addition some basic packet filtering rules were set up using iptables, to ensure
no packets would be sent or received on the sinkhole interface if not routed there:

24

storage

response aggregation

logging

presentation

level 1

level 2

periodic

continuous

Figure 4.1: The components of the prototype system. Periodic components are meant
to be run at regular intervals. The storage system is split into two conceptual levels.
Level 1 represents the raw packet data, while level 2 is aggregated data.

Drop and log all incoming packets on eth1

iptables -A INPUT -i eth1 -j LOG_DROP

Dont let any packets out through this interface

iptables -A OUTPUT -o eth1 -j LOG_DROP

The complete logrotate and iptables configuration is given in appendix B.

4.3 System Overview

The main components of the prototype system are shown in figure 4.1. Each com-
ponent is described briefly below, and discussed more thoroughly in sections 4.4
through 4.8.

25

• Storage. A relational database, PostgreSQL, is used as a two level storage
system. The packet data forms the base level, while aggregated datastruc-
tures form the more high-level storage.

• Logging. Packets routed to the sinkhole host are captured using libpcap [32]
and inserted into the database.

• Aggregation. This component is run periodically and generates statistics
and aggregated data for other components to use.

• Response. The response component uses aggregated data to determine the
most likely possible compromised hosts and deliver some sort of automated
response.

• Presentation. Statistics and reports are available through the dynamic web
modules in this component.

4.4 The Storage Component

The storage system is shown in figure 4.2. It can be viewed as a two-layer system,
with the raw packet data as the bottom layer, and various aggregated tables as the
top layer. The rationale behind such an approach is query speed. The amount of
data to be stored, and (to a lesser extent) the relatively weak I/O-performance of
the sinkhole makes such an approach necessary. Even with a modest 5 packets
per second (pps), that still amounts to 432 000 packets every 24 hours, and thus
432 000 new rows in the packets table each day.

Such an approach dictates to a certain extent the use and design of the database:

• Never query the packet table directly unless absolutely necessary. Com-
monly used data should be aggregated to separate tables.

• Never use foreign keys leading to JOINs on the packet table; replicate data
instead.

A more thorough discussion of the database design on a per table basis is given
next.

4.4.1 Packet Layer

These are the tables containing the “raw” and unaggregated data.

26

id integer

ts timestamp

ttl smallint

protocol smallint

src inet

srcport integer

dst inet

dstport integer

icmp_type smallint

icmp_code smallint

tcp_flags smallint

len integer

data bytea

raw_packet bytea

org text

packets

id integer

org text

rtid integer

sent_to text

ts timestamp

alerts

id integer

src inet

packets integer

ips integer

first timestamp

last timestamp

score integer

org text

period_data

id integer

address inet

first timestamp

last timestamp

controllers

id integer

src inet

dst inet

first timestamp

last timestamp

ip_seen

day date

org text

cnt integer

new_cnt integer

avg_score float

org_stats_day

day date

cnt integer

new_cnt integer

reactive_cnt integer

controller_stats_day

ip inet

alert_id integer

ip_alerts

Figure 4.2: The storage system, with the packets table in the bottom layer.

packets

The packets table is by far the biggest and most important table in the storage
system. It is designed to contain one row per packet captured. A description of the
columns is given in table 4.1. The inclusion of the raw, unmodified packet with the
raw_packet column is costly in terms of storage, but might prove beneficial in a
forensic setting.

To speed up queries against the packets table several indices are maintained. The
table has an index on each of the following columns:

• id, primary key

• dst

• dstport

• src

27

id Autoincremented primary key.
ts Timestamp in UTC.
ttl The Time-to-live value from the IP header
protocol The IP protocol number (e.g. 6 for TCP)
src The IP source address
srcport The UDP or TCP source port number
dst The IP destination address
dstport The UDP or TCP destination port number
icmp_type The type value from the ICMP header
icmp_code The code value from the ICMP header
tcp_flags The integer representation of the TCP bitflags
len The length of the packet payload
data The binary representation of the packet payload
raw_packet The raw packet as seen by libpcap
org The primary domain name of the organisation using the source IP address.

Table 4.1: The data stored in the packets table.

• srcport

• org

• protocol

• tcp_flags

• ts

Unfortunately heavy indexing means reduced performance when inserting rows
into the table; as the indices are updated there is a lot of extra disk I/O.

4.4.2 Top Layer

ip_seen

The ip_seen table serves as a record of all IP addresses (both source and destina-
tion) that have been observed by the system at some point. This provides a helpful
speedup to components needing to extract information about newly seen addresses
for instance. The columns are described in table 4.2.

period_data

This table is the main source of aggregated data. It is used by a lot of components
in the prototype system. The table design facilitates a periodic aggregation, and

28

id Autoincremented primary key.
src The IP source address
dst The IP destination address
first The timestamp when this address was first seen by the system.
last The timestamp when this address was last seen by the system.

Table 4.2: The data stored in the ip_seen table.

stores the most interesting data for that period per source address and organisation.
The columns are described in table 4.3.

id Autoincremented primary key.
src The IP source address
first The timestamp of the first packet seen from the IP address
last The timestamp of the last packet seen from the IP address
packets Number of packets seen from the source IP address during the period.
ips Number of unique destinations contacted by the source IP address during the period.
score A calculated measure of the immediate risk the source IP address poses.
org The primary domain name of the organisation using the source IP address.

Table 4.3: The data stored in the period_data table.

org_stats_day

This table stores aggregated data used for presenting the number of unique source
IP addresses seen for a given day. The figures are for a given organisation. The
columns are described in table 4.4.

day A date, part of primary key.
org The organisation, part of primary key
cnt Number of unique source IP addresses seen this day.
new_cnt Number of new, unique source IP addresses seen this day.
avg_score The average score of all unique source IP addresses seen this day.

Table 4.4: The data stored in the org_stats_day table.

This table is used by the presentation component to give a snapshot-picture of the
current situation and trends at a given organisation.

alerts

The alerts table stores information about an alert generated by the system. The
columns are described in table 4.5.

29

id Autoincremented primary key.
org The organisation the alert applies to.
sent_to In the prototype system, the email address who received the alert.
ts Timestamp when the alert was generated.
rtid An identifier connecting the alert to some external trouble ticket system.

Table 4.5: The data stored in the alerts table.

ip_alerts

This table maps source IP addresses to generated alerts, in order to know which IP
addresses were part of any given alert. It contains two columns: ip and alert_id

where the last references an entry in the alert table through a foreign key rela-
tionship.

controllers

This table serves as a historical record of all controller addresses that have ever
been in the system. In order to track addresses that reappear a new row is created
if a newly seen address has not been seen in the past 24 hours. The columns are
described in table 4.6.

id Autoincremented primary key.
address The IP address of the botnet controller.
first Timestamp when the IP address was first seen by the system.
last Timestamp when the IP address was last seen by the system.

Table 4.6: The data stored in the controllers table.

controller_stats_day

This is a day-by-day aggregation of data found in the controllers table. This
data is used to get a better understanding of the dynamics of the botnet controllers.
The columns are described in table 4.7.

day The date of this data.
cnt The number of unique controller IP addresses seen during the day.
new_cnt The number of new, unique controller IP addresses seen during the day.
reactive_cnt The number of new controller IP address who have previously

been active (but not in the previous 24 hours).

Table 4.7: The data stored in the controllers_stats_day table.

30

4.5 The Logging Component

The logging component will be discussed in this section; from the design decisions
to the implementation details. The logging component is designed to be as simple
as possible, focusing on capturing packets and committing them to stable storage.
It has three primary functions:

1. Capture packets routed to the sinkhole.

2. Extract wanted data from the packets.

3. Insert the extracted data and raw packet into the storage system.

These steps form a sequential path that all packets follow upon entering the system.

4.5.1 Design

For packet capture the libpcap library was chosen, a popular choice in a number of
network tools. Basing the packet capture on libpcap gives a couple of immediate
advantages:

• A proven, robust interface to packet capture.

• Flexibility to use any input data in pcap-format, such as that generated by
the tcpdump software.

Of course, capture performance with commodity hardware and a userspace library
like libpcap is not suitable for full scale monitoring at speeds of 100Mbit and up-
ward. But for the purpose of the prototype system and the relatively small traffic
volume expected it certainly should suffice. Besides, the limiting factor is expected
to be the work done for each packet, particularly the database insertion.

Once packets are in the system they are processed to extract suitable data for stor-
age. The question of what constitutes suitable data is perhaps not straightforward,
and to ensure that no data was thrown away, the decision was made to store the
entire raw packet in addition to these (extracted) data:

• Timestamp. To be able to provide customers with precise information re-
garding the time of incidents it is essential to store the time the packet was
seen. To ensure consistent and universal information, the time is stored in
Universal Time Code (UTC) format.

• Time-to-live (TTL). The TTL information from the IP header can often serve
as an indication of the Operating System used to create the packet. With to-
days TCP/IP implementations the starting TTL-values differ between OS’es
to such an extent that even when the packet arrives it is usually possible to
guess from which operating system it originated.

31

• Protocol. The IP protocol number is stored to identify the type of IP packet
(e.g. TCP, UDP, ICMP).

• Source Address. The source address allows the system to find the organisa-
tion using the address. It is also the most unique identifier of a host that our
system can provide (without using other external systems to help track hosts,
see chapter 6).

• Source Port (TCP and UDP).

• Destination Address. The destination address identifies the particular con-
troller with which the source host has communicated.

• Destination Port (TCP and UDP). The destination port might serve as an
indication of the type of service the source host tried to contact at the desti-
nation; however any service can of course be hosted at any port.

• ICMP Type. The type of the ICMP message.

• ICMP Code. The code of the ICMP message.

• TCP Flags. The bitflags from the TCP header can provide useful state infor-
mation with regards to the TCP connection. Of course, the prototype system
will not allow any connections to be established so the data might be of lim-
ited use. However, it will make it possible to find those source hosts actively
trying to establish a TCP session with a TCP SYN packet.

• Payload length.

• Payload.

• Organisation. Source IP addresses are mapped to organisations, and the pri-
mary domain name of the organisation is stored. This is used to group data,
and of course to alert and inform the organisation in question.

When storing the data, the system will update the storage system for each packet,
not caching any data. This will impact the throughput of the system as the storage
system updates indices for each insert as explained in section 4.4.1. However, this
ensures that the data we process are committed, and for the sake of the prototype
this method of storing packets is considered adequate.

4.5.2 Implementation

The component is implemented using the Python programming language, a mod-
ular, high-level, interpreted language especially well suited for rapid prototyping.
Packet capture is provided by the pylibpcap library [2], a Python interface to the
libpcap library written in C. The database functions are provided by the pyPgSQL

32

module. This module provides an object oriented DB 2.0-API compliant interface
to the PostgreSQL DBMS from Python.

The pylibcap pcapObject provides the methods used for capture, and is used to
set up a loop with a callback function:

import pcap

p = pcap.pcapObject()

open device or file

try:

p.loop(-1, capture_func)

except:

...

The capture function has the following signature:

capture_func(packet_length, data, timestamp)

The data contained in the IP, TCP, UDP and ICMP-headers is extracted using direct
access into the datastructure given to the capture function. The following excerpt
shows how the IP-level information is extracted from the header:

if data[12:14] == '\\x08\\x00':

timestamp = mx.DateTime.gmtime(timestamp)

ip_data = data[14:]

ip_hlen = ord(ip_data[0]) & 0x0f

ttl = ord(ip_data[8])

proto = ord(ip_data[9])

src = pcap.ntoa(struct.unpack('i',ip_data[12:16])[0])

dst = pcap.ntoa(struct.unpack('i',ip_data[16:20])[0])

ip = ipreg.lookup(src)

Here data represents the entire packet as captured by libpcap, while ip_data is the
IP packet. The final ipreg.lookup call gathers information on the organisation
using the source IP address.

Next, the type of IP packet is switched, the appropriate information extracted and
inserted into the database. For the TCP-packets this procedure looks like this:

TCP

elif proto == socket.IPPROTO_TCP:

try:

tcp_data = ip_data[4*ip_hlen:]

33

srcport = socket.ntohs(struct.unpack('H', tcp_data[0:2])[0])

dstport = socket.ntohs(struct.unpack('H', tcp_data[2:4])[0])

tcp_hdr_len = (ord(tcp_data[12]) & 0xf0) >> 4

tcp_flags = ord(tcp_data[13]) & 0x3f

cu.execute("""

insert into packets (ts, ttl, protocol, src, dst,

srcport, dstport, tcp_flags, data, raw_packet, org) values

(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

""",

(timestamp, ttl, proto, src, dst, srcport, \

dstport, tcp_flags, \

PgSQL.PgBytea(tcp_data[4*tcp_hdr_len:]), \

PgSQL.PgBytea(data), org))

except:

traceback.print_exc(sys.stderr)

Here cu is the database cursor object from the pyPgSQL module.

4.6 The Aggregation Component

The aggregation component will be discussed in this section; from the design deci-
sions to the implementation details. The aggregation component is designed to be
run periodically. It has three main functions:

• Provide a summary of commonly used data to other components.

• Provide simple caching of IP address information.

• Gather and store daily data for presentation and visualisation.

4.6.1 Design

The prototype system only provides summery data for TCP SYN-packets. This is
done to focus on traffic initiated by customer hosts, and to keep the noise to a min-
imum. Obviously this is a narrow approach; as seen in chapter 2 botnets could use
many possible means of control traffic. But for the purpose of the prototype sys-
tem focusing on TCP SYN seems a reasonable choice, as it provides information
on hosts who have actively tried to initiate contact with controller hosts.

The summery data focuses on the two most important identifiers in the system:
Organisation and source IP address. The data stored periodically for every source
IP address is:

34

• Organisation.

• TCP Destination Port.

• Number of TCP SYN packets sent.

