
Abstract

This thesis presents a framework for representing and reasoning with temporal
data in the TrollCreek CBR-system. Supplementing TrollCreek with this ability
will aid in prediction tasks, that is: Foreseeing what will occur in a new problem
situation based on comparisons with stored situations.

The representation is based on embedding one or several time lines within
a case. The reasoning mechanism abstracts these time lines into one, and com-
pares this abstracted time line with other abstracted time lines in the case-base.
In this thesis we have implemented a simple non-knowledge-intensive abstrac-
tion scheme and used sequence comparison methods for the comparison of time
lines.

The thesis also contains an example of the framework in use. The example
is of a proof-of-concept type, and does not involve a real-world scenario.

i

Acknowledgements

I would like to thank my supervisor Agnar Aamodt for his help during during
the writing of this thesis. Thanks also go out to Frode Sørmo for helping in
figuring out how the TrollCreek-code is structured.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Goals . 1
1.2 Background and motivation . 1
1.3 Methods of investigation . 2
1.4 Structure of the thesis . 2

2 CBR and TrollCreek 3
2.1 Case-Based Reasoning . 3

2.1.1 The CBR-cycle . 3
2.2 TrollCreek . 5

2.2.1 Case matching . 7
2.2.2 Comparators . 9

3 Related work 10
3.1 Ceaseless Case-Based Reasoning 11

3.1.1 Discussion . 12
3.2 TempoExpress . 13

3.2.1 Discussion . 13
3.3 Temporal framework for CBR*Tools 14

3.3.1 Broadway . 15
3.3.2 Disucussion . 16

3.4 The ICONS-project . 16
3.4.1 TeCoMed . 17
3.4.2 Discussion . 17

3.5 Historical Case-Based Reasoning 17
3.5.1 Discussion . 19

3.6 Temporal reasoning in TrollCreek/JavaCreek 19
3.6.1 Allen’s framework . 19
3.6.2 Implementation of framework in TrollCreek 20
3.6.3 Temporal reasoning . 20
3.6.4 Discussion . 21

3.7 Relations to our framework . 22

iii

CONTENTS iv

4 Dataset selection 24
4.1 Datasets from the Internet . 24

4.1.1 Bach chorales . 25
4.1.2 Data from diabetes patients 25

4.2 Local data sources . 26
4.2.1 Progam for helseinformatikk 26
4.2.2 Web-logging data . 26
4.2.3 DNA microarray experiments 27

4.3 Generation of datasets . 27

5 Representation 28
5.1 Components . 29

5.1.1 Temporal Case . 30
5.1.2 Time lines . 30
5.1.3 Event . 32

5.2 Ontology . 33

6 Reasoning 35
6.1 Non-temporal reasoning . 35
6.2 Temporal reasoning . 35
6.3 Abstraction task . 36

6.3.1 Temporal abstraction . 37
6.3.2 Implementation of the abstraction task 42

6.4 Time line comparison task . 43
6.4.1 Sequence comparison . 43
6.4.2 Implementation of the time line comparison task 47

6.5 Event comparison task . 50
6.6 Summary . 50

7 Example 52
7.1 The domain . 52
7.2 Example of a case . 54
7.3 Case-generator . 55
7.4 Case matching . 56

8 Discussion 61
8.1 Conclusions . 61
8.2 Theoretical and practical issues 61

8.2.1 The abstraction task . 61
8.2.2 Structure of the case-base 62
8.2.3 Scalability . 62

8.3 Further work . 63

A Code overview 64
A.1 Changes to existing code . 64
A.2 New classes . 65

A.2.1 Representation . 65
A.2.2 Reasoning . 66
A.2.3 GUI-related . 67
A.2.4 Other . 68

CONTENTS v

Bibliography 69

Chapter 1

Introduction

1.1 Goals

The primary goal of this thesis is to develop a method for reasoning with tempo-
ral data within the Case-Based Reasoning (CBR) system TrollCreek. In more
detail this means developing a framework for representing temporal data and a
method of analyzing and comparing sets (cases) of temporal data.

The primary goal is composed of the following subgoals:

• Develop a method for reasoning with temporal data using CBR by drawing
on related work done at NTNU and internationally.

• Implement the core-components of the method in the current version Troll-
Creek.

• Test and evaluate the method.

1.2 Background and motivation

Case-based reasoning is one of the main areas of research at the Artificial Intel-
ligence and Learning Group (AIL) here at NTNU. Much work is done with the
CBR-system TrollCreek, developed at NTNU and built on the Creek architec-
ture developed by Agnar Aamodt [Aam91].

Traditionally CBR-systems have not utilized temporal data, and TrollCreek
has not been an exception. What is contained in a case is viewed as a snapshot
of the current situation, and this is sufficient for many purposes.

One area of research where the TrollCreek system is used is within the pre-
diction of unwanted events in oil drilling. Such a prediction task will benefit
if the underlying system has the ability to represent and reason with temporal
data.

This thesis is not the first endeavour done at AIL to use temporal data in
CBR. Martha Dørum Jære developed a framework for this in her master thesis
[Jær01]. This framework was implemented in JavaCreek, which was a prede-
cessor to TrollCreek. The framework was carried over to the current version of
TrollCreek in a project done during the autumn of 2004 [Bre04].

1

CHAPTER 1. INTRODUCTION 2

The work done in this thesis will build on the experiences made from imple-
menting the temporal framework developed by Jære in TrollCreek, but it will
not extend this particular framework. The work will also draw on ideas from
related research internationally.

1.3 Methods of investigation

The main focus of this thesis is on developing a framework for temporal reason-
ing within TrollCreek. The framework should not just exist in theory, and we
will implement crucial parts of it in the current version of TrollCreek to show
that the ideas presented can be implemented in practice. To illustrate our ideas
in practice we need a test domain. We will not do a performance analysis of the
framework within the test domain, but will instead concentrate on describing
how the framework functions.

1.4 Structure of the thesis

The thesis will start off with a chapter that gives a short description of CBR in
general, and a more thorough description of the TrollCreek system. Chapter 3
contains descriptions of other work done within temporal CBR, and which has
served as sources of ideas for our framework. Chapter 4 documents the work
done in selecting a domain and dataset to test our framework. In Chapter 5
we begin describing the temporal framework. We start with the representation,
and in the next chapter we move on to the reasoning mechanism. In Chap-
ter 7 we give an example of the framework in use. The thesis is wrapped up
with a chapter that discusses issues that have arisen in the development of the
framework and some pointers to further work.

Appendix A contains information on what has been changed and added to
the existing jCreek-code. This is meant as a help to anyone that needs to figure
out what has been done to code. In addition to the appendix the JavaDoc may
also be helpful for this purpose.

Chapter 2

CBR and TrollCreek

In this chapter we will give a short overview of CBR in general and the Troll-
Creek system in particular.

2.1 Case-Based Reasoning

The main idea behind CBR is to compare a new problem with previous prob-
lems where we have found the solution, and that we in addition have stored in
what is called a case-base. An unsolved problem is called an unsolved case, and
solved problems are called solved cases. The case-base thereby becomes the “in-
telligence ” of the system. The reasoning is based on the assumption that cases
that in some way are judged to be similar to the new problem have solutions
that may be applied to the new problem too. The cases that are most similar
to the new problem are retrieved from the case-base and used to construct a
solution. This kind of reasoning is apparent in much of human problem solving:

• A physician may after having examined a new patient recall a previous
patient with similar symptoms, and he may then apply that patient’s
diagnosis to the new one.

• Just replace physician with car mechanic and patient with car in the above
example and you have a new scenario where humans use case-based rea-
soning.

By reusing solutions to earlier problems we might expect that CBR can be
based on shallow knowledge, and as a consequence of this require less knowledge
engineering than other AI approaches [Cun98]. Even though CBR-systems often
are applied in domains where the domain knowledge is incomplete, there have
been done many efforts to incorporate what domain knowledge there is into
CBR-systems. TrollCreek, as we shall see, is an example of a system that will
use domain knowledge if it is present.

2.1.1 The CBR-cycle

There are variations from system to system regarding how cases are retrieved,
how the solutions are constructed and so on. A general framework for describing

3

CHAPTER 2. CBR AND TROLLCREEK 4

CBR-systems have been developed by Aamodt and Plaza [AP94]. The frame-
work can be viewed as a cycle, and a graphic overview is given in Figure 2.1.

Figure 2.1: The CBR-cycle (the figure is taken from [AP94])

The CBR-process is decomposed into four subtasks:
Retrieve. Cases that are similar to the input case are retrieved from the

case-base. A method that computes the degree of similarity between two cases
is needed under this step. It is this step that has received the most attention
in the history of CBR, and it shows in the number of different methods used to
retrieve similar cases.

Reuse. The solutions of the retrieved cases may need some modifications to
apply to the input case. The task of the Reuse-step is to modify the solutions
of the retrieved cases so that they apply to the new problem.

Revise. Here the solution is evaluated. Did the solution work? If not; what
went wrong? If the solution did not work steps may be taken to repair it.

Retain. Here the decision is made whether the new case, or something from
it, should be added to the case-base. It is under this step the system has the
ability to learn from experience. It does this by retaining information gathered
from solving a new problem.

These are the four general steps in the CBR-process. As mentioned the
actual implementation is different from system to system, and all steps may not
be included. For instance, a CBR-system may just consist of the Retrieve-step
and none of the rest. This system would have a static case-base and return cases
that are similar to the input case, but it would not try to adapt the solutions

CHAPTER 2. CBR AND TROLLCREEK 5

of the retrieved cases.

2.2 TrollCreek

We now turn from CBR in general to TrollCreek. Since TrollCreek is the product
of a long process that has produced several CBR-systems, we will to avoid
possible confusion start off by presenting some definitions:

• Creek: An architecture for knowledge intensive problem solving and sus-
tained learning. This architecture was developed in Agnar Aamodt’s PhD-
thesis [Aam91].

• CreekL: The Creek representation language.

• LispCreek: The first system built on the Creek architecture. This system
implemented the whole CBR-cycle, and was written in LISP.

• JavaCreek: An early Java-implementation of the Creek architecture.

• TrollCreek: A CBR-system implemented in Java that builds on the Creek
architecture. This is the system we will be working with in this thesis.

• jCreek: Term used to refer to the code that TrollCreek is built on.

The Creek architecture which TrollCreek is built on is characterized by
a strong coupling between cases and domain knowledge, and is targeted at
open and weak theory domains [Aam04]. The Creek architecture is knowledge-
intensive, which means that the case matching, and reasoning in general, uses
domain knowledge. As a consequence the similarity assessment between cases
is based on more than just looking for directly matching features. How Creek
relates to less knowledge-intensive systems can be seen in Figure 2.2.

Figure 2.2: Knowledge-intensiveness dimension (adapted from [Aam04])

The strong coupling between cases and domain knowledge can be seen in the
way they are modelled. Both are modelled in a single semantic network, called a
knowledge model. This increases the knowledge-intensiveness of the cases since
their features are nodes in the semantic network. The nodes in the network are
concepts in the knowledge model, and the links between the nodes correspond
to relations between concepts.

CHAPTER 2. CBR AND TROLLCREEK 6

Concepts may be general or prototypical concepts, cases, heuristic rules and
so on. An excerpt from a knowledge model is seen in Figure 2.3. In addition
to viewing a concept as a node in a semantic network, it can also be seen as a
frame.

Figure 2.3: Excerpt from a knowledge model. The figure is taken from the
TrollCreek knowledge model editor

In addition to a framework for representing knowledge the Creek architec-
ture also specifies inference methods that operate on the representation. This
includes an inheritance method for properties of concepts which uses plausible
inheritance [Sør00]. For instance are all properties belonging a concept inher-
ited by another concept that has a has sublass-relationship with the former.
Other inheritance rules may be specied by the user.

Creek also comes with a top-level ontology that further knowledge modelling
needs to adhere to. For instance are cases intended to be subclasses/instances
of the predefined concept Case, new relation types to be subclasses/instances
of the Relation concept, and so on.

The relations in the semantic network are weighted. This means that they
have a value between 0 and 1 (inclusive at both ends) associated with them.
This value is called the explanation strength of the relation. How it is interpreted
depends on the type of relation. Some relation types actually do not have a clear
definition of what the value means. The weights are used in the case matching
as we shall see.

TrollCreek also comes with a knowledge model editor. This editor provides
GUI-elements for manipulating and viewing the contents of a knowledge model.
The GUI-elements are disassociated from the reasoning elements. What this
means is that the actual code that does the reasoning, and knowledge repre-

CHAPTER 2. CBR AND TROLLCREEK 7

sentation for that matter, is not dependent on the GUI-elements to function.
Instead the GUI-elements provide an user-friendly interface to the underlying
reasoning mechanisms.

2.2.1 Case matching

A case is as everything else represented as a node in the semantic network. It is
described by its findings, which are the concepts that the case has has finding-
relations to. Figure 2.4 shows how the results from a case matching is displayed
in the knowledge model editor.

Figure 2.4: Case matching

When a new unsolved case is added to the knowledge model and a case
matching is run, TrollCreek tries to find similar cases by matching the findings
of the new case with those of the solved cases in the case-base. This process
consists of three steps and can be described using the activate-explain-focus

CHAPTER 2. CBR AND TROLLCREEK 8

cycle [Aam93]. This cycle is actually a generic “explanation engine” that has
been specialized for each of the tasks in the CBR-cycle (see Figure 2.5).

Figure 2.5: Relationship between the CBR-cycle and explanation engine

The steps operate as follows:

• Activate. Activates relevant parts of the semantic network.

• Explain. Uses the activated part from the previous step to generate ex-
planations between concepts.

• Focus. Focuses in on and selects a conclusion that conforms with the goal.

We will now elaborate on how each of the steps are implemented in Troll-
Creek (we will concentrate on the Retrieve-step of the CBR-cycle).

The Activate step uses spreading activation along taxonomic, causal, associ-
ational and application-specific relations to establish a context for the problem.
In practice this means that TrollCreek searches for directly matching findings
between the input case and a case in the case-base: If the input case has the
finding green and one of the cases in the case-base also has this finding, it counts
as a direct match. How the strength is computed is shown in Equation 2.1.

sim(CIN , CRE) =

∑n
i=1

∑m
j=1 sim(fi, fj) ∗ relevance factorfj∑m

i=1 relevance factorfj
(2.1)

CIN and CRE are the input and a retrieved case respectively. For direct
matches, which are the only ones found in the Activate step, the function
sim(fi, fj) returns 1. The relevance factor is value that is a combination of
the predictive strength and importance of a feature for a stored case. We will
not go into what predictive strength and importance are, just suffice to say that
these values are represented as explanation strengths of the has finding relations
that attach findings to a case.

Cases with activation strengths above a given threshold are carried over
to the Explain step. Here TrollCreek tries to match findings that were left
unmatched in the Activation step. Again this is done by using spreading acti-
vation. Here the sim(fi, fj) function is more elaborate. The value returned by
it is determined by the length and strength of the explanation paths between
the two features that are compared. Finally the Focus step selects those cases
that are most similar to the input case.

