
The Peer2Me Framework
A Framework for Mobile Collaboration on Mobile Phones

Carl-Henrik Wolf Lund and Michael Sars Norum

June 2, 2005

2

Abstract

This project continues the work started in our depth study project in the fall of 2004, develop-
ing a framework for mobile collaborative applications on mobile phones utilizing Personal Area
Networks (PANs).

This paper describes central, theoretical concepts connected to the Peer-to-Peer (P2P) comput-
ing, the Mobile Ad Hoc NETworks (MANETs) and the Computer Supported Cooperative Work
(CSCW) domains, focusing on "Same-Place-Same-Time" collaboration. We argue how the spread
of PAN technology and mobile phones enable for a broad range of new collaborative applications
supporting both collocated work and spontaneous interaction. Updated information about relevant
technologies and related projects are discussed and evaluated.

The requirements for the Peer2Me framework are presented and updated along with a revised and
improved design. The design and the requirements are a product of an explorative development
effort to develop the next generation of the Peer2Me framework using Java 2 Micro Edition and the
Java APIs for Bluetooth wireless technology (JABWT). The Peer2Me framework is then tested on
actual developers in a workshop arranged in May 2005. Data gathered from this workshop is used
to illustrate the benefits of using a framework like Peer2Me for developing mobile collaborative
applications.

In addition to the actual Peer2Me framework implementation along with its Bluetooth network
module, example applications are designed, implemented and tested in order to verify the suit-
ability of the Peer2Me framework in the problem domain. These applications illustrate different
kinds of aspects of the Peer2Me framework and the domain of mobile collaborative applications.
The tests of these applications are done through enactment of the usage scenarios from which the
applications were derived.

The main results of this project are the technical products comprised of the Peer2Me framework,
the Bluetooth Network module and the example Peer2Me applications, as well as the empirical
data supporting the advantages of Peer2Me and the evaluations upon the suitability of the applied
technologies.

ii

Preface

This master thesis documents the work Carl-Henrik Wolf Lund and Michael Sars Norum have
contributed to the Peer2Me project from January to June in 2005. The Peer2Me project is related
to the MOWAHS (MObile Work Across Heterogenous Systems) project run by the Department of
Computer and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU).

Acknowledgements

We would like to thank Alf Inge Wang for his guidance and sharing of expertise during our work
on this thesis. His support and advice has been invaluable to us along the way.

We would also like to thank the participant in our developer workshop: Tore Aabakken, Trond
Marius Øvstetun, Stein Kåre Skytteren, Øivind Røed, Christain Marshall Rieck, Erik Axel Nielsen
and Arne Johan Hestnes.

Trondheim, June 2, 2005.

Carl-Henrik Wolf Lund Michael Sars Norum

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 3

1.3 Limitations of Scope . 3

1.4 Project Context . 4

1.5 Reader’s Guide . 4

2 Research Questions and Method 9

2.1 Research Questions . 9

2.2 Research Method . 10

2.2.1 The Engineering Approach . 11

2.2.2 The Empirical Approach . 14

2.3 Test Environment . 18

I Prestudy 19

3 Central Concepts 21

3.1 Peer-to-peer Computing . 21

3.1.1 Mobile P2P . 26

3.2 Mobile Ad Hoc Networks . 27

3.3 Collaboration . 30

3.3.1 Computer Supported Cooperative Work 31

3.3.2 Mobile Computer Supported Cooperative Work 31

3.4 Summary . 34

v

CONTENTS

4 Previous Work 35

4.1 Theoretical Results . 35

4.1.1 Usage Scenarios and Requirements Engineering 35

4.2 Technical Results . 37

4.3 Remaining Work . 38

5 State of the Art 39

5.1 BEDD . 39

5.1.1 Evaluation . 40

5.2 JSR-259: Ad Hoc Networking API . 40

5.2.1 Evaluation . 40

5.3 Rocky Road . 41

5.3.1 Evaluation . 41

5.4 Other Projects . 41

5.5 Conclusions . 42

6 Technology 43

6.1 Mobile Phones . 43

6.2 Java 2 Micro Edition . 43

6.2.1 J2ME Architecture . 43

6.2.2 Future Releases . 44

6.3 Wireless Personal Area Network Technologies 45

6.3.1 Bluetooth . 45

6.3.2 ZigBee . 46

6.3.3 Wireless Firewire . 47

6.3.4 Wireless USB . 47

6.3.5 Wireless Local Area Network . 48

6.3.6 Bluetooth and UWB Cooperation . 49

vi

CONTENTS

II The Peer2Me Framework 51

7 Requirements 53

7.1 Functional Requirements . 53

7.1.1 Previously Gathered Requirements . 53

7.1.2 Complete List of Requirements . 53

7.1.3 New Requirements . 53

7.2 Non-functional Requirements . 55

8 Design 57

8.1 Domain Concepts . 57

8.2 High Level Architecture . 58

8.3 Design Changes . 59

8.3.1 Changes Caused by Problems in Original Design 59

8.3.2 Changes Caused by New Requirements 60

8.4 Peer2Me Design . 60

8.4.1 The Domain Package . 61

8.4.2 SlaveNode . 63

8.4.3 The Network Package . 65

8.4.4 The Framework Package . 66

8.4.5 The Util Package . 68

8.4.6 Runtime Behaviour . 68

8.5 Bluetooth Module Design . 70

8.5.1 Bluetooth Protocol Stack . 70

8.5.2 Design Changes . 70

8.5.3 The Bluetooth Package . 72

8.5.4 The Domain Package . 73

8.5.5 The Network Package . 74

8.6 Patterns . 75

8.6.1 Singleton Pattern . 76

8.6.2 Observer Pattern . 76

8.6.3 Publisher-Subscriber Pattern . 76

vii

CONTENTS

8.7 Protocols . 77

8.7.1 The Handshake Protocol . 77

8.7.2 The Routing Protocol . 77

8.7.3 The Disconnection Protocol . 78

9 Implementation 81

9.1 Covered Functional Requirements . 81

9.2 Code Statistics . 84

9.3 Code Examples . 85

9.3.1 Loading the Network Module . 85

9.3.2 Sending Messages . 86

9.3.3 Building Group Objects . 87

9.3.4 Handling Bluetooth Service Search Results 88

III The Peer2Me Applications 91

10 Overview 93

10.1 Design Overview . 94

10.2 Development and Testing . 95

11 Business Card Exchange 99

11.1 Scenario . 99

11.1.1 Goals and Preconditions . 99

11.1.2 Normal Action Sequence . 99

11.1.3 Critical Exceptions and Error Checking 100

11.2 Requirements . 100

11.2.1 Goal Analysis . 100

11.2.2 Inbound Event Analysis . 101

11.2.3 Categorize System Output . 102

11.2.4 Summary . 102

11.3 Design . 103

11.3.1 The Model Package . 103

viii

CONTENTS

11.3.2 The View Package . 103

11.3.3 The Util Package . 107

11.4 Implementation . 107

11.4.1 Business Card Exchange Protocol . 107

12 PAN Instant Messaging 109

12.1 Scenario . 109

12.1.1 Goals and Preconditions . 109

12.1.2 Normal Action Sequence . 110

12.1.3 Critical Exceptions and Error Checking 110

12.2 Requirements . 110

12.2.1 Goal Analysis . 111

12.2.2 Inbound Event Analysis . 112

12.2.3 Categorize System Output . 112

12.2.4 Summary . 113

12.3 Design . 113

12.3.1 The Model Package . 113

12.3.2 The View Package . 115

12.4 Implementation . 115

12.4.1 Filtering Already Connected Nodes . 117

13 Converging top ten list 119

13.1 Scenario . 119

13.1.1 Goals and Preconditions . 119

13.1.2 Normal Action Sequence . 120

13.2 Requirements . 120

13.2.1 Goal Analysis . 121

13.2.2 Inbound Event Analysis . 121

13.2.3 Categorize System Output . 122

13.2.4 Summary . 122

13.3 Design . 122

13.3.1 The Model Package . 123

ix

CONTENTS

13.3.2 The View Package . 124

13.4 Implementation . 125

13.4.1 The Sorting Algorithm . 125

13.4.2 Proactive Disconnection Message . 127

13.4.3 Automatic Searching . 127

IV Developing Peer2Me Applications 129

14 Peer2Me Development Guide 131

14.1 Central Concepts . 131

14.2 Starting the MIDlet . 132

14.2.1 Initializing the Framework . 132

14.3 Slave vs. Master . 133

14.3.1 Slave . 133

14.3.2 Master . 133

14.4 Discovering Groups . 133

14.5 Handling Dynamic Groups . 134

14.6 Sending and Receiving Messages . 135

14.7 Handling Exceptions . 135

14.8 Choosing the Right Network Module . 136

14.9 Complete startApp Methods . 136

15 Using the Persistence Layer in Peer2Me 139

15.1 Making an Object Persistent . 139

15.1.1 Persistence for Nested Objects . 141

15.2 The PersistenceManager Class . 142

V Testing 143

16 Scenario Testing 145

16.1 Business Card Exchange . 145

16.1.1 Test Results . 146

x

CONTENTS

16.2 PAN Instant Messaging . 146

16.2.1 Test Results . 147

16.3 Converging Top Ten List . 149

16.3.1 Test Results . 150

17 Developer Testing 153

17.1 The Education Session . 153

17.2 The Development Session . 153

17.3 The Evaluation Session . 154

17.3.1 Results From the Questionnaire . 154

17.3.2 Post Morten Analysis . 156

17.4 Measurement Data and Statistics . 158

17.5 Summary . 159

VI Discussion 161

18 Encountered Problems 163

18.1 Mobile Phones and J2ME . 163

18.2 Bluetooth . 163

19 Evaluation 165

19.1 Technical evaluation . 165

19.1.1 Framework . 165

19.1.2 Mobile Phones and J2ME . 166

19.1.3 Bluetooth . 166

19.1.4 Development Platform and Environments 167

19.2 The Interpretation Phase of the Goal Question Metric method 167

19.2.1 Evaluation of Goal 1 . 168

19.2.2 Evaluation of Goal 2 . 170

19.3 The Peer2Me applications . 173

19.3.1 User - Explicit User Interaction . 173

19.3.2 Auto - Automatic Collaboration . 174

19.3.3 Hybrid - A Combination of User and Auto 174

xi

CONTENTS

20 Conclusion 177

21 Further Work 181

21.1 Short Term Goals . 181

21.1.1 The Framework in General . 181

21.1.2 Messages . 182

21.1.3 Optimalization . 182

21.2 Long Term Goals . 182

21.2.1 Adopt New Technology . 182

21.2.2 Advanced Functionality . 183

21.2.3 Empirical Work and Applications . 183

VII Appendix 185

A Discovery Time Statistics 187

B The Peer2Me Developer Exercise 189

B.1 Introduction . 189

B.2 Preparing the Framework . 189

B.3 Searching for Other Devices . 189

B.4 Monitoring the Group . 190

B.5 Sending a Message . 190

B.6 Receiving a Message . 190

B.7 When Something Goes Wrong . 190

C Code Examples 191

D Questionnaire for Peer2Me developer testing 197

D.1 Background and Experiences . 197

D.2 The Domain Concepts . 198

D.3 The Peer2Me Development Guide . 200

D.4 The Exercise . 201

D.5 Summary . 201

E Dictionary 203

xii

List of Figures

2.1 Development life cycle, showing the iterative model and the interaction between
the application development and the framework development. 13

2.2 GQM V-model. 16

3.1 The central concepts related to this project. 22

3.2 Taxonomy of computer systems [57]. 22

3.3 Pure P2P Model. 25

3.4 Hybrid P2P Model. 26

3.5 Taxonomy of ad hoc networks [15]. 28

3.6 A singlehop ad hoc network [1]. 29

3.7 A multihop ad hoc network [1]. 29

3.8 A scatternet comprised of three piconets [3]. 30

3.9 A PAN creates a digital sphere around a person. 32

3.10 Three persons physically collocated. 33

6.1 Architectrual overview of J2ME. 44

8.1 Peer2Me domain concepts. 58

8.2 Architectural overview of the Peer2Me framework. 59

8.3 A logical architectural view showing the main packages. 61

8.4 The UML diagram for the domain package. 62

8.5 The UML diagram for the network package. 65

8.6 The UML diagram for the framework package. 67

8.7 The UML diagram for the util package. 68

8.8 A sequence diagram showing the process of initializing the framework. 69

xiii

LIST OF FIGURES

8.9 Overview of the Bluetooth protocol stack [45]. 71

8.10 UML for the Bluetooth package. 72

8.11 UML for Bluetooth Domain package. 73

8.12 UML for the Bluetooth Network package. 79

8.13 Messages in the handshake protocol. 80

8.14 Messages in the routing protocol. 80

10.1 The Model View Controller pattern [7]. 95

10.2 The application development model. 96

10.3 Testing an application on the Wireless Toolkit 2.2. 97

11.1 UML for the Business Card Exchange MIDlet. 104

11.2 UML for the Business Card Exchange MIDlet’s model package. 105

11.3 Overview of graphical user interface in the Business Card Exchange application. 105

11.4 UML for the Business Card Exchange MIDlet’s view package. 106

11.5 UML for the Business Card Exchange MIDlet’s util package. 107

11.6 The BCEX card exchange protocol. 108

12.1 Overview of the classes and packages of PAN IM. 114

12.2 Overview of the classes in the model package. 115

12.3 Overview of gui in the PAN Instant Messaging application. 116

12.4 Overview of the classes in the view package. 116

13.1 Overview of the classes and packages of the Converging Top Ten List applications. 123

13.2 Overview of the classes in the model package. 124

13.3 Overview of gui in the Top Ten List application. 125

13.4 Overview of the classes in the view package. 126

15.1 The persistent objects of Business Card Exchange. 139

16.1 Two people testing the business card scenario in the cafeteria. 146

16.2 A picture from the scenario testing of the PAN Instant messaging application. . . 148

16.3 The three classes of chance encounters. 151

17.1 Michael is explaining the domain concepts of Peer2Me. 154

xiv

LIST OF FIGURES

17.2 Two of the participants working with the programming exercise. 154

17.3 The most difficult parts of the exercise as rated by the participants of the developer
workshop. 156

17.4 The most time consuming parts of the exercise as rated by the participants of the
developer workshop. 157

17.5 A picture from the brainstorming session. 158

xv

List of Tables

2.1 Mobile phone used for testing and their properties. 18

3.1 CSCW dimensions. 31

4.1 Classification Matrix, [37] . 36

4.2 Classification Matrix with scenarios., [37] . 37

6.1 Mobile phones with Bluetooth API. 47

7.1 Functional requirements. 54

7.2 Non-functional requirements. 56

8.1 The different message types used by the framework. 64

9.1 Covered functional requirements. 83

9.2 Covered non-functional requirements. 84

9.3 Framework statistics. 85

9.4 Size of deployable framework jar-file. 85

10.1 Example applications placed in th Classification Matrix. 94

11.1 Business Card Exchange code statistics. 107

12.1 PAN IM code statistics. 117

13.1 Top Ten List statistics. 126

16.1 Test result of the Business Card Exchange scenario. 146

16.2 Test result of the PAN Instant Messaging scenario. 148

xvi

LIST OF TABLES

16.3 Test result of the Converging Top Ten List scenario. 151

17.1 Statements evaluated by the workshop participants. 155

17.2 Time measurement from the developer workshop. 159

17.3 Table showing how many times the developers asked for help during the different
sections on the programming exercise. 159

A.1 Discovery times for Nokia 6600 as master and Sony Ericsson p900 as slave. . . . 188

A.2 Discovery times for Sony Ericsson p900 as master and Nokia 6600 as slave. . . . 188

A.3 Discovery times for Siemens s65 as master and Sony Ericsson p900 as slave. . . 188

xvii

LIST OF TABLES

xviii

Chapter 1

Introduction

Over the last decade mobile phones have become a major part of our every day life. In addi-
tion, the tasks we solve daily have grown more complex thus making human collaboration more
complex, increasing the benefit we have from using computers to support interaction. Traditional
computers are much too large and heavy to be carried around at all times and used for spontaneous
collaboration, but mobile phones have become a very viable option.

Mobile phones today have approximately 96% coverage among the population in Norway, Sweden
follows close with around 90% of the population using a mobile phone, [43]. This high spread of
mobile phones makes them an untapped resource for deploying applications with the potential of
achieving a large user base.

Today’s mobile phones soon have almost the same computational capacity as the personal comput-
ers had when the research field of Computer Supported Cooperative Work (CSCW) first emerged.
In addition to becoming quite computationally powerful, mobile phones also have the advantage
of being small and almost always on, always present and connected. The evolution of these de-
vices to the state they are in today, have enabled us to focus CSCW research on collaboration in
its true form, mobile collaboration. Mobile CSCW has numerous advantages compared to tradi-
tional CSCW using stationary devices, since human interaction seldom is completely stationary.
We move around the office, the city, the country or even the world in our everyday interaction with
other persons in our environment, mobile CSCW gives us the ability to have computer support
anywhere, anytime.

The emergence of mobile phones with some kind of ad hoc network technology built-in creates
opportunities for new forms of computerized collaboration. Mobile and computer supported col-
laboration between people that are collocated is now possible. This project will aim to design
and implement a framework used to create such collaborative applications on mobile phones. The
name of the framework is Peer2Me, which is an abbreviation for Peer-to-peer (P2P) for Java 2
Micro Edition (J2ME).

1.1 Motivation

Personal Area Networks (PANs) are low cost, low range networks that allow users to create spon-
taneous ad hoc networks that do not depend on any central node. These ad hoc network technolo-

1

Introduction

gies enable devices to detect and connect to other devices that are in sufficient proximity and form
mobile P2P networks. P2P networks is a special kind of networks where all nodes have equal func-
tionality. Ad hoc network technologies are ideal for transmitting information between devices that
are physically collocated. With PANs our mobile phones can participate with us in face-to-face
interaction. Such technologies as for instance Bluetooth, InfraRed (IR) or WLAN are more and
more widely supported on mobile phones. Utilizing PAN technology for mobile phones enables
for a broad range of new categories of collaborative applications supporting collocated work and
spontaneous interaction. Different kinds of application scenarios has been previous described by
Kortuem in [36] and by Heinemann in [25].

Previously, many research projects in the field of mobile collaboration have produced specialized
prototypes of mobile P2P and collaborative applications to demonstrate the potential of the emerg-
ing technologies. Developing networked applications requires a lot of effort from developers and
researchers when it comes to understanding the underlying technology, establishing network in-
frastructures and designing communication protocols. The researchers spend a vast amount of
time developing these prototypes because everyone is starting from scratch, developing their own
unique architectures and designs. No one has yet succeeded in making a general framework for
these types of applications on mobile phones.

When we use the term framework we refer to an object oriented framework, defined in [31] as:

“A set of classes that embodies an abstract design for solutions to a family of related
problems.”

In general, instead of designing a specific application architecture, a developer might choose to
develop a framework. The framework will allow the developer to generate a collection of appli-
cations for an entire domain. It might require a significant larger amount of time to develop a
framework rather than a single application. But a completed framework enables higher productiv-
ity and shorter development time for the actual applications, because of its capability of code and
design reuse.

The mobile application market is moving fast, new, more powerful phones are introduced and the
average phone has a lifetime before renewal of approximately two years. This short renewal time
speeds up the adoption of new technology and creates a demand for applications utilizing this
technology. As stated by Tétard in [56], if a new application has a too long time to market, it will
most probably be out of date by the time it is finished. The task of creating the infrastructure for
a network can be a quite tedious effort, increasing the applications time to market. By creating
a framework for applications using ad hoc networks we will introduce a common building block
to build numerous applications on. The applications’ time to market can be reduced drastically if
such buildings block are available to developers.

According to Gert Kortuem, et al. in [36], experiences from the Proem projects shows that stu-
dents in an advanced system engineering course were able to develop complex P2P applications
relatively fast by using the Proem framework. This clearly states that a substancial benefit can be
gained from having an ad hoc networking framework available when developing applications.

On November 2nd 2004, the Java Community Process (JCP) issued a Java Specification Request
(JSR), number 259. The JSR 259 aims to specify an Application Programming Interface (API)
for Ad Hoc Networks for Java 2 Micro Edition (J2ME), [4]. Major mobile phone vendors such

2

1.2 Problem Definition

as Siemens, Nokia and Panasonic initiated this project and its goals overlap with the Peer2Me
framework. The issuing of the JSR 259 illustrates the relevance of creating a framework for ad
hoc networking on mobile devices with J2ME support. More information about the JSR 259 can
be found in Chapter 5.2. There have been numerous attempts at creating a framework or API for
similar purposes before, all of which have failed. At the end of a project conducted during the fall
of 2004, we developed a prototype framework in J2ME supporting basic functionality needed by
collaborative applications on mobile phones. In addition we made a Bluetooth network module
to use as a network layer in the framework. Although this framework was not in perfect working
condition, it served its purpose as a proof of concept showing how developers can benefit from
using such a framework.

By having a framework that deals with the network infrastructure and handles the communication
between all nodes in the network and provides an application’s interface, we think the development
time for collaborative mobile applications can be reduced. This will be very useful for us and other
researches when making proof-of-concept applications. A well documented framework will also
establish terms and definitions that can be used by researchers and other participants in the research
field. A framework for developing applications will also hopefully reduce the time before someone
creates a killer application that will help the field of mobile collaboration to gain acceptance in the
consumer market. All in all we would like to contribute to the development of a standard for ad
hoc collaborative applications on mobile phones.

1.2 Problem Definition

Currently there are no available APIs or frameworks for writing applications that utilize mobile
phones and personal area ad hoc networks. Since mobile applications need to be developed fast
and because developing such applications requires a lot of effort, such a framework is needed.
Java 2 Micro Edition and Bluetooth are currently available on a number of mobile phones and is
ideal for testing the theories related to the creation of such a framework.

The aim of this master thesis is to design, implement and test a framework for mobile collaborative
applications using Java 2 Micro Edition and Bluetooth. The design and implementation will be
based upon a prototype framework developed during our depth project described in [37]. The
testing of the framework will be conducted by developing example applications based on different
usage scenarios. It should also be conducted some empirical work to test the usefulness and
usability of the framework for developers.

In addition to the development of the framework and the writing of this report, the work should
also be published on the Peer2Me website1. Enabling other developers to download and use
the Peer2Me framework in their own applications and hopefully provide feedback to us on their
experiences.

1.3 Limitations of Scope

This project’s main goal is to evolve and refine the prototype implementation of the framework
described in [37]. This gives us a very technical focus throughout the entire project. Our research

1http://www.peer2me.org

3

Introduction

is placed within the CSCW field, but due to the technical focus we will try to limit our discussions
on CSCW issues to a minimum. We will only cover enough of the CSCW field to make our design
and implementation choices.

When it comes to more technical limitations, this project will not consider scatternet implemen-
tations on Bluetooth. We have found that today’s Bluetooth enabled mobile phones are incapable
of setting up scatternets. Because of this, we will limit our Bluetooth implementation to cover
only piconets. This means for instance that advanced routing or resource allocation algorithms are
not needed. A more in depth explanation of these concepts and the differences between them are
given in Chapter 3.2.

1.4 Project Context

This project is connected to the MObile Work Across Heterogeneous Systems (MOWAHS) project.
MOWAHS is cooperative effort between the Software Engineering and the Database Technology
groups of The Department of Computer and Information Science (IDI) at The Norwegian Univer-
sity of Science and Technology (NTNU).

The MOWAHS goals, as stated on the MOWAHS website2 are:

1. Helping to understand and to continuously assess and improve workprocesses in virtual
organizations.

2. Providing a flexible, common work environment to execute and share real workprocesses
and their artifacts, applicable on a variety of electronic devices (from big servers to small
PDAs).

3. Disseminating the results to colleagues, students, companies, and the community at large.

This master thesis is most strongly related to the second goal, creating a development framework
and applications to be used in mobile and spontaneous collaborative environments. This report
along with the Peer2Me website3 is connected to the third goal, spreading the results to colleagues,
students and the community at large.

1.5 Reader’s Guide

The contents of this report vary a lot, both with respect to focus and approach. In order to increase
the readability of the report we will now present a short summary of each chapter. In addition
to this we would like to list chapters we think may be most interesting to certain stereotypical
readers:

Developers interested in writing applications: Should read Chapter 14 and Appendix B. The
chapters in Part III can be used as support literature and examples.

2http://www.mowahs.com
3http://www.peer2me.org

4

http://www.mowahs.com
http://www.peer2me.org

1.5 Reader’s Guide

Readers interested in the problem domain: Should read Chapters 1 and Part I. Some readers
may find Part VI useful as well.

Developers wanting to improve Peer2Me: Should read and understand all of Part II. Part I and
Part III should be used as support literature in order to understand all central concepts.

Chapter 1 Introduction This chapter describes the motivation behind the project and defines the
problem definition.

Chapter 2 Research Questions and Method This chapter describes the research questions that
has arised from the problem definition and the motivation. These questions set the focus
of the whole project. The different research methods used throughout the project is also
described in this chapter.

Part I Prestudy This part of the report documents our project’s prestudy.

Chapter 3 Central Concepts This chapter deals with the central concepts related to our
problem domain. These concepts should be understood to be able to understand the
background and assumptions behind the framework. Most of the following chapters
build on the contents of this chapter.

Chapter 4 Previous Work This chapter summarizes the report written during our fall project,
[37].

Chapter 5 State of the Art This chapter describes similar or overlapping projects from
which we draw experience or knowledge about our problem domain.

Chapter 6 Technology This chapter updates the technology study performed in [37].

Part II The Peer2Me Framework This part of the report documents the requirements, design
and implementation of the actual Peer2Me framework.

Chapter 7 Requirements This chapter describes all requirements of the Peer2Me frame-
work, including the requirements gathered in our previous project and the new require-
ments that have been added during this project.

Chapter 8 Design This chapter gives a complete overview of the design of the framework.
Some central concepts of Peer2Me are introduced that the design is based upon. Then
an architectural overview is given followed by a detailed design also documenting
the changes from the original prototype design. The design of the Bluetooth network
module is also presented, illustrating how a network design is created and functioning
as a guide for developers wanting to add a new network technology package to the
software suite.

Chapter 9 Implementation In this chapter we describe which requirements that are cov-
ered by our implementation and how these requirements are covered by the design and
implementation. Statistics related to the actual code is given. Code examples of some
important implementation details are provided and explained.

Part III The Peer2Me Applications This part of the report documents the example applications
we have developed by using the Peer2Me framework.

5

Introduction

Chapter 10 Overview This chapter introduces the example applications and provides an
overview of how the applications are designed, implemented and tested.

Chapter 11 Business Card Exchange This chapter describes the requirements, design and
implementation of the Business Card Exchange application.

Chapter 12 PAN Instant Messaging This chapter describes the requirements, design and
implementation of the PAN Instant Messaging application.

Chapter 13 Converging Top Ten List This chapter describes the requirements, design and
implementation of the Converging Top Ten List application.

Part IV Developing Peer2Me Applications This part is mainly for developers who want to learn
how to use Peer2Me to develop applications, but it can also be read to learn how the different
parts of the framework are used by the applications in practice.

Chapter 14 Peer2Me Development Guide This is the main chapter of this part. The chap-
ter provides a walk-through on how to write applications using the Peer2Me frame-
work. Two small example applications are used to illustrate the different aspects of
Peer2Me development.

Chapter 11 Using the Persistence Layer in Peer2Me This chapter gives an overview of
how to develop applications that use the persistence layer in Peer2Me.

Part V Testing This part of the report documents the testing of the Peer2Me framework.

Chapter 16 Scenario Testing This chapter describes scenario testing of the three scenarios
that the example Peer2Me applications are based upon.

Chapter 17 Developer Testing This chapter describes the empirical work that has been
conducted to examine to what degree the Peer2Me framework is useful for developers.
The results and conclusions drawn from a developer workshop are provided.

Part VI Discussion This part of the report documents and discusses the results and conclusions
from this project.

Chapter 18 Encountered Problems This chapter discusses the problems encountered dur-
ing the lifetime of the project.

Chapter 19 Evaluation This chapter gives an overall technical evaluation of the frame-
work, an evaluation of the empirical work and an evaluation of the three example
applications that have been developed.

Chapter 20 Conclusion This chapter describes our conclusions.

Chapter 21 Further Work This chapter describes some of the areas we see as possible
future work related to the Peer2Me framework.

Part VII Appendix Appendix A Discovery Time Statistics Statistics of Bluetooth discovery and
connection times gathered during scenario testing.

Appendix B The Peer2Me Developer Exercise The exercise used during the developer
workshop.

Appendix E Dictionary A list describing the most important terms and abbreviations used
in this report.

6

1.5 Reader’s Guide

Appendix C Code Examples The source code for the code examples used in the develop-
ment guide.

Appendix D Questionnaire for Peer2Me developer testing The questionnaire handed out
to the participants of the workshop. Used to evaluate the framework and the workshop
and to retrieve data from the participants.

7

Introduction

8

Chapter 2

Research Questions and Method

In this chapter we will describe which questions we seek to answer through our work, and how we
intend to find the answers. We will describe how we are planning to conduct the work and explain
the different methodologies we are planning to follow.

2.1 Research Questions

The process of creating a framework often includes major challenges and trade-offs. A framework
should be flexible and general enough to include solutions for all the different kind of usage sce-
narios in the problem domain, but still be simple and usable enough to enable high productivity.
To what degree will developers benefit from using such a framework for developing? The domain
of mobile collaborative applications are quite large, involving totally different usage scenarios, so
its natural to wonder if it is possible at all to create such a framework. The framework has to
be based upon new and immature technology. Is this technology suitable and mature enough to
be functional for this purpose? A lot of questions have arised from the problem definition and
motivation part, and we will now formalize these questions and thoughts into research questions.
These research questions will help us focusing our work throughout the project and this report will
lead to the answers of these questions.

In this project we want to find the answers to the following research questions:

1. Is it technical possible to develop and implement a framework like Peer2Me for mobile
phones?

• This question will be answered by trying to create the framework itself. This will
be done by trying to design, implement and test the framework according to the re-
quirements from [37] and the new requirements that will evolve and occur during this
project.

(a) Are mobile phones together with J2ME a suitable technical platform for mobile col-
laborative applications?

9

Research Questions and Method

• This question will be answered by developing the framework itself, developing
example applications utilizing the framework and perform scenario testing on
these applications.

(b) Is Bluetooth a suitable technology for mobile collaborative applications?

• This question will be answered by implementing and using Bluetooth as an exam-
ple network module to the framework. By scenario testing example applications
utilizing the framework and thereby also the Bluetooth module, it will be possible
to evaluate how suitable the Bluetooth technology is for these kinds of applica-
tions.

2. Will developers benefit from using Peer2Me when developing mobile collaborative applica-
tions on mobile phones?

(a) Will it be easier to develop applications using Peer2Me?

(b) Will the development time be reduced when using Peer2Me?

• These questions will be answered by empirical experiments and qualitative evalua-
tions.

3. Is Peer2Me suitable for developing all categories of mobile collaborative applications de-
scribed in the classification matrix? These categories of applications are applications that
require user interaction (User), automatic collaboration between devices (Auto) and a com-
bination of these (Hybrid). Read more about these categories and the classification matrix
in the description of our previous work in Chapter 4.1.1.

4. Are these kinds of collaborative applications useful for end users?

• These two last questions will both be answered by trying to develop example applica-
tions from all the three main categories of applications from the classification matrix.
These applications will be tested according to their real-life scenarios to test upon the
non functional requirements and to evaluate the usability and usefulness for end users.

We have now defined the research questions for this project and explained shortly how we are
going to answer them. In the next section we will describe the different methods, that we are
going to use to answer these questions, more in detail.

2.2 Research Method

Software Engineering is a multi disciplined subject. It involves both technical as well as social
factors and is therefore a very complex field. Most problems adressed in software engineering
are wicked problems, problems with more than one solution where none of the solutions can be
selected as the correct solution. When doing research in the software engineering field a formal
approach is needed to add credibility to the results. In [11], Basili identifies 3 different approaches
to software engineering research. The engineering approach and the empirical approach are part
of the scientific paradigm, while the mathematical approach is part of the analytical paradigm. We
will now give a summary of each of the three approaches:

10

2.2 Research Method

The engineering approach: When using the engineering approach, the problem domain is ana-
lyzed with respect to existing solutions and then new and improved solutions are proposed.
The solutions are built, analyzed and tested until no further improvements can be found.

This approach is very evolutionary and focuses on finding improvements. In order for the
approach to be applicable, one has to have a model of the persons, product, process or
environment.

The empirical approach: When using the empirical approach, a model of the domain is pro-
posed. From this model statistical/qualitative methods are developed and applied to case
studies and analyzed to validate the proposed model.

The empirical approach yields more reliable results since the model must be validated
through case studies. Developing a software suite or a software tool alone is not enough
to give solve the task.

The mathematical approach: When using the mathematical approach, a formal theory or a set
of axioms are proposed. From this, results are derived and if possible compared with em-
pirical data.

For this project we use the engineering approach for continuing the development of the proto-
type described in [37]. The improved prototype will then be tested for usability and usefulness
through the empirical approach. We will now give a more in depth description of the two distinct
approaches.

2.2.1 The Engineering Approach

For the actual development of the Peer2Me framework we will use the engineering approach. Our
prestudy will be used for analyzing our problem domain with the goal of finding all existing solu-
tions. We will then create an improved solution using formal techniques for finding requirements
and then use a iterative development cycle to refine our solution as much as possible. We will now
describe each of the phases used in our engineering approach more thoroughly.

Prestudy

In [37], we did a thorough study of related and relevant projects as well as a technology evaluation
with respect to devices and implementation platforms. The prestudy in this report will be focused
on updating the information gathered in [37]. We will give a domain description with central
concepts, evaluate any new projects we find that relate to Peer2Me and do a thorough technology
update.

Requirements Engineering

In [37], we used a scenario based requirements engineering technique proposed by Sutcliffe in
[54]. We found that scenario based requirements engineering based on textual scenarios worked

11

Research Questions and Method

well for us when elaborating the requirements for the Peer2Me framework. Because of the pre-
vious positive experience with this technique, we have decided to use it for finding requirements
also for the Peer2Me applications.

Sutcliffe’s technique is based on doing a structured analysis of textual usage scenarios. The struc-
tured analysis is comprised of the steps shown below:

Goal analysis: The goal analysis starts by looking at the scenario goals. For each goal, the fol-
lowing questions are asked:

1. Does the user’s goal require computerized support?

2. Does the goal describe a quality or performance property?

3. If the goal does not require computerized support, can it be achieved by a manual
effort?

4. Does the goal require a management decision about resources and responsibilities?

5. Can the scenario goal and its associated task be fully automated?

Inbound event analysis: This step aims to identify the events that take place during a scenario
and elaborate these to find their corresponding functional requirements. When all events
that have implications for the framework have been uncovered, we will compare these to the
requirements found during the goal analysis. If the requirements do not support the event,
requirement will be added to cover the event.

Categorize system output: This step aims to identify what output events that are described by the
scenarios. Output events are events that can be placed in one of the following categories:

Direct commands: These are events that generate a message to the users requiring human
interaction.

Indirect commands: These are events that generate warning messages that recommend
human interaction.

Input requests: These are events that need input from the user. Input requests can be
considered as a special case of direct commands.

Information displays: The messages generated by these events are strictly informational.

By using this method, we are able to move from a textual description of the applications to a solid
set of requirements for each application.

Development Life Cycle

When developing the Peer2Me prototype in the fall of 2004, we used a quite explorative develop-
ment model described in [37]. This explorative model worked out well for us, enabling us to test
and explore the features in J2ME and Bluetooth we were unfamiliar with. Because of our previous
success with explorative development, we have chosen to use the same iterative form of working
on this master thesis as well. However, we now focus more on developing real applications that

12

2.2 Research Method

Figure 2.1: Development life cycle, showing the iterative model and the interaction between the
application development and the framework development.

13

Research Questions and Method

utilize the framework than we did in [37]. This shifted focus have forced us to split the develop-
ment of applications and framework into two different but parallel runs that are kept synchronized
at the evaluation phase as shown in Figure 2.1.

The goal of keeping the development processes synchronized is that the application development
process probably will uncover weaknesses and shortcomings in the Peer2Me framework itself. By
developing the applications in parallel with the framework, we will be able to test the new Peer2Me
features as they emerge and quickly discover, implement and test additional functionality required
by the applications.

2.2.2 The Empirical Approach

Some of the research questions listed above aim to measure qualitative aspects of the Peer2Me
framework. In order to measure these aspects, we need to perform empirical experiments to be
able to draw conclusions. Some of them require us to establish formal metrics that can give a
quantitative answer to our questions.

One of the goals of this master thesis is to check whether a substancial benefit can be achieved
by developing collaborative applications based on a framework providing an API for ad hoc net-
working. Will the existence and usage of such a framework actually decrease the application’s
development time and cut the time to market? Along with qualitative evaluation and conclusions
from related research we will have to perform real-life developer testing to answer these question.

We also want to do empirical experiments that aims to answer if applications developed with
Peer2Me are useful for end users. We will do scenario testing of one application from each of the
three categories of applications we proposed in [37], user-triggered applications, applications uti-
lizing automatic collaboration between phones, and a hybrid of these two categories (see Chapter
4.1.1).