• Number of unique controller hosts contacted.

• Time of first and last packet seen during the period, i.e. the active period of
the host.

• A score representing the immediate risk the host poses. The details on this
measure are given in section 4.7.

These provide the most commonly needed information and ensures that the other
components will not have to use expensive queries against the storage system on a
per-packet level.

The aggregation component also provides the system with simple caching of IP
addresses. By examining packet data for a given period, the component updates
lists in the storage system containing information on IP addresses, such as when
the address was first and last seen by the system. These lists hold information
on both controller hosts and customer hosts. This cached information is used by
other components for instance when determining whether any given host is “new”
in the given context. Again, the primary goal is to ensure that there is no need for
expensive queries to obtain such information.

The presentation component, discussed later in section 4.8 relies on a couple of
specialised data combinations in order to plot data needed for daily reports. The
aggregation component makes sure the needed information is available on a per-
day basis. The following information is gathered and stored:

• For any given organisation, data about activity levels and number of new
hosts seen is available. In addition an average score for all hosts in the or-
ganisation is calculated.

• The number of active and new controllers seen.

4.6.2 Implementation

The component is implemented in Python. The implementation is fairly straight-
forward and follows the same basic structure for all aggregating functions:

1. Select the data from the appropriate tables in the storage system.

2. Iterate over the resulting rows, update temporary datastructures and do any
calculations.

35

3. Iterate over the datastructures and insert the aggregated data into the appro-
priate tables in the storage system.

Whenever possible calculations and aggregations are done directly in SQL to take
advantage of the optimiser in the DBMS. A typical query would be something like:

SELECT src, org, dstport, COUNT(id) AS packets,

COUNT(DISTINCT dst) AS controllers, MIN(ts) AS first, MAX(ts) AS

last FROM packets WHERE (ts BETWEEN %s AND %s) AND

tcp_flags=2 GROUP BY src, dstport, org ORDER BY controllers DESC

The result is a list of source IP addresses, organisations and TCP destination ports,
each having aggregated information on the number of TCP SYN packets sent, the
number of controller (unique destination) IP addresses contacted and the times-
tamp of the first and last packets sent during a certain period of time. Only TCP
SYN packets are considered by including the condition tcp_flags=2 in the WHERE
clause of the SQL statement. Results are sorted according to the number of con-
trollers contacted. %s is a placeholder, replaced by a value at the time of the query
by the pyPgSQL library.

4.7 The Response Component

The response component will be discussed in this section; from the design deci-
sions to the implementation details. The response component is designed to be run
periodically. It has two main functions:

• Calculate the immediate “risk” posed by each host.

• Evaluate the risk and take operational action towards the customer and/or
host in question.

In addition the component must commit metainformation to the storage system to
ensure that every response can be tracked by security personnel, or combined with
a incident response trouble ticket system at some future point in time.

4.7.1 Design

The main challenge when trying to derive a measure for the immediate “risk” posed
by any given host is the fact that no connections between the bots and controllers
are ever established, and so no actual payload data can be used in the case of TCP.
The prototype system is concerned with TCP SYN packets as they represent an
attempt to establish a connection. In order to get from data on TCP SYN packets
to a risk assessment the following measure is proposed:

36

For every source IP address seen during a given period of time, let the tuple (i,pi)
be part of the set P, where i is the IP address. Each of the elements pi is another
set, namely that of all TCP destination ports used by the source IP address i. This
means that every pi is a set containing at least one element k representing a TCP
destination port, that is:

∀ (i,pi) ∈ P∃ k|k ∈ pi.

Now, assign to every such IP address i a number si representing the “risk” score as:

si = max(f (ui)+g(
ni

∆ti
)+

|pi|

∑
k=0

h(pik),0) (4.1)

The score is expressed as the sum of three functions, all contributing some aspect
of the risk measurement. If the score is less than 0 the score is considered 0.

The first function, f , considers the number of controller hosts the source IP has
tried to contact, denoted ui in equation 4.1. It is defined as follows:

f : N+ 7→ [1,10]

f (x) =

{
x, x < 10
10, x >= 10

The function maps the number of hosts to a number between 1 and 10. More
specifically it just represents the number of controllers contacted, but if the source
IP has contacted more than 10 controllers it is assigned the number 10, as such a
big number nearly outweighs the other parts of the score anyway.

The function g contributes a small positive part of the total score if the source IP
address has a sent a large number of packets to controllers per unit of time. It is
defined as follows:

g : R 7→ [0,2]

g(x) =

1, 5000 < x < 10000
2, x > 10000
0, otherwise

If the ratio of packets to time is above 5000 (per minute) some small positive ad-
justment of the total score is in order to catch particularly noisy hosts. The ratio is
denoted ni

∆t i
in equation 4.1. It is the number of packets sent by the host during the

period in question, ni divided by the length of that period, ∆t i.

The third function represents a small adjustment for a few well-known TCP des-
tination ports. Of course, port numbers are just that, numbers, and while it is true
that any service could use any port, a few port numbers make it more likely that

37

a host is compromised and thus a small adjustment is in order. Such an adjust-
ments needs to be kept current, and some kind of feedback-mechanism might be
considered. For the prototype system, the function h is defined as follows:

h : N 7→ [−1,3]

h(x) =

3, x ∈ {6667}
2, x ∈ {1337}
1, x ∈ {8080}
−1, x ∈ {80,25}
0, otherwise.

The function h maps a TCP destination port number to some small number if the
port number falls within a predefined set of port numbers. For instance, if the traffic
is destined for the standard IRC service port 6667 the function contributes 3 to the
overall score.

This function differs from the two others. It represents a loss of generality, as
traffic might use other protocols than TCP and also constitutes some maintenance
work, in order to keep such a set of ports relevant. However, the prototype system
is limited to TCP SYN when analysing data anyway, and the adjustments for port
numbers should prove an interesting experiment, without corrupting the total score
which is highly dependant on the number of controllers anyway.

The result of this risk assessment is a mapping from IP address to a number, i 7→ si

where si ∈ [0,18]. This number is believed to be a fair estimate of the immediate
“risk” posed by that IP address during the timeperiod in question.

To determine whether to take operational action with regards to a specific IP ad-
dress one can classify the different addresses according to their score. By parti-
tioning all addresses based on threshold values for instance, the different partitions
can be expressed as:

A1 = {(i,si)|(i,pi) ∈ P∧ si >= T1}

A2 = {(i,si)|(i,pi) ∈ P∧ si >= T2}
...

An = {(i,si)|(i,pi) ∈ P∧ si >= Tn}

Each partition Ai is a set of tuples (i,si) of source IP addresses and their corre-
sponding score values.

A suitable operational action can then be assigned to each partition. This could
span from a simple notification, via quarantine, to disconnecting the host, for in-
stance through nullrouting. In the case of the prototype system the only action
assigned is an automated e-mail message to an organisation with a list of IP ad-
dresses and time of activity, in accordance with UNINETT policy.

38

4.7.2 Implementation

The response component is implemented in the Python language. The score calcu-
lation code is put in a module of its own, as it is used by the aggregation component
as well. The scoring functions are implemented by the compute_score function
in a straightforward manner:

1 def compute_score(u, n, p, dt):

s = 0

if u > 10: s += 10

else: s+= u

mins = dt.minutes

if mins > 0:

if float(n)/mins >= 5000: s += 1

elif float(n)/mins >= 10000: s += 2

for port in p:

if port == 6667: s += 3

elif port == 1337: s += 2

elif port == 8080: s += 1

elif port == 80: s -= 1

elif port == 25: s -= 1

if s < 0: s = 0

return s

Here u is the number of controllers, n is the number of packets, p is a list of port
numbers and dt is the amount of time the source IP address was active during the
period.

To generate the alerts, data on all source IP addresses having a score above a given
threshold are put in a temporary datastructure indexed by organisation. This datas-
tructure is then iterated and e-mail is sent to all organisations, using the address
abuse@<organisation>. For this purpose the smtplib module of the standard
Python library is used. A record of the alert is inserted into the alerts table in the
storage system:

cursor.execute("""

insert into alerts(sent_to, ts, org) values (%s, %s, %s)

""", (mail_to, mx.DateTime.gmt(), org))

The IP addresses are split into two sections when formatting the mail, one with
new addresses and one with addresses previously seen by the system. By using the

39

ip_seen table it is easy to check whether any given address has been seen before:

cursor.execute("""

SELECT src FROM ip_seen WHERE src = %s and first <= %s

""",

(src, fr))

Here the start time for the period is given as the argument fr.

4.8 The Presentation Component

The presentation component will be discussed in this section; from the design de-
cisions to the implementation details. The presentation component is designed as
dynamic modules for presentation on the World Wide Web, that is modules for
generating HTML and images dynamically. The main tasks of this component is:

• Present statistics and daily reports.

• Provide several levels of detail, and make the different levels easy to navi-
gate.

• Generate dynamic images showing recent history.

4.8.1 Design

Daily reports provide security staff with a means to view the recent development
for any given organisation and the AS in general. This helps understanding trends,
evaluating measures and leads to a better understanding of the problem in general.

The component also provides three different levels of information through the web
modules. On the top level information is presented for the entire AS with recent
history for every organisation. From there navigation is possible to one specific
organisation, showing the details for that particular customer on the given day.
Information such as highest scoring source IP addresses and alert information is to
be presented at this level.

Finally, the component should offer a per-address view offering more specific in-
formation on the offending IP address, such as destination ports used, number of
packets sent and score history for the IP address.

To present this information in a convenient manner, the component should be able
to visualise historic data dynamically.

40

4.8.2 Implementation

The presentation component is realised as a set of Mason components. Mason is a
Perl-based web site development and delivery engine [18].

The three different levels of information are realised by three separate compo-
nents, all essentially wrapping the database data in HTML and linking compo-
nents together. Data access is provided by the Perl DBI-library. Graphs are pro-
vided by Mason components outputting binary image data dynamically, using the
GD::Graph Perl module:

my $sql = "SELECT day, cnt, new_cnt " .

"FROM org_stats_day " .

"WHERE day >= (? - reltime('7 days')) and day <= ?" .

"and org = ? ORDER BY day";

my $most_active = $dbh->selectall_arrayref($sql, undef, $from, $from,

$org);

.

.

use GD::Graph::lines;

$graph = GD::Graph::lines->new(200,70);.

.

.

for my $row (@$most_active) {

push(@$xvalues, $row->[0]);

push(@$yvalues, $row->[1]);

push(@$y2values, $row->[2]);

}

my @data = ($xvalues, $yvalues, $y2values);

my $gd = $graph->plot(\@data) or die $graph->error;

$r->content_type('image/png');

$r->send_http_header;

binmode(STDOUT);

print $gd->png();

This simple, yet powerful and flexible approach means it is unnecessary to keep
updating and maintaining lots of image files, and also makes it easy to view data
from different angles just by changing an URL.

41

42

Chapter 5

Observations and Results

The last chapter showed the realisation of the approach, through the prototype sys-
tem. This chapter will present the observations and results from running the system
with live data. All IP addresses and names of customers will be kept anonymous
for privacy reasons.

5.1 Environment

All results are based on data gathered by the prototype system setup in a live
environment at UNINETT. The data consists of traffic seen between 2005-02-20
12:16:49.28 UTC and 2005-05-10 04:25:06.14 UTC, 79 days in total. All data
were first gathered by tcpdump, producing one file per day. These were used to
input data to the system, running the logging component script with the filename
as input.

5.2 Traffic Characteristics

In this section the overall characteristics of the traffic data will presented. This
is traffic destined for known botnet controllers which is redirected to the sinkhole
host. These characteristics are important to the understanding of the data. The
main figures were:

• Total number of IP Packets: 41 499 052

• Average number of IP packets per second: 9.8

• Total unique source IP addresses: 67679

• Total unique destination IP addresses: 1544

43

A breakdown by IP protocol is given in table 5.1. TCP accounts for more than 90%
of the total number of packets. A further breakdown of the TCP traffic is given in
table 5.2. By far, most of the TCP traffic is TCP SYN traffic, attempts to establish
outbound connections.

There is also a fair amount of SYN/ACK packets, responses to connection attempts
on open ports. These would occur when a known botnet controller tried to access
some service at the customer host on an open port. The ACK/RST packets are most
likely similar responses from closed ports.

Protocol Percentage Packets
TCP 93.02% 38 600 958
UDP 3.73% 1 548 271
ICMP 3.25% 1 349 823

Table 5.1: Data breakdown by IP protocol.

TCP Flags Percentage (TCP) Percentage (total) Packets
SYN 88.27% 82.11% 34 072 907
SYN/ACK 10.76% 10.01% 4 155 105
ACK/RST 0.80% 0.75% 308 973
ACK 0.14% 0.13% 54 012

Table 5.2: TCP Data breakdown by TCP flags.

Although packet filtering rules were in place from the very beginning on the sink-
hole host to drop all traffic destined for the capture interface libpcap still saw some
external traffic destined for the interface, i.e. traffic not originating within the
UNINETT AS. This introduced some extra packet storms and scans from hosts
not part of the UNINETT network. This traffic had to be filtered out of all aggre-
gated tables.

The focus of the prototype system became the TCP SYN packets, and all the ag-
gregated tables contain information based only on TCP SYN packets. Now, com-
paring the number of unique IP addresses seen with the the unique number of IP
addresses sending TCP SYN traffic the results are:

• Total number of unique source IP addresses seen: 67 679

• TCP SYN only: 6 116 (9.03%)

• Total number of unique destination IP addresses seen: 1 544

• TCP SYN only: 1 107 (71.72%)

So, while most of the packets seen are TCP SYN packets, the number of unique
source IP addresses sending such packets represent only 9% of the total number

44

Figure 5.1: A breakdown of the TCP SYN traffic by top 5 TCP destination ports.

of source IP addresses seen. This seems to suggest that the focus on TCP SYN
packets was justified.

