
Reza S. Mirzaei, Spring 2005

Master Thesis

Spatio-Temporal Databases
for Indoor Positioning Systems

Department of Computer Science and Information Technology

Norwegian University of Science and Technology

Preface

This thesis was proposed to me in March 2004. The idea was based on the con-

cept of indoor location aware systems, which intrigued me more and more, the

more I learned about it. One area of particular interest was long term storage

and management of information received from such systems. This information

can for example be used to not only determine present, but also past positions

of objects and relate that to their status or role. Storing this type of information

requires a special type of database, one which can relate data to both time and

space, hence the concept of spatio-temporal databases.

The work in this thesis is largely based on previous research conducted in the

field of location modeling and general purpose spatio-temporal databases. By

extending and combining these two aspects, guidelines for storing and managing

indoor location aware information are given.

I would like to thank Bjarte S. Karlsen for cooperation and useful suggestions,

and my supervisors Dag Svanæs and Hallvard Trætteberg for their guidance

and clever ideas. Thanks also to Torbjørn Skramstad for extensive feedback

and comments on how to improve my research.

A special thanks goes out to my brother for his continuous and unconditional

support, and the ability to always make me laugh.

Reza S. Mirzaei

Trondheim March 7, 2005

i

Contents

Preface i

List of Figures vi

Abbreviations viii

1 Introduction 1

1.1 Motivation . 1

1.2 Location Modeling . 2

1.3 Spatio-Temporal Databases . 3

1.4 Other Requirements . 3

1.5 Research Questions . 4

1.6 Limitations . 5

1.7 Structure of Thesis . 5

2 Related Research 7

2.1 General Location Based Services 7

2.2 Location-Awareness . 9

2.2.1 Location Models . 9

2.2.2 Hierarchical (Set-Based) vs. Graph-Based 11

2.2.3 Combined Location Model 11

2.3 Indoor Location Based Services 12

2.3.1 Active Badge . 12

2.3.2 MemoClip . 14

2.3.3 Ekahau . 16

2.4 Database Systems . 18

2.4.1 General Concepts . 18

2.4.2 Data Models . 19

2.4.3 Spatial Databases . 21

2.4.4 Temporal Databases . 22

2.4.5 Spatio-Temporal Databases 23

2.5 Summary . 25

ii

3 Research Methodology 26

3.1 Research in Informatics . 26

3.1.1 Paradigms . 26

3.1.2 Perspectives . 27

3.1.3 Approaches and Methods 28

3.2 Research Approach . 29

4 Location Modeling 32

4.1 What is a Location Model? . 32

4.2 Practical Use of Location Models 33

4.3 Location Information . 35

4.4 Modeling Guidelines . 36

4.5 Basic Location Models . 39

4.5.1 Symbolic Modeling . 39

4.5.2 Geometric Modeling . 41

4.6 Hybrid Location Model . 43

4.7 Domain Model . 45

4.7.1 Validation of Domain Model 48

4.7.2 Validation Results . 51

4.8 Research Question 1 . 55

5 Spatio-Temporal Database Systems 56

5.1 What is a Spatio-Temporal Database? 56

5.2 Practical Use of Spatio-Temporal Databases 58

5.3 Conceptual Model . 59

5.3.1 Spatial Aspects . 60

5.3.2 Temporal Aspects . 61

5.4 Extended Domain Model . 63

5.5 Data Model . 69

5.5.1 Spatio-Temporal Data Types (STDTs) 69

5.5.2 The Spatio-Temporal Data Model in Practice 71

5.5.3 Timestamping Data . 72

5.6 Access Methods and Query Language 74

5.6.1 Why Object-Relational? 74

iii

5.6.2 Structured Query Language (SQL) 75

5.6.3 Extended SQL for Spatio-Temporal Data 77

5.7 Research Question 2 . 81

6 Object-Relational Implementation 82

6.1 Mapping from Object-Oriented to Object-Relational 82

6.2 The Database Model . 84

6.3 Other Implementation Issues . 91

6.3.1 2- or 3-Dimensional? . 91

6.3.2 Global or Local Coordinates? 93

6.4 PostgreSQL Database and User Interface 95

6.4.1 Tables . 95

6.4.2 Functions . 98

6.4.3 Updates . 98

6.4.4 Queries . 100

6.5 Research Question 3 . 107

7 Reflections and Evaluation 108

7.1 Scientific Work . 108

7.1.1 Problems, Misunderstandings and Changes 108

7.1.2 Applied Research Approach 111

7.2 Evaluation of Research . 111

7.2.1 Evaluation of Data . 112

7.2.2 Validation of Results . 113

7.3 Alternative Approaches . 115

7.4 Final Reflections . 117

8 Conclusion 119

8.1 Location Modeling . 119

8.2 Spatio-Temporal Databases . 119

8.3 Limitations . 120

8.4 Further Work . 120

8.5 Final Remarks . 121

Appendix 123

iv

References 124

Index 133

v

List of Figures

1 Example of a RAUM location model 15

2 Steps in design research . 30

3 Building divided into sections, floors and rooms 38

4 A symbolic model as a lattice 40

5 A symbolic model as a tree . 41

6 2- and 3-dimensional geometric models 42

7 A space geometrically divided into subspaces 43

8 Basic domain model of the hybrid location model 46

9 Detailed domain model of 2- and 3-dimensional spaces 46

10 Detailed domain model of space, persons and roles 47

11 Association between two rooms, shown as an association class

and plain text . 48

12 Rooms in a floor, shown as aggregation and package 49

13 Plan of building used for validation of domain model 50

14 Geometric areas outside doors 51

15 Location model of building . 52

16 Geometry as superclass of Point, Line and Region 61

17 Extended UML spatio-temporal symbols 64

18 Example of thematic data that changes across time and space . 64

19 Extended domain model of 2- and 3-dimensional spaces 66

20 Extended domain model of objects and persons located in spaces 67

21 Extended domain model of persons and roles 69

22 Moving point and moving region in 3-dimensions 71

23 The OpenGIS Geometry Model 79

24 Main database model . 85

25 Database model of 2- and 3-dimensional spaces 87

26 Database model of objects in space 88

27 Database model of person . 89

28 Database model of event . 90

29 Domain model for 2-dimensional data 92

30 Altered database model for 2-dimensional data 94

31 Example application: search for current position of person . . . 102

vi

32 Example application: search for names of persons in a room . . 103

33 Example application: search for previous position of person . . . 104

vii

Abbreviations

ACID Atomicity, Concurrency, Isolation, Durability

ANSI American National Standards Institute

ADT Abstract Data Type

DAG Directed Acyclic Graph

ER Entity-Relationship

GIS Geographic Information Systems

GPS Global Positioning System

GUI Graphical User Interface

IBM International Business Machines

ISO International Standards Organization

LBS Location Based Service

RAUM Relation of Application objects for communicating Ubicomp event Messages

SDT Spatial Data Type

STER Spatio-Temporal Entity-Relationship

STDT Spatio-Temporal Data Type

SQL Structured Qury Language

TDT Temporal Data Type

UML Unified Modeling Language

viii

1 Introduction

1.1 Motivation

As computers become more and more advanced, so do the applications and

services provided by them. Computers are becoming physically smaller at the

same time as their processing power is increasing. This makes them easy to carry

around, and the availability of these mobile devices can be used to develop new

and powerful applications to cope with the ever growing demands of users. One

such demand is the need for location information and location based services,

i.e. services that are “aware” of the context in which they operate and perform

certain task according to their location. We now have the technology to track

the position of a given mobile device, such as a cell phone or a laptop, using

a positioning system. In a world where information is an essential part of

our everyday life, using this technology to create location based services may

become useful in many contexts. One already well known example of this is the

Global Positioning System (GPS) [77], a satellite-based navigation system used

for determining the precise location of a GPS receiver.

On a smaller scale, like indoor positioning, location based services may be used

to track and locate objects within a given domain. Services like these can for

example be used to effectively manage equipment and personnel. Imagine for

instance if we could track the position of office appliances so that we could know

the whereabouts of a particular object over a given timeframe. This information

could be used to permanently place that object in the position where it was

located most often during the timeframe. The result would be a more effective

use of that object.

The same service could be used to determine the position of office personnel to

find out where they are at what time, assuming that privacy and legal issues

associated with such services have been dealt with and clarified in advance.

Since an assumption can be made about an individual’s location in relation to

his interests, this information could for example be used to relocate personnel in

a more efficient manner, reducing personnel traffic in the office. As an example

of this, consider tracking employees to see who they meet and cooperate with

1

over a given period. This information could then be used to relocate personnel

so that the ones that meet and work together most often have offices near each

other.

With location based services for indoor positioning, the domain of the applica-

tion is most often a building which must be modeled to meet the requirements

of the service that is to be provided. However, buildings are not static objects.

Over the course of time rooms and sections are added and removed, and names

and labels for them change. These changes have to be reflected in the model as

they occur. At the same time, we must be able to track an object to its previ-

ous locations despite the fact that rooms and sections might have been added,

removed or had their name changed. This means in practice that historical

information must not be lost due to changes in our symbolic understanding of

the domain. The information itself must be stored in a database system that

has been modified to support dynamic location information and operations on

that information. To model and implement databases that are able to handle

spatial as well as temporal aspects which may exist in dynamic environments

thus becomes one of the challenges of designing indoor positioning systems.

As a preparation for the coming chapters, we begin by outlining some of the

main issues discussed in this thesis.

1.2 Location Modeling

A location model describes the area (usually building) where a positioning sys-

tem is to be implemented. Location modeling can be done in different ways,

depending on the application. The model can be geometric, symbolic or hybrid

(both symbolic and geometric). A geometric location model is based on a coor-

dinate system and can be used to precisely determine the position of an object.

However, the often complex and hierarchical relationship between objects is not

present in such a model. A symbolic location model clearly shows the relation-

ships between different objects in its domain, but unlike the geometric model, it

is not suited for precise positioning. The hybrid model is a solution that shows

the hierarchical relationship between objects and at the same time allows these

objects to define their own coordinate systems for precise positioning.

2

1.3 Spatio-Temporal Databases

A spatio-temporal database is in most cases a conventional database system

with added support for storage and management of spatial and temporal data.

Spatial data is a term used to describe geometric information about an object

in a given environment, i.e. information regarding space. Temporal data is data

associated with time values to indicate its periods of validity. The combination

of these two data types is referred to as spatio-temporal data, which in practice

means moving geometries. Spatio-temporal databases also have added support

for operations on spatio-temporal data, for example calculation of distance or

intersection, or definition of temporal validity.

1.4 Other Requirements

An indoor positioning system, not including the hardware (i.e. sensors or mobile

devices used for positioning), requires other services than just a location model

and a database system. It also needs applications used to manage the data in

the database and to create an interface towards the users. We shall describe

these requirements in more detail:

• Access to data: A database with information is of no use to us unless

we can access the information it has stored. We therefore need a query-

language for operations on the data. Most database systems have such a

language, but it is usually not suited for use on spatial and temporal data.

We thus need to add extensions for spatial and temporal data management

to the query language.

• User interface: Finally, we have to create an interface towards the users

that allows them to use the service effectively. The interface must allow

the users to query the database about the information they need, in a lan-

guage that is easy and intuitive for them to understand. A user might for

example enter the query “list all employees near the cantina on Thursday

afternoon”. The application should to some extent be able to interpret

such queries. To do this, that is, to map a query like the example to

3

an executable query, the application must have an understanding of the

abstract notions “near” and “afternoon”, to mention a few. The interface

should allow the users to access the data by letting them define terms that

they are familiar with, i.e. “close to”, “morning”, “noon”, and mapping

these to values that the application understands.

1.5 Research Questions

The main purpose of this thesis is to propose guidelines for modeling and

constructing spatio-temporal databases for indoor positioning sys-

tems that are flexible enough to deal with changes in their under-

lying location models. We are not interested in creating a spatio-temporal

database system, rather a database for managing spatio-temporal data. It is

therefore important that these proposals are general enough so that they can

be used independently of specific database systems. But before we can model

and construct the database itself, we must consider how to create the underlying

location model. Thus, our research and its contribution to the field of indoor

location based services will be based on answering the following questions:

1. What are the requirements of location modeling and how do we fulfill

these requirements in order to create location models used for symbolic

as well as geometric positioning?

2. How can we capture the spatial and temporal aspects of data when mod-

eling spatio-temporal databases, and how do we implements these as data

types with corresponding operations in a database system?

3. Based on spatial, temporal and spatio-temporal data, how can we con-

struct spatio-temporal databases that are able to reflect changes in their

location models?

In order to fulfill the purpose of this thesis and to answer the research ques-

tions, we need comprehensive knowledge of location modeling, spatio-temporal

databases and access methods to spatio-temporal data. We try to achieve this

knowledge in chapters 4, 5 and 6, presenting in detail the required concepts.

4

We also want our research to have a realistic practical potential, which is why we

must answer these question in relation to current needs and demands posed on

indoor location aware systems. Therefore, as a part of our discussion, we also

present example applications and scenarios for practical use of both location

models and spatio-temporal databases.

1.6 Limitations

The focus of this thesis is location modeling and modeling of spatio-temporal

data and its integration into a database system. Since the application domain

is so wide, we limit the research to the requirements and examples of indoor

positioning systems. These systems operate in dynamic environments where

both space and time are essential aspects of their functionality. We therefore

feel that the challenges posed by them and the examples used to describe these

challenges are adequate enough to capture the fundamentals of our research.

Furthermore, our research will be limited to the design and construction of

spatio-temporal databases. The effectiveness of querying mechanisms and the

speed and efficiency of index methods are therefore beyond the scope of this

thesis.

Another limitation is technology used to determine positions. Our research aims

at developing models which are independent of particular positioning technolo-

gies, which is why we do not cover specific technological aspects of location

aware systems.