Developer testing

During this project we will perform developer testing of our framework. A major testing activity is
our own development of Peer2Me applications, documented in Part Three of this report. Further,
we also want to test the framework on other developers to get an objective review and to gather
evaluation data.

The main goal of the Peer2Me framework is to make it easier for developers to make mobile
collaborative ad-hoc applications. To evaluate whether Peer2Me fulfills this goal, we will use both
qualitative and quantitative evaluation techniques.

To be able to do a quantitative evaluation, we have to introduce some metrics. You can not un-
derstand what you can not measure, the famous physician Michael Faraday once said. To get a
better overview of how Peer2Me affects developers, we want to do some experiments to gather
some empirical data. The success of empirical experiments is determined by choosing the most
appropriate metrics. You need to know what data to gather before you gather it. We will use the
Goal Question Metric(GQM) method to break down the goals of Peer2Me to a set of metrics to
use in our empirical experiment.

14

2.2 Research Method

The GQM method was originally developed by V.Basili and D.Weis [61]. The method is based
upon both academic research and practical experiences. The basic idea of the GQM method is
to derive measurement metrics from measurement questions and goals. The GQM method is
widely used within the field of software process improvement based upon the fact that successful
improvement of software development is impossible without knowing what your improvement
goals are or how to find metrics related to them. The GQM method forces scientists to decide
upon and define what they actually want to measure before doing the measuring. It helps out with
structuring information associated with measurement.

The GQM method defines a measurement model on three levels [41]:

Conceptual level (goal): A goal is defined for an object, for a variety of reasons, with respect to
various models of quality, from various points of view, and relative to a particular environ-
ment.

Operational level (question): A set of questions is used to define models of the object of study
and then focuses on that object to characterize the assessment or achievement of a specific
goal.

Quantitative level (metric): A set of metrics, based on the models, are associated with every
question in order to answer it in a measurable way.

A goal is often defined according to a special template called the Goal definition template [63].
This template exists to ensure that all important aspects of the goal are defined in the goal descrip-
tion. The goal template is:

Analyze Object(s) of study
for the purpose of Purpose
with respect to their Quality focus
from the point of view of the Perspective
in the context of Context.

The GQM method suggests four different phases in a measurement project [49]:

The Planning phase: The measurement object is selected, defined and characterised and the
measurements activities are planned resulting in a project plan.

The Definition phase: The measurement program is defined. The goal, questions, metrics and
hypotheses are defined and documented.

The Data collection phase: The actual data collection takes place.

The Interpretation phase: The collected data is processed with respect to the defined metrics.
Then these results are used to answer the defined questions. These answers will then be
used to evaluate if the planned goal has been reached.

15

Research Questions and Method

Figure 2.2: GQM V-model.

In the planning phase, goals are defined and then questions and metrics are derived from these
goals. In the interpretation phase metrics and questions are used to evaluate upon the goals. Ac-
cording to [19], this can be viewed as a traditional V-model, as seen in Figure 2.2.

We will do a quasi experiment to gather empirical data regarding the usefulness and usability of
our framework. This experiment will be realized as a programming exercise done by a group
of developers with different backgrounds and experiences. We will use this session to observe
how easily developers learn and use Peer2Me. This event will be our data collection phase of our
measurement project. To be prepared for this experiment we have analyzed what questions we
want to answer. By using the GQM method, we have created GQM trees showing the goals of
the experiment as the roots of the trees. From the goals we have derived questions and metrics
to answer these questions. The goals are formulated by using the goal definition template given
above. The experiment will not provide us with an absolute answer on Peer2Me’s usefulness and
usability, but will give us a strong and valid indication on it.

GOAL 1: Analyze Peer2Me
for the purpose of Deciding if it will be easier to develop applications using the framework
with respect to its Usability, usefulness and effectiveness
from the point of view of the Developers
in the context of Mobile collaborative application development.

QUESTION 1: Is it easy to understand the concepts of Peer2Me?

Metric: Time spent on Peer2Me training.

QUESTION 2: Is it easy to understand the concepts of a Personal Area Network technol-
ogy as Bluetooth?

Metric: Time spent on learning the concepts of Bluetooth.

QUESTION 3: Is it easy to learn developing mobile collaborative applications with Peer2Me?

16

2.2 Research Method

Metric: Time spent before mastering Peer2Me development.
Metric: Number of people that succeeds doing a programming exercise.

QUESTION 4: Is it easy to learn developing mobile collaborative applications with Blue-
tooth?

Metric: Time spent before mastering Bluetooth development.

GOAL 2: Analyze Peer2Me
for the purpose of Deciding if it requires less effort to develop applications using the frame-
work
with respect to its Effectiveness and usefulness
from the point of view of the Developers
in the context of Mobile collaborative application development.

QUESTION 1: How much time does it take to develop an application with using Peer2Me?

Metric: Time spent developing

QUESTION 2: How much time does it take to develop an application without using Peer2Me?

Metric: Time spent developing

QUESTION 3: How much source code is produced when developing an application using
Peer2Me?

Metric: Lines of code

QUESTION 4: How much source code is produced when developing an application with-
out using Peer2Me?

Metric: Lines of code

The metrics regarding Bluetooth development will not be gathered in the experiment. These values
will have to be estimated. It would have been ideal to have an experiment also for gathering these
metrics, but it would be way to time consuming. It is also very difficult to find people with
Bluetooth programming experience. Instead we will do qualitative analysis based upon our own
experiences and knowledge related to Bluetooth programming and mobile ad hoc development
in general to draw the conclusions. We will then compare these qualitative data against the data
gathered in the experiment.

Scenario Testing

Our research questions asked whether the underlying technologies and the Peer2Me framework
itself are suitable for creating applications in each of the three categorizes of mobile collaborative
applications (User, Auto and Hybrid). In order to test this we will test the applications in sur-
roundings similar to the scenario environments. These scenario tests will then give the answer to
the following parts of our research questions:

• Are mobile phones together with J2ME a suitable technical platform for mobile collabora-
tive applications?

17

Research Questions and Method

Phone: Operating
System:

CPU: Java virtual proces-
sor:

Java heap
size:

Storage
Capacity:

Display
Size:

Nokia
6600

Symbian
OS v7.0

32-bit
RISC
104 MHz

35.8 MHz 8977 KB 6 MB 176x208
pixels,
65,536
colors

Sony
Ericsson
p900

Symbian
OS v7.0

32-bit
RISC
ARM9

54 MHz 4645 KB 16 MB 208x320
pixels,
65,536
colors

Siemens
s65

Proprietary
Siemens
OS

Unknown 33.4 MHz 1500 KB 10.3 MB 132x176
pixels,
65,536
colors

Table 2.1: Mobile phone used for testing and their properties.

• Is Bluetooth a suitable technology for mobile collaborative applications?

• Is Peer2Me suitable for developing all categories of mobile collaborative applications de-
scribed in the classification matrix?

• Are these kinds of collaborative applications useful for end users?

The focus of the tests will not be to test technical details or functional requirements of the applica-
tions, but to verify that the chosen technology and Peer2Me works in the selected scenarios. The
tests will be conducted by enacting the scenarios in a manner as close to their original description
as possible. A more extensive description of the scenario tests are given in Chapter 16.

2.3 Test Environment

When testing the Peer2Me framework and the applications, our test environment are going to be
twofold. Continuous testing of functionality and debugging should be done through the use of the
emulator included in Sun Microsystem’s Wireless Toolkit version 2.2. In order to make sure that
the Peer2Me framework and applications run on actual mobile phones as well, we are going to
perform deployment and testing on three different brands of mobile phones. The three phones are
a Sony Ericsson p900, a Siemens s65 and a Nokia 6600. All three phones have support for J2ME
and the Java APIs for Bluetooth Wireless Technology (JABWT). Table 2.1 shows each phone’s
properties. The general information is taken from the specifications of the phones and the more
specific java properties are taken from a benchmark performed by Club Java [14].

18

Part I

Prestudy

19

20

Chapter 3

Central Concepts

The Peer2Me Framework has arised by combining different concepts from several different re-
search domains. In this chapter we will provide an overview of the most important and relevant
aspects of these concepts. The overview will focus on defining the concepts, describing advan-
tages and disadvantages, and summarizing the challenges in the different research domains. By
doing this we document and make explicit which design principles, requirements, considerations
and technologies that underlies the framework. We will also show how other research domains are
related to the framework and how the concepts from these domains influence Peer2Me.

Figure 3.1 shows the central concepts related to this project. Peer-to-Peer (P2P) computing, Mo-
bile Ad Hoc Networks (MANETs) and Computer Supported Cooperative Work (CSCW) all lay
down the foundation for this project. Peer2Me supports mobile P2P applications that support
collocated work within a Personal Area Network (PAN) with piconet communication only. To
understand why and how we have done this focusing and to understand the constraints that are
laid upon the Peer2Me design, we are now going to describe these concepts and how they affect
and relate to Peer2Me.

3.1 Peer-to-peer Computing

Peer2Me is a framework for developing P2P applications on mobile phones. P2P computing is an
alternative architecture to the centralized models of computing. According to Dejan S. Milojicic
et al., computer systems can be classified into centralized and distributed [40] (see Figure 3.2).
Distributed systems can further be classified into a client-server model and a P2P model. In a
client-server model, the server is the central entity and the only provider of service and content.
In P2P computing, resources are shared between peers operating as both servers and clients. The
P2P model can be either pure or hybrid.

The term peer stems from Latin for equal, and to understand what P2P computing is, we first have
to define this term. A peer is a node in a P2P network. It is the fundamental processing unit of any
P2P solution. Brendon J. Wilson defines a peer in [62] as:

“Any entity capable of performing some useful work and communicating the results
of that work to another entity over a network, either directly or indirectly.”

21

Central Concepts

Figure 3.1: The central concepts related to this project.

Figure 3.2: Taxonomy of computer systems [57].

22

3.1 Peer-to-peer Computing

Interaction between peers in a P2P network is independent of any central entities. The P2P com-
munity have not reached consensus on a definition that covers every aspect of P2P. One way of
defining P2P computing is found in [13]:

“Peer-to-peer computing refers to a class of applications that enables users to form
logical networks on top of any infrastructure and to share and exchange digital con-
tent.”

Mats Thoresen presents a lot of different definitions in [57] and from these definitions he suggests
five requirements for a P2P network:

• P2P networks consist of operational computers of server quality. Peers function as both
clients and servers.

• P2P networks have an addressing system independent of Domain Name System (DNS).
P2P systems need a location independent addressing scheme, i.e. addressing independent
of static Internet Protocol (IP) addresses.

• P2P networks are able to cope with variable connectivity, i.e. ad hoc networking. Peers may
leave, due to failures or natural causes, and new peers may join the P2P network at any time.

• Peers access other peers and their resources directly, without passing intermediate entities.
Once a connection is established between two peers, these two peers communicate directly.

• P2P Networks utilizes the resources at the edge of the Internet. Underutilized computer
devices, e.g. home computers, PDAs, cell phones, etc., leverage their collective power.

All these requirements described by Thoresen has influenced the design of Peer2Me. Although
Peer2Me is not using Internet as a communication medium, rather some kind of wireless PAN,
these requirements lay down the foundation for all types of P2P systems, independent of the un-
derlying transport protocol or medium.

This new way of designing distributed systems offers architectural qualities that differs a lot from
the qualities of the classical client-server architectures. We recognize possible advantages of P2P
computing as:

Capacity: Utilizing unused resources like bandwidth, storage and processing power on the edge
of the network.

Independency: A distributed architecture independent of central entities.

Configuration: Because all peers have the same functionality and responsibility the network
becomes more autonomous and self-configurable.

Decentralization: Because functionality and services can be located anywhere in the network, a
P2P network does not introduce bottlenecks in the same way as the client-server architecture
does.

23

Central Concepts

Extensibility: Adding new resources and making the system grow is not complicated. A peer can
join the network and instantly make new services or resources available on the network.

Fault tolerance: There is no single point of failure in a P2P network. The network architecture
easily provides a natural replication scheme.

Scalability: An obvious benefit of decentralization is scalability. Consumers of resources also
produce resources. If a peer does not need a special service or resource, it could offer it
to other peers. In exchange a peer can get needed resources or services from other peers.
The scalability of a P2P network is limited by the amount of centralized operations, like
synchronization and coordination.

All this advantages will be exploited by applications made with Peer2Me. These applications
will be independent of a central server, highly autonomous, fault tolerant, scalable and so on.
Peer2Me handles the infrastructure and generalizes P2P functionality to let developers easier make
applications that has these advantages.

Although the P2P computing paradigm provides a lot of possible advantages some major problems
have to be solved before the full potential of P2P systems can be realized. Three major challenges
are described in [16]:

Searching and routing: How to locate resources and services and how to route messages be-
tween nodes.

Resource management: Contribution and allocation of resources.

Security and privacy: Prevention from malicious peers and protection of personal information.

There is no central mechanism in a P2P network. This means that peers have to search among
other peers to find the resources and services they are looking for. Peers requesting exactly the
same resource from the network might communicate with different peers via different routes, with
different results. Requests for resources and services might result in an immediate response or
might not result in any response at all.

Resource management deals with how peers should contribute and allocate resources. Because
there is no central allocation mechanism, the peers have to decide what kind of services and re-
sources they should provide, and how these will be allocated among the peers. The autonomous
nature of peers give them the possibility of not to contribute to the network at all, simply taking
advantage of other peers sharing their resources. A solution to this problem could be to use con-
cepts from economics, for instance constructing a marketplace, where peers can buy and sell or
trade resources and services as necessary. The microeconomic paradigm was used in the design of
Mariposa [53], a wide-area distributed database system, here all clients and servers negotiate, buy
and sell resources from each other. In this way, queries and responsibility are shared efficiently
across the network.

P2P systems, as other computer systems, are exposed to various security threats. Because peers
are autonomous, some nodes may be malicious and might threaten the security. Malicious peers
might attack the availability of the system, so called denial-of-service (DOS) attack. Methods on

24

3.1 Peer-to-peer Computing

Figure 3.3: Pure P2P Model.

how to trust peers to provide reliable information have to be developed, and users have to be able
to control the use of personal information regarding themselves.

There are two core types of P2P network architectures, called hybrid and pure. The key distinc-
tion between the two architectures is that the hybrid P2P architecture involves one or more central
entity. In a pure P2P network, all peers have the same responsibility. There is no central entity re-
sponsible for managing, controlling or coordinating the services and the resources on the network.
Because all peers have the same responsibility, any peer in the network can be removed without
loosing functionality. Because no central entities exist, much more complex routing and location
protocols have to be implemented. However, because of the totally decentralized architecture, ap-
plications with high availability, fault-tolerance and good scalability can be built. The Peer2Me
framework offers a combination of a pure and a hybrid P2P architecture. Figure 3.3 shows the
pure P2P model with peers marked with the letter P.

In a hybrid P2P network there are central entities responsible for providing services to peers.
These are services like locating resources or routing messages. The central entities are contacted
by peers to provide services or exchange information. Figure 3.4 shows the hybrid P2P model
with peers marked with the letter P and the central entities marked with the letter S.

P2P computing provides a completely different way of designing distributed systems. Devel-
opment using this new paradigm has so far resulted in a broad range of new applications and
different architectural approaches compared to old distributed applications. The most famous ap-
plications worldwide are file sharing systems like Napster and Gnutella and instant messengers
like Microsoft Messenger and ICQ. In [48], Schoder and Fischbach identify five different P2P ap-
plication categories: Instant messaging, digital content sharing, grid computing, collaboration and
web services. Peer2Me is mainly supporting colloborative applications, but may still also cover
applications of instant messaging and digital content sharing in ad hoc networks. Since mobile
phones together with PAN technology are so different from a stationary computer using Inter-
net for communication, it might be totally different applications that will be adopted and widely

25

Central Concepts

Figure 3.4: Hybrid P2P Model.

used on this technical platform. Mobile phones together with PAN technology are opening totally
new possibilities for making new kind of mobile applications covering all different kinds of usage
scenarios.

3.1.1 Mobile P2P

Peer2Me is a mobile P2P system. A mobile P2P system should be realized with a pure P2P model.
The pure P2P model allow peers to join the network and to discover peer resources without a server
infrastructure.

In [35], mobile P2P is defined as follows:

“A mobile P2P system is a distributed mobile system that consists of mobile hosts
that continuously change their physical location and establish peering relationships
among each other based on proximity.”

A mobile P2P system can be implemented in two different ways:

Without an infrastructure: Using an underlying mobile ad hoc wireless network, like Bluetooth
or InfraRed.

With an infrastructure: Using the Internet via a wireless cellular network, like GSM or UMTS.

Peer2Me is designed and will be further evolved to support functionality of a mobile P2P sys-
tem. The framework will cover applications that do not rely on an existing infrastructure. The
framework and its applications will be based upon an underlying mobile ad hoc wireless net-
work. There are clear differences between non-mobile or stationary P2P systems and mobile P2P

26

3.2 Mobile Ad Hoc Networks

systems. Mobile P2P systems are under influences of the general challenges in mobile comput-
ing. The main categories of challenges are identified in [22] as: Communication, mobility and
portability. Communication challenges are about interruption of transfers, problems with low and
varying bandwidth, integration of heterogenous networks and security issues. The challenge of
mobility includes difficulties with addressing devices and location-aware information. Portability
challenges are about reducing the amount of energy used, the fact that small mobile devices has
small screens and user interfaces, low storage capacity and low CPU power. Mobile P2P systems
represent challenges that differ from the challenges in non-mobile P2P systems. Some of these
challenges are given in [36]:

Resource discovery: The dynamic nature of mobile P2P systems requires more dynamic mecha-
nisms for device and resource discovery.

Data sharing and synchronization: High availability is desirable to provide autonomous peers.
To obtain this availability some kind of replication scheme has to be deployed. This intro-
duces the very complex problem of consistency between peers.

All these technical challenges make the design of mobile P2P systems quite difficult. The nature
of mobility introduces possibilities along with difficulties. For example, mobile devices are by
definition moving, making people able to facilitate ubiquitous computing. Because the devices are
moving, they will over time go in and out of range of each other, causing communication links to
fail and transfers to be interrupted. The designer has to balance these kinds of contradictions to be
able to create useful systems.

3.2 Mobile Ad Hoc Networks

Peer2Me is using some kind of PAN to communicate. All communication between nodes in a
Peer2Me application is performed by an underlying PAN. PAN is a subclass of networks called
Mobile Ad Hoc Networks (MANET). MANETs are spontaneous, self-configuring, wireless net-
works with no fixed infrastructure. As devices supporting ad hoc networking are moved around,
they are able to detect and connect to other devices that are within a given proximity. When the
devices are out of range from each other, the connections are broken. In this way, the devices
form spontaneous networks with the possibility of exchanging information. The most widespread
definition of a MANET is found in [38] and is as follows:

“A mobile ad hoc network is a network formed without any central administration
which consists of mobile nodes that use a wireless interface to send packet data.”

Today’s cellular systems, like the Global System for Mobile communications (GSM) and Univer-
sal Mobile Telecommunication System (UMTS) networks, rely heavily on the infrastructure. Base
stations provide coverage, and services are integrated into the system. This architecture provides
good and predictable services, which suits well for cellular telephony. Ad hoc networks have a
number of advantages compared to traditional wireless cellular networks listed in [36]:

27

Central Concepts

Figure 3.5: Taxonomy of ad hoc networks [15].

No infrastructure required: Ad hoc wireless networks do not rely on wired base stations and for
that reason can be deployed in places without existing infrastructure. They can be created
spontaneously and on as needed basis, because they require little configuration to setup.

Self-organization: In a wired network the connection topology of nodes is determined by the
physical cabling and is therefore fixed. This restriction is not present in an ad hoc network.
As soon as two nodes are within proximity of each other, a communication link between
them is automatically formed. As a consequence, the network topology of an ad hoc network
reflects the relative distance of its nodes and is continuously reconfigured as nodes come
within reach of each other.

Fault tolerance: The self-organizing nature of ad hoc networks and the fact that they do not rely
on dedicated stations makes ad hoc networks fault tolerant. In a traditional cellular network,
a fault in the base, will impair all nodes in its cell. In ad hoc networks, a malfunction in one
node can be easily overcome through network reconfiguration.

MANETs can be classified as shown in Figure 3.5. Depending on the coverage range, ad hoc
networks are divided into four main classes. As the coverage range increases so does the power
consumption, requiring more and more powerful devices. A Body Area Network (BAN) is a
network of components distributed on a human body. This could be wearable devices like mobile
phones, MP3 players, headsets, microphones etc that are connected with wireless technology.
The range of BANs corresponds to the human body range, about 1-2 meters. A Personal Area
Network (PAN) connects mobile devices carried by users to other mobile and stationary devices.
The communicating range of a PAN is normally up to 10 meters. Wireless Local Area Networks
(WLAN) has a range of a building or a part of building, about 100-500 meters. Wireless LANs can
be implemented in two different ways. One way is to use some kind of cell-based infrastructure
with a centralized controller for each cell. Another way is to use ad hoc networks for devices to
communicate directly. A Wide Area Network (WAN) covers a much larger area than the other
classes. A WAN may cover areas like a campus or a part of a city.

MANETs can also be classified by the way the nodes form and communicate. We distinguish
between singlehop and multihop networks. In singlehop networks (see Figure 3.6), nodes can
communicate directly and are within reach of each other. In multihop networks some nodes are
out of reach of each other and cannot communicate directly. Therefore, the traffic between these

28

3.2 Mobile Ad Hoc Networks

Figure 3.6: A singlehop ad hoc network [1].

Figure 3.7: A multihop ad hoc network [1].

nodes has to be forwarded by other intermediate nodes. Figure 3.7 shows a multihop network
where the communication paths between the far nodes are given by the black lines.

Peer2Me supports collaborative applications communicating using some kind of PAN. A PAN can
either be a piconet or a scatternet (see Figure 3.8). To explain the differences between these to
network configurations, we will use the Bluetooth PAN technology as an example. A Bluetooth
piconet has a single master device and up to seven slave devices [28]. All these devices are in
communication range of each other, therefore all devices need only a single network hop to com-
municate. The master of the piconet is the one that initiates the connection, and a master in one
piconet can be a slave in another piconet. A device in one piconet can communicate with another
device in another piconet, making piconets interconnecting into scatternets. Communication be-
tween nodes in a scatternet requires advanced multihop communication. For example, a node in
a scatternet may have to forward packets on behalf of other nodes. This functionality is not sup-
ported in any implemented Bluetooth Application Programming Interface (API). Researchers all
over the world are still working on standardizing algorithms and protocols for scatternet commu-
nication. Because of this Peer2Me is only focusing on communication between devices within a
single piconet.

29

Central Concepts

Figure 3.8: A scatternet comprised of three piconets [3].

3.3 Collaboration

Peer2Me is a framework for developing collaborative applications on mobile phones. We will
here give a brief overview of the nature of collaboration between humans and different aspects of
CSCW to understand the complexity of collaborative applications.

When an activity is to be carried out by more than one individual, issues related to communication
and synchronization emerge. This effort can be viewed as a collaborative effort to reach a common
goal or share an experience. Human collaboration is a very complex natural system that we do not
fully understand today. This vast complexity is due to many contributing factors such as:

Explicit communcation: Person-to-person communication is a thoroughly researched field but
still a field we do not completely understand.

Contextual communcation: Much of the information exchanged between the participants in a
collaborative activity is of the informal type. This includes gestures, body language, ambi-
guity in the verbal communication due to the use of irony or sarcasm, etc.

Environment: Often the participants use the environment for communicating, e.g. the use of
props when trying to explain a model or example.

This complexity is further expanded by the use of spontaneous and highly unstructured commu-
nication paths. As an example consider the setting where to workers meet in the hallway of their
office building. They stop and discuss recent advances or problems related to their work. This ex-
change is more informal than having a well planned status meeting, but can often be more efficient
and beneficiary to the participants. Also a less formal setting can give a creativity boost since the
participants find stating their opinion less intimidating.

30

3.3 Collaboration

Real time Asynchronous time
Same place I II
Different place III IV

Table 3.1: CSCW dimensions.

3.3.1 Computer Supported Cooperative Work

The CSCW field focuses on the use of computers to support cooperation, and communication in
collaborative efforts. During the last decade a lot of research effort has been put into the area
of CSCW. In spite of this vast effort, a large number of problems concerning the use of comput-
ers for cooperation remain unsolved. In [44], several advantages of collocating a work force is
pointed out. Some of these advantages are more efficient communication paths, less ambiguity in
communication, more efficient synchronization of work and better knowledge management.

The advantages of being collocated stem from the fact that collaboration is probably the most
complex, advanced and unstructured form of human to human interaction as explained above. The
technology today is too limited to cope with this complexity and therefore not sufficiently suitable
to solve all the problems in the CSCW domain.

According to [21], the domain of CSCW can be comprised by two dimensions, time and place,
as shown in Table 3.1. Most of the unsolved problems in the CSCW domain are related to the
applications that fall into the “Different Place” category. Using CSCW applications for collabora-
tion between users that are not collocated, makes the application the only communication channel
used for collaboration. The users’ abilities to communicate are limited by the insufficiencies in the
technologies and applications used. In the “Same Place” category, especially coupled with “Real
Time”, CSCW becomes more of a support for the collaborative effort to enrich or strengthen the
processes and communication paths. The Peer2Me framework covers both real time and asyn-
chronous applications in the “Same Place” category.

3.3.2 Mobile Computer Supported Cooperative Work

The mobile collaborative applications developed with Peer2Me supports mobile CSCW. Mobile
CSCW can be defined as

“Working together at variuos sites with the use of mobile IT [60].”

This means that using mobile phones or other portable devices as a platform for deploying CSCW
applications places us in the domain of mobile CSCW. Today mobile phones have several advan-
tages when it comes to the area of CSCW.

Mobile phones are highly personal and most users carry their mobile phones with them at all times.
This has some major implications on the use of mobile phones for CSCW purposes:

Identification: Since the mobile phones are personal, they can be used to identify a user.

Personalization: A user can store his or her profile on the mobile phone, enabling the mobile
phone to function according to the user’s specific needs when interacting with other users.

31

Central Concepts

Figure 3.9: A PAN creates a digital sphere around a person.

Availability: Mobile phones can almost be considered to be always on, always present. Due to
this, someone using their mobile phone for CSCW purposes will achieve a high degree of
availability to other users.

During the last couple of years, mobile phones have started to support more than one transport
medium. Still the most important, and the one with the longest range, is the cellular network
provided by the telecom operators. During the last years low-range PANs have started to be
supported by a number of phones. These ad hoc network technologies enable devices to detect and
connect to devices that are in sufficient proximity. This is done in a decentralized manner. These
characteristics relate strongly to the nature of human spontaneity, which makes PANs suitable for
making spontaneous collaborative applications. A PAN creates a digital sphere around a person,
see Figure 3.9. This digital sphere is limited by the communication range of the PAN.

When two or more people come in proximity of each other and their mobile devices are within
communication range, we define the persons as physically collocated. Their digital sphere will
overlap and they will be able to interact (see Figure 3.10). Low-range PANs will force the users
to be physically collocated in order to form a limited ad hoc network. P2P communication can be
used to enable users to communicate within these networks. P2P networks allow peers to join and
leave the network without any configuration, and this fits perfectly with the nature of ad hoc net-
works. A peer is here defined as the person together with his or her mobile phone. Together, PANs
and P2P computing provide the most suitable functionality for building collaborative applications
on mobile phones.

By using low-range PANs for mobile CSCW applications, the collaborative efforts will have to be
either based on chance encounters between peers (impromptu collaboration) or a planned meeting
or gathering of peers (formal collaboration).

32

3.3 Collaboration

Figure 3.10: Three persons physically collocated.

Impromptu collaboration

Proximity-based ad hoc interaction, made possible by mobile phones and PANs, is referred to in
[36] as impromptu collaboration. Impromptu collaboration is recognizable as being:

Opportunistic: The technology enables people to take advantage of opportunities that present
themselves.

Spontaneous: The collaborative effort is not planned in any way in advance.

Proximity based: The peers have to be physically collocated.

Transient: The interaction between peers is very short, e.g. a few minutes or seconds.

Impromptu collaboration can involve different degrees of user interaction. To define the broad
range of impromptu collaborative applications that can be made with Peer2Me, we define the
following three categories of applications:

Requiring user interaction: The application requires user interaction. The users have to explic-
itly trigger the collaboration activities, start the information search or request a service.
Example: Two people at the bus stop that want to exchange MP3 files.

Automatic collaboration: Automatic collaboration between devices. The application is respon-
sible for initiating communication between devices on behalf of the user. The user stores a
profile that defines how the application should act with respect to other devices and avail-
able services. Example: A person automatically exchanges MP3 recommendations with
other people he or she meets when walking around at the campus.

Automatically triggered collaboration: The devices automatically trigger collaboration that re-
quires further user interaction. Example: The mobile devices carried by two different people
automatically communicate without user interaction and discover that the two persons are
sharing the same taste in music. The two people are alerted and are given the possibility to
share MP3 files.

33

Central Concepts

Formal collaboration

Formal collaboration is characterized by being proximity-based, but due to its organized nature it
is not opportunistic and spontaneous. This more formal form of using CSCW on mobile phones is
more suitable in situations where a collection of users automate parts of their collaborative work
process (typically a workflow system).

3.4 Summary

In this chapter we have argued how low-range PANs are suitable for collaborative applications
since they force the users to meet face to face in order to interact and how face to face interaction
preserves the advantages of collocated work. To further support the spontaneous part of mobile
collaboration, the networks formed by the users as they meet should not be dependant upon a
central entity for synchronization or network/service provider. Because of this, P2P networks are
ideal for the forms of collaboration covered by Peer2Me. Interaction among humans is P2P in
nature. In our everyday life, we interact directly with each other, person-to-person, face-to-face,
without the need of an intermediate, e.g. when exchanging information or doing some kind of
collaborative work. Because of these facts, we argue that CSCW applications should be developed
using some kind of P2P architecture. The advantages of CSCW can be combined with those of
being collocated by using always on, always present devices. Information is exchanged between
users as they physically move close together, or all users are present at a meeting and the devices
are used as support to achieve a more efficient work process. These are the basic ideas and concepts
that Peer2Me is based upon.

34

Chapter 4

Previous Work

This master thesis continues the work done in our depth project at the Norwegian University of
Science and Technology (NTNU), described in [37]. The depth study was again based on the work
conducted by Kirkhus and Sveen described in [32] and [33]. This chapter summarizes the results
produced in [37].

4.1 Theoretical Results

Through a thorough study of the Computer Supported Cooperative Work (CSCW) and Peer to
Peer (P2P) domains and all types of related research projects, we set our focus to be spontaneous
collaboration utilizing ad hoc networks and physical proximity between the participants.

A study and evaluation of available technologies presented mobile phones as the most suitable de-
vice for deployment. Java 2 Micro Edition (J2ME) was the most suitable language for implemen-
tation due to its platform independence. By evaluating several wireless Personal Area Network
(PAN) technologies, we chose to use Bluetooth as a demonstration network medium. Because
Bluetooth was supported on more mobile phones than any of its competitors.

4.1.1 Usage Scenarios and Requirements Engineering

In [37], we presented some usage scenarios for mobile collaborative applications. These scenarios
were classified using a classification matrix proposed by us. This classification matrix is shown in
Table 4.1.

The vertical dimension separates applications using routing algorithms for sending messages via
other nodes and applications only sending single hop messages.

Multi-hop: The scenario is based on functionality that enables a search for required resources
conducted on a large network of nodes and subnets tied together in large scatternets. Users
can, network-wise, be located with long distances between them and messages may require
multiple hops to reach their targets.

35

Previous Work

User Interaction/ Advanced P2P func-
tionality

User Auto Hybrid

Multi-hop
Single-hop

Table 4.1: Classification Matrix, [37]

Single-hop: The scenarios is based on the exchange of information or the use of services on
devices located in a local, temporary ad hoc network. The users are, network-wise, close to
each other and messages are transmitted using single hops inside a piconet.

The horizontal dimension classifies the applications by looking at to what degree they require user
interaction.

User: The scenario requires user interaction. The user has to explicitly trigger the collaborative
activities, start the information exchange or request a service.

Auto: Automatic collaboration between devices. The application is responsible for initiating
communication between devices on behalf of the user. The user stores a profile that defines
how the application should act with respect to other devices and available services.

Hybrid: A combination of User and Auto where devices automatically trigger collaboration that
requires further user interaction.

We described and analyzed the following five scenarios to uncover requirements for a framework
supporting collaborative applications on mobile phones. The five scenarios were:

1 - Converging Top Ten List This scenario describes how users in a population can register in-
formation in a top ten list form on their mobile devices. When they meet with other users
from the same population, their lists are compared causing each user’s list to converge to-
wards the true top ten list. The example used is students getting a list of the best beer prices
in the campus area.

2 - Tourist Information This scenario describe how people in a city can collect, provide and
exchange digital information about their city that tourists may be interested in. When new
tourists come to town they can obtain useful information about sights, restaurants, useful
telephone numbers, etc. All this happens automatically, when tourists pass other people
on the streets, the information the tourists are interested in is downloaded from the devices
owned by the passing people.

3 - Ubiqutous Flea-Market If a person wants to buy or sell something, instead of placing an
ad in the local newspaper he can register the item of interest on his mobile phone. When
he goes to the grocery store, the movies, etc his phone will automatically connect to other
buyer/seller phones and check if an interest match can be made. If a match is made, then
the seller’s contact information is downloaded to the buyer’s phone and the buyer can call
the seller when he gets home.

36

4.2 Technical Results

User Interaction/ Advanced P2P func-
tionality

User Auto Hybrid

Multi-hop
Single-hop 5 1, 2, 3 4

Table 4.2: Classification Matrix with scenarios., [37]

4 - Planning the Next Meeting When several people from different companies end a meeting by
setting a date for the next meeting, finding a date that suits everyone can be a tedious effort.
If all the participants have their calendars on their mobile phones or another portable device,
then the meeting chair can set his phone to gather everyone’s free time and calculate the most
suitable date.

5 - PAN Instant Messaging Instant messaging has grown to become almost a ´´killer-application”
on different mediums and is also one of the most common P2P applications. In this scenario
two students are attending a lecture at their university. Both students are very familiar with
the current topic, but need to stay because of some information that will be given later in the
lecture. To pass the time they establish a chat channel with their mobile phones and spend
the first part of the lecture talking with instant messages.

These scenarios were then classified using the classification matrix, shown in Table 4.2. The table
shows no scenarios in the Multi-hop dimension. In [37] we defined multi-hop communication
to be beyond the scope of the depth project and did not focus on such scenarios. This scope
limitations still applies.

The most relevant scenarios were then analyzed to uncover the requirements for a framework
supporting the development of mobile collaborative applications using ad hoc networks. These
requirements will be presented in Chapter 7.

4.2 Technical Results

From our gathered requirements and our design, we started an implementation of the framework
and a Bluetooth network module. The framework and the network module was tested by develop-
ing simple test applications utilizing as much of the framework functionality as possible.

The final code did not cover all of the stated requirements and had some major flaws. One quite
large problem we had was that an application where the interaction between to devices required
a user to press a button would only run on the Nokia 6230 Emulator software and not run on any
of the mobile phones we had available for testing. When using the mobile phones, the application
would freeze and the phone needed to be reset. Another problem we didn’t discover until after we
had finished the project ([37]) was that the implementation we had was unable to connect more
than two phones. In order to discover this problem we needed a third phone which we did not get
until January 2005.

37

Previous Work

4.3 Remaining Work

As stated in the end of [37], some work remained on the framework. The main issues we wanted
to address were:

Functionality: Not all of the functional requirements were fully implemented when we finished
the Peer2Me prototype. One rather large part of our further work would be to implement
more of the requirements. Two major issues addressed were:

• Support for more message formats. Currently only text messages are supported.

• Creating support for message routing between the slaves in a piconet.

Optimalization: A lot of the calls in the prototype are blocking calls. The number of blocking
calls should be kept to an absolute minimum and the degree of parallelity should be as high
as possible.

Reliability: The prototype was unstable, so one quite important issue was to improve it with
respect to stability and fault tolerance.

Building applications: In order to fully test the Peer2Me framework, scenario applications should
be developed and tested to check the suitability of the framework and the chosen technolo-
gies.

38

Chapter 5

State of the Art

In [37], we did a thorough review and evaluation of all projects related to or similar to the Peer2Me
project. We will not repeat all of these results here, but evaluate any new projects we have come
across and give a quick summary of the projects evaluated in [37].

5.1 BEDD

BEDD is a software suite, developed and maintained by the BEDD Corporation, [17]. Originally
BEDD was created as a dedicated device running only BEDD software, but was later migrated to
the Symbian Series 60 OS to allow it to be installed and run on smartphones. Unlike the other
related projects we have evaluated, BEDD is a commercial project and not a research or open
source project. The BEDD software was first released in Singapore in May 2004. Future releases
are planned in Asia, Europe, Middle East, Africa and America. Although BEDD currently is
implemented as a native application, the BEDD Corporation is working on a Java 2 Micro Edition
(J2ME) based client.

BEDD uses Bluetooth as a transport medium for exchanging messages between devices that are
running the BEDD software and that are within Bluetooth range of each other. Since BEDD
is a commercial software suite, there is not much information available as to how the software
actually works, but judging by the number of different modes BEDD can run in, we would guess
that BEDD has some sort of core that handles the basic ad hoc network implementation with the
specific applications using this core to communicate.