A breakdown into TCP destination ports for the TCP SYN traffic can be seen in
table 5.3, and also in figure 5.1. Nearly one third of all TCP SYN packets seen
target port 6667, the standard IRC service port. Of course, a lot of botnets choose
other port numbers for their IRC control traffic; other popular choices are 8080,
traditionally used for HTTP proxy services and 16667, a simple extension of the
number 6667. Together, packets to these three port numbers represent nearly 50%
of the total number of TCP SYN packets.

TCP Destination port Percentage Packets
6667 32.50% 11 074 045
8080 12.19% 4 155 105
16667 5.00% 1 703 187
4367 4.05% 1 378 931
443 3.85% 1 310 220

Table 5.3: Breakdown of TCP SYN traffic by top 5 TCP destination ports.

A similar breakdown of the TCP SYN/ACK traffic with regards to TCP source
port can be seen in table 5.4. Somewhat surprisingly port 23, the telnet service port
accounts for nearly 90% of the SYN/ACK traffic.

Upon further investigation the relatively large amount of SYN/ACK traffic is found
to comprise of packets from two customer routers, most likely in response to sus-
tained telnet attempts, thus skewing the data heavily. The port 25 response traffic

45

TCP Source port Percentage Packets
23 89.34% 3 712 025
25 4.58% 190 217
80 4.14% 172 049
139 0.30% 12 438
1025 0.28% 11 412

Table 5.4: Breakdown of TCP SYN/ACK traffic by top 5 TCP source ports.

mostly stems from attempts to use SMTP-servers spread throughout the network.

Using the TTL values from the packet data collected, it is possible to break the
traffic down in terms of likely initial TTL value, and thereby likely Operating Sys-
tem. Such a breakdown of the TCP SYN traffic can be seen in table 5.5. Packets
with a initial TTL value of 128 dominate the data, suggesting that about 96.4% of
the packets originated from hosts running a Windows-based OS.

When examining packets sent from the top 500 hosts in terms of score the results
are similar, so there is no indication that hosts with higher scores are biased towards
any given TTL value, and thereby OS.

TTL-range Likely initial value Likely OS % of packets
107–127 128 Windows 96.40%
43–63 64 Linux 3.2%
Rest N/A Other/Unknown 0.4%

Table 5.5: Breakdown of TCP SYN traffic by TTL values.

5.3 Scope and Activity

The number of unique source IP addressees attempting to establish TCP connec-
tions with known controllers amount to an estimated 2.3–5.4% of the 150 000–
350 000 hosts connected to the UNINETT network.

In some cases one source IP address has attempted to establish contact with more
than one controller host on any given day. This has been seen with 2124 of the 6116
addresses, about one in three. Looking at source IP addresses attempting contact
with more than five controller hosts, the number is 554, or about 9%. The highest
number observed was 36 different controller hosts contacted by the same source IP
address over the course of 15 hours (!). As many as 200 hosts have attempted to
contact more than 10 controller hosts during a 24 hour period. On average, each
source IP address contacted 1.81 controller hosts every 24 hour period (00–24, i.e.
every day).

46

There are many possible reasons why hosts might exhibit this behaviour, some of
the more likely are:

• Different hosts may have used the same IP address, as is often the case with
VPN, 802.1x and dynamic DHCP-pools.

• Hosts might be connecting to a botnet server consisting of several peering
IRC-servers.

• Host may actually be infected multiple times, in effect being part of several
botnets at once.

It is the two last possibilities that motivated the scoring system putting emphasis
on the number of controllers contacted, as described in section 4.7.1.

The number of unique source IP addresses trying to establish contact with con-
trollers are plotted in figure 5.2 on a day to day basis. The figure also shows the
number of new IP addresses seen each day1. The dip in activity at the end of
March is most likely the result of the easter holidays, and a lot of computers being
switched off. On average, there were a total of 200 unique source IP addresses
active every day, of which about 76 were new.

Looking at the rate of new IP addresses seen on a daily basis, the following ques-
tions are now asked:

• How many new source IP addresses can be expected to be seen each day on
average?

• Whats the maximum and minimum number of new source IP addresses one
can expect to see each day?

• Once a source IP address is seen, how long does it stay active?

To answer the first question, a 95% confidence interval estimating the mean with
basis in the 79 days of empirical data. The following are the parameters of the
empirical data:

n = 79

x = 76.29

s = 51.18.

Here, n is the number of observations, x is the observed mean and s is the observed
standard deviation. Now, we cannot assume normality in the distribution, and the
variance (σ) of the distribution is unknown. However, since the number of obser-
vations is large (n ≥ 30), s replaces σ and so a confidence interval can be found
as:

x± zα/2 s/
√

n.

1Note that the sudden drop in early April was caused by a crash in tcpdump, and data from that
day is thus based on 1/8 of a day

47

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

02/19 03/05 03/19 04/02 04/16 04/30 05/14

N
o.

 u
ni

qu
e

so
ur

ce
 IP

 a
dd

re
ss

se
s

Day

Total
New

Figure 5.2: Number of unique source IP addresses seen by day.

With 1−α = 0.95 a 95% confidence interval on µ is found to be:

µ = 76.29±11.28,

or in other words the interval [65,88]. So, with 95% confidence, the average num-
ber of new source IP addresses per day lies in this interval.

To answer the second question, one can calculate a so-called tolerance interval.
This allows, based on the empirical data, an interval to be found which would
cover a specific percentage of future observations. Such a tolerance interval can be
found as:

x± ks,

where the parameter k depends on the wanted precision and confidence. To assert
with 99% confidence that 95% of future observations will be contained within the
interval, a table lookup gives the value k = 2.414 (for n = 80,γ = 0.01,1−α =
0.95). This means the interval becomes:

76.29± (2.414)(51.18) = 76.29±123.54,

or in other words [0,200]. That is, based on observed data, we can be 99% confident
that on 95% of observed days, the number of new source IP addresses seen will lie
in this interval.

48

Now, knowing the prevalence of new IP addresses, it becomes interesting to look at
the length of these observations, that is, question three from above. If new source IP
addresses appear, and then disappear quickly, never to be seen again the likelihood
of there being more than one host using that address seems rather small.

The data show that as many as 3774 or nearly 62% of source IP addresses are never
seen again after one day of activity. An 95% confidence interval of the mean, µ is
found to be:

n = 6116

x = 8.93days

s = 16.83days

With 1−α = 0.95 we obtain the following interval for the mean:

µ = 8.93±0.42,

Thus a source IP address is expected to be active between 8,51 and 9,35 days on
average, or in other words just over a week. However, the observed distribution is
skewed, and the median might be a better estimate of the true µ . The median is
found to be about 2,55 hours. That would place the mean between 0 and 13 hours,
a very different estimate indeed.

The empirical data is very puzzling, and no possible explanation can be given as to
why the activity length is so different between IP addresses. If the observations of a
long-lived source IP address had been grouped in two or more distinct clusters one
could argue that they were likely to be different physical hosts at different times.
However, examining the data indicates a more or less continuous flow of packets
from the long-lived IP addresses.

In addition to the source IP address data the system has also gathered information
on the controller activity, based on the dynamics of the list used. The activity can
be seen in figure 5.3. On average there were 752 controllers on the list, with the
number as high as 802 and as low as 698. There were 28 additions every day, on
average.

Considering that the number of controllers on the list represents only part of the
actual amount of botnet controllers active on the net, the actual number of infected
hosts in the network ought to be higher than the data indicates. Estimating the
amount of compromised hosts in the network is not an easy task for several reasons:

• Without feedback and/or forensics the system can never say with 100% cer-
tainty that any host is indeed compromised, although indications can be
strong. There are bound to be false positives, even when considering only
TCP SYN traffic. However without more extensive testing with customers
the false positive rate could be almost anything.

49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

04/22
00:00

04/24
00:00

04/26
00:00

04/28
00:00

04/30
00:00

05/02
00:00

05/04
00:00

05/06
00:00

05/08
00:00

05/10
00:00

U
ni

qu
e

co
nt

ro
lle

r I
P

 a
dd

re
ss

es
 s

ee
n

Day

Total
New

Figure 5.3: Number of controllers on the list on a daily basis.

• There are a lot of “roaming targets”; laptops, VPN, 802.1x and dynamic
DHCP-pools complicate matters, there is no one-to-one mapping between an
IP address and a host. This undoubtably means that it is easy to overestimate.

• The rate with which compromised hosts are discovered and cleaned up or
reinstalled is unknown, but it is safe to assume that cleanups do occur at
some rate (however small).

• The controller hosts on the list used only represent a small part of the actual
controllers present on the net; however, how small is an open question. In
addition, by looking only at TCP SYN traffic when aggregating and scoring,
some infected hosts are undoubtably missed.

5.4 An Incident Response Test Case

In order to test the alert component, and to get feedback on the accuracy of the
warnings generated, UNINETT contacted two large Norwegian universities to per-
form a real world test case, with the hope of getting feedback that could help eval-
uate the precision of the system.

The alert component was run on data for a week, and all source IP addresses with

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

02/19 03/05 03/19 04/02 04/16 04/30 05/14

U
ni

qu
e

so
ur

ce
 IP

 a
dd

re
ss

es
 s

ee
n

Day

Total
New

Figure 5.4: Number of unique source IP addresses seen by day for University A.

a calculated score of 2 or more reported by e-mail to the respective universities’
abuse addresses. They were given about a month to investigate, and report any
findings back. Their approach and findings are discussed next.

5.4.1 University A

University A has shown quite high botnet activity as seen by the system, the activity
level is shown in figure 5.4. The data shows some big spikes, and as many as 80
source IP addressees seen on a single day.

The abuse section at university A received a list of 41 unique source IP addresses
with details on the period of activity and the number of controller addresses con-
tacted by each address. In addition, the list was split in two parts; one contained
new IP addresses (not previously seen by the system), and the other contained IP
addresses previously seen by the system.

Methodology

The response team at the university provided the following information on their
methodology:

51

• 41 addresses was considered a big amount, and with other pressing matters
also at hand the need for classification arised.

• IP addresses on campus were given priority, and VPN traffic was disregarded
due to the man-hours needed to manually examine the logdata.

• The more controllers an IP address had contacted, the higher priority it be-
came.

Also, the team started from the top of the list, with the IP addresses seen previously
by the system, and never got to the bottom section, containing new IP addresses in
time for the feedback to be included in this thesis.

Results

After a month feedback was given on 20 of the 41 IP addresses reported. When
classifying the results, the following categories were chosen:

• Confirmed positive. The host was confirmed compromised with some form
of malware.

• Likely negative. The host was examined, but showed no evidence of com-
promise.

• Not investigated. The host was either not tracked down, or the owner had
not responded to inquiries.

• Reinstalled. The host was reinstalled before it could be examined.

The results are shown in table 5.6. The amount of likely negative hosts is quite
big, however 3 of those 5 hosts represent a special case. Those 3 hosts are part of a
web caching project, and so contacts a very large amount of random hosts on port
80. This suggests the need for explicit whitelisting of some sort, as such hosts with
special behaviour easily results in false positives.

The other two IP addresses listed as likely negative were reinstalled anyway, to be
on the safe side. These had been used by a total of 7 different hosts. These hosts
were scanned for viruses. Some even had their traffic logged for a period of time,
however no sign of infection could be found.

Category Hosts Percentage
Confirmed positive 7 35.0%
Likely negative 5 25.0%
Not investigated 5 25.0%
Reinstalled 3 15.0%

Table 5.6: Results from the abuse team at University A.

52

 0

 10

 20

 30

 40

 50

 60

02/19 03/05 03/19 04/02 04/16 04/30 05/14

U
ni

qu
e

so
ur

ce
 IP

 a
dd

re
ss

es
 s

ee
n

Day

Total
New

Figure 5.5: Number of unique source IP addresses seen by day for University B.

Most of the hosts not investigated were roaming hosts, typically laptops difficult
to track down. Some were other student hosts and although owners were notified,
not all replied in time to get a conclusive answer. Unfortunately, these hosts were
among the hosts with the highest scores, and without data on these, evaluating
the scoring mechanism is difficult. The highest scoring host actually investigated
(disregarding the web caching hosts) had contacted 6 controller hosts, and was
found to be infected with 6 different trojans.

5.4.2 University B

University B has not shown as much botnet activity as university A, although the
two are of comparable size. The activity level is shown in figure 5.5, with activity
peaking at about 50 active source IP addresses. Traditionally, university B has had
a more restrictive network policy, especially regarding hosts owned by students;
this might explain the somewhat smaller activity level.

The list sent to university B contained 40 unique source IP addresses, again in two
parts, and sorted by number of controllers contacted.

53

Methodology

After a month it became clear that university B had taken a somewhat different
approach than university A. None of the source IP addresses were hosts owned by
the university, that is, they were dial-up systems, VPN and hosts owned by students.
As the university had limited access to those, they revoked network access for the
addresses and the users and/or owners were asked to clean up the hosts in question.
At the time of this writing there has been no further information on this effort.

Results

Regretfully, no hard facts have been provided by university B for any of the hosts
on the list; however the feedback indicated that several of the IP addresses had been
flagged by their own surveillance systems. At the time of this writing the details
on this matter are unfortunately not known.

5.4.3 Summary

In summary, some facts seem clear after the incident response test case:

• Roaming targets, dial-in systems and VPN hosts all make life difficult for the
response personnel in terms of tracking down and identifying the problem.

• Customers are bound to take different approaches when dealing with possi-
ble infections, especially when the hosts in question are “fringe hosts”, not
owned by the customer themselves.

• Reports from a system such as this actually increases the workload on the
personnel at the customer, at least in the short-term; some customers may
feel they have little incentive to make such investigation a priority.

5.5 The Prototype System

After running the prototype system in a real-world setting for nearly 80 days the
experiences and results gathered are discussed in this section.