CHAPTER 2. CBR AND TROLLCREEK 9

In addition to the aiding the matching process through explanation paths,
the domain knowledge may also provide a “backup” problem solving capability
if no cases similar to the new problem are found.

The research related to the development of TrollCreek has so far concen-
trated on the Retrieve-step of the CBR-cycle. The Reuse-step is still in an early
stage, and Retain and Revise have not been implemented yet.

2.2.2 Comparators

When two concepts (nodes in the semantic network) are to be compared, Troll-
Creek needs to know how to compare them. A comparison between two numbers
is done in a different manner than a comparison between two cases. Some con-
cepts cannot be compared either, for instance a number and a case.

To know how to compare concepts, the nodes that represent them in the
network must have comparators attached to them. A comparator is just as
everything else represented as a node in the knowledge model. Comparators are
subclasses of the Comparator concept that is defined in the top level ontology in
Creek. Comparators encapsulate a Java class that does the actual comparison.
Only nodes (concepts) that have the same comparator can be compared. It is
necessary to know this when we later describe how the reasoning mechanism in
this thesis is implemented.

A comparator for a concept is specified using the has comparator relation.
In Figure 2.6 we see the comparator specification for the concepts Symbol and
Case.

Figure 2.6: Comparator-structure in TrollCreek

Chapter 3

Related work

In this chapter we will present work others have done within temporal CBR.
This includes the earlier work done in JavaCreek/TrollCreek. We will go into
more detail regarding the systems that have provided us with ideas for our
framework, than with those that have not influenced us. The former will each
receive a section, while we will do away the latter right now:

Branting and Hastings’ CARMA system [KLBL97]. CARMA is a range-
land grasshopper management advising system. This means that it comes with
recommendations as to the best way to battle grasshoppers that consume the
forage. CARMA uses both case-based and model-based reasoning. A solved
case is a “grasshopper situation” that an expert has analysed and provided
with a solution (i.e. apply pesticides at a certain period). A new case lacks the
expert advice part. The task of the case-based reasoning is, of course, to select
the best matching cases in the case-base. The date is one of the attributes that
is stored within a case and is used in the retrieval, along with other features.
Any differences between the best matching input case and the best matching
case are “explained away” using model-based adaptation (this would be placed
under the Reuse-step in the CBR-cycle). This adaptation of the best matching
case involves explaining how the date differences of two cases affects the pre-
dicted forage consumption. This is what can be called the temporal reasoning
part of the system.

Bjarne Hansen’s WIND-1 system [HR01]. WIND-1 has its origin in Hansen’s
master thesis [Han00]. The task is to predict the weather. An input case is a
series of weather observations, and this sequence is matched against those stored
in the case-base. The cases have fixed length, 24 hours to be more specific. The
temporal span is divided into three parts: the 12 recent hours, the current hour
and the 12 future hours. A new problem (case) is missing the future part, and
it is this the system attempts to construct.

Ram and Santamaŕıa’s Self-Improving Navigation System (SINS) [RS97].
The system deals with robot navigation, more specifically: Controlling the en-
gines of a small mobile robot by examining the readings from its sensory inputs.
The SINS system addresses some specific issues. The representation is contin-
uous, which means that a case contains an array of variables that record the
sensory inputs of the robot over a period of time. The variables are all numeric.
The SINS system is also meant to run in real-time. As the robot moves around
the environment sensory inputs are matched continuously against the cases in

10

CHAPTER 3. RELATED WORK 11

the case-base. This calls for an efficient way of retrieving and matching cases.

3.1 Ceaseless Case-Based Reasoning

A short description of the Ceaseless CBR-architecture is given in [MP04]. For a
full description consult Francisco J. Mart́ın’s PhD-thesis [Mar04], which is the
basis for the article.

The Ceaseless paradigm has some features that sets it apart from most
traditional CBR-systems, in particular:

• Its input is an unsegmented sequence of events that is constantly evolving.

• The events in the sequence can stem from multiple sources.

• Several cases can occur at the same time.

To test the framework Mart́ın applies Ceaseless CBR to the task of intrusion
detection in a computer network. This domain offers the possibility of testing the
special features of Ceaseless CBR. The input to the system is an ever-evolving
sequence of alerts coming from multiple computers in a network.

A case in the case-base describes a specific kind of intrusion attempt. More
specifically a sequence of events, which if present in the log may point to an
attack in progress. Cases are described in the form of what is called actionable
trees.

Figure 3.1: Actionable trees

A key point is to detect an attack in an early stage so that the network
administrator has time to do something about it. On the other hand if the
system produces too many false alerts it loses its value.

Even though Ceaseless CBR differs from traditional CBR-systems on several
points, it is still implemented in accordance with the CBR-cycle. Indeed, all the
steps in the CBR-cycle have been implemented.

CHAPTER 3. RELATED WORK 12

Retrieve. As mentioned the input is an evolving sequence of alerts. The
systems segments this stream as it arrives. The segmentation is done according
to a window model. It can for instance select all alerts the occurred between
12.00 and 12.10. The sequence of alerts is continually compared with the cases
in the case-base. The Retrieve-step also keeps a collection of case activations
that represent the current situation. A case activation is a hypothesis that says
how likely it is that a case has occurred.

To obtain the case activations the window of alerts is analyzed. The cases in
the case-base are aligned to the sequence of alerts using edit distance measures.
The first sequence is a sequence of alerts that is a case, and the other sequence
is the alerts in the selected window. A good match leads to a high activation
value for the case. The activation value is also dependent on the rarity of the
alerts that make up a case. Rare alerts lead to higher activation values.

One has to remember that many cases share alerts, and some cases may
be subcases of others. This means that there may be several different case
activations for a single case, and some alerts may be involved in several case
activations. The output of the Retrieve-step is a set of case activations that
serve as input to the Reuse-step.

Reuse. The Reuse-step searches for the combination of case activations that
best explains the most recently received alerts. A combination of case activa-
tions that explain all alerts is called, logically enough, an explanation. This
search for the best explanation is quite complicated, and involves the use of a
belief function to determine which case activations are susceptible of being used
to prioritize the corresponding alerts.

Due to the fact the input is always evolving, a case may be spread over
several windows. To account for this the case activations must a stored as the
window slides over the alert stream. Case activations must also be deleted as
the window moves forward. If they were not the system would start generating
many false alarms after a while. The strength of the case activations decrease
as the window moves forward, if not any new evidence backing up the case
activation is found.

Revise. Here the best explanation of the alerts is presented to the user. The
user may at this stage revise the combination of case activations that is being
proposed as the best explanation.

Retain. After the solution has been revised by the user the Retain-step
updates the case-base.

3.1.1 Discussion

The Ceaseless CBR-model differs from other systems in that the input is a
constantly evolving sequence of events, not a clearly defined unsolved case. This
is a central concept in Ceaseless CBR, and affects much of the design of the
framework. We will in this thesis work with the traditional idea where the
input is in the form of a case with clearly defined borders. Should this situation
be represented in Ceaseless CBR, it would mean we had a static input sequence.
The framework would not be utilized fully, but it would still function.

We can also point out the fact the actionable trees (that represent the cases)
are very concrete. It is not clear how the system would hold up if the cases in
the case-base contained noise.

CHAPTER 3. RELATED WORK 13

3.2 TempoExpress

TempoExpress is a CBR system that performs tempo transformations on melodies.
This may at first not sound like a task where CBR could be of use, but the pro-
cess of altering the tempo involves more than just speeding up or slowing down
the tune. When a musician performs the same musical piece at different tempos
there will be changes in other aspects of musical expression too, for instance ad-
dition or deletion of notes, changes in timing and so on. TempoExpress aims to
include such changes when altering the tempo. To stop any potential objections
against the rationale that a musician adds or deletes notes when performing a
piece, we will point out that TempoExpress has been used on jazz-melodies, not
classical works. In jazz such alterations are an essential part of the performance.

The most up to date description of TempoExpress can be found in [GAdM04].
An earlier version is described in [AGdM03], and it is interesting to see what
has been changed between that one and the current, which is the one we will
be focusing on.

A new case is a performance of a piece of music that is to undergo a tempo
transformation. In addition to the actual recording of the performance, a MIDI-
encoding of the performance and a desired tempo is needed. These three ele-
ments form the basis of a case. The case-base contains stored performances,
and these are used as “guidelines” for how to transform the input case.

Music obviously includes a temporal dimension, and in retrieving cases from
the case-base and adapting them to the problem at hand TempoExpress per-
forms a form of temporal reasoning.

In the Retrieve step the cases are first filtered on the tempo value. Only cases
that have a tempo that lie sufficiently close to the input case are retrieved, this
set of cases then go through a second filtering process. Here an edit distance
approach is used to give a measure of a similarity between the input case and
each of cases retrieved in the first step. In the current version of TempoExpress
the edit distance calculations are not done directly on notes of the score in
the Retrieve-step, as opposed to the approach in [AGdM03], but instead on
an abstraction of the score. The abstraction is based on what is called the
“Implication/Realization” model, which is a theory of perception and cognition
of melodies.

In the Reuse step a performance of the input case at the desired tempo is
constructed. This is achieved by using constructive adaptation [PA02].

3.2.1 Discussion

The temporal aspect is not as explicitly treated in TempoExpress as in the other
systems. The focus is on melodies, not on how to represent or reason with time
in a more general fashion. Since melodies have length some temporal framework
is needed, and the ideas incorporated in this framework can be generalized and
applied to other domains. We have for instance seen that Ceaseless CBR uses
sequence comparison methods as TempoExpress does, and we will see below that
the abstraction according to the I/R-model has some similarities with what is
done in ICONS, which is described later.

CHAPTER 3. RELATED WORK 14

3.3 Temporal framework for CBR*Tools

Michel Jaczynski has developed a framework for including temporal informa-
tion in CBR. This framework is described in [Jac97], and is implemented in
CBR*Tools, which is a software library for CBR-tasks developed by Jaczynski
and Brigitte Trousse.

The framework uses time series to represent temporal information. One or
several related time series can be stored in what is called a record. The record
together with its context constitutes a case. The record’s context contains
additional data not expressed in the time-series, i.e. a patient’s name if we
imagine the framework being applied in a medical domain.

Time series can be of two types: sampled and event-based. In sampled time
series there is equal spacing between two neighbouring points, while event-based
have an arbitrary spaces between points. The values represented at the points
can be numerical or symbolic. How the comparison actually is done is left to
the user.

A domain expert may analyze the time series in a case and specify elementary
behaviours. These basically point out something important in the record, and
are grounded in reference dates. The elementary behaviours are used in the case
comparison. An example of a case record is shown in Figure 3.2.

Figure 3.2: A case record

Cases can be of three types:

• Abstract cases. The cases were we are most certain are “correct.“ They
come from domain knowledge. Jaczynski also uses the term domain scripts
when describing abstract cases.

• Concrete cases. These are what we normally think of when we talk about
cases. They are concrete situations that have been recorded.

• Potential cases. These cases do not have a concrete representation. They
are represented by templates, and the system searches through concrete

CHAPTER 3. RELATED WORK 15

cases trying to find sections that match the templates. If such a section
is found a concrete case is created.

When retrieving similar cases the system first looks for matching abstract
cases, then concrete cases and finally if no matching case is found it uses po-
tential case templates to search for behaviour in the input case that fulfils the
template. If such behaviour is found a new concrete case based on the input
case is created.

The article includes an example of the framework in use dealing with plant
nutrition: The point is to adjust the amount of nutrition mixture given to a
plant based on a history of several parameters (i.e. maximum day temperature).
We are not told if the plant in question was satisfied with the rationing of the
nutrition mixture.

3.3.1 Broadway

A larger example that uses the framework is given by Jaczynski and Trousse
in [JT99]. The paper describes the Broadway system, which is a browsing
advisor for the Internet. A browsing advisor gives the user advise on what
pages he might want to visit. In Broadway this advice is mainly based on past
navigations of users.

The temporal framework is used to record the order of pages visited. Actu-
ally four different parameters that evolve over time are recorded as part of the
navigation:

1. The URL of the document.

2. Content description in the form of keywords in the title.

3. The user’s evaluation of the document.

4. The time the user spent viewing the document. This is measured relatively
to the document’s size.

Here we see that the framework’s ability to include multiple time series is
utilized. To make cases a situational template (potential case), searches through
the recorded navigations and creates concrete cases as it finds behaviours that
satisfy the template. A concrete case references a navigation at a specific mo-
ment. This moment represents the division between past and future, and the
future pages of a concrete case that the user has evaluated as relevant or highly
relevant, constitute the set of advised pages for that case.

The retrieval process generally follows those strategies as laid out in [Jac97].
Similarity measures between the different parameters in a navigation need to
be implemented for this domain specifically, as would be expected since the
framework left such similarity measurements up to the user.

The original framework paper only focused on the Retrieve-step, but Broad-
way also has a Reuse-step implemented. In the Reuse-step the k most reusable
pages gathered from the Retrieve-step are selected and ordered according to a
metric called reusability. The reusability value for a page is based on several
features of a page. To name some: The number of cases that advise the page,
the best similarity of the cases that advise the page and the number of successful
accesses to the page.

CHAPTER 3. RELATED WORK 16

3.3.2 Disucussion

The paper presents both a general framework and its implementation into an
existing CBR-system. It is not as closely connected to a specific domain as most
of the other surveyed systems are.

Domain knowledge is used to create abstract cases, potential cases and el-
ementary behaviours within concrete cases. The domain knowledge is used in
quite another way than in the other systems surveyed. It does seem like a bit
of manual effort is needed to “groom” the cases so that the system will produce
good results.

The process of identifying elementary behaviours bears some resemblance
to a temporal abstraction task. Each elementary behaviour can be viewed as
an abstraction task whose goal it is to identify the situation stored in it. This
may not sound to clear at this stage, but we will come back to the subject of
temporal abstraction later, and then the similarities between abstractions and
elementary behaviours may become clearer.

3.4 The ICONS-project

The ICONS system is developed by Rainer Schmidt and colleagues and is de-
scribed in [SHPG96]. The goal is to predict kidney failure for patients in an
intensive care unit. It attempts to do this by analyzing data collected from the
patient, comparing this data with that of other patients in the case-base, and
finally retrieving those cases that are most similar.

The data collected from the patient comes from a monitoring system (NI-
MON), which supplies 13 measured and 33 calculated parameters relating to
the renal function. Based on these parameters a state describing the kidney
function is calculated (i.e. reduced kidney function). In other words the param-
eters are being abstracted into a single state that describes the kidney function
for that. A chain of such states for a patient constitutes a case.

By abstracting all of the parameters into a single state, the reasoning be-
comes much easier. The system now only has to look at how one parameter
evolves from one day to the next.

To compare cases they use what they call trend descriptors. They use four
descriptors, and each one is made by domain experts. So what is exactly is a
trend descriptor? It says something about how the trend evolves. Two of the
descriptors used in the system look like this:

• T1: This is just the state at the current moment.

• T2: This looks recursively back in the case from the current state trying
to find a continuous trend.