Below, we list and describe some of the applications included in the BEDD software suite:

BEDDmates: BEDDmates is an application that connects to other devices running BEDD as
they move within reach and exchange user profiles. All profiles that are downloaded to a
device is stored on the device and made available for browsing later.

The profiles that are downloaded are automatically matched with the local profile and the
user can browse to see if any of the downloaded profiles match his criterias in his search for
friends and or life partners. If the user decides to keep all downloaded profiles stored on his
or her device, the downloaded profiles can also be used to match against other devices the

39

State of the Art

user encounters. This way, profiles can travel through the network and cause matches far
away from their home device.

BEDDbay BEDDbay is an application that allow users to register ads for buying, selling, renting
or trading items. When devices running BEDD come within reach of each other, all ads
available on the devices are transferred.

BEDDtalk BEDDtalk is a live chat application for devices running BEDD. It supports both group
conversations such as chat rooms, personal chat channels and broadcasting of messages.

5.1.1 Evaluation

Of all projects and products we have found that somehow relate to Peer2Me, BEDD is probably
one of the closest ones. The three applications we have described above are very similar to three
of our own scenarios, presented in Chapter 4.1.1.

The downside of BEDD is that it is a commercial product and not available for anyone to use,
neither as a developer framework or as end user applications. However, BEDD proves that there
is in fact a commercial market for services such as the ones described in our scenarios.

5.2 JSR-259: Ad Hoc Networking API

The JSR-259 Ad Hoc Networking API is a Java Community Process (JCP) initiated by mobile
phone vendors such as Siemens, Nokia and Panasonic, [4]. The aim of the JSR-259 is to create
a standard Application Programming Interface (API) for communication between nodes in an
ad hoc network, implemented in J2ME. The API will allow third party vendors to develop P2P
applications for mobile phones.

According to [4], the finished API will feature methods for:

• Service Discovery

• Service Registration

• Service Availability Alert

• Service and Service Capability Inquiry

• Remote Service Consumption

5.2.1 Evaluation

The JSR-259 is a going to be a class library available for application developers, just like Peer2Me.
However, Peer2Me has a head start on the JSR-259. The JSR-259 was initiated in November 2004
and the final draft of the specification release date is set to late in the 4th quarter of 2005.

40

5.3 Rocky Road

The Java Community Process is a quite tedious process and takes a long time to finish, in addition
to this it takes a long while before a new specification is implemented and included on commer-
cially available devices.

The goals of the JSR-259 overlaps with the goals of the Peer2Me framework, but the JSR-259
will not be supported by a large enough number of devices to be useful for at least 1.5 - 2 years.
Peer2Me’s goal is to be useful for third party developers within the next 6 months.

5.3 Rocky Road

RockyRoad is a P2P protocol for both J2ME and J2SE [5]. According to the RockyRoad website
it is also the only P2P protocol that works on both platforms. The RockyRoad implementation is
directed at wireless networking technologies and currently have support for TCP or UDP over IP,
SMS/USSD and GPRS over GSM or TDMA.

The RockyRoad implementation is based around a central entity called the core. The core entity
offers a packet oriented P2P protocol for pure P2P systems. In addition to the pure P2P protocol,
RockyRoad also has support for the concept of privileged peers. A privileged peer is a peer that can
hold information related to certain services such as location of peers, indexing services, security,
etc.

According to the RockyRoad white paper, [2], RockyRoad is scalable, and new transports or
packets can be added without changing the RockyRoad core.

5.3.1 Evaluation

There are many aspects related to RockyRoad that are very interesting when seen in comparison
to the Peer2Me framework. The notion of modular transports is also used in Peer2Me. Such
modularity makes a developer framework more useful. If the framework does almost what you
need, but uses the wrong network transport medium, a new transport module can be created and
then enable the framework for new uses.

One of the main differences between RockyRoad and Peer2Me is the focus on protocol versus
complete network infrastructure. RockyRoad’s core entity enables nodes to communicate via a
specified protocol while Peer2Me offers, in addition to protocols for sending messages, group
management and built in support for service discovery.

5.4 Other Projects

In this section we will give brief summaries of the projects we evaluated for the writing of our
depth project last year [37]. For a more detailed evaluation of these projects refer to [37].

iClouds As described in [26, 25], iClouds is an architecture for impromptu collaboration and
spontaneous exchange of information between users that come within each others digital

41

State of the Art

sphere. The goal of iClouds is to provide a platform for spontaneous collaboration, taking
advantage of the observation that people gathered at the same location often have common
interests or goals.

IPAD/Hummingbird IPAD is a device designed for interpersonal awareness and collaboration,
described in [27]. IPAD/Hummingbird is not a generic platform but a specialized prototype
and can not be used for other scenarios than those already built into it.

JXTA JXTA is a Java framework for creating P2P networks. Two different projects exits for
porting JXTA to wireless mobile devices, JXME proxied and JXME proxyless. JXME
proxied relies on a central device working as a proxy between nodes in the network and
does not cover all the needs of a mature mobile P2P network. JXME proxyless is an attempt
to create a fully matured version of JXTA on mobile phones. No implementations of JXME
proxyless is available with support for PAN, only TCP/IP.

PROEM Proem is an open computing platform that provides a complete solution for developing
and deploying P2P applications for MANETs, [34]. The platform is based on experiences
from developing a series of mobile applications. PROEM is implemented as a platform
independent framework using J2SE. Todays mobile devices only support J2ME and can
therefore not use the PROEM platform for developing P2P applications.

The Spectre Framework The Spectre framework, [33], was designed as a Master Thesis at IDI,
NTNU by Sveen and Kirkhus during the spring of 2004. No implementations of the Spectre
framework exist and will probably never be available. However, the design of the Peer2Me
prototype described in [37] is inspired by the Spectre design and draws on a lot of the
rationalities behind the design decisions made in [33].

5.5 Conclusions

After a thorough mapping and evaluation of projects similar to or overlapping with the Peer2Me
project, it seems that none of them can be used for answering our research questions. The closest
we get to a reusable project is the BEDD software suite, but this is a proprietary project with closed
source and commercial interests. In addition the JSR-259 can also be used for the same purposes
as the Peer2Me framework, however the JSR-259 will not be available on any devices for at least
another year, probably more.

The limitations inherit in the available related projects have led us to the conclusion that we need
to develop our own framework in order to answer the questions posed in Chapter 2.

42

Chapter 6

Technology

This chapter reviews and updates the technology study performed in [37]. We start by discussing
mobile phones as deployment platforms and then move on to review the supporting technologies
that Peer2Me rely on.

6.1 Mobile Phones

In [37], we found that mobile phones were the most suitable device to deploy Peer2Me on due
to their spread in the population. No new device classes that can be used for deploying mobile
collaborative applications have been released since then. This, and the fact that mobile phones
keep evolving and new functionality such as MP3-players, larger storage capacity, etc are built
into the mobile phones convinces us even more strongly that they indeed are the right devices for
deployment.

6.2 Java 2 Micro Edition

In [37] we decided on Java 2 Micro Edition (J2ME) as the most suitable implementation platform.
Since then, no other platforms have been introduced, but there is currently a work in progress that
will update parts of J2ME. We will now give an updated overview of the J2ME platform.

6.2.1 J2ME Architecture

J2ME is basically Java for mobile devices, which means that it is the Java language stripped down
to run on devices that are inferior to modern computers when it comes to CPU frequency, memory
size and storage capacity. The architecture of J2ME is built with a layered approach shown in
Figure 6.1, as described in [39]. The bottom part of J2ME is its virtual machine (VM) called the
Kilobyte Virtual Machine (KVM). All applications running on J2ME are executed by the KVM.
The basic Application Programming Interfaces (APIs) available when running programs through
the KVM are the classes defined in the Connected Limited Device Conifuration (CLDC). In Figure

43

Technology

Figure 6.1: Architectrual overview of J2ME.

6.1 the KVM is placed inside the CLDC box, this is due to the two components’ tight coupling.
CLDC defines generic classes for network connections and utilities that are common across a quite
large family of devices. The next layer of the architecture is the Mobile Information Device Profile
(MIDP) which defines a common API for the mobile device family, e.g. mobile phones.

In addition to the basic components of J2ME described above, optional and/or third party libraries
can be included as well. The Bluetooth APIs, XML parsing libraries, etc are examples of such
packages. The Peer2Me framework will also become one such library that can be included as a
third party library for applications.

The top level of the J2ME architecture are the MIDlets. A MIDlet is an application written for
J2ME using the MIDP class library. All MIDlets must be subclasses of the MIDlet class defined
by the MIDP specification.

6.2.2 Future Releases

At the moment CLDC exists in version 1.0 and 1.1, but no mobile phones supporting the 1.1
version have been released to the consumer market yet. We will probably see mobile phones
supporting the 1.1 version in the near future.

MIDP is currently available in version 1.0 and 2.0, although 1.0 is discontinued from Sun. Almost
all Java enabled phones released this year support MIDP 2.0. The next generation of MIDP is

44

6.3 Wireless Personal Area Network Technologies

already on its way. On March the 22nd 2005, The Java Community Process (JCP) released a new
Java Specification Request (JSR) aiming to define MIDP version 3, [46].

The MIDP 3.0 overview is quite promising and will take Java on Mobile phones to a new level
giving support for, among other things:

• Enable multiple concurrent MIDlets in one VM.

• Specify proper firewalling, runtime behaviors, and lifecycle management issues for MI-
Dlets.

• Enable MIDlets running in the background.

• Enable “auto-launched” MIDlets (e.g. started at platform boot time).

• Enable shared libraries for MIDlets.

The features listed above enable developers to create MIDlets that run as services in the back-
ground. This is a major improvement compared to how J2ME works today. For instance, if the
Peer2Me applications that handle automatic exchange of information is to have any real value for
the end user they need to be as unintrusive as possible. To accomplish this, the application should
be put to run in the the background constantly. Setting MIDlets to execute in the background is not
possible with MIDP 2.0, so the introduction of this ability will be a big advantage for the Peer2Me
framework.

6.3 Wireless Personal Area Network Technologies

Peer2Me is framework for developing mobile collaborative applications utilizing some kind of
Personal Area Network (PAN) to communicate. The layered architecture and the module-based
design makes the framework independent of the underlying network technology. This means that
developers can make applications that are portable and that can be used on different underlying
network technologies. This change in underlying network technology can even be done during
run-time. Applications made with Peer2Me becomes abstract and independent. Peer2Me cur-
rently only supports one network technology, Bluetooth, but the popularity and spread of network
technologies on mobile phones are rapidly changing. In [37], we did a thorough evaluation of
all existing PAN technologies to be able to choose one demonstration network medium. In this
section we will describe what has happened in the area of wireless PAN technology since our last
project. This is because we want developers to have an updated report on the available PANs that
could be possible to implement as a network module in Peer2Me. The section will for each PAN
give an update on specification, the spread of the technology on mobile phones and available APIs
and developer tools.

6.3.1 Bluetooth

Bluetooth is a wireless PAN with a communication range of about 10-100 meters and a communi-
cation speed of about 721 Kbps. In this section we will present the news related to the Bluetooth
technology.

45

Technology

Specification

The current version, version 1.0, was ratified in March 2002. Both the Bluetooth EDR specification
and the Bluetooth 2.0 specification is emerging, read more about these new standards in [37].

Support on Mobile Phones

According to [9] mobile phone producers estimate that about 30-40 percent of all existing mobile
phones supports Bluetooth technology. Soon up to 50 percent of phones shipped will include Blue-
tooth, and Bluetooth products targeted at the mobile phone market has a larger market share than
all other product types together. By 2007, it is estimated that over 70 percent of all mobile phones
supports Bluetooth technology. These estimates proves the market position and wide spread usage
of Bluetooth technology on mobile phones. To be able to run Peer2Me applications on a mobile
phone it is not only necessary to support Bluetooth technology itself in hardware, the software on
the phone must implement the Java APIs for Bluetooth Wireless Technology (JABWT) as well. A
list of which phones that support this API is given in the next section.

Programming APIs and Tools

There are many implementations of the Bluetooth specification (or Bluetooth Stacks) available.
Each of these implementations is necessarily based upon a proprietary API, usually a API writ-
ten in C. This makes developing Bluetooth applications using these APIs a very complex task.
JABWT provides a solution to these problems. JABWT provides a standard API for programming
Bluetooth applications. This standard is developed by the JSR-82 Expert Group. JABWT is an
optional package in the second layer from the top in the J2ME architecture (see Figure 6.1). The
JABWT provide key abstractions that simplify the tasks involved in building a Bluetooth applica-
tion.

Table 6.1 shows which mobile phones that include the JABWT, Bluetooth API, and thereby can
run Peer2Me with the included Bluetooth network module.

6.3.2 ZigBee

ZigBee is a wireless PAN with a communication range of about 30 meters and a communication
speed of about 250 Kbps. It was originally designed as a wireless process and control network,
but is also targeted at consumers as a PAN. In this section we will present the news related to the
ZigBee technology.

Specification

According to their website1, the ZigBee Alliance ratified the first ZigBee specification in the mid-
dle of December 2004. The specification is a result of two years of work contributed by about

1http://www.zigbee.org/

46

6.3 Wireless Personal Area Network Technologies

Manufacturer Model Available for purchase
Nokia 6600 Yes
Siemens S65 Yes
Siemens S66 Only in the US
Siemens S6C Yes
Siemens S6V Yes
Siemens SK65 Yes
Siemens SP65 Not yet
Sony Ericsson P900 Yes
Sony Ericsson P908 Yes
Sony Ericsson P910a Not yet
Sony Ericsson P910c Not yet
Sony Ericsson P910i Not yet

Table 6.1: Mobile phones with Bluetooth API.

100 worldwide companies. The ratification of the specification enables manufactures of ZigBee
technology to verify and obtain ZigBee-compliant certification and later release their products on
the market.

Support on Mobile Phones

The mobile manufacture Pantech and Curitel showed at the ZigBee Alliance Festival at the 8th of
December 2004 a prototype that featured ZigBee technology. Pantech and Cruitel are using the
ZigBee technology to make applications for home networking. The phone includes functionality
for controlling electrical appliances, monitoring temperatures,etc.

Programming APIs and Tools

There are no developer tools or programming APIs for Java or mobile phones.

6.3.3 Wireless Firewire

Since the 1394 Trade Association2 approved a proposal to create a wireless protocol adaption layer
(PAL) to use the 1394 protocol (Firewire) over the IEEE 802.15.3 wireless standard [10] [30] in
May 2004, there has not been any news related to wireless Firewire.

6.3.4 Wireless USB

Wireless Universal Serial Bus (USB) is a new PAN technology currently under development. It is
planned to have a range of 2-10 meters and a communication speed of 480 Mbps. In this section
we will present the news related to the wireless USB technology.

2http://www.1394ta.org

47

http://www.1394ta.org

Technology

Specification

The IEEE organization has the responsibility to develop the Ultra Wide Band (UWB) standard that
Wireless USB is supposed to be based upon. The industry is still waiting for IEEE to release the
standard.

Support on Mobile Phones

According to [6], the electronic manufacture Freescale Semiconductor in partnership with Mo-
torola have developed a prototype of an UWB-enabled mobile phone. This phone was demon-
strated at the Consumer Electronics Show (CES) in Las Vegas, USA, on the 4th of January 2005.
At the same event it was made clear by several participants of the official UWB Forum3 that mobile
phones supporting UWB will not be a reality in the consumer market until at least 2006.

Programming APIs and Tools

The Java Community Process has defined a Java Application Programming Interface (API) for
Universal Serial Bus (USB) communication. The target platform is both the Java 2 Standard
Edition (J2SE) and Java 2 Micro Edition. This Java Specification Request is called JSR 80: Java
USB API. The specification provides a Java API for communicating with devices attached with
USB. It allows Java applications to discover, read, write, and manage USB devices. There is not
yet any support for this API on any mobile phones. However this API can be included as a J2ME
optional package if any mobile phone vendors decide to produce phones with WUSB.

6.3.5 Wireless Local Area Network

Wireless Local Area Network (WLAN) is a technology for creating wireless networks using the
same protocols as the Internet. In this section we will present the news related to the WLAN
technology.

Specification

There is no news or known changes related to the 802.11 standard, that the WLAN technology is
based on, since our last project.

Support on Mobile Phones

Japan’s biggest mobile phone carrier, NTT DoCoMo, released in November 2004 a phone with
WLAN support for the Japanese market, called N900iL and made by NEC. There is although no
sign of a release of this phone in the european market.

3http://www.uwbforum.org/

48

6.3 Wireless Personal Area Network Technologies

Royal Philips Electronics announced March 2005 a new low-power 802.11g wireless LAN semi-
conductor solution for the mobile phone market [8]. Philips claims that this new solution enables
communication through WLAN networks up to five times faster than current 802.11b products on
the market without compromising the battery life of the mobile phone. Since 802.11g and Blue-
tooth use the same frequency spectrum, Philips has made an integrated hardware interface and
algorithm that allows the WLAN and Bluetooth technologies to share spectrum without sacrific-
ing quality or performance.

Programming APIs and Tools

Ad hoc WLAN programming functionality is available for the Symbian Operating System. Sym-
bian is the most popular and widely used operating system for mobile devices. The APIs for ad
hoc WLAN programming is a quite new technology and is described in a technical report from
Nokia released in April 2005 [42]. Unfortunately, there are no ad hoc WLAN support in J2ME.

6.3.6 Bluetooth and UWB Cooperation

On the 5th of May 2005 the Bluetooth Special Interest Group (SIG) announced their intent to
cooperate with the developers of the Ultra Wide Band (UWB) to combine the strengths of both
technologies. The strength of UWB is that it has a very high transfer rate, as high as 480 MBps,
which makes it the fastest available wireless technology for PANs. This will open for applications
that require transfer of large amounts of data, for instance high quality video. These properties
will be combined with the strengths of the Bluetooth technology. The main strengths of Bluetooth
is the maturity of the technology, its spread and large user base, the qualification program and a
comprehensive and widely used application layer.

A combination of UWB and Bluetooth could definitively evolve to the number one wireless PAN
technology and may become the true standard for PAN communication. The main problem of
this project is that the cooperation between two organizations of this size takes a lot of time and
requires a lot of conflicts and disagreements to be resolved. In a press statement, the leader of the
Bluetooth SIG, Michael Foley, estimates the first resulting products of the cooperation to hit the
market “in a couple of years”.

49

Technology

50

Part II

The Peer2Me Framework

51

52

Chapter 7

Requirements

This chapter lists the requirements we have found for the Peer2Me framework both through our
work in this project as well as our work in our previous project described in [37]. The new
requirements added during this project are a result of the evolution of the framework throughout
our explorative and iterative development life cycle, described in Chapter 2.2.1.

7.1 Functional Requirements

In this section we will describe all the functional requirements that we found for the Peer2Me
framework.

7.1.1 Previously Gathered Requirements

Through our depth-project, described in [37], we gathered a set of requirements for the Peer2ME
project. This report documents the continuation of our depth-project and is based on the same
requirements.

7.1.2 Complete List of Requirements

If we combine the requirements from [37] with the requirements introduced during our work on
this report, we get the complete list shown in Table 7.1. New requirements are marked with a “Y”
in the New column. A more thorough description of the new requirements are given in the next
section. The requirements that were implemented and tested in the previous project are marked
with a “Y” in the Covered by prototype column. Requirements that where partially fulfilled in the
previous project are marked with a “P” in the same column.

7.1.3 New Requirements

When analyzing the scenarios with respect to the actual applications, we found that almost all of
them required some sort of persistent data layer. Although Peer2Me is a framework for supporting

53

Requirements

Requirement: Requirement: New: Covered by
prototype

1 FR1: The system must support mobile phones. Y
2 FR2: The system must support creation of ad hoc

networks.
Y

3 FR3: The system must be able to connect to an
existing ad hoc network.

Y

4 FR4: Nodes in a network must be able to ex-
change messages.

P

5 FR5: The system must be able to create a group
of nodes related to a specific application.

Y

6 FR6: The system must support multicasting and
broadcasting of messages within a group.

N

7 FR7: The system must be able to search for other
phones supporting the same service.

Y

8 FR8: The system must support the creation of
groups as closed or open.

N

9 FR9: The system must support to allow a node to
try to join a closed group.

N

10 FR10: The system must allow users in a closed
group to reject other nodes to join the group.

N

11 FR11: The system must support to allow a node
to join an open group.

P

12 FR12: The system must be able to present deci-
sion messages to the user.

N

13 FR13: The system must be able to present in-
formation to the user about framework related
events.

N

14 FR14: The system must be able to support differ-
ent kinds of network mediums.

Y

15 FR15: The applications must be independent of
what network medium that is currently in use
within the system. The application that is using
the system to handle network traffic should not
have to know what kind of network medium that
is used by the device or make any kinds of adjust-
ment to fit a specific network implementation.

Y

16 FR16: The system must be able to identify where
a transfer originated from. To be able to send di-
rect replies to a given device, it must be possible
to see where a transfer originated from.

Y

17 FR17: The framework must include a mecha-
nism for storing objects.

Y N

18 FR18: The framework must include a mecha-
nism for retrieving stored objects.

Y N

Table 7.1: Functional requirements.

54

7.2 Non-functional Requirements

the use of ad hoc networks, we decided to include requirements that deal with persistence handling
in the requirement set. The persistence requirements are:

FR17: The framework must include a mechanism for storing objects.

FR18: The framework must include a mechanism for retrieving stored objects.

7.2 Non-functional Requirements

In [37], we described two non-functional requirements for the Peer2Me framework prototype. One
of our goals in this project is to increase the overall quality of the Peer2Me. Wireless networks are
more unstable than wired networks. For instance, interference between networks can occur and
physical obstacles may prevent data transfer to complete. In order to achieve a better quality of
services provided by the framework, we will add the following non-functional requirements:

NFR3: The framework must adapt to errors that arise due to the unstable nature of wireless
networks.

Also, during the writing of [37], we did not have a complete grasp of the concept of master and
slave in general PAN network topology. The concept of master and slaves in a network forces
all messages between slaves to be routed through the master node. Some applications may send
information not intended for all network members, and the framework should therefore make sure
that nodes do not have access to messages not intended for themselves. This gives us a new
non-functional requirement:

NFR4: The framework must prevent applications from getting access to messages not addressed
to them.

Table 7.2 shows the complete list of non-functional requirements for the Peer2Me framework.
Requirements that are new in this project are marked with the letter “Y” in the New column.

55

Requirements

Requirement: Requirement: New: Covered by
prototype:

1 NFR1: The framework must be able to transfer
messages fast enough for real time interaction.
By fast enough, we mean that normal length text
messages should give the impression of appear-
ing instantly on the remote phones.

N

2 NFR2: The framework must be able to detect the
disconnection of nodes within a group and notify
relevant applications and nodes about this

N

3 NFR3: The framework must adapt to errors that
arise due to the unstable nature of wireless net-
works.

Y N

4 NFR4: The framework must prevent applications
from getting access to messages not addressed to
them.

Y N

Table 7.2: Non-functional requirements.

56

Chapter 8

Design

This chapter describes the design of the Peer2Me framework. First, we give a quick overview
of the central concepts of Peer2Me, then an architectural overview and a detailed design where
changes from the original prototype design described in [37] are mentioned specifically.

8.1 Domain Concepts

In our design, there are a few concepts that are essential for understanding the system. We will
now provide a description of these concepts and the relationship between them.

First we will describe each concept by itself. We will then move on to explain which parts of the
domain model that will need a network specific implementation, and how an application using the
framework can utilize the components.

Framework: The framework entity is the core entity of our framework and will be used as an
interface between the application and the rest of system. It manages resources such as
known peers, available network mediums, etc.

Node: A node is a logical representation of a peer, in our case a mobile phone running the
framework.

Network: The network is an abstraction of the network layer. The applications will usually not
use the the network instance directly but access it through the framework instance.

Service: A service is connected to a specific application and supported by zero or more nodes.

Group: A group is a collection of nodes providing the same service and communicating using
a homogeneous network. Every group is required to have a master node administering the
group.

Message: A message is the entity that can be exchanged between nodes connected in a group. A
message can either be sent to a specific node or to a group as a whole.

Application: An application is the software using the framework to present a service to a user.

57

Design

Figure 8.1: Peer2Me domain concepts.

Of the seven concepts described above, two are dependent of network technology: The network
and node entities. We will create abstractions of these that are independent of the network tech-
nology, thus hiding the network specific issues from the application and the framework itself.
The group entity will in some cases require a network specific implementation, depending on the
capabilities of the underlying network.

In Figure 8.1, the relation between the domain concepts Application, Service, Group and Node
is shown. An application provides one Service to its peers. Along with this service there is an
associated Group. A group consists of several Nodes with different roles. One Node will always
have the role as Master, this is the administrator of the group. Other nodes, working as slaves, will
have to route messages in the network via the master device.

8.2 High Level Architecture

When designing a framework, one of the key challenges is to create a suitable high-level archi-
tecture. The main goal of our architecture is to make the framework as independent of network
technology as possible. This will reduce the work needed when migrating the framework to a new

58

8.3 Design Changes

Figure 8.2: Architectural overview of the Peer2Me framework.

network medium. Figure 8.2 shows our semi-layered architecture for the framework. The leftmost
part of the figure shows the layered view of the framework. Applications use the interface pro-
vided by the Frameworks core functionality. The Framework uses a generic interface to control
technology specific Network modules. This technology specific network module can be imple-
mented with technologies such as Bluetooth, ZigBee or WLAN. This module layer along with the
Network interface layer, is what makes the framework independent of the chosen network tech-
nology. The bottom layer is J2ME itself along with the specific network technology APIs. The
rightmost part of the figure labelled “Domain” contains the abstractions of the domain concepts
Node, Group, Service and Message. The boxes above the one labelled “J2ME + Network specific
APIs” will all be realized as separate packages in our more detailed design.

8.3 Design Changes

We will in this section document the design changes that have been done during this project.

8.3.1 Changes Caused by Problems in Original Design

The prototype developed in 2004 [37], uncovered some shortcomings in our original design. Dur-
ing our work on this project, we have redesigned some parts of the Peer2Me framework to improve
these shortcomings. The following problems have been fixed:

Failing to connect more than two phones: In February 2005, we received an extra mobile phone
for testing the applications we wrote for the Peer2Me framework. Tests uncovered that we

59

Design

were unable to connect more than two phones in a network. We found that we had mis-
understood certain aspects related to the way Bluetooth works and PANs work in general.
The device listening for incoming connections is not functioning as a server, but as a slave
device. The device connected to multiple other devices is the the one searching for other de-
vices. We assumed a client-server model, when we in fact were working with a master-slave
model.

Because of this, we had to reverse our approach to creating the networks with more than
two devices. In order to fix this problem, the search and discovery process along with the
handshake protocol were redesigned.

MIDlets freezing when initiating search: One quite large problem we encountered in [37] was
that the example MIDlets we had created would freeze as soon as the user had to push a
button to trigger an event. Later we discovered that this was because handling user input
should be done as fast as possible. Method calls that take a long time to execute should be
placed in a different execution thread than the event handling. Long event handling time
would cause the event queue to be filled up and freeze the MIDlet’s main execution thread.

Because of this problem, we had to introduce a new execution thread for searching for
available devices.

Sending of messages as a potential block in MIDlet flow: This problem is closely related to prob-
lem of the MIDlets freezing when initiating search. We chose to not take any chances with
this and introduced a message queue and a thread responsible for handling the message
queue. The send message primitive would then only place a message ready for sending into
the queue and return.

Problems catching exceptions in multi threaded environment: In order to deliver error mes-
sages to the actual MIDlet when an exception occurs, we had to introduce an interface for
relaying the exception after it had been handled and wrapped in one of our own exceptions.

Without this interface we did not have any way of presenting the error message to the user,
when for instance the process of sending a message failed.

8.3.2 Changes Caused by New Requirements

All the scenarios we worked with required persistence of data between sessions. Although Peer2Me
was meant to be a framework for ad hoc networks, we decided to include a requirement for persis-
tence manager to make it easier to create MIDlets that required to store and retrieve data. These
two requirements, described in Chapter 7, introduced the concept of persistent objects and a per-
sistence manager into the system.

8.4 Peer2Me Design

We will know document the Peer2Me design package by package. A logical architectural view,
showing the main packages, is shown in Figure 8.3. All the packages, except the util package, in
the Peer2Me framework can be related to the layered architectural overview shown in Figure 8.2.

60

8.4 Peer2Me Design

Figure 8.3: A logical architectural view showing the main packages.

The domain package relates directly to the box labelled domain in the overview, likewise does
the framework package relate to the box labelled framework. The network package contains the
network interface that the framework will communicate with the network module through. The
specific network modules will each have their own package in the Peer2Me package hierarchy.
A network module reference implementation using Bluetooth technology will be described in
Section 8.5.

We will now give a more thorough description of all the packages in the Peer2Me framework. Each
package is presented with a Unified Modeling Language (UML) diagram and a short description
of each of its classes.

8.4.1 The Domain Package

The Domain package provides abstractions for a lot of the concepts presented in Chapter 8.1.
Through the classes in this package, the applications can maintain a view of their environment.

Figure 8.4, shows the UML class diagrams of the classes and interfaces in the domain package.
All classes will now be described individually.

Service

A Service object holds information about the service that the applications using the framework
provide. Applications having registered the same service can find each other when they get within
reach and communicate. An application should always register a Service object with its Frame-
work instance.

61

Design

Figure 8.4: The UML diagram for the domain package.

62

8.4 Peer2Me Design

Node

A device running an application using the framework is represented as a Node. The Node class
is abstract, thus hiding network specific properties from the application and enabling it to focus
utterly on communicating with other applications.

8.4.2 SlaveNode

SlaveNode is a subclass of Node and is used for representing nodes that do not have any network
specific properties.

Group

A collection of connected nodes running the same service is represented as a group. The Group
class provides functionality for administering members of a group, and sending messages to parts
of or the whole group.

Message

The Message class encapsulates the messages sent between nodes in the network and provides
methods for transforming the messages to a sendable format and back. A Message object can
contain multiple parts, each associated with a key and thus giving us the means to retrieve a
specified body part directly. There are some different kind of messages utilized by the framework.
As seen in Figure 8.4, the different message types are identified with an integer identifier. The
different message types along with their identifiers and main purposes are given in Table 8.1. A
major part of the messages are utilized by special Peer2Me protocols described later in this chapter
in Section 8.7.

MessagePart

A MessagePart is one of the atomic parts of the message body. The MessagePart class is abstract,
ensuring that all message parts can be treated alike.

TextMessagePart

As of now, TextMessagePart is the only subclass of MessagePart incorporated in our design.
TextMessagePart provides the application with the means of sending messages consisting of text
only to other nodes.

63

Design

Identifier: Name: Purpose:
1 APPLICATION_MESSAGE This is a normal message, holding data spe-

cific to an application, sent between two ap-
plications on two different nodes.

2 SERVICE_INQUIRY This message is used by the handshake pro-
tocol to find out if a node runs a given ser-
vice. It contains a service identifier.

3 GROUP_DESCRIPTION This message is used by the handshake pro-
tocol. When a node joins a group it receives
a message that holds a description of the
group.

4 ROUTE_MESSAGE This is a normal application message, but its
marked as a route message to ensure that the
master of the group routes it to the given re-
cipients.

5 SERVICE_ACK This message is used by the handshake pro-
tocol to acknowledge that a node runs a
given service.

6 NODE_JOIN This message is used by the handshake pro-
tocol to give information to nodes that an-
other node has joined their group.

7 NODE_LEFT This message is used by the disconnection
protocol to give information to nodes that a
node has left the group.

Table 8.1: The different message types used by the framework.

64

8.4 Peer2Me Design

Figure 8.5: The UML diagram for the network package.

8.4.3 The Network Package

The Network package provides the services and primitives required by the framework to run inde-
pendently of a network implementation.

Figure 8.5, shows the UML class diagrams of the classes and interfaces in the network package.
This package contains only one class, which will be described here.

Network

The Network class is an abstract class giving the other framework modules an interface to the
network layer. The implementation of a Network subclass will function as a central entity in new
network modules.

We have included a design of our Bluetooth network module in Section 8.5 for further elaboration
on how to implement different network transport mediums.

65

Design

8.4.4 The Framework Package

The Framework package contains the application’s main interface for controlling the functionality
of the framework. The framework is instanciated, initialized and controlled through the class
Framework. The interfaces MessageSubscriber and GroupMonitor are used by the framework to
deliver information and commands to the application during runtime.

Figure 8.6, shows the UML class diagrams of the classes and interfaces in the framework package.
All classes will now be described individually.

Framework

The Framework class, as mentioned earlier, is the main controller of the framework. Through
the primitives in this class, the applications can manipulate and use the framework functionality
providing the application with abstractions from the network layer when it comes to groupware
functionality.

GroupDiscoveryListener

The GroupDiscoveryListener interface is implemented by all MIDlets running as slaves in a net-
work. When a master initiates a search for other nodes running the same service and finds the
slave node, the slave node is notified of the master’s discovery. The slave node is then given the
option to join the master’s group.

GroupMonitor

The GroupMonitor interface provides an application with the means to control a group. By imple-
menting this interface, an object can be asked to decide if a new node should be allowed to join
the group or not. The GroupMonitor object will also be notified when nodes join or leave a group.

MessageSubscriber

The MessageSubscriber interface enables the application to subscribe to messages arriving at the
local device. If a class implements this interface, it can be registered with the framework as a
MessageSubscriber and thus be notified of incoming messages.

ExceptionHandler

The ExceptionHandler interface introduces a method that allows Exceptions thrown in other ex-
ecution threads than the main MIDlet thread to be delivered to the application. By implementing
this interface, the MIDlet developer can decide how error messages are displayed to the user.

66

8.4 Peer2Me Design

Figure 8.6: The UML diagram for the framework package.

67

Design

Figure 8.7: The UML diagram for the util package.

8.4.5 The Util Package

The Util package provides support functionality for the applications using the Peer2Me frame-
work. Different kinds of utilities can be gathered in this package. The classes of the util package
is shown in Figure 8.7. We will now describe each class individually.

Persistent

All objects that are to be persistent must implement the Persistent interface with its two methods
resurrect(byte[] data) and byte[] persist().

PersistenceManager

The PersistenceManager class is a wrapper class for the J2ME RecordStore, providing a key-
oriented persistence layer the applications can use for storing objects between applications ses-
sions. Through the PersistenceManager the application can store and retrieve objects that imple-
ment the Persistent interface.

8.4.6 Runtime Behaviour

This section describes selected aspects of Peer2Me’s runtime behaviour. Peer2Me’s runtime be-
haviour is quite complex which makes sequence diagrams grow large and unreadable. Because of
this, we have chosen to use textual descriptions of Peer2Me’s runtime behaviour instead. The only
sequence diagram included is simplified to increase readability.

Initializing the Framework

Figure 8.8 shows the process of initializing the framework and thus making it ready for use. The
application first uses the getInstance method for retrieving the framework instance (not shown
in the figure). When the application has a reference to the framework instance, it is initialized
through the init method. The init method then retrieves and initializes the network instance.

68

8.4 Peer2Me Design

Figure 8.8: A sequence diagram showing the process of initializing the framework.

Sending a Message

The sending of messages in the Peer2Me framework needs to use a separate thread for the actual
sending of the messages. This thread reads from a queue and sends the messages in the queue. If
there are no messages in the queue, the thread sending the messages will pause and wait for the
arrival of new messages.

Sending messages from the application perspective is done by handing over a message object to
the framework. The framework then sets some required fields in the message on behalf of the
application and places the message in the message queue to be processed by the sending thread.

This separate message sending thread is designed to ensure that processing events from the user
interface can be done as quickly as possible. This, due to the fact that J2ME MIDlets have a
tendency to freeze if user interface events are not processed fast enough.

Receiving a Message

When a node receives a message from one of the other nodes, this message is of one of two
categories, messages meant for the framework instance, or messages meant for the application
using the framework. The different types of messages need to be handled differently. In order
to do this we have the method messageReceived in the Network class. Depending on the type of
message (defined by the constants declared in the Message class) various actions should be taken.

Messages intended for the framework are handled and answered if required. These types of mes-
sages include messages in the different protocols and routing messages. Routing messages are a
special case of application messages that needs to be routed through the master. The framework

69

Design

handles the routing messages by resending them as application messages to all nodes in the recip-
ient list. A more detailed description of the different protocols are given later in this chapter, in
Section 8.7.

Messages intended for the applications are received and handed over to the application’s registered
message subscribers.

8.5 Bluetooth Module Design

This section presents the design of the Bluetooth specific parts of our system. These parts is found
in the Bluetooth package, shown in Figure 8.2. The motivation for separating the actual network
layer from the rest of the framework is first of all to make it easier for developers to migrate from
one network medium to another. The separation of the framework functionality and the network
implementation, gives this section two parallel goals. One goal is to present the actual design of
the Bluetooth specific implementation. The other aim is to illustrate how a network technology
implementation is done in order to function as a guide for developers wanting to add a new network
technology package to the software suite.

The prototype of Peer2Me developed in 2004 described in [37], included a Bluetooth module that
this design is based upon. We started out with the original design from [37] and let the design
evolve through this project. For every iteration in our development process, we have revised and
optimized the design. The changes that have occured during the project lifetime are documented
in Section 8.5.2, and then the complete revised design is documented package by package. First
in this section we will give a short overview of the Bluetooth protocol stack.