5.5.1 Storage

The storage demands of the test setup are split in two. The daily tcpdump packet
capture data used as input needed about 6GB of storage space, files averaging about
60-70MB. The PostgreSQL database grew to 20GB during the 80 days, including

54

all indices and other metadata. Even with a 500% increase in daily activity it is
likely one could setup a system with a years worth of historic tcpdump raw data
and 90 days of database data using about 250GB of storage space.

5.5.2 Performance

A full scale performance test is outside the scope of this thesis, however a few
noteworthy points have arisen regarding the performance of the system:

• The big amount of rows means the indices also grow quite big. It becomes
important to ensure the DBMS has enough physical memory available to fit
the biggest index in RAM.

• INSERT statements as used for every packet result in a big performance hit,
because the database has to update all indices for every packet. Caching and
using COPY FROM instead should increase write performance.

• To ensure gathering as many packets as possible, the current approach with
tcpdump data as input should be kept, as a live-capture approach in Python
with a lot of work per packet is likely to have a higher number of dropped
packets.

5.5.3 User Interface

In the prototype system the user interface is comprised of the web frontend with
statistics and daily reports. These are dynamically generated from aggregated ta-
bles in the storage system. The pages take a top-down approach, presenting infor-
mation in three levels of increasing detail.

Figure 5.6 shows the topmost level, giving a breakdown per organisation for any
given day. For each organisation, a weeks worth of historical data is plotted, show-
ing the activity level with active and new IP addresses seen.

From this page, the user has easy access to more detail on any organisation, full
size graphs as well as a link to external NetFlow data for the day. When clicking
on a given organisation, the user is presented with the page shown in figure 5.7

Here source IP addresses are ranked according to score, and varying shades of red
are used to help visualise the top scorers. For every source IP address the number
of TCP SYN packets sent and the number of controllers contacted is listed, as well
as the hostname. In addition, if the IP address has been part of an alert, a link to
information about the alert is available (number of hosts reported, timestamps, and
possibly information from some other incident response ticket system).

The report in figure 5.7 is also available in a stand-alone manner, when no organi-
sation is specified it ranks all IP addresses seen during the specified day, across all

55

Figure 5.6: Screenshot from the web frontend, showing a breakdown per organisa-
tion.

organisations. When clicking on a IP address the user is taken to the third and final
level of information, the per IP address detail. The page is shown in figure 5.8.
This page shows the activity of the specified IP address on the given day, as well as
providing historical data on the TCP destination ports used and the historical score.

5.5.4 Interoperability

The prototype system is built in a fairly modular fashion, with the main compo-
nent being the storage system. No higher level interface than raw SQL statements
exist. However, the modules are relatively simple, well documented, and can be
exchanged or expanded with relative ease. This should make it easy to correlate
findings with data from other systems and integrate the system in a “whole”.

56

Figure 5.7: Screenshot from the web frontend, showing the most active hosts for a
given organisation.

Figure 5.8: Screenshot from the web frontend, providing detail on the given IP ad-
dress.

57

58

Chapter 6

Summary and Further Work

In this thesis a technique for uncovering and reporting botnet activity in a service
provider environment has been presented and tested. The technique has proven to
be a feasible approach, and has been used in a live environment to reroute botnet
traffic to a sinkhole host. Compared to the existing manual, ad-hoc approach to
botnet detection and mitigation the approach shows great promise.

A modular prototype system has been developed, enabling traffic analysis of the
botnet activity and incident response. This system was run on live traffic data
gathered from the Norwegian national research and education network, providing
aggregation and classification of packet data and dynamic reports to support the
incident response. The system will be moved to production and used by the CERT
team as soon as possible.

To test the incident response two Norwegian universities were provided with auto-
matically generated lists of likely compromised hosts over a 7 day period. This was
done to get some insight as to the precision of the data and the incident response
process as such. Unfortunately the data gathered from this test case was somewhat
limited, and it is impossible to conclude on the precision of the system and the
effectiveness of the scoring mechanism. The test case did allow us to positively
confirm the compromised state of several hosts. It also highlighted the need for
the whitelisting of certain specialised hosts. In addition it highlighted the problems
with “roaming” hosts, identifying them and getting to them.

Examining the scope of the problem revealed that 6116 unique source IP addresses
tried to establish contact with botnet controllers during a 79 day period. Estimating
the amount of bots in the network is a very complex matter and the collected data is
not conclusive enough to perform such an estimate. However, the numbers suggest
that the scope of the problem is severe. The number of expected new likely com-
promised IP addresses seen per day was found to be between 65 and 88 on average.
About one in three compromised IP addresses have contacted two or more unique

59

botnet controllers.

Most of the addresses seen by the system are seen only once, on the day they
appear, while others remain active for a longer period of time. While some of this
(lack of) sustained activity might be explained by changes in the list used by the
system, this observation is difficult to explain.

There are plans to further develop the system and there are many potential areas
for future work, some of them are:

• Improving the quality of forensic data. For instance, if the port numbers
of the control service of the botnet controllers could be integrated into the
system and scoring functions, the precision of the system would certainly
increase significantly.

• Providing customers with data to help identify hosts, for instance by lookup
in NAV [33] databases where applicable. Customers also need some sim-
ple way to report back when a host has been cleaned for instance. A per-
customer web portal could enable customers to do this, as well as access
historical reports using the same components already developed.

• Correlation across security tools, for instance flow monitoring systems and
dark IP space systems. Could be used both to increase precision and as
support in forensic work to uncover new controller hosts.

• Tighter integration with trouble ticket incident response system. The system
already has mechanisms to store an id with every alert, with this in mind,
and the CERT team is looking at the possibility of integration with RTIR [6].

60

Bibliography

[1] Dynamic Network Services Inc. http://www.dyndns.org/.

[2] pylibcap: Python module for libpcap. http://pylibpcap.sourceforge.net/.

[3] UNINETT: The Norwegian National Research and Education Network.
http://www.uninett.no/.

[4] WASTE: Anonymous, secure, encrypted sharing. http://waste.sf.net,
2003–2004.

[5] David Barry. Zombies, Trojans, bots and worms: What have we wrought?
Cisco Packet Magazine, 17:19–22, 2005.

[6] Best Practical Solutions LLC. Request Tracker for Incident Response. http:
//www.bestpractical.com/rtir/.

[7] CERT/CC. CERT Advisory CA-2003-20 W32/Blaster worm. http://www.
cert.org/advisories/CA-2003-20.html, August 2003.

[8] Cisco. Unicast Reverse Path Forwarding (uRPF) Enhancements for the ISP-
ISP Edge. ftp://ftp-eng.cisco.com/cons/isp/documents/uRPF_

Enhancement.pdf, February 2001.

[9] Cisco. NetFlow Services and Applications. http://www.cisco.com/warp/
public/cc/pd/iosw/ioft/neflct/tech/napps_wp.pdf, July 2002.

[10] Cisco. Remote Triggering Black Hole Filtering. ftp://ftp-eng.cisco.

com/cons/isp/essentials/Remote%20Triggered%20Black%20Hole%

20Filtering-02.pdf, August 2002.

[11] David Dittrich. The ’stacheldraht’ distributed denial of service attack
tool. http://staff.washington.edu/dittrich/misc/stacheldraht.

analysis, December 1999.

[12] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Stan-
dard), March 1997. Updated by RFC 3396.

[13] eEye Digital Security. .ida "Code Red" Worm. http://www.eeye.com/

html/research/advisories/al20010717.html, July 2001.

61

http://www.dyndns.org/
http://www.uninett.no/
http://waste.sf.net
http://www.bestpractical.com/rtir/
http://www.bestpractical.com/rtir/
http://www.cert.org/advisories/CA-2003-20.html
http://www.cert.org/advisories/CA-2003-20.html
ftp://ftp-eng.cisco.com/cons/isp/documents/uRPF_Enhancement.pdf
ftp://ftp-eng.cisco.com/cons/isp/documents/uRPF_Enhancement.pdf
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.pdf
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.pdf
ftp://ftp-eng.cisco.com/cons/isp/essentials/Remote%20Triggered%20Black%20Hole%20Filtering-02.pdf
ftp://ftp-eng.cisco.com/cons/isp/essentials/Remote%20Triggered%20Black%20Hole%20Filtering-02.pdf
ftp://ftp-eng.cisco.com/cons/isp/essentials/Remote%20Triggered%20Black%20Hole%20Filtering-02.pdf
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://www.eeye.com/html/research/advisories/al20010717.html
http://www.eeye.com/html/research/advisories/al20010717.html

[14] Mark W. Eichin and Jon A. Rochlis. With Microscope and Tweezers: An
Analysis of the Internet Virus of November 1988. In IEEE Symposium on
Security and Privacy, pages 326–344, 1989.

[15] David Geer. Malicious Bots Threaten Network Security. IEEE Computer
Magazine, 38(1):18–20, January 2005.

[16] Michael Glenn. A Summary of DoS/DDoS Prevention, Monitoring and Mit-
igation Techniques in a Service Provider Environment. August 2003.

[17] Kevin J. Houle, George M. Weaver, Neil Long, and Rob Thomas. Trends in
Denial of Service Attack Technology, October 2001.

[18] Jonathan Swartz et.al. Mason: A powerful Perl-based web site development
and delivery engine. http://masonhq.com.

[19] C. Kalt. Internet Relay Chat: Architecture. RFC 2810 (Informational), April
2000.

[20] mIRC Co. Ltd. Khaled Mardam-Bey. mIRC: A Winsock IRC-client. http:
//www.mirc.com.

[21] Darrell M. Kienzle and Matthew C. Elder. Recent worms: A Survey and
Trends. In WORM’03: Proceedings of the 2003 ACM workshop on Rapid
Malcode, pages 1–10. ACM Press, 2003.

[22] Hyang-Ah Kim and Brad Karp. Autograph: Towards Automated, Distributed
Worm Signature Detection. In The 13th USENIX Security Symposium, pages
271–286, August 2004.

[23] John Kristoff. Botnets. http://www.nanog.org/mtg-0410/pdf/

kristoff.pdf, October 2004.

[24] LURHQ Threat Intelligence Group. Phatbot Trojan Analysis. http://www.
lurhq.com/phatbot.html, March 2004.

[25] Brian McWilliams. Spam Kings. O’Reilly, 2005.

[26] Daniel Medina. Digging Up Worms, Herding BotNets. http:

//www.columbia.edu/acis/networks/advanced/papers/

medina-resnet2004.pdf, June 2004.

[27] Corey Merchant and Joe Stewart. Detecting and Containing IRC-Controlled
Trojans: When Firewalls, AV and IDS Are Not Enough. http://www.

securityfocus.com/infocus/1605, July 2002.

[28] Jelena Mirkovic. D-WARD: Source-End Defense Against Distributed Denial-
of-Service Attacks. PhD thesis, University of California, 2003.

[29] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS de-
fense mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, 2004.

62

http://masonhq.com
http://www.mirc.com
http://www.mirc.com
http://www.nanog.org/mtg-0410/pdf/kristoff.pdf
http://www.nanog.org/mtg-0410/pdf/kristoff.pdf
http://www.lurhq.com/phatbot.html
http://www.lurhq.com/phatbot.html
http://www.columbia.edu/acis/networks/advanced/papers/medina-resnet2004.pdf
http://www.columbia.edu/acis/networks/advanced/papers/medina-resnet2004.pdf
http://www.columbia.edu/acis/networks/advanced/papers/medina-resnet2004.pdf
http://www.securityfocus.com/infocus/1605
http://www.securityfocus.com/infocus/1605

[30] P. Mockapetris. RFC 1034: Domain Names - Concepts and Facilities, 1987.

[31] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Stani-
ford, and Nicholas Weaver. Inside the Slammer Worm. IEEE Security &
Privacy Magazine, 1:33–39, 2003.

[32] Network Research Group, Lawrence Berkely National Laboratory. libpcap:
A system-independent interface for user-level packet capture. http://ee.

lbl.gov/.

[33] Norwegian University of Science and Technology. NAV: Network Adminis-
tration Visualized. http://metanav.ntnu.no/moin.cgi/NAV, 1999.

[34] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat Protocol, May
1993. Status: EXPERIMENTAL.

[35] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated
by RFC 1349.

[36] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFC 3168.

[37] Puri Ramneek. Bots & Botnet: An Overview. August 2003.

[38] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771
(Draft Standard), March 1995.

[39] Clay Shields. What do we mean by Denial of Service? In Proceedings of the
2002 IEEE Workshop on Information Assurance and Security, June 2002.

[40] Joseph M. Soricelli and Wayne Gustavus. Tutorial: Options for Blackhole
and Discard Routing. http://www.nanog.org/mtg-0410/soricelli.

html, October 2004.

[41] Spitzner et. al. The Honeynet Project. http://project.honeynet.org/,
October 1999.

[42] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The Top
Speed of Flash Worms. In WORM ’04: Proceedings of the 2004 ACM work-
shop on Rapid malcode, pages 33–42. ACM Press, 2004.

[43] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the Internet
in Your Spare Time. In Proceedings of the 11th USENIX Security Symposium,
pages 149–167. USENIX Association, 2002.

[44] swatit.org. Botnet Gallery. http://swatit.org/bots/gallery.html,
2003.

[45] The Honeynet Project & Research Alliance. Know your Enemy: Tracking
Botnets. http://www.honeynet.org/papers/bots/, March 2005.

63

http://ee.lbl.gov/
http://ee.lbl.gov/
http://metanav.ntnu.no/moin.cgi/NAV
http://www.nanog.org/mtg-0410/soricelli.html
http://www.nanog.org/mtg-0410/soricelli.html
http://project.honeynet.org/
http://swatit.org/bots/gallery.html
http://www.honeynet.org/papers/bots/

[46] The Honeynet Project & Research Alliance. Know your Enemy: Tracking
Botnets - Spreading. http://www.honeynet.org/papers/bots/, March
2005.