Cases that have similar trend descriptors are judged to be similar. The trend
descriptors are made on the basis of what domain experts look for when they
analyse the data. This means that the trend descriptors are domain dependent.
An example of a case and trend descriptors is shown in Figure 3.3.

To speed up the retrieval the cases are stored in a tree structure (reminiscent
of a suffix tree), where each node is the value of some trend descriptor. We will
not go into any more details about this here.

CHAPTER 3. RELATED WORK 17

Figure 3.3: A case and its trend descriptors

Before we round off our description of this system we will answer an im-
portant question: What is the current moment in an old case? A case has a
maximum length of ten days. Seven days are treated as a history and the re-
maining days as a forecast. This means that the current moment can be one of
three days in an old case.

3.4.1 TeCoMed

The team behind ICONS has developed another CBR-system that is worth
mentioning here; the TeCoMed project which is described in [SG02]. Here the
goal is to compute early warnings against influenza waves. The case-based
reasoning is done in the same manner as in ICONS, so we will not go into the
details of this system.

3.4.2 Discussion

Temporal abstraction is central in ICONS and TeCoMed. The systems depend
on the fact that the contemporaneous parameter values under consideration are
abstracted into one state. The abstraction and case matching are actually quite
separate. The matching mechanism could be used without the abstraction if
the original data only consisted of a single time line.

The ability of the framework to function in more than one domain is proved
by the fact that it has been implemented in two projects.

3.5 Historical Case-Based Reasoning

Jixin Ma and Brian Knight have developed a framework temporal CBR which
they call “Historical Case-Based Reasoning” [MK03]. The framework is grounded
in a many-sorted reified logic, and builds on a time theory previously developed
by Ma and Knight [MK94]. The framework supports both time points and in-
tervals. Time points have zero duration, while intervals have a duration that
is represented by a non-negative real number. Points and intervals are related

CHAPTER 3. RELATED WORK 18

to other points and intervals by relations, of which there are 30 different types.
Inspection of the set of relations shows that the framework is related to that
developed by James F. Allen [All83], which we will return to later. The set of
relations used in both frameworks are similar, but while Allen only deals with
intervals, and hence the relations only connect intervals with intervals, Ma and
Knight deal with intervals and points. This means that their set of relations
can be classified into four groups:

• Equal, Before, After. Relate points to points.

• Before, After, Meets, Met by, Started by, Contains, Finished by. Relate
points to intervals.

• Before, After, Meets, Met by, Started by, Contains, Finished by. Relate
intervals to points.

• Equal, Before, After, Meets, Met by, Overlaps, Overlapped by, Starts,
Started by, During, Contains, Finishes, Finished by. Relate intervals to
intervals. This is by the way the set of relations that Allen uses.

To describe what happens and endures at different times, the term fluent is
used. A fluent denotes something that holds true over a period of time. Fluents
are not directly connected to points and intervals. Zero or more fluents are
attached to what is called an elemental case, and this elemental case is in turn
connected with time elements.

What is usually thought of as a case is called a case history in this framework.
A case history consists of:

• A set of predicates (in the logic sense) that defines which elemental cases
that hold at different time elements.

• A number of time elements; points and intervals in other words.

• A set of “meets” relations that tells which time elements that meet each
other. All of the 30 relations that can hold between points and intervals
can be expressed in some form using only the meets relation, so to make
things simpler this is the only relation used in the paper.

• A set of durations that tells how long of some the time elements last.

A graphical example of a case history is shown in Figure 3.4.
Those are the elements of the representational part, now we turn to the

reasoning. The aim is to give a similarity measure between two case histories.
This similarity measure consists of two parts: A non-temporal similarity degree
and a temporal similarity degree.

The non-temporal similarity degree is based on elemental case matching.
The matching is done by finding the pairing of elemental cases from the two
histories that gives a maximum score. This basically means that if two elemental
cases share many fluents they get a high score, otherwise a low score.

The temporal part is to be done by using conventional graph similarity
measurement methods. Such methods can be used since a case history can be
viewed as a graph.

CHAPTER 3. RELATED WORK 19

Figure 3.4: Graphical case history

3.5.1 Discussion

The framework does not seem to have been implemented in any real world
system yet, and it seems that a number of questions must be resolved before it
will be. For instance it is not clear what graph similarity metric should be used.

It seems that the framework does not aim to be knowledge intensive. The
non-temporal matching scheme just looks at the presence or absence of fluents
without going into more depth, and the temporal matching scheme will probably
follow a similar strategy.

The framework is similar to the one previously developed in JavaCreek in
that the representation can be viewed as a graph.

3.6 Temporal reasoning in TrollCreek/JavaCreek

As mentioned earlier Martha Dørum Jære implemented a temporal framework in
JavaCreek in her master thesis [Jær01]. A shorter description of the framework
can be found in [JAS02].

The representation of temporal data builds directly on the framework pre-
sented by James F. Allen in [All83], and you will notice that the framework
developed by Jære has some similarities with Ma and Knight’s.

3.6.1 Allen’s framework

The basic temporal element in Allen’s framework is the interval. An interval
has some length, but the length is not specified. In other words: We only know
that an interval has some length, but not if it lasted one minute, one day or one
year.

Intervals are connected to each other through relationships. There are 13
relations in all, and this is because of the simple reason that there are 13 possible
ways an interval may be related to another interval. The resulting structure of
intervals and relationships is a graph/network. A simple network is shown in
Figure 3.5.

A key point in Allen’s theory is that several relationships can be defined
between two intervals. This means that we are not certain which of the inter-

CHAPTER 3. RELATED WORK 20

Figure 3.5: A simple example showing Allen’s framework

vals that hold. This is referred to as a disjunction of relationships. If we had
complete temporal knowledge about the situation an interval would just have
one relationship with each of the other intervals. This does not mean that we
have to specify a relationship from one interval to all the others manually when
we add a new interval to the network. The theory also comes with an inference
mechanism that infers possible relationships between intervals by traversing the
network.

It will be clear that if all intervals have one or more relationships with the
other intervals in the network it will become cluttered after a while. This will
also bog down the inference mechanism. To make the network less cluttered
Allen proposes the use of what he calls reference intervals. A reference interval
groups together clusters of intervals. The cluster of intervals grouped together
under the reference interval is related to the other intervals in the network only
via the reference interval.

3.6.2 Implementation of framework in TrollCreek

Not everything in Allen’s framework was carried over to JavaCreek/TrollCreek.
For instance was the possibility of having reference intervals left out, but much
of the rest was implemented. This includes the concept of disjunctions of re-
lations between intervals, which poses a problem when it comes to using the
framework for reasoning. The representation is actually some steps ahead of
the reasoning in that the reasoning mechanism does not handle disjunctions,
but the representation still allows them, more on this below.

A temporal case can have findings attached to it, as normal cases, and
intervals. It is the presence of intervals that separate the temporal cases from
the “normal” cases.

The intervals can be related to each other by using the 13 relations from
Allen’s framework. In addition to these relationships an interval has findings
attached to it. An interval can in some respects be viewed as a sub-case to the
overarching temporal case.

3.6.3 Temporal reasoning

The reasoning focuses on predicting unwanted events. To aid in this two special
states are defined: the alert state and the alarm state. A retrieved case triggers

CHAPTER 3. RELATED WORK 21

an alert if a matching past experience indicates an upcoming unwanted event.
An alarm is triggered when a seemingly unavoidable event is about to happen.
In practice the states are represented as markers at specific intervals in cases
in the case-base, and an alarm is sounded if they are found during the case
matching.

The actual case matching is done by what is called the dynamic ordering
algorithm. This algorithm computes a temporal similarity degree between two
cases by “moving” the input case along cases in the case-base, more specifically:

1. Find the first interval in the input case (IC) and the case it is to be
compared with (CC). These intervals are called intervalIC and intervalCC
respectively.

2. Check intervalIC and intervalCC for matching or explainable findings.

3. If a match is found under the previous step, the temporal path strength
is updated.

4. Check getSameTimeIntervals for new information and special situations.
If there are special situations then perform some action.

5. Get the next interval from CC and IC using getNextInterval.

6. Unless getNextInterval is empty go to step 2.

7. Return temporal path strength.

Two methods are used by the algorithm. The method getNextInterval re-
trieves the interval that is closest to the current one in the future. The method
getSameTimeIntervals retrieves the intervals that share time points with the
current one.

Apart from returning a temporal similarity degree we see that the algorithm
takes care of the alert and alarm states under point 4. Closer inspection of
the algorithm reveals that it makes an implicit assumption that we have only
one path through the network of intervals. This is not necessarily so. Allen’s
framework lets us specify that “A before B” can be as possible as “B before A,”
within the same temporal network. How such situations should be handled is
left unanswered.

A real-world domain was implemented using the framework. The domain was
that of predicting unwanted events in oil drilling. More specifically: Predicting
a condition known as stuck pipe. Consult [JAS02] for an overview of how this
implementation was done.

3.6.4 Discussion

Allen’s framework allows the expression of very complex situations, but this
comes at a price. The price is that the framework becomes harder to use in the
reasoning process. There is also the question of whether the type of uncertainty
Allen’s framework offers is the most useful for most CBR purposes. If we are
working with time stamped data, which seems to be the norm for the systems
we have surveyed, we are not really interested in being able to tell whether A
came before B, or if it was the other way around.

CHAPTER 3. RELATED WORK 22

The temporal reasoning work done in JavaCreek stands out from the other
systems in that it exclusively uses qualitative data, not quantitative. This allows
for expression of uncertainty since we do not need to know when an interval
started or how long it lasted. This is something that is a direct consequence of
using Allen’s framework, since it does not incorporate such data.

3.7 Relations to our framework

What lessons can we draw from these systems when we are now going to develop
our own temporal framework?

Most of the systems have a very tight connection to their domain, and it
seems that transferring the systems to another domain range from easy to im-
possible. Our goal is to develop a general framework that will be applicable to
a number of domains. The two frameworks that articulate their domain inde-
pendence most clearly of the ones we surveyed, is the one developed by Ma and
Knight and the one by Jaczynski.

Ma and Knight’s framework has a feature that it will share with ours: The
representation can be visualized as a semantic network. Data is represented in
a semantic network in TrollCreek, so we do not have much choice. There is of
course the question of how much of the temporal data that should be represented
explicitly in the semantic network. Do we want the display all the elements in
the model like Ma and Knight does, and Jære for the matter? Or do we want
to make some sort of abstraction? I.e. letting some nodes embed complex data
objects? We could define time line objects in the code, and then display the
time lines as concepts in the knowledge model, while not displaying explicitly
all the time points a time line is made up of.

It is not clear how this kind of embedding will fit into the Creek-architecture,
and we will not explore this topic here. We will go with the idea of including all
the elements in our temporal representation explicitly in the knowledge model.

This means that the representation will have, superficially at least, simi-
larities to the frameworks developed by Ma and Knight and Jære. These two
representations are both influenced by Allen’s framework for temporal reason-
ing. Since usage of Allen’s framework in TrollCreek thereby already has been
investigated, we will try to find a different way of representing temporal data.
As a digression we can mention that Schmidt and colleagues have voiced objec-
tions against using Allen’s framework in multiparametric course analysis [SG01].
They base this sentiment on the discussion by Elpida T. Keravnou in [Ker95].
The further description of how we want our representation to be is in Chapter
5.

Since TrollCreek is a knowledge-intensive system we want the temporal rea-
soning to make use of relevant domain knowledge is such is present. Do any of
the systems in this chapter use domain knowledge to enhance their reasoning?
CARMA, WIND-1, Ceaseless-CBR, TempoExpress, ICONS, TecoMed, Jaczyn-
ski’s framework and Jære’s framework all use domain knowledge in some sort or
another. However, this domain knowledge is often so firmly connected with the
reasoning mechanisms that it will be difficult to replace it with that of another
domain. I.e. the model used to adapt cases in CARMA. Of course the general
idea of combining model-based and case-based reasoning can be applied across
a number of domains. However, we would like the domain knowledge used to

CHAPTER 3. RELATED WORK 23

be easily replaced.
The way to achieve this is to define a general framework for representing

temporal domain knowledge in the knowledge-model, and making the reasoning
mechanism use this knowledge. Now some questions pop up: What knowledge
can we expect to have, and how can we utilize it? It is from here the discussion
in Chapter 6 starts off.

Chapter 4

Dataset selection

In order to be able to test the temporal framework we wanted to find a dataset
that could be used as an example domain.

Before we discuss the pros and cons of the datasets we considered, we will
answer the question: Why not just use the one employed by Jære in her master
thesis? The reason is that a dataset was not really used. The thesis included
two cases that were used in an illustration of how the framework and reasoning
worked. It seems that the oil companies are not too willing to give out the kind
of information that the cases are made up of. We therefore chose at the start
not to use that domain.

Not just any dataset will do. We would like the dataset, and the adjoining
domain, to meet the following criteria:

1. The dataset needs to include a temporal dimension.

2. The dataset should not just be a time series that follows the evolution of
a single parameter.

3. The dataset must be able to be divided into several cases.

4. There should be some domain knowledge available, but a domain where
there is complete domain knowledge is not interesting since a case-base
would then be superfluous.

5. Due to time constraints the domain should not be too complex.

4.1 Datasets from the Internet

The Internet is a natural place to start looking for datasets. Finding examples of
time series consisting of one parameter value is easy. However, we need to build
a case-base, so we need several related time series. This reduces the selection,
and it is further reduced when we add the requirement that the time series
should follow several parameters.

Amongst other things we explored the archives available from the UCI Ma-
chine Learning Repository [BM98]. Most of the datasets there did not include
temporal data and were intended for use in classification tasks. The archive
contained two datasets we deemed worthy of further exploration:

24

CHAPTER 4. DATASET SELECTION 25

4.1.1 Bach chorales

This dataset is registered under the name Bach Chorales (time-series) Database.
The dataset contained the soprano line of 100 chorales, in other words a single
line of notes. The dataset had previously been used in computer aided gen-
eration of music. CBR has been used in making music [Per98], and also in
performance of music [GAdM04][AGdM03] [TW03], so it should be possible to
come up with a scenario.

One possibility is to create continuations on small sequences of notes based
on an existing case-base of musical works and some domain knowledge, for
instance which notes that are most suited to be played over a certain chord.
This can be viewed as a kind of prediction task.

Music can in general fulfil the first four points on our list of criteria for
selection. The problems come when we reach the final point. How to compare
two scores/cases? How to predict a continuation? What domain knowledge
should be included? These are serious obstacles, especially if you have little
prior musical knowledge. So the decision was made that this domain was too
complex for our purpose.

As a digression we can mention that Bach turns up in prediction tasks else-
where too. In a “prediction contest” participants were given different datasets
and asked to predict the continuation of them [WG93]. One dataset contained
an encoding of an unfinished fugue by Bach. The participants were not told
anything about the datasets, so to them it was just collections of numbers. Not
to all though, some musically inclined persons recognized the Bach-dataset as
a score.

None of the participants used anything resembling case-based reasoning.
How could they when they were only given a single dataset from each category
and not even told where it came from? The methods employed included neural
nets, Markov models, curve fitting and such.