Finally, we limit our discussion to purely conceptual aspects of location-awareness

and spatio-temporal databases. Ethical and legal issues regarding the use (and

potential abuse) of information gathered by and stored in such systems is not

covered by our work.

1.7 Structure of Thesis

The structure of this thesis is as follows: We begin the next chapter by present-

ing related work. We discuss different related areas and present an overview of

5

relevant literature and research. We also present general concepts of database

systems which are relevant in the course of our work.

In chapter 3 we discuss research methodology in the field of informatics (com-

puter science) and use the terminology to present our research approach.

Chapter 4 presents one of the main concepts of this work: location modeling. We

present existing models and compare their strenghts and weaknesses. We then

propose our own model, and use this to create a location model of a building.

The concepts of spatio-temporal databases are discussed in detail in chapter 5.

We introduce the basic concepts required to properly model a spatio-temporal

database. We also present spatio-temporal data types and how to define these

and perform operations on them.

In chapter 6, we show the implementation of a flexible spatio-temporal database,

based on the location model and the spatio-temporal data types and extensions

described in previous chapters.

Evaluation of, and reflections over our research is done in chapter 7. Here, we

evaluate our results according to the three research questions. The purpose of

this is to evaluate if our research has been thorough enough to give satisfactory

answers to those questions.

Finally, in chapter 8, we summarize the thesis and propose topics for further

research.

6

2 Related Research

The main objective of this chapter is to discuss related research in the field of lo-

cation modeling, location based services and spatial and temporal database sys-

tems. We consider related work and already implemented solutions to identify

their requirements and consequences of the decisions made to meet them. The

knowledge gained and the lessons learned from previous and existing projects

will be used in our own proposal for location modeling and construction of

databases for positioning systems. As a part of our discussion, a brief introduc-

tion to database system models will also be given.

2.1 General Location Based Services

Location based services (LBS) are becoming possible due to advances in wireless

communication and computer science. These services are often described as

applications which operate according to geographic information. LBS can be

used to offer services to users based on their location, user profile and context.

Applications like these are used for many purposes and are constantly increasing

in popularity. This is because vendors and operators regard LBS as an integral

and inevitable part of their service offering, allowing them to become more

competitive and increasing their revenue [46, 50, 82]. Future predictions of LBS

are therefore positive. Kamil and Kirk [41] say:

These services, which include personal security, navigation, gaming,

security and fleet management, have experienced tremendous growth

over the last few years. By looking at the factors contributing to this

successful growth, LBS can be deployed in Europe with equal success.

[41], p. 105

These positive predictions are also supported by the independent analyst and

consulting company Ovum, which in 2001 estimated that the LBS market in

Western Europe would reach USD 6.6 billion by 2006, with 44% of mobile users

7

using some kind of LBS [82]. Although this estimate might seem extremely

positive, it still remains to see if it will be fulfilled.

An introduction to a few currently available location based services is given in

the following:

Geographic Information Systems - GIS

Geographic Information Systems (GIS) are used to store, retrieve, map and

analyze spatial (geographic) data. This is usually done by storing spatial data in

a coordinate system which references a particular geographic area. In practice,

this means that GIS operate with digitized maps and present geographic and

thematic information [2, 75]. According to Leonhardt [45], the functionality of

GIS can be extended to track the position of mobile objects. Examples of GIS

software are ArcView [68] and ArcInfo [67].

Global Positioning System - GPS

The Global Positioning System (GPS)1 is based on a constellation of 27 Navstar

satellites developed originally for the U.S. Department of Defense. Each satellite

transmits a unique digital code sequence which is picked up by a GPS receiver.

The receiver uses these code sequences to determine its altitude, latitude and

longitude and thus its position within submeter accuracy. Besides 3-dimensional

positions, GPS also offers velocity and highly accurate time information to users

with GPS receivers. GPS is currently a dual-use system, i.e. both military and

civil. It is controlled by a joint civilian/military executive board of the U.S.

government and monitored by the U.S. Department of Defense [77].

GSM-Positioning

GSM stands for General System for Mobile Communication and is a mobile

digital cellular radio-communications system. It was introduced in commercial

form in 1991 and is currently the most popular standard for mobile phones in the

world. A GSM-network is divided into cells containing base tranceiver stations

(BTS), usually referred to as base stations. The base stations provide the radio

interface with the mobile devices. They regularly send out beacon signals which

are used by the mobile devices to monitor the quality of available cells. Based on

1Also referred to as the Navstar Global Positioning System.

8

this measurement, the mobile device decides when to switch cells. The process

of switching cells is known as a handover (also called handoff). Because each cell

covers a given geographic area, the position of a mobile device can be determined

by knowing which cell it is currently in, often by using information from more

than one base station. During a handover, a location update is performed by

the network, that is, location information about the mobile device that changed

cell is updated [56, 76].

2.2 Location-Awareness

The term location-awareness is used to describe the capability to detect the ex-

act or relative location of a device (e.g. wireless device like a laptop). Leonhardt

[45] defines location-awareness as follows:

Generally, location-awareness facilitates an application’s awareness

of its environment or context.

[45], p.16

Location-awareness is used by components in a system to interact with each

other based on location. In order to support location-awareness, a data model

is required that can adequately represent the location of mobile and fixed ob-

jects. Such a model, referred to as a location model , can be designed in two

principal ways: as an n-dimensional coordinate system or as a set of symbols

with relationships between them [15, 16, 40, 45].

2.2.1 Location Models

At the basis of most positioning systems there is a location model. This model

is used to define the domain that the location service is meant to cover and thus

supply the necessary support for location-awareness. It is therefore important

to create location models that are accurate enough in modeling the real world

according to the needs of the system.

9

Leonhardt [45] distinguishes between geometric models which define locations

using geometric coordinates, and symbolic models which define locations and

relationships between them using symbols. This classification is also used by

Domnitcheva [15]:

In a “geometric model”, both locations and located objects are repre-

sented by sets of coordinate n-tuples, better understood by a human

as points, areas and volumes. [. . .] “Symbolic models” refer to a

location by some abstract symbols.

[15], p. 3

The symbolic approach is better suited for describing relationships between lo-

cations in the model, such as a building containing rooms. Such relationships

are known as spatial containment relationships , where a spatial object like a

building contains other spatial objects like floors and rooms. Spatial relation-

ships may also be used to describe the connection between two or more spatial

objects, i.e. to describe closeness . The symbolic approach does however lack the

possibility for accurate positioning. Models based on the geometric approach

are more suited for this purpose. The geometric approach is also better suited

for calculations such as determining the euclidean distance between two objects,

but it cannot describe spatial relationships.

As mentioned above, the model must be designed so that it corresponds to

the needs of the system. If the system for example requires that spatial rela-

tionships like containment or closeness between location are presented in the

model, the symbolic approach is preferable. If the system is meant to perform

accurate positioning and complex calculations according to locations, the geo-

metric approach is adviced. There are however systems which require the use of

both the symbolic and geometric approaches. For this purpose, Leonhardt [45],

Jiang and Steenkiste [40], and Dürr and Rothermel [16] propose a combination

of the two approaches referred to as a hybrid model. This approach allows the

model to show locations as symbolic elements with spatial relationships between

them, and at the same time allows these elements to define geometric coordinate

systems used for accurate positioning.

10

2.2.2 Hierarchical (Set-Based) vs. Graph-Based

Designing a location model can be done using either a hierarchical (also called

set-based) or a graph-based structure. The hierarchical approach organizes ob-

jects into a treelike branching structure where each component has only one

owner or is contained in one higher level object (a 1 : N structure). It is “based

on the containment relation” [7], p. 25, and is best suited for describing spatial

containment and closeness relationships. Data organized using this structure

is best suited for range-queries . These queries retrieve data according to some

range, for example containment. A specific example of this may be to query the

data about who has been in a particular room at a given time, or which rooms

are contained in a specific floor of a building [7].

Graph-based solutions (e.g. lattice) are N : N structures where there is no

clear hierarchy between the objects. Any object can be symbolically connected

to any number of other objects, depending on the relationship between them.

According to Becker and Dürr, this approach “supports the definition of the

topological relation connected to as well as the explicit definition of distances

between symbolic coordinates” [7], p. 26. These structures do not describe

spatial relationships like containment as well as hierarchical structures, but

they are better for so called nearest-neighbor-queries , i.e. queries concerning

distance between objects. Examples of such queries may be to find the nearest

color printer or to find the shortest route between two locations. It is important

to emphasize that we are not talking about euclidean distance here, but distance

in buildings where we have to consider doors between locations, stairs, corridors

and elevators (personal correspondence with Frank Dürr2).

2.2.3 Combined Location Model

As seen from the discussion above, the set- and graph-based symbolic location

models each have their benefits. In order to utilize these benefits, Becker and

2Frank Dürr is a scientific staff member of the “Distributed Systems” section of the “In-

stitute for Parallel and Distributed High-Performance Systems (IPVR)” of the University of

Stuttgart. His current fields of research are geographic communication and context-aware

computing.

11

Dürr propose a combination of the two, referred to as combined symbolic location

model 3. The combined model consists of two parts:

The set-based part represents locations as a set of symbolic coordinates with a

set/sub-set relationship such as building containing floors, which again contain

rooms etc. This part is best suited for range-queries.

The graph-based part connects locations in the model with edges if such a

connection between those locations exists in the real world. An example of this

can be stairs between different floors, or a door between two rooms. This part

is best suited for nearest-neighbor-queries.

In addition to combining these benefits, Becker and Dürr show that the com-

bined approach can be used to “generate views with different levels of detail”

[7], p. 26. By this they mean that a combined symbolic location model can on

one level be used to show the rooms on a particular floor along with connections

(doors) between them, and on a higher level only show connections between the

floors of the same building via their stairways [7].

2.3 Indoor Location Based Services

Research in the field of location based services and positioning systems has

enabled us to design and implement functional indoor location based services

that are precise and effective to use. These are applications which operate

within a limited area, i.e. a building. In the following, we introduce three such

known implemented services and present the overall design of them.

2.3.1 Active Badge

The Active Badge System [34, 65] was first developed at the Olivetti & Oracle

Research Laboratory during the years 1989-92. The purpose of this system is

to locate people and equipment (objects) within a building. This is done using

3This combination must not be mistaken for the combination of symbolic and geomet-

ric location models (hybrid location model). The combination presented here concerns two

different types of symbolic location models.

12

small devices (active badges) worn by people or attached to equipment. These

devices periodically transmit infra-red signals (containing a globally unique

code) that are detected by sensors placed within the building. The location

of the badge, and hence the bearer, can be determined by the information re-

ceived.

As part of the system architecture, location and name of an object are both

attributes of the object. The value of “location” is chosen from some symbolic

or geometric naming scheme and used to relate co-located objects. The value

of “name” is the name by which the object is known. The location attribute is

dynamic and stored in global databases of location information. Naming infor-

mation is managed by name servers which use hierarchies of names or directory

services to provide global naming. The data model for location information

about a particular object is given by a tuple consisting of the badge address,

location address and a timestamp. A badge address is the unique identifier for

a given badge. A location address describes the latest position of an object

within a given domain. It consists of a domain name, network address and

sensor address. A timestamp is the time at which the location operation was

performed.

Design of the Active Badge system follows a client-server approach. Services

required by the system are provided by the following servers:

• Location Server: The location server collects information from the sen-

sors and maintains a cache of the latest badge “sightings”, that is, the

latest location information sent by active badges.

• Name Server: The name server maps badge and location addresses into

detailed information such as for example the symbolic name of a place or

the name of a bearer.

• Message Server: The message server coordinates message delivery to

and from the badges.

• Exchange Server: The exchange server distributes information between

organizations and encapsulates the issues of security, access control and

information exchange between information domains.

13

For our purposes, only the location server is of interest. It polls the badges for

data, screens the received data for error, timestamps it and stores it. The loca-

tion server can be thought of as a four-layer system consisting of a network con-

troller responsible for polling all sensors on the network, representation of valid

data received from the network controller, data processing to reflect changes in

badge locations or recent history of a badge, and a display interface that uses

the location information from the previous three layers as input for a display

function showing textual information about the changing location of badges

[65].

Although the location server has a vast array of functionality, the lack of a

general location model ties it to the Active Badge system. The system thus lacks

abstraction. Furthermore, location in the Active Badge system is described and

communicated symbolically. There is no geometric description of the location

information, which makes it impossible to perform accurate positioning [45].

2.3.2 MemoClip

The MemoClip system [6] is one of three major prototypes built at the TecO

Research Lab at the University of Karlsruhe from 1998 to 2002. The other two

prototypes are MediaCup and Smart-Its . Because the underlying location model

is the same in all three projects, we find it adequate to describe and evaluate

one of them. The MemoClip is a wearable artifact that reminds its bearer of

things he should do depending on his location. The bearer can download onto

the MemoClip tasks/information he wants to be reminded of with a description

of a location, and then be notified when entering the selected location.

The location model used in the MemoClip project (and the other two projects)

is based on the RAUM 4 model (location-based Relation of Application objects

for communicating Ubicomp event Messages). This model provides a frame-

work for describing and expressing location information. RAUM consists of

two parts, the Location Representation Model (LRM) and the Communication

Model (CM). In our case, only the LRM is of relevance. It defines how loca-

4In German the word raum stands for space as well as room.

14

tion information is represented, stored and communicated between artifacts in

a system.