8.5.1 Bluetooth Protocol Stack

The Bluetooth specifications define the functionality of the Bluetooth protocol stack shown in
Figure 8.9. In this project we will use a Java implementation of this protocol stack, called JSR-
82. The JSR-82 specification, also known as the Java APIs for Bluetooth wireless technology
(JABWT), is an optional package for J2ME defined and developed by the Java Community Process
(JCP).

We will use the RFCOMM protocol that is as shown in Figure 8.9 situated on top of the L2CAP
protocol. RFCOMM, also called the RS232 Serial Cable Emulation Profile, is a simulation of
a serial port connection between two devices providing the programmer with input- and output-
streams for communication. These streamconnections are reliable and bidirectional and are perfect
for communication between nodes in the Peer2Me framework. The RFCOMM implementation in
JSR-82 is based upon the classes StreamConnectionNotifier and StreamConnection defined in
CLDC.

8.5.2 Design Changes

The following design changes have been made in the Bluetooth Network Module during this
project:

70

8.5 Bluetooth Module Design

Figure 8.9: Overview of the Bluetooth protocol stack [45].

Introducing exceptions: In order to pass error messages from the Bluetooth module to the above
layer we had to introduce our own exceptions in the module. In the Bluetooth Domain
package we created a BluetoothNodeException that is thrown if something goes wrong at
the node level. In the Bluetooth Network package we added a BluetoothNetworkException
to handle errors or unexpected events in the that class. The BluetoothNodeException ex-
tends Nodeexception and the BluetoothNetworkException extends Networkexception. This
use of inheritance ensures the same level of independence between the layers.

BluetoothNodelistener interface removed: We removed the BluetoothNodelistener interface sim-
ple because we did not want the BluetoothNetwork class to implement it. Removing this
interface makes the BluetoothNetwork class and the ConnectionService class more tight
coupled, but that does not matter because they are residing in the same package. Indepen-
dency between any layers are not disturbed.

Fixed problems caused by interference with non-Peer2Me Bluetooth-enabled mobile phones:
We have made some adjustments to the different classes to ignore all Bluetooth devices that
are not running the Peer2Me framework, during the device discovery process. This makes
the framework more reliable and speeds up the discovery process.

Generalization of network data and functions: During every iteration of the project we have
tried to generalize as much code as possible from the specific Bluetooth module to the
network interface package of Peer2Me or even further up in the architecture layers. It is very
important that methods and/or attributes that not are specific for the Bluetooth-functionality
resides in the network interface or further up. By moving functionality this way, making

71

Design

Figure 8.10: UML for the Bluetooth package.

the above layers more functional, less effort has to be spent when making another different
specific network module (WLAN, ZigBee, IR,...).

Enabling parallel device and service discovery: When we started out this project, we started a
parallel sub-project which aimed to optimize the Bluetooth module. The main bottleneck
of the performance of Peer2Me is the slow process of device and service discovery offered
by the Bluetooth module and hardware. We tried to optimize the design, mainly in the
ServiceDiscovery-class, by making the discovery processes parallel. When one device is
found during a device discovery, it should be possible to immediately start a service dis-
covery on that device. This design tactic would dramatically reduce the response time of a
complete device and service discovery. But unfortunately during implementation and testing
of this new design we found out that the current version of the JABWT throws an exception
when trying to do anything in parallel while discovering devices and services. Therefore
we had to rewrite the discovery processes to be completely sequential and thereby slow
the Bluetooth module down again. Although the process of discovery were made sequential
again, we kept the infrastructure that makes parallelization possible. In this way, when some
new version of the JABWT is released that offers parallel discovery processes, this can be
easily integrated into the Bluetooth Module.

8.5.3 The Bluetooth Package

The Bluetooth package, shown in Figure 8.10, contains the Bluetooth implementations of the
general domain and network packages. These packages are described in more detailed in the
following sections.

72

8.5 Bluetooth Module Design

Figure 8.11: UML for Bluetooth Domain package.

8.5.4 The Domain Package

This package, shown in Figure 8.11, defines a Bluetooth implementation of the Node concept
described in Section 8.1. A BluetoothNode has to subclasses called RemoteBluetoothNode and
LocalBluetoothNode. RemoteBluetoothNode is a representation of another mobile device that is
running the framework and a LocalBluetoothNode represents the local device.

BluetoothNode

A BluetoothNode is an abstract class that extends the Node class in the framework. It represents
a general BluetoothNode, being a node that is using Bluetooth to communicate. There are two
subclasses that inherits from this class, RemoteBluetoothNode and LocalBluetoothNode. These
two subclasses only have one thing in common, their address, which is stored in the variable
blueToothAddress.

73

Design

LocalBluetoothNode

A LocalBluetootNode is a logical representation of a local Bluetooth device. The BluetoothNet-
work class has a reference to an instance of this class. The BluetoothNetwork uses this class to
obtain information and properties about the local Bluetooth device. A LocalBluetoothNode is cre-
ated when the framework is initialized and associated with the already created BluetoothNetwork
object.

RemoteBluetoothNode

A RemoteBluetoothNode is a logical representation of a remote Bluetooth device that is running
the framework. The class contains different kinds of information regarding a remote node. It
holds a connection to the remote node and a reference to a ServiceRecord object describing the
service on the node. An InputStream and an OutputStream object are used for sending and receiv-
ing messages to and from the remote node. The BluetoothNetwork holds a list over all known
RemoteBluetoothNodes. A RemoteBluetoothNode can be created by a BluetoothNetwork during
service search or by a ConnectionService after the remote node has opened a connection. When
an object of this class is created, an inputstream and an outputstream are opened. A Remote-
BluetoothNode implements the Runnable interface, defined in CLDC 1.0, and the run method
continously reads the inputstream and starts the parsing of incoming messages. When the parsing
process is completed, it delivers a complete Message object to the BluetoothNetwork. Messages
are sent to this node by calling the sendMessage method.

8.5.5 The Network Package

The Network Package defines an infrastructure for Bluetooth communication (see Figure 8.12).
It holds basic network functionality like the creation of connections between devices, search for
devices and services, and functionality for sending and receiving messages.

ServiceDiscovery

This class is responsible for doing the low level Bluetooth discovery operations. It is used by the
BluetoothNetwork class to search for nearby devices running the framework. When a ServiceDis-
covery object is created, a ServiceDiscoveryListener is associated with it. When a device that is
running the framework is found, a ServiceRecord associated with this device is delivered to the
ServiceDiscoveryListener. The ServiceDiscoveryListener, usually a BluetoothNetwork, can then
create a RemoteBluetoohNode that represents this particular device that is running the framework
and further ask this RemoteBluetoothNode if it is running a specific framework service.

The first step of the discovery process is to discover the nearby devices that are in range. A Dis-
coveryAgent class in the Bluetooth Java APIs provides the methods needed for device discovery.
A method called startInquiry is used to start the search and for each device found the method
deviceDiscovered is called.

If a device has the right Class Of Device (COD) code (0x200 for mobile phones), a service search
is initialized on that device. This is a search for Bluetooth services and not framework services.

74

8.6 Patterns

The goal of this process is to find those nearby mobile devices that are running the framework.
The framework is registered as a Bluetooth service with a Universal Unique Identifier (UUID).
This id is a 128-bit value that is unique across space and time. When a service search is completed
the method serviceSearchCompleted is called. A vector containing the ServiceRecords found on
the particular device is then delievered to the ServiceDiscoveryListener.

ServiceDiscoveryListener

A class that wants to do a ServiceDiscovery and receive callbacks from the ServiceDisocvery has
to implement this interface. The class implementing this interface has to define two methods. A
method for handling the completion of a service discovery and another method for dealing with
errors.

BluetoothNetwork

In this class all main network operations are executed or initialized. BluetoothNetwork is the main
class of the Bluetooth network package. The class inherits from the abstract class Network. This
class holds a complete list of all known RemoteBluetoothNodes and a reference to the LocalBlue-
toothNode. The BluetoothNetwork is used by the framework to send messages, perform service
searches, register nodes and monitoring and administering the status and threads specific to the
Bluetooth module.

ConnectionService

When a BluetoothNetwork is initialized, a ConnectionService is also initialized. There is a one-
to-one dependency between BluetoothNetwotk and ConnectionService. When a ConnectionSer-
vice object is created, an RFCOMM server is initialized with a connection string based upon the
framework UUID. This creation returns a StreamConnectionNotifier object. From here the Con-
nectionService runs continuously, using the StreamConnectionNotifer object to accept and open
new connections. For each new connection a RemoteBluetoothNode is created. This RemoteBlue-
toothNode object is given a reference to the BluetoothNetwork and the newly accepted connection.

8.6 Patterns

Design patterns are known solutions to known problems. The introduction of patterns into the
development cycle makes sure that we do not have to resolve problems were known solutions
have been tried and tested previously. Patterns also make sure that the code’s readability increases
for new developers that examine, modify or extend the code.

In our project there are three patterns we see fit to use: The singleton pattern, the observer pattern
and the publisher-subscriber pattern.

75

Design

8.6.1 Singleton Pattern

The singleton pattern is thoroughly described by E. Gamma et.al. in [23]. According to Gamma,
the singleton pattern is used to ensure that a certain class will only be instanciated once. This limit
is enforced by letting the class itself handle the instanciation process, thus giving it full control
over its instances. Gamma also lists two major applications of the singleton pattern which are:

• There must be exactly one instance of a class, and it must be accessible to clients from a
well-known access point.

• When the sole instance should be extensible by subclassing and clients should be able to
used an extended instance without modifying their code.

In the Peer2ME framework, we will use the singleton pattern for two different classes: The Net-
work class and the Framework class. Both are classes that never should be instanciated more than
once. In addition, using the singleton pattern for loading the network instance will make it easier
to fulfill the requirement of modular network support. This is according to the usage list provided
above.

8.6.2 Observer Pattern

In [23], Gamma describes the Observer pattern. The observer pattern is used for notifying one or
more objects of changes to a central entity. In Peer2Me a Group instance is mirrored on all the
nodes in the group. Changes in a group are propagated through the network and the framework
instance that receives a group change message changes its local copy of the group. When this
object changes all consumers, such as the application, of the object needs to be notified. This
is achieved through an observer pattern. This pattern will be realized through the GroupMonitor
interface. An application and other users registers as GroupMonitors and are notified of all changes
to the group.

8.6.3 Publisher-Subscriber Pattern

In [20], Edwards et.al. give a summary of the publisher-subscriber pattern. This pattern is in many
ways similar to the observer pattern in the sense that they both handle events occurring at a central
entity. The difference is that the observer pattern is used for notifying the observers of changes
to one specific entity, whereas the publisher-subscriber is used for notifying the subscriber of the
arrival of a new entity e.g. a message.

In the Peer2Me framework, we will use the publisher-subscriber pattern for three different areas:

• Delivering messages to the application.

• Raising exceptions to the application when something goes wrong.

In both cases, messages are handed over to the subscriber, the application, by the publisher, the
framework. The first case deals with messages received from remote nodes and the second case
deals with notifying the application of exceptions and errors that arise during runtime in the frame-
work. The two cases will be realized by the MessageSubscriber and ExceptionHandler interfaces
respectively.

76

8.7 Protocols

8.7 Protocols

In the area of computer science, a protocol is a convention or standard that controls or enables
the connection, communication, and data transfer between two computing endpoints. To design a
framework that handles the creation of groups, joining of nodes and communication between these
nodes we have to define some basic protocols that we will have implement. The three protocols
described in this section provide basic functionality that a lot of other functionality is based upon.
The protocols have evolved throughout the whole project to become mature, fault-tolerant and
complete.

8.7.1 The Handshake Protocol

When devices connect as nodes in a group, certain messages need to be exchanged as a handshake.
This handshake is done with 4 messages pr. node and complemented with up to 5 messages to
existing members of the group. Figure 8.13 shows a graphical representation of the handshake
protocol. The handshake goes as follows:

1. Service Inquiry When the master device discovers a slave, it sends a service inquiry mes-
sage to check if the slave is running the desired service.

2. Service Acknowledgement If the slave is running the service, it responds with a service
acknowledgment message.

3. Group Description If the group is defined as open, a group description containing all the
nodes in the group is sent by the master to the slave upon receipt of the service acknowl-
edgment. If the group is defined as closed, the application is asked whether or not the new
node should be allowed to join before the group description is sent.

4. Node Joined When the slave receives a group description, it can join the group by sending
a node joined message to master.

5. Node Joined After the master has received a node joined from a new node in the group, this
join message is propagated to all the members of the group.

8.7.2 The Routing Protocol

When nodes that are not masters in a group send messages, the messages are always sent as route
messages. The overall procedure for sending a message is:

1. The slave node sends a route message to the master node.

2. The master node examines the message and sends an application message to all the nodes
in the recipient list. If the master node is included as a recipient, a message is also delivered
to the application running on the master node.

If the node of origin is the master node, the messages will be sent as an application message
immediately and the routing protocol will not be employed. Figure 8.14 shows a graphical repre-
sentation of the route protocol.

77

Design

8.7.3 The Disconnection Protocol

When a connection to another node goes down, this is detected by the framework and a discon-
nection protocol is used to handle the disconnection. How the different network nodes actually
detects a disconnection can vary between different network technologies. A method called dis-
connectNode, situated in the Framework class, is called on the node where the disconnection is
detected. The functionality of this method should conform to the pseudo code given in Listing 8.1.
This pseudo code shows that a master of a group sends out a special kind of message, a node left
message, to all the other slaves in a group when it detects a disconnection of a slave. In this way
the master informs all the other slaves that another slave has disconnected. All the slave nodes that
receive this message then removes the disconnected slave node from the group. The local node
also informs all applications, running on the local node, that related to the disconnected node.

Listing 8.1: Pseudo code for the handling of disconnections of nodes. �
1
2 For each group r e g i s t e r e d on t h e l o c a l node :
3
4 − I f t h e l o c a l node i s t h e m a s t e r o f t h e group :
5 − I f t h e d i s c o n n e c t e d node where a s l a v e i n t h a t group :
6 −Remove t h e node from t h e group
7 −Send node l e f t message t o a l l t h e o t h e r nodes i n t h e group
8
9 − I f t h e l o c a l node i s n o t t h e m a s t e r :

10 − I f t h e d i s c o n n e c t e d node i s t h e m a s t e r o f t h e group :
11 −Remove t h e group from t h e l o c a l node� �

78

8.7 Protocols

Figure 8.12: UML for the Bluetooth Network package.

79

Design

Figure 8.13: Messages in the handshake protocol.

Figure 8.14: Messages in the routing protocol.

80

Chapter 9

Implementation

A lot of the code produced in the prototype described in [37] had to be completely rewritten for
this project. As we have previously mentioned, we had misunderstood parts of the Bluetooth
specification and made wrong assumptions of how the network topology worked. In addition, we
have changed a lot of the code to make the prototype more robust. Robustness is a key feature
on a framework running on ad hoc networks since disconnections happen often and the network
is prone to experience errors. The complete source code from this project can be found on the
attached CD or on our project website, http://www.peer2me.org.

9.1 Covered Functional Requirements

Table 9.1 gives an overview of the functional requirements coverage in the current version of
Peer2Me. Requirements labelled with “Y” in the “Covered” column are fully covered while re-
quirements labelled “P” are only partially covered. We will now give a more in depth description
of each requirement’s coverage:

FR1: Peer2Me is implemented using J2ME and JABWT and will run on any mobile phones with
support for these APIs. This requirement is covered.

FR2: Peer2Me uses Bluetooth and creates wireless ad hoc Bluetooth networks. This requirement
is covered.

FR3: When a new slave comes within range of an existing master, it can be included in the
network when discovered by the master device. This requirement is covered.

FR4: All nodes in a group can send messages to each other by creating message objects and
sending them through the framework instance. This requirement is covered.

FR5: When a master node searches for slaves it discovers all slaves within reach that are running
the same application. The discovered slaves are then given the option to join if the master
allows them to. This requirement is covered.

FR6: A message object can have one or more recipients in its recipient list. This requirement is
covered.

81

Implementation

FR7: Master devices can search for and connect to all slave devices that run the desired service.
This requirement is covered.

FR8: Group objects have a property that specifies whether or not the group is closed or not. This
property can be set at any time. This requirement is covered.

FR9: When a slave is discovered by a master administering a closed group, the application is
asked whether or not the slave should be allowed to join or not. This requirement is covered.

FR10: See FR9. This requirement is covered.

FR11: When a slave is discovered by a master administering an open group the slave is automat-
ically given the option of joining the group. This requirement is covered.

FR12: At the moment, there is no general mechanism for presenting decision messages, just
simple information messages, to the user other than some specialized cases such as group
administration. This requirement is therefore only partially covered.

FR13: Like FR12 there is no general way of delivering information notices to the framework
other than the specialized cases when exception occurs, group changes or nodes are discov-
ered. This requirement is therefore only partially covered.

FR14: The loading of the network module is completely dynamic, using the default J2ME class
loader. At the moment, there is only a Bluetooth module available, but the framework is
independent of the module to the degree that new modules can be implemented and loading
into the framework without changing the framework code. This requirement is covered.

FR15: See FR14. This requirement is covered.

FR16: All messages are tagged with a sender address before they are sent from the originating
node, thus ensuring that the sender of a message is known. This requirement is covered.

FR17: Objects can define how they are to be stored through the persistence interface. The per-
sistence manager can then store persistent objects in J2ME’s record store with an associated
key. This requirement is covered.

FR18: Persistent objects that are stored in the record store can be retrieved via the persistence
manager by their associated key. This requirement is covered.

A lot of the actual programming effort on the Peer2Me framework has been directed at quality
aspects related to the non-functional requirements. Table 9.2 shows an overview of the non-
functional requirements status, in the “Covered” column, “Y” means fully covered, “P” means
partially covered and “N” means not covered. We will now give a more detailed description of
how each non-functional requirement is covered in the Peer2Me implementation:

NFR1: When entering a message on one device and pressing the send button, it instantly appears
on the receiving device’s display. The actual sending of the messages is done in a dedicated
thread always waiting for messages to send.

82

9.1 Covered Functional Requirements

Requirement: Requirement text: Covered?
1 FR1: The system must support mobile phones. Y
2 FR2: The system must support creation of ad hoc net-

works.
Y

3 FR3: The system must be able to connect to an exist-
ing ad hoc network.

Y

4 FR4: Nodes in a network must be able to exchange
messages.

Y

5 FR5: The system must be able to create a group of
nodes related to a specific application.

Y

6 FR6: The system must support multicasting and
broadcasting of messages within a group.

Y

7 FR7: The system must be able to search for other
phones supporting the same service

Y

8 FR8: The system must support the creation of groups
as closed or open.

Y

9 FR9: The system must support to allow a node to try
to join a closed group.

Y

10 FR10: The system must allow users in a closed group
to reject other nodes to join the group.

Y

11 FR11: The system must support to allow a node to
join an open group.

Y

12 FR12: The system must be able to present decision
messages to the user.

P

13 FR13: The system must be able to present information
to the user about framework related events.

P

14 FR14: The system must be able to support different
kinds of network mediums.

Y

15 FR15: The applications must be independent of what
network medium that is currently in use within the
system. The application that is using the system to
handle network traffic should not have to know what
kind of network medium that is used by the device or
make any kinds of adjustment to fit a specific network
implementation.

Y

16 FR16: The system must be able to identify where a
transfer originated from. To be able to send direct
replies to a given device, it must be possible to see
where a transfer originated from.

Y

17 FR17: The framework must include a mechanism for
storing objects.

Y

18 FR18: The framework must include a mechanism for
retrieving stored objects.

Y

Table 9.1: Covered functional requirements.

83

Implementation

Requirement: Requirement: Covered:
1 NFR1: The framework must be able to transfer mes-

sages fast enough for real time interaction.
Y

2 NFR2: The framework must be able to detect the dis-
connection of nodes within a group and notify relevant
applications and nodes about this.

Y

3 NFR3: The framework must adapt to disconnections
and errors that arise due to the unstable nature of wire-
less networks.

P

4 NFR4: The framework must prevent applications
from getting access to messages not addressed to
them.

P

Table 9.2: Covered non-functional requirements.

NFR2: A node can detect and handle the disconnection of other nodes. A disconnection protocol
has been implemented according to the design described in Chapter 8.7. Although this
functionality is implemented and tested successfully on all available mobile phones, the time
it takes for a node to detect the disconnection of another vary a lot between the different
mobile phone manufacturers. This is because the Bluetooth functionality in the different
mobile phones are not equally implemented.

NFR3: We have introduced a mechanism for notifying the framework and applications of errors
and exceptions that occur during runtime. However, we have not yet completely covered all
options when it comes to securing the framework from all possible failures or quality issues.
For instance, if a message is sent from one node to another we have no mechanism for the
acknowledgement of a received message. This implies that a node can not be 100% sure
that a message that has been sent also has been received by the recipient. This requirement
is therefore only partially covered.

NFR4: The routing protocol ensures that messages are never delivered to applications not in the
recipient list. However, by implementing a hostile network module applications developers
can listen to messages by intercepting them before they reach the framework instance. In
order to protect messages from being read by unauthorized group members some kind of
crypthographic strategy will have to be employed. Such a strategy is not implemented today,
therefore this requirement is labelled as partially covered

9.2 Code Statistics

In Table 9.3 we list some statistical aspects related to the produced Peer2Me source code in order
to illustrate the size of the Peer2Me framework in its current state. The column labelled “Value”
contains the measurements of the framework specific code only. The column labelled “Including
apps” contains measurement for all code produced for this project including all applications and
test code. In Table 9.4 we have listed the size of the framework in a deployable format. The

84

9.3 Code Examples

Aspect: Value: Including
apps:

Lines of code: 1163 2716
Number of classes: 26 71
Number of interfaces: 6 7
Number of packages: 18 29
Methods (avg. pr. class) 7.169
Maximum inheritance tree depth: 6 6

Table 9.3: Framework statistics.

Version: Size of jar-file
Normal 40 KiloByte
Obfuscated 11 KiloByte

Table 9.4: Size of deployable framework jar-file.

table shows that the framework is more than small enough to be deployed on mobile phones. The
obfuscated package jar-file of the framework is only 11 KiloBytes.

9.3 Code Examples

This section will present some code examples that illustrate some of the implementation tech-
niques we have used to fulfill the design and the related requirements.

9.3.1 Loading the Network Module

One code example we would like to show from the Peer2Me framework is the loading of the net-
work module. This is, as described in Chapter 8.6, done through a singleton pattern. In addition,
the actual network implementation is loaded through the default J2ME class loader at runtime.
Listing 9.1 shows the actual implementation of the singleton pattern. The Network class is an
abstract class which serves as a superclass for all network modules. The static variable single-
ton holds a reference to the loaded network module. On line 9, the actual network module is
dynamically loaded and instanciated.

Listing 9.1: Singleton pattern loads the network module. �
1 p r i v a t e s t a t i c Network s i n g l e t o n ;
2
3 p u b l i c s t a t i c synchronized Network g e t I n s t a n c e (S t r i n g nodename , S t r i n g

d e s c r i p t i o n , S t r i n g p r e f e r r e d N e t w o r k) {
4 i f (s i n g l e t o n != n u l l) {
5 re turn s i n g l e t o n ;
6 }
7
8 e l s e {
9 t r y {

85

Implementation

10
11 s i n g l e t o n = (Network) C l a s s . forName (p r e f e r r e d N e t w o r k) . n e w I n s t a n c e () ;
12 s i n g l e t o n . i n i t (nodename , d e s c r i p t i o n) ;
13
14 } catch (E x c e p t i o n e) {
15 E x c e p t i o n H a n d l e r eh = Framework . g e t I n s t a n c e () . g e t E x c e p t i o n H a n d l e r ()

;
16 i f (eh != n u l l) {
17 eh . h a n d l e E x c e p t i o n (new Peer2MeExcept ion (" F a i l e d i n i t i a l i z i n g

ne twork module : " + e . ge tMessage ())) ;
18 }
19 }
20 re turn s i n g l e t o n ;
21 }
22 }� �

9.3.2 Sending Messages

The process of sending messages is of course an important part of the framework. We will now
show how we have implemented one part of this functionality. The two methods, sendMessage,
shown in Listing 9.2, and processQueue, shown in Listing 9.3, are responsible for handling outgo-
ing messages on the framework level. They are both situated in the Framework class. The whole
process starts with an application that calls the sendMessage method. The sendMessage method
thereby decides if this message will have to be routed through the master or not. Then it adds some
framework-specific information to the message and puts it in a queue. The synchronized method
processQueue is then notified. The processQueue method implements a simple First In and First
Out (FIFO) queue for application messages. This ensures that messages are sent correctly and that
parallel messages from different applications are sent sequential. Messages are processed in two
different ways in the processQueue method, as route messages or ordinary messages.

Listing 9.2: The method for initiating the sending of messages in the Framework class. �
1
2 p u b l i c synchronized void sendMessage (Message message , S e r v i c e t o S e r v i c e) {
3
4 Group c u r r e n t G r o u p = g e t S e r v i c e (t o S e r v i c e . g e t S e r v i c e I D ()) . ge tGroup () ;
5 i f (c u r r e n t G r o u p . g e t M a s t e r () == ge tLoca lNode () && message . ge tMessageType ()

== 0) {
6 message . se tMessageType (Message . APPLICATION_MESSAGE) ;
7 } e l s e i f (message . ge tMessageType () == 0) {
8 message . se tMessageType (Message .FRAMEWORK_MESSAGE_ROUTE_MESSAGE) ;
9 }

10
11 T e x t M e s s a g e P a r t t e x t 1 = new T e x t M e s s a g e P a r t () ;
12 t e x t 1 . s e t D e s c r i p t i o n (" s e r v i c e ") ;
13 t e x t 1 . s e t F i e l d V a l u e (t o S e r v i c e . g e t S e r v i c e I D ()) ;
14
15 message . addMessageBodyPar t (t e x t 1) ;
16
17 message . s e t S e r v i c e I d (t o S e r v i c e . g e t S e r v i c e I D ()) ;
18 messageQueue . addElement (message) ;
19
20 n o t i f y () ;

86

9.3 Code Examples

21
22 }� �

Listing 9.3: The processing of the message queue. �
1
2 p r i v a t e synchronized void proces sQueue () {
3 t r y {
4 i f (messageQueue . s i z e () == 0) w a i t () ;
5 Message m = (Message) messageQueue . f i r s t E l e m e n t () ;
6 messageQueue . removeElement (m) ;
7 i f (m. g e t S e n d e r () == n u l l) {
8 m. s e t S e n d e r (c u r r e n t N e t w o r k . ge tLoca lNode ()) ;
9 }

10
11 t r y {
12 i f (m. getMessageType () == Message . APPLICATION_MESSAGE) {
13 c u r r e n t N e t w o r k . sendMessage (m) ;
14 }
15
16 e l s e {
17 Node m a s t e r = g e t S e r v i c e (m. g e t S e r v i c e I d ()) . ge tGroup () . g e t M a s t e r

() ;
18 c u r r e n t N e t w o r k . sendRouteMessage (mas te r , m) ;
19 }
20
21 } catch (Ne tworkExcep t ion e1) {
22 i f (e x c e p t i o n H a n d l e r != n u l l) e x c e p t i o n H a n d l e r . h a n d l e E x c e p t i o n (e1

) ;
23 }
24
25 }
26
27 catch (I n t e r r u p t e d E x c e p t i o n e) {
28 i f (e x c e p t i o n H a n d l e r != n u l l) e x c e p t i o n H a n d l e r . h a n d l e E x c e p t i o n (e1) ;
29 }
30 }� �

9.3.3 Building Group Objects

The abstract Network class holds a major part of the functionality for receiving and processing
incoming messages. Incoming messages are processed according to their message identifiers. This
functionality is mainly implemented in a method called messageReceived. We will now explain
an example of how this method handles incoming messages. As explained above, each different
message type requires different processing and actions. We will now show how the Network class
handles incoming messages of one special category, the GROUP_DESCRIPTION messages. This
message is part of the handshake protocol, described in Chapter 8.7. When a node joins a group, it
receives a message from the master of the group that holds a description of the group. The code in
Listing 9.4 shows how the incoming message is processed. The message holds information about
the group and this information is then used to create a group object reflecting this information.
The master is set and the different slaves in the group are created and registered. Finally, when the
group object is completely created, it is delivered to the Framework class that notifies and delivers

87

Implementation

the group object further to the right application. The application can then handle the group object
as it wants, for instance sending a message to one of the nodes in the group.

Listing 9.4: The making and delivering of a group object from a description message. �
1
2 Group groupFound = new Group () ;
3 MessagePa r t m;
4 S e r v i c e s e r v i c e = Framework . g e t I n s t a n c e () . g e t S e r v i c e (message . g e t M e s s a g e P a r t ("

s e r v i c e ") . g e t F i e l d V a l u e ()) ;
5
6 i f (s e r v i c e != n u l l) {
7 m = message . g e t M e s s a g e P a r t (" group ") ;
8 groupFound . s e t S e r v i c e (s e r v i c e) ;
9 groupFound . setName (m. g e t F i e l d V a l u e ()) ;

10 S t r i n g m a s t e r = message . g e t M e s s a g e P a r t (" m a s t e r ") . g e t F i e l d V a l u e () ;
11 Node masterNode = getNode (m a s t e r) ;
12 groupFound . s e t M a s t e r (masterNode) ;
13
14 S t r i n g s l a v e ;
15 i n t s l a v e I d = 0 ;
16
17 whi le ((m = message . g e t M e s s a g e P a r t (" s l a v e " + s l a v e I d)) != n u l l) {
18 s l a v e = m. g e t F i e l d V a l u e () ;
19 Node s laveNode = getNode (s l a v e) ;
20 i f (s l aveNode == n u l l) {
21 s laveNode = new SlaveNode () ;
22 s laveNode . s e t A d d r e s s (s l a v e) ;
23 r e g i s t e r N o d e (s l aveNode) ;
24 }
25 s l a v e I d ++;
26 }
27
28 Framework . g e t I n s t a n c e () . g r o u p D i s c o v e r e d (groupFound) ;
29
30 }
31
32 e l s e {
33 E x c e p t i o n H a n d l e r eh = Framework . g e t I n s t a n c e () . g e t E x c e p t i o n H a n d l e r () ;
34 i f (eh != n u l l) {
35 eh . h a n d l e E x c e p t i o n (new NetworkExcep t ion (" Rece ived g r o u p d e s c r i p t i o n f o r

unknown u n a v a i l a b l e s e r v i c e : " + message . g e t M e s s a g e P a r t (" s e r v i c e ") .
g e t F i e l d V a l u e ())) ;

36 }
37 }� �

9.3.4 Handling Bluetooth Service Search Results

We also want to show one code example from the Bluetooth network module. As explained in the
Bluetooth module design chapter, Chapter 8.5, the Bluetooth module is based upon the Java APIs
for Bluetooth Wireless Technology (JABWT). Listing 9.5 shows a part of the ServiceDiscovery
class of the Bluetooth network module. This class is responsible for searching after other nodes
(mobile phones) that support Bluetooth and that run the Peer2Me framework. The code in the
listing shows a part of the class that is responsible for finding all nodes that actually run the

88

9.3 Code Examples

Peer2Me framework. This search is done among all the nodes that have been found supporting
Bluetooth. When the search is finished, all the nodes in the result set are then handed over to the
BluetoothNetwork class by using a listener interface. The BluetoothNetwork class then further
establishes connections to all the different nodes for further communication.

Listing 9.5: Handling Bluetooth service search results. �
1
2 i f (d e v i c e s F o u n d . s i z e () >0) {
3 t r y {
4 a g e n t . s e a r c h S e r v i c e s (a t t r i b u t e s , uu ids , (RemoteDevice) d e v i c e s F o u n d .

f i r s t E l e m e n t () , t h i s) ;
5 d e v i c e s F o u n d . removeElementAt (0) ;
6
7 }
8 catch (B l u e t o o t h S t a t e E x c e p t i o n e) {
9 E x c e p t i o n H a n d l e r eh = Framework . g e t I n s t a n c e () . g e t E x c e p t i o n H a n d l e r () ;

10 i f (eh != n u l l) {
11 eh . h a n d l e E x c e p t i o n (new B l u e t o o t h N e t w o r k E x c e p t i o n (" Could n o t s t a r t

s e r v i c e s e a r c h "+e . ge tMessage ())) ;
12 }
13 }
14 }
15
16 e l s e {
17 i f (s e r v i c e s F o u n d . s i z e () ==0) {
18 E x c e p t i o n H a n d l e r eh = Framework . g e t I n s t a n c e () . g e t E x c e p t i o n H a n d l e r () ;
19 i f (eh != n u l l) {
20 eh . h a n d l e E x c e p t i o n (new N o S e r v i c e s F o u n d A t A l l E x c e p t i o n ("No s e r v i c e s

found a t a l l : "+ s e r v i c e s F o u n d . s i z e () +" \ n ")) ;
21 }
22 }
23
24 e l s e {
25 f o r (i n t i =0 ; i < s e r v i c e s F o u n d . s i z e () ; i ++) {
26 l i s t e n e r . s e r v i c e F o u n d ((S e r v i c e R e c o r d) s e r v i c e s F o u n d . e l emen tAt (i) ,

s e r v i c e I D) ;
27 }
28 }� �

89

Implementation

90

Part III

The Peer2Me Applications

91

92

Chapter 10

Overview

This part of the report will present and describe the applications we have developed using the
Peer2Me framework. The purpose of making example applications is manifold. As described in
our engineering approach in Chapter 2.2.1, we developed applications in parallel with the frame-
work to easily and quickly test, discover and add new necessary functionality. The example appli-
cations will be used both for testing the usefulness of the framework itself, but also the usability
and benefit for users of such collaborative applications deployed in real-life scenarios.

When choosing what kind of example applications we wanted to develop, it was important that
these applications would differ so much that they together would cover the most important aspects
of the framework and the possible usage scenarios. Thus, we decided to make one application from
each main category from the classification matrix described in Chapter 4.1.1. The classification
matrix together with the chosen applications are shown in Table 10.1.

We will now give a short description of the three example applications:

Business Card Exchange: This application provides users with functionality for creating and
storing business cards. These business cards can be made available and exchanged with
other users. This application is placed in the “Hybrid” category because users can download
a business card from a mobile phone without notifying or trigging any interaction from the
owner of the phone. This means that the application handles user requests automatically,
which places the application in the “Hybrid” category. The scenario that this application
is based upon was not included in our last report, [37], but was described by Sveen and
Kirkhus in [33]. This application was chosen because it illustrates the concepts of a “Hy-
brid” application in a simple way.

PAN Instant Messaging: Personal Area Network (PAN) Instant Messaging allows users to create
and connect to small groups. Inside these groups the users can communicate with each other
through text messages. All communication and interaction in this application is explicitly
triggered by the users and the application is therefore placed in the “User” category. This
application is based upon a scenario described in our previous report [37]. This application
was chosen as an example application because it involves communication between a group
of many nodes and utilizes all aspects of routing and group dynamics.

93

Overview

User Interaction/ Ad-
vanced P2P functional-
ity

User Auto Hybrid

Multi-hop
Single-hop PAN Instant Mes-

saging
Converging Top
Ten List

Business Card Ex-
change

Table 10.1: Example applications placed in th Classification Matrix.

Converging Top Ten List: This application allows users to create and maintain top ten lists of
prices of services or products. The application will automatically send these lists to other
devices. The lists will be compared, calculated, updated and thereby converge towards
the true top ten list. All the communication between phones is done automatically by the
application. This places the application in the “Auto” category. This application is based
upon a scenario described in our previous report [37]. This application was chosen because
it illustrates the idea of automatic exchange of information very well and because it has a
potential to help participants in the consumer market to find the best and cheapest products
and services.

These applications will be further described in the following chapters of this part of the report.

10.1 Design Overview

In this section we will explain the general and common design principles of the three example
Peer2Me applications. All three applications are based on the Model-View-Controller (MVC)
architectural pattern. This pattern was invented by Trygve Reenskaug in the late 70s while working
with the object oriented language Smalltalk. As stated in [47], MVC was conceived as a general
solution to the problem of users controlling a large and complex data set. The main idea behind
the pattern is to separate responsibility in an application and thereby classify objects into three
modules:

Model: This is a representation and encapsulation of the real world data on which the application
operates.

View: This presents the data from the model to the user using some kind of interaction technique.

Controller: This module responds to all kinds of events, including user interaction, and then
invoke changes in the model, the view or both.

This way of designing applications ensures maintainability and reusability and makes the applica-
tions more scalable. For instance, it is easy to add a new and different view without changing the
model and the logic of the application can be changed in the controller without affecting the view
or the model. A graphical representation of these concepts and their relations is shown in Figure
10.1.

94

10.2 Development and Testing

Figure 10.1: The Model View Controller pattern [7].

For each Peer2Me application, there is a package of classes holding the view part of the application
and another package holding the model. The view part is mainly classes that utilizes the GUI
functionality of MIDP 2.0 and presents information to the user by using lists, forms and other
graphical objects. These views are also functioning as event listeners. When a user interacts with
a view, the view will notify the controller about the event and the controller will then decide on
further action. The controller of each application is a class that holds all Peer2Me specific code,
for instance, joining nodes, sending messages and handling exceptions. In this way, the controller
handles all the events that relates to the application, by handling events both from inside and
outside of the application. The controller inherits from the MIDP 2.0 MIDlet class which means
that it implements the methods startApp, pauseApp and destroyApp that characterizes a MIDlet.