4.1.2 Data from diabetes patients

This dataset bears the name Diabetes Data. It was originally prepared for the
1994 AAAI Spring Symposium on Artificial Intelligence in Medicine. It contains
data recorded from 70 diabetes patients over a period ranging from weeks to
months. The data contains information about the patients’ diet, glucose lev-
els, insulin administration, amount of exercise done and other factors that are
relevant to the treatment of the illness.

The original idea behind the dataset was to see how AI-methods could aid in
the management of patients with diabetes. This included analyzing the data to
find critical episodes and generating guidelines for each patient on how to best
administer the treatment, which mainly consists of diet considerations, exercise
and insulin injections.

Developing a system that warns the patient that it is about time to make
some kind of intervention (i.e. insulin injection) based on an analysis of his
recent doings and/or comparison with other patient records, could be something
that would allow us to use temporal CBR.

If such a system would have any practical value is left unanswered, since we
do not have much medical knowledge. This lack of knowledge is a hindrance, and
especially in such a complex domain as management of diabetes patients. In the

CHAPTER 4. DATASET SELECTION 26

end the decision was made to abandon the domain because of this complexity.

4.2 Local data sources

We also made an effort to get hold of datasets from local sources. Three possi-
bilities were considered.

4.2.1 Progam for helseinformatikk

Medical oriented data from “Program for helseinformatikk” (“Program for health
informatics”) here at NTNU, which amongst other things is involved in the de-
velopment of Electronic Patient Journals (EPJ). Part of this work involves the
transformation of existing patient data, in whatever form it may be, into a form
that can be used by the EPJ. A consequence of this is that they have access to
large quantities of medical data.

Clearly the amount of data was not a problem, but the question still re-
mained whether the data could be used to construct a test domain that suited
our purposes. A possible scenario that was discussed regarded the use of CBR
to predict conflicting medication.

In this scenario a set of prescriptions given a single patient over a period of
time would constitute a case. This needs to be supplemented with a doctor’s
evaluation of some the cases, i.e.: This patient did not experience any adverse
effects, but this patient did, and so on. A large case-base where we do not know
the outcome of any of the cases is of little use. In addition to this, domain
knowledge in the form of already known adverse effects between certain types
of drugs could be included.

However, there were also some obstacles involved in using medical data.
Much of the data contained sensitive information, and measures to make the
data anonymous are needed prior to them being used in research. This process
also involves clearing the use of the data with the proper authorities. All this
takes time, which is a scarce resource.

In addition to this the scenario might quickly become more complex than is
desired, thereby violating our fifth requirement. This led to us not pursuing the
use of medical data any further.

4.2.2 Web-logging data

An opportunity to use web-logging data from a search engine that specializes
in finding calls for papers for conferences arose while we were searching for a
suitable dataset.

The web-logging data contained the movements of the users that visited the
site. Included here are the queries the users made. A possible task could be to
suggest pages the user might find interesting by comparing the movements of
the user so far with movements of other users. A case would then be a sequence
of pages visited, with eventual other information that was collected about the
user.

This resembles how the Broadway system works [JT99]. However, looking at
that work amongst other things made it clear that the task was rather complex.
Again the decision was made not to pursue the idea any further.

CHAPTER 4. DATASET SELECTION 27

4.2.3 DNA microarray experiments

Using data from DNA microarray experiments was also considered. The task
could be to predict the outcome of an experiment by comparing it with previous
experiments. The experiments are carried out in several stages, thereby provid-
ing what can be viewed as a series of events. So the input experiment would be
an unfinished experiment, and the output a prediction of the remaining stages.

This task of prediction the remaining stages did not seem to have any prac-
tical value, and it was unsure if it would be possible to make a good prediction
based on earlier experiments. This coupled with the fact the DNA analysis is
a complex domain, led us to abandon the thought of using data from DNA
microarray experiments.

4.3 Generation of datasets

In the end it was decided that we should make our own datasets. The reason
for this is that modelling one of the domains we investigated would require us
to spend much time on understanding the intricacies of that domain, and that
would take time away from the main goal of this thesis: Developing a general
framework for representing and reasoning with temporal data in TrollCreek.

Our test domain should of course resemble a real-world situation, and it
should fully utilize the framework we will develop. We will not do a perfor-
mance analysis on our test domain. The example will be of a proof-of-concept
type where we show how temporal data is represented and how the reasoning
mechanism functions.

The test domain and example are described in Chapter 7.

Chapter 5

Representation

In this chapter we will describe how the temporal data is represented. The
representation does not build, as previously mentioned, on that developed in
JavaCreek by Jære. In fact the two representations differ from each other to
such a degree that something expressible in one may not be so in the other. We
will start off by going into some of the design decisions.

Except for Ma and Knight’s framework and the work done earlier in JavaCreek,
the systems we surveyed use some sort of sequential time line as the basis for
their representation. Time lines are certainly easier to reason with than a net of
intervals related to each other. It was a goal to make the representation simpler
than that previously implemented in JavaCreek, and this made it natural to
adopt the idea of using time lines.

Jaczynski’s framework is the only one of the time lines based systems we
surveyed that allowed multiple time lines to be stored within a case; one time
line for each parameter considered. This ability had some appeal to us, since
temporal data from the oil drilling domain is in the form of several concurrent
time lines. We are not using this domain here, but nonetheless because of the
research done with TrollCreek within oil drilling (see Chapter 3.6.3) it would
be nice to have a representation that allowed multiple time lines within a case.
This would make it easier to encode data from the oil drilling domain in eventual
future use.

Another major difference from the previous representation is the lack of the
ability to represent uncertainty. Representing and reasoning with uncertainty
is a complex task, so we decided to drop it altogether and instead focus on
other aspects of the representation. Hopefully this will not be a big loss. As
mentioned in Chapter 3.6.4 it is also uncertain whether the kind of uncertainty
offered by Allen’s framework is useful for most domains where CBR is applied.
There are of course other ways to represent uncertainty that might be more
useful, i.e. having fuzzy borders for the elements in the time lines. However,
this line of thought has not been pursued. We say that eventual uncertainty
has been handled at a meta-level, in other words; before the data was encoded.

We decided to use quantitative temporal data in our representation; this also
differs from the previous framework in JavaCreek which uses qualitative data.
This use of quantitative data sets it apart from the other systems which uses
quantitative data in some form or other. The rationale for using quantitative
data is that most data can be time-stamped, and important information can be

28

CHAPTER 5. REPRESENTATION 29

lost when going from a quantitative to a qualitative representation.
We hope that the restrictions we have put on the data above do not preclude

it from being applicable across numerous domains. To sum up we have the
following restrictions:

• The data is time-stamped.

• The temporal data can be expressed as events sorted into one or more
time lines.

• We have absolute temporal knowledge. This means that we have no un-
certainty in the temporal data.

Our representation will use a semantic network as its basis since this is the
way knowledge is modelled in TrollCreek.

5.1 Components

The event is the smallest temporal element in our representation. One sequence
of related events constitute a time line. In turn one or more time lines are
attached to a temporal case. An example of a time line is shown in Figure 5.1.

Figure 5.1: Example of a time line. Here we use relative time stamps, and it is
time stamps of this type we will use in our example too. What a relative time
stamp is will be explained in due time.

We will now go into details about the different components of the represen-
tation. The description follows a top-down approach; we start at the case level
and then move on to the different elements that make up a temporal case.

CHAPTER 5. REPRESENTATION 30

5.1.1 Temporal Case

A temporal case has non-temporal findings and time lines attached to it. The
non-temporal findings are attached to the case node with has finding-relationships,
just as with regular cases.

These non-temporal findings can be thought of as providing the context of
the case, see [Jac97]. Non-temporal findings provides a way for the cases to
contain information that is not expressed in the time lines.

How a temporal case appears in the knowledge model is shown in Figure 5.2.
This particular case has two non-temporal findings and one time line attached
to it.

Figure 5.2: Example of a temporal case as it is represented in the knowledge
model

A temporal case is assumed to be a subclass of the predefined concept New
Temporal Case in the knowledge model. The name New Temporal Case was
chosen to set it apart from the temporal cases in Jære’s framework which are
subclasses of the concept Temporal Case.

5.1.2 Time lines

A time line describes some time extended situation, i.e. the values of a parameter
over period of time, a list of events and so on. A time line is made up of a
sequence of non-overlapping events.

A time line needs to be a subclass or instance of the concept TimeLine in
the knowledge model. The time line in Figure 5.2 is named Pressure measure-
ments#5. It is not shown in the figure, but this time line is an instance of

CHAPTER 5. REPRESENTATION 31

the concept Pressure measurements, which in turn is a subclass of the concept
TimeLine.

In addition to having events attached to it a time line also has some other
relations that show how it is to be interpreted, more specifically: The granularity
and temporality.

The granularity defines the temporal unit used in the time line. Possible
values are second, minute and day. The granularity is set by adding a has
granularity-relation to the appropriate granularity concept.

The time line in Figure 5.2 has Minute-granularity and uses relative time
stamps. We have not explained what a relative time stamps are yet, so we will
start making up for this right now. Our representation of time lines rests on
two assumptions:

• We know how the events that make up a time line are related to each
other. We can for any two events say that one came so and so many time
units after another.

• We know how long each of the events lasted.

There are several possible representations that fulfil these two assumptions.
For instance could each event have a precise date and duration: Event 1 started
at 12.10 on July 10 1992 and lasted for ten minutes. Or it could just be a time
that is relevant to some other event: Event 2 started 20 minutes after Event 1
and lasted for 30 minutes.

Seeing that much data is time stamped with a precise date, we wanted to
include the ability to represent explicit dates. However, most often we would
probably not be interested in the actual dates, just how far apart the date values
of two events are. Maybe we in some cases do not have the actual dates. Not
that this is a big problem since we could just invent some dates. We would just
have to remember to space the dates so that the intervals between the events is
correct.

The best solution would be if we could choose how we wanted the time
stamps to be interpreted. In the case where we have the actual dates we would
use them as our representation, and in the case where we do not have dates we
could for instance explicitly specify the space between two consecutive events
in our representation.

This led us to allow for multiple representations in our framework. There is
an abstraction layer between how the data is represented in the knowledge model
and the form it is when it used by the reasoning mechanisms that makes this
possible. The reasoning mechanisms operate on the TimeLineInterface-interface
(see Appendix A.2.1), not on the actual knowledge model.

The temporality value determines how the timestamps of the events con-
nected to the time lines are interpreted. It is specified by a has temporality
relation from the time line to the concept that represents the desired interpre-
tation. We have defined two possible interpretations:

• Absolute. This means that timestamps are to interpreted as Java Date-
objects. The term “absolute” refers to the fact that the date of an event
can be determined by just looking at its timestamp.

• Relative. The events are connected to each other in this case. The times-
tamp of the event is interpreted as a long value defining how long after

CHAPTER 5. REPRESENTATION 32

the end of the previous event this event started. What the long number
means depends on the granularity of the time lines. I.e. if the granularity
is Minute the number is interpreted as the number of minutes after the
previous event. The events also need to have a follows relation to another
event so that we know what event the long value refers to. It this type of
interpretation we will be using in this thesis. Figure 5.1 gives some more
information on how the interpretation functions.

And here comes our disclaimer: We have only implemented the Relative-
nterpretation (the easier one) in practice. The Absolute-interpretation needs to
use the granularity value to know what temporal level the focus is on (minute,
day, year and so on), and we also need a definition of a zero point. When using
relative time stamps we assume that the first event of a time line starts at point
zero if nothing else is specified. We also assume that all the time lines under
a case use the same temporal space. This means that all the time lines under
the case start at the same zero point. For the Absolute-interpretation the zero
point could be an explicit time point, i.e. January first 1972. It could also be
the time of the event with the earliest date of all the events that are collected
under the temporal case.

Some groundwork for the Absolute-interpretation has been done. All time
stamps regardless of the interpretation are encapsulated Long-objects. A Java
Date-object can be instantiated with a long value, and this is what we have
planned to do: Make Date-objects out of all the time stamps, sort the events in
chronological order, check for overlap between the events, which is not allowed,
and then anchor the time line to a zero point.

The nice thing about the absolute time stamp interpretation is that it allows
us to enter data from a database directly into the system without having to
change the time format.

5.1.3 Event

An event has findings attached to it. These findings describe the event. In
addition to findings the event has some duration, which is represented as an
integer value. The minimum value is one. If the time line the event belongs has
minute granularity the minimum duration would be one minute, if it is days, it
would be one day and so on.

An event also has the time stamp value that we discussed in the previous
section that is used to relate it temporally to the other events in the time line.
We are focusing on the Relative-interpretation, so the time stamp is interpreted
as the number of temporal units after the end of the previous interval until the
start of this. Because we are using this interpretation we also need to specify
a follows-relationship between the event and the one that it follows. A graphic
description of an event is shown in Figure 5.3.

The event in the figure has a time stamp value that is represented by the
node NumberEntity#577, and a duration represented by the node NumberEn-
tity#578. This is the way numbers are represented in TrollCreek. These two
nodes/concepts each encapsulate a subclass of the native Java Number -class,
which in turn encapsulate a primitive number. If we want to know the numeri-
cal values of these nodes, we have to look at their frames.

CHAPTER 5. REPRESENTATION 33

Figure 5.3: Example of an event

As mentioned are time stamps represented by Long-objects, while durations
are represented by Integer -objects. The rationale behind this is given in Ap-
pendix A.2.1.

We can also mention that the system will allow the duration to be set to zero,
but this can produce unwanted results, since we have not defined a meaning for
an event with zero duration. Ma and Knight allow, as the only system that does
this, their time elements to have zero duration. It is not clear what is achieved
by this however.

5.2 Ontology

In Figure 5.4 the elements used by our representation are displayed as they
appear in a knowledge model. Since the TrollCreek top level ontology has not
been finally established yet, we have kept our placement of the concepts simple.

CHAPTER 5. REPRESENTATION 34

Figure 5.4: The elements used by our representation (inverse of relations not
shown)

Chapter 6

Reasoning

In this chapter we will describe how the reasoning is done. We have split the
reasoning task into two major parts: Non-temporal reasoning and temporal rea-
soning. The non-temporal part uses existing reasoning methods in TrollCreek,
and is used as a “test” to check if the temporal reasoning should be initiated.
The temporal reasoning mechanism is the core this thesis and will receive most
of our focus.

6.1 Non-temporal reasoning

The non-temporal findings of two cases are first compared using the standard
case-matching algorithm in TrollCreek. If the similarity measure of this compar-
ison is above a given threshold a temporal similarity measure is also computed.
The threshold value is set in the code (see Appendix A.2.2).

The rationale behind this is that it is not necessary to embark on a compu-
tation of temporal similarity if the cases do not share some other characteristics.
This relationship between standard similarity measures and temporal similarity
measures was present in Jære’s framework too. This is also similar to filtering
on context from Jaczynski’s framework.

6.2 Temporal reasoning

We will focus on the Retrieve step of the CBR-cycle, so our goal is; given an
input case find the most similar cases in the case-base. To do this we will develop
a method that computes a similarity score between two temporal cases. Our
framework decomposes the temporal reasoning task into three subtasks:

• Abstraction task: Compresses/abstracts all the time lines of a case into a
single time line.