Initially, the location model used in the project was based on a flat hierarchy

of places that were identified by a number. Use of this model assumed a fixed

knowledge of the environment and thus reduced the flexibility, scalability and

portability of the system due to the fact that environments often change (i.e.

new rooms are added). This was the motivation behind the development of

the RAUM model. The initial location model was first modified to support

the representation of an organization. The information was ordered into a tree

structure with the organization identifier as the root and sublayer identifiers as

the leaves. The model was then modified by adding geometric information in

the leaves for positioning an object inside a sublayer. An example of location

model based on RAUM is given in figure 1. The location-tree consists of three

general layers:

Level 1
(A2)

Offices

Root
(O1)
TecO

Level 1
(A1)

Level 1
(A3)

Level 2
(B1)

Level 2
(B2)

Level 2
(B1)

Level 2
(B2)
Reza

Level 2
(B1)

Level 2
(B2)

Level 3
(C2)
Desk

(x, y, z)
(10, 10, 10)

(x, y, z)

Figure 1: Example of a RAUM location model, as shown in [6]

15

• Tree-root: The tree-root consists of a textual description (e.g. name) of

the organization running the system and a unique identifier (e.g. IP or

IPv6 address of the organization). The identifier is used for communica-

tion between different systems.

• Semantic sublayers: The semantic sublayers are used to define different

physical sublayers of the organization running the system, such as for ex-

ample rooms, offices, desks or cupboards. Up to three semantic sublayers

are optional to provide flexibility.

• Three-dimensional coordinates: These are Cartesian coordinates used to

state the position of artifacts accurately within a predefined sphere of

interest (e.g. in a room or on a desk).

Despite the RAUM model’s flexibility and support for geometric as well as

symbolic positioning, it has an apparent weakness: the ordering of location

information into a tree. The structure of locations represented by a tree does

not allow an object in a sublayer to have more than one parent. This causes

problems in situations where the symbolic representation of a building forces us

to have objects with multiple parents, e.g. a room that belongs to a section as

well as a floor, and the section and floor are on the same level in the hierarchy

[40, 45, 16].

2.3.3 Ekahau

The Ekahau Positioning Engine (EPE) is a WLAN5 positioning system based

on the 802.11 wireless networking technology made for indoor and campus areas

where GPS does not perform adequately. Besides a standard 802.11 a, b or g

infrastructure, it requires no proprietary hardware and can run on any hardware

platform with a minimum of a Pentium II processor, 256 MB of RAM, 200 MB

of hard-disk and running Windows XP or 2000. The EPE also contains a

Java SDK (Software Development Kit) used for integrating received location

information to external applications [72, 73, 74].

5Wireless Local Area Network

16

Ekahau also provides client software which can be installed on devices running

Windows XP, 2000, WinCE 3.0, PocketPC 2002 or PocketPC 2003 and used

to track these through the EPE. Another options is provided by the Ekahau

T101 WiFi Tag. This is a battery powered, active radio tracking tag which can

be attached to equipment in order to locate its position. The T101 tag can be

used to turn a standard 802.11 infrastructure into a Real Time Location System

(RLTS) with “virtually no disruption to current Wi-Fi operations” [73], p. 2.

The EPE software concept consists of the following components [72, 74]:

• Ekahau Client: This is software that runs on a client device and enables

it to be tracked by the positioning engine. The device can be a laptop,

PDA or a T101 tag.

• Ekahau Positioning Engine: This is software that runs on a desktop

PC and manages location information from the clients by calculating their

x and y coordinates, floor, heading, speed, area name etc.

• Ekahau Manager: This application is used to record field data received

from the Wi-Fi network for a positioning model. It tracks the client devices

on a map and analyzes the positioning accuracy.

• Ekahau Application Framework: This is the Java SDK mentioned

earlier in this chapter. It provides programmers with an interface used to

create application that can utilize the EPE location information.

Unlike the MemoClip system (described in the previous chapter), the EPE uses

no explicit location model. Instead it uses a floor map image6 of the area in

which it is meant to operate and requires explicit calibration (using the Ekahau

Manager) in order to map location information in the form of x, y, floor and

heading to a logical area on the map [72, 73, 74].

The floor map used by the Ekahau Manager can be seen as an implicit loca-

tion model. The map does not show hierarchical or containment relationships

between objects in a building, but is used to create a coordinate system of

6The image can be in JPG, PNG or BMP format.

17

each floor. Although symbolic names are used to identify different geographic

locations on the map, this implicit location model must be said to be purely

geometric, since no symbolic relationships are present and recieved coordinates

are mapped to symbolic names by the EPE.

2.4 Database Systems

Consistent and secure storage of data has always been a vital factor in computer

systems. Research in this area has been conducted ever since the first computers

came into use. The main question in this research has been, and still is: How

can we store and manage information effectively, with minimum risk to data

integrity, minimum occurrences of redundancy, and maximum availability to

users? The result of the research has been a number of general concepts and

design principles which are used in most commercial database systems today.

2.4.1 General Concepts

There are a number of database management systems available. Common for

these systems, regardless of type, is that they are used to store and manage

information in a consistent and secure manner. This is done by facilitating

support for persistent data management, secondary storage, concurrency con-

trol and crash recovery. These features are implemented by making sure that

transactions committed in the system follow the ACID model. ACID stands

for:

• Atomicity: This is the “all or nothing rule”. Transactions are said to be

“atomic”. This means that if one part of a transaction is aborted, then

the entire transaction is aborted.

• Consistency: This rule states that only consistent data should be written

to the database. If a transaction is found to have violated the consistency

rules of the database, it is rolled back. The database is restored to the

most recent consistent state.

18

• Isolation: Multiple transactions that are running concurrently are not to

interfere with each other. Each transaction is seen as an isolated instance.

• Durability: The final rule says that committed transactions will not be

lost, regardless of software or hardware failure. Committed changes in the

database are made durable.

The ACID model is used to keep the data in the database consistent during

transaction processing and at the same time allow multiple users to access the

same data without interfering with each other, i.e. concurrency control. As

another security mechanism, in case of system failure, every action that is per-

formed is written to a log before the action is made permanent in the database.

If a crash should occur while processing transactions, the log is used during

restart to restore the databases to a consistent state. Using the ACID model

and the log during runtime and crash-recovery ensures that the database is free

of anomalies [8].

Another important feature of database systems is that they offer different types

of indexing mechanisms. The purpose of indexing is to improve system per-

formance by reducing the amount of data that has to be read every time the

database is accessed. However, since indexing is beyond the scope of our re-

search, we will not discuss this feature further. Interested readers are referred

to [8] for general indexing techniques and [2, 28, 32] for index mechanisms re-

garding spatial and temporal data.

2.4.2 Data Models

A data model is a collection of concepts that can be used to describe the struc-

ture of a database. It separates the principals of design from the concerns of

implementation and allows us to treat a database as an abstract machine. The

model thus provides the necessary means to achieve data abstraction by hiding

details of data storage that are not needed by most database users [8].

The three most common data models today are the relational , object-oriented

and object-relational. Although most database systems based on these models

19

follow the ACID model, write logs and offer the same indexing possibilities,

there are fundamental differences between them.

• Relational Data Model: This data model is an implementation of rela-

tional algebra and set theory from mathematics. It was first described by

Edgar Frank “Ted” Codd in 1969 [13]. In database systems based on this

model, data and relations between them are organized in tables. Tables

are made up of rows and columns, where each row is unique and values

in each column are of the same type. The rows in a table are known as

records, and the records in one table contain the same fields. Each column

is required to have a unique name, and the sequence of columns and rows

is insignificant. A declarative programming language known as Structured

Query Language (SQL) is used to specify the relational algebra neces-

sary to access and manipulate the data. Systems built on the relational

model are currently the most popular in commerce and industry. Some of

the more popular relational database systems are Oracle [87], DB2 [70],

MySQL [79] and PostgreSQL [90].

• Object-Oriented Data Model: Systems based on this model integrate

database capabilities with objects-oriented programming capabilities of

languages such as C++, SmallTalk and Java. This unifies the applica-

tion and database development into a seamless data model and language

environment. The major benefit of this is that less code has to written

in application development, because we now can treat persistent data, as

found in databases, and transient data, as found in executing programs,

without having to perform any mapping. This also reduces performance

overhead during store and retrieve operations on the database. Charac-

teristics required by database systems based on this model were described

by Atkinson et al. [3] in 1989. Known object-oriented database systems

are O2 [4] and ObjectDB [83], to name a few.

• Object-Relational Data Model: The object-relational model7 extends

the relational model with key features of the object-oriented. Also referred

7There is no official definition of the object-relational model.

20

to a post-relational or extended relational, they allow the definition of

user defined data types, nested relations, triggers8 and stored procedures

[8, 59, 37, 38]. As with the relational model, data is stored in tables, but

the table entries may now have a richer structure based on Abstract Data

Types (ADTs) and user defined data types. Access to and maintenance

of the database is performed with SQL. Object-relational features are

supported among others by Oracle, DB2 and PostgreSQL.

2.4.3 Spatial Databases

Research in the field of spatial database systems covers a vast area, from model-

ing the database itself, to indexing and retrieval mechanisms. Spatial database

systems are used to store and manage geographic, geometric or spatial data, i.e.

data related to space [28, 29]. The space of interest can be anything from the

two-dimensional abstraction of the surface of the earth, to a three-dimensional

abstraction of a building. Spatial data can be further divided into geometric in-

formation, i.e. position or size, or spatial relationship descriptions, i.e. distance

or direction [2].

Over the years, several terms have been used to describe database systems that

offer support for storing and managing spatial data. Terms like pictoral or im-

age database systems arose from the fact that the information to be managed

often came from raster images (e.g. remote sensing by satellites). Geographic

or geometric database systems referred to the apparent geographical and geo-

metrical aspects of these systems. The most common term however is spatial

database systems, a term that has become popular due to the series of confer-

ences “Symposium on Large Spatial Databases (SSD)” held every second year

since 1989. According to Güting [28], the reason for this is:

[the] view of a database as containing sets of objects in space rather

than images or pictures of a space.

[28], p. 358

8A “trigger” is an SQL procedure that is activated when a certain event occurs.

21

Spatial databases must offer support for spatial data types (SDTs) and oper-

ations on them in their data models, query languages and implementations.

SDTs are abstract data types such as points, lines and regions. They are used

to define geometric objects such as for example cities on a map, roads, rivers and

geographic regions. Operations on these objects are for example calculation of

distance, intersection or overlap. With SDTs and their operations we can model

the structure of geometric objects in space as well as their relationships. Pro-

posals for definition of SDTs, modeling of spatial databases and spatial query

languages are presented in [17, 18, 28, 29] and in the lecture notes from the

SSDs [1, 11, 19, 27, 30, 33, 39, 53].

2.4.4 Temporal Databases

Conventional databases contain the latest state of the modeled system. They

present only the current information available and reflect a static view of the

environment. The validity of the information according to time span is not given

in these systems. Temporal databases extend conventional ones by providing

support for time-varying data. According to Torp et al., such databases can:

[. . .] store multiple version of data by associating time-periods with

the tuples, thus indicating when they were logically in the database.

[62], p. 1

Temporal databases incorporate the notion of time by adding a start time and an

end time to each record ([tstart, tend]), indicating the record’s validity. The focus

is to extend data in the database to include history. Thus, as the database

evolves with time, its previous states are preserved. Research in this field

has been driven by the growing demand to handle time related information

in databases. The main issues of the research are according to Abraham and

Roddick [2]:

22

[. . .] the representation of time, the selection of appropriate tempo-

ral granularity, the level at which temporality should be introduced,

support for temporal reasoning, and other database topics.

[2], p. 63

As was the case with spatial databases and SDTs (section 2.4.3), a temporal

database must support temporal data types (TDTs) and operations on them.

TDTs are not just simple time-attributes, but are complex data types which

handle different “types” of time, such as continuous, cyclic and terminating

time [2]. Continuous time is time as typically described in physics, moving

along a linear path with no given end. Cyclic time is used to describe events

which occur repetitively within a given timeframe, e.g. commercial breaks every

fifteen minutes on cable-TV, while terminating time is used in cases where there

is a clear start and end to the timeframe in question, e.g. the existence time

of an object. TDTs are used to enhance the data model of a database by

adding time and time-related operations. Early proposals for such temporal

data models are reviewed by Roddick and Patrick in [52]. Further research

regarding modeling, implementing and temporal query languages is covered

comprehensively by [2, 9, 23, 55, 57] and in the since 2001 bi-annually held

“Symposium on Large Spatial and Temporal Databases (SSTD)” [33, 39].

2.4.5 Spatio-Temporal Databases

Development of spatio-temporal databases has come under focus during the last

decade. Prior to that, spatial and temporal databases were separate areas of

research. Although this was the initial situation, most researchers agreed that

the two fields had much in common, since they both dealt with dimensions or

spaces of some sort. It therefore became obvious that an integration of the two

fields should be studied and that this would result in useful applications. Efforts

to combine spatial and temporal database concepts gave rise to the term spatio-

temporal databases. Sellis [54] defines spatio-temporal databases as follows:

23

Put briefly, a spatio-temporal database is a database that embodies

spatial, temporal and spatio-temporal database concepts, and cap-

tures simultaneously spatial and temporal aspects of data.

[54], p. 309

The integration of space and time means in effect that we are dealing with

geometries changing over time [21, 22]. These changes can occur continuously

or discretely. The difference between these two types of change is related to

how often during a time interval they occur. Continuous change is related to

objects like persons, cars or trains moving, or weather phenomena like storms

or typhoons changing shape. These are objects which, once they start mov-

ing/changing, constantly continue doing so, i.e. they change several times over

a given time interval. Discrete change deals with objects changing their position

or extent in one single step, like for example a country changing its border, or a

building changing its architectural design. It is up to the application/database

developers to decide what type of change they are dealing with depending on

the frequency of its occurrence.

Several new approaches for modeling spatio-temporal data have been proposed.

The initial suggestions extended either the spatial model with temporal concepts

[66], or the temporal model with support for spatial data [55]. However, as

argued by Erwig et al. [21, 22] and Güting et al. [31], such a simple aggregation

of space and time is not adequate. The reason is that these approaches are not

capable of modeling continuous change of spatial objects over time, since they

do not consider “the temporal development of a spatial value as a function of

time” [31], p. 3.