10.2 Development and Testing

Developing mobile applications is a quite tedious process. To test the applications on the mobile
phones in their real environments, they first have to be deployed on the phones and thereby tested
in surroundings that may involve slow and unstable network connections. In Chapter 2.2.1, we
described the overall development life cycle model for the framework and its applications. Figure
10.2 shows a more detailed process model of how we have worked when developing the three ex-
ample applications. This model involves two different levels of testing activities. When we started
developing applications we soon realized that it was far too time consuming to deploy and test
the applications on the phones for each iteration. We therefore iterated a few times (design, im-
plementation, emulator testing and evaluation) without testing the applications on the real phones,
just using the emulator for testing. When a specific part or functionality was completed and ran
perfectly on the emulator we deployed the code on the phones and tested it. We tested each de-
ployment on the three different test mobile phones described in Chapter 2.3. The deployment of
an application on a phone involves a few different steps:

95

Overview

Figure 10.2: The application development model.

1. Compiling the code

2. Packaging of the code into a executable jar-file

3. Sending the jar-file using Bluetooth to the phones

4. Installing the jar-file on the phones

5. Running the jar-file on the phones

The testing on the phones themselves often revealed problems. This is first of all because an
emulator runs the software in a totally different environment. The emulator has almost infinite
memory, much more CPU power and the network connections are simulated. Another problem
is that the different mobile phone manufacturers have implemented the CLDC, MIDP and the
Bluetooth API functionality in slightly different ways. After testing an application on the phones,
we went back to the evaluation phase and continued iterating to fix the problems that were revealed
on the phones or to add new functionality.

When using an emulator, communication between several phones could be tested easily with just
starting several instances of the emulator. We used the Wireless Toolkit 2.2 from Sun for emula-
tion. Figure 10.3 shows an example running two instances of the emulator for testing an applica-
tion.

96

10.2 Development and Testing

Figure 10.3: Testing an application on the Wireless Toolkit 2.2.

97

Overview

98

Chapter 11

Business Card Exchange

This scenario was included in our previous report [37] and originally created by Sveen and Kirkhus
in their master thesis [33], focusing on scenario analysis to find requirements for the framework
as a whole. In this chapter, we will carry out a scenario analysis where the main focus will
be on the user’s perspective trying to uncover the requirements for this application only. After
elaborating the requirements for the application, an overview of the design will be given, followed
by a description of the implementation details of the application.

11.1 Scenario

The scenario takes place at a conference where two participants find that they have common re-
search interests and want to meet again later in order to continue a discussion.

11.1.1 Goals and Preconditions

The preconditions of this scenario include that the actors each own a mobile phone support-
ing J2ME applications with MIDP 2.0 and some transfer medium such as ZigBee, Bluetooth or
WLAN.

The goal of the scenario is to have two users exchange their electronic business cards and store
them on their mobile phones. This can be stated as:

Goal 1: The application transmits an electronic business card to another phone.

Goal 2: The application stores all received business cards locally.

11.1.2 Normal Action Sequence

Mr. Smith is going to a conference on frameworks for creating web-portals. He thinks about the
previous conferences he has attended and about how many people with similar interests as himself

99

Business Card Exchange

he has met there. This time he would like to get electronic business cards from the people he
meets. Before he leaves home, he downloads a new Application called Peer2Me BC-exchange
and installs it on his mobile phone.

On his way to the conference Mr. Smith starts his new application and is automatically prompted
to enter his own contact information. He enters his name, his phone number, his email address
and the name of his company. He then gets a message saying he is ready to exchange his new
electronic business card with others. Mr. Smith puts away his phone and hopes that the other
participants have been smart enough to install the same application as well.

At the end of the last conference day, Mr. Smith is having a lively discussion about the future
of web-portal development with his new found friend Mr. Jones. Unfortunately they both have
planes to catch in order to get home, but they both want to continue their discussion at a later
time. Mr. Smith and Mr. Jones both start their Peer2Me BC-exchange applications and Mr. Smith
starts a search for other people offering their electronic business cards. He gets a list of available
business cards to download and selects Mr. Jones’. When Mr. Smith downloads Mr. Jones’ card,
Mr Smith’s card is also uploaded to Mr. Jones’ phone. When the process is completed they both
leave to catch their transport home, knowing they have each other business cards and will be able
to get in touch to continue their discussion.

On his way to the airport Mr. Smith reviews all his downloaded electronic business cards by
flipping through them on his phone.

11.1.3 Critical Exceptions and Error Checking

When exchanging business cards, the transfer of a business card may fail due to unknown circum-
stances such as the phones getting to far apart, disturbances in the air or one of the phones going
out of battery. In cases where the transmission fails, it should be retried after prompting the user.

If a partial business card is received, the card should be discarded and the user notified of the
transmission failure.

11.2 Requirements

We will now use the method described in Chapter 2 to analyze the scenario in order to uncover the
functional requirements for the application.

11.2.1 Goal Analysis

We will now perform the goal analysis on each of the two goals stated above.

Question 1

Both the stated goals require computerized support in order to be achieved. This leads to two
functional requirements stating:

100

11.2 Requirements

FR1: The application must be able to send the users electronic business cards.

FR2: The application must be able to store the received business cards permanently.

Question 2

None of the goals describe any quality or performance properties.

Question 3

This question does not apply to any of the goals stated in the scenario.

Question 4

None of the goals require any management decisions about resources or responsibilities.

Question 5

None of the goals can be fully automated, this leads to a new functional requirement:

FR3: The exchange of business cards must be triggered by a user.

11.2.2 Inbound Event Analysis

In the scenario we can identify the following events:

In 1: Mr. Smith enters his own contact information into the phone the first time the application is
started.

In 2: Mr. Smith searches for available business cards to download.

In 3: Mr. Smith chooses Mr. Jones’ phone from a list of devices offering a business card and
exchanges cards with Mr. Jones.

Requirements Elaboration

The inbound events result in the following requirements.

FR4: The application must prompt the user for his contact information the first time it is started.
(From In 1)

FR5: The application must store the users contact information for later use. (From In 1)

FR6: The application must support searching for other people offering their business cards for
download. (From In 2)

FR7: After choosing a device to exchange cards with, the card is stored as well as the sending the
local card to the remote phone. (From in 3)

101

Business Card Exchange

11.2.3 Categorize System Output

The following outputs from the system has been identified:

Out 1: When a search for available business cards finishes, Mr. Smith is presented with a list of
the result.

Out 2: Mr. Smith can view each business card stored on his phone.

Requirements Elaboration

These outputs give us the following the functional requirements:

FR8: After searching for available business cards for download, the application must present a
list from which the user can choose the desired card. (From Out 1)

FR9: Stored business cards must be available for browsing. (From Out 2)

11.2.4 Summary

This gives us the following requirements for the application:

FR1: The application must be able to send the users electronic business cards.

FR2: The application must be able to store the received business cards permanently.

FR3: The exchange of business cards must be triggered by a user.

FR4: The application must prompt the user for his contact information the first time it is started.

FR5: The application must store the user’s contact information for later use.

FR6: The application must support searching for other people offering their business cards for
download.

FR7: After choosing a device to exchange cards with, the card is stored as well as sending the
local card to the remote phone.

FR8: After searching for available business cards for download, the application must present a
list from which the user can choose the desired card.

FR9: Stored business cards must be available for browsing.

102

11.3 Design

11.3 Design

The Business Card Exchange (BCEX) MIDlet is designed according to a Model View Controller
pattern trying to separate the different mechanisms in the application in order to achieve maintain-
ability and reusability of code. The main package, businesscard, contains the controller, which is
the actual MIDlet subclass, BCEXMIDlet. All communication with the framework is done in this
class. Figure 11.1 shows the layout of the packages in the BCEX MIDlet along with the actual
MIDlet class. All the subpackages will now be described individually.

11.3.1 The Model Package

The model package contains the data model used in the BCEX MIDlet. The model is based on the
two persistent objects BusinessCard and BusinessCardCollection. A BusinessCard contains con-
tact information for one person. BusinessCardCollection wraps the user’s own business card and
all the contacts he has collected into one object. Both objects implement the Persistent interface,
allowing them to be handled by the persistence support in Peer2Me.

11.3.2 The View Package

The view packages contains all the different menus, lists and information that can be displayed to
the user. No actual processing of events or data is conducted in any of the classes contained in
this package. All user interaction is just caught and forwarded to the actual MIDlet for processing.
The graphical user interface hierarchy is shown in Figure 11.3 and the actual classes are shown in
Figure 11.4. Each of these classes will now be described. Since the classes in this package only
function as information displays we will not describe their behaviour, but list their purpose.

RegistrationForm: The first view the user is presented with when starting the application for
the first time. Used for setting the user profile.

MainForm: This view is the main view, when the application is in its idle state, the main view
is displayed on screen with the standard set of commands.

SearchResultList: After initiating a search for other devices running the same service the search
result view is displayed. As new devices are discovered, they are added to this list one by
one. When the list is complete, the business cards from the different devices are available
for download.

BusinessCardReceivedForm: This view is used for displaying downloaded or previously stored
business cards.

LibraryList: This view displays a list of all the cards currently stored in the library. The user
can choose from the list and view details about each card. Details are shown in the Busi-
nessCardReceivedForm.

103

Business Card Exchange

Figure 11.1: UML for the Business Card Exchange MIDlet.

104

11.3 Design

Figure 11.2: UML for the Business Card Exchange MIDlet’s model package.

Figure 11.3: Overview of graphical user interface in the Business Card Exchange application.

105

Business Card Exchange

Figure 11.4: UML for the Business Card Exchange MIDlet’s view package.

106

11.4 Implementation

Figure 11.5: UML for the Business Card Exchange MIDlet’s util package.

Aspect: Value:
Lines of code: 325
Number of classes: 9
Number of interfaces: 0
Number of packages: 4
Methods (avg. pr. class) 7.444
Maximum inheritance tree depth: 4

Table 11.1: Business Card Exchange code statistics.

11.3.3 The Util Package

The util package is not part of the ordinary Model View Controller pattern, but contains support
functionality for the BCEX MIDlet. The package contains one class, MessageTools. The Mes-
sageTools class contains methods for translating between Message and BusinessCard objects.

11.4 Implementation

This section describes the implementation details of the BCEX MIDlet. Table 11.1 shows the
metrics associated with the source code. The complete source code of this application can be
found on the attached CD. The BCEX MIDlet covers all the requirements extracted from the
scenario and has been tested to run on the mobile phones. We will now give a description of the
protocol used for exchanging business cards between nodes.

11.4.1 Business Card Exchange Protocol

When exchanging business cards with the BCEX MIDlet the following protocol is used:

1. The initiating device sends a REQUEST_CARD message to one or more members of its
group.

2. The devices receiving the REQUEST_CARD message sends out a CARD_REPLY message
with its business card attached.

3. If the user decides to store the received card, a receipt is sent as an EXCAHNGE message,
with the user’s card attached.

A graphical representation of the protocol is shown in Figure 11.6.

107

Business Card Exchange

Figure 11.6: The BCEX card exchange protocol.

108

Chapter 12

PAN Instant Messaging

This scenario was originally included in our previous report [37], focusing on scenario analysis
to find requirements for the framework as a whole. In this chapter we will do a scenario analysis
where the main focus will be on the user’s perspective trying to uncover the requirements for this
application only. After elaborating the requirements for the application, an overview of the design
will be given followed by a description of the implementation details of the application.

12.1 Scenario

In this scenario, two students attending a lecture at a university want to establish a network between
their phones to be able to chat using instant messages.

12.1.1 Goals and Preconditions

The preconditions of this scenario include that the actors each own a mobile phone support-
ing J2ME applications with MIDP 2.0 and some transfer medium such as ZigBee, Bluetooth or
WLAN. Other preconditions for this scenario is to have a group of people, two or more, that are
collocated in same place, that want to communicate. The goal of the scenario is to enable these
people to communicate directly and instantly with each other by using their mobile phones. Mes-
sages are typed in using the same technique as used when writing SMSs and are sent to all the
specified participants of a conversation.

The goal of the scenario is to have two or more users connect in a chat group and be able to send
instant messages to each other inside this group. This can be stated as:

Goal 1: The application enbables users to create a PAN IM group, to search for and connect to
other PAN IM nodes.

Goal 2: The application enables users to communicate directly and instantly with each other in-
side this group.

Goal 3: The application stores a local profile of the user that is used to identify him or her.

109

PAN Instant Messaging

12.1.2 Normal Action Sequence

Peter and Daniel are friends and are both students at a university. They are studying Computer
Science and are now attending to a lecture in Compiler Techniques. There are about 150 students
almost filling up the auditorium. Peter and Daniel did not arrive at the auditorium at the same time,
so now they are sitting two rows away from each other and are not able to communicate by voice.
After the professor has introduced the theme of today’s lecture, lexical analysis, Peter and Daniel
both become quite frustrated. They know all about lexical analysis because they had a project on
this in another course. Although they feel, that they can not leave the lecture because the professor
is going to talk about the exam the last quarter.

Peter decides to invite Daniel to an ad hoc conversation. He starts his PAN Instant Messaging
(PAN IM) application on his mobile phone. Because it is the first time that he uses this application
he is asked to enter a nickname and some other personal information that are saved for later use.
Then he creates a new chat group and starts a search for devices. The application finds Daniel’s
device, presents it to Peter and he chooses to establish a connection to this device. Daniel has
already started the PAN IM and registered as a user waiting for incoming requests. Now that Peter
has established a connection to Daniel, Daniel is alerted, the mobile phone in his pocket vibrates
and he accepts the request for a conversation from Peter. Now Peter and Daniel can communicate,
and they go on discussing a project in another course for the next half hour. This conversation is
of course free of charge because they are using an ad hoc network instead of a wireless cellular
network like the GSM network.

During the conversation, a third person named Bill, also starts the PAN IM application. Bill reg-
isters as a user and thereby makes himself discoverable for other users using PAN IM. Every now
and then Peter searches for new devices nearby that may want to join his and Daniels conversation.
Because Bill has registered himself as an PAN IM user, he is discovered by Peter, and Peter are
asked if he will allow Bill to join their conversation. Peter feels that the conversation between him
and Daniel is kind of private, so he simply rejects Bill from joining them. After a while, when the
professor start talking about the exam, Peter and Daniel close the application and starts listening
to the professor again.

12.1.3 Critical Exceptions and Error Checking

After a group of users have joined a chat group and are connected to each other, one or more nodes
may go down for some reason. A user might just disconnect or a node may go down because of
unknown circumstances such as the phones getting to far apart, disturbances in the air or one of
the phones going out of power. In these cases all other nodes should be alerted and told that one
or more node disconnected.

12.2 Requirements

We will now use the method described in Chapter 2 to analyze the scenario in order to uncover the
functional requirements for the application.

110

12.2 Requirements

12.2.1 Goal Analysis

We will now perform the goal analysis on each of the three goals stated above.

Question 1

The stated goals require computerized support in order to be achieved. This leads to five functional
requirements:

FR1: The application must be able to register as a PAN IM node.

FR2: The application must be able create a PAN IM group.

FR3: The application must be able to search for available PAN IM nodes nearby.

FR4: The application must be able to connect to selected PAN IM nodes.

FR5: The application must be able store a user profile locally and permanently.

Question 2

By analyzing the goals we find the following quality or performance requirements:

NFR1: The applications must be able to send and deliever messages in real time.

Question 3

This question does not apply to any of the goals stated in the scenario.

Question 4

None of the goals require any management decisions about resources or responsibilities.

Question 5

Goal 1 and Goal 2 can not be fully automated by the application. These goals have to be triggered
by the users of the application. Goal 3 should be done automatically by the application which
leads to the following requirement:

FR6: The user profile should automatically be saved and retrieved when needed.

111

PAN Instant Messaging

12.2.2 Inbound Event Analysis

In the scenario we can identify the following events:

In 1: Peter enters a nickname and some other personal information that are saved for later use.

In 2: Peter creates a PAN IM group and starts a search for devices.

In 3: Peter chooses to establish a connection to Daniel’s device.

In 4: Daniel accepts the request for a conversation from Peter.

Requirements Elaboration

The inbound events result in the following requirements.

FR7: The application must prompt the user for some user profile information the first time it is
started. (From In 1)

FR8: The application must receive an answer from the user whether it allows a node to connect
or not. (From In 4)

In 2 is covered by FR2 and FR3. In 3 is covered by FR4.

12.2.3 Categorize System Output

The following outputs from the system have been identified:

Out 1: After the search for devices the application presents all available nearby devices to Peter.

Out 2: Daniel is alerted when Peter tries to connect to him and is given the possibility to accept
or not accept the connection request.

Requirements Elaboration

These outputs give us the following the functional requirements:

FR9: After searching for available PAN IM nodes, the application must present a list from which
the user can choose which PAN IM nodes to connect to. (From Out 1)

FR10: The application must give the user an input request when a incoming connection request
is received (From Out 2)

112

12.3 Design

12.2.4 Summary

This gives us the following requirements for the application:

FR1: The application must be able to register as a PAN IM node.

FR2: The application must be able create a PAN IM group.

FR3: The application must be able to search for available PAN IM nodes nearby.

FR4: The application must be able to connect to selected PAN IM nodes.

FR5: The application must be able store a user profile locally and permanently.

FR6: The user profile should automatically be saved and retrieved when needed.

FR7: The application must prompt the user for some user profile information the first time it is
started.

FR8: The application must receive an answer from the user whether he or she allows a node to
connect or not.

FR9: After searching for available PAN IM nodes, the application must present a list from which
the user can choose which PAN IM nodes to connect to.

FR10: The application must give the user an input request when an incoming connection request
is received.

NFR1: The application must be able to send and deliver messages in real time.

12.3 Design

The controller class of this application is PanIM, see Figure 12.1. The PanIM class extends the
MIDlet class from MIDP 2.0 and thereby implements the abstract methods from this class. It also
implements a lot of the Peer2Me interfaces and holds all functionality that utilizes the framework.

When a user starts this application, he or she will have to choose between the role of being slave
or master. This choice will control what kind of functionality that will be available for that user
while running the application with the chosen role.

12.3.1 The Model Package

The only class in the Model package is the PersonalProfile class, shown in Figure 12.2. All users
of the PanIm application has a personal profile. This is stored on the user’s mobile phones. The
personal profile holds information about a user like his or her nickname, real name and e-mail
address. The class is a typical JavaBean with getter and setter methods and holds functionality for
making itself persistent by using the Persistence Layer in Peer2Me.

113

PAN Instant Messaging

Figure 12.1: Overview of the classes and packages of PAN IM.
114

12.4 Implementation

Figure 12.2: Overview of the classes in the model package.

12.3.2 The View Package

The view package, shown in Figure 12.4, holds all the classes that make out the graphical user
interface of the application. As mentioned, the application is controlled by a controller class
that works as a state machine. For each state there is a corresponding user interface class. The
user interface hierarchy is shown in Figure 12.3. Each of these classes will now be described
individually:

ChatForm: This is the main view of the application and also the starting point. This view shows
personal messages from other users and control messages from the system. From this view
you can also choose to start writing a new message, start a search after new nodes or edit
your personal profile.

MasterSlaveList: This is the first view that is presented for the user when starting the application.
In this view the user can choose between the roles of master and slave.

MessageForm: In this view it is possible to construct a message and start the process of sending
it to the other nodes.

PersonalProfileForm: This view shows the user’s personal profile. The data in this form can also
be edited and stored.

SearchResultList: When searching for new nodes to join the chat group, the framework will
return possible nodes nearby to join one by one. These nodes will be presented in this view.
It will further be possible to select which nodes that should be allowed to join the group.

12.4 Implementation

This section describes the implementation details of the PAN Instant Messenger application. Table
12.1 shows the metrics associated with the source code. The complete source code of this applica-

115

PAN Instant Messaging

Figure 12.3: Overview of gui in the PAN Instant Messaging application.

Figure 12.4: Overview of the classes in the view package.

116

12.4 Implementation

Aspect: Value:
Lines of code: 242
Number of classes: 7
Number of interfaces: 0
Number of packages: 2
Methods (avg. pr. class 8
Maximum inheritance tree depth: 4

Table 12.1: PAN IM code statistics.

tion can be found on the attached CD. The application covers all the requirements extracted from
the scenario, except FR8 and FR10. We have chosen to not implement these two requirements be-
cause we wanted to make the process of creating a chat group more automatic and faster, ignoring
input requests from the slave chat nodes in the joining process. The application has been tested to
run perfectly on the mobile phones.

When implementing this application, we realized that it really does not need a lot of special ap-
plication logic. PAN IM is a brilliant example of an application that utilizes the functionality of
Peer2Me one hundred percent. A major part of the functional requirements are covered by the
framework functionality. The most important concerns when implementing this application was
to create some well functioning user interfaces and to make a simple infrastructure for holding
information regarding a chat group. One particular algorithm that we would like to mention had to
be deployed for obtaining the right functionality. This algorithm for filtering out already connected
nodes is described below.

12.4.1 Filtering Already Connected Nodes

When a master node’s user searches for available PAN IM nodes nearby he will receive a list of
available nodes. It is important that the nodes that are already connected to this device are not
shown in this list. This is done by performing a filtering of devices when receiving join messages.
The code responsibility for this filtering is important for the application to function properly and
is also a good example of how to compare already connected nodes with nodes trying to join. The
code, shown in Listing 12.1, is situated in the allowJoin method in the PanIm class. This method
is called by the framework when a new node tries to join the group. The parameters of the method
hold the node that tries to join and the group that the node tries to join. The filtering is performed
and the node is put in the search result list if it is not present in the group already.

Listing 12.1: The allowJoin method that contains code to filter out already connected nodes. �
1 boolean found = f a l s e ;
2 Ve c to r s l a v e s = s e r v i c e . ge tGroup () . g e t S l a v e s () ;
3
4 f o r (i n t i =0 ; i < s l a v e s . s i z e () ; i ++) {
5 Node e x i s t i n g N o d e = (Node) s l a v e s . e l emen tAt (i) ;
6 i f (e x i s t i n g N o d e . getNodename () . e q u a l s (node . getNodename ())) {
7 found = t rue ;
8 }
9 }

10

117

PAN Instant Messaging

11 i f (! found) {
12 foundNodes . p u t (node . getNodename () , node) ;
13 r e s u l t L i s t . append (node . getNodename () , n u l l) ;
14 }� �

118

Chapter 13

Converging top ten list

This scenario was originally included in our previous report [37], focusing on goal analysis to find
requirements for the framework as a whole. In this chapter we will do a goal analysis to where the
main focus will be on the user’s perspective trying to uncover the requirements for this application
only. After elaborating the requirements for the application, an overview of the design will be
given followed by a description of the implementation details of the application.

13.1 Scenario

In today’s world with ever toughening competition in various markets, the consumers benefit from
knowing which service provider or product is the best. The converging top ten list application
enables people to collaborate in automatically finding the best services or products available in
the market. This scenario describes how users in a population can register information in a top
ten list form on their mobile devices. When they meet with other users from the same population,
their lists are automatically exchanged and compared causing each user’s list to converge towards
the true top ten list. As an example here, to extract requirements for the application, we will
use a scenario where students try to find out which bar has the lowest beer prices. The students
automatically exchange top ten lists of beer prices when walking around the campus area.

13.1.1 Goals and Preconditions

The preconditions of this scenario include the mobile phones that the students carry around with
them as they move around on the campus area. The mobile phones have to be able to make use
of some kind of transfer medium such as Zigbee, WLAN or Bluetooth and have support for J2ME
and MIDP 2.0.

Each student will have a top ten list stored on their mobile phone. The goal is to have all the
various lists converged into one.

The goals for this scenario are the following:

Goal 1: The application should let a student register, store and maintain various kinds of top ten
list.

119

Converging top ten list

Goal 2: The application should automatically connect to other Converging Top Ten List applica-
tions and exchange relevant top ten lists.

Goal 3: The application should use the received lists and the old lists as input to calculate new
top ten lists and store them on the phone.

13.1.2 Normal Action Sequence

A student maintains a local list of the best beer prices known to him at the moment on his phone.
Whenever the student visits a bar with beer prices that changes this list, he registers the price as
well as the date this price was valid. Obviously, one student is unable to visit every available bar.
This is where collaboration with others come in.

When the students move around on the campus area, they enable their phones to be available for
information exchange with other students running the same application.

As two students running the Converging Top Ten List application pass in the hallway or sit next to
each other during a lecture, their mobile phones will sense that they are in proximity and providing
the same service. Without the need of any interaction from the students, the applications will
connect and exchange their top ten lists. On each of the phones, these two lists will be compared
to produce a new list with the ten best prices from the two original lists. Information about the
transactions and the calculations will be given in the application user interface. As time goes by
and more and more students exchange lists by chance encounters, everyone’s lists will converge
into the same top ten list giving everyone up to date information on where to find the best beer
prices. Lists will be identified by a special category identifier. Only lists marked with the same
category will be compared and merged.

Critical Exceptions and Error Checking

If an encounter between to students ends to soon, chances are that the discovery and transfer will
not have time to finish. In the case where the encounter is ended before a connection is opened,
no measures will have to be taken. In the case where the transmission of the top ten list is aborted
due to errors, interference or other problems, two different strategies can be used:

• The entire list can be discarded as if the encounter never had taken place.

• If, for instance, the first three list entries have been transferred before communication fails,
these three entries can be merged with the local list, which leads to the top three entries
moving closer to the converged list.

13.2 Requirements

We will now use the method described in Chapter 2 to analyze the scenario in order to uncover the
functional requirements for the application.

120

13.2 Requirements

13.2.1 Goal Analysis

We will now perform the goal analysis on each of the three goals stated above.

Question 1

The stated goals require computerized support in order to be achieved. This leads to five functional
requirements:

FR1: The application must enable users to create new top ten list within a specified category.

FR2: The application must enable users to store and maintain top ten lists.

FR3: The application must be able to search for other Converging Top Ten applications nearby
automatically.

FR4: The application must be able to exchange top ten lists with other applications.

FR5: The application must be able to calculate a new top ten list from two old lists.

FR6: The application must be able to automatically store the new calculated lists permanently.

Question 2

The goals do not describe any performance or quality properties.

Question 3

This question does not apply to any of the goals stated in the scenario.

Question 4

None of the goals require any management decisions about resources or responsibilities.

Question 5

Goal 2 and goal 3 should be fully automated by the application. This is stated in the above
requirements. Goal 1 and its associated tasks must be triggered by a user.

13.2.2 Inbound Event Analysis

In the scenario we can identify the following events:

In 1: A student registers the price and the the date this price was valid.

121

Converging top ten list

Requirements Elaboration

The inbound events result in no new requirements. In-1 is covered by FR1 and FR2.

13.2.3 Categorize System Output

The following outputs from the system have been identified:

Out 1: Information about the transactions and the calculations will be given in the application
user interface.

Requirements Elaboration

This output leads to a new functional requirement:

FR7: When transactions or other events occur, the application must present information about
them to the user.

13.2.4 Summary

This gives us the following requirements for the application:

FR1: The application must enable users to create new top ten list within a specified category.

FR2: The application must enable users to store and maintain top ten lists.

FR3: The application must be able to search for other Converging Top Ten applications nearby
automatically.

FR4: The application must be able to exchange top ten lists with other applications.

FR5: The application must be able to calculate a new top ten list from two old lists.

FR6: The application must be able to automatically store the new calculated lists permanently.

FR7: When transactions or other events occur, the application must present information about
them to the user.

13.3 Design

The design of this application is centered around the controller class, TopTenListApp (see Figure
13.1). This class constitutes the actual MIDlet by subclassing the MIDlet class included in MIDP
2.0. This class also implement different interfaces from Peer2Me and thereby implements different
methods required by Peer2Me. It holds methods to control the program flow and logic. These

122

13.3 Design

Figure 13.1: Overview of the classes and packages of the Converging Top Ten List applications.

methods are called by the different views to make the program switch between different states.
The Top Ten List application differs from the two other example applications because it is based
upon the concept of automatic exchange of information. This mechanism is also controlled by
the TopTenListApp class. The class has the responsibility for automatically starting a new search
for devices when the last one has finished. To obtain this functionality, the class gets help from
another class called Searcher.

13.3.1 The Model Package

The model package holds the classes that represent the data model of this application, see Figure
13.2. A user of this application can create and maintain a number of different top ten lists. A top
ten list is described by its identifier and description text. All these top ten lists are stored in a top
ten list collection. Each top ten list is comprised of top ten items. A top ten item holds information
about the name of the product or service, the date of the registration and the price that where
registered. These three entities are implemented as three classes called TopTenItem, TopTenList
and TopTenListCollection.

The TopTenItem class is a typical Java Bean that holds some information and provides simple

123

Converging top ten list

Figure 13.2: Overview of the classes in the model package.

getter and setter methods. The TopTenList, in addition to containing an array of TopTenItems,
also holds some logic. The registerItem method has the responsibility for checking if a new item
has values that makes it a top ten item, and if that is the case, the top ten list will be reorganized
and the last item will be thrown out of the list.

All the classes are persistent and therefore implements the methods defined in the Persistent inter-
face of the Persistence Layer of Peer2Me.

13.3.2 The View Package

The view package holds all the classes that make out the user interfaces or information screens in
the application. As mentioned, the whole application is controlled by a controller class that works
as a state machine. For each state there is a corresponding user interface class. The user interface
hierarchy is shown in Figure 13.3. A UML diagram showing the classes in the package is shown
in Figure 13.4. Each of these classes will now be described individually:

MainForm: This is the view that is shown when the application is running normally. Different
kinds of information is displayed through the form, for instance information about received
lists and connected nodes.

124

13.4 Implementation

Figure 13.3: Overview of gui in the Top Ten List application.

ViewCollection: From the MainForm, it is possible to view the local collection of top ten lists.
This view shows a list of all available top ten lists as selectable items. It is also possible to
choose to create a new list from this view.

CreateList: This is a view that enables the user to enter information about a new list and then
create it.

ViewList: This view shows a list containing all the items that the list holds. Each item is se-
lectable.

ViewItem: When an item is selected in the ViewList view, this view is shown. The view displays
all the attributes of a top ten item, but it is not possible to edit this information.

RegisterItem: This is a view that enables the user to enter information about a new top ten item
and then register it in the top ten list.

13.4 Implementation

This section describes the implementation details of the Converging Top Ten List application.
Table 13.1 shows the metrics associated with the source code. The complete source code of this
application can be found on the attached CD. The application covers all the requirements extracted
from the scenario and has been tested to run on the mobile phones. It should be remarked that
the requirement FR4 should be extended before more full scale testing of this applications. In
its current state the application just exchanges one list. The application should be extended with
functionality for the user to select which lists on his phone that should be automatically exchanged.
We will now explain some of the most important implementation details of this application.

13.4.1 The Sorting Algorithm

The registerItem method in the TopTenList class is the heart of the sorting functionality of the
application. This is used when the user updates or creates a new item in a list. The method

125

Converging top ten list

Figure 13.4: Overview of the classes in the view package.

Aspect: Value:
Lines of code: 454
Number of classes: 11
Number of interfaces: 0
Number of packages: 2
Methods (avg. pr. class 5.363
Maximum inheritance tree depth: 4

Table 13.1: Top Ten List statistics.

126

13.4 Implementation

ensures that the list will remain sorted after the edit. The algorithm embedded in the method uses
a method similar to bubble sort for sorting the elements in the list, shown in Listing 13.1. When the
application receives a list from another phone it has to compare this list with the one already stored
on the phone. Item by item is picked out from the received list and is then registered, by using the
registerItem method, in the other list. By doing this for all the top ten items in the received list,
the new list will be updated with the best prices from the both the original lists.

Listing 13.1: The registerItem method that puts an item on its right place in a list. �
1 p u b l i c vo id r e g i s t e r I t e m (TopTenItem topTenI t em) {
2
3 . . .
4
5 f o r (i n t i =0 ; i < t o p T e n I t e m s . l e n g t h ; i ++) {
6 i n t p r i c e O n e = I n t e g e r . p a r s e I n t (topTenI t em . g e t P r i c e ()) ;
7 i n t pr iceTwo = I n t e g e r . p a r s e I n t (t o p T e n I t e m s [i] . g e t P r i c e ()) ;
8 i f (p r iceOne <pr iceTwo) {
9 t o p T e n I t e m s [i] = topTenI t em ;

10 pos = i ;
11 c h e a p e r = t rue ;
12 break ;
13 }
14 }
15
16 i f (c h e a p e r) {
17 i f (pos <(t o p T e n I t e m s . l e n g t h − 1) {
18 f o r (i n t i =(pos +1) ; i < t o p T e n I t e m s . l e n g t h ; i ++) {
19 t o p T e n I t e m s [i]= b a c k _ i t e m s [i −1];
20 }
21 }
22 }
23 }� �

13.4.2 Proactive Disconnection Message

The different phone models and Bluetooth API implementations tend to vary a lot in how they
function. For instance, some phones detect disconnections of other phones very quickly (a few
seconds) and others spend 15-20 seconds before detecting a disconnection. Because a transaction
(exchanging the lists) with the Converging Top Ten List application has to be performed very
quickly, we designed a special disconnection mechanism to ensure that the transaction would
finish a soon as possible.

This is done by sending out an extra message after receiving a top ten list. When the other phone
receives this disconnection message, it knows that it can disconnect this node right away. In this
way we speed up the disconnection and thereby also speed up the whole transaction by an order
of magnitude.

13.4.3 Automatic Searching

In the design part we described a Searcher class that holds the functionality that does the automatic
searching for other nodes. This was solved by using a simple java thread. The Searcher class

127

Converging top ten list

extends the Thread class from CLDC 1.0 API. Every time a search after nodes is finished an
instance of this class is created to start a new search.

128

Part IV

Developing Peer2Me Applications

129

130

Chapter 14

Peer2Me Development Guide

This chapter assumes the reader is familiar with the central concepts of writing MIDlets for the
J2ME platform. It provides a thorough walkthrough on how to write ad hoc networked MIDlets
using the Peer2Me framework. The entire chapter is aimed at developers that want to learn how to
use Peer2Me and is therefore written in a less formal way than the rest of the report. This process
will be explained by an example describing two MIDlets, SlaveMIDlet and MasterMIDlet. We
will not explain anything about the GUI code used in the code examples. The full source code for
each of the applications can be found in Appendix C.

14.1 Central Concepts

In the Peer2Me framework there are a couple of concepts that need to be understood before you
can write a Peer2Me MIDlet. We will now give an overview of these concepts.

Service Central to Peer2Me is the service. Devices that communicate must all be running the
same service. In the Peer2Me implementation, services are represented by the class Service
in the no.ntnu.idi.mowahs.project.domain package. A service normally represents a specific
application type, for instance a chat application. When the framework searches for other
nodes, it searches for other nodes running the same service (which means that they are
running the same application).

Node A device running a service is called a node. Nodes are represented by the class Node in the
no.ntnu.idi.mowahs.project.domain package.

Group When nodes are connected in a network they form a group. A group has a name and a
description and is represented by the class Group in the no.ntnu.idi.mowahs.project.domain
package. A group is associated with a service.

Message Nodes connected in a group can exchange messages. Messages can contain any number
of message parts, each with a description and a value. Messages and message parts are repre-
sented by the classes Message and all subclasses of MessagePart in the no.ntnu.idi.mowahs.project.domain
package respectively.

131

Peer2Me Development Guide

Framework The core in Peer2Me is the actual framework. The MIDlet interacts with other nodes
on the network through the framework. The use of the framework abstracts all network
functionality from the MIDlet. The framework is represented by the class Framework in the
no.ntnu.idi.mowahs.project.domain package.

14.2 Starting the MIDlet

All MIDlets written for J2ME are subclasses of the more general MIDlet class provided in the
javax.microedition.midlet package. MIDlets are executed as a simple state machine with three
methods for changing the state of the MIDlet. These three methods are:

protected void startApp() throws MIDletStateChangeException This method is called when
the MIDlet is first started, it is used to initialize the MIDlet’s context.

protected void pauseApp() throws MIDletStateChangeException If the MIDlet is temporary
set on hold by an incoming call, sms, etc it is paused through this method.

protected void destroyApp() throws MIDletStateChangeException When the MIDlet exits, its
context is cleaned up by this method.

In this tutorial we will focus on using the startApp and destroyApp methods. First we will take a
look at what happens when the MIDlet is started.

14.2.1 Initializing the Framework

Before anything can be done with the Peer2Me framework, it must be initialized. Peer2Me needs
certain properties to be set, such as node name, node description and preferred network. This is
achieved through the code shown in Listing 14.1, where myName, myDescription and network-
Name are String objects giving the local node name, the node description and the Java name of the
network module to be loaded respectively.

Listing 14.1: Initializing the Framework. �
1 myFramework = Framework . g e t I n s t a n c e (myName , myDesc r ip t i on , networkName) ;
2 myFramework . i n i t () ;� �

In Listing 14.1, the Framework instance is first retrieved by feeding the node name, the node de-
scription and the network name to the getInstance method. It is the initialized by the init method.
The init method prepares the framework for use with the arguments given previously. Network-
Name is a string containing the Java name of the network module to load. For more information
about loading a network module take a look at Section 14.8 later in this chapter.