• Time line comparison task: Takes as input two time lines and computes
a similarity score.

• Event comparison task: Takes as input two events and computes a simi-
larity score. This task does not involve any use of temporal data.

35

CHAPTER 6. REASONING 36

Figure 6.1: Subtasks of temporal reasoning

How the tasks are related is seen in Figure 6.1.
These are tasks, we do not say anything about the methods used for im-

plementing them. We will in this thesis implement a method for solving each
task.

From Figure 6.1 it can be seen that the event comparison task is embedded
in the time line comparison task. We decided that the event comparison task
should be represented as a separate task even though it is embedded in another
task because it is quite elaborate.

The dotted lines from the orgin and target case to the time line comparison
task point to the possibility of omitting the abstraction task if the cases only
contain one time line each, we will discuss this below.

6.3 Abstraction task

When we made the choice that a case could contain several time lines, we added
some complexity to the reasoning task. Instead of having to compare two time
lines, we need a scheme that gives a similarity measure between two cases each
consisting of an arbitrary number of time lines.

Some of the systems we surveyed have had to deal with this problem. Jaczyn-
ski’s elementary behaviours can involve several time lines. Ma and Knight’s
proposed graph similarity methods for comparing two cases. ICONS abstracted
several parameters into a single state.

Another solution is to do nothing special when a case contains several time
lines. That is; compare pairs of time lines that monitor the same parameter.

CHAPTER 6. REASONING 37

The problem here is that the overall picture is lost. The interplay between the
different parameters is not taken into consideration. If this is what is wanted
it is actually possible to do so by using the methods described in this chapter
by doing some tricks in the knowledge model. This comes as consequence of
TrollCreek’s structured comparator architecture. We will however assume that
this is not what is wanted. We want our temporal reasoning mechanism to
consider the interaction between different parameters.

We made the decision to use the idea from ICONS to handle the issue with
multiple time lines: Abstracting them into a single time line. The approach
used in ICONS has appeal since it can incorporate domain knowledge, and it
provides flexibility in that we are free to say how the actual abstraction should
be done.

6.3.1 Temporal abstraction

The question now is: How do we go from multiple time lines to one? We will
from here on refer to the concept that does this many-to-one transformation as
an abstractor.

There are several ways to abstract multiple time lines. One solution is to
just add/compress all the time lines together as shown in Figure 6.2. Actually,
the term abstractor is something of a misnomer when used here. Nothing is
abstracted away. However, this is the way the abstraction task has been imple-
mented in this thesis. This implementation shows that the basic idea functions,
but it is not an optimal solution.

Figure 6.2: Compression of time lines

We will in the following describe how we would like the abstraction task to
be implemented. The best way to do the abstraction is clearly different from
domain to domain, and it is also knowledge-intensive. We would like to keep our

CHAPTER 6. REASONING 38

tasks as domain independent as possible, so what is needed is an implementation
of the abstraction task that is able to utilize domain knowledge provided by
the knowledge engineer. In other words: The abstraction task should rest on
a knowledge-based domain independent framework for temporal abstraction.
Such a framework has actually been developed by Yuval Shahar [Sha97]. The
framework has been implemented in the RÉSUMÉ system.

While it is too much to insist that the methods that implement our abstrac-
tion task should have the same power as the RÉSUMÉ system, it is still useful
to examine it and the underlying framework, since many of the ideas present
there are of potential use to us. The reason why this description comes here, and
not in the chapter on relevant research, is that RÉSUMÉ is not a CBR-system.
We will keep our focus on the “idea level ” and not go into any practical details
of the system.

Shahar also operates with the term “temporal-abstraction task,” and he
gives the following informal definition of the task (quoting from [Sha97]):

The temporal-abstraction (TA) task can be viewed informally as
a type of a generic interpretation task: Given a set of time-stamped
data that interpret past and present states and trends and that are
relevant for the given set of goals.

The RÉSUMÉ system creates many abstractions for a domain, and will also
be able to answer queries related to the abstractions. Our task just has one
goal: Create a single time line that captures the most important points of the
time lines in a temporal case.

Shahar decomposes the temporal abstraction task into five subtasks:

1. Temporal-context restriction: This creates a frame of reference for the
abstraction task. The context may for instance be therapy of insulin-
dependent diabetes. What abstractions are done depends on the context.
For the diabetes context it might be creation of intervals that show the
insulin level.

2. Vertical temporal inference: Creates abstractions by using inference on
parameter values that occur at the same time.

3. Horizontal temporal inference: Creates parameter intervals by inference
on parameter propositions of the same parameter.

4. Temporal interpolation: Creates parameter intervals by joining disjoint
parameter points or parameter intervals.

5. Temporal-pattern matching: Creates abstraction intervals by matching of
patterns.

These tasks are domain independent. The methods that perform the tasks
need the following kind of domain knowledge to function:

1. Structural knowledge. I.e. ABSTRACTED-FROM relationships.

2. Classification knowledge. I.e. definition of a parameter range as LOW.

CHAPTER 6. REASONING 39

3. Temporal-semantic knowledge. I.e. definitions of what intervals that are
concatenable. Two consecutive periods of anemia can be summarized as
one interval, while two consecuitive pregnancies cannot be summarized as
an 18 month pregnancy.

4. Temporal-dynamic knowledge. I.e. the persistence of parameter values.

This kind of knowledge needs to entered by a domain expert, and after that
has been done the system is ready [SM99].

In addition to the knowledge types the system also contains a temporal-
abstraction ontology that defines what intervals, patterns, events and other
terms actually mean. It should be clear from all this that the framework is
large, and we will keep our discussion in the following section on a shallow level.
What we will do is to sketch how the ideas behind some of the tasks in Shahar’s
framework can be used in our abstraction task.

Vertical temporal inference

In Shahar’s framework the mechanism that performs this task accepts one or
more parameter points or intervals as input and returns an abstraction point or
interval. The mechanism that performs the task is called the contemporaneous-
abstraction mechanism, and is used for two subtasks:

The first subtask is classification of parameters. This assumes the presence
of classification knowledge. This can be value ranges (i.e. LOW) and definitions
of parameter values that are to be placed in that range (i.e. 100mm-250mm).

In Jære’s thesis this kind of temporal abstraction was actually used when
the cases from the oil domain was encoded. The abstraction was done manu-
ally prior to the modelling of the cases in the knowledge model however. This
is something that could be automated, thereby omitting the need for a man-
ual pruning of the parameter measurements before they are entered into the
system. Our example that will be presented in Chapter 7 assumes that such
classifications of parameter values have been done manually.

The best way to do this kind of classification may be to have a layered
abstractor architecture. That is: Having abstractors defined at time line levels
in addition to the one defined at the case level (see Figure 6.3).

Figure 6.3: Example of a layered abstractor architecture

However, in our implementation we only work with a single abstractor at the
case level. If we were to implement a layered abstractor architecture we would
need two types of abstractors: One for the case level and one for the time line
level since these two levels are different. The abstractor at the case level would

CHAPTER 6. REASONING 40

have several time lines as input, while the one at the time line level would have
a set of events as input. The output would however be same for the two types:
A time line.

The second subtask is called computational transformation, and it maps
values of one or more parameters into the value of another, abstract parameter.
An illustration is given in Figure 6.4.

Figure 6.4: Example of computational transformation

As an aside: If we define functions that take as input all possible combina-
tions the values of the measured parameters and that give as output a single
state describing the overall situation at that point, we would automatically solve
the problem of going from many time lines to one.

Horizontal temporal inference and temporal interpolation

We have grouped these two tasks together since they both operate on param-
eter values in the horizontal direction. Horizontal temporal inference creates
abstractions where two intervals that measure a parameter value meet, see Fig-
ure 6.5.

Figure 6.5: Abstraction where two intervals meet

Temporal interpolation on the other hand create abstractions where the
intervals do not meet, see Figure 6.6.

This could be used to contract time lines by abstracting several events into
one that covers the same interval. An example is shown in Figure 6.7.

Why would we want to contract time lines in this manner? If the method
that performs the time line comparison task does not scale well we need to keep
the input to it below certain thresholds. It is here this kind of contraction of
time lines becomes useful.

As an example we can consider the oil domain which Jære used in her thesis.
The raw data a case was based on consisted of about 2500 measurements of four

CHAPTER 6. REASONING 41

Figure 6.6: Abstraction between two disjoint intervals

Figure 6.7: Abstraction of a sequence of events into a single event

parameters. If each measurement was represented as a separate event in the time
line that is input to comparison task, the method that implemented it could not
do any complex calculations, since the task would then have become intractable.

Temporal-pattern matching

This task creates abstractions of a more complex type than the other tasks. An
example could be (again quoting from [Sha97]):

... an episode of drug toxicity from a strate of LOW(White bloodcell)
count lasting more than 2 weeks and starting within 0 to 4 weeks of
a state of LOW(Hemoglobin) lasting more than 3 weeks, in a patient
who is receiving certain drugs.

This specification of temporal patterns has similarities with the elementary
behaviours in Jaczynski’s framework. We can quickly outline how the Jaczyn-
ski’s idea of elementary behaviours might be implemented as temporal patterns:
If we view a single case as a context we could define an abstractor for each case
that would extract what we perceive as the important points. The same ab-
stractor could then be applied to an unsolved case to see if it contained the
same important points as the case the abstractor. This is illustrated in Figure
6.8.

This way of doing things would reduce the time line comparison task to
just moving the abstractor from the target case to the origin case. Usage of
abstractors in this way would require us to know what the important points in
a case are.

In fact, this pattern matching task can be seen as a kind of rule based
reasoning task. We could label some of the abstracted states as critical, and
sound a warning when such a state was discovered. This is somewhat similar
to the alert and alarm states that Jære uses. A difference is that she used the

CHAPTER 6. REASONING 42

Figure 6.8: Each case has its own abstractor which is applied to an unsolved
case

states in the case matching, while we propose to use such states prior to the
actual case matching.

Omitting the abstraction task

Finally we will point out that not all scenarios involve multiple time lines.
Sometimes there is just one time line attached to a case, i.e. a single sequence
of notes, as in TempoExpress (see Chapter 3.2). In this case the designer of
the system has a choice between omitting the abstraction task, or having an
abstractor perform some action on the single time line. For instance: In the
newest version of TempoExpress the single note lines go through an abstraction
(the I/R model) before they are compared with each other.

Summary of temporal abstraction

If we were to prioritize the ideas laid out above, we would suggest that classi-
fication of parameter values and concatenation of events be investigated first.
These tasks seem to be necessary to have in place if we are dealing with long
time lines to avoid overburdening the time line comparison task.

The temporal-pattern matching task requires that methods that perform the
other tasks are in place, since it uses output from these as its input.

We have not said anything about how the ideas can be implemented in
TrollCreek in practice. The big picture is that domain knowledge will be entered
into the knowledge model, possible in the form of the knowledge types Shahar
uses, and then the abstractors will be use this knowledge when processing a
case. We will leave the subject at this level.

6.3.2 Implementation of the abstraction task

As mentioned previously the method that performs the abstraction task does
not do this in accordance with the ideas we just have presented. We have
provided a single abstractor: TimeLineCompressor. TimeLineCompressor does
not actually abstract anything, it just compresses the time lines it finds under
a case. This is of course not knowledge-intensive in any way. The process was
illustrated in Figure 6.2. The beginning or end of an event in any of the time
lines in a case will trigger the creation of a new event in the abstracted time
line. An event in the compressed time line will contain all the findings of the
events on the other time lines that it shares time points with.

CHAPTER 6. REASONING 43

A temporal case can be assigned an abstractor via a has abstractor -relation.
An abstractor encapsulates a Java class, and it is this class’ responsibility to
transform the time lines of the temporal case into a single time line. In the
knowledge model an abstractor needs to be a subclass of the concept Abstrator.
The time line generated by the abstractor is used by the comparator in the case
matching.

6.4 Time line comparison task

Here two time lines are compared according to some scheme. The task can
take as input time lines that are output by the abstraction task, or it can work
directly on two non-abstracted time lines. Its output is a similarity score, and
it should in addition be possible to get an explanation of the comparison.

How should the time lines be compared? From the survey of related research
we did it is clear that there is no one method that is applicable under all cir-
cumstances. However, one idea was present in all systems: The order of the
elements that are to be compared, events in our case, should have an effect on
the similarity score.

We decided to investigate the use sequence comparison techniques closer.
Such methods are usually based on dynamic programming methods [CLRS01][Smi91].
Two of the CBR-systems we surveyed used sequence comparison methods in
their case comparisons: Ceaseless CBR and TempoExpress. We will now give
an overview of what sequence comparison is.

6.4.1 Sequence comparison

Sequence comparison, as we use the term here, deals with the problem of com-
paring sequences where the correspondence between of the elements that make
up them is not known in advance. Such methods are more complex than ones
that compare sequences of equal length and/or only compare corresponding ele-
ments. Before we move on with the description of sequence comparison, we can
mention that there of course exist scenarios where such simpler comparisons are
the ones to use. In one of the systems we surveyed, WIND-1 (see page 10), it
was a key point that only corresponding elements in two cases should be com-
pared, and all the cases had the same length. A simplified version of the case
comparison used in the WIND-1 system is shown in Figure 6.9.

In this case an algorithm that starts at T and moves backward while com-
puting the similarity scores would be used. There is no problem involved in
implementing such an algorithm in our framework, since it fits nicely within
our task definition. When we have decided to investigate sequence comparison
methods closer, it is partly because such methods are more complex than the
one described above, and if our framework can support them it would be a
plus. Also the problem sequence comparison addresses; not knowing the cor-
respondence between elements of two sequences, is one that will arise in many
domains.

The first full-scale work on sequence comparison was the book Time Warps,
String Edits, And Macromolecules: The Theory And Practice Of Sequence Com-
parison, edited by David Sankoff and Joseph Kruskal [DS83]. The first edition

CHAPTER 6. REASONING 44

Figure 6.9: Only corresponding elements are compared

came in 1983, so the book is getting on a bit in years. A newer overview of se-
quence comparison methods can be found in Dan Gusfield’s book Algorithms on
Strings, Trees, and Sequences: Computer Science and Computational Biology
[Gus97]. Gusfield’s is more tuned to the use of sequence comparison within com-
putational biology, while Sankoff and Kruskal’s include papers that show the use
of sequence comparison in such diverse areas as: Computational biology, speech
recognition, study of bird songs and more.

A key point in sequence comparison is that sequences that in essence have
similarities, differ from each other on the surface in a number of ways. These
differences need to be specified, and the most used types are:

• Substitutions: Elements from the sequences may have been substituted.

• Deletions: Elements may have been deleted from the sequences.

• Insertions: Elements may have been inserted into the sequences.

Other types of differences may be defined, but we will focus on these. As
an example Ceaseless CBR uses these three operators, while TempoExpress has
defined some others too. The output of sequence comparison methods is infor-
mation about the distance between the two sequences and how they differ. In
our use we can view the distance as a measure of the strength of the comparison,
and the analysis of the differences as the explanation. The differences between
two sequences can be represented in at least three different ways: traces, align-
ments (also called matching) and listings. These types are illustrated in Figure
6.10. What mode of analysis that is best depends on the task at hand.