A solution using spatio-temporal data types (STDTs) is described in [21, 22, 31].

This approach captures the temporal aspects of geometric objects by explicitly

adding time to their spatial properties9. It is based on the definition of abstract

data types (ADTs) and can be integrated into any existing data model or query

9This means in effect that spatial and temporal properties of an object are not stored in

for example separate columns in relational tables, but in one single column containing one

value which represents both properties.

24

language for databases. The idea is to extend the basic data model to capture

time and space. Using these ADTs, we can follow the continues movement and

change of spatial objects.

Proposals for STDTs, spatio-temporal query languages and spatio-temporal mod-

eling is found in [2, 20, 21, 22, 63]. An overview on research regarding conceptual

and logical modeling of spatio-temporal data in given in [54].

Regardless of how we might model the spatio-temporal database or which

STDTs or access methods we might use, Erwig et al. [21] conclude that:

[. . .] spatio-temporal databases are essentially “databases about

moving objects”.

[21], p. 270

2.5 Summary

The aim of this section has been to present related research and existing systems

in the field of location modeling and spatial and temporal database systems. We

have presented general location based services in order to show the extent in

which such systems may be applied. A more detailed presentation of research

in the field of location modeling and indoor location based services has been

given in order to draw relevant knowledge for our purposes, that is, knowledge

related to location modeling. Finally, related work in the field of general, spatial,

temporal and spatio-temporal databases has been presented, along with the

three most common data models used in database systems.

25

3 Research Methodology

In this chapter we present our research methodology. We begin by highlighting

different paradigms, approaches and methods for research in informatics. The

purpose of this is to familiarize the reader with the theory and terms of research

methodology and to present our research approach. The terminology presented

will also be relevant in chapter 7, where we reflect over and evaluate our work.

3.1 Research in Informatics

Computer and information science, also referred to as “informatics”, is a multi-

disciplinary field. Research conducted in such broad sciences allows for different

directions concerning approach and method. Exactly which approach or method

that is selected depends on the research questions and how the researcher wishes

to answer them.

3.1.1 Paradigms

The term paradigm comes from the Greek words paradeigma meaning “pattern”

or “example” and paradeiknunai meaning “demonstrate”. According to Kuhn

[44] a paradigm is a set of assumptions, concepts, values, and practices that con-

stitutes a way of viewing reality for the community that shares them, especially

in an intellectual discipline. The paradigm involves valid research methods,

topics and criteria for solution of scientific problems. Two well known research

paradigms in informatics, as described by Cornford and Smithson [14], are the

positivist and the interpretive.

The positivist paradigm aims at explaining different phenomena by specifying

relationships between variables. The basis for these explanations are laws and

theories. The positivist paradigm is based on natural science and assumes a

reality independent of human perception. It separates facts from values and

explains events by relating them to general laws [51]. It is “an approach that

directly reflects the methods of (natural) science and a belief in their generality

for all spheres of enquiry” [14], p. 38.

26

Unlike the positivist paradigm, the interpretive does not assume an independent

reality [51]. The purpose of research within this paradigm is to explain and

understand different phenomena based on human perception, i.e. based on the

way we perceive reality and the meanings which we give to our surroundings.

An information system is thus something that “can only be ‘interpreted’, never

fully specified or reduced to theories” [14], p 47.

3.1.2 Perspectives

Research in both paradigms can be conducted with either a quantitative or

a qualitative perspective. The quantitative approach describes the topic and

analyzes the data by developing metrics and providing generalizable knowledge.

It is based on theories and laws and uses a set of standardized tools.

The qualitative stance relies on other means than numbers and seeks to pro-

vide specific knowledge through deep insight and descriptions. Data using this

approach is often gathered through observation and documented in the form of

text, images or audio/video recordings (e.g. videotaping an interview). It has

an exploratory style and the tools used are often adapted to, i.e. made to fit

the research topic.

As further perspectives to research, Cornford and Smithson [14] speak in loose

terms of “theoretical” (non-empirical) and “empirical” research. Theoretical

research is carried out by systematically applying a theory or hypothesis to

existing knowledge with the intention of uncovering, changing or integrating

new knowledge. The main focus is on ideas and concepts. Empirical research is

carried out by observations of the real world where the purpose is to thoroughly

explain the observed phenomena. Here, the emphasis lies on observation and

data. These two styles of research influence each other mutually:

Theory gives motivation to empirical research; [. . .] Empirical re-

search, in turn, provides evidence to drive processes of theory devel-

opment.

[14], p. 43

27

The positivist paradigm relies to a large extent on empirical research [14] p.

37, [51] p. 20. However, it is not thus said that empirical knowledge is only

used with a positivist point of view, while theoretical knowledge belongs only

to the interpretive paradigm. Research in both paradigms can be conducted

using either one of the perspectives. Interpretive research can for example be

done by observing some phenomenon over time to describe its behavior, just

as positivist research can be conducted using theories to prove/reject laws or

theories.

3.1.3 Approaches and Methods

Regardless of a positivist or interpretive basis, there are three major approaches

to research: constructive, nomothetic and ideographic [14] pp. 43. The ap-

proaches are used to define how the research is to be conducted and what type

of results the scientific work is aimed at yielding.

The constructive approach is concerned with answering questions through the

construction of models, diagrams and plans. Nomothetic research has the pur-

pose of discovering, supporting or rejecting general laws of behavior through

the principles of creating, testing, and applying scientific knowledge. Research

based on the ideographic approach seeks to give deep, “thick” descriptions of

phenomena by getting involved with the research subject and observing general

principals and behavior over time.

Although this classification is helpful in organizing different approaches, further

specialization is required in order to define specific methods that can be used to

perform scientific work. The different methods systematically define steps that

have to be taken along with tools that are to be used when researching a topic.

These Methods can be either quantitative or qualitative. Typical quantita-

tive ones are surveys and laboratory experiments. Surveys are conducted using

questionnaires and structured interviews, while experiments are performed in

controlled environments by testing a theory through manipulation of data.

Examples of qualitative methods are action research and case studies. Action

research requires a high degree of subject and researcher involvement. It is

28

a participatory process concerned with integrating action and reflection, prac-

tice and theory. Case studies are systematical empirical studies of individuals,

groups or events in their natural environment.

The methods are each somewhat “specialized” for a specific approach. For

example, ideographic research is usually conducted using case studies or action

research. Nomothetic research is often done with the aid of experiments and

surveys. Constructive research is somewhat different because it relies on design

research and other conceptual or technical development methods. Here, the

main objective is to design new or extend existing construction and evaluation

techniques such as methods, algorithms or models. This can be done either

conceptually or technically.

3.2 Research Approach

Research in this thesis is conducted using a positivistic constructive approach.

The scientific basis is thus the empirical observation of changes regarding geo-

metrical objects. In order to understand such phenomena, we must first observe

them to determine their characteristics regarding movement and change. Only

then will we be able to use this type of data in application development. The

view is positivistic because these changes occur despite what we might feel

about the geometrical objects. Subjective relationships towards these objects

are irrelevant: they are there and change regardless of our perception of them.

The empirical observation is done with a qualitative perspective. We do not

measure or calculate the changes of geometrical objects in any way; we describe

them relative to other objects using terms such as “contains”, “belongs”, “tra-

verses” “intersects” and “crosses”. These description are given with respect to

time, meaning that relationships between geometrical objects exist/are valid

over a given timeframe.

The constructive approach in informatics is aimed at creating frameworks and

guidelines for technical design and development. It is also referred to as “design-

oriented research”. Cornford and Smithson [14] classify two styles of research

within the constructive approach: conceptual development and technical develop-

29

ment. Conceptual development in informatics seeks to express the requirements

of applications without the use of computer metaphors. It is used to describe a

system in terms that are independent of computer systems. Technical develop-

ment in informatics is the design and development of new software or hardware.

Our research is aimed at developing frameworks for modeling and constructing

databases for spatio-temporal data. We are not concerned with the design and

development of the database-system itself, its storage-management, indexing

techniques, or the hardware it runs on. We are therefore performing conceptual

development.

The method used in our research is “design research”. The steps in this method

are (1) awareness of the problem, (2) suggestion for solution, (3) development

of an artifact (i.e. modeling technique) to test the solution, (4) measurement

and evaluation of the results and (5) a conclusion based on (4). Figure 2, taken

from [60] depicts the steps in the design cycle.

Knowledge
Flows

Process
Steps

Logical
Formalism

Awareness
of Problem

Development

Suggestion

Conclusion

Evaluation
* Operation and
Goal Knowledge

Circumscripti on

Deduction

Abduction

Figure 2: Steps in design research, as shown in [60]

The steps do not have to be followed strictly. A researcher may at any time

during the development or evaluation of an artifact decide to take a step back to

redefine the problem. The complete set of steps may be performed several times,

based on whether or not the conclusion satisfies the problem the researcher

30

wished to solve.

Our problem concerns location modeling and the construction of spatio-temporal

databases, and we suggest solutions based on previous research in those areas.

We then use these suggestions to create models of real scenarios and evaluate

the results they yield.

Since our problem deals with two different topics, we perform design research

on two separate occasions. We begin by solving the issue of location modeling

for indoor positioning systems. This is done by following the steps in design

research. The second issue, modeling of spatio-temporal databases, is done

based on the location model and solved by once again applying design research.

The results of both iterations are conceptual models. The location model is

used by indoor location aware applications for management of information. The

conceptual model of a spatio-temporal database is mapped to database model

which should be general enough so that it can be implemented on any database

management system that has the necessary spatial and temporal support.

31

4 Location Modeling

In this chapter, we give an introduction to location information and its prop-

erties and define guidelines which should be followed when building a location

model. We then describe the symbolic and geometric approaches to location

modeling, and identify their strenghts and weaknesses. Further, we introduce

the hybrid location model which is meant to cope with the shortcomings of

the geometric and symbolic approaches. Finally, we formally describe our own

location model using the Unified Modeling Language (UML) [92]. As basis for

our model we use the hybrid location modeling approach and explain why we

have chosen this particular type.

4.1 What is a Location Model?

The notions of location and location representation are quite familiar to most

people. Surely all of us have at some time in our lives seen and possibly even used

a map of some sort to find our way to a destination. Maps are location models

of a given environment, usually with symbolic names for buildings, streets,

cities, countries, mountains, lakes etc. Maps may also have a coordinate system,

showing the location of a particular object in geometric terms according to the

map’s defined coordinate system. The apparent weakness of these maps is that

they only allow visualization and reference, but do not show the (often) complex

hierarchical relationships between places and objects. More modern methods of

location representation take this weakness into consideration and try to build

models of environments in a way that not only visualize places and objects, but

also show their relationships in a hierarchical manner. Such location models

are used by location aware applications to relate objects, compute with them

(for example compute distance between two objects) and present the results to

users.

Just as we humans depend on information about our environment in order

to navigate, so do location aware systems depend on information about their

environment. The success of these systems depends on how well we are able to

provide the system with the necessary information. It is therefore important

32

that systems which require spatial data [28], i.e. geometric information about

objects in their environment, are based on location models that support the

desired functions. For example, it would be difficult for a human to find the

fastest way to his car if the car’s position was given as (38◦18′N, 23◦5′W). On

the other hand, a computer would have a hard time calculating the distance

between a car and its owner if all it had to work with were their symbolic

names.

As computer systems become an integrated part of our everyday lives, they are

expected to perform complex computations and at the same time communicate

with their users (humans) in a human understandable way. Taking this into

consideration, location modeling becomes a difficult and time consuming task,

because it can be done in many ways depending on the application domain and

the operations which the application using the model has to perform [42].

However, before we discuss different approaches to location modeling any fur-

ther, we present the concepts of location information and general location mod-

eling guidelines. We also present example scenarios in which location models

can be useful.

4.2 Practical Use of Location Models

Location models can be used as a basis for indoor location based applications by

supporting different types of functions such as tracking the position and status

of objects. Below we present examples of scenarios in which location models

have practical use10:

Office Management System

One area of applied use is the tracking of equipment and personnel in office com-

plexes. The buildings can be modeled using the constructs of a location model,

where the building itself along with its floors, wings and room can be modeled

geometrically as 3-dimensional spaces. Transitions (e.g. doors) between these

spaces can modeled as 2-dimensional spaces. Associations and relationships

10We emphasize that both scenarios presented here have privacy and legal issues associated

with them. We do not discuss these issues here, since they are beyond the scope of our work.

33

between these spaces, along with their symbolic names can be modeled sym-

bolically using a branching structure such as tree or a graph. Equipment inside

the buildings can be anything from printers to tables or file cabinets. These

can be modeled as objects with positions and the the ability to move to other

locations.

Persons can also be considered as moving objects. They can have different roles,

occupy offices and attend events. Examples of roles can be “project-manager”

or “customer”. Events can be meetings, workshops or presentations which take

place inside a 3-dimensional space at some given time. The application can

thus use these constructs along with their geometrical and symbolic informa-

tion to determine the position and status of any object and present this in an

understandable way to users.

Hospital Monitoring System

Another scenario of practical use is location based applications in hospitals,

used to improve medical care. Patients, medical equipment and staff could be

tracked at all times, along with their status and roles. Doctors would at all

times know where the nurses are and what they are doing, and vice versa. The

staff would also know where different equipment is and what condition it is in.

Events related to spaces would for example be surgery or planned CAT-scans11.

Using this information, necessary and available resources could be kept or sent

where they are most needed. In extreme situations, this could prove to be

lifesaving.

As an example of roles and statuses of persons, a doctor can have the title

“cardiologist” and the role of “attending surgeon on call” on a particular day.

At a given time during this day, his status can be “available”. The nurses can

use the location aware application to access this information along with the

current position of the doctor and call him if necessary.