[47] Vitalwerks Internet Solutions, LLC. No-IP.com: The Dynamic DNS leader.
http://www.no-ip.com/.

[48] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham.
A Taxonomy of Computer Worms. In WORM’03: Proceedings of the 2003
ACM workshop on Rapid Malcode, pages 11–18. ACM Press, 2003.

[49] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very Fast Containment
of Scanning Worms. In Proceedings of the 13th USENIX Security Symposium,
pages 29–44, August 2004.

64

http://www.honeynet.org/papers/bots/
http://www.no-ip.com/

Appendix A

BGP Configuration

The following BGP configuration was used for the sinkhole router:

!

!

router bgp 224

neighbor bc-feed peer-group

neighbor bc-feed remote-as 65330

neighbor bc-feed description Botnet route feed

neighbor bc-feed ebgp-multihop 200

neighbor bc-feed password -omitted-

neighbor bc-feed update-source Loopback0

!

neighbor x.x.x.x peer-group bc-feed

neighbor y.y.y.y peer-group bc-feed

!

address-family ipv4

!

neighbor bc-feed activate

neighbor bc-feed prefix-list nothing out

neighbor bc-feed route-map bc-feed-in in

neighbor bc-feed maximum-prefix 1000 90

!

neighbor x.x.x.x peer-group bc-feed

neighbor y.y.y.y peer-group bc-feed

!

exit-address-family

!

!

route-map bc-feed-in permit 10

65

description Filter Botnet controller routes

match ip address prefix-list bc-prefixes

match community 10

set ip next-hop 128.39.47.174

set community no-export

!

route-map nothing permit 10

match ip address 194

!

access-list 194 deny ip any any

!

!

ip prefix-list bc-prefixes description Prefixes to be routed to logger

ip prefix-list bc-prefixes seq 5 permit 0.0.0.0/0 ge 32

!

66

Appendix B

Configuration Scripts

B.1 iptables-drop-eth1.sh

#!/bin/sh

Flush all chains and delete LOG_DROP-chain

iptables -F

iptables -X LOG_DROP

Add a LOG_DROP-chain

iptables -N LOG_DROP

iptables -A LOG_DROP -j LOG --log-tcp-options --log-ip-options --log-prefix '[IP

TABLES DROP]: '

iptables -A LOG_DROP -j DROP

Drop and log all incoming packets on eth1

iptables -A INPUT -i eth1 -j LOG_DROP

Dont accept packets in the forwarding chain

iptables -P FORWARD DROP

Dont let any packets out through this interface

iptables -A OUTPUT -o eth1 -j LOG_DROP

B.2 logrotate.conf

.

.

67

/home/templog/rawlog {

missingok

daily

postrotate

killall tcpdump

nohup /usr/sbin/tcpdump -i eth1 -s 0 -w /home/templog/rawlog &

endscript

olddir old

rotate 365

}

.

.

68

Appendix C

Code Listing for the Prototype
System

In this appendix the full source code listing for the prototype system is given. It is
also available in electronic form from the thesis home page at: http://www.idi.
ntnu.no/~mortenkn/thesis/.

C.1 alert.py

1 #!/usr/bin/env python

#

AlertEngine is part of the Alert Component of the

botnet detector prototype software.

5 #

Written by Morten.Knutsen@idi.ntnu.no

#

$Id: alert.py,v 1.6 2005/06/11 19:49:23 mortenkn Exp $

10 import mx.DateTime

import traceback, sys, socket

from smtplib import SMTP

from util import compute_score

15
class AlertEngine:

def __init__(self, connection, threshold=2):

"""

69

http://www.idi.ntnu.no/~mortenkn/thesis/
http://www.idi.ntnu.no/~mortenkn/thesis/

20 Construct an AlertEngine.

Construct an AlertEngine, passing a python DB-API 2.0

compliant connection object and optionally specifying a

threshold value.

25 """

self.cx = connection

self.cu = self.cx.cursor()

self.threshold = threshold

self.smtp_conn = SMTP("tyholt.uninett.no")

30
def alert(self, first, last, org, new, ips):

"""

Send a mail to an organisation with list of IP addresses.

35 Generate and send an alert-mail to the specified org, using

abuse@org as the To address. first and last specify the period

of time, and are mx.DateTime.Date objects. new is a list of IP

addresses that are new to the system. ips is a list of IP

addresses that have previously been seen by the system.

40
"""

Ensure we have an extra cursor available.

cursor = self.cx.cursor()

45
Get timestamp of latest alert to this org.

self.cu.execute("""

select ts from alerts where org=%s order by ts desc limit 1

""", (org,))

50
ts = self.cu.fetchone()

Set TBA on ips whose orgs we have mailed in the last 24 hrs

FIXME: New datastructure

55 #if ts and mx.DateTime.gmt() - ts[0] < mx.DateTime.Time(24):

for ip in ips + new:

print "Would set tba on ip", ip

cursor.execute("""

SELECT src,

60 # #cursor.execute("""

#UPDATE packets SET tba=%s WHERE src=%s

#""", (True, ip))

#cursor.execute("""

70

#UPDATE period_data SET tba=%s WHERE src=%s

65 # #""", (True, ip))

#

return

Do normal alert

70
mail_from = "cert@uninett.no"

mail_to = "abuse@" + org

mail_to = "mortenk@uninett.no"

mail_cc = ["cert@uninett.no", "mortenk@uninett.no"]

75 mail_subject = "Automatisk varsel om infiserte maskiner"

Store information on the alert

cursor.execute("""

insert into alerts(sent_to, ts, org) values (%s, %s, %s)

80 """, (mail_to, mx.DateTime.gmt(), org))

Get the ID

oid = cursor.oidValue

cursor.execute("""

85 select id from alerts where oid=%s

""", (oid,))

alert_id = cursor.fetchone()[0]

Format mail

90 mail_content = "To: " + mail_to + "\r\n"

mail_content += "Cc: " + ", ".join(mail_cc) + "\r\n"

mail_content += "Subject: " + mail_subject + \

" [#" + str(alert_id) + "]\r\n"

mail_content += "From: " + mail_from + "\r\n"

95 mail_content += """

ADVARSEL OM MULIGE INFISERTE MASKINER

=====================================

100 Vi har registrert oppførsel som tyder på infeksjon på maskiner

på deres nett. Maskinene har forsøkt å etablere kontakt med

maskiner som er kjente kontrollere, dvs. som fjernkontrolerer

andre maskiner. For mer om botnets se http://en.wikipedia.org/wiki/Botnet.

Ta kontakt om det er noe dere lurer på. Vi håper på tilbakemelding på

105 funn / desinfeksjoner.

"""

71

mail_content += "Varselet gjelder for perioden %s - %s (UTC).\r\n" % \

110 (first, last)

mail_content += "Følgende maskiner under %s er berørt:\r\n" % (org,)

if new:

mail_content += """

115 * NYE adresser i perioden:

"""

mail_content += self._generate_list(first, last, new)

120
if ips:

mail_content += """

* Adresser vi har sett tidligere:

125
"""

mail_content += self._generate_list(first, last, ips)

130 # And, send it..

self.smtp_conn.sendmail(mail_from, [mail_to]+mail_cc, mail_content)

Not used

For future use?

135 def escalate(self, org, ips):

pass

Helper method to return a formatted list of IP, period and

reverse lookup

140 def _generate_list(self, fr, to, l):

hostnames = {}

for ip in l:

hn = ""

try:

145 h = socket.gethostbyaddr(ip)

if h: hn = h[0]

except:

pass

hostnames[ip] = hn

150
ret = ""

72

if len(l) > 1:

self.cu.execute("""

select min(ts) as first, max(ts) as last, src, count(distinct dst)

155 from packets where (ts between %s and %s) and src in %s and tcp_flags=%s

group by src order by count desc

""", (fr, to, tuple(l), 2))

else:

self.cu.execute("""

160 select min(ts) as first, max(ts) as last, src, count(distinct dst)

from packets where (ts between %s and %s) and src=%s and tcp_flags=%s

group by src order by count desc

""", (fr, to, l[0], 2))

165 i = 0

for row in self.cu.fetchall():

ret += '-' * 72 + '\n'

ret += "Tidsrom:\t%s - %s\r\nMaskin:\t\t%s [%s]\r\n" + \

"Kontaktet:\t%s kontroller(e)\r\n" % \

170 (row[0], row[1], row[2], hostnames[row[2]], row[3])

i += 1

return ret

175 # Generate and store alert data for every organisation

def _generate_alerts(self, fr, to):

cursor = self.cx.cursor()

try:

180 self.cu.execute("""

SELECT src, org, dstport, count(id) as packets,

count(distinct dst) as ips, min(ts) as first, max(ts) as

last, alert_id, tba FROM packets WHERE (ts between %s and

%s) and tcp_flags=%s and (not dst='128.39.47.174' or dst='128.39.47.150')

185 GROUP BY src, dstport, org, alert_id, tba ORDER BY

ips DESC

""",

(fr, to, 2))

190 period_data = {}

First, store and index by source IP address

for row in self.cu.fetchall():

if not row["src"] in period_data:

195 period_data[row["src"]] = {'src': row["src"],

73

'packets': row["packets"],

'org': row["org"],

'alert_id': row["alert_id"],

'tba': row['tba'],

200 'first': row["first"],

'last': row["last"],

'ports': [row["dstport"]],

'ips': row["ips"],

}

205 else:

entry = period_data[row["src"]]

entry["packets"] += row["packets"]

if row["first"] < entry["first"]:

entry["first"] = row["first"]

210 if row["last"] > entry["last"]:

entry["last"] = row["last"]

if row["dstport"] not in entry["ports"]:

entry["ports"].append(row["dstport"])

entry["ips"] += row["ips"]

215
alert_data = {}

Loop through and seperate new from old,

index by org. Calculate scores and check

220 # against threshold.

for src in period_data:

cursor.execute("""

SELECT src FROM ip_seen WHERE src = %s and first <= %s

""",

225 (src, fr))

old = cursor.fetchone()

entry = period_data[src]

230 score = compute_score(entry["ips"], entry["packets"],

entry["ports"],

entry["last"] - entry["first"])

if score >= self.threshold:

235 if not entry["alert_id"]:

org = entry["org"]

if not org in alert_data:

alert_data[org] = {'first': entry["first"],

'last': entry["last"],

74

240 'ips': [],

'new': []

}

if old:

alert_data[org]["ips"] = [src]

245 else:

alert_data[org]["new"] = [src]

else:

if entry["first"] < alert_data[org]["first"]:

alert_data[org]["first"] = entry["first"]

250 if entry["last"] > alert_data[org]["last"]:

alert_data[org]["last"] = entry["last"]

if old:

if src not in alert_data[org]["ips"]:

alert_data[org]["ips"].append(src)

255 else:

if src not in alert_data[org]["new"]:

alert_data[org]["new"].append(src)

else:

pass

260 # self.escalate(entry) if last > 14 days

Make it happen, call alert() for every org

for org in alert_data:

entry = alert_data[org]

265 self.alert(entry["first"], entry["last"],

org, entry["new"], entry["ips"])

except:

traceback.print_exc()

270

Not currently in use...

def _handle_tba(self, fr, to):

cursor = self.cx.cursor()

275 try:

self.cu.execute("""

select min(ts) as first, max(ts) as last, src, org

from packets where (ts between %s and %s) where tcp_flags=%s

and (not dst='128.39.47.150' or dst='128.39.47.174')

280 and tba=%s group by org, src, dstport

""",

(fr, to, 2, True))

75

alert_data = {}

285
for row in self.cu.fetchall():

(first, last, src, org, dstport) = row

cursor.execute("""

290 select ts from alerts where org=%s order by ts desc limit 1

""", (org,))

ts = cursor.fetchone()[0]

295 if mx.DateTime.gmt() - ts < mx.DateTime.Time(24):

continue

if not org in alert_data:

alert_data[org] = {'first': first,

300 'last': entry["last"],

'ips': [src]

}

else:

if first < alert_data[org]["first"]:

305 alert_data[org]["first"] = first

if last > alert_data[org]["last"]:

alert_data[org]["last"] = last

if src not in alert_data[org]["ips"]:

alert_data[org]["ips"].append(src)

310

for org in alert_data:

entry = alert_data[org]

self.alert(entry["first"], entry["last"], org, entry["ips"])

315
except:

traceback.print_exc()

Unit test main()

320 if __name__ == '__main__':

from pyPgSQL import PgSQL

conn = PgSQL.connect(database="boned", host="localhost", port="8888", user="boned",

325 password="XXXXX")

conn.autocommit = 1

76

test = AlertEngine(conn)

330
startDate = mx.DateTime.DateTime(2005, 4, 17)

stopDate = mx.DateTime.DateTime(2005, 4, 23)

test._generate_alerts(startDate, stopDate)

C.2 sniff.py

1 #!/usr/bin/env python

#

sniff.py is part of the Collector Component of the

botnet detector prototype software.

5 #

Written by Morten.Knutsen@idi.ntnu.no

#

$Id: sniff.py,v 1.4 2005/06/11 19:49:23 mortenkn Exp $

10 import sys

import pcap

import string

import time

import socket

15 import struct

import traceback

import mx.DateTime

protocols={socket.IPPROTO_TCP:'tcp',

20 socket.IPPROTO_UDP:'udp',

socket.IPPROTO_ICMP:'icmp'}

cu = None

cnt = 0

25
from ipreg import IPreg

from pyPgSQL import PgSQL

def store_packet(pktlen, data, timestamp):

30 """

Per-packet function to analyse headers and store info in a table.