A trace can be viewed as a collection of arrows/lines going from one sequence
to the other. The arrows that appear in the full trace are the ones that give
the optimal score. An important point in a trace is that an arrow cannot cross
another arrow. If this was allowed we would disregard the linear structure of
the sequences. We would just have two unordered sets where there could be an
arrow between any two elements in the two sets without regard to other arrows.

A matching is similar to a trace. Elements from the two sequences are
aligned. However, some elements may not be aligned with any elements of the

CHAPTER 6. REASONING 45

Figure 6.10: Different modes of analysis

other sequence, and these are then aligned with a special symbol (we have used
0 in Figure 6.10). A matching provides more information than a trace since it
shows the size and placement of gaps, those parts that are aligned with a 0 in
the other sequence. The higher information content is also shown by the fact
the several different matchings may be transformed into the same trace. Such a
transformation is done by placing an arrow between two aligned elements, and
removing the 0’s, so that some elements are possibly left “hanging,” like the U’s
at the ends in our trace example in Figure 6.10.

A listing gives the sequence of operations that transform one sequence into
the other while giving the optimal overall cost.

As mentioned sequence comparison methods are implemented using dynamic
programming methods, and we will now examine this in more detail. The basic
edit distance algorithm is given in Equation 6.1.

d(ai, bi) = min

d(ai−1, bj) +w(ai, φ) deletion of ai
d(ai−1, bj−1) +w(ai, bj) substitution of ai by bj
d(ai, bj−1) +w(φ, bj) insertion of bj

(6.1)

d(ai, bi) is the edit distance function applied to two sequences a and b, with
lengths i and j respectively. The w(x, y)-function gives the cost of the operation
it represents. We see that substitutions, deletions and insertion are used in this
case. What exactly do the operations mean? A substitution is a replacement
of element ai of sequence a with element bj of sequence b. A deletion is the
deletion of element ai, and an insertion is the insertion of element bj at point
ai in sequence a.

Besides selecting operators and weights, the matching can be manipulated
by putting constraints on what is an acceptable analysis. This can for instance
be limits on the number of consecutive deletions and insertions.

The actual computations are done using a matrix that is filled in a row
major order. The value of a cell depends on the values of the cells above, to the

CHAPTER 6. REASONING 46

left and above to the left (see Figure 6.11). The table can be viewed as stored
function calls.

Figure 6.11: Matrix used in dynamic programming

The “final” edit distance value is stored in the cell with coordinates ai, bj .
That is to say the lower right corner of the matrix.

To find the sequence of operations that produced the optimal edit distance
value, the matrix in Figure 6.11 can be analyzed in a reverse fashion: Starting in
cell ai, bi and for each cell deciding what operator was used, then backtracking
to the upper left corner. Another solution is to store the operations used in a
matrix of their own, as seen in Figure 6.12.

Figure 6.12: Operations matrix

Here it is just a matter of following the arrows from one end of the matrix
to the other. Note that there can be several optimal edit distances, each having
the same value. This is not a point we will concern us with here.

CHAPTER 6. REASONING 47

6.4.2 Implementation of the time line comparison task

This task takes care of the actual comparison between two cases, and the meth-
ods that perform it are therefore implemented as comparators (see Chapter
2.2.2). It is the temporal comparator that guides the whole matching process,
and this includes activating the abstractor.

The comparator fetches the case’s abstractor by following the has abstractor-
relation attached to the case. If such a relation is missing it uses TimeLineCom-
pressor as a default. Since we have provided TimeLineCompressor as the only
abstractor, it does not in practice make a difference if our cases specify Time-
LineCompressor as their abstractor or not.

As we have said there is not one single method of comparing two time lines
that is right for all purposes. However, we have tried to make an architecture
that will allow for easy implementation of different methods.

Behind the scenes the comparators that implement this task are assumed to
be subclasses of the TempMatchGeneric-class (see Appendix A.2.2), which in
turn is a subclass of the EntityComparison-class. The TempMatchGeneric-class
is declared abstract, and its purpose is to enforce what the different matching
methods needs to be able to do. The other elements in TrollCreek that represent
the results of the comparison task work on TempMatchGeneric-objects to avoid
having a GUI-element for each different method of comparing two time lines.
It is instead the matching methods that must conform to what is given in the
TempMatchGeneric-class.

We have implemented two different time line comparison methods in this
thesis to show what sequence comparison can do. The first one is implemented
in the comparator TempMatchingScheme1, and is an example of a trace. The
second method is implemented in TempMatchingScheme2 and is an example of
a listing. TempMatchingScheme2 uses the basic edit distance formulation given
in Equation 6.1.

TempMatchingScheme1

This comparator finds the optimal trace between two time lines based on the
following recurrence equation:

Alignment(TLOi, TLTj) = max

Alignment(TLOi−1, TLTj)
Alignemnt(TLOi, TLTj−1)
NewTrace(TLOi−1, TLTj−1)

(6.2)

TLO (TimeLineOrigin) and TLT (TimeLineTarget) are time lines, and the
subscript refers to the event at that position in the time line. I.e. TLOi refers
to event i in TLO. NewTrace(TLOi, TLTj) is defined as follows:

NewTrace(TLOi, TLTj) = maxa<i,b<j(
1

dist(i, j, a, b)
+NewTrace(a, b)

+ sim(TLOi, TLTj) + sim(TLOa, TLTb)) (6.3)

The function dist(i, j, a, b) is defined as:

dist(i, j, a, b) = (i− a) + (j − b) (6.4)

CHAPTER 6. REASONING 48

We could use a more elaborate distance function that actually used the tem-
poral distance between the events, but to keep it simple this was not done. We
just count the number of events between two arrows. This has the consequence
that the starting points and durations are not explicitly used by this scoring
scheme, and the same will be true for the other matching scheme we present.
sim(a, b) computes a similarity value between two events, and uses the method
described in the next section.

Notice that we are here looking for the max score, while the edit distance
looks for the minimum score. We have an upper bound on the maximum score in
this case. If TLOi and TLTj are identical the score produced by trace between
them will be the maximum score possible.

What the scoring scheme does is to place arrows between events in the two
sequences by considering the similarity of the events and the distance between
the arrows. How much weight that should placed on similarity and how much
should be placed on distance is dependent on the domain. A weight constant,
or variable, could be attached to the dist(i, j, a, b) and sim(TLOi, TLTj) func-
tions to gain control over how much weight is given to each measure. This
comparison ensures that if two sequences share similar sections they will receive
a higher score than two sequences that also share similar events, but where they
are spread out differently in the two sequences. It is kind of similarity versus
distance scoring metric. A graphic illustration of the matching scheme is given
in Figure 6.13.

Figure 6.13: Illustration of matching scheme: Similarity vs. distance

If you examine the figure you might discover a problem with theNewTrace(TLOi, TLTj)
function. When we place the first arrow we do not have a previous arrow to
calculate the distance to. In this case the function just returns the similarity
measure for the two events and leaves out the distance.

The algorithm used in this section is quite different from the basic edit
distance outlined in Equation 6.1, but it is nevertheless closely related to it
conceptually. That was also the point of including this matching scheme here:
To show the there is substantial flexibility in sequence comparison methods.

TempMatchingScheme2

This comparison method uses the basic edit distance equation shown in Equa-
tion 6.1. The weight of the substitution operation is calculated using the event

CHAPTER 6. REASONING 49

comparison method described in the next section. If two events are similar, the
substitution cost should be low. This makes intuitive sense. The substitution
cost is given by:

w(TLTi, TLOj) = 1− sim(TLTi, TLOj) (6.5)

The sim(a, b)-function is the same as the one used by TempMatchingScheme1
and will be described in the next section. Two identical events will get a simi-
larity score of 1, which means that the substitution cost will be 0. What cost
should be given to the deletion of an event in the origin sequence (the unsolved
case)? It should cost more to delete an important event, but since the case
is unsolved we do not necessarily know which events are important. We have
provided the following cost:

w(TLOi, φ) = NumberOfFindings(TLOi) ∗Wfd +Duration(TLOj) ∗Wd

(6.6)
Where Wfd and Wd are weights. The insertion cost is calculated in similar

manner:

w(φ, TLOj) = NumberOfFindings(TLOj) ∗Wfi +Duration(TLOj) ∗Wd

(6.7)
Where Wfi and Wd are weights. The rationale behind these equations is

that it should cost more to delete or insert events that have a large number of
findings than events with few findings. It should also cost more to delete or
insert events with long durations.

The weights used in the operations are domain dependent, and finding suit-
able values may be something of an art. The creators of TempoExpress used
genetic programming in finding suitable weight values. The weighting of the
different operators is very involved in Ceaseless CBR, and the weights also
change continually, but this is a consequence of the fact that the input is an
ever-evolving sequence of alerts.

Of course the costs can be calculated in other ways, and probably should,
than the ones demonstrated here. One way to add flexibility to the cost cal-
culations is to involve the explanation strengths of the has event-relations. We
have not defined a semantic for them, but we could for instance say that the
explanation strength in one direction is a value that is used in the deletion
operation, and the explanation strength in the other direction is used in the
insertion operation.

It is also worth noticing that in this scoring scheme a low distance between
two sequences mean that they are similar. We are in other words searching
for the lowest score, while we in TempMatchingScheme1 were searching for the
highest score. If the distance is zero the two time lines are identical. A disclaimer
is in place here: No, they do not need to be identical to get a distance value of
zero since we do not include the durations in our substitution operation. This
means that two events with the same findings but with different durations will
match perfectly.

CHAPTER 6. REASONING 50

6.5 Event comparison task

It is very likely that a method that compares two time lines will need some sort
of function that measures the similarity between two events. The two matching
schemes we have implemented in this thesis use the same function for this task,
and it is this we will describe in this section.

The event-to-event similarity assessment is done using a special compara-
tor called AbstractComparison, which is very similar to the CaseComparison-
comparator that is used in standard case matching (see Chapter 2.2.1).

The type of matching done by CaseComparison seems to fit the event match-
ing task nicely. An event is described by a number of has finding-relations just
as a case is, it can therefore be viewed as a sort of sub-case. Whether Ab-
stractComparison should use spreading activation along the same relations as
CaseComparison does, is something we will not dwell upon here. In the imple-
mentation the same set of relations is used. We will however remark that there
might be some issues involved in including causal relations in the spreading
activation, since these relations imply that something occurs before something
else. As an example: A causes B, implies that A occurred before B, and it is
not clear how this should be interpreted if A is part of one time line and B of
another.

The main practical problem that precludes us from just using CaseCom-
parison directly on the events is that the time line output by the abstraction
task does not correspond to a time line that is explicitly represented in the
knowledge model. What this means is that neither the time line nor the events
it is made up of are represented explicitly as entities in the knowledge model.
CaseComparison works on entities and therefore cannot be used here. It can
however be used if we omit the abstraction task, as we can do if we are dealing
with a domain where the temporal data is specified on a single time line. With
the abstraction task omitted the reasoning mechanisms works directly on the
time lines as they are represented explicitly in the knowledge model.

AbstractComparison is a class that works on a set of has finding-relations
instead of on two entities. This works in our case since our abstractor just makes
new events out different groupings of existing relations. It would probably not
work as well in the more general case where the abstractor makes new events
with findings that where not present in the existing time lines.

The problem is solvable however. We could for instance make an abstractor
that actually makes a new time line in the knowledge model. If we did this we
could dispense with the AbstractComparison-class and use the CaseComparison-
class, since we then would have the abstracted time line represented in the
knowledge model.

6.6 Summary

Now that we have described all the tasks we can take an overview of the ideas.
Two temporal cases are input to the reasoning mechanism. Both target and
origin cases go through the abstraction task. The abstraction method used can
be identical for both cases, or it can differ. The point is that the abstractor is
to use whatever domain knowledge we have to extract what is important from
the cases. The output from the abstraction task is a time line which in theory

CHAPTER 6. REASONING 51

is of the same form as the time lines that are attached to cases explicitly in the
knowledge model.

The time line comparison task then takes over and compares the time lines.
The scoring scheme it uses needs to be adjusted from domain to domain. We
have given two examples that use sequence comparison methods. These methods
also make use of an event comparison task. The method that performs the event
comparison task is knowledge-intensive and is built on the existing method of
comparing cases in TrollCreek. Since the time line comparison methods we
have implemented incorporate the event comparison method, the comparisons
become knowledge-intensive through the operators they use.

If we look at our comparison methods at the level above the operators, they
basically find a sequence of operations that applied to the time lines give an
optimal score. This is not knowledge-intensive. Whether the comparison task
could be enhanced by using knowledge is something we will leave as an open
question.

After the comparison is complete we are presented with a value that gives
a measure of the similarity and an explanation. The explanation is in our case
made up of the abstracted time lines and the sequence of operations applied to
the time lines by the comparison method.

Chapter 7

Example

This chapter contains an example of the framework in use. As mentioned in
Chapter 4 we decided not to use any of the datasets we examined, but instead
went with an imaginary domain. We will now describe what this domain is
and how it is modelled, and then we will show an example of temporal case
matching.

The example is meant to illustrate the practical representation of temporal
data in TrollCreek and how the reasoning works. It is not meant to be a solid
simulation of a real world domain.

7.1 The domain

The domain is that of a simple industrial process. A few parameters are moni-
tored, and if something wrong happens in the process the values of these param-
eters a certain period back are stored as a case. The idea is that an unsolved
case is a sample of the most recent measurements process, and it is matched
against the case-base to see whether the current situation resembles any of the
stored faulty situations.

The process is monitored through three parameters: temperature, pressure
and energy consumption. Measurements of these values over a period of time
are represented as cases. We assume that some abstraction has already been
done on our temporal data, more specifically: That the values of the different
parameters have been abstracted into one of the following ranges: Normal range,
Above normal, Below normal, Abnormally high and Abnormally low.

This means that we have to specify these ranges in our knowledge model
somehow. How this has been done in our case is shown in Figure 7.1.

We have to specify what time lines we are going to use in the knowledge
model. This is done by creating a concept for each the different types of time
lines and making them instances of the TimeLine-concept. This is shown in
Figure 7.2.

In addition to this we have to specify some subrelations to the has finding-
relation, more specifically: has pressure, has temperature and has energy con-
sumption. The situation is shown in Figure 7.3.

Why do we need to specify these relations? The reason lies in the behaviour
of our abstractor, which as mentioned is not really an abstractor at all. The ab-

52

CHAPTER 7. EXAMPLE 53

Figure 7.1: Possible parameter values

Figure 7.2: Different time lines within our domain

stractor just adds time lines together, so if we just used the standard has finding
to specify the findings under each event we would get a collection of findings
under each event, but we would not know which time line they came from. This
would lead to a perfect match between a Below normal value for the tempera-
ture parameter and a Below normal value for the pressure parameter, something
which is not what is intended. What we would like is that temperature values
should be matched against temperature values, pressure against pressure and
so on. To make this happen we define subclasses to the has finding-relation.
A finding relation will only be matched against relations of its own kind, or
relations of which it is a subclass.