11Computerized Axial Tomography, also referred to as CT-Scan.

34

4.3 Location Information

Location modeling of the physical world is an essential part of location aware

applications. These applications require highly accurate and flexible information

regarding the surroundings in which they are meant to operate. This type of

information, referred to by Korkea-Aho and Haitao [42] as location information,

may be used to query the position of a mobile object, or to calculate the distance

between two stationary objects.

The location information describing an object (or a place) is contained in a

location model, which also describes the relationships between the objects. The

scope of the information in the model is defined by the operations that the

application is designed to perform. The quality of the application thus depends

on the properties of the underlying location model [42, 10]. These properties

are:

• Accuracy: How accurate is the location information provided by the

model? Does it represent the physical world accurate enough to the extent

required by the application?

• Representation of objects: How are objects represented in the model?

Are the object identifiers proper representations according to names and

events associated with the objects?

• Representation of relationships: What are the relationships between

the objects and how are they represented in the model? Do these repre-

sentations reflect the relationships in the physical world?

• Dependency: What are the dependencies between the objects in the

model? Are some objects dependent on other objects in order to exist,

and are these dependencies coherent with the dependencies in the physical

world?

• Flexibility: How flexible is the model regarding changes in the physical

world? Is the model flexible enough to reflect such changes?

35

As we see, there are many factors that have to be considered if we are to build a

quality location model. There are also apparent problems concerning accuracy

and representation of objects. These properties are somewhat contradictive.

Trying to model the physical world accurately with respect to precise positioning

would demand an n-dimensional coordinate system, while making the model

more understandable to humans would require objects to be represented by

their symbolic names and associations. However, a symbolic representation

could never be as accurate as coordinates used for precise positioning, while

coordinates would be far more difficult for people to understand.

4.4 Modeling Guidelines

The purpose of a location model is to describe the physical world in an abstract

and virtual way, so that physical objects (places) and their relationships (and

dependencies) can easily be mapped to their equivalent representation in the

model. Despite the fact that there are basic standard algorithms for how the

technical visualization of physical objects to virtual objects is done, there are

no standard demands on how a location model should be created. As already

stated, the model has to be constructed according to the needs and specifications

of those who want to use it. There are however guidelines as how to proceed

when constructing such a model. In the case with indoor positioning, Brumitt

and Shafer [10], Funk and Miller [25] and Korkea-Aho and Haitao [42] suggest

that the following questions be dealt with:

• What type of operations is the model supposed to support?

– Activity, needs, purpose, surveillance or administration?

• How is the relationship between objects represented?

– Absolute (geometric), descriptive or relative (symbolic)?

Once these questions have been dealt with, a decision has to be made as to

building an implicit or explicit model. In an implicit model the application

contains the model information, while in an explicit model, a service stores

36

model information and allows an application to query the model data. To

achieve better scalability, an explicit model is preferred because such a model is

independent of the services which are provided, and can therefore be modified

in an easier way. An explicit model would also reduce the workload performed

by the clients when they need to access information in the model, because most

processing based on the information in the location model would be done by

the service provider.

Regardless of the model being implicit or explicit, Dürr and Rothermel [16]

propose that it should be a lattice12, where the nodes represent objects (places),

and the edges represent the relationships between them.

An alternative to the lattice is a tree, as shown by Jiang and Steenkiste in [40].

The problem with a tree, pointed out by Dürr and Rothermel in [16], is that it

allows objects to only have one parent, i.e. exclusive membership. They argue

that this approach makes it difficult (if not impossible) to model objects that

are subsets of more than one set (i.e. objects that have more than one parent).

Because of this, trees will in most cases bee too limited. Consider the following

example:

The building in figure 3 has two floors, F0 and F1. F1 contains the room R01,

while F1 contains the rooms R11 and R12. So far, it is easy to model this

information as a tree. The rooms are all subsets of the floors where they are

located, the floors are all subsets of the building, and each object has exactly

one parent. But imagine now if the building was also divided into two wings,

Wleft and Wright. In this case, wings and floors would overlap, and the rooms

would be subsets of floors as well as wings, e.g. room R01 would be on floor F0

as well as in wing Wleft, and rooms R11 and R12 would be on floor F1 as well as

wing Wright. An object would now have more than one parent, and we would

no longer have a tree.

The above example clearly shows why a tree might in some cases not be suited

for modeling location information. The more general and powerful lattice over-

12A lattice in a Directed Acyclic Graph (DAG) where there is at least one node that can

reach every other node and there is at least one node that can be reached by every other

node.

37

R12

Wleft Wright

Wfront

F0

F1

R11

R01

Figure 3: Building divided into sections, floors and rooms

comes the weaknesses of the tree in these situations, and is more suited for

our purposes. However, the solution proposed by Dürr and Rothermel [16] also

has a weakness. Their model is hierarchical (set-based) and solely based on

spatial containment relationship, i.e. a building contains sections which con-

tain rooms. This makes it ideal for range-queries like “which objects are within

Wright/F1/R12”, but not suited for nearest-neighbor-queries like “find the fastest

way between rooms R11 and R12”. Using the building in figure 3, the problem

can be described as follows:

Imagine if there were a door between the rooms R11 and R12. In the hier-

archical structure proposed in [16], this door would be impossible to model.

Nearest-neighbor-queries would thus be answered insufficiently, because all the

possibilities of the building would not be modeled. The model would show the

rooms connected only through a wing (Wright) or a floor (F1), and the answer

to the query would suggest either of these two as a path between the rooms.

To solve this problem, graph-based location models that are well suited for

nearest-neighbor-queries can be applied. The edges in the graph may addi-

tionally be weighted to express distances between locations. A graph however,

as opposed to a hierarchical structure, does not show the spatial containment

relationships present in a building. These relationships are important factors

concerning indoor positioning systems, and we wish to keep them present in our

38

location model. We therefore use a combined structure (described in chapter

2.2.3) as a basis for our location model in order to make it suitable for both

types of queries.

4.5 Basic Location Models

The basic modeling types for location services are the symbolic and geometric

approaches. These are also referred to as hierarchical and coordinate location

models. For the sake of clarity and to avoid confusion, we use the already estab-

lished terms symbolic (as opposed to hierarchical) and geometric (as opposed

to coordinate).

4.5.1 Symbolic Modeling

In a symbolic location model, objects are referred to by names (i.e. abstract

symbols), such as “Office 51”, “second floor”, or “Department of Computer

Science”. This approach stores information in a way that is meaningful to

a person. Brumitt and Shafer [10] use the term friendly names which allow

location queries performed on the model to be answered with replies that make

sense according to the terms and values that people associate their surroundings

with.

Since all objects are represented as symbols, they can be divided into sets and

subsets, with basic mathematical set-operations. Consequently, an object is a

member of another object if it is physically contained within that object, and

objects that are present in overlapping areas between two other objects are

members of both sets represented by the overlapping objects [16, 40, 45].

• Advantages of symbolic models:

– Well suited for implicit representation of spatial relationships (e.g.

containment, closeness).

– Easy to read and understand for humans.

39

– Supports better scalability, manageability and adaptation (supports

multi-resolution processing).

• Disadvantages of symbolic models:

– Lack of position accuracy.

– Not suited for calculating distance between objects.

– The number of objects in the model depends on the application do-

main. This could lead to a potentially large number of objects. Ex-

amples of this can be large buildings, containing several floors, wings,

rooms, corridors, elevators, doors and open spaces.

A symbolic model of the building in figure 3 would look like the one shown in

figure 4. The graphical syntax is taken from [16] and is to our knowledge the

latest proposed syntax for location modeling.

Building

Wing Floor Floor Wing

Location Location Location Location

Room Room Room

addr=Wleft

addr=F0 addr=F1

addr=Wright

addr=F0

addr=Wleft

addr=F1 addr=Wright addr=Wleft addr=F0
addr=F1

addr=Wright

addr=R11 addr=R12 addr=R01

Figure 4: A symbolic model of the building from figure 3, as a lattice

The attribute “addr” in the figure is used to represent the symbolic path from

one location to another in both directions of the hierarchy. As the model shows,

neither floors nor wings are completely contained in each other. Furthermore,

40

each room can be seen as a subset of both a floor and a wing. Modeling these

aspects using a tree is impossible, as shown in figure 5. This is due to the fact

that floors and wings can be seen as set/subsets of each other, and the different

rooms would in this case have more than one parent (i.e. room R12 is both in

floor F1 and wing Wright). These relationships are shown in the model (figure 5)

with dashed lines and question marks, indicating that they are unfeasible when

constructing a tree.

Floor

addr=F0

Building

Wing

Room

addr=Wright

addr=R11 addr=R11 ?

?

addr=?

Figure 5: A symbolic model of the building from figure 3, as a tree

4.5.2 Geometric Modeling

In geometric location models, objects are represented as points, lines or regions

(or volumes in 3-dimensional applications) within one or more reference coor-

dinate systems. Since everything in a geometric model is described by a set of

coordinates, there is no set/subset relationship between the objects, which was

the case with a symbolic location model. A well known example of an appli-

cation based on the geometric model is the GPS coordinate system, in which

locations are defined by longitude, latitude and altitude [40, 45].

• Advantages of geometric models:

– Well suited for for specifying accurate positions.

– Well suited for calculating euclidean distance between objects.

41

– Offer a more flexible mean of retrieving location information.

• Disadvantages of geometric models:

– Hide hierarchical relationships (cannot describe spatial relationships).

– Geometric data is weakly structured (makes efficient design more

difficult).

– Extra computing is needed to map coordinates into data that is

meaningful to both applications and humans.

Two geometric models are shown in figure 6. In model a) we see a 2-dimensional

geometric model of room R01 in the building from figure 3. It consists of a coor-

dinate system used to accurately locate objects within the room. The location

of an object within the room is given by a pair of coordinates as (X, Y). The

model can be extended to 3-dimensions by adding a third axis, as shown in

model b). An object’s location is in this case given by an (X, Y, Z) coordinate.

X

Y

X

Y

Z

b) a)

(x,y)

(x,y,z)

R01

R01

Figure 6: 2- and 3-dimensional geometric models of room R01

A coordinate system may also be used to define subspaces within another space,

as shown in figure 7. The figure shows a room divided into the subspaces N ,

S, E, W and C. This may be necessary when a room or section is symbolically

divided (not physically, i.e. by walls) into subsections. An example of this may

42

be to consider the geographical space in front of a door as a separate area. This

way, queries like“outside whose door am I standing” can be answered. We will

attempt to answer such queries when validating our model. For now however,

we are interested in designing a location model, not using it.

W

N

E

C

S

Figure 7: A space geometrically divided into subspaces

4.6 Hybrid Location Model

As we have seen so far, the symbolic and geometric models cover vastly different

aspects used by location aware systems. Although either of these models can

be used independently form the other, they cannot replace each other. In some

cases, especially for closed systems with predefined, static requirements, one

of the models alone can provide the necessary service needed. For example,

GPS systems use geometric models, while the Active Badge system (section

2.3) is based on a symbolic model. However, for more general services where

applications are required to perform precise calculations as well as submit the

results to the users in an understandable fashion, it becomes clear that neither

the symbolic nor the geometric approach alone is sufficient. To overcome their

shortcomings, Leonhardt [45], Domnitcheva [15], and Jiang and Steenkiste [40]

suggest a combination of the two, referred to as a hybrid model. This approach

is also taken by Dürr and Rothermel in [16], where they propose a combination

of the symbolic and geometric models.

43

A hybrid location model combines the benefits of both the geometric and sym-

bolic model. The basis for this approach is the symbolic model, where objects

are organized in a hierarchy in which every level is a refinement of the previous.

The geometric model is then used to give every object in the hierarchy its own

coordinate system, so that points, areas and volumes can be defined within that

object.

The symbolic aspect of this approach divides the objects (spaces) into set/subset

relationships. For example, the building shown in figure 3 will be divided into

the sets F0, F1, Wleft and Wright (floors 1 and 2 and wings left and right).

As shown in chapter 4.5.1, there exists no set/subset relationship between the

floors and wings. They are all on the same level in the object hierarchy, and we

therefore also have the sets (Wleft, F0), (Wleft, F1), (Wright, F0) and (Wright, F1).

These sets contain the subsets R01, R11 and R12 (the rooms), and are in turn

self subsets of the building as a whole. Since the symbolic approach produces

a lattice, it will be easy to see whether a set/subset relationship exists between

two or more objects.

The geometric aspect of the hybrid approach allows each object to define its

own coordinate system. Within their coordinate systems, the objects possess

geometric attributes such as points, shapes, areas etc. This is necessary if we are

to be able to compute geometric relationships such as distance and intersection.

Once again, we consider the building in figure 3. Imagine if wing Wleft was

logically (not physically, for example with a wall) divided into two subsections:

north and south, Wnorth and Wsouth respectively. We would thus have wing

Wleft as the superspace of the subwings Wnorth and Wsouth, and the subwings

would be subspaces of Wleft. All wings would have their own coordinate system,

and the position of an object in one of the subwings (Wnorth or Wsouth) could

be expressed in coordinates of either the superspace’s coordinate system (Wleft)

or the subspaces’ coordinate system. This is possible because the subspaces’

coordinate systems are defined within their superspace’s coordinate system,

and we can therefore translate coordinates between the spaces [40].

44

4.7 Domain Model

The purpose of the domain model is to define the characteristics and relation-

ships between objects that a system represents. The domain model is based on

our discussion regarding the combination of symbolic and geometric modeling

(i.e. the hybrid approach). The objects presented in the domain model are

those we deem important for indoor location aware systems, including events

occurring in different spaces, static and movable objects with their statuses, and

persons moving, occupying spaces and having different roles.