132

14.3 Slave vs. Master

14.3 Slave vs. Master

After Peer2Me has been initialized it is ready for use. A device in a Peer2Me network can run
either as a slave or as a master. Whether a device runs as a slave or a master has significance when
it comes to how it handles groups. Master devices are group administrators handling connections
to slave nodes, deciding who should be allowed to join the group and routing messages among the
slaves in a group. Lets start with the Slave case.

14.3.1 Slave

After initializing its Peer2Me instance, a slave device must register a service which it will be
listening for connections on. This can be done by including the code line shown in Listing 14.2.
In Listing 14.2, myService is a Service object containg the name of the service.

Listing 14.2: Registering a service with Peer2Me. �
1 myFramework . r e g i s t e r S e r v i c e (myServ ice) ;� �

14.3.2 Master

The master node in a Peer2Me network is a bit more complex functionality wise than the slave
node. The master has to register a service with the framework the same way as the slave node
does, shown in line 1 of Listing 14.3. In addition, a master has to be associated with a group
before doing anything else. To create a group, simply instanciate an object of the Group class.
Then set yourself as the master of the group, register yourself as group monitor and finally relate
the group to a service and vice versa. These steps are shown in Listing 14.3 on line 2-6. The
master is then free to search for available slaves in its proximity. The code line for searching for
other nodes running the same service in slave mode is done through the last line of Listing 14.3.

Listing 14.3: Searching for other nodes running as slaves. �
1 myFramework . r e g i s t e r S e r v i c e (myServ ice) ;
2 myGroup = new Group () ;
3 myGroup . s e t M a s t e r (myFramework . ge tLoca lNode ()) ;
4 myGroup . s e t M o n i t o r (t h i s) ;
5 myServ ice . s e t G r o u p (myGroup) ;
6 myGroup . s e t S e r v i c e (myServ ice) ;
7 myFramework . s t a r t G r o u p S e a r c h (myServ ice) ;� �

14.4 Discovering Groups

When a listening slave is discovered by a master, the slave is notified of the available group. This is
done through the method public void groupDiscovered(Group groupFound) method defined by the
GroupDiscoveryListener interface. All MIDlets that are to run as slaves must therefore implement
this interface and register itself with the framework instance through its setGroupDiscoveryLis-
tener method.

133

Peer2Me Development Guide

In our case, we want the slave device to attempt to join a group as soon as it is found. Joining
groups is achieved through the joinGroup(Group) method in the Framework class. The complete
groupDiscovered(Group) method is shown in Listing 14.4. The first line in the method, sets the
group’s monitor (we’ll get back to this later). The next few lines just prints the members of the
group to screen before the last line asks to join the group.

Listing 14.4: The groupDiscovered method in the TestSlave class, including GUI code. �
1 p u b l i c vo id g r o u p D i s c o v e r e d (Group group) {
2 group . s e t M o n i t o r (t h i s) ;
3
4 w r i t e T e x t (" Rece ived group ! ") ;
5 w r i t e T e x t (" Mas te r : " + group . g e t M a s t e r () . getKey ()) ;
6 Enumera t ion enum = group . g e t S l a v e s () . e l e m e n t s () ;
7 whi le (enum . hasMoreElements ()) {
8 w r i t e T e x t (" S l a v e : " + ((Node) enum . n e x t E l e m e n t ()) . getKey ()) ;
9 }

10
11 myFramework . j o i n G r o u p (group) ;
12 }� �

The master node is the one who controls the group in the first place, which means that the group
is known to the master device at all times. This means that the master does not need to implement
the GroupDiscoveryListener interface.

14.5 Handling Dynamic Groups

An application running over an ad hoc network is prone to have a dynamic degree of connectivity.
The Group object is a representation of all the nodes the current node can reach trough its master.
If remote nodes disconnect or go out of reach or if a new node joins the group, all the nodes in
the group must be notified of the event. In Peer2Me, the handling of dynamic groups is managed
at the framework level, but the application must be notified of such events. In order to do this,
Peer2Me provides an interface for notifying applications about changes in groups, the GroupMon-
itor interface. GroupMonitor provides three methods, nodeJoined(Group, Node), nodeLeft(Group,
Node) and allowJoin(Group, Node). The first two are just in the case of a node joining the group
and a node leaving the group respectively. The third is only used on the master node in the case of
a slave wanting to join a closed group.

On the slave device the joining of a new node will trigger a message to the new node so we will
save this for later.

In this code example, in the case of the master device, both the joining and leaving of nodes are
only written to the screen, which gives us the method implementations shown in Listing 14.5.

Listing 14.5: Handling group changes in TestMaster. �
1
2 p u b l i c vo id n o d e J o i n e d (Group group , Node node) {
3 w r i t e T e x t (" Node j o i n e d : " + node . getKey ()) ;
4
5 }

134

14.6 Sending and Receiving Messages

6
7
8 p u b l i c vo id n o d e L e f t (Group group , Node node) {
9 / / TODO Auto−g e n e r a t e d method s t u b

10 w r i t e T e x t (" Node l e f t : " + node . getKey ()) ;
11
12 }� �

14.6 Sending and Receiving Messages

In Peer2Me, messages are represented as Message objects. A message has a sender, a set of
recipients and multiple message parts. In Listing 14.6 a message is created and sent when a new
node joins the group. First a message is displayed on screen, stating that a new node has joined
the group. Over the next lines, a message is created, filled with one message part and the new
node set as recipient. The last line of the method sends the message by handing it over to the
sendMessage(Message, Service) method.

Listing 14.6: Join notifications in TestSlave. �
1 p u b l i c vo id n o d e J o i n e d (Group group , Node node) {
2 w r i t e T e x t (" Node j o i n e d : " + node . getKey ()) ;
3
4 Message message = new Message () ;
5 T e x t M e s s a g e P a r t t e x t = new T e x t M e s s a g e P a r t () ;
6 t e x t . s e t D e s c r i p t i o n (" message ") ;
7 t e x t . s e t F i e l d V a l u e (" h e l l o s l a v e ") ;
8 message . addMessageBodyPar t (t e x t) ;
9 message . a d d R e c i p i e n t (node) ;

10
11 myFramework . sendMessage (message , myServ ice) ;
12 }� �

Peer2Me provides an interface called MessageSubscriber. When the Peer2Me framework receives
an application message from a remote node, the object registered as a MessageSubscriber will be
notified through its messageReceived(Message) method.

14.7 Handling Exceptions

Peer2Me is multithreaded in addition to being an easy victim to network failures, due to the nature
of ad hoc networks. When something goes wrong, there is a way for the MIDlet to subscribe to
the error messages produced and letting it decide which errors to show to the user. The inter-
face ExceptionHandler in the no.ntnu.idi.mowahs.project.framework package defines one method,
handleException(Exception). By implementing this interface, the MIDlet can register as a Excep-
tionHandler with the setExceptionHandler(ExceptionHandler) method in the Framework class.

In both TestMaster and TestSlave, all we will do with Exceptions are to print the error message to
the display. Listing 14.7 shows the handleException(Exception) method.

135

Peer2Me Development Guide

Listing 14.7: Exception handling. �
1 p u b l i c vo id h a n d l e E x c e p t i o n (E x c e p t i o n e) {
2 w r i t e T e x t (e . ge tMessage ()) ;
3
4 }� �

14.8 Choosing the Right Network Module

When initiating Peer2Me, the name of the preferred network module must be provided to the
getInstance method in the Framework class. Peer2Me’s fundamental architecture is highly mod-
ular supporting the introduction of new network modules without actually changing the Peer2Me
source code. Because of this modularity, Peer2Me must be told which network module to load at
runtime. Currently the only network module available is the Bluetooth module. The Java-name
and the class path of this module is: “no.ntnu.idi.mowahs.project.bluetooth.network.BluetoothNetwork”.

14.9 Complete startApp Methods

This gives us the full code needed in the slave’s startApp method, shown in Listing 14.8.

Listing 14.8: The startApp method from the TestSlave class, including GUI code. �
1 p r o t e c t e d void s t a r t A p p () throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
2 d i s p l a y = D i s p l a y . g e t D i s p l a y (t h i s) ;
3 form = new Form (" T e s t S l a v e ") ;
4 myServ ice = new S e r v i c e (SERVICE_ID) ;
5 w r i t e T e x t (" S t a r t e t t e s t S l a v e . . . ") ;
6 myFramework = Framework . g e t I n s t a n c e (" s l a v e t e s t e r " , " t e s t i n g s l a v e " , " no

. n tnu . i d i . mowahs . p r o j e c t . b l u e t o o t h . ne twork . B l u e t o o t h N e t w o r k ") ;
7 myFramework . i n i t () ;
8 myFramework . r e g i s t e r S l a v e (myServ ice) ;
9 myFramework . s e t M e s s a g e S u b s c r i b e r (t h i s) ;

10 myFramework . s e t E x c e p t i o n H a n d l e r (t h i s) ;
11 myFramework . s e t G r o u p D i s c o v e r y L i s t e n e r (t h i s) ;
12
13 }� �

This gives us the full code needed in the master’s startApp method, shown in Listing 14.9.

Listing 14.9: The startApp method in the TestMaster class, including GUI code. �
1 p r o t e c t e d void s t a r t A p p () throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
2 d i s p l a y = D i s p l a y . g e t D i s p l a y (t h i s) ;
3 form = new Form (" T e s t M a s t e r ") ;
4 myServ ice = new S e r v i c e (SERVICE_ID) ;
5 myGroup = new Group () ;
6
7 w r i t e T e x t (" S t a r t e t t e s t M a s t e r . . . ") ;
8 myFramework = Framework . g e t I n s t a n c e (" m a s t e r t e s t e r " , " t e s t i n g m a s t e r " , "

no . n tnu . i d i . mowahs . p r o j e c t . b l u e t o o t h . ne twork . B l u e t o o t h N e t w o r k ") ;
9 myFramework . i n i t () ;

136

14.9 Complete startApp Methods

10 myFramework . s e t M e s s a g e S u b s c r i b e r (t h i s) ;
11 myFramework . s e t E x c e p t i o n H a n d l e r (t h i s) ;
12
13 myGroup . s e t M a s t e r (myFramework . ge tLoca lNode ()) ;
14 myGroup . s e t M o n i t o r (t h i s) ;
15 myServ ice . s e t G r o u p (myGroup) ;
16 myGroup . s e t S e r v i c e (myServ ice) ;
17 myFramework . r e g i s t e r S l a v e (myServ ice) ;
18
19 myFramework . s t a r t G r o u p S e a r c h (myService , n u l l) ;
20
21 }� �

137

Peer2Me Development Guide

138

Chapter 15

Using the Persistence Layer in Peer2Me

As described in Chapter 7 and Chapter 8, Peer2Me contains a simple key-oriented persistence
layer. In this chapter we will explain how to use the persistence layer when writing applications.
This chapter is aimed at application developers and assumes you are familiar with Java program-
ming and know the main concepts associated with J2ME programming.

15.1 Making an Object Persistent

If your application needs to store an object or a set of objects, these objects need to implement
the Persistent interface provided in the package no.ntnu.idi.mowahs.project.util. We will explain
this interface by using examples from the implementation of the Business Card Exchange (BCEX)
application. BCEX contains two persistent objects, shown in Figure 15.1. We will start with the
class BusinessCard.

Figure 15.1: The persistent objects of Business Card Exchange.

139

Using the Persistence Layer in Peer2Me

BusinessCard is created with a standard Java Bean layout. BusinessCard objects have several
instance properties accessible through getter and setter methods. In J2ME an object can not be
serialized and recreated through the use of reflection such as in J2SE so we have two write our own
way of serializing an object. Object serialization is provided through the method byte[] persist().
This method translates an object to a byte array in a format itself understands and then returns
this byte array. This is the persistent version of the object that can be saved in the applications
RecordStore through the class PersistenceManager (explained later) associated with an identifying
key.

An example showing how to implement the persist method is shown in Listing 15.1.

Listing 15.1: The persist method in BusinessCard. �
1 p u b l i c byte [] p e r s i s t () throws IOExcep t ion {
2 B y t e Ar r a y O u tp u t S t r e a m bou t = new B y t eA r r a y Ou t p u t S t r e a m () ;
3 Da taOu tpu tS t r eam dou t = new DataOu tpu tS t r eam (bou t) ;
4
5 dou t . wri teUTF (t h i s . g e t C l a s s () . getName ()) ;
6 dou t . wri teUTF (f i r s t n a m e) ;
7 dou t . wri teUTF (l a s t n a m e) ;
8 dou t . wri teUTF (e m a i l) ;
9 dou t . wri teUTF (phone) ;

10 dou t . wri teUTF (p r i v a t e A d r e s s) ;
11 dou t . wri teUTF (companyName) ;
12 dou t . wri teUTF (companyAdress) ;
13
14 dou t . f l u s h () ;
15 re turn bou t . t o B y t e A r r a y () ;
16 }� �

The Persistent interface also defines a method, void resurrect(byte[] data). Objects that are per-
sistent need an empty constructor method that initializes the object but does not set any of the
property values. After creating a new, empty object the persistent byte array is delivered to it
through the resurrect method and parsed in order to set the objects properties to the correct values.
The format in the supplied byte array will be the same as in the byte array delivered by the same
object’s persist method, therefore the resurrect method’s actions should read data from the byte
array in the same order as it was written in the persist method.

An example showing how to implement the resurrect method is shown in Listing 15.2.

Listing 15.2: The resurrect method of BusinessCard. �
1 p u b l i c vo id r e s u r r e c t (byte [] p e r s i s t e n t) throws IOExcep t ion ,

P e r s i s t e n c e E x c e p t i o n {
2 B y t e A r r a y I n p u t S t r e a m b i n = new B y t e A r r a y I n p u t S t r e a m (p e r s i s t e n t) ;
3 D a t a I n p u t S t r e a m d i n = new D a t a I n p u t S t r e a m (b i n) ;
4
5 i f (! d i n . readUTF () . e q u a l s (t h i s . g e t C l a s s () . getName ())) {
6 throw new P e r s i s t e n c e E x c e p t i o n (" E r r o r r e s s u r e c t i n g c l a s s ! ") ;
7 }
8
9 f i r s t n a m e = d i n . readUTF () ;

10 l a s t n a m e = d i n . readUTF () ;
11 e m a i l = d i n . readUTF () ;
12 phone = d i n . readUTF () ;

140

15.1 Making an Object Persistent

13 p r i v a t e A d r e s s = d i n . readUTF () ;
14 companyName = d i n . readUTF () ;
15 companyAdress = d i n . readUTF () ;
16
17 }� �

15.1.1 Persistence for Nested Objects

Implementing the Persistent interface for a simple object is not a too complex task, but nested
objects are not necessarily any harder. In the BCEX application, the second persistent object is
BusinessCardCollection which is comprised of several BusinessCard objects. The solution to this
is just to include the nested objects when creating and parsing the byte array.

Listing 15.3 shows how BusinessCardCollection objects are made persistent. A BusniessCard-
Collection object contains a reference to a single BusinessCard and a vector containing several
BusinessCards. When storing one of the business cards, the byte array from its persist method is
included in the BusinessCardCollection byte array.

Listing 15.3: The resurrect and persist methods of BusinessCardCollection. �
1 p u b l i c byte [] p e r s i s t () throws IOExcep t ion {
2 B y t e Ar r a y O u tp u t S t r e a m bou t = new B y t eA r r a y Ou t p u t S t r e a m () ;
3 Da taOu tpu tS t r eam dou t = new DataOu tpu tS t r eam (bou t) ;
4
5 dou t . wri teUTF (t h i s . g e t C l a s s () . getName ()) ;
6 dou t . wri teUTF ("me") ;
7 byte [] d a t a = me . p e r s i s t () ;
8 dou t . w r i t e I n t (d a t a . l e n g t h) ;
9 i f (d a t a . l e n g t h > 0) {

10 dou t . w r i t e (d a t a) ;
11 }
12 dou t . wri teUTF (" c o n t a c t s ") ;
13 dou t . w r i t e I n t (c o n t a c t s . s i z e ()) ;
14 f o r (i n t i = 0 ; i < c o n t a c t s . s i z e () ; i ++) {
15 byte [] c o n t a c t = ((P e r s i s t e n t) c o n t a c t s . e l emen tAt (i)) . p e r s i s t () ;
16 dou t . w r i t e I n t (c o n t a c t . l e n g t h) ;
17 i f (c o n t a c t . l e n g t h > 0) {
18 dou t . w r i t e (c o n t a c t) ;
19 }
20 }
21
22 dou t . f l u s h () ;
23 re turn bou t . t o B y t e A r r a y () ;
24 }
25
26 p u b l i c vo id r e s u r r e c t (byte [] p e r s i s t e n t) throws IOExcep t ion ,

P e r s i s t e n c e E x c e p t i o n {
27 B y t e A r r a y I n p u t S t r e a m b i n = new B y t e A r r a y I n p u t S t r e a m (p e r s i s t e n t) ;
28 D a t a I n p u t S t r e a m d i n = new D a t a I n p u t S t r e a m (b i n) ;
29
30 S t r i n g className = d i n . readUTF () ;
31 i f (! c lassName . e q u a l s (t h i s . g e t C l a s s () . getName ())) {
32 throw new P e r s i s t e n c e E x c e p t i o n (" Tr y i ng t o r e s s u r e c t wrong c l a s s ! ") ;
33 }

141

Using the Persistence Layer in Peer2Me

34
35 i f (d i n . readUTF () . e q u a l s ("me")) {
36 me = new B u s i n e s s C a r d () ;
37 i n t l e n g t h = d i n . r e a d I n t () ;
38 byte [] d a t a = new byte [l e n g t h] ;
39 d i n . r e a d (d a t a) ;
40 me . r e s u r r e c t (d a t a) ;
41 }
42
43 i f (d i n . readUTF () . e q u a l s (" c o n t a c t s ")) {
44 i n t numberOfContac t s = d i n . r e a d I n t () ;
45 f o r (i n t i = 0 ; i < numberOfContac t s ; i ++) {
46 i n t c o n t a c t S i z e = d i n . r e a d I n t () ;
47 byte [] c o n t a c t = new byte [c o n t a c t S i z e] ;
48 d i n . r e a d (c o n t a c t) ;
49 B u s i n e s s C a r d c o n t a c t C a r d = new B u s i n e s s C a r d () ;
50 c o n t a c t C a r d . r e s u r r e c t (c o n t a c t) ;
51 c o n t a c t s . addElement (c o n t a c t C a r d) ;
52 }
53 }
54
55 }� �

15.2 The PersistenceManager Class

When you have created the persistent objects for your MIDlet, Peer2Me provides an interface for
storing and retrieving them from the RecordStore. Through the static methods updateOrStore and
retrieve in the PersistenceManager persistent objects can be stored and retrieved with an associated
string key.

For further information on the PersistenceManager and the Persistent interface refer to the Java-
doc on the Peer2Me website 1.

1http://www.peer2me.org

142

Part V

Testing

143

144

Chapter 16

Scenario Testing

In order to examine whether the chosen technologies and the Peer2Me framework are suitable for
writing networked collaborative applications for mobile phones, we conducted several scenario
tests. These tests tried to enact the scenarios on which the applications are based. Enacting
the scenarios as accurately as possible gives a good measure of the suitability of the Peer2Me
framework. The value of such collaborative applications for end users will then also be tested. An
evaluation of the aspects regarding the Computer Supported Cooperative Work (CSCW) values
for end users of these applications will be discussed in Chapter 19.3 in the discussion part of this
report. To ensure objectivity, we got a few students at our department to perform the testing while
we ourself functioned as observers to be able to document the results and receive comments from
the testers. Each scenario test will now be described separately.

16.1 Business Card Exchange

This scenarios takes place at a large conference. Unfortunately we do not have any large confer-
ences to visit where we can test the application. As a replacement we will use the university’s
cafeteria at lunch time. The cafeteria is the closest we get to a conference, since it shares a lot of
properties with a conference:

• A large number of people are gathered in the same area.

• A large number of the people in the area have mobile phones with Bluetooth quite randomly
switched on or off.

The test will be conducted by two people, Person 1 and Person 2, walking into the cafeteria at
lunch time, meeting and using their phones to exchange business cards. After the transaction
completes, Person 1 will leave and a third person will enter. Person 3 will approach Person 2 and
will then exchange his business card with Person 2. Person 2 does not notice that this transaction
takes place. When Person 2 finishes his lunch, he walks back to his office and sits down and
browses his available business cards. He will then find both the business cards from Person 1 and
Person 3. This test case can be formalized into three different steps:

145

Scenario Testing

Test Step: Result: Comment:
1 Success Person 1 successfully downloaded Person 2’s business

card.
2 Success Person 3 successfully downloaded Person 2’s business

card.
3 Success Person 2 found both the business card from Person 1 and

Person 3 on his mobile phone after the test had completed.

Table 16.1: Test result of the Business Card Exchange scenario.

Figure 16.1: Two people testing the business card scenario in the cafeteria.

Step 1: Person 1 exchanges business card with Person 2.

Step 2: Person 3 exchanges business card with Person 2.

Step 3: Person 2 looks through his available business cards.

16.1.1 Test Results

The test completed with no problems at all. Time is not an issue for an exchange like this since
the participants of the scenario are collocated over time due to e.g. a common interest. Because
of this, the communication between the devices had more than enough time to complete before
they moved apart. The test results are summarized in Table 16.1. Figure 16.1 shows Person 1 and
Person 2 exchanging cards.

16.2 PAN Instant Messaging

This scenario takes place during a lecture at a university. In order to test this scenario we will
perform the tests in a lecture hall. The hall will be empty to make sure that no real lecture is

146

16.2 PAN Instant Messaging

disturbed by our testing. This scenario test involves three different persons. The first person,
Person 1, enters the lecture hall, sits down and turns on his PAN Instant Messaging applications
making himself available for other users. After a while another person, Person 2, enters the lecture
hall, sits down, starts the application and searches for other users. Person 1 is found and the they
start a conversation. After a while another person sitting in the lecture hall, Person 3, also starts
his Pan Instant Messaging application. Person 2 initiates a new search after devices, finds Person
3, and allows him to join the chat group. The three persons then exchange instant messages for a
while. Suddenly, Person 1 disconnects and leaves the lecture hall. Person 2 and Person 3 continues
the conversation for a while before disconnecting and leaving the lecture hall. This scenario test
can be described as a list of test steps:

Step 1: Person 1 enters the lecture hall and turns on his PAN Instant Messaging application.

Step 2: Person 2 enters the hall, sits down and starts a search after other devices.

Step 3: Person 2 finds Person 1, connects to him and starts a conversation with him.

Step 4: Person 2 and Person 1 exchange messages for a while.

Step 5: Person 3 enters and starts his application.

Step 6: Person 2 searches for other devices, finds Person 3 and allows him to join the group.

Step 7: Person 1, Person 2 and Person 3 exchange messages for a while.

Step 8: Person 1 disconnects and leaves.

Step 9: Person 2 and Person 3 exchanges messages for a while.

Step 10: Person 2 and Person 3 disconnect and leave the lecture hall.

16.2.1 Test Results

As seen in Table 16.2 all the test steps completed successfully. Despite of that we still noticed a
few things during the test and we also got a few comments from the scenario testers. A picture
from the scenario testing of the PAN Instant Messaging application is shown in Figure 16.2.

It is important to note that the transfer speed of the Bluetooth technology seems more than good
enough for such applications and scenarios as PAN Instant Messaging. The handling and parsing
of messages inside the framework core is also a fast process which resulted in all messages being
delivered and displayed in real time. Because of this we can truly conclude that the non-functional
requirement about message transfer speed and real-time interaction, described in Chapter 7, has
been fulfilled.

The routing protocol seems to scale pretty good for a small amount of devices. This protocol
should be tested in a larger piconet (more than 3 devices) if more test phones are made available
after this project has ended. In an application like PAN Instant Messaging there will be a lot of
work conducted by the master node in the chat group. The master will have to route messages
between every node in the group. This could make this phone loose battery power quite fast. A
group management mechanism for changing master in the group during run-time could be applied

147

Scenario Testing

Test Step: Result: Comment:
1 Success
2 Success
3 Success
4 Success When the two devices had been connected and the conver-

sation had started the exchange of messages happened in
real-time. The transfer speed of the Bluetooth technology
was more than good enough for this application

5 Success Person 3 thought that it was a bit strange that he had to
wait for Person 2 to find him in a new search before he
could request a join to the group

6 Success It seemed like there was no delay in the transfer of mes-
sages even if there were three nodes communicating. All
messages appeared immediately on the receiving devices
after they were sent from another device.

7 Success Interaction happened in real-time.
8 Success When Person 1 disconnected, he was automatically re-

moved from the group. The two other nodes were then
informed about this.

9 Success
10 Success

Table 16.2: Test result of the PAN Instant Messaging scenario.

Figure 16.2: A picture from the scenario testing of the PAN Instant messaging application.

148

16.3 Converging Top Ten List

in order to not drain the power of a single master node. This is further described in Chapter 21
about further work.

During Test step 5, Person 3 thought that it was a bit strange that he had to wait for Person 2 to find
him in a new group search before he could request a join to the group. This is a result of the nature
of the Bluetooth piconet topology and specification. Slave nodes cannot request a connection to a
master node. A slave node has to make itself available and then wait for a master to discover it and
initiate a connection to it. This network paradigm influences in some degree how such applications
as PAN Instant messaging have to be designed.

16.3 Converging Top Ten List

This scenario takes place at a random place where two people encounter each other by chance. In
order to test this scenario we used the hallway outside our office at the university. The test cases
involves two persons that are running the Converging Top Ten List application on their mobile
phones. They both have registered a list of beer prices in their application. The test cases will
cover different kind of encounters between these two. Each encounter will involve the exchange
of the lists stored on each mobile phone.

We will divide the chance encounters into three different categories. These categories are:

1. Both devices moving in opposite directions. Encounters like these are very brief and give
the shortest amount of time for the devices to connect and exchange their top 10 lists. This
is equivalent to two people passing each other on the street or in the hallway.

2. One device standing still, the other passing by. This class of encounters last somewhat
longer than the previous, but still yield a rather short amount of time to complete the com-
munication between the devices. This is equivalent to one person standing still e.g. looking
at a storefront display or a billboard while another person passes him.

3. Both devices halting at the same place. This class of encounters can last a long time giving
the devices more than enough time to exchange their lists. This is equivalent to two persons
standing still at the same place, conversing, waiting to cross the street or looking at the same
product in a store window.

In order for the test to be complete and exhaustive we will test each of the three classes of encoun-
ters. The scenario test therefore will consist of three different test cases:

Case 1: Person 1 and Person 2 walking through the hallway in opposite directions.

Case 2: Person 1 standing still by the billboard in the hallway, Person 2 walking past him.

Case 3: Person 1 standing still by the billboard in the hallway, Person 2 walking up to the bill-
board and stop for 2.5 minutes.

Figure 16.3 shows a graphical representation of the three classes of encounters. P1 and P2 denotes
Person 1 and Person 2 respectively. Because Bluetooth is used as network medium, each person

149

Scenario Testing

will have a communication range of about 10 meters. It is clear that the time at which the devices
will be within communication reach of each other vary a lot from case 1 to case 3. The walking
speed of the two persons will be crucial to whether or not the devices will have time to discover
each other and exchange the necessary messages.

16.3.1 Test Results

When we started this scenario test, we soon realized there was no point in just conducting the
three test cases and then just register if the test failed or not. The time interval when the devices
actually can discovery each other and exchange information is very short, and the results of these
test cases therefore highly depends on the time it takes to search for and discover other devices. We
decided to test the discovery and connection speed of the framework and the Bluetooth module
by writing and testing a simple test application. This application simply just searches for other
devices, starts a handshake and connects to the appropriate available devices. The application
includes time measurement functionality provided by J2ME by using the Date class. The testing
was performed in an environment where no other Bluetooth devices could appear. This was done
to avoid disturbance and interference with other devices and thereby reduce the variation of the
test results. The test results are therefore the most optimal discovery times that can be achieved
and in a crowded environment these processes might take longer time.

In Appendix A, we have included empirical data from the group search with each of our three test
phones. The results varied from 18.3 seconds(s) to 25.4s. The results varies between the different
phones because they differ in resources as CPU, memory, etc. and because the manufacturers has
implemented the Bluetooth API differently. The best average was 20.2s (20239.3 milliseconds).
The time used by the application to transfer the actual data after a connection has been established
is so short that we will ignore it in the following calculations.

The formula for calculating distance traveled in a given time frame when traveling at a given
average or constant velocity is:

d = v ∗ t.

d: distance
v: velocity
t: time

This means that they have to walk slow enough for the handshake to complete before they have
walked out of each others communication range, which gives us the unequality d < v ∗ t where
t = 20.2s. The value d will vary depending on the walking pattern but relies on the communication
range of Bluetooth which is 10 meters. This transforms into v < d

20.2s , which gives is a way to
calculate the maximum walking velocity depending on the distance available. We will now use
this formula to calculate the maximum walking speed Person 1 and Person 2 can have in case 1
and case 2. According to [58], the average walking speed of a normal pedestrian is somewhere
between 1.2 and 1.4 meters pr. second. Comparing this to the calculated max walking speed for
each of the cases gives us a reliable way of predicting whether or not the test will fail or succeed.
We will now calculate the maximum walking velocity for each case and evaluate this.

150

16.3 Converging Top Ten List

Figure 16.3: The three classes of chance encounters.

Test Case: Result: Comment:
1 Failure According to the calculations done in this section (Section

16.3.1) this test case fails.
2 Failure According to the calculations done in this section (Section

16.3.1) this test case fails.
3 Success

Table 16.3: Test result of the Converging Top Ten List scenario.

Case 1: If we suppose that both Person 1 and Person 2 walk with the same speed in case 1, both
will have to walk 10 meters before they get beyond each others communication range. This
gives us a maximum speed of v < 10m

20.2s = 0.495m/s which is far below the normal walking
speed. This means that unless we walk at less than half speed this test will probably fail.

Case 2: If we suppose that Person 1 is standing still and Person 2 is walking with a constant
speed in case 2, Person 2 will have to walk 20 meters before he gets beyond communication
range of Person 1. This gives us a maximum walking velocity of v < 20m

20.2s = 0.99m/s
which is closer to the normal walking speed than in case 1, but still lower. This test will
probably fail if we walk at normal speed but will have a chance to succeed if we drop our
pace to about 25 - 30 % of the average.

Case 3: In this case the two persons stand still nearby each other in 2.5 minutes. This is more
than enough time for the discovering and connection of the devices and the data exchange.

We verified that the application ran on the mobile phones and from that calculated whether the
tests would succeed or not through the use of the above formulas. The test results are presented in
Table 16.3.

151

Scenario Testing

152

Chapter 17

Developer Testing

As mentioned in Chapter 2.2.2, describing the empirical approach of this thesis, we wanted to
conduct an empirical experiment to gather data related to Peer2Me and receive objective feedback
from others. We decided to arrange a developer workshop to examine the usability and usefulness
of the framework and to test how Peer2Me impacts on the development of mobile ad hoc applica-
tions. We managed to get 7 developers to participate. The workshop was divided into three parts:
Education, development and evaluation. An overview of the workshop, the different parts and the
results are described in this chapter. Measurement data and statistics gathered according to our
measurement plan are also given.

17.1 The Education Session

In order for the participants to gain an understanding of how to develop applications using the
Peer2Me framework, we started the workshop with an educational session. First, we gave a 20
minute overview lecture explaining the purpose of the workshop and introducing the framework
to the participants, see Figure 17.1. After the lecture, the participants were given time to go
through the Peer2Me development guide included in this report as Chapter 14. We wanted to
test the usability and usefulness of the development guide so we were not available for guidance
or questions during this part of the workshop. In order to measure the framework’s complexity
and degree of learnability, each participant could individually decide when they were ready to go
on and start the next session, the development session. We noted the time each person spent on
reading and learning about the framework.

17.2 The Development Session

In the development session, we gave each participant an application to finalize. We had prepared
a simple chat application that was missing everything that had to do with network communication
and P2P infrastructure. The task given to the participants was to have them finish the application
by using functionality offered by Peer2Me. The task description is included in Appendix B.

153

Developer Testing

Figure 17.1: Michael is explaining the domain concepts of Peer2Me.

Figure 17.2: Two of the participants working with the programming exercise.

Our reason for handing out a half-way completed program was that we did not want the developers
to spend time and effort on problems related to GUI and MIDlet programming. This would have
blurred the real focus of the session, the Peer2Me framework. Two of the participants working
with the programming exercise can be seen in Figure 17.2.

17.3 The Evaluation Session

We conducted an evaluation session after the participants had finished the programming exercise.
This session started out with a questionnaire that all participants filled out. This questionnaire can
be found in Appendix D. In this section we will list the main conclusions that we have drawn from
the results of this inquiry.

17.3.1 Results From the Questionnaire

The participants were asked to define their background experience with respect to general Java
development, years of experience writing applications and experience with Bluetooth and J2ME.

154

17.3 The Evaluation Session

Statement: Agreed (%):
The domain concepts of Peer2Me are easy to understand 100 %
The concept Framework is easy to understand. 100 %
The concept Message is easy to understand. 100 %
The concept Network is easy to understand. 100 %
The concept Node is easy to understand. 85 %
The concept Group is easy to understand. 71 %
The concept Service is easy to understand. 51 %
The domain concepts simplifies the problem domain. 71 %
The development guide helped me through the exercise. 100 %
The development guide is easy to read. 57 %

Table 17.1: Statements evaluated by the workshop participants.

The results were as follows:

• All the participants described their java and programming skills as good or professional.

• The participants had 5-10 years general programming experience and 3-5 years of java ex-
perience.

• None of the participants had developed a mobile or a Bluetooth application before.

• None of the participants had ever used J2ME before.

The participants were asked to evaluate and agree/disagree to certain statements about the Peer2Me
concepts and the developer’s guide. The results of this is shown in Table 17.1. As we can see the
developers thought the Peer2Me concepts were simple to understand and that the developer guide
helped them in writing the exercise.

We also received some suggestions on how we can improve our development guide. Many of the
participants suggested that we should explain more about the differences between a master and
a slave node. There were also suggestions regarding the readability of the guide, like removing
unnecessary javadoc and showing longer snippets of code. Some of the participants also wanted
more code examples in the guide.

The developers were also asked to rate the parts of the exercise in to different dimensions. The
first was, “Which part of the exercise was the most difficult to understand” and the second was
“Which part of the exercise was the most time consuming”. The results are shown in Figure 17.3
and 17.4 respectively.

Almost all participants thought it was difficult to understand the difference between a master and a
slave node. They also thought it was difficult to understand that they were going to write code for
both the master and the slave, and not just one of them. Some of the developers thought that it was
very difficult to debug the code they where writing. All the participants had problems with one
or more NullpointerException that occurred while testing and they thought it was very difficult to
find the cause of the exception. Some of the participants did not understand the relation between
a group and a service. A few of the developers also complained about that information regarding
the RunningService method was not included in the development guide.

155

Developer Testing

Figure 17.3: The most difficult parts of the exercise as rated by the participants of the developer
workshop.

We also asked the developers how they thought Peer2Me could improve the developing process
when writing mobile collaborative applications. Most of the participants thought it was difficult
to answer these two questions because they had no experiences with developing similar kinds of
applications to refer to. The answers we got were:

• 71% of the participants thought that Peer2Me speeds up the development of collaborative
mobile applications.

• 71% thought that Peer2Me clarifies the domain of mobile collaborative applications

17.3.2 Post Morten Analysis

We ended the evaluation session with a lightweight post mortem review of the session itself and the
framework in general, see Figure 17.5. This was conducted as a brainstorming session, inspired by
a post mortem review method described in [18]. We asked a few questions and started a discussion
for each of them. We included this session in addition to the questionnaire to try to catch ideas
from the developers that they did not get a chance to express in the questionnaire. We wanted to
use their knowledge and experiences to evaluate the framework and maybe come up with some
new ideas. The questions we asked were:

• Do you think Peer2Me will be useful for developers?

156

17.3 The Evaluation Session

Figure 17.4: The most time consuming parts of the exercise as rated by the participants of the
developer workshop.

– The participants thought that it was difficult to answer this question because none of
them had ever developed a mobile collaborative application before.

– One of the developers meant that developing with Peer2Me should be as easy as de-
veloping ordinary stationary network applications.

• In what way can Peer2Me be improved?

– One developer suggested that we should try to gather similar functionality into meth-
ods. For instance, method calls that often occur in sequence could be generalized into
one method.

– Almost everyone thought that the usage and the descriptions of the master and the
slave node concepts should be made clearer.

• Other comments:

– Everyone agreed that the way J2ME and Wireless Toolkit handles exceptions compli-
cates the development of applications.

– Some of the participants thought that the programming exercise would have been eas-
ier if they had previous experience with the Wireless Toolkit.

– Several participants remarked that they thought it was a lot of fun developing applica-
tions with Peer2Me.

– One of the developers thought that some methods in the framework should have been
named more intuitively.

157

Developer Testing

Figure 17.5: A picture from the brainstorming session.

17.4 Measurement Data and Statistics

In this section we will list and discuss the measurement data and the statistics we gathered during
the workshop. This data was gathered according to our measurement plan defined in Chapter
2.2.2.