Figure 7.3: Subclasses of has finding

CHAPTER 7. EXAMPLE 54

This also means that creating different types of time lines for our parameter
does not have any practical consequences. We could just specify that our cases
contained three time lines of the same type, and identify the parameters they
monitored by their type of has finding-relations. However, this would be bad
knowledge modelling.

7.2 Example of a case

In Figure 7.4 we see the how the temporal case Process1 1 is represented in the
knowledge model. The findings of the events are not shown to avoid the view
from being any more cluttered than it already is.

Figure 7.4: Example of time lines within a case

A less frustrating way of viewing a case is through the time line viewer. How
Process1 1 appears there is shown in Figure 7.5.

The three time lines explicitly represented in the knowledge and the ab-
stracted time line (courtesy of TimeLineCompressor) is seen in the viewer. The
colours used in the viewer are random, and do not serve any other function than

CHAPTER 7. EXAMPLE 55

Figure 7.5: Process1 1 seen through the viewer

to allow us to tell where an event begins and where it ends. We can also mention
that there are ten temporal units between two vertical bars in the viewer.

The viewer does not show the findings of the events. If we want to see the
findings we have to search in the knowledge model, more precisely: First we
need to see where the event is placed in the time line in the viewer, and then
find this event by locating the node that represents it in the knowledge model.
The events of the abstracted time line do not exist explicitly in the knowledge
model, so we will not find them there. When we view the time lines of case a
summary of the abstracted time line is written to the standard output, and it
is this we will have to use to figure out which findings go with which event in
that case.

In our example every event of the abstracted time line will normally have
three findings; one for each the three parameter values. This is just as expected
since the abstractor just adds the three time lines together, and all the events
of the time lines have just one finding describing the state of the parameter.

7.3 Case-generator

To be able to create cases quickly a case-generator was built. It creates cases
according to some simple rules:

1. All cases contain the three time lines mentioned above.

2. An event immediately follows another. This is achieved by setting the
time stamp value to 1 for all events. We assume that the data streams
continuously from the process, so that there will be no gaps in the time
lines.

3. All the time lines within a case are of equal length.

4. An event cannot have the parameter value that the event it follows has.
There is no point in creating a new event if there is no change in the
parameter value. It would of course be different if we had the restriction
that all the events should have equal length (i.e. ten minutes), but this is
not the case here.

CHAPTER 7. EXAMPLE 56

With the exception of the constraint under point 4, the parameter values
are chosen randomly.

The case generator also has a method for copying cases. This was meant to
aid in the testing by first copying a case and then altering it a little to see how
this would affect the matching score. As the generator is set up now, it makes
a copy of each case it creates and stores this in the knowledge model with the
original case. Changes to the copy must be done manually at this stage.

The cases do not contain any non-temporal findings, which mean that the
normal case matching method that is invoked before the temporal matching will
deem all the cases as having nothing in common. It will return a comparison
strength of zero in other words. We still want the temporal matching to go
ahead, so we have set the threshold value for starting the temporal matching to
zero in the code.

7.4 Case matching

Two new elements have been added to the popup menu that appears when
the user right-clicks on a node in the TrollCreek knowledge model editor. The
elements are shown in Figure 7.6. View timeline becomes active when the user
clicks on a node representing either a temporal case or a time line, and brings
up a viewer, which we already have mentioned, with the time lines displayed.

The other new element, Temporal matching, becomes active when the user
clicks on a temporal case. This command initiates the temporal case matching.

Now we will examine some cases matches. We will first specify TempMatch-
ingScheme1 (see Chapter 6.4.2) as the comparator for all the temporal cases,
we will return to TempMatchingScheme2 later.

In Figure 7.7 we have run a temporal matching on the case Process1 1. We
are currently viewing the matching with the highest score, which is between
Process1 1 and Copy of Process1 11. In this case the origin and target case are
identical, so we should expect a high score. In fact, since the cases are identical
this is highest score we can get.

The matching screen contains the following information. We see the two
time lines that are compared and the trace between them. In this case each
event is matched to the one directly opposite it on the other time line. The
component under the time lines shows the recurrence tables (it is actually just
the output from the comparators toString()-method). The output from Temp-
MatchingScheme1 lists three tables. Two of these are recurrence tables, while
the third shows the cached comparison strengths between different events (cal-
culated by AbstractComparison).

These tables are as good an explanation we are going to get from the scoring
scheme. From them we can see all the steps in the calculations. The content
of the tables becomes useful when one is tweaking the scoring scheme so that it
will perform as intended.

In Figure 7.7 we see part of one of the recurrence tables, more specifically
the ones that stores the optimal scores. To the lower right we see the optimal
value for the whole sequence: 46.

The text box at the bottom contains a summary of the two abstracted time
lines. For each event its time stamp value, duration and findings are listed, in

CHAPTER 7. EXAMPLE 57

Figure 7.6: Temporal elements on the popup menu: View timeline and Temporal
matching. Behind the popup-menu we see a view that shows the temporal cases
we have defined in the current knowledge model. It can also be seen that we
have specified TempMatchingScheme1 as the comparator of all the cases

that order. Since the abstract time lines do not exist explicitly in the knowledge
model this is the only way we can get information about the abstract time lines.

In Figure 7.8 we see part of the matching results between Process1 1 and
Process1 2. This is not a perfect match. We see that the score is lower and the
trace is skewed.

We saw that identical cases get the highest score, as we would expect/hope.
It is however harder to get a grip on how the matching score changes as the cases
become more and more dissimilar. Of course we know which factors influence
the score: Length and location of events, and the findings connected to each
event. It is the interplay between the factors it is difficult to figure out. The
explanation given by the system regarding similarity score just tells us that this
is optimal value given the scoring scheme. It is up to us to adjust the weights
and operators of the scoring scheme so that it will produce good results.

We will now move on to TempMatchingScheme2 (see Chapter 6.4.2). We
have now set TempMatchingScheme2 as the comparator for all the cases, and
again we have run a matching on Process1 1. The same GUI-elements are used
so on the surface the comparison looks quite like the one we just saw.

Notice that a trace is not displayed in this case, for the simple reason that
we do not have one. Again the two identical cases get the highest score. Also
notice that the scores have been inverted and normalized in this case. An edit
distance of 0 will give a strength of 1. The columns that indicate the strength
of the comparisons at the bottom of the screen are shorter here than was the

CHAPTER 7. EXAMPLE 58

Figure 7.7: Matching two identical cases

case for TempMatchingScheme1. This is not because TempMatchingScheme1
thinks the cases are more similar than TempMatchingScheme2, but because its
scores are not normalized, and the mechanism in TrollCreek that generates the
columns expects a number between 0 and 1 as input. Any value greater than 1
will result in a column of max height.

In the text box under the time lines we see the operators needed to transform
the origin sequence into the target sequence plus the cost of the operators.
Since the two sequences are identical the transformation is simple enough: Each
element of the origin sequence is substituted with its corresponding element in
the target sequence at zero cost. TempMatchingScheme2 also uses tables, but
we have not listed them in the text box.

In Figure 7.10 we see another case matching involving Process1 1. This
time the cases are not identical, and this reflected in the cost and choice of the

CHAPTER 7. EXAMPLE 59

Figure 7.8: Another example of a trace between two time lines

operations.
The two abstracted time lines do not contain the same number of events,

so some deletions and/or insertions are needed to transform one sequence into
another. However, we see that most operations are substitutions. This is a
sign that the substitution operation generally is cheaper than deletions and
insertions. If this is what is want everything is OK. If we feel that this is not
OK we can adjust the weights associated to the operations. At the extreme
other hand of the current setup we have the scenario where the cost of deletions
and insertions are very small compared to the substitution cost. This may lead
to a situation where the cheapest transformation of one sequence into another
consists of deleting all of the origin sequence and then inserting the whole target
sequence.

CHAPTER 7. EXAMPLE 60

Figure 7.9: Temporal case matching using TempMatchingScheme2

Figure 7.10: TempMatchingScheme2 used on two cases that are not identical

Chapter 8

Discussion

8.1 Conclusions

We have developed a framework for temporal reasoning in TrollCreek. The
framework contains a way of representing temporal data and a reasoning mech-
anism.

The representation is based on quantitative data. We have implemented one
way of specifying the quantitative data, using what we call relative time stamps.
The representation also opens for other ways of specifying the data, i.e. actual
dates and time points (January 1st 1995 12.00 AM) if that is desired.

The temporal reasoning mechanism consists of two major tasks: The ab-
straction task and the time line comparison task. The time line comparison
task also encompasses an event comparison task.

We have implemented a simple method for the abstraction task, and have
outlined how this task can solved better by a knowledge intensive abstraction
method. For the comparison task we have implemented two scoring schemes
based on sequence comparison methods. The event comparison task is per-
formed by using a method that builds on the existing method for comparing
cases in TrollCreek.

We have also provided an example of the framework in use. The example
used an imaginary domain and is meant to show that our framework actually
functions, not that it functions well. Considerable effort may be needed to
develop, or tune the existing, methods so that they will produce good results
for a real-world domain.

8.2 Theoretical and practical issues

In this section we will review some issues that have arisen in the development
process.

8.2.1 The abstraction task

Our most basic assumption is that we will be able to abstract all of the time
lines within a case into a single time line. The assumption actually goes a little

61

CHAPTER 8. DISCUSSION 62

further than that, we also imply that the abstraction will pick out the important
points that should be used in the comparison task.

Domain knowledge will be of use in finding the important points as described
in Chapter 6.3. How the practical implementation of such a temporal abstrac-
tion framework should be done was left unsaid, we just sketched some ideas of
possible functionality. A lot can be done in this area, so much that questions of
where to put the effort and how much effort should be put in it become relevant.

If new methods for performing the abstraction task are going to be developed
it might be best to start with an actual domain and work out what methods of
abstraction one thinks will produce the best results, and then try to put this
functionality into TrollCreek (preferably in a domain-independent manner).

8.2.2 Structure of the case-base

We have not said anything about how we imagine the case-base is structured,
but this is an important point that will affect what methods that are best suited
to solve the tasks in our framework.

Do all the cases in the case-base have fixed length, or are they of varying
length? Do we know the correspondence between the events of the origin and
target time line or not? Do the cases contain irrelevant information/noise? Our
framework can be applied in all these instances, so it is up the user how he
wants to model the domain. We can in general say that the more variables we
can pin down the better. I.e. if we know the correspondence between events
of the origin and target time lines then we do not need sequence comparison
methods, but can use a less complex method.

8.2.3 Scalability

The cases in our example were quite small. What would happen if our abstracted
time lines had 1000 events instead of about 20? Our sequence comparison
methods would probably fare poorly if we lengthened the time lines in our
example and did nothing to speed up the comparison methods. This does not
however mean that sequence comparison methods scale so badly that it will
be impossible to use them when the time lines are of a certain length. The
amount of computation needed depends on many factors. What takes time
is performing the operations we use in our scoring scheme (i.e. substitution,
deletion and insertion) over and over again at each stage of the comparison.
The method we have used for performing the event comparison task, which is
used in both scoring schemes, is quite costly. But there is some good news
too: TrollCreek caches comparisons of entities. If we keep down the number of
different concepts used in the time line that is input to the sequence comparison
task, all the comparison may be cached. This means that the event comparison
task might be reduced to mainly a table-lookup operation after some event
comparisons have been done in the beginning of the time line comparison.

Another method to speed up the event comparison task is to remove the
explain step and just use the activate step. This means that we only look for
direct matches between findings in two events.

A point is that the methods that perform the different tasks should be ad-
justed to function well together, and this includes the amount of computation.
If the method that performs the abstraction task produces long time lines, the

CHAPTER 8. DISCUSSION 63

method that solves the comparison task may need to be less complex. If the
event comparison task is computationally expensive, the methods that solve the
abstraction and comparison task should try to keep the number of comparisons
low, and so on.

8.3 Further work

We have presented some ideas and shown that they function; the next step is
to use the temporal framework on a real domain to see how well they work. We
have already mentioned several times that the methods that perform abstraction
and comparison task needs to be tuned to the domain at hand. The methods
for performing the abstraction have potential to be knowledge-intensive, and
it would be natural to investigate this closer in conjunction with applying the
framework to a real-world domain.

In addition to uncovering issues that we may have overlooked when devel-
oping the framework, application to a real world domain will also put us in
position to do a performance test of the framework.

Better ways of viewing the time lines also need to be developed. The simple
viewer used in this thesis only shows where events start and end. Additional
features could include:

• Letting the user set the time scale. This also means that the viewer needs
to support scrolling.

• Displaying the findings of an event by clicking on it. Now the user has to
search through what is written to the standard output to determine which
findings hold for a particular event.

• Using the colours more constructively. The colours used by the viewer are
random and serve no other purpose to allow us to tell the events apart.
This could be enhanced in numerous ways. We could have the colour red
associated with critical situations, green when everything is OK and so
on. A prerequisite for this is that we have some kind of framework for
associating colours with events, which we at present do not have.

• It is frustrating for a human to manipulate the temporal cases through
views in TrollCreek. Time lines can contain many events, and a temporal
case can in turn contain several time lines. It would be easier if the time
line viewer also allowed the user to manipulate the time lines instead of
just viewing them. A human will find the representation used by the
viewer easier to use than the one in the knowledge model.

Appendix A

Code overview

This appendix gives an overview of how the different parts of the framework has
been implemented. For more details than is given here, consult the JavaDoc.

Care has been taken to alter as little of the original code as possible.

A.1 Changes to existing code

This section documents the changes that have been done to the existing code.

New menu elements Two new actions have been added to the popup-menu:
View timelines and Temporal matching. This implies some additions to the
following files:

• MoveTool

• ZoomTool

• BuildTool

• Creek.properties

Updating numbers in frame view Some changes were done to be able to
change the value of NumberEntities in the TrollCreek knowledge editor. These
were done to be able to change time stamps and durations quickly, but are not
to be seen as part of the temporal framework.

Comparison panes The following lines were added to comparisonpanes.properties:

jcreek.reasoning.TempMatchingScheme1 = jcreek.gui.reasoning.TemporalComparisonPane
jcreek.reasoning.TempMatchingScheme2 = jcreek.gui.reasoning.TemporalComparisonPane

Framework in new models When a new model is created the concepts
needed by the temporal framework are automatically added to the empty model.
This has been done by adding a call to NewTemporalFramework.generateNewTemporalModel(model)
in CreekDocumentGroup.newKM().

64

APPENDIX A. CODE OVERVIEW 65

A.2 New classes

In this section we will describe all the new classes that have been added to the
jCreek-packages.

If the following classes are added to a TrollCreek-distribution, but the changes
in the previous section are not implemented, it is still possible to use the tem-
poral framework. However, it can then only be accessed through the code, not
by using the knowledge model editor.

A.2.1 Representation

The following classes deal with the representation.