"""

77

global cu

35 if not data:

return

Check if we have an IP packet

if data[12:14] == '\x08\x00':

40 timestamp = mx.DateTime.gmtime(timestamp)

ip_data = data[14:]

ip_hlen = ord(ip_data[0]) & 0x0f

ttl = ord(ip_data[8])

45 proto = ord(ip_data[9])

src = pcap.ntoa(struct.unpack('i',ip_data[12:16])[0])

dst = pcap.ntoa(struct.unpack('i',ip_data[16:20])[0])

Lookup organisation from source IP address

50 ip = ipreg.lookup(src)

org = "Unknown"

if not (len(ip) < 2 or ip[2] == '-'):

org = ip[2]

55 # Get ICMP specific information, and insert

if proto == socket.IPPROTO_ICMP:

try:

icmp_data = ip_data[4*ip_hlen:]

icmp_type = ord(icmp_data[0])

60 icmp_code = ord(icmp_data[1])

cu.execute("""

insert into packets (ts, ttl, protocol, src, dst,

icmp_type, icmp_code, data, raw_packet, org) values (

65 %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

""",

(timestamp, ttl, proto, src, dst, icmp_type, \

icmp_code, PgSQL.PgBytea(icmp_data[4:]), \

PgSQL.PgBytea(data), org))

70 except:

traceback.print_exc(sys.stderr)

Get UDP specific information, and insert

elif proto == socket.IPPROTO_UDP:

75 try:

udp_data = ip_data[4*ip_hlen:]

78

srcport = socket.ntohs(struct.unpack('H', udp_data[0:2])[0])

dstport = socket.ntohs(struct.unpack('H', udp_data[2:4])[0])

length = socket.ntohs(struct.unpack('H', udp_data[4:6])[0])

80
cu.execute("""

insert into packets (ts, ttl, protocol, src, dst,

srcport, dstport, len, data, raw_packet, org) values (

%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

85 """,

(timestamp, ttl, proto, src, dst, \

srcport, dstport, length, PgSQL.PgBytea(udp_data[8:]), \

PgSQL.PgBytea(data), org))

except:

90 traceback.print_exc(sys.stderr)

Get TCP specific information, and insert

elif proto == socket.IPPROTO_TCP:

try:

95 tcp_data = ip_data[4*ip_hlen:]

srcport = socket.ntohs(struct.unpack('H', tcp_data[0:2])[0])

dstport = socket.ntohs(struct.unpack('H', tcp_data[2:4])[0])

tcp_hdr_len = (ord(tcp_data[12]) & 0xf0) >> 4

tcp_flags = ord(tcp_data[13]) & 0x3f

100
cu.execute("""

insert into packets (ts, ttl, protocol, src, dst,

srcport, dstport, tcp_flags, data, raw_packet, org) values

(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

105 """,

(timestamp, ttl, proto, src, dst, srcport, \

dstport, tcp_flags, PgSQL.PgBytea(tcp_data[4*tcp_hdr_len:]), \

PgSQL.PgBytea(data), org))

except:

110 traceback.print_exc(sys.stderr)

main() wants a filename with an input file

in libpcap format

if __name__=='__main__':

115 global cnt

p = pcap.pcapObject()

if not len(sys.argv) > 1:

print "Need filename.."

120

79

p.open_offline(sys.argv[1])

cx = PgSQL.connect(host="localhost", database="boned", user="boned")

cx.autocommit = 1

125 cu = cx.cursor()

Init ipreg

ipreg = IPreg()

130 try:

p.loop(-1, store_packet)

except KeyboardInterrupt:

p.close()

135 print '%s' % sys.exc_type

except:

p.close()

pass

C.3 report.py

1 #!/usr/bin/env python

#

report.py is part of the Aggregation Component of the

botnet detector prototype software.

5 #

Written by Morten.Knutsen@idi.ntnu.no

#

$Id: report.py,v 1.7 2005/06/11 19:49:23 mortenkn Exp $

10 import mx.DateTime

import traceback, sys

from util import compute_score

15 class ReportEngine:

def __init__(self, connection):

"""

Construct a ReportEngine.

20

80

Construct a ReportEngine, passing a python DB-API 2.0

compliant connection object.

"""

self.cx = connection

25 self.cu = self.cx.cursor()

Aggregate data pr. source IP address for a given period

def _update_period_stats(self, fr, to):

cursor = self.cx.cursor()

30
try:

self.cu.execute("""

SELECT src, org, dstport, count(id) as packets,

count(distinct dst) as ips, min(ts) as first, max(ts) as

35 last, alert_id, tba FROM packets WHERE (ts between %s and

%s) and tcp_flags=%s and (not dst='128.39.47.150' or dst='128.39.47.174')

GROUP BY src, dstport, org, alert_id, tba ORDER BY ips DESC

""",

(fr, to, 2))

40
period_data = {}

for row in self.cu.fetchall():

if not row["src"] in period_data:

45 period_data[row["src"]] = {'src': row["src"],

'packets': row["packets"],

'org': row["org"],

'alert_id': row["alert_id"],

'tba': row['tba'],

50 'first': row["first"],

'last': row["last"],

'ports': [row["dstport"]],

'ips': row["ips"]

}

55 else:

entry = period_data[row["src"]]

entry["packets"] += row["packets"]

if row["first"] < entry["first"]:

entry["first"] = row["first"]

60 if row["last"] > entry["last"]:

entry["last"] = row["last"]

if row["dstport"] not in entry["ports"]:

entry["ports"].append(row["dstport"])

entry["ips"] += row["ips"]

81

65
for src in period_data:

entry = period_data[src]

score = compute_score(entry["ips"], entry["packets"],

entry["ports"], entry["last"] - entry["first"])

70
cursor.execute("""

insert into period_data(src, org, ips, packets, first, last,

score, alert_id, tba) values (%s, %s, %s, %s, %s, %s, %s, %s, %s)

""",

75 (src, entry["org"], entry["ips"], entry["packets"],

entry["first"], entry["last"], score,

entry["alert_id"], entry["tba"]))

except:

traceback.print_exc()

80
Aggregate controller data per day

def _update_controller_stats(self, fr, to):

try:

85 #

Controller-stats

#

self.cu.execute("""

SELECT count(address) FROM controllers WHERE

90 last >= %s and first <= %s

""",

(fr, to))

tot, new, reactive = 0,0,0

95
row = self.cu.fetchone()

if row: tot = row[0]

self.cu.execute("""

100 SELECT count(address) FROM controllers WHERE

first >= %s and first <= %s and address NOT IN

(SELECT address FROM controllers WHERE last <= %s)

""",

(fr, to, fr))

105
row = self.cu.fetchone()

if row: new = row[0]

82

self.cu.execute("""

110 SELECT count(address) FROM controllers WHERE

first >= %s and first <= %s and address IN

(SELECT address FROM controllers WHERE last <= %s)

""",

(fr, to, fr))

115
row = self.cu.fetchone()

if row: reactive = row[0]

self.cu.execute("""

120 INSERT INTO controller_stats_day(day, cnt, new_cnt, reactive_cnt)

VALUES(%s, %s, %s, %s)

""",

(fr, tot, new, reactive))

125 except:

traceback.print_exc()

Aggregate activity level per org per day.

def _update_graph_stats(self, fr, to):

130
try:

self.cu.execute("""

SELECT distinct org, src, score FROM period_data WHERE

first >= %s and last <= %s

135 """,

(fr, to))

org_data = {}

140 for row in self.cu.fetchall():

if not row["org"] in org_data:

org_data[row["org"]] = {'ips': [row["src"]],

'sum': row["score"],

'new': 0,

145 }

else:

entry = org_data[row["org"]]

entry["ips"].append(row["src"])

entry["sum"] += row["score"]

150
self.cu.execute("""

SELECT src FROM ip_seen WHERE first < %s and src NOTNULL

83

""",

(fr,))

155
old_ips = {}

for row in self.cu.fetchall():

old_ips[row["src"]] = 1

160 for org in org_data:

entry = org_data[org]

for src in entry["ips"]:

if src not in old_ips:

entry["new"] += 1

165
self.cu.execute("""

INSERT INTO org_stats_day(day, org, cnt, new_cnt, avg_score)

values(%s, %s, %s, %s, %s)

""",

170 (fr, org, len(entry["ips"]), entry["new"],

float(entry["sum"])/len(entry["ips"])))

except:

175 traceback.print_exc()

Update ip_seen table with nem timestamps and IP addresses

def _update_ips_seen(self, fr, to):

try:

180 self.cu.execute("""

select min(ts) as first, max(ts) as last, src, dst from packets

where (ts between %s and %s) and tcp_flags=%s and

(not dst='128.39.47.150' or dst='129.39.47.174') group by src, dst

""",

185 (fr, to, 2))

for row in self.cu.fetchall():

(first, last, src, dst) = row

self._insert_or_update_ip_seen(first, last, src, dst)

190
except:

traceback.print_exc()

Helper method for _update_ip_seen()

195 def _insert_or_update_ip_seen(self, first, last, src, dst):

try:

84

cursor = self.cx.cursor()

cursor.execute("""

select id, first, last from ip_seen where src=%s

200 """,

(src,))

row = cursor.fetchone()

if row:

205 (id, f, l) = row

if first < f:

cursor.execute("""

update ip_seen set first=%s where id=%s

""",

210 (first, id))

elif last > l:

cursor.execute("""

update ip_seen set last=%s where id=%s

""",

215 (last, id))

else:

cursor.execute("""

insert into ip_seen (src, first, last) values (%s, %s, %s)

""",

220 (src, first, last))

cursor.execute("""

select id, first, last from ip_seen where dst=%s

""",

225 (dst,))

row = cursor.fetchone()

if row:

(id, f, l) = row

230 if first < f:

cursor.execute("""

update ip_seen set first=%s where id=%s

""",

(first, id))

235 elif last > l:

cursor.execute("""

update ip_seen set last=%s where id=%s

""",

(last, id))

240 else:

85

cursor.execute("""

insert into ip_seen (dst, first, last) values (%s, %s, %s)

""",

(dst, first, last))

245 except:

traceback.print_exc()

Unit test main()

if __name__ == '__main__':

250
from pyPgSQL import PgSQL

conn = PgSQL.connect(database="boned", host="localhost", port="8888", user="boned",

password="XXXXX")

255
conn.autocommit = 1

test = ReportEngine(conn)

260 startDate = mx.DateTime.Date(2005, 5, 10)

stopDate = mx.DateTime.Date(2005, 5, 11)

test._update_ips_seen(startDate, stopDate)

test._update_period_stats(startDate, stopDate)

test._update_graph_stats(startDate, stopDate)

265 test._update_controller_stats(startDate, stopDate)

C.4 util.py

1 #

Small utility module for use with the

botnet detector prototype software.

#

5 # Written by Morten.Knutsen@idi.ntnu.no

def compute_score(u, n, p, dt):

"""

10 Score a source IP address based on behaviour.

Score a source IP address based on bahaviour. Takes the following

arguments:

86

15 u: Number of unique botnet controllers contacted.

n: Number of TCP SYN packets sent.

p: List of destination port numbers used.

dt: Interval of time IP address was active (mx.DateTime)

20 Returns a computed score.

"""

s = 0

if u > 10: s += 10

25 else: s+= u

mins = dt.minutes

if mins > 0:

if float(n)/mins > 5000: s += 1

30
for port in p:

if port == 6667: s += 3

elif port == 1337: s += 2

elif port == 8080: s += 1

35 elif port == 80: s -= 1

elif port == 25: s -= 1

if s < 0: s = 0

40 return s

C.5 packets.sql

1 --

-- The packets table definition,

-- part of the botnet detector prototype software.

--

5 -- Written by Morten.Knutsen@idi.ntnu.no

--

drop table packets cascade;

10 create table packets(

id serial primary key,

ts timestamp,

87

ttl int2,

protocol int2,

15 src inet,

srcport int,

dst inet,

dstport int,

icmp_type int2,

20 icmp_code int2,

tcp_flags int2,

len int,

data bytea,

raw_packet bytea,

25 org text,

alert_id int

);

create index src_index on packets (src);

30 create index srcport_index on packets (srcport);

create index time_index on packets (ts);

create index dstport_index on packets (dstport);

create index dst_index on packets (dst);

create index org_index on packets (org);

35 create index proto_index on packets (protocol);

--

-- Small plpgsql-function to convert tcp_flags integer

-- to human-readable formatted string. Useful when

40 -- querying the database directly.

--

create or replace function print_tcp_flags(smallint) returns text as '

declare

retstr text;

45 flags alias for $1;

begin

retstr := ''S A R P U F'';

if not (flags & 1 = 1) then

select into retstr translate(retstr,''F'','' '');

50 end if;

if not (flags & 2 = 2) then

select into retstr translate(retstr, ''S'', '' '');

end if;

if not (flags & 4 = 4) then

55 select into retstr translate(retstr, ''R'', '' '');

end if;

88

if not (flags & 8 = 8) then

select into retstr translate(retstr, ''P'', '' '');

end if;

60 if not (flags & 16 = 16) then

select into retstr translate(retstr, ''A'', '' '');

end if;

if not (flags & 32 = 32) then

select into retstr translate(retstr, ''U'', '' '');

65 end if;

return retstr;

end;

' language 'plpgsql';

C.6 aggregated tables.sql

1 --

-- The table definitions of the aggregated tables,

-- part of the botnet detector prototype software.

--

5 -- Written by Morten.Knutsen@idi.ntnu.no

--

drop table period_data cascade;

10
create table period_data (

id serial primary key,

src inet,

packets int,

15 ips int,

first timestamp,

last timestamp,

score int,

alert_id int,

20 tba boolean

);

drop table org_stats_day cascade;

25 create table org_stats_day (

day date,

89

org text,

cnt int,

new_cnt int,

30 avg_score float,

primary key(day, org)

);

drop table ip_alerts cascade;

35
create table ip_alerts (

ip inet,

alert_id int,

tba boolean,

40 primary key(ip, alert_id)

);

drop table ip_seen cascade;

create table ip_seen (

45 id serial primary key,

src inet,

dst inet,

first timestamp,

last timestamp

50);

drop table controllers cascade;

create table controllers (

55 id serial primary key,

address inet,

first timestamp,

last timestamp

);

60
drop table controller_stats_day cascade;

create table controller_stats_day (

day date primary key,

65 cnt int,

new_cnt int,

reactive_cnt int

);

90

C.7 status org.mhtml

1 <%doc>

Component to display botnet activity for a given day.