From Table 17.2, we can see that almost all the developers managed to do all the sections of the
programming exercise. These results are far above what we had predicted. We also found that
the programming session was very helpful to increase the understanding of the concepts behind
the framework and when the development session was finished, the participants remarked that
their knowledge level had increased. Because of this it seams like Peer2Me has a steep learning
curve1, which means that the competence increases quickly over time while learning and using the
framework. This again increases the usability and usefulness of the framework. Table 17.2 also
shows how much time each developer spent on each part of the exercise, we will get back to these
results in Chapter 19.

The developers also gained a lot of knowledge by asking a lot of questions during the program-
ming exercise. We answered these questions and straightened out the arising misunderstandings.
We also kept statistics over which questions that were asked at what time. This statistic will in-
dicate what parts of the exercise that was the most difficult for the developers and could also say
something about the learning curve of the framework. The number of questions asked per devel-
oper during the different sections of the exercise are shown in Table 17.3. This table shows that the
majority of the questions that were asked were asked in the first half of the exercise. This means
that the developers learned as time went by and in the end they could work more independently
than in the beginning. This could also mean that the most central concepts of the framework, that

1The phrase “a steep learning curve” is today become a cliche and is often misused by referring to something that
is difficult to learn. This is wrong, because if a learning curve is steep, this means that for smaller increments of time,
larger gains in learning are accomplished, which is the opposite of what the cliche says. By a steep learning curve we
mean something positive and that the competence is increasing quickly over time.

158

17.5 Summary

Developer
Number:

Time Spent On Training: Time spent on exercise: Sections Finished:

1 35 min 100 min All, except nr. 5
2 45 min 90 min All, except nr. 5,6
3 43 min 88 min All
4 42 min 83 min All
5 42 min 73 min All
6 45 min 90 min All
7 37 min 83 min All
Average 41.3 min 86.7 min -

Table 17.2: Time measurement from the developer workshop.

Developer
Number:

Section
1

Section
2

Section
3

Section
4

Section
5

Section
6

Section
7

1 1 1 1
2
3
4 1 1 1
5 2 1 1 1
6 1
7 1 1 1

Table 17.3: Table showing how many times the developers asked for help during the different
sections on the programming exercise.

where used in the early parts of the exercise, are the most complex concepts to understand. More
precisely it seems like the master and slave node concepts are the most difficult to understand.

17.5 Summary

We will here list what we think was the most important suggested improvements to the framework
or its documentation from the developer workshop:

• The main idea and the way of using the master and the slave node concepts should be
explained more clearly and in more detail in the development guide.

• Collect and gather similar functionality into more high-level methods. Reduce number of
methods in the interfaces that can be used by the application developer.

• The development guide could be made more readable.

159

Developer Testing

160

Part VI

Discussion

161

162

Chapter 18

Encountered Problems

This section will describe the problems that we have encountered during the project. A more in
depth evaluation will be given in Chapter 19.

18.1 Mobile Phones and J2ME

A problem regarding the mobile phones is that the same application looks radically different on
different mobile phones. The mobile manufactures implement J2ME functionality quite different.
Designing a graphical user interface that has good usability on one phone does not ensure that the
same interface is usable on another phone.

Another problem is multitasking and the lack of mulittasking. The Nokia 6600 is apparently able
to multitask applications and has a task manager for raising applications that were previously
placed in the background. The Sony Ericcson p900 seems to be able to run applications in the
background, but we have been unable to find a suitable way of getting applications, that have
been placed in the background, back to focus. Siemens S65 does not seem to have any form of
multitasking at all.

18.2 Bluetooth

Bluetooth devices running as masters can not accept incoming connections from other masters.
In addition, slaves can not function as slaves in more than one piconet at a time. This has severe
impacts on creating scatternets with bluetooth enabled devices. It also has an impact on our sce-
narios in the Hybrid and Auto categories. When devices are doing continuous search for other
devices, they might not find everyone that is within reach since they are already connected in
another piconet.

There are variations on how many Bluetooth connections the various phones support. The Sony
Ericsson p900 only supports one connection at the time. Siemens S65 seems to support 3, we
know for sure that it supports 2. The only phone that seems to fully implement the Bluetooth
is the Nokia 6600. According to the implementation on the phone it supports 7 connection, e.g.

163

Encountered Problems

a complete piconet. Since we only have three phones for testing we only know for sure that it
supports 2 connections. This variety in the Java APIs for Bluetooth Wireless Technology (JABWT)
implementations put restrictions on which phones can be used for what purposes and how. These
different properties of the different JABWT implementations are not public documented which
makes the whole development process quite explorative.

The Sony Ericsson p900 has a faulty JABWT implementation. When returning from a device
discovery process the p900 always return with the value DEVICE_DISCOVERY_ERROR, even
if devices have been found properly. This is apparently due to a mixup of two return values in
Sony Ericsson JABWT implementation. Sony Ericsson have been notified of the problem, but
have been unable to come up with a fix for it. Today the problem is present in all the high-end
Sony Ericsson mobile phones with JABWT support.

The different JABWT implementations are slow and implements highly varying disconnection
detection times. How long it takes for a phone to detect that it has been disconnected from another
phone varies a lot between the different phone models. In general it takes a lot of time, from 5 to
15 seconds.

164

Chapter 19

Evaluation

This chapter gives an overall evaluation and analysis of the work that have been conducted and
the results of this project. We will first evaluate the most technical issues related to the framework
and the different technologies used. We will then do an evaluation of the empirical work by
performing the interpretation phase of the Goal Question Metric (GQM) method and by evaluating
the Peer2Me example applications.

19.1 Technical evaluation

This section looks at the technologies used and the technical results produced. Through this eval-
uation we will answer the following research questions:

• Is it technical possible to develop and implement a framework like Peer2Me on mobile
phones?

• Are mobile phones together with J2ME a suitable technical platform for mobile collabora-
tive applications?

• Is Bluetooth a suitable technology for mobile collaborative applications?

19.1.1 Framework

The requirements we found in [37] and updated in this report is completely covered in our design.
Our implementation of the Peer2Me covers all but two requirements completely, these two are
partially covered.

The Peer2Me implementation consists of more than 1100 lines of code, but is still kept within
the size limitations of mobile applications. The resulting package is well within the limits of
the storage capacity of the mobile phones of today. Our choice of an explorative development
method has allowed us to continuously improve Peer2Me and quickly discover and fix encountered
problems.

165

Evaluation

When it comes to the functionality embedded in the Peer2Me framework, we have utilized the
technologies to the full, trying to work around their limitations and shortcomings. For instance,
the master-slave network topology of a Personal Area Network (PAN), where a master connects
to a number of slaves, instead of a slave connecting to the master, was at first a bit hard to grasp.
This topology also influenced how we designed the group management mechanism in Peer2Me.
The developer workshop also confirmed that the concept of master and slave is one of the most
difficult concepts to grasp.

19.1.2 Mobile Phones and J2ME

Mobile phones work well with the problem domain. They are lightweight, a large number of
people own a mobile phone and the phones are almost always on and connected. The Java 2 Micro
Edition platform (J2ME) also enables us to deploy the Peer2Me framework on a number of phones
due to the portable nature of J2ME.

Despite of that, mobile phones are not without shortcomings. The J2ME implementations on
phones produced by different manufacturers vary a lot, especially when it comes to optional func-
tionality such as Bluetooth, etc. The Mobile Information Device Profile (MIDP) 2.0 also limits the
applications access to certain features of the phones operating system and resources. With MIDP
3, a lot of such technical issues will be improved, allowing applications to start at boot time and
run in the background while the phone is on.

19.1.3 Bluetooth

The most serious problem with the Bluetooth technology for use in mobile collaborative applica-
tions is the slow processes of discovery and searching for other devices. The currently available
Bluetooth enabled devices use, at best, 10.24 seconds to discover other devices in their proximity,
[24, 64]. This is a long time if devices are moving or communication time is limited for other
reasons. The next generation of Bluetooth devices, that will conform to the version 2.0 of the
Bluetooth specification, will probably offer radically shortened discovery times.

In spite of the discovery time, Bluetooth has been proved to work for moving devices as described
in [59]. Welsh, et.al. describe an experiment where they actually perform their tests with Class 1
Bluetooth devices with a range up to 100 meters and speeds above 20 km/h (5.56 m/s). This should
scale down and prove that it is possible to use Bluetooth for exchange between Class 2 devices
(mobile phones) with a range of 10 meters at walking speed (1.4 m/s). During our scenario testing
of the Converging Top Ten List application, described in Chapter 16, we found the best test mobile
phone to perform discovery processes in an average of 20.2 seconds.

It seems that a lot of the problems connected to Bluetooth’s long discovery times on mobile phones
are related to the J2ME implementation of the Bluetooth APIs (JABWT). Bluetooth tools and
software not implemented in J2ME, produce a list of discovered devices which is updated as
new devices are found. These devices can be connected to instantly if desired. With JABWT,
connections can not be made until the discovery process has completed, making the response time
much higher. We learned this when trying to parallelize the discovery process in our Bluetooth
module to reduce the response time of a search after devices. As stated in Chapter 8.5.2, the

166

19.2 The Interpretation Phase of the Goal Question Metric method

implementation of the JABWT in the mobile phones do not allow this discovery to be parallel.
Hopefully, this will be fixed in future releases of JABWT.

In Chapter 21, we discuss some improvements that can be made to the Bluetooth specific parts of
Peer2Me based on experiences from other research projects.

In spite of its shortcomings, Bluetooth remains the most promising Personal Area Network (PAN)
technology. Its transfer rate is more than adequate for the scenarios we have discussed in this re-
port, enabling real time communication between nodes. The number of Bluetooth enabled phones
is high and rising. The APIs are complete although the implementation has shortcomings.

19.1.4 Development Platform and Environments

From the developer perspective, J2ME is a bigger challenge to develop applications on than the
Java 2 Standard Edition (J2SE). The reason for this is that the developer tools for J2ME is not yet
as mature as the Integrated Development Environments (IDEs) of J2SE. As an example, tracing
exceptions is difficult with the tools we have used since the stacktraces produced lack a lot of
information compared to the stacktraces produced in J2SE.

In addition to this, the emulators currently available do not have the same behaviour as the mobile
phones. The phones run the applications with limited resources such as CPU capacity and memory,
and the emulators run the applications with close to unlimited CPU capacity and memory. This
causes a mismatch between how applications behave on the emulators and mobile phones. This
complicates the development process when it comes to testing and debugging. Debugging and the
search after errors is also very time consuming on the mobile phones.

19.2 The Interpretation Phase of the Goal Question Metric method

This section will evaluate the following research question:

• Will developers benefit from using Peer2Me when developing mobile collaborative applica-
tions on mobile phones?

To be able to answer this question we described it as two different goals, see Section 19.2.1 and
Section 19.2.2 below. In Chapter 2.2.2 we used the Goal Question Metric (GQM) method to break
down these goals into questions and metrics and we will now perform the interpretation phase
of the GQM method to answer these questions. Some of the metrics describes quantitative data
that was gathered and measured during the developer testing described in Chapter 17. The other
metrics describes data that could not be measured or gathered through experiments. These data
will now be estimated qualitative according to our own and others experiences and used to answer
the defined questions together with the quantitative data. When the questions are answered, we
will use these answers to evaluate if we have reached the two main goals. This analysis constitutes
the interpretation phase of the GQM method.

167

Evaluation

19.2.1 Evaluation of Goal 1

In Chapter 2.2.2 we defined the first goal of our empirical work by using the GQM template as
follows:

Analyze Peer2Me
for the purpose of Deciding if it will be easier to develop applications using the frame-
work
with respect to its Usability, usefulness and effectiveness
from the point of view of the Developers
in the context of Mobile collaborative application development.

We will now evaluate and answer each question from the GQM three that relates to this goal. In
the end we will conclude upon if we have reached the goal or not.

QUESTION 1: Is it easy to understand the concepts of Peer2Me?

Metric: Time spent on Peer2Me training.

Data measured: 40 minutes.

Peer2Me is constructed to simplify the domain and should therefore be more easier to learn than
a specific technology. In the developer workshop the participants spent in average 41.3 minutes
on training. This training was very effective and covered so much that 71% of the participants
finished all sections of the programming exercise before the time exceeded. 71% of the developers
also thought that the domain concepts simplified the problem domain and the same number of
developers also thought that Peer2Me clarifies the domain of mobile collaborative applications as
a whole. The developers though thought that the concepts of a master and a slave node were a
bit difficult to understand. We believe the main reason for this is that developers nowadays are
so used to the client-server paradigm that it takes some time to understand an alternative to this
paradigm.

Answer: Yes, the concepts of Peer2Me is more or less easy to understand, but the learnability of
the framework depends on the level of motivation and the ability for adopting a new way of
thinking about networked applications.

QUESTION 2: Is it easy to understand the concepts of a wireless Personal Area Network
technology as Bluetooth?

Metric: Time spent on learning the concepts of Bluetooth.

Data estimated: 8 hours.

168

19.2 The Interpretation Phase of the Goal Question Metric method

From our own experiences with the Bluetooth technology, we have learned that it takes a while to
grasp the concepts of it. In the prestudy phase of our in depth study project in 2004 we developed
a prototype application based upon Bluetooth technology before we started developing the frame-
work itself. We spent three days making this applications. The first day we used to understand
and learn about the concepts behind the technology. Then we spent two days on the actual devel-
opment of the example application. During these two days we spent more or less one whole day
working on the Bluetooth specific parts and another day working on other components related to
J2ME.

To verify our estimates we have contacted one of the major contributors to the Java Specifica-
tion Request (JSR) 82, the Java APIs for Bluetooth Wireless Technology (JABWT), a company
called Rococo Software. Rococo software is an active member of the JSR 82 Expert group and
has developed and worked with Bluetooth for a long time. Rococo Software also offers a com-
prehensive collection of Bluetooth and wireless technology training courses. One of the training
courses provides an introduction to the Bluetooth technology. This course aims to introduce the
main concepts of the Bluetooth technology to the participants. According to [50], the duration
of this course is one day and it requires no prerequisites. This verifies our estimate that it takes
more or less one whole working day, about 8 hours, to learn the main concepts of the Bluetooth
technology from scratch.

Answer: No, to understand the main components and concepts related to a wireless PAN tech-
nology, like Bluetooth, is a complex and time consuming task.

QUESTION 3: Is it easy to learn developing mobile collaborative applications with Peer2Me?

Metric: Time spent before mastering Peer2Me development.

Data measured: 130 minutes, about 2 hours.

Metric: Number of people that succeeds doing a programming exercise.

Data measured: 71% (5 out of 7 developers).

According to the results of the developer workshop the learnability of the Peer2Me framework is
very good. It seems like the framework has a steep learning curve which means that the compe-
tence increases quickly over time while learning and using the framework. Much of this learn-
ability depends on a well written and informative development guide. 100% of the participants
of the developer workshop thought that the development guide, found in Chapter 14, helped them
through the programming exercise.

Answer: Yes, it is easy to learn developing with Peer2Me, but the learnability depends upon a
well designed development guide.

QUESTION 4: Is it easy to learn developing mobile collaborative applications with Blue-
tooth?

Metric: Time spent before mastering Bluetooth development.

169

Evaluation

Data estimated: Three working days, about 24 working hours.

As stated above we spent three days, starting from scratch without any significant knowledge,
making a prototype Bluetooth application. According to [51], Rococo software also estimates that
it takes about three days to learn mastering Bluetooth development. They offers a three days course
that gives the participants a from scratch understanding of the concepts behind the technology, an
introduction to the JABWT and introduction to a step-by-step approach to Bluetooth development
resulting in that each participant develops a working application. This verifies our estimate on
how much time that must be spent to master Bluetooth development.

Answer: No, it takes a lot of time and effort to learn developing with Bluetooth.

Conclusion

We have now answered and evaluated upon all the questions related to Goal 1. The answers and
the evaluations have made us reach Goal 1 because we can now conclude that Peer2Me makes it
easier to develop mobile collaborative applications. A summary of the answers collected from this
section supports this conclusion:

• The concepts of Peer2Me are more or less easy to understand.

• To understand the main components and concepts related to a wireless PAN technology, like
Bluetooth, is a complex and time consuming task.

• It is easy to learn developing with Peer2Me.

• It takes a lot of time and effort to learn developing with Bluetooth.

19.2.2 Evaluation of Goal 2

In Chapter 2.2.2, we defined the second goal of our empirical work by using the GQM template
as follows:

Analyze Peer2Me
for the purpose of Deciding if it requires less effort to develop applications using the
framework
with respect to its Effectiveness and usefulness
from the point of view of the Developers
in the context of Mobile collaborative application development.

We will now evaluate and answer each question from the GQM three that relates to this goal. In
the end we will conclude upon if we have reached the goal or not.

170

19.2 The Interpretation Phase of the Goal Question Metric method

QUESTION 1: How much time does it take to develop an application with using Peer2Me?

Metric: Time spent developing

Data measured: 90 minutes

This time metric says something about how much time it will take to develop an application after
spending time on training. The participants in our developer workshop spent an average of 86.7
minutes to complete a simple chat application after attending the education session. It is important
to notice that the time spent on developing probably would have been longer if the participants did
not receive guidance throughout the development. It is also import to state that the chat application
made during the workshop was very simple providing only basic functionality.

Answer: Developing an application using Peer2Me requires a small amount of time.

QUESTION 2: How much time does it take to develop an application without using Peer2Me?

Metric: Time spent developing.

Data estimated: 8 hours.

We will again compare Peer2Me development to Bluetooth development. We spent two days
only on development when making our example application in our last project in 2004 mentioned
above. One of these days was spent on making the Bluetooth specific code using the JABWT.
According to [52], Rococo Software is offering a one-day workshop to learn how to make Blue-
tooth applications using the JABWT. Another company called Teleca also offers Bluetooth specific
training. According to [55], one of their courses lasts for 8 hours and provides an introduction on
how to write applications based upon Bluetooth. The participants are guided through some funda-
mental steps and ends up with writing a simple chat application. These references together with
our own experiences make 8 hours as an appropriate data estimate for this metric.

Answer: Developing an application without using Peer2Me requires significant more time than
the opposite.

QUESTION 3: How much source code is produced when developing an application using
Peer2Me?

Metric: Lines of code (LOC).

Data measured: 108 LOC (Simple chat application)

Data measured: 242 LOC (PAN Instant Messaging)

171

Evaluation

QUESTION 4: How much source code is produced when developing an application without
using Peer2Me?

Metric: Lines of code (LOC).

Data measured: 586 LOC (BlueChat by Ben Hui)

To answer Question 3 and Question 4 we have to refer to some example applications. We have
chosen to use a standard chat application as reference to compare how much source code that is
produced with and without using Peer2Me. During this project we have developed two different
chat applications. The most simplest application, called a Simple Chat Application, was developed
as a solution to the programming exercise in the developer workshop. This was a very simple
application and was made up out of 108 lines of code. A more advanced chat application, the PAN
Instant Messaging application, described in Chapter 12, was developed as a full-scale Peer2Me
example application, and ended up consisting of only 242 lines of code.

To compare the number of lines of code held by these applications to applications developed
without using Peer2Me we had to find a similar chat application developed from scratch using
Bluetooth. One of the most important and popular Bluetooth programming resources on the web is
the site maintained by Ben Hui1. Ben Hui is one of the most experienced Bluetooth developers out
there and he released an article in February 2004 [29], that explained the main concepts of J2ME
Bluetooth programming. This article explained the different parts in a chat application, called
BlueChat, developed by Ben Hui. This application has later become one of the most referred
Bluetooth applications available. The BlueChat application provides a bit more functionality than
the Simple Chat Application, but less functionality than the PAN Instant Messaging application.
The BlueChat application consists of 586 lines of code, which shows that much more source code
is produced when not using Peer2Me when developing applications.

Answer to question 3 and 4: Less source code is produced using Peer2Me when developing ap-
plications.

Conclusion

We have now answered and evaluated all the questions related to Goal 2. The answers and the
evaluations have made us reach Goal 2 because we can now conclude that it requires less effort
to develop mobile collaborative applications using the Peer2Me framework. A summary of the
answers collected from this section supports this conclusion:

• Developing an application using Peer2Me requires a small amount of time.

• Developing an application without using Peer2Me requires significant more time than the
opposite.

• Less source code is produced using Peer2Me than without using it.

1http://www.benhui.net/

172

19.3 The Peer2Me applications

19.3 The Peer2Me applications

This section will evaluate the following research questions:

• Is Peer2Me suitable for developing all categories of mobile collaborative applications de-
scribed in the classification matrix?

• Are these kinds of collaborative applications useful for end users?

Peer2Me is a framework for making collaborative applications on mobile phones. These are col-
laborative applications that operates at the same place and in real time. The categorization matrix,
described in Chapter 4, are defining three main categorizes of such applications: User, Auto and
Hybrid. Will these kinds of applications be adopted by end users? Are these applications pro-
moting face-to-face interaction or utilizing the advantages of persons being collocated? Since we
in this project have developed one example application from each of these categorizes, we now
want to do an evaluation of how suitable Peer2Me is for making these kinds of applications. By
analyzing the scenario testing, described in Chapter 16, we will also include a discussion of how
the different categorizes of applications and scenarios seem to affect human collaboration and how
well they seem to function in the domain of CSCW.

The BEDD software suite, described in Chapter 5, offers similar kinds of applications as Peer2Me
to end users in Singapore. Services like proximity dating, buying and selling and chatting were
quickly adopted by over 1500 users during the first two months in the capital of Singapore in the
spring of 2004. Although these services were not for free, people seemed interested in such kinds
of services on mobile phones. This shows the potential for these kinds of applications. The BEDD
Corporation does not have any information about how many users they have today. The BEDD
software might had been adopted more widely if it was available not only on Symbian phones and
if it had used another business model.

19.3.1 User - Explicit User Interaction

These kinds of applications require user interaction. The user has to explicitly trigger the collabo-
ration activities, start the information exchange or request a service. The PAN Instant Messaging
application, described in Chapter 12, is an example of such an application. As a tool for sponta-
neous ad hoc group interaction there is no doubt that this kind of application is valuable. During
the scenario test the collocated users communicated in a simple and effective way. This was done
without using a cellular network, like GSM, and thereby also without being charged from a net-
work vendor. Being able to form and communicate within an ad hoc chat group of physically
collocated people can be suitable and effective in many different situations and environments.
These are for instance communication during a conference or lecture, chatting with strangers on a
bus, situations requiring exchange of secret information without using voice and so on.

These kinds of applications are not that depending on fast device and connection times and the
infrastructure that is handled by Peer2Me covers a lot of the functionality required by these types
of applications. This makes Peer2Me very suitable for making such applications.

173

Evaluation

19.3.2 Auto - Automatic Collaboration

These applications involve automatic collaboration between devices. The application is responsi-
ble for initiating communication between devices on behalf of the user. The user stores a profile
that defines how the application should act with respect to other devices and available services.
These applications will often be used to exchanging and spreading information in a population.
The society today is overfilled with more or less useless information and it is a great challenge to
find relevant and good quality information. It should be possible to exploit the fact that we every
day move around and meet other people, familiar or unknown. Many of these people may have
the same interests, share a common goal or need for information as you, but information of inter-
est may only be in possession of a few of them. Applications that utilize automatic collaboration
without requiring user interaction may be used to exchange such information.

We have made one example application from this category of applications, the Converging Top
Ten List application. This is an application that can maintain and store top ten lists of product or
service prices. These lists can then be spread around by automatic exchange to other people and
then converge to the true top ten list. All the people in the population that use this application
share a common goal. They want to get objective information about what products or services that
offer the best prices. When these people move around and encounter each other, their physically
collocation is exploited by the application to connect and exchange information. The top ten lists
are compared, exchanged and thereby populated. We have not had enough resources to test this
application in a large population to test its practical usefulness for a big crowd of end users.

The scenario testing of the Converging Top Ten List application involved testing if the technol-
ogy that Peer2Me is based upon is possible to use when making such applications. The Peer2Me
framework seems very suitable for making such applications. The big problem is the immature
and poor implemented network technologies. In these kinds of applications the processes of dis-
covering and connecting to other devices have to be performed fast because the people that carry
the devices move around. The scenario test showed as mentioned earlier in this chapter, in Section
19.1.3, how the Bluetooth technologies in the different mobile phones limits the usefulness of the
Peer2Me framework to make applications facilitating automatic collaboration. If the mobile phone
vendors in the, hopefully near, future releases phones with faster and better implemented wireless
technology, Peer2Me will be a valuable technology to use to develop such applications.

19.3.3 Hybrid - A Combination of User and Auto

These applications provide a combination of forced user interaction and automatic collaboration.
There are mainly two different types of such hybrid applications:

Type 1: These are applications that automatically trigger collaboration that requires further user
interaction. For instance: Automatic exchange and matching of music recommendations.
When people with same taste in music meet, the application will alert the users and open
for further user interaction and exchange of music.

Type 2: These are applications that are constantly running and that other users can connect to and
download data from. An example of such an application is the Business Card Exchange
application that we have developed in this project.

174

19.3 The Peer2Me applications

These kinds of applications can combine the best properties of the two first categories of appli-
cations, but they will also suffer from the technology limits of the automatic collaborative appli-
cations. The “Type 1”-applications are highly depending on the network technology in the same
way as the “Auto” applications, but “Type 2” applications such as Business Card Exchange suit
the framework very well.

175

Evaluation

176

Chapter 20

Conclusion

In Chapter 2 we posed several research questions concerning Peer2Me and its problem domain.
Through our work described in this master thesis we have worked according to our method de-
scription with the aim of answering the research questions. The questions were answered through
our project evaluation in Chapter 19 but we will now repeat the questions and summarize our
results.

1. Is it technical possible to develop and implement a framework like Peer2Me on mobile
phones?

• Yes, we have developed the Peer2Me framework with applications and tested it on
mobile phones.

(a) Are mobile phones together with J2ME a suitable technical platform for mobile col-
laborative applications?

• Yes, but there are currently a few shortcomings which hopefully will be resolved
in the future.

(b) Is Bluetooth a suitable technology for mobile collaborative applications?

• Yes, but there are currently a few shortcomings related to the J2ME Bluetooth
APIs.

2. Will developers benefit from using Peer2Me when developing mobile collaborative applica-
tions on mobile phones?

(a) Will it be easier to develop applications using Peer2Me?

(b) Will the development time be reduced when using Peer2Me?

• Yes, tests have shown that training and development time is drastically reduced by
using the Peer2Me framework when writing applications.

3. Is Peer2Me suitable for developing all categories of mobile collaborative applications de-
scribed in the classification matrix?

177

Conclusion

• Yes, but the shortcomings in the J2ME creates a limit on how fast devices can move
when running applications in the Auto category. This will probably be resolved in the
future.

4. Are these kinds of collaborative applications useful for end users?

• We did not have enough time to test the applications extensively on a user popula-
tion and therefore lack the empirical data to conclude anything on this point, but our
belief is that user can and will benefit from services offered through Peer2Me based
applications.

We have improved and implemented a new version of the Peer2Me framework prototype and
developed several applications that use the framework. The most noteworthy applications are
the three example applications Business Card Exchange, PAN Instant Messaging and Converging
Top Ten List, described in Part III (The Peer2Me Applications) of this report. Through empiri-
cal studies of developers using Peer2Me, we have found that there is a substancial benefit to be
gained when developing applications both when it comes to understanding the domain concepts
and learning to use the API and implementing the actual applications.

The Peer2Me framework is designed with a semi-layered structure in order to ensure modifiability
and independence of network technology. The layers are the network module, the network inter-
face and the framework. The bottom layer, the network module, contains all network technology
specific parts of the code. The network interface provides an abstraction above this, making the
top layer, the framework layer, completely independent of underlying network technology. In ad-
dition to this, there is a vertical package used by all layers, the domain package, that deals with all
concepts central to Peer2Me such as node, group, service, etc. An application using the Peer2Me
framework should only use objects from the framework layer and the domain package to ensure
complete network independence. Well known design patterns are used in the design to ensure
quality. Different kinds of communication protocols have been designed and implemented.

The Peer2Me framework is unique in the sense that we have been unable to find any other generic
frameworks that cover the same problem domain as Peer2Me. We have not discovered any similar
products implemented in neither Java nor any other native language. The closest thing we come
to competitors are the BEDD software and the JSR 279: Ad Hoc Networking API. BEDD is a
commercial software suite that can not be used by independent developers. The JSR 279 is still far
from completion and it will probably be another two years before we see it supported on mobile
phones. Peer2Me’s uniqueness is further shown by the attention we have received from other
universities worldwide. Through the project website1 and conferences, we have been contacted
by several researchers that are interested in our work, some of them wanting to use Peer2Me as a
building block for their own research projects.

We have used an iterative approach for developing both the Peer2Me framework and the exam-
ple applications. Through this iterative method we have been able to continuously monitor and
evaluate the status of the implementation and discovering problems before or as soon as they ap-
peared. The separate, but synchronized iterations used for each application gave us a way to test
the framework step by step and improve the parts that had flaws. The total process has rendered

1http://wwww.peer2me.org

178

us a prototype which can be used for testing new scenarios and verifying the suitability of the
technologies in the applicable scenarios.

Another aspect of using an iterative method is the learning process. Learning as you need the
knowledge gives you hands-on experience and ensures that the learning curve does not grow to
steep. Throughout this project we have learned a lot about formal research methodologies, struc-
tured analysis of problems and general object oriented design and development techniques. De-
signing and building a generic framework introduces new aspects and challenges when it comes
to polymorphy and structure in the software. We have also gained more experience when it comes
to debugging and fault analysis using monitoring tools. All in all we have enjoyed exploring the
very interesting and growing domain of mobile collaboration and we hope that our work has been
a contribution to the field.

179

Conclusion

180

Chapter 21

Further Work

Although Peer2Me in its present version works for testing scenarios and verifying the correctness
of requirements, we have uncovered that the Peer2Me framework is not yet ready to be deployed
with the end users. This chapter will discuss what needs to be done with Peer2Me concerning both
short term and long term goals.

21.1 Short Term Goals

In this section we will describe the short term goals of the Peer2Me framework.

21.1.1 The Framework in General

The remaining requirements should be implemented in order to make sure that the Peer2Me frame-
work is fully functional and works with all specified scenarios. The suggested improvements,
regarding both the framework and its documentation, from the developer workshop, described in
Chapter 17.5, should be considered designed and implemented.

The overall stability and reliability of Peer2Me should be a quite large focus to make sure that
applications built on Peer2Me can be trusted by both developers and end users to actually work as
expected and have a high degree of reliability. Today there are some problems connected to the
disconnection of nodes.

Example applications that is made by the framework could be made more useful for a end user if
he or she could access data stored in the native operating system of the mobile phones. This is
information and data such as telephone numbers, notes, multimedia files, games and programmes.
This kind of information should be accessable and integrated into Peer2Me applications and it
may be suitable to integrate mechanisms and functionality for doing this into the framework core.
Such integration may harm the security and privacy of the users, and solutions to manage these
threats should be implemented. Security threats issues of the framework as a whole should also be
evaluated.

181

Further Work

21.1.2 Messages

Today, Peer2Me only supports messages with ASCII characters. In order for some of the scenarios
to work properly, messages containing binary data, for instance images, should be supported by
the framework. If this is done with the text message format, binary data will have to be Base64
encoded and decoded. Base64 encoding introduces a lot of overhead which is undesirable on
mobile battery powered devices where low transfer times are crucial. When introducing a new
binary message format, profits may also be gained by looking at the way messages are sent in the
Bluetooth network module.

Extensible Markup Language (XML) may be used for describing messages. This ensures a more
loose coupled communication between devices and much more readable messages. Using XML
for describing messages enables the use of an XML parser to parse messages. This makes the
parsing process more maintainable and could make it function as a plug-in. Introducing XML
might influence the performance negatively and increase the overall size of the framework. An
evaluation of these costs should be performed before implementing this functionality.

21.1.3 Optimalization

As mentioned above, the Bluetooth discovery times are currently too high for automatic exchange
scenarios such as the the converging top ten list, etc. Several research projects around the world has
looked at this. In [64], Woodings et.al. describe a strategy where they employ Infrared technology
as support to speed up the connection time. In [59], Welsh et.al. discuss the use of Bluetooth in
mobile environments such as vehicles. A study could be performed to look at ways to improve
and work around the limitations in Bluetooth if this is not fixed in the next generation of Bluetooth
devices.

In a mobile, battery powered device, computational operations drain the battery’s power. In a
Peer2Me piconet, the master node experiences a larger load than the slave nodes since e.g. all mes-
sages go through the master node. In order to level out all the nodes’ battery life a load balancing
mechanism should be introduced. This mechanism will include letting the master responsibility
be shared among the nodes in the net over time. One load balancing scheme is described in [12].

21.2 Long Term Goals

In this section we will describe the long term goals of the Peer2Me framework.

21.2.1 Adopt New Technology

Currently only Bluetooth is supported as a network medium for Peer2Me but as more technologies
are introduced on mobile phones an effort should be made to support these in Peer2Me. The
current Bluetooth module should also be kept up to date as the Bluetooth specification evolves and
is introduced in new versions on mobile phones.

182

21.2 Long Term Goals

The development of the JSR-259: Ad Hoc Networking API should be monitored closely to check
how Peer2Me can be made to comply with the specification and or utilize the results from the JCP.

Thew JSR-271: MIDP 3 introduces a new set of features to the J2ME platform as specifies in
Chapter 6. The Peer2Me framework should follow the development of MIDP 3 and be ported to
it as soon as possible. Utilization of the new featrues in MIDP 3 increases the value of Peer2Me
substancially.

21.2.2 Advanced Functionality

Automatic exchange applications continuously search for other devices to connect to. Searching
for other devices takes up a lot of the network bandwidth, in addition it is also quite consumptional
when it comes to battery power. In order to decrease the effort of searching, and adaptive discovery
scheme can be employed. For instance, devices moving fast are more likely to encounter new
nodes than devices being stationary. The JSR-179 specifies a Location API for J2ME that can
provide a device’s location to the application. By using this API, an auto discovery application
can increase its search frequency based on how fast it is moving. An application may also maintain
statistics over number of devices nearby to adjust its search frequency according to this.

The current mobile phones do not support scatternets at the hardware level, which limits the num-
ber of interconnected devices. When the mobile phones evolve further, scatternet implementations
may be possible. Peer2Me today does not support links between every node in a network. By us-
ing scatternets, communication channels can be established between every node in the group, thus
relieving the group’s master of some of its routing duties. Taking scatternet implementation to the
extreme and creating a full scale P2P net with Peer2Me is a quite large project in itself.

A study should be performed to check whether or not it is possible to implement support for
the pure P2P model on mobile phones with Peer2Me. A pure P2P implementation using small
scatternets would remove the need to have a master device routing all messages.

21.2.3 Empirical Work and Applications

To evaluate the value of mobile collaborative applications on mobile phones it should be conducted
full scale end user testing. Applications that are stable and reliable should be spread around and
adopted in a huge population. This way it should be possible to study how such applications affect
the way humans collaborative using mobile devices. New kinds of applications and scenarios, that
illustrates different kinds of usages of the framework, should be designed, implemented, tested
and evaluated.

183

Further Work

184

Part VII

Appendix

185

186

Appendix A

Discovery Time Statistics

This chapter contains empirical data gathered by a special MIDlet written to measure how many
milliseconds it takes from a group search is initiated, to the device discovery completes and to
the handshake protocol is complete. Tables A.1, A.2 and A.3 show the discovery times measured
with each of our three test phones. All timestamps are measured in milliseconds. The first column
shows the milliseconds spent from the start of the group search and to the completion of the device
discovery. The second column shows the milliseconds spent from the start of the group search and
to the handshake is finished and the two devices are joined in a group. All measurements are made
in ideal environments, which means that the only active Bluetooth devices within communication
range were the two mobile phones we used for the tests. When introducing more Bluetooth devices
into the environment, the discovery times increase.

187

Discovery Time Statistics

Bluetooth discovery (ms) Handshake protocol (ms) Difference (ms)
Test 1 16546 19891 3345
Test 2 17375 20765 3390
Test 3 17203 20735 3532
Test 4 16359 19719 3360
Test 5 17265 20516 3251
Test 6 16619 19893 3274
Test 7 17118 20410 3292
Test 8 16405 20267 3862
Test 9 16922 20141 3219
Test 10 17085 20056 2971
Average 16889.7 20239.3 3349.6

Table A.1: Discovery times for Nokia 6600 as master and Sony Ericsson p900 as slave.

Bluetooth discovery (ms) Handshake protocol (ms) Difference (ms)
Test 1 22297 25406 3109
Test 2 16438 19250 2812
Test 3 21015 24297 3282
Test 4 20015 23498 3483
Test 5 19203 21561 2358
Test 6 17266 20735 3469
Test 7 16531 19766 3235
Test 8 17437 20868 3431
Test 9 18797 21938 3141

Test 10 19265 22343 3078
Average 18826.4 21966.2 3139.8

Table A.2: Discovery times for Sony Ericsson p900 as master and Nokia 6600 as slave.

Bluetooth discovery (ms) Handshake protocol (ms) Difference (ms)
Test 1 16080 20723 4643
Test 2 15110 18776 3666
Test 3 14963 18346 3383
Test 4 18300 23834 5534
Test 5 18281 21817 3536
Test 6 14986 18507 3521
Test 7 18222 24453 6231
Test 8 17502 22121 4619
Test 9 18254 23068 4814
Test 10 15753 20890 5137
Average 16745.1 21253.5 4508.4

Table A.3: Discovery times for Siemens s65 as master and Sony Ericsson p900 as slave.