The syntax proposed by Dürr and Rothermel [16] will yield complicated models

when the building that is to be modeled is large and consists of several wings,

floors, rooms and doors. Because of its rich and powerful syntax, we instead use

UML as our modeling language. A domain model describing the basic concepts

and terms of the hybrid location model is for the sake of clarity divided into

three separate models and presented in figures 8, 9 and 10. All three models

use basic constructs from the UML syntax: Classes are modeled as squares,

inheritance (generalization/specialization) is modeled with an open-headed ar-

row pointing from a subclass to its corresponding superclass, composition (“is

part of” relationship) is modeled with a filled diamond at the end of a line,

and associations are modeled with a straight line with a symbolic name and

cardinality.

Figure 8 is the basic model. It shows a 3-dimensional space as a composite of

itself (the class “3D Space”). This class contains geometrical information for all

3-dimensional spaces. Direct subclasses of it are “Building”, “Floor”, “Wing”

and “Space”. These classes are used to describe the basic concepts of a building.

Floors and wings are contained within the building, while spaces are contained

within floors and/or wings. Transitions between these spaces are given by “2D

Space”. The class “Transition”, which is a subclass of “2D Space”, can be a

door or a logically defined border between two 3-dimensional spaces.

The geometrical information of 2- and 3-dimensional spaces is described in figure

9. The information is given by the classes “2D Geometry” and “3D Geometry”.

As the figure shows, these geometries can be implemented differently depending

on the type of spaces that are to be modeled. 3-dimensional spaces are for

45

3D Space

2D Space

Floor

Space

Wing

Building

has

1..* 1..1

Door

Open Space

Transition

Lockable

Figure 8: Basic domain model of the hybrid location model, constructed using

UML

3D Geometry

3D Space

2D Space

Box

Region

Line

Polygon

2D Geometry

has

geometry

1..* 1..1

geometry

Figure 9: Detailed domain model of 2- and 3-dimensional spaces

example modeled as either polygons or boxes, while 2-dimensional spaces are

lines or regions. The model can be extended with other types of geometries

like for instance circles, cylinders and spheres. We have chosen the geometries

“Polygon”, “Box”, “Line” and “Region” because we assume that most spaces

and transitions within a building can be modeled using these classes.

46

Movable

Person

Object

Space

Event

Office

Recreational

Area

Elevator

Corridor

Role

has

is -in occurs -in

0..*

0..*

0..* 1..1 1..1 0..*

occupies

1..*

0..1

Figure 10: Detailed domain model of space, persons and roles

Figure 10 describes related classes of “Space” in more detail. A space is seen

as any type of physically or logically defined area, such as offices, corridors,

elevators and geometrically restricted areas (“Recreational Area”). Elevators

are distinguishable from other spaces since they move and can therefore be in

any floor. Spaces can have events occurring in them, or have movable or static

objects placed inside. Offices can be occupied by more that one person (e.g. two

persons sharing an office), but one person can occupy only one office. Similarly,

an object can be located in one space at a time, while a space can be occupied

by several objects at once. Because of this, relationships between objects and

spaces are associated with time, indicating the interval in which an objects was

located inside a space. Events are also associated with time describing when

they are to (or did) occur.

Persons can have different roles at different times. This is shown in the model

with the class “Role” and the relationship “has” between “Person” and “Role”.

The relationship “has” is time-dependent, indicating that the roles of persons

may change with time. Roles are specific for persons, but all objects, static,

movable or persons, can have a “‘status”. This property is also time-dependent,

since the status of objects change over time.

The concepts of roles and status are here understood as temporary properties

which persons possess during given time periods. They must not be mistaken

for more permanent properties like title or profession, e.g. “professor”.

47

4.7.1 Validation of Domain Model

Before we can create location models based on the constructs of our proposed

domain model, we must validate it according to the properties defined in chapter

4.3. These were: accuracy, dependency, flexibility and representation of objects

and relationships. However, creating location models of buildings using standard

UML might yield complicated results. This is due to the fact that buildings

often have many floors, wings, rooms, open spaces and doors. Because of this,

we propose a few changes to the syntax in order to make the models more

comprehensible.

The first proposal uses plain text instead of association classes when modeling

the associative relationship between two objects. Again, because of the many

doors that may exist in a building, modeling each one as a class could lead to an

unnecessarily complicated model. Since doors have no other properties besides

being open or locked (and locked door being a specialization of a door), it is

easy to model them using plain text. This will reduce the number of classes in

the model, making it less complicated. Figure 11 shows an example of this.

r00:Room

r01:Room

r01:Room

d001:Door

r00:Room

b) a)

d01:Door

Figure 11: Association between two rooms, shown as an association class (a)

and plain text (b)

The second proposal uses the package construct of UML instead of aggregation

to describe that several objects are aggregated subsets of another. An example

of this is shown in figure 12, where rooms belonging to a floor are modeled with

aggregation (a) and as a package (b). The package syntax is “cleaner” since

we do not have any overlapping lines. In cases where there are several floors,

wings and rooms, the package syntax will reduce the number of overlapping and

crossing lines, making the model easier to read and understand. It is important

48

to emphasize that the package syntax used here does not imply a conceptual

relationship between the objects within it. We simply use the syntax without

applying the semantic.

r00:Room

r01:Room

r02:Room

r03:Room

f00:Floor

f00:Floor

r00:Room

r01:Room

r02:Room

r03:Room

a)

b)

Figure 12: Rooms in a floor, shown as aggregation (a) and package (b)

As a scenario for a location model we use the building from figure 3. A detailed

cross section of both floors is given in figure 13, where floors, wings, rooms etc.

are numbered. As a numbering scheme, we use the first letter(s) of each type

of object as a prefix together with a unique identifier, for example “o01” for

“office 01”, “e1” for “elevator 1” and “c11” for the corridor in the first floor.

We have omitted the numbering of doors and transitions between geometric

areas in the model to make it easier to read. However, theses are numbered using

the same scheme described above. We prefix the number of an office/corridor

with “d” to show a door that belongs to it. If a room has more than one door,

we use a letter from “a” to “z” as a postfix to the number in order to distinguish

between them. For example, the door of office “o02” is numbered “do02” and the

doors to stairway “sw01” are numbered “dsw01a” and “dsw01b”. Transitions

between geometric areas are numbered by prefixing the number of the area with

49

o02

o01

o04

o03

o06

o05

o08

o07

1. Floor

o11

o13

Left Wing Right Wing

Front Wing

rc01

2. Floor

e1

r01

o16

o15

o18

o17

e1

c01 c02

c11

ra01 ra02

ra11 ra12

3d11 3d12

3d023d01

r11

Left Wing Right Wing

s1

s1

Figure 13: Plan showing both floors of building used for validation of domain

model

“os” (“Open Space”). For instance, the transition between the recreational area

“ra01” and the 3-dimensional space “3d01” is numbered “osra01”.

Figure 14 shows how geometric areas can be defined outside different doors.

These areas are numbered by adding the prefix “3d” to the object which they

“belong” to, i.e. the object which is related to them. This concept can be used

to answer queries such as “outside whos door am I standing?”.

The location model for the example building is given in figure 15. The model

assumes that floors are contained within wings, not vice versa. Because of this,

floors are modeled as aggregated subsets of wings. The model also assumes that

stairs between two floors are contained within the lowest of the two. The stairs

“s1” are thus a part of the ground floor, and together with the room “r01” they

form the stairway “sw01” from the ground up to the first floor. Geometric areas

outside doors are not included for the sake of clarity.

50

do01:Door

do02:Door

do04:Door

do03:Door

o02:Office o04:Office

o03:Office o01:Office

3ddo02:3D Space

3ddo03:3D Space 3ddo03:3D Space

3ddo03:3D Space

c01:Corridor

Figure 14: Geometric areas outside doors

Validation of the domain model was done in two steps: first by checking if the

model fulfills the required properties of location models, then by attempting to

answer the following queries:

• Query 1: You are in the reception. How do get from here to office “o02”?

• Query 2: You are standing in front of a door. Is there any way you can

find out which door you are standing in front of?

• Query 3: Is it possible to find out if you are in an elevator or stairway?

If so, which floor are you in?

• Query 4: Is an employee in his office?, If not, then where is he?

4.7.2 Validation Results

The domain model fulfills the required properties of accuracy, dependency, flex-

ibility and representation of objects and relationships (chapter 4.3) acceptably.

The first one, accuracy, depends on the particular needs the location aware

application is meant to cover. In our case, we wish to track the position and

status of different moving objects within buildings. The domain model shown

in figures 8, 9 and 10 contains the necessary constructs in great enough detail

51

rc
01

:
R

ec
ep

tio
n

o0
1:

O
ff

ic
e

c0
1:

C
or

ri
do

r

3d
01

:
3D

S
pa

ce

b0
1:

B
ui

ld
in

g

fr
on

t:
W

in
g

fr
on

t0
:F

lo
or

o0
2:

O
ff

ic
e

o0
3:

O
ff

ic
e

o0
4:

O
ff

ic
e

ra
01

:
R

ec
re

at
in

al

A
re

a

le
ft

:W
in

g

le
ft

1:
Fl

oo
r

le
ft

0:
Fl

oo
r

ri
gh

t1
:F

lo
or

ri
gh

t0
:F

lo
or

do
01

:D
oo

r

do
02

:D
oo

r

do
03

:D
oo

r

do
04

:D
oo

r

os
ra

01
:

O
pe

n
S

pa
ce

os
c0

1:
 O

pe
n

S
pa

ce

d3
d0

1:
D

oo
r

ri
gh

t:
W

in
g

sw
01

:
S

ta
ir

w
ay

r0
1:

R
oo

m

s1
:S

ta
ir

s

e1
:E

le
va

to
r

ds
w

01
a:

D
oo

r
ds

w
01

b:
D

oo
r

3d
02

:
3D

S
pa

ce

o0
5:

O
ff

ic
e

o0
6:

O
ff

ic
e

o0
7:

O
ff

ic
e

o0
8:

O
ff

ic
e

ra
02

:
R

ec
re

at
in

al

A
re

a

d3
d0

2:
D

oo
r

c0
2:

C
or

ri
do

r

os
c0

2:
 O

pe
n

S
pa

ce

os
ra

02
:

O
pe

n
S

pa
ce

do
08

:D
oo

r

do
07

:D
oo

r

do
05

:D
oo

r

do
06

:D
oo

r

o1
5:

O
ff

ic
e

o1
6:

O
ff

ic
e

o1
7:

O
ff

ic
e

o1
8:

O
ff

ic
e

ra
12

:
R

ec
re

at
in

al

A
re

a

3d
12

:
3D

S
pa

ce

c1
1:

C
or

ri
do

r

do
16

:D
oo

r

do
17

:D
oo

r

do
18

:D
oo

r

do
15

:D
oo

r

os
c1

1:
 O

pe
n

S
pa

ce

os
ra

12
:

O
pe

n
S

pa
ce

r1
1:

R
oo

m

de
1a

:D
oo

r

de
1b

:D
oo

r

3d
11

:
3D

S
pa

ce

ra
11

:
R

ec
re

at
in

al

A
re

a

o1
1:

O
ff

ic
e

o1
3:

O
ff

ic
e

do
13

:D
oo

r

do
11

:D
oo

r

os
ra

11
:

O
pe

n
S

pa
ce

d3
d1

1:
D

oo
r

d3
d1

2:
D

oo
r

dr
11

:D
oo

r

os
r0

1:
 O

pe
n

S
pa

ce

Figure 15: Location model of the building described in figure 13

52

for this. Examples of such constructs are the building itself with its spatio-

temporal properties, structure divided into wings, floors and rooms, and events

occurring in it.

Representation of objects and their relationships are given so that they corre-

spond closely to their real world occurrences. For example, a building is divided

into floors, wings, rooms, spaces and offices, along with doors and open spaces

to indicate transitions between them. Relationships between spaces are shows

as containment or through transitions. This corresponds to how buildings are in

reality. Objects within the building are modeled as separate entities with their

own properties and are associated with different spaces based on their current

position.

Dependency is shown as spaces containing others using the UML-symbol of

composition. This indicates existence-dependency such as a building containing

floors which in turn contain rooms. If the building ceases to exist, so do the

floors and thus also the rooms.

Finally, regarding the issue of flexibility, new spaces can be added to others

without having to change any of the higher levels in the hierarchy. For example,

an office can be added to a floor without any consideration to the building as

a whole. Similarly, spaces can change their symbolic names without affecting

any of the other constructs in the model. Changing geometric information is

somewhat more complicated, because this might affect other spaces. It is up to

the application to resolve problems that might occur in these cases.

The queries asked in the previous section were also answered in good enough

detail to validate our domain model. The result of the queries were:

• Query 1: Office “o02” is in the first floor (“left0”), left wing (“left”). In

order to get there from the reception (“rc01”), one must go through door

“d3d01”, cross the transition “osc01” and go through the door “do02”

which leads to office “o02”. The model clearly shows this path.

• Query 2: An area outside a given door can be defined as its own geomet-

rical area (figure 14). Such an area is numbered so that it “belongs” to

53

that particular door. For example, the geographical area outside the door

“do02” is numbered “3ddo02”. Standing within this area thus means that

one is standing outside door “do02”.

• Query 3: The elevator is modeled as a space of its own. We can therefore

determine if a person is inside it. We can use the geometrical information

in the model to find which floor the elevator is currently in. Stairways

are also modeled as spaces of their own. Stairways belong to the lowest

of the two floors that they connect. Because of this, being in the stairway

between two floors is regarded as being on the lowest one.

• Query 4: The domain model shows who occupies which offices. These

persons are also considered as moving objects, so their position can be

determined at any given time. To answer the query, we simply check

whether or not the current position of a person in within the office he

occupies.