Breaks down data on a per-organisation level, and presents

recent trend for every organisation.

5
Takes one argument, date, a date string such as:

"2005-04-09" for 9th of April 2005. If no date is given,

the current date is assumed.

</%doc>

10
<html>

<head>

<title>Daily botnet activity report</title>

<style type="text/css">

15 table { border: solid 1px; border-spacing: 0px; }

td,th { padding: 0.3em; text-align: left }

td { padding: 0.5em }

th { padding-left: 0.4em; color: white; background-color: #6355a4 }

td.hilight { background-color: #ddff88 }

20 td.bar { background-color: #ddd }

</style>

</head>

<body>

25 <h2>Daily botnet activity report - <% $from %></h2>

<p>At a glance:</p>

<% $total %> hosts seen (<% $total_new %>

30 new)

<a

href="https://stager.uninett.no/index.php?ss_db=stager&ss_tablelimit=20&ss_reportstyle=graphsetup&ss_obspoints_type=single&ss_obspoints_points_0=1186&ss_obspoints_group=0&ss_obspoints_router=0&ss_time_type=single&ss_time_period=2&ss_time_timestamp=<%$year%><%$month%><%$day%>_000000&ss_debug=0&ss_simplicity=1&ss_reporttype=02protocol&ss_transform=None&ss_indexstyle=toolbox&ss_showlogin=0&ss_overviewcols_type=auto&ss_unit=total&ss_graph_type=0&ss_graph_scale=lin&ss_graph_size=0&ss_graph_pal=std16&ss_sortby=ks_octets&ss_fieldselector=0&">Stagerdata for <% $from %>

35 <h3>Organisational breakdown</h3>

<table>

<tr>

<th>Org</th><th>#Src</th><th>#New</th><th>Avg. score</th>

40 <th style="text-align: center">Recent history</th>

<th>Org</th><th>#Src</th><th>#New</th><th>Avg. score</th>

91

<th style="text-align: center">Recent history</th>

</tr>

% my $i = 0;

45 % my $class = "foo";

% for ($i=0; $i < $#{@$most_active}; $i+=2) {

% my ($left, $right) = ($most_active->[$i], $most_active->[$i+1]);

% $class = ($class eq "foo") ? "bar" : "foo";

<tr>

50 <td class="<% $class %>">

<a href="botstatus.mhtml?date=<% $from %>&org=<% $left->[0] %>">

<% $left->[0] %></td>

<td class="<% $class %>"><% $left->[1] %></td>

<td class="<% $class %>"><% $left->[2] %></td>

55 <td class="<% $class %>" align="right"><% sprintf("%.2f", $left->[3]) %>

</td><td class="<% $class %>" align="right"><a

href="plot_org_history.mhtml?org=<% $left->[0]%>&date=

<% $from %>&full=1"><img style="border: 0" src="plot_org_history.mhtml?

org=<% $left->[0]%>&date=<% $from %>"/></td>

60
% $class = ($class eq "foo") ? "bar" : "foo";

<td class="<% $class %>">

<a href="botstatus.mhtml?date=<% $from %>&org=<% $right->[0] %>">

<% $right->[0] %></td>

65 <td class="<% $class %>"><% $right->[1] %></td>

<td class="<% $class %>"><% $right->[2] %></td>

<td class="<% $class %>" align="right"><% sprintf("%.2f", $right->[3]) %>

</td><td class="<% $class %>" align="right"><a

href="plot_org_history.mhtml?org=<% $right->[0]%>&date=<% $from %>&full=1">

70 <img style="border: 0" src="plot_org_history.mhtml?org=

<% $right->[0]%>&date=<% $from %>"/></td>

</tr>

% $class = ($class eq "foo") ? "bar" : "foo";

% }

75 </table>

</body>

</html>

80 <%args>

$date => undef

</%args>

<%init>

85

92

use Socket 'AF_INET';

use DBI;

my $from = $date;

90
if (not defined($from)) {

my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime();

$from = sprintf "%4d-%02d-%02d 00:00", $year+1900,$mon+1,$mday;

}

95
my ($year, $month, $day) = split /-/, $from;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT org, cnt, " .

100 "new_cnt, avg_score FROM org_stats_day " .

"WHERE day = ? ORDER BY cnt DESC";

my $most_active = $dbh->selectall_arrayref($sql, undef, $from);

105 my $total = 0;

my $total_new = 0;

for my $row (@$most_active) {

$total += $row->[1];

110 $total_new += $row->[2]

}

</%init>

C.8 ip detail.mhtml

1 <%doc>

Component to display botnet activity for a specific source

IP address on a given day. Shows traffic amounts and number

of controllers contacted, as well as port numbers.

5
Also presents historical port distribution and score history

for the IP address in question.

Takes two arguments:

10
date: a date string such as:

93

"2005-04-09" for 9th of April 2005.

ip: the source IP address as a string.

15 </%doc>

<html>

<head>

<title>Daily botnet activity report - IP detail</title>

20 <style type="text/css">

table { border: solid 1px; border-spacing: 0px; }

td,th { padding: 0.3em; text-align: left }

th { background-color: #bb8855 }

td.hilight { background-color: #ddff88 }

25 td.bar { background-color: #ddd }

</style>

</head>

<body>

30 <h2>Botnet activity report - IP detail - <% $ip %>

% my @h = gethostbyaddr(pack('C4',split('\.', $ip)),2);

% if (@h) {

[<% $h[0] %>]

% }

35 </h2>

<h3>Daily - <% $date %></h3>

<table>

<tr>

40 <th>Dstport</th><th>#Dst<th>TCP SYN Count</th>

<th>First</th><th>Last</th>

</tr>

% my $class = "foo";

% for my $entry (@$detail_data) {

45 % $class = ($class eq "foo") ? "bar" : "foo";

<tr>

<td class="<% $class %>"><% $entry->[1] %></td>

<td class="<% $class %>"><% $entry->[0] %></td>

<td class="<% $class %>"><% $entry->[2] %></td>

50 <td class="<% $class %>"><% $entry->[3] %></td>

<td class="<% $class %>"><% $entry->[4] %></td>

</tr>

% }

</table>

55

94

<h3>Historical data</h3>

<table style="border: none"><tr><td>

Average score: <% $avg_scr %>

60 First seen: <% $historical_data[0] %>

Last seen: <% $historical_data[1] %>

<td>

<td><a href="plot_score_ip.mhtml?ip=<% $ip %>&stop=<% $date %>&avg=<%

65 $avg_scr %>&full=1">

<img style="border: none" src="plot_score_ip.mhtml?ip=<% $ip %>&stop=<%

$date %>&avg=<% $avg_scr %>"/>

</td>

70 <td><img style="border: none" src="plot_pie_chart.mhtml?ip=<% $ip

%>&whole=1"/>

</td>

</tr></table>

75 %# my $pingres = `ping -w 2 $ip`;

%# my $p = 1;

%# if ($pingres =~ /(\d+) received/g) {

%# $p = 0 if $1 == 0;

%# }

80
%#<h3>Traceroute</h3>

%# if (!$p) {

%# <p>Host seems

%# down</p>

85 %# }

%# else {

%#<pre>

%#<% `traceroute -w 2 $ip` %>

%#</pre>

90 %# }

%#<h3>Whois-info:</h3>

%#<pre>

%# $whois->lookup('Domain' => $ip);

95 %#<% $whois->response() %>

%#</pre>

</body>

</html>

95

100
<%args>

$date

$ip

</%args>

105
<%init>

use Socket 'AF_INET';

use DBI;

110 use Net::XWhois;

my $from = $date;

my ($year, $month, $day) = split /-/, $from;

115 my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT count(distinct dst) as ips, dstport, count(id)," .

"min(ts), max(ts) FROM packets " .

"WHERE (ts between ? and (? + reltime('1 day'))) and " .

120 "src=? GROUP BY dstport ORDER BY ips DESC";

my $detail_data = $dbh->selectall_arrayref($sql, undef, $from, $from, $ip);

$sql = "SELECT min(first), max(last), avg(score) FROM period_data ".

125 "WHERE src=?";

my @historical_data = $dbh->selectrow_array($sql, undef, $ip);

my $avg_scr = sprintf("%.2f", $historical_data[2]);

130 #my $whois = new Net::XWhois('Server' => 'whois.ripe.net');

</%init>

C.9 botstatus.mhtml

1 <%doc>

Component to display botnet activity on a specific day.

Activity is broken down per source IP address, and the

top 25 scored IP addresses are listed.

5
Takes two arguments:

96

date: a date string such as:

"2005-04-09" for 9th of April 2005. If not given,

10 the current date is used.

org: An optional organisation can be given to limit the

list of IP addresses to those of one organisation only.

</%doc>

15
<html>

<head>

<title>Daily botnet activity report</title>

<style type="text/css">

20 table { border: solid 1px; border-spacing: 0px; }

td,th { padding: 0.3em; text-align: left }

th { background-color: #bb8855 }

td.hilight { background-color: #ddff88 }

td.bar { background-color: #ddd }

25 </style>

</head>

<body>

<h2>Daily botnet activity report - <% $from %><% defined($org) ? " [

30 $org]" : "" %></h2>

<p>At a glance:</p>

<% $#{@$most_active} + 1 %> hosts seen (<% $#new_ips +1 %>

35 new)

Average score: <% sprintf "%.2f", $stats{'avg_score'} %>

<a

href="https://stager.uninett.no/index.php?ss_db=stager&ss_tablelimit=20&ss_reportstyle=graphsetup&ss_obspoints_type=single&ss_obspoints_points_0=1186&ss_obspoints_group=0&ss_obspoints_router=0&ss_time_type=single&ss_time_period=2&ss_time_timestamp=<%$year%><%$month%><%$day%>_000000&ss_debug=0&ss_simplicity=1&ss_reporttype=02protocol&ss_transform=None&ss_indexstyle=toolbox&ss_showlogin=0&ss_overviewcols_type=auto&ss_unit=total&ss_graph_type=0&ss_graph_scale=lin&ss_graph_size=0&ss_graph_pal=std16&ss_sortby=ks_octets&ss_fieldselector=0&">Stagerdata for <% $from %>

40
<h3>Top 25 high-risk hosts</h3>

<table>

<tr>

45 <th>Org</th><th>IP</th><th>Hostname</th><th>TCP SYN Count</th>

<th>#Dst</th><th>First</th><th>Last</th><th>Score</th>

<th>Status</th><th>First seen</th>

</tr>

% my $i = 0;

50 % my $class = "foo";

% for my $entry (@$most_active) {

97

% last if $i == 24;

% $class = ($class eq "foo") ? "bar" : "foo";

<tr>

55 <td class="<% $class %>" style="text-align: right">

% if ($hilight{$entry->[0]}) {

NEW

% }

<% $entry->[1] %></td>

60 <td class="<% $class %>"><a href="ip_detail.mhtml?date=<% $from

%>&ip=<% $entry->[0] %>"><% $entry->[0] %></td>

% my @h = gethostbyaddr(pack('C4',split('\.',$entry->[0])),2);

% my $hn = "";

% $hn = $h[0] if (@h);

65 <td class="<% $class %>"><% $hn %></td>

<td class="<% $class %>" align="right"><% $entry->[2] %></td>

<td class="<% $class %>" align="right"><% $entry->[3] %></td>

<td class="<% $class %>" align="right"><% $entry->[4] %></td>

<td class="<% $class %>" align="right"><% $entry->[5] %></td>

70
% my $color = undef;

% if ($entry->[6] > 3) {

% $color = $scorecolors{$entry->[6]};

% }

75 <td class="<% $class %>" style="width: 9em; text-align: left;

<% $color ? " color: $color; font-weight: bold;\"" : "\"" %>>

<% '|' x $entry->[6] . " (" . $entry->[6] . ")" %>

</td>

% my $alert_status = "Not reported";

80 % $alert_status = "[7] .

% "\">Alert #" . $entry->[7] . "" if $entry->[7];

<td class="<% $class %>"><% $alert_status %></td>

<td class="<% $class %>"><% $old{$entry->[0]} %></td>

</tr>

85 % $i++;

% }

</table>

<h3>Top 25 new IPs</h3>

90
<table>

<tr>

<th>Org</th><th>IP</th><th>Hostname</th><th>TCP SYN Count</th>

<th>#Dst</th><th>Score</th><th>Status</th>

95 </tr>

98

% $i = 0;

% for my $entry (@new_ips) {

% last if $i == 24;

% $class = ($class eq "foo") ? "bar" : "foo";

100 <tr>

<td class="<% $class %>"><% $entry->[1] %></td>

<td class="<% $class %>"><% $entry->[0] %></td>

% my @h = gethostbyaddr(pack('C4',split('\.',$entry->[0])),2);

% my $hn = "";

105 % $hn = $h[0] if (@h);

<td class="<% $class %>"><% $hn %></td>

<td class="<% $class %>" align="right"><% $entry->[2] %></td>

<td class="<% $class %>" align="right"><% $entry->[3] %></td>

<td class="<% $class %>" align="right"><% $entry->[6] %></td>

110 % my $alert_status = "Not reported";

% $alert_status = "[7] .