188

Appendix B

The Peer2Me Developer Exercise

This chapter contains the exercise given to the participants of the developer testing workshop
described in Chapter 17.

B.1 Introduction

This exercise gives developers practice in writing applications with the Peer2Me framework. At
the end of this exercise you will have written a very simple chat application that can connect
several devices in a network and allow each device’s user to communicate.

For this exercise we have prepared an almost complete application which only misses the code for
network communication and P2P infrastructure. The framework specific code will be added step
by step. The code we will complete can be downloaded from the Peer2Me website 1.

This exercise assumes the reader has read and understood the Peer2Me tutorial.

B.2 Preparing the Framework

The first thing we’ll have to do is to initialize the framework. In our example application the
framework should be initialized after the user has pressed the “OK” button in the registration
form. Create the necessary instance variables and instanciate and initialize the framework. This
should be done at the start of the ready method. When preparing the framework, remember to
create the service and register it with the framework. In addition to this, we’ll set the framework’s
MessageSubscriber and GroupDiscoveryListener right away.

B.3 Searching for Other Devices

After the framework has been initialized, other devices running the same service has to be located.
This can be done by starting a group search. Before starting the search, be sure to create a new

1http://www.peer2me.org

189

The Peer2Me Developer Exercise

Group and set its service and add the group to the service. When a device is discovered, the slave
device is notified through the groupDiscovered method. The slave device should automatically
join the discovered group.

B.4 Monitoring the Group

Once a node has joined a group it should register a group monitor that can be notified of changes
in the group, such as nodes leaving or joining, etc. This is done by implementing the methods
defined by the GroupMonitor interface. For now, we will settle on implementing the nodeJoined
method.

B.5 Sending a Message

The available code already has a text field where the user can enter messages that can be sent to
the other nodes in the group. The next thing we have to do is get this text, wrap it in a message
and send it.

B.6 Receiving a Message

Sending messages does not do much good if no one reads them. The next method to fix is the
messageReceived method defined by the MessageSubscriber interface.

B.7 When Something Goes Wrong

Peer2Me is multi-threaded and in the Peer2Me class library we have defined an interface, Excep-
tionHandler, that can subscribe to exceptions from the framework threads. Modify the application
so it implements the ExceptionHandler interface and displays the error messages on screen. The
application also needs to register as an exception handler with the framework. This should be done
together with the framework initialization.

190

Appendix C

Code Examples

This Chapter contains the complete source code for the two Peer2Me demonstration applications
TestSlave and TestMaster. TestSlave is a simple MIDlet that listens for masters, offering a certain
service. TestMaster searches for available slave devices and connects to each found slave device.
TestSlave, upon receiving a notification of a new Node joining its group, sends a simple message
to the joining node. Listings C.1 and C.2 show the source code for TestSlave and TestMaster
respectively.

Listing C.1: Complete source code for TestSlave �
1 package no . n tnu . i d i . mowahs . a p p l i c a t i o n s . n e w t e s t a p p s ;
2
3 import j a v a . u t i l . Enumera t ion ;
4
5 import j a v a x . m i c r o e d i t i o n . l c d u i . D i s p l a y ;
6 import j a v a x . m i c r o e d i t i o n . l c d u i . Form ;
7 import j a v a x . m i c r o e d i t i o n . m i d l e t . MIDlet ;
8 import j a v a x . m i c r o e d i t i o n . m i d l e t . M I D l e t S t a t e C h a n g e E x c e p t i o n ;
9

10 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Group ;
11 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Message ;
12 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Node ;
13 import no . n tnu . i d i . mowahs . p r o j e c t . domain . S e r v i c e ;
14 import no . n tnu . i d i . mowahs . p r o j e c t . domain . T e x t M e s s a g e P a r t ;
15 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . E x c e p t i o n H a n d l e r ;
16 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . Framework ;
17 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . G r o u p D i s c o v e r y L i s t e n e r ;
18 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . GroupMoni tor ;
19 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . M e s s a g e S u b s c r i b e r ;
20
21 p u b l i c c l a s s T e s t S l a v e ex tends MIDlet implements G r o u p D i s c o v e r y L i s t e n e r ,
22 E x c e p t i o n H a n d l e r , M e s s a g e S u b s c r i b e r , GroupMoni tor {
23
24 p u b l i c s t a t i c f i n a l S t r i n g SERVICE_ID = "TESTAPP" ;
25
26 p r i v a t e Form form ;
27 p r i v a t e D i s p l a y d i s p l a y ;
28 p r i v a t e Framework myFramework ;
29 p r i v a t e S e r v i c e myServ ice ;
30

191

Code Examples

31 p r i v a t e void w r i t e T e x t (S t r i n g t e x t) {
32 form . append (t e x t + ’ \ n ’) ;
33 d i s p l a y . s e t C u r r e n t (form) ;
34 }
35
36 p r o t e c t e d void s t a r t A p p () throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
37 d i s p l a y = D i s p l a y . g e t D i s p l a y (t h i s) ;
38 form = new Form (" T e s t S l a v e ") ;
39 myServ ice = new S e r v i c e (SERVICE_ID) ;
40 w r i t e T e x t (" S t a r t e t t e s t S l a v e . . . ") ;
41 myFramework = Framework . g e t I n s t a n c e (" s l a v e t e s t e r " , " t e s t i n g s l a v e " , " no

. n tnu . i d i . mowahs . p r o j e c t . b l u e t o o t h . ne twork . B l u e t o o t h N e t w o r k ") ;
42 myFramework . i n i t () ;
43 myFramework . r e g i s t e r S e r v i c e (myServ ice) ;
44 myFramework . s e t M e s s a g e S u b s c r i b e r (t h i s) ;
45 myFramework . s e t E x c e p t i o n H a n d l e r (t h i s) ;
46 myFramework . s e t G r o u p D i s c o v e r y L i s t e n e r (t h i s) ;
47
48 }
49
50 p r o t e c t e d void pauseApp () {
51
52 }
53
54 p r o t e c t e d void des t royApp (boolean a rg0) throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
55
56 }
57
58
59
60
61 p u b l i c vo id g r o u p D i s c o v e r e d (Group group) {
62 group . s e t M o n i t o r (t h i s) ;
63
64 w r i t e T e x t (" Rece ived group ! ") ;
65 w r i t e T e x t (" Mas te r : " + group . g e t M a s t e r () . getKey ()) ;
66 Enumera t ion enum = group . g e t S l a v e s () . e l e m e n t s () ;
67 whi le (enum . hasMoreElements ()) {
68 w r i t e T e x t (" S l a v e : " + ((Node) enum . n e x t E l e m e n t ()) . getKey ()) ;
69 }
70
71 myFramework . j o i n G r o u p (group) ;
72
73 }
74
75 p u b l i c vo id h a n d l e E x c e p t i o n (E x c e p t i o n e) {
76 w r i t e T e x t (e . ge tMessage ()) ;
77
78 }
79
80 p u b l i c vo id messageRece ived (Message message) {
81 w r i t e T e x t (message . g e t M e s s a g e P a r t (" message ") . g e t F i e l d V a l u e ()) ;
82
83 }
84
85 p u b l i c boolean r u n n i n g S e r v i c e (S t r i n g s e r v i c e I D) {
86 i f (s e r v i c e I D . e q u a l s (myServ ice . g e t S e r v i c e I D ())) re turn true ;

192

87 re turn f a l s e ;
88 }
89
90 p u b l i c vo id e x i t () {
91 n o t i f y D e s t r o y e d () ;
92 }
93
94 p u b l i c vo id a l l o w J o i n (Group group , Node node) {
95
96 }
97
98 p u b l i c vo id n o d e J o i n e d (Group group , Node node) {
99 w r i t e T e x t (" Node j o i n e d : " + node . getKey ()) ;

100
101 Message message = new Message () ;
102 T e x t M e s s a g e P a r t t e x t = new T e x t M e s s a g e P a r t () ;
103 t e x t . s e t D e s c r i p t i o n (" message ") ;
104 t e x t . s e t F i e l d V a l u e (" h e l l o s l a v e ") ;
105 message . addMessageBodyPar t (t e x t) ;
106 message . a d d R e c i p i e n t (node) ;
107
108 myFramework . sendMessage (message , myServ ice) ;
109
110
111 }
112
113 p u b l i c vo id n o d e L e f t (Group group , Node node) {
114 w r i t e T e x t (" Node l e f t : " + node . getKey ()) ;
115
116 }
117
118 }� �

Listing C.2: Complete source code for TestMaster �
1 package no . n tnu . i d i . mowahs . a p p l i c a t i o n s . n e w t e s t a p p s ;
2
3 import j a v a x . m i c r o e d i t i o n . l c d u i . D i s p l a y ;
4 import j a v a x . m i c r o e d i t i o n . l c d u i . Form ;
5 import j a v a x . m i c r o e d i t i o n . m i d l e t . MIDlet ;
6 import j a v a x . m i c r o e d i t i o n . m i d l e t . M I D l e t S t a t e C h a n g e E x c e p t i o n ;
7
8 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Group ;
9 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Message ;

10 import no . n tnu . i d i . mowahs . p r o j e c t . domain . Node ;
11 import no . n tnu . i d i . mowahs . p r o j e c t . domain . S e r v i c e ;
12 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . E x c e p t i o n H a n d l e r ;
13 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . Framework ;
14 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . GroupMoni tor ;
15 import no . n tnu . i d i . mowahs . p r o j e c t . f ramework . M e s s a g e S u b s c r i b e r ;
16
17 p u b l i c c l a s s T e s t M a s t e r ex tends MIDlet implements E x c e p t i o n H a n d l e r ,
18 M e s s a g e S u b s c r i b e r , GroupMoni tor {
19 p u b l i c s t a t i c f i n a l S t r i n g SERVICE_ID = "TESTAPP" ;
20
21 p r i v a t e Form form ;
22 p r i v a t e D i s p l a y d i s p l a y ;

193

Code Examples

23 p r i v a t e Framework myFramework ;
24 p r i v a t e S e r v i c e myServ ice ;
25 p r i v a t e Group myGroup ;
26
27 p r i v a t e void w r i t e T e x t (S t r i n g t e x t) {
28 form . append (t e x t + ’ \ n ’) ;
29 d i s p l a y . s e t C u r r e n t (form) ;
30 }
31
32 p r o t e c t e d void s t a r t A p p () throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
33 d i s p l a y = D i s p l a y . g e t D i s p l a y (t h i s) ;
34 form = new Form (" T e s t M a s t e r ") ;
35 myServ ice = new S e r v i c e (SERVICE_ID) ;
36 myGroup = new Group () ;
37
38 w r i t e T e x t (" S t a r t e t t e s t M a s t e r . . . ") ;
39 myFramework = Framework . g e t I n s t a n c e (" m a s t e r t e s t e r " , " t e s t i n g m a s t e r " , "

no . n tnu . i d i . mowahs . p r o j e c t . b l u e t o o t h . ne twork . B l u e t o o t h N e t w o r k ") ;
40 myFramework . i n i t () ;
41 myFramework . s e t M e s s a g e S u b s c r i b e r (t h i s) ;
42 myFramework . s e t E x c e p t i o n H a n d l e r (t h i s) ;
43
44 myGroup . s e t M a s t e r (myFramework . ge tLoca lNode ()) ;
45 myGroup . s e t M o n i t o r (t h i s) ;
46 myServ ice . s e t G r o u p (myGroup) ;
47
48 myFramework . r e g i s t e r S e r v i c e (myServ ice) ;
49
50 myFramework . s t a r t G r o u p S e a r c h (myServ ice) ;
51
52
53 }
54
55 p r o t e c t e d void pauseApp () {
56 }
57
58 p r o t e c t e d void des t royApp (boolean a rg0) throws M I D l e t S t a t e C h a n g e E x c e p t i o n {
59 }
60
61 p u b l i c vo id h a n d l e E x c e p t i o n (E x c e p t i o n e) {
62 w r i t e T e x t (e . ge tMessage ()) ;
63
64 }
65
66 p u b l i c vo id messageRece ived (Message message) {
67 }
68
69 p u b l i c boolean r u n n i n g S e r v i c e (S t r i n g s e r v i c e I D) {
70 re turn f a l s e ;
71 }
72
73 p u b l i c vo id e x i t () {
74 }
75
76 p u b l i c vo id a l l o w J o i n (Group group , Node node) {
77 }
78

194

79 p u b l i c vo id n o d e J o i n e d (Group group , Node node) {
80 w r i t e T e x t (" Node j o i n e d : " + node . getKey ()) ;
81
82 }
83
84 p u b l i c vo id n o d e L e f t (Group group , Node node) {
85 w r i t e T e x t (" Node l e f t : " + node . getKey ()) ;
86
87 }
88
89 }� �

195

Code Examples

196

Appendix D

Questionnaire for Peer2Me developer
testing

D.1 Background and Experiences

1. For how many years have you been developing software?

2. Describe your programming skills.

• Professional

• Good

• Medium

• Poor

• None

3. For how many years have you been developing software with Java?

4. Describe your Java skills.

• Professional

• Good

• Medium

• Poor

• None

5. Have you ever developed a mobile application before?

• Yes

197

Questionnaire for Peer2Me developer testing

• No

6. Have you ever developed using J2ME?

• Yes

• No

7. Have you ever developed a Bluetooth application?

• Yes

• No

8. Do own a mobile phone supporting Bluetooth?

• Yes

• No

D.2 The Domain Concepts

9. I think the domain concepts of Peer2Me are easy to understand.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

10. I think the concept Framework is easy to understand.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

11. I think the concept Node is easy to understand.

198

D.2 The Domain Concepts

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

12. I think the concept Network is easy to understand.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

13. I think the concept Service is easy to understand.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

14. I think the concept Group is easy to understand.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

15. I think the concept Message is easy to understand.

• Completely agree

• Agree

199

Questionnaire for Peer2Me developer testing

• Neutral

• Disagree

• Completely disagree

16. I think these concepts simplifies the problem domain.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

D.3 The Peer2Me Development Guide

17. I think the development guide is easy to read.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

18. I think the development guide helped me through the exercise.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

19. Do you have any suggestions as to how the guide could be made more readable?

20. Do you have any suggestions as to how the guide could be made more useful?

200

D.4 The Exercise

D.4 The Exercise

21. What do you think was the most difficult part of the exercise?

• Preparing the Framework

• Searching for Other Devices

• Monitoring the Group

• Sending a Message

• Receiving a Message

• When Something Goes Wrong

22. What was the most time consuming part of the exercise for you?

• Preparing the Framework

• Searching for Other Devices

• Monitoring the Group

• Sending a Message

• Receiving a Message

• When Something Goes Wrong

23. What were the problems that you experienced, if any?

D.5 Summary

24. I think Peer2Me speeds up the development of collaborative mobile applications.

• Completely agree

• Agree

• Neutral

• Disagree

• Completely disagree

25. I think Peer2Me clarifies the domain of mobile collaborative applications.

• Completely agree

201

Questionnaire for Peer2Me developer testing

• Agree

• Neutral

• Disagree

• Completely disagree

26. Do you have any other comments, criticisms or suggestions?

202

Appendix E

Dictionary

API Application Programming Interface. An API is a set of definitions of the ways one piece
of computer software communicates with another. It is a method of achieving abstraction,
usually (but not necessarily) between lower-level and higher-level software. One of the
primary purposes of an API is to provide a set of commonly-used functions that can be used
by a programmer to design software.

Bluetooth An open standard for wireless transmission of voice and data between mobile devices
in a PAN.

CDC The Connected Device Configuration. A framework for building J2ME applications on all
kind of embedded devices ranging from a pager up to Set-top box. The CLDC and MIDP
specifications allow a more fine-grained functionality for more specialized devices.

CLDC Connected, Limited Device Configuration. A specification that defines a subset of classes
defined in the J2SE and the CDC. The classes provide basic functionality that can be utilized
on a mobile device.

CSCW Computer Supported Cooperative Work. The CSCW field deals with the use of computers
to support cooperation between people.

Framework An object oriented framework can be defined as a set of classes that embodies an
abstract design for solutions to a family of related problems. Frameworks are often designed
to simplify a problem domain and open for reuse and thereby decrease the development time
and effort.

IDI Department of Computer and Information Science

IEEE Institute of Electrical and Electronics Engineers. An organization providing standards to
the technical society.

GQM Goal Question Metric. The GQM method is a formal method to break down goals of an
empirical study or an experiment to a set of questions and related measurement metrics.
The GQM method forces scientists to decide upon and define what they actually want to
measure before doing it.

203

Dictionary

J2ME Java 2 Micro Edition. J2ME is a development platform owned and developed by Sun
Microsystems aimed at small and limited devices. Today most mobile phones has support
for running J2ME applications. J2ME consists of two programming specifications, CLDC
and MIDP.

J2SE Java 2 Platform, Standard Edition. Provides a complete environment for applications de-
velopment on desktops and servers and for deployment in embedded environments.

JABWT Java APIs for Bluetooth Wireless Technology. JABWT are a set of standard Java APIs
that enable the development of applications in Java conforming to the Bluetooth Specifi-
cation 1.1. JABWT is an implementation of the JSR 82 specification. The JSR-82 Expert
Group was responsible for defining the standard.

JSR-82 Java Specification Request 82. The specification standardizes a set of Java APIs to allow
Java-enabled devices to integrate into a Bluetooth environment. JABWT implement this
specification.

MANET Mobile Ad Hoc NETworks. Mobile ad hoc network networks that are spontaneous, self-
configuring and wireless with no fixed infrastructure. A mobile ad hoc network consists of
mobile nodes that use a wireless interface to send packet data.

MIDlet A J2ME application that conforms with CLDC and MIDP and is intended for mobile
devices. All Peer2Me applications are implemented as MIDlets.

MIDP Mobile Information Device Profile. MIDP sits on top of the CLDC and provides additional
functionality to a J2ME application related to the user interface, networking, and messaging.

MOWAHS MObile Work Across Heterogeneous Systems. The MOWAHS project is a joint re-
search effort by the software engineering and the database technology groups at the Depart-
ment of Computer and Information Science (IDI) at the Norwegian University of Science
and Technology (NTNU).

Multihop network A multihop network is a network where some nodes are out of reach from
each other and cannot communicate directly. Network traffic between nodes may have to be
forwarded by other intermediate nodes.

NTNU The Norwegian University of Science and Technology.

P2P Peer-to-Peer. Peer-to-peer computing refers to a class of applications that enables users to
form logical networks on top of any infrastructure and to share and exchange digital content.
Nodes in a P2P network, called peers, function as both server and clients.

PAN Personal Area Network. A PAN is one class of MANETs A PAN is mainly used for connect-
ing devices within a limited area with a radius of a few meters. Example devices forming a
PAN are laptop computers, printers and mobile phones and various peripheral devices such
as keyboards and mice. The communication range of a PAN is normally up to 10 meters.

Peer2Me Peer-to-peer for J2ME. A framework for mobile collaboration on mobile phones utiliz-
ing J2ME and Bluetooth.

204

Piconet A PAN can either be a piconet or a scatternet. In a piconet is all devices in the network
interconnected in a singlehop network. A Bluetooth piconet has a single master device and
up to seven slave devices.

RFCOMM RS232 Serial Cable Emulation Profile. A Bluetooth transport protocol in the core
protocol stack simulating a serial port connection

Scatternet A PAN can either be a piconet or a scatternet. In a scatternet nodes may be out of
reach from each other an have to communicate in a multihop fashion.

Singlehop network A singlehop network is a network where nodes can communicate directly
with each other. All nodes in the network are in reach of each other.

USB Universal Serial Bus. A wired protocol for interconnecting devices in a PAN.

205

Dictionary

206

Bibliography

[1] Mobile ad-hoc netze. http://www-i4.informatik.rwth-aachen.de/
~mesut/manet/display.html, 2002. (Accessed: 15.09.2004).

[2] Rockyroad white paper. http://www.jrra.org/pub/WhitePaper.zip, 2002.
(Accessed: 12.04.2005).

[3] Getting started with bluetooth. http://developers.sun.com/techtopics/
mobility/midp/articles/bluetooth1/, 2004. (Accessed: 25.08.2004).

[4] Jsr 259: Ad hoc networking api. http://www.jcp.org/en/jsr/detail?id=259,
2004. (Accessed: 02.20.2005).

[5] Rockyroad/jrra. http://www.jrra.org, 2004. (Accessed: 12.04.2005).

[6] Freescale demos uwb mobile. http://www.electronicsweekly.com/
Article38447.htm, 2005. (Accessed: 02.02.2005).

[7] Model view controller. http://en.wikipedia.org/wiki/
Model-view-controller, 2005. (Accessed: 13.05.2005).

[8] Technology news from philips. http://www.semiconductors.philips.com/
news/content/file_1146.html, 2005. (Accessed: 02.05.2005).

[9] Telecom products outlook 2005. http://www.telecom.globalsources.com/
gsol/I/Bluetooth-handsfree/a/9000000057461.htm, 2005. (Accessed:
02.05.2005).

[10] T. . T. Association. Protocol Adaption Layer (PAL) for IEEE 1394 over IEEE 802.15.3, 2004.

[11] V. R. Basili. The Experimental Paradigm in Software Engineering. In H. D. Rombach,
V. R. Basili, and R. W. Selby, editors, Experimental Software Engineering Issues: Critical
Assessment and Future Directions, pages 3–12, Dagstuhl Castle, Germany, September 14-18
1992. Springer Verlag. LNCS 706.

[12] M. Boulkenafed, D. Sacchetti, and V. Issarny. Using group management to tame mobile
ad hoc networks. In E. Lawrence, B. Pernici, and J. Krogstie, editors, Mobile Information
Systems, pages 245–261. Springer, 2004.

[13] S. S. Bygdås, Øystein Myhre, S. Nyhus, T. Urnes, and Åsmund Weltzien. Bubbles: Navigat-
ing content in mobile ad-hoc networks. Technical report, Telenor FOU, 2003.

207

http://www-i4.informatik.rwth-aachen.de/~mesut/manet/display.html
http://www-i4.informatik.rwth-aachen.de/~mesut/manet/display.html
http://www.jrra.org/pub/WhitePaper.zip
http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1/
http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1/
http://www.jcp.org/en/jsr/detail?id=259
http://www.jrra.org
http://www.electronicsweekly.com/Article38447.htm
http://www.electronicsweekly.com/Article38447.htm
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://www.semiconductors.philips.com/news/content/file_1146.html
http://www.semiconductors.philips.com/news/content/file_1146.html
http://www.telecom.globalsources.com/gsol/I/Bluetooth-handsfree/a/9000000057461.htm
http://www.telecom.globalsources.com/gsol/I/Bluetooth-handsfree/a/9000000057461.htm

BIBLIOGRAPHY

[14] Club-java.com. Midp java phone benchmark. http://www.club-java.com/
TastePhone/J2ME/MIDP_Benchmark.jsp. (Acessed: 1.6.2005.

[15] M. Conti. Body, personal, and local ad hoc wireless networks. Technical report, Consiglio
Nazionale delle Ricerche, 2003.

[16] M. Conti. Peer-to-peer research at stanford. Technical report, Computer Science Department,
2003.

[17] T. B. Corporation. Bedd. http://www.bedd.com. (Accessed: 12.04.2005).

[18] T. Dingsøyr, T. Stålhane, and N. B. More. Lightweight post mortem reviews. Technical
report, Sintef Telecom and Informatics, 2002.

[19] Dyba, Wedde, Stalhane, B. Moe, Conradi, Dingsoyr, Sjoberg, and Jorgensen. Spiq, software
process improvement for better quality. Technical report, Ntnu and Sintef, 2000.

[20] G. T. Edwards, D. C. Schmidt, and A. Gokhale. Integrating publisher/subscriber services
in component middleware for distributed real-time and embedded systems. In ACM-SE 42:
Proceedings of the 42nd annual Southeast regional conference, pages 171–176, New York,
NY, USA, 2004. ACM Press.

[21] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and experiences. Commun.
ACM, 34(1):39–58, 1991.

[22] G. H. Forman and J. Zahorjan. The challenges of mobile computing. Technical report, 1994.

[23] E. Gamme, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison Wesley, 1994.

[24] H. Hedlund. Bleutooth baseband specification, version 1.1. www.bluetooth.com.

[25] A. Heinemann, J. Kangasharju, F. Lyardet, and M. Mühlhäuser. Ad hoc collaboration and
information services using information clouds. In T. Braun, N. Golmie, and J. Schiller,
editors, Proceedings of the 3rd Workshop on Applications and Services in Wireless Networks,
(ASWN 2003), pages 233–242, Bern, Switzerland, 2003. Institute of Computer Science and
Applied Mathematics, University of Bern.

[26] A. Heinemann, J. Kangasharju, F. Lyardet, and M. Mühlhäuser. iclouds – peer-to-peer infor-
mation sharing in mobile environments. In H. Kosch, L. Böszörményi, and H. Hellwagner,
editors, Euro-Par 2003. Parallel Processing, 9th International Euro-Par Conference, volume
2790 of Lecture Notes in Computer Science, pages 1038–1045, Klagenfurt, Austria, 2003.
Springer.

[27] L. Holmquist, J. Falk, and J. Wigstrm. Supporting group collaboration with inter-personal
awareness devices, 1999.

[28] B. Hopkins and R. Antony. Bluetooth for java. 2003.

[29] B. Hui. Go wild wirelessly with bluetooth and java. http://jdj.sys-con.com/
read/43551.htm, 2004. Accessed: 16.05.2005.

208

http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp
http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp
http://www.bedd.com
www.bluetooth.com
http://jdj.sys-con.com/read/43551.htm
http://jdj.sys-con.com/read/43551.htm

BIBLIOGRAPHY

[30] IEEE. IEEE Standard for Information technology telecommunications and information ex-
change between system - Local and metropolitan area networks Specific Requirements Part
15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for
High Rate Personal Area Networks (WPANs), 2003.

[31] R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented Pro-
gramming, 1(2):22–35, 1988.

[32] L. Kirkhus and A. R. Sveen. An examination of mobile devices for spontaneous collabora-
tion. Technical report, Institutt for datateknikk og informasjonsvitenskap, 2003.

[33] L. Kirkhus and A. R. Sveen. Mowahs - mobile collaboration framework. Technical report,
Institutt for datateknikk og informasjonsvitenskap, 2004.

[34] G. Kortuem. Proem: A peer-to-peer computing platform for mobile ad hoc networks. Tech-
nical report, Wearable Computing Laboratory, Department of Computer Science, 2001.

[35] G. Kortuem. A methodology and software platform for building wearable communities.
Technical report, University of Oregon, 2002.

[36] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall. When
peer-to-peer comes face-to-face, collaborative peer-to-peer computing in mobiel ad hoc net-
works. Technical report, 2001.

[37] C.-H. W. Lund and M. S. Norum. A framework for mobile collaborative applications on
mobile phones. Technical report, Department of Computer and Information Science, 2004.

[38] P. J. Magnus Frodigh and P. Larsson. Wireless ad hoc networking - the art of networking
without a network. Technical report, Ericsson, 2000.

[39] S. Microsystems. Java 2 micro edition. http://java.sun.com/j2me/docs/
j2me-ds.pdf, 2002. (Accessed: 21.5.2005).

[40] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
and Z. Xu. Peer-to-peer computing. Technical report, Hewlett-Packard Company,HP Labo-
ratories Palo Alto, 2002.

[41] NASA. Goal question metric. http://sel.gsfc.nasa.gov/website/
exp-factory/gqm.htm. (Accessed: 27.04.2005).

[42] Nokia. Series 80 developer platform: Ad-hoc communications over wlan. Technical report,
Nokia, 2005.

[43] P. og Teletilsynet. Det norske telemarkedet 1. halvår 2004.

[44] J. S. Olson, S. Teasley, L. Covi, and G. Olson. The (currently) unique advantages of collo-
cated work. chapter 5, pages 113–135. MIT Press, 2002.

[45] C. E. Ortiz. Using the java apis for bluetooth wireless technology. Technical report, Sun
Microsystems, 2004.

209

http://java.sun.com/j2me/docs/j2me-ds.pdf
http://java.sun.com/j2me/docs/j2me-ds.pdf
http://sel.gsfc.nasa.gov/website/exp-factory/gqm.htm
http://sel.gsfc.nasa.gov/website/exp-factory/gqm.htm

BIBLIOGRAPHY

[46] J. C. Process. Jsr 271: Mobile information device profile 3. http://www.jcp.org/
en/jsr/detail?id=271, 2005. Accessed: 13.05.2005.

[47] T. Reenskaug. Thing-model-view-editor. Technical report, Institutt for informatikk, Univer-
sity of Oslo, 1979.

[48] D. Schoder and K. Fischbach. Peer-to-peer, anwendungsbereiche und herausforderungen, in:
Schoder detlef; fischbach, kai; teichmann, rene: Peer-to- peer (p2p), okonomische, technol-
ogische und juristische perspektiven. Technical report, 2002.

[49] SMlab. Gqm applications method. http://irb.cs.uni-magdeburg.de/sw-eng/
us/java/GQM/. (Accessed: 27.04.2005).

[50] R. Software. Rococo training: Bluetooth seminar for technologists. http://www.
rococosoft.com/docs/bluetooth_seminar.pdf, 2005. Accessed: 15.05.2005.

[51] R. Software. Rococo training: Building bluetooth applications in java. http://www.
rococosoft.com/docs/java_apps.pdf, 2005. Accessed: 15.05.2005.

[52] R. Software. Rococo training: Standard java apis for bluetooth. http://www.
rococosoft.com/docs/java_apis.pdf, 2005. Accessed: 15.05.2005.

[53] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu.
Mariposa a wide-area distributed database system. Technical report, Department of Electrical
Engineering and Computer Sciences, 1996.

[54] A. Sutcliffe. Scenario-based requirements analysis. Requirements Engineering, 3(1):48–65,
1998.

[55] Teleca. Teleca bluetooth academy website. http://www.comtec.teleca.se/
info_academy2.asp, 2005. Accessed: 15.05.2005.

[56] F. Tétard, E. Patokorpi, and V. Kadytė. User-centered design of mobile services for tourists.
In Mobile Information Systems, pages 155–168. Springer, 2004.

[57] M. Thoresen. Peer-to-peer systems. Technical report, Institutt for datateknikk og infor-
masjonsvitenskap, 2003.

[58] I. TranSafety. Researchers study the walking speeds of older pedestrians. http://www.
usroads.com/journals/rej/9704/re970404.htm, 1997. Accessed: 24.5.2005.

[59] E. Welsh, P. Murphy, and P. Frantz. Improving Connection Times for Bluetooth Devices in
Mobile Environments. In International Conference on Fundamentals of Electronics Com-
munications and Computer Sciences (ICFS), March 2002.

[60] M. Wiberg and Åke Grønlund. Exploring mobile cscw: Five areas of questions for further
research.

[61] C. Wille, N. Brehmer, and R. R. Dumke. Software measurement of agent-based systems.
Technical report, Otto-von-Guericke-Universität Magdeburg. Institut für Verteilte Systeme,
2004.

210

http://www.jcp.org/en/jsr/detail?id=271
http://www.jcp.org/en/jsr/detail?id=271
http://irb.cs.uni-magdeburg.de/sw-eng/us/java/GQM/
http://irb.cs.uni-magdeburg.de/sw-eng/us/java/GQM/
http://www.rococosoft.com/docs/bluetooth_seminar.pdf
http://www.rococosoft.com/docs/bluetooth_seminar.pdf
http://www.rococosoft.com/docs/java_apps.pdf
http://www.rococosoft.com/docs/java_apps.pdf
http://www.rococosoft.com/docs/java_apis.pdf
http://www.rococosoft.com/docs/java_apis.pdf
http://www.comtec.teleca.se/info_academy2.asp
http://www.comtec.teleca.se/info_academy2.asp
http://www.usroads.com/journals/rej/9704/re970404.htm
http://www.usroads.com/journals/rej/9704/re970404.htm

BIBLIOGRAPHY

[62] B. J. Wilson. JXTA, second edition. 2002.

[63] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. Experimenta-
tion in software engineering. Kluwer Academic Publishers, 2000.

[64] R. Woodings, D. Joos, T. Clifton, and C. D. Knutson. Rapid heterogeneous connection
establishment: Accelerating bluetooth inquiry using irda.

211

	Introduction
	Motivation
	Problem Definition
	Limitations of Scope
	Project Context
	Reader's Guide

	Research Questions and Method
	Research Questions
	Research Method
	The Engineering Approach
	The Empirical Approach

	Test Environment

	I Prestudy
	Central Concepts
	Peer-to-peer Computing
	Mobile P2P

	Mobile Ad Hoc Networks
	Collaboration
	Computer Supported Cooperative Work
	Mobile Computer Supported Cooperative Work

	Summary

	Previous Work
	Theoretical Results
	Usage Scenarios and Requirements Engineering

	Technical Results
	Remaining Work

	State of the Art
	BEDD
	Evaluation

	JSR-259: Ad Hoc Networking API
	Evaluation

	Rocky Road
	Evaluation

	Other Projects
	Conclusions

	Technology
	Mobile Phones
	Java 2 Micro Edition
	J2ME Architecture
	Future Releases

	Wireless Personal Area Network Technologies
	Bluetooth
	ZigBee
	Wireless Firewire
	Wireless USB
	Wireless Local Area Network
	Bluetooth and UWB Cooperation

	II The Peer2Me Framework
	Requirements
	Functional Requirements
	Previously Gathered Requirements
	Complete List of Requirements
	New Requirements

	Non-functional Requirements

	Design
	Domain Concepts
	High Level Architecture
	Design Changes
	Changes Caused by Problems in Original Design
	Changes Caused by New Requirements

	Peer2Me Design
	The Domain Package
	SlaveNode
	The Network Package
	The Framework Package
	The Util Package
	Runtime Behaviour

	Bluetooth Module Design
	Bluetooth Protocol Stack
	Design Changes
	The Bluetooth Package
	The Domain Package
	The Network Package

	Patterns
	Singleton Pattern
	Observer Pattern
	Publisher-Subscriber Pattern

	Protocols
	The Handshake Protocol
	The Routing Protocol
	The Disconnection Protocol

	Implementation
	Covered Functional Requirements
	Code Statistics
	Code Examples
	Loading the Network Module
	Sending Messages
	Building Group Objects
	Handling Bluetooth Service Search Results

	III The Peer2Me Applications
	Overview
	Design Overview
	Development and Testing

	Business Card Exchange
	Scenario
	Goals and Preconditions
	Normal Action Sequence
	Critical Exceptions and Error Checking

	Requirements
	Goal Analysis
	Inbound Event Analysis
	Categorize System Output
	Summary

	Design
	The Model Package
	The View Package
	The Util Package

	Implementation
	Business Card Exchange Protocol

	PAN Instant Messaging
	Scenario
	Goals and Preconditions
	Normal Action Sequence
	Critical Exceptions and Error Checking

	Requirements
	Goal Analysis
	Inbound Event Analysis
	Categorize System Output
	Summary

	Design
	The Model Package
	The View Package

	Implementation
	Filtering Already Connected Nodes

	Converging top ten list
	Scenario
	Goals and Preconditions
	Normal Action Sequence

	Requirements
	Goal Analysis
	Inbound Event Analysis
	Categorize System Output
	Summary

	Design
	The Model Package
	The View Package

	Implementation
	The Sorting Algorithm
	Proactive Disconnection Message
	Automatic Searching

	IV Developing Peer2Me Applications
	Peer2Me Development Guide
	Central Concepts
	Starting the MIDlet
	Initializing the Framework

	Slave vs. Master
	Slave
	Master

	Discovering Groups
	Handling Dynamic Groups
	Sending and Receiving Messages
	Handling Exceptions
	Choosing the Right Network Module
	Complete startApp Methods

	Using the Persistence Layer in Peer2Me
	Making an Object Persistent
	Persistence for Nested Objects

	The PersistenceManager Class

	V Testing
	Scenario Testing
	Business Card Exchange
	Test Results

	PAN Instant Messaging
	Test Results

	Converging Top Ten List
	Test Results

	Developer Testing
	The Education Session
	The Development Session
	The Evaluation Session
	Results From the Questionnaire
	Post Morten Analysis

	Measurement Data and Statistics
	Summary

	VI Discussion
	Encountered Problems
	Mobile Phones and J2ME
	Bluetooth

	Evaluation
	Technical evaluation
	Framework
	Mobile Phones and J2ME
	Bluetooth
	Development Platform and Environments

	The Interpretation Phase of the Goal Question Metric method
	Evaluation of Goal 1
	Evaluation of Goal 2

	The Peer2Me applications
	User - Explicit User Interaction
	Auto - Automatic Collaboration
	Hybrid - A Combination of User and Auto

	Conclusion
	Further Work
	Short Term Goals
	The Framework in General
	Messages
	Optimalization

	Long Term Goals
	Adopt New Technology
	Advanced Functionality
	Empirical Work and Applications

	VII Appendix
	Discovery Time Statistics
	The Peer2Me Developer Exercise
	Introduction
	Preparing the Framework
	Searching for Other Devices
	Monitoring the Group
	Sending a Message
	Receiving a Message
	When Something Goes Wrong

	Code Examples
	Questionnaire for Peer2Me developer testing
	Background and Experiences
	The Domain Concepts
	The Peer2Me Development Guide
	The Exercise
	Summary

	Dictionary