Based on fulfillment of the location model properties and results of the queries,

we deem our domain model as complete regarding the modeling needs of indoor

location aware systems. As previously emphasized, the model can be extended

to include other types of spaces, objects, events and geometries. The hospital

monitoring system scenario presented in chapter 4.2 is a good example of this,

where we need to further extend the domain model by introducing new classes

such as “Emergency Room”, “Surgery”, “Morgue” and other hospital related

rooms. These new classes would be subclasses of “Space” and thus inherit

all the properties of “3D Space”. Other extensions could be “Hospital Bed”

derived from the class “Object” and “Patient” from the class “Person”. A new

relationship “lies-in” could then be associated between “Patient” and “Hospital

Bed”, showing which patients currently lie in which beds.

The basic classes however, which describe the relationship between 2- and 3-

dimensional spaces, objects, persons, roles and events are essential for all loca-

tion aware applications.

54

4.8 Research Question 1

Our first research question was (chapter 1.5): What are the requirements of

location modeling and how do we fulfill these requirements in order to create

location models used for symbolic as well as geometric positioning?

The purpose of this chapter has been to present the basic concepts and require-

ments of location information and modeling. Different approaches have been

presented and a modeling technique which includes both symbolic and geomet-

ric information is given. The proposed model contains objects and relationships

which were deemed as important for indoor location aware applications. It is

also suited for nearest-neighbor- as well as range-queries. This chapter therefore

answers the first research question.

The proposed model is created using UML, with some changes to the syntax in

order to make models created with this technique less complicated. The model

will be used throughout the thesis.

55

5 Spatio-Temporal Database Systems

In this chapter we present the concepts of spatio-temporal databases in more de-

tail. The basis of our discussion is work carried out by TimeCenter and research

done in the CHOROCHRONOS project. TimeCenter is an international center

for research on temporal database management. Some work on spatio-temporal

aspects has also been conducted by TimeCenter [91]. CHOROCHRONOS was

a Training and Mobility of Researchers Network funded by the European Com-

mission. Its objective was to study the design, implementation and application

of spatio-temporal databases. Participating researchers from different Euro-

pean universities contributed to the research and studies conducted during this

project. Their results and contributions are gathered in [43].

5.1 What is a Spatio-Temporal Database?

We sometimes need to access data in association with time. We might for

example need to know where a person was at a particular time, or when a

weather-phenomenon will reach a certain city. Often, this data also has a spa-

tial nature, like persons moving from one geographical location to another or

weather-phenomena covering a geographical area. This combination means in

practice that we are referring to geometrical data that moves over time. In these

cases, what we essentially wish to know is when and where our desired data is

valid.

Spatio-temporal databases deal with the integration of time and space. Since

this integration yields a dynamic combination, we can say that spatio-temporal

databases handle moving and/or changing geometrical objects [20, 21]. Persons

and weather-phenomena are examples of geometrical objects, because they are

related to positions in space. They additionally have the ability to move, and

weather-phenomena also have the ability to change (grow or shrink). The pur-

pose of spatio-temporal databases is to track the movements and changes of

these objects according to time. This capability can be used in many different

applications, a few of which are listed below:

56

• Applications that track and determine the movement of individuals or

groups of people/objects. This can for example be the movements of a par-

ticular person over some time, migration in the animal kingdom or replace-

ment of military troops. Relevant questions might be: “What distance did

they traverse?”, “in which direction did they move/grow/shrink?” or “at

what speed did this person move, and what was his top speed at a certain

time?”

• Observation of weather-systems such as high/low pressure areas, storms,

typhoons and hurricanes. Applications in this field could be used (and

are indeed currently being used) to track the movement and extent of

these weather phenomena. Questions like “how is this low pressure area

expanding?” or “will this typhoon reach Bergen?” can be answered by

spatio-temporal applications13.

• Spatio-temporality can be used in applications for geographical surveys re-

lated to shiftment in land areas, movement of glaciers, growing/shrinking

of forests or changes in country borders. Interesting questions are for ex-

ample: “What was the largest extent of a given country at some time

in history?” or “how fast is the Jostedalsbreen (a glacier in Norway)

shrinking?”

As we see from the examples above, spatio-temporal data can be used to in some

extent predict the future movement/change of geometrical objects. Such data

can also be used in backward projections, that is, to show historical information

about geometrical objects in relation to their position, movement, change, speed

and direction. The examples also show that spatio-temporal data can be used

to describe geometries which change in a continuous manner (i.e. a person

moving) and geometries which change in discrete steps (i.e. a building changing

its architecture) [21, 22].

The examples cover a vast area of applications, from cadastral to meteorological

systems. We however, are only interested in indoor location awareness. Our

13This is true to some extent only. We are dealing with meteorological phenomena here,

which is a science based on probability. There will therefore be a level of uncertainty with

the predictions.

57

main focus is thus on continuously and discretely moving objects (e.g. persons

and office appliances) within discretely changing architectural constructs (e.g.

buildings). This has several practical areas of use, a few of which are presented

in the following.

5.2 Practical Use of Spatio-Temporal Databases

We showed in chapter 4.2 that location models can be used to answer queries

regarding the present status of spaces, objects, events and persons within the

application domain. However, if we need the ability to query historical data, we

must store information from the location aware application in a spatio-temporal

database. Using the examples given in chapter 4.2, spatio-temporal databases

can be useful in the following scenarios:

Office Management System

A spatio-temporal database can be used to store and query data about previous

positions and roles of employees. This information can be used to determine

the past position, status and role of persons and other office appliances. The

database can for example be used to find out where certain employees were at

given times, or which employees were in the same room at the same time.

Queries can also be related to the roles that employees might have, e.g. how

often were project managers located in offices of one of their project co-workers,

or how many meetings did a certain project manager attend during a given

timeframe? We can also ask about the status of objects, such as which printers

required the most maintenance, or how long a printer was operational since it

was last repaired.

Hospital Monitoring System

The same type of data as in office management systems can be stored in spatio-

temporal databases for hospital monitoring systems. The database can be asked

about previous positions of equipment and personnel and the answers can be

used to better administer these resources. This could for example be relocation

of personnel to areas where they were most often located.

58

Other queries could be related to events and roles, e.g. how often were nurses

in the same room as the “attending surgeon”, or how many nurses in average

attended events such as “heart-surgery” or “physical examination”. Queries

could also be asked to determine which employees most often meet with others,

such as nurses meeting with doctors. Although spatio-temporal databases are

incapable of explicitly answering queries on interaction between two or more

individuals, an assumption can be made that if the distance between individuals

is small enough over a long enough timeframe, it is highly probable that those

individuals interacted in some manner.

5.3 Conceptual Model

Conceptual models are used to express the requirements of applications with-

out the use of computer metaphors. Well known conceptual models include

the Entity-Relationship model (ER-model) [12] and Unified Modeling Language

(UML) [92]. We have already used UML to create a domain model containing

the main objects and association necessary for indoor location aware applica-

tions, including events, objects and persons associated with different spaces

(chapter 4.7, figures 8, 9 and 10). Unfortunately, the domain model does not

capture the internal attributes and properties of these objects and associations.

We are particularly interested in specific spatial and temporal properties as-

sociated with objects, events and actions that may exist or occur within the

domain. Such event are for example people moving around in the building, or

locations (i.e. rooms) changing shape or name. To model these aspects, we

need a conceptual technique suited for spatio-temporality.

Tryfona and Jensen propose a Spatio-Temporal ER-model (STER) by extend-

ing the ER-model with spatial, temporal and spatio-temporal constructs [63].

Their proposal can be used to model spatio-temporal applications based on ge-

ometrical objects with added temporal properties. In a revised version of their

proposal, including work done by Rosanne Price, they extend the UML syntax

in the same manner [64]. We adopt the extended UML-solution proposed in

[64] and extend the domain model from chapter 4.7.

We use UML because it is considered a stronger tool than ER for modeling

59

databases. The reason for this, as mentioned by Naiburg and Maksimchuck

[48], is that UML allows us to:

[. . .] model elements such as domains, stored procedures, triggers,

and constraints as well as the traditional tables, columns, and rela-

tionships.

[48], p. 123

This simply means that UML allows for a more accurate database model, con-

taining details which are hard to model using the ER approach.

Since we also used an extended form of UML for location modeling (chapter

4.7), using UML instead of STER in the database modeling process reduces the

complexity of the application development. This is due to the fact that we now

can merely extend the domain model with necessary attributes and relationships

to obtain a spatio-temporal database model. However, before we proceed, we

must define the required spatial and temporal aspects.

5.3.1 Spatial Aspects

According to Güting and Schneider [28, 29] geometrical objects can be con-

structed using the fundamental abstractions of points, lines and regions. They

also refer to these Abstract Data Types (ADTs) with the term spatial attribute

values, or Spatial Data Types (SDTs):

• Point: A point is used to represent the geometrical aspect of an object

in space where only the object’s location, not its extent, is relevant. For

example, a person in a building may be modeled as point. The same can

be done for a city on a large scale map.

• Line: Connections in space or movements through space are represented

by lines. A line can be viewed as a curve in space, often represented by a

polyline (sequence of line segments). Examples of lines are roads, rivers

and different types of cables.

60

• Region: A region is used to model objects that have an extent of some

sort in either 2- or 3-dimensional space. Such objects may be countries,

lakes, or cities on small scale maps. Regions may be disjoint (consist of

several pieces) and may even contain holes.

These SDTs have several common properties, such as coordinates within a ref-

erence system and operations that are valid for all three types, like calculation

of distance or containment. We therefore extend the proposal of Güting and

Schneider [28, 29] by adding an abstract general type called geometry which

defines the common features of its specialized instances point, line and region

(see figure 16).

Geometry

Region Line Point

Figure 16: Geometry as superclass of Point, Line and Region

We assume that geometrical objects in the domain model can be expressed

using these spatial constructs. For example, 2- and 3-dimensional spaces can

be expressed using regions, while different objects (movable or static) can be

expressed as either regions (if their extent is relevant, i.e. a table) or points.

Lines (including curves) can be used to project the path of movable objects.

The above mentioned SDTs have no temporal dimension, i.e. they are non-

temporal. Since we are dealing with spatio-temporal data, we need to include a

temporal type instant (time) [31].

5.3.2 Temporal Aspects

Time is used to describe the temporal aspects of objects, attributes and rela-

tionships in the database. It can be used to define a period of validity or the

61

beginning of an event for which we don’t know the ending time of. These aspects

can be classified into the following Temporal Data Types (TDTs) [26, 63]:

• Transaction time: Transaction time is used when the temporal aspects

of an element (i.e. object, attribute or relationship) evolve discretely.

When an element is inserted into the databases, its temporal attribute

has the form [tstart, now), indicating that the ending time is unknown.

Transaction time is used to trace past states of objects. Updates are only

allowed on the present version of the element, and deletion is performed

logically as opposed to physically. Once an element no longer exist within a

database, its temporal attribute is given the form [tstart, tend]. This means

that elements that are no longer considered present in the database are

still represented by a record, stating their past. The transaction time of

an element is thus the time in which the element is a part of the current

state of the database.

• Valid time: Unlike transaction time, valid time is used when the tem-

poral aspect of an element change continuously. Valid time is applied to

facts and events and used on object attributes and relationships between

objects. On insertion, the starting and ending times are given in the

form [tstart, tend]. This shows the time when the fact or event was valid

in the modeled reality. Deletion is performed physically, so the history

of a deleted valid time attribute or relationship is not captured in the

database.

• Bitemporal time: Bitemporal time is used to trace the evolution of a

dynamic collection of valid time facts. This is a combination of transaction

and valid time. It shows time as a set of intervals, where each interval

(i.e. pair of timestamps) is valid time, except for the last interval which is

transaction time. It has the form [[tstart, tend], [tstart, tend], ..., [tstart, now)],

where the intervals [tstart, tend] indicate its valid time properties, while

the interval [tstart, now) indicates its transactional properties. The valid

time properties show when a fact was valid in the database. This might

for example be the previous positions of an object. The transactional

62

property shows the present version of an element in the database, e.g. the

current position of an object.

• Existence time: Existence time14 is used on objects only, since it in-

dicates the existence of an entity. Existence time of an object obj can

be viewed as valid time for the related fact “obj exists”. However, as

Gregersen and Jensen imply [26], it is important to consider the aspects

of valid and existence time separately because the recording of existence

time is important in many applications.

These temporal aspects have one ting in common: they all have a duration. This

common capability is captured by the general concept of time, i.e. transaction,

valid, bitemporal and existence time are all specializations of time.

We assume that temporal aspects of objects in the domain model can be ex-

pressed using these constructs. For example, objects such as persons have ex-

istence time. This indicates the time interval in which that particular person

existed as an object in the database. Relationships like persons occupying of-

fices have transaction time. This shows the time interval from when a person

occupies a particular office till the present. If the relationship changes in any

way, e.g. the person moves out, the attribute in the database containing the

temporal property of that relationship is updated. The position of a movable

object (including a person) is recorded with bitemporal time because such an

object can be considered to be in different locations at different time intervals.

We do not use valid time alone in any cases, because this would conflict with

our desire to trace previous information.

5.4 Extended Domain Model

Now that we have defined the necessary constructs and presented our assump-

tions, we can extend the domain model by adding spatial, temporal and spatio-

temporal properties to classes and relationships. We do this by using the ex-

tended spatio-temporal UML symbols defined by Tryfona et al. [64]. The

extension consists of five new symbols, shown in figure 17.

14Also referred to as lifespan.

63

S T Th

G

ED

Spatial Temporal Thematic Group
Existence-
dependent

Figure 17: Extended UML spatio-temporal symbols, as shown in [64]

The spatial symbol (circle with an “S” inside) represents spatial aspects of

objects as spatial data types available in the domain. The triangular symbol

with a “T” inside represents temporal properties of elements. Also referred to

as timestamp, it can be used to represent existence time for objects, valid time

for attributes and relationships, and transaction time for objects, attributes and

relationships.