% "\">Alert #" . $entry->[7] . "" if $entry->[7];

<td class="<% $class %>"><% $alert_status %></td>

<td class="<% $class %>"><% $old{$entry->[0]} %></td>

115 </tr>

% $i++;

% }

</table>

120 </body>

</html>

<%args>

125 $date => undef,

$org => undef

</%args>

<%init>

130
use Socket 'AF_INET';

use DBI;

my $from = $date;

135
if (not defined($from)) {

my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime();

$from = sprintf "%4d-%02d-%02d 00:00", $year+1900,$mon+1,$mday;

}

99

140
my ($year, $month, $day) = split /-/, $from;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT src, org, packets, ips," .

145 "first, last, score FROM period_data " .

"WHERE first >= ? and last <= (? + reltime('1 day')) ";

if (defined($org)) {

$sql .= " and org=? ";

150 }

$sql .= "ORDER BY score DESC";

my $most_active;

155
if (defined($org)) {

$most_active = $dbh->selectall_arrayref($sql, undef, $from, $from, $org);

} else {

$most_active = $dbh->selectall_arrayref($sql, undef, $from, $from);

160 }

$sql = "SELECT src, first FROM ip_seen WHERE first < ? and src NOTNULL";

my $old_ips = $dbh->selectall_arrayref($sql, undef, $from);

165
my %old = ();

my @new_ips = ();

my %hilight = ();

my %stats = ();

170
for my $entry (@$old_ips) {

$old{$entry->[0]} = $entry->[1];

}

175 $sql = "SELECT alert_id " .

"FROM ip_alerts " .

"WHERE ip = ?";

my $sum = 0.0;

180 for my $entry (@$most_active) {

$sum += $entry->[6];

my ($ai) = $dbh->selectrow_array($sql, undef, $entry->[0]);

push (@$entry, $ai);

100

if (not ($old{$entry->[0]})) {

185 push @new_ips, $entry;

$hilight{$entry->[0]}++;

}

}

190
$stats{'avg_score'} = $sum/($#{@$most_active} + 1);

my %scorecolors = (

'4' => '#ff9999',

195 '5' => '#ff8888',

'6' => '#ff7777',

'7' => '#ff6666',

'8' => '#ff5555',

'9' => '#ff4444',

200 '10' => '#ff3333',

'11' => '#f22',

'12' => '#f11',

'13' => '#f00',

'14' => '#f00',

205 '15' => '#f00',

);

</%init>

C.10 alert.mhtml

1 <%doc>

Component to display all IP addresses reported in a given

alert. The time of alert and the e-mail address the alert

was sent to is also given.

5
Takes one argument:

id: The unique identifier of the alert.

</%doc>

10
<html>

<head>

<title>Daily botnet activity report - Alert detail</title>

<style type="text/css">

15 table { border: solid 1px; border-spacing: 0px; }

101

td,th { padding: 0.3em; text-align: left }

th { background-color: #bb8855 }

td.hilight { background-color: #ddff88 }

td.bar { background-color: #ddd }

20 </style>

</head>

<body>

<h2>Botnet activity report - Alert detail - #<% $id %></h2>

25

Sent <% $ts %> to <% $st %>.

<% $#{@$alert_data} + 1 %> addresses reported in this alert.

30
<table>

<tr>

<th>IP address</th><th>Hostname<th>Score History</th>

</tr>

35 % my $class = "foo";

% for my $entry (@$alert_data) {

% my @h = gethostbyaddr(pack('C4',split('\.', $entry->[0])),2);

% $class = ($class eq "foo") ? "bar" : "foo";

40 <tr>

<td class="<% $class %>"><% $entry->[0] %></td>

<td class="<% $class %>"><% @h ? $h[0] : "" %></td>

<td class="<% $class %>"><a href="plot_score_ip.mhtml?ip=<%

$entry->[0] %>&full=1">

45 <img style="border: none" src="plot_score_ip.mhtml?ip=<%

$entry->[0] %>"/>

</td>

</tr>

50 % }

</table>

</body>

</html>

55
<%args>

$id

</%args>

102

60 <%init>

use DBI;

#my $from = $date;

65
#my ($year, $month, $day) = split /-/, $from;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT ip " .

70 "FROM ip_alerts " .

"WHERE alert_id = ? ";

my $alert_data = $dbh->selectall_arrayref($sql, undef, $id);

75 $sql = "SELECT sent_to, ts " .

"FROM alerts " .

"WHERE id = ? ";

my ($st, $ts) = $dbh->selectrow_array($sql, undef, $id);

80
</%init>

C.11 plot org history.mhtml

1 <%doc>

Component to plot the number of active and new source IP addresses for

a given organisation, from a given day, and one week back in time. The

output is a 200x70 pixel png image.

5
An optional argument, full, can be set to get a full size png image,

with full labels on the axis.

</%doc>

10 <%args>

$date

$org

$full => 0

</%args>

15
<%init>

103

use DBI;

20 my $from = $date;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT day, cnt, new_cnt " .

25 "FROM org_stats_day " .

"WHERE day >= (? - reltime('7 days')) and day <= ?" .

"and org = ? ORDER BY day";

my $most_active = $dbh->selectall_arrayref($sql, undef, $from, $from, $org);

30
my $graph;

if ($full) {

use GD::Graph::linespoints;

$graph = GD::Graph::linespoints->new(800,500);

35 $graph->set(

y_min_value => 0,

skip_undef => 1,

x_label_skip => 7,

) or die $graph->error;

40 } else {

use GD::Graph::lines;

$graph = GD::Graph::lines->new(200,70);

$graph->set(

y_label_skip => 2,

45 x_label_skip => 7,

y_min_value => 0,

y_max_value => 35,

skip_undef => 1,

) or die $graph->error;

50 }

my $xvalues = [];

my $yvalues = [];

55 my $y2values = [];

for my $row (@$most_active) {

push(@$xvalues, $row->[0]);

push(@$yvalues, $row->[1]);

60 push(@$y2values, $row->[2]);

}

104

use Data::Dumper;

65 my @data = ($xvalues, $yvalues, $y2values);

my $gd = $graph->plot(\@data) or die $graph->error;

$r->content_type('image/png');

$r->send_http_header;

70 binmode(STDOUT);

print $gd->png();

</%init>

C.12 plot score ip.mhtml

1 <%doc>

Component to plot the score of a given source IP addresses, from a

given day, and backwards. The output is a 200x70 pixel png image.

5 An optional argument, full, can be set to get a full size png image,

with full labels on the axis.

An optional argument, avg, can be set to get a the average score

overlaid on the plot.

10 </%doc>

<%args>

$stop => 'now'

$ip

15 $full => 0

$avg => 0

</%args>

<%init>

20
use DBI;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

25 my $sql = "SELECT first::date, score " .

"FROM period_data " .

"WHERE last <= (? + reltime('1 day'))" .

"and src = ? order by first";

105

30 my $most_active = $dbh->selectall_arrayref($sql, undef, $stop, $ip);

my $graph;

if ($full) {

use GD::Graph::linespoints;

35 $graph = GD::Graph::linespoints->new(800,500);

$graph->set(

y_min_value => -2,

y_max_value => 15,

skip_undef => 1,

40) or die $graph->error;

} else {

use GD::Graph::lines;

$graph = GD::Graph::lines->new(200,70);

$graph->set(

45 y_label_skip => 1,

x_label_skip => 7,

y_min_value => -2,

y_max_value => 15,

skip_undef => 1,

50) or die $graph->error;

}

my $xvalues = [];

55 my $yvalues = [];

my $y2values = [];

for my $row (@$most_active) {

push(@$xvalues, $row->[0]);

60 push(@$yvalues, $row->[1]);

if ($avg) {

push(@$y2values, $avg);

}

}

65
my @data = ($xvalues, $yvalues, $y2values);

my $gd = $graph->plot(\@data) or die $graph->error;

$r->content_type('image/png');

70 $r->send_http_header;

binmode(STDOUT);

print $gd->png();

106

</%init>

C.13 plot controllers history.mhtml

1 <%doc>

Component to plot the number of active controllers, from a

given day, and backwards. The output is a 200x70 pixel png image.

5 An optional argument, full, can be set to get a full size png image,

with full labels on the axis.

An optional argument, new, can be set to get a plot of the new

controllers instead.

10 </%doc>

<%args>

$date

$new => 0

15 $full => 0

</%args>

<%init>

20 use DBI;

my $from = $date;

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

25 my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT day, cnt, new_cnt, reactive_cnt " .

"FROM controller_stats_day " .

"WHERE day >= (? - reltime('7 days')) and day <= ?" .

" ORDER BY day";

30
my $most_active = $dbh->selectall_arrayref($sql, undef, $from, $from);

my $graph;

my $graph2;

35 if ($full) {

use GD::Graph::linespoints;

$graph = GD::Graph::linespoints->new(800,500);

$graph2 = GD::Graph::linespoints->new(800,500);

107

$graph->set(

40 y_min_value => 0,

skip_undef => 1,

) or die $graph->error;

$graph2->set(

y_min_value => 0,

45 skip_undef => 1,

) or die $graph2->error;

} else {

use GD::Graph::lines;

$graph = GD::Graph::lines->new(200,70);

50 $graph2 = GD::Graph::lines->new(200,70);

$graph->set(

y_label_skip => 2,

x_label_skip => 7,

y_min_value => 0,

55 y_max_value => 850,

skip_undef => 1,

) or die $graph->error;

$graph2->set(

y_label_skip => 2,

60 x_label_skip => 7,

y_min_value => 0,

y_max_value => 50,

skip_undef => 1,

) or die $graph2->error;

65 }

my $xvalues = [];

my $yvalues = [];

70 my $y2values = [];

my $y3values = [];

for my $row (@$most_active) {

push(@$xvalues, $row->[0]);

75 push(@$yvalues, $row->[1]);

push(@$y2values, $row->[2]);

push(@$y3values, $row->[3]);

}

80 use Data::Dumper;

my @data = ($xvalues, $yvalues);

108

my @data2 = ($xvalues, $y2values, $y3values);

my $gd = $graph->plot(\@data) or die $graph->error;

85 my $gd2 = $graph2->plot(\@data2) or die $graph2->error;

$r->content_type('image/png');

$r->send_http_header;

binmode(STDOUT);

unless ($new) {

90 print $gd->png();

} else {

print $gd2->png();

}

</%init>

C.14 plot pie chart.mhtml

1 <%doc>

Component to plot the used destination port numbers for a given

source IP address, from one point (from) in time to another (to).

The output is a 200x70 pixel png image.

5
An optional argument, full, can be set to get a full size png image,

with full labels on the axis.

An optional argument, whole, can be set to get the graph for the

10 entire period of activity for the source IP address.

</%doc>

<%args>

$ip

15 $from => undef

$to => undef

$whole => 0

$full => 0

</%args>

20
<%init>

use DBI;

use GD::Graph::pie;

25
$to = $from if (not $to);

my $most_active;

109

my $dsn = 'dbi:Pg:dbname=boned;host=127.0.0.1;port=8888';

30 my $dbh = DBI->connect($dsn, 'boned', 'XXXXX') or die $DBI::errstr;

my $sql = "SELECT dstport, count(distinct dst) " .

"FROM packets ";

if ($whole) {

35 $sql .= "WHERE src = ? and tcp_flags=? GROUP BY dstport";

$most_active = $dbh->selectall_arrayref($sql, undef, $ip, 2);

}

else {

40 if ($to eq $from) {

$sql .= "WHERE ts >= ? and ts <= ? + reltime('1 day') ";

} else {

$sql .= "WHERE (ts between ? and ?) ";

}

45
$sql .= "and src = ? and tcp_flags = ? GROUP BY dstport";

DBI->trace(2);

$most_active = $dbh->selectall_arrayref($sql, undef, $from, $to,

$ip, 2);

50 }

my $graph;

if ($full) {

$graph = GD::Graph::pie->new(800,500);

55 } else {

$graph = GD::Graph::pie->new(75,70);

$graph->set('3d' => 0) or die $graph->error;

}

60 my $xvalues = [];

my $yvalues = [];

for my $row (@$most_active) {

push(@$xvalues, $row->[0]);

65 push(@$yvalues, $row->[1]);

}

my @data = ($xvalues, $yvalues);

my $gd = $graph->plot(\@data) or die $graph->error;

70
$r->content_type('image/png');

110

$r->send_http_header;

binmode(STDOUT);

print $gd->png();

75 </%init>

111

	Introduction
	Motivation
	Purpose
	Goal
	Approach
	Limitations

	Overview
	TCP/IP
	IRC
	Border Gateway Protocol
	Dynamic DNS and DHCP
	Denial of Service
	Malware
	Worms
	Viruses
	Trojans
	Blended Threats

	Botnets
	Infection and Propagation
	Command and Control
	Purpose and Use

	Service Provider Environment
	Related Work

	Methodology and Approach
	Problem
	Approach

	The Prototype System
	Rerouting Botnet Traffic
	Configuring the Sinkhole
	Hardware
	Software
	Setup

	System Overview
	The Storage Component
	Packet Layer
	Top Layer

	The Logging Component
	Design
	Implementation

	The Aggregation Component
	Design
	Implementation

	The Response Component
	Design
	Implementation

	The Presentation Component
	Design
	Implementation

	Observations and Results
	Environment
	Traffic Characteristics
	Scope and Activity
	An Incident Response Test Case
	University A
	University B
	Summary

	The Prototype System
	Storage
	Performance
	User Interface
	Interoperability

	Summary and Further Work
	Bibliography
	BGP Configuration
	Configuration Scripts
	iptables-drop-eth1.sh
	logrotate.conf

	Code Listing for the Prototype System
	alert.py
	sniff.py
	report.py
	util.py
	packets.sql
	aggregated tables.sql
	status org.mhtml
	ip detail.mhtml
	botstatus.mhtml
	alert.mhtml
	plot org history.mhtml
	plot score ip.mhtml
	plot controllers history.mhtml
	plot pie chart.mhtml