LongEntity (jcreek.representation.LongEntity) The timestamp values
of the events are represented with the long data type. The rationale behind
this is that Java uses a long value as a fundament for the Date-class. Instead of
representing the timestamp values as encapsulated Date-objects we made the
decision to use long values. This makes the makes the representation a little
simpler since we only operate with Number-objects. A downside is that when
we use the Relative-timestamp interpretation we are wasting space, since the
timestamp values are assumed to within the Integer-range. This can be changed
(hopefully) without any complications so that Relative-timestamp values use
Integer-objects in the representation.

NewTemporalModel (jcreek.representation.NewTemporalModel) This
class contains all the definitions our framework uses. It also has a method that
takes a knowledge model as input and adds all the definitions used by the
framework to that model. It is assumes that the input knowledge model is an
IsoPod-model.

Subclasses of EntityType These are convenience classes for manipulating
the different elements of the representation, there is really not much to say about
them.

• NewTemporalCase

• TimeLine

• Event

TimeLineInterface (jcreek.representation.TimeLineInterface) This in-
terface needs to be implemented by all classes that represent time lines in some
form or other. The EntityType-subclass TimeLine does not implement this in-
terface since we have an abstraction layer between the representation in the
knowledge model and the representation internally. InternalTimeLine and Ab-
stractTimeLine implement this interface.

APPENDIX A. CODE OVERVIEW 66

InternalTimeLine (jreek.representation.InternalTimeLine) The reason-
ing mechanisms do not work directly on the time lines as they are represented in
the knowledge model. They work on the TimeLineInterface-interface, which In-
teralTimeLine implements. InternalTimeLine encapsulates a TimeLine-object,
and gives the reasoning mechanisms access to it through its methods.

This opens for having multiple representations of the actual time lines, i.e.
absolute and relative dates.

AbstractTimeLine (jcreek.representation.AbstractTimeLine) Whereas
InternalTimeLine encapsulates a TimeLine-object that exists in the knowledge
model, AbstractTimeLine encapsulates an abstract time line that does not ex-
ist in the model. It also implements the TimeLineInterface-interface, so the
reasoning mechanisms cannot tell the difference between InternalTimeLine and
AbstractTimeLine.

In the code it used by TimeLineCompressor to represent the abstracted time
line. There are some unresolved issued related to AbstractTimeLine. At the
present time an abstract time line is constructed by adding pieces of different
exisiting time lines; has finding-relations and their values to be more specific
(see Chapter 6.5). This is not what we want in the long run. An abstract time
line should be created from scratch. That is to say: With its own relationships.

The thought is that this class can be used by all abstractors to represent the
abstracted time line. It contains methods for constructing events and placing
them on a time line.

A.2.2 Reasoning

The following classes deal with the reasoning.

NewRetrieveResult (jcreek.reasoning.NewRetrieveResult) The origi-
nal RetrieveResult-class had some references to the Case-class, which caused it
to not accept the NewTemporalCase-class. NewRetrieveResult is a little more
general (using EntityComparison in stead of CaseComparison here and there),
but a few references to NewTemporalCase confines it to only working with this
class of cases.

AbstractionInterface (jcreek.reasoning.AbstractionInterface) To allow
for multiple implementations of the abstraction task, we have defined this in-
terface that all abstractors must implement.

TimeLineCompressor (jcreek.reasoning.TimeLineCompressor) Our method
for solving the abstraction task. How it functions is described in Chapter 6.3.2.

TempMatchGeneric (jcreek.reasoning.TempMatchGeneric) This is a
subclass of EntityComparison that is supposed to be a superclass for all methods
that implement the time line comparison task. The GUI-elements for viewing
the results of the temporal case matching work with this class.

The class is declared abstract since the thought is that the subclasses are to
do the actual reasoning. This class also takes care of non-temporal reasoning,

APPENDIX A. CODE OVERVIEW 67

Figure A.1: The different subclasses of EntityComparison that are apart of the
temporal framework

that is: It runs a regular case comparison and checks if its strength is above the
threshold value, and if it is a temporal comparison is also done.

AbstractComparison (jcreek.reasoning.AbstractComparison) This is
a derivative of the CaseComparison-class. It used to compare two events from
two different time lines. The CaseComparison-class could be used for this if all
events were represented in the knowledge model, but because of our abstraction
task this is not given. It is basically a stripped down CaseComparison-class that
operates on arrays of has finding-relations instead of on entities.

The class is a subclass of EntityComparison. However, the constructor of
EntityComparison is not called. This is because this class works on arrays of
findings, so we have no entities to give the constructor of EntityComparison.
A consequence of this is that the comparisons by this class are not cached.
However, the comparisons between the findings use CaseFindingComparison,
just like CaseComparison, so those comparisons are cached.

TempMatchingScheme1 (jcreek.reasoning.TempMatchingScheme1) This
is one of the comparators we developed. How it functions is described in Chapter
6.4.2.

TempMatchingScheme2 (jcreek.reasoning.TempMatchingScheme2) This
is the other comparator we developed. It is described in Chapter 6.4.2.

A.2.3 GUI-related

TemporalRetrieveResultPane (jcreek.gui.reasoning.TemporalRetrieveResultPane)
This class is based on RetrieveResultPane, which could not be used because of
some references in it. In theory there is nothing that precludes ordinary and
temporal cases of using the same RetreiveResultPane-class, one just needs to
make some generalizations here and there.

TemporalComparisonPane (jcreek.gui.reasoning.TemporalComparisonPane)
A class for viewing the results of a TempMatchGeneric-object. It is to Temp-
MatchGeneric what CaseComparisonPane is to CaseComparison.

APPENDIX A. CODE OVERVIEW 68

MultipleTimeLineViewer (jcreek.gui.representation.MultipleTimeLineViewer)
Viewing the time lines in the form of a semantic net can be an ungrateful chore,
so this class will provides a simple time line viewer. It can take as input several
time lines and will show them all. It is an extension of the JPanel-class.

ColorScheme (jcreek.gui.representation.ColorScheme) This class is used
to generate colours for the events that are displayed in the time line viewer.
At the present the colours are random. This class is only accessed by the
MultipleTimeLineViewer-class.

A.2.4 Other

ViewTimeLineAction (jcreek.cke.command.ViewTimeLineAction) This
actions opens time line viewer that shows a single time line if the action was
invoked on a TimeLine-entity, or all the time lines if it was invoked on a
NewTemporalCase-entity.

TempMatch (jcreek.cke.command.TempMatch) This is the action that
initiates the temporal case matching.

CaseGenerator (jcreek.util.CaseGenerator) This is meant to be general
class for generating temporal cases. It does not actually create cases, but im-
plements methods that will of use to such a task.

CaseGeneratorProcess1 (jcreek.util.CaseGeneratorProcess1) This is
a subclass of CaseGenerator that create the cases used in our example. What
rules it follows is described in Chapter 7.3.

ModelUtilities (jcreek.util.ModelUtilities) Contains methods for open-
ing and saving a knowledge model. These methods were taken from the CreekExample-
class. The thought behind extracting the methods from CreekExample and plac-
ing them in its own class, was that it seemed strange that classes should refer to
methods that were used in a class that was an example. The ModelUtilities-class
is used by the CaseGenerator-class, and has also been used in the debugging of
several other classes.

Bibliography

[Aam91] Agnar Aamodt. A Knowledge-Intensive Integrated Approach to
Problem Solving and Sustained Learning. PhD thesis, University
of Trondheim, Department of Electrical Engineering and Computer
Science, 1991.

[Aam93] Agnar Aamodt. Explanation-driven case-based reasoning. In Ste-
fan Wess, Klaus-Dieter Althoff, and Michael M. Richter, editors,
EWCBR, volume 837 of Lecture Notes in Computer Science, pages
274–288. Springer, 1993.

[Aam04] Agnar Aamodt. Knowledge-intensive case-based reasoning in creek.
In Funk and González-Calero [FGC04], pages 1–15.

[AB03] Kevin D. Ashley and Derek G. Bridge, editors. Case-Based Rea-
soning Research and Development, 5th International Conference on
Case-Based Reasoning, ICCBR 2003, Trondheim, Norway, June 23-
26, 2003, Proceedings, volume 2689 of Lecture Notes in Computer
Science. Springer, 2003.

[AGdM03] Josep Llúıs Arcos, Maarten Grachten, and Ramon López
de Mántaras. Extracting performers’ behaviors to annotate cases
in a cbr system for musical tempo transformations. In Ashley and
Bridge [AB03], pages 20–34.

[All83] James F. Allen. Maintaining knowledge about temporal intervals.
Commun. ACM, 26(11):832–843, 1983.

[AP94] Agnar Aamodt and Enric Plaza. Case-based reasoning: Founda-
tional issues, methodological variations, and system approaches. AI
Commun., 7(1):39–59, 1994.

[BM98] C.L. Blake and C.J. Merz. UCI repository of machine learning
databases, 1998.

[Bre04] Tore Brede. Time sequences in case-based reasoning (a reimplemen-
tation in jcreek), 2004.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, second edi-
tion, 2001.

69

BIBLIOGRAPHY 70

[CP02] Susan Craw and Alun D. Preece, editors. Advances in Case-Based
Reasoning, 6th European Conference, ECCBR 2002 Aberdeen, Scot-
land, UK, September 4-7, 2002, Proceedings, volume 2416 of Lecture
Notes in Computer Science. Springer, 2002.

[Cun98] Padraig Cunningham. CBR: Strengths and weaknesses. In IEA/AIE
(Vol. 2), pages 517–524, 1998.

[DS83] Joseph B. Kruskal David Sankoff, editor. Time Warps, String Ed-
its, And Macromolecules: The Theory And Practice Of Sequence
Comparison. Addison-Wesley, 1983.

[FGC04] Peter Funk and Pedro A. González-Calero, editors. Advances in
Case-Based Reasoning, 7th European Conference, ECCBR 2004,
Madrid, Spain, August 30 - September 2, 2004, Proceedings, volume
3155 of Lecture Notes in Computer Science. Springer, 2004.

[GAdM04] Maarten Grachten, Josep Llúıs Arcos, and Ramon López
de Mántaras. Tempoexpress, a cbr approach to musical tempo trans-
formations. In Funk and González-Calero [FGC04], pages 601–615.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge University
Press, 1997.

[Han00] Bjarne K. Hansen. Weather prediction using case-based reasoning
and fuzzy set theory. Master’s thesis, Dalhousie University, Daltech,
2000.

[HR01] Bjarne K. Hansen and Denis Riordan. Fuzzy case-based system
for weather prediction. Engineering Intelligent Systems, 3:139–145,
2001.

[Jac97] Michel Jaczynski. A framework for the management of past expe-
riences with time-extended situations. In Forouzan Golshani and
Kia Makki, editors, Proceedings of the Sixth International Confer-
ence on Information and Knowledge Management (CIKM’97), Las
Vegas, Nevada, November 10-14, 1997, pages 32–39. ACM, 1997.

[Jær01] Martha Dørum Jære. Time sequences in case-based reasoning.
Master’s thesis, Norwegian University of Science and Technology
(NTNU), Department of Computer and Information Science, 2000,
2001.

[JAS02] Martha Dørum Jære, Agnar Aamodt, and P̊al Skalle. Representing
temporal knowledge for case-based prediction. In Craw and Preece
[CP02], pages 174–188.

[JT99] Michel Jaczynski and Brigitte Trousse. Broadway: A case-based sys-
tem for cooperative information browsing on the world-wide-web. In
Julian A. Padget, editor, Collaboration between Human and Artifi-
cial Societies, volume 1624 of Lecture Notes in Computer Science,
pages 264–283. Springer, 1999.

BIBLIOGRAPHY 71

[Ker95] Elpida T. Keravnou. Modelling medical concepts as time-objects.
In Pedro Barahona, Mario Stefanelli, and Jeremy C. Wyatt, editors,
AIME, volume 934 of Lecture Notes in Computer Science, pages
67–78. Springer, 1995.

[KLBL97] John D. Hastings Karl L. Branting and Jeffrey A. Lockwood. In-
tegrating cases and models for prediction in biological systems. AI
Applications, 11(1):29–48, 1997.

[Mar04] Francisco J. Mart́ın. Case-Based Sequence Analysis in Dynamic,
Imprecise, and Adversarial Domains. PhD thesis, Universitat
Politècnica De Catalunya, 2004.

[MK94] Jixin Ma and Brian Knight. A general temporal theory. Comput.
J., 37(2):114–123, 1994.

[MK03] Jixin Ma and Brian Knight. A framework for historical case-based
reasoning. In Ashley and Bridge [AB03], pages 246–260.

[MP04] Francisco J. Mart́ın and Enric Plaza. Ceaseless case-based reasoning.
In Funk and González-Calero [FGC04], pages 287–301.

[PA02] Enric Plaza and Joseph-Lluis Arcos. Constructive adaption. In Craw
and Preece [CP02], pages 306–320.

[Per98] Francisco C. Pereira. Composing music with case-based reason-
ing. In Proc. Of the European Conference of Artificial Intelligence
(ECAI98), 1998.

[RS97] Ashwin Ram and J. C. Santamaria. Continuous case-based reason-
ing. Artificial Intelligence, 90(1-2):25–77, 1997.

[SG01] Rainer Schmidt and Lothar Gierl. Temporal abstractions and case-
based reasoning for medical course data: Two prognostic applica-
tions. In Petra Perner, editor, MLDM, volume 2123 of Lecture Notes
in Computer Science, pages 23–34. Springer, 2001.

[SG02] Rainer Schmidt and Lothar Gierl. Case-based reasoning for progno-
sis of threatening influenza waves. In Petra Perner, editor, Industrial
Conference on Data Mining, volume 2394 of Lecture Notes in Com-
puter Science, pages 99–108. Springer, 2002.

[Sha97] Yuval Shahar. A framework for knowledge-based temporal abstrac-
tion. Artificial Intelligence, 90(1-2):79–133, 1997.

[SHPG96] Rainer Schmidt, Bernhard Heindl, Bernhard Pollwein, and Lothar
Gierl. Abstractions of data and time for multiparametric time course
prognoses. In Ian F. C. Smith and Boi Faltings, editors, EWCBR,
volume 1168 of Lecture Notes in Computer Science, pages 377–391.
Springer, 1996.

[SM99] Yuval Shahar and Mark A. Musen. Evaluation of a temporal-
abstraction knowledge-acquisition tool. In Twelfth Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Alberta,
Canada, 1999.

BIBLIOGRAPHY 72

[Smi91] David K. Smith. Dynamic Programming A Practical Introduction.
Ellis Horwood, 1991.

[Sør00] Frode Sørmo. Plausible inheritance; semantic network inference for
case-based reasoning. Master’s thesis, Norwegian University of Sci-
ence and Technology (NTNU), Department of Computer and Infor-
mation Science, 2000.

[TW03] Asmir Tobudic and Gerhard Widmer. Playing mozart phrase by
phrase. In Ashley and Bridge [AB03], pages 552–566.

[WG93] Andreas S. Weigend and Neil A. Gershenfeld, editors. Time Series
Prediction: Forecasting the future and understanding the past, vol-
ume Proc. Vol. XV of SFI Studies in the Sciences of Complexity.
Addison-Wesley, 1993.