Thematic data, i.e. data related to a particular type or topic is represented

with a “Th” inside a square. This symbol describes attributes that are somehow

related to space and/or time. It is is used together with the spatial and temporal

symbols to “indicate changes to thematic data across time and space” [64], p.

105. An example of this may be the population density of a city. The value

can be given as an integer that changes with respect to time and space (where

space is the geographic extent of the city), shown in figure 18.

Th: integer

S

T
PopulationDensity:

Figure 18: Example of thematic data that changes across time and space, as

shown in [64]

The group symbol is used to group attributes with common spatio-temporal

properties together. It does not describe any spatio-temporal properties, but is

64

used to reduce the complexity of the model. Finally, attributes or relationships

that are dependent of object existence are marked with “ED”.

The added symbols alone are not enough to specify exactly what particular

spatial, temporal or spatio-temporal types that are required. To specify detailed

spatio-temporal semantics, Specification boxes are used. These boxes specify the

necessary spatial types based on a SpaceModel, while temporal aspects are given

as a TimeDimension. The SpaceModel of an object can be any valid spatial

data type defined within the domain. In our case, valid types are points, lines

and regions. The same is true for TimeDimension. Here, available types are

transaction, valid, existence and bitemporal time. A combination of SpaceModel

and TimeDimension is used for spatio-temporal types.

Specification boxes are added as compartments to object classes. They are

inherited from parent classes as with any other class property. Specification

boxes of associations can be placed in the specification compartment of either

of its participating classes.

Using these proposed extension on our domain model, the conceptual model for

a spatio-temporal database is presented in figures 19, 20 and 21. The model

has been divided into three for the sake of clarity, and only classes with spatial,

temporal or spatio-temporal properties have been extended. These classes now

contain necessary attributes, such as identifiers, names and spatial types, along

with temporal properties of both attributes and relationships.

Figure 19 shows the classes “3D Space” and “2D Space” with their geometrical

and temporal properties. The attributes “name” and “extent” in both classes

have the temporal property of transaction time. This is because both names and

extents of spaces can change and are thus time-dependent. We must therefore be

able to trace past values of these attributes. The same is true for all attributes

where a need to trace past values is required. In addition, both classes have

the temporal property of “existence time”, indicating the period in which they

existed.

The relationship “has” between the classes “3D Space” and “2D Space” is tem-

poral, i.e. a 3-dimensional space may be added transitions, or have them re-

moved at different times. This relationship is also “existence dependent (ED)”

65

3D
 S

pa
ce

id
: i

nt
eg

er

 na
m

e:

 ex
te

nt
:

S

T

op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

3D
 S

pa
ce

:
Ti

m
eD

im
en

si
on

: e
xi

st
en

ce

2D
 S

pa
ce

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

ex
te

nt
:

S
pa

ce
M

od
el

: l
in

e
Ti

m
eD

im
en

si
on

: t
ra

ns
ac

tio
na

l

ha
s

1.
.1

1.

.*

 T
h:

 st
ri

ng

T

sp
ec

ifi
ca

tio
n

bo
x

ex
te

nt
:

S
pa

ce
M

od
el

: r
eg

io
n

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

id
: i

nt
eg

er

 na
m

e:

 ex
te

nt
:

 T
h:

 st
ri

ng

T S

T

op
er

at
io

ns

sp
ec

ifi
ca

tio
n

bo
x

na
m

e:

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

co
nt

ai
ne

d-
in

Tr
an

si
tio

n

Lo
ck

ab
le

D

oo
r

D
oo

r

O
pe

n
S

pa
ce

B
ui

ld
in

g

 ow
ne

r:

 op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

Fl
oo

r

W
in

g

S
pa

ce

sp
ec

ifi
ca

tio
n

bo
x

ow
ne

r:
Ti

m
eD

im
en

si
on

: t
ra

ns
ac

tio
na

l

 T
h:

 st
ri

ng

T

T

T

sp
ec

ifi
ca

tio
n

bo
x

na
m

e:

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

sp
ec

ifi
ca

tio
n

bo
x

2D
 S

pa
ce

:
Ti

m
eD

im
en

si
on

: e
xi

st
en

ce

T

E
D

sp
ec

ifi
ca

tio
n

bo
x

ha
s:

Ti

m
eD

im
en

si
on

: t
ra

ns
ac

tio
na

l

Figure 19: Extended domain model of 2- and 3-dimensional spaces

66

M
ov

ab
le

 po
si

tio
n:

S

T

op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

O
bj

ec
t

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

lo
ca

te
d-

in
:

S
pa

ce
M

od
el

: p
oi

nt

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

sp
ec

ifi
ca

tio
n

bo
x

po
si

tio
n:

S

pa
ce

M
od

el
: p

oi
nt

Ti

m
eD

im
en

si
on

: b
ite

m
po

ra
l

id
: i

nt
eg

er

ty
pe

: s
tri

ng

 na
m

e:

st
at

us
:

 T
h:

 st
ri

ng

T

op
er

at
io

ns

sp
ec

ifi
ca

tio
n

bo
x

G
ro

up
:

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

S
pa

ce

lo
ca

te
d-

in

1.
.1

0.

.*

S

T

P
er

so
n

 fir
st

na
m

e:

la
st

na
m

e:

tit
le

:

 T
h:

 st
ri

ng

T

G

op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

G
ro

up
:

Ti
m

eD
im

en
si

on
: t

ra
ns

ac
tio

na
l

E
ve

nt

id
: i

nt
eg

er

na
m

e:
 s

tri
ng

ty

pe
: s

tri
ng

op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

oc
cu

rs
-in

:
Ti

m
eD

im
en

si
on

: e
xi

st
en

ce

0.
.*

1.

.*

T

C
or

ri
do

r
O

ff
ic

e

R
ec

re
at

io
na

l
A

re
a

sp
ec

ifi
ca

tio
n

bo
x

oc
cu

pi
es

:
Ti

m
eD

im
en

si
on

: t
ra

ns
ac

tio
na

l

1.
.*

1.

.1

T

oc
cu

rs
-in

oc
cu

pi
es

E
le

va
to

r

id
: i

nt
eg

er

 po
si

tio
n:

op
er

at
io

ns

sp
ec

ifi
ca

tio
ns

sp
ec

ifi
ca

tio
n

bo
x

po
si

tio
n:

S

pa
ce

M
od

el
: p

oi
nt

Ti

m
eD

im
en

si
on

: b
ite

m
po

ra
l

S

T

sp
ec

ifi
ca

tio
n

bo
x

O
bj

ec
t:

Ti
m

eD
im

en
si

on
: e

xi
st

en
ce

 T

G

Figure 20: Extended domain model of objects and persons located in spaces

67

on “3D Space”. If a 3-dimensional space ceases to exist, so do all its transitions.

The classes “Building”, “Floor”, “Wing” and “Space” inherit all their spatio-

temporal properties from “3D Space” and have non of their own. Additionally,

buildings may have different owners at different times. This is regarded as a

temporaly dependent attribute, and is shown in the model as “owner”. Since

ownership of buildings change in discrete steps, the attribute’s temporal dimen-

sion is transactional.

Figure 20 shows the position of an “Object” as a point with transactional time.

This is due to the fact that objects which are not considered as “Movable”

change their positions in discrete steps. Moving objects however, normally per-

sons, change locations frequently and their positions can be given as continuous

intervals of time. The positions of such objects therefore have bitemporal prop-

erties.

As was the case with 2- and 3-dimensional spaces, so do all objects have existence

time, indicating when they existed in our modeled reality. This also includes

movable objects and persons, since they inherit the properties of class “Object”.

Elevators inherit all the properties of “Space”, such as id, name and extent, but

have an additional spatio-temporal attribute “position” which is recorded with

bitemporal time. This is necessary for the same reason as with movable objects,

i.e. because elevators continuously move and are located in different floors at

different times.

The temporal aspect of an “Event” occurring in a space is captured with exis-

tence time. Existence time is used because events exist in a short given time

interval for which we know both the start and end time of. This property

belongs to the relationship “occurs-in”.

Finally, figure 21 shows the relationship between persons and the different roles

that they might have. This relationship, “has-role”, is time dependent, i.e. it has

a temporal dimension which suggests that the roles are kept by persons during

given time intervals. The specification box for this relationship is depicted in

the class “Person”.

Now that we have extended our domain model to include spatio-temporal prop-

68

Person

firstname:
lastname:
title:

Th: string

T

G

operations

specifications
 specification box Group:

TimeDimension: transactional

specification box has-role:
TimeDimension: transactional

0..* 1..*

T

has-role

Role

Figure 21: Extended domain model of persons and roles

erties, we must define a data model which is suited for implementation of these

aspects.

5.5 Data Model

A data model is a scheme for describing data structures with their data types,

integrity rules and operations. The data model shows what type of information

a system can process, and how it processes it.

A complete formal definition of a data model for spatio-temporal databases

along with the full extent of data types, available operations, their signatures

and semantics is found in “A Foundation for Representing and Querying moving

Objects” by Güting et al. [31]. In the following, we present basic concepts of

this work, including practical problems associated with it, and introduce our

own approach for a spatio-temporal data model.

5.5.1 Spatio-Temporal Data Types (STDTs)

Erwig et al. [20, 21] propose a 3-dimensional (2-dimensional space + time)

approach based on ADTs together with a set of operations to capture the be-

69

havior of moving and evolving geometrical objects. Although their work only

covers 2-dimensional space, they assert that the same approach can be used for

3-dimensional space by adding a third axis to the coordinate system15. They

define a moving point as the basic abstraction if only the position of an object in

space is relevant. If also the extent is of interest, the basic abstraction of mov-

ing region is used. Moving lines are normally not considered in the same sense,

since lines themselves are abstractions or projections of movement. However,

a moving line can be used to describe a river or road changing its trajectory.

They also introduce new names for all moving types by prefixing the argument

with an “m”, such as mpoint for moving points.

Using our proposed abstract spatial data type geometry to describe a point,

line or a region in 2-dimensional space and the purely temporal data type time

to describe the valid time dimension, the spatio-temporal data type (STDTs)

mgeometry (moving geometry) can be viewed as a mapping from time into space

[20, 21]:

mgeometry = time → geometry

According to this equation, a type mpoint describes a position as a function of

time. The value of this type can be represented as a curve in a 3-dimensional

coordinate system (x and y for space and t for time). Similarly, a type mregion

represents a region as a function of time. The value of this type can be rep-

resented as a set of volumes in the same 3-dimensional coordinate system (see

figure 22 a and b).

Standard data types can also be “moving”, i.e. changing with respect to time.

Examples of these are minteger and mreal for time changing integers and real

numbers. The concept of moving standard data types may seem odd, but they

are important and useful nontheless. Moving real numbers can for example be

used to describe the distance between two moving objects. Since the objects are

moving, it is only natural to assume that also their distance will change over

time.

15This would in effect give us 4 dimensions: 3-dimensional space + time.

70

a) b)

x

t

y

t

y

x

Figure 22: Representation of a moving point (a) and a moving region (b) in

3-dimensions (2-dimensional space + time)

Based on these STDTs Erwig et al. [20, 21] and Güting et al. [31, 43] define a set

of operations to support different types of calculations concerning relationships

between moving geometric objects. Examples of such operations are:

mgeometry × mgeometry → mreal mdistance

mpoint → line trajectory

mregion → region traversed

The operation mdistance requires two moving geometries as operands. It returns

the distance between these objects as a time changing real number. Projection

of a moving point onto the plane is done with trajectory. This operation requires

one operand, a moving mpoint, and returns a line which describes the “path” of

the moving object. A similar operation, traversed, is defined for moving regions.

It returns the total area ever covered by a moving region as a region.

These operations are merely a few examples used to describe the basic concepts

of the data model. Other operations such as purely spatial and purely temporal

ones are also required.

5.5.2 The Spatio-Temporal Data Model in Practice

Despite the fact that the proposed model is defined in great detail and covers

most aspects of spatio-temporal database management, there are issues that

71

make it difficult to use in practice.

First of all, there are no database system vendors that offer support for the pro-

posed data model. The defined data types and operations must be implemented

manually, i.e. programmed as user defined data types and stored procedures.

This leads to a great deal of effort in the application development. Although

some additional operations have to be implemented for almost any approach we

might take, using spatial extensions and supporting these with temporal data

types is a less cumbersome approach than implementing a complete data model.

Another problem is that concepts such as different temporal types are not dealt

with by Erwig et al. [20, 21] and Güting et al. [31]. In their proposed data

model, time is not classified as transactional, valid, bi or existential. It is

considered in a simple continuous manner. We however, feel that it is important

to consider different aspects of time as classified by [63, 64, 26]. This is because

different elements in the model require different temporal properties.

Because of these apparent shortcomings of the spatio-temporal data model, we

adopt a timestamping approach to spatio-temporal data management.

5.5.3 Timestamping Data

We use the term timestamping as adding a temporal value to nontemporal data

(including spatial) to register the time in which the data is valid, exists or is

part of the current state of the database. As guidelines on how to efficiently

timestamp data, we follow the work done by Torp et al. [62] in “Correct and

Efficient Timestamping of Temporal Data”. Although they do not cover any

spatial data in their work, the general approach can be used to add a temporal

dimension to any type of data which requires it.

An example of timestamping data is presented using the scenario of a person

working in different departments during different time-periods. The current

department is given as an attribute which changes its value over time as the

person changes department. Because of this, the value of the attribute is valid

only over a given time-period. To capture this temporal property, Torp et al.

suggest we timestamp the attribute by registering this time-period in the form

72

[ts, te], where ts indicates the beginning of the time-period and te indicates the

end. te can be left undefined (null), meaning that the value of the attribute is

valid from ts until changed. Once the person changes department, that is the

attribute changes value, we set te to the current time, showing the valid time

period of the attribute’s previous value [62], pp. 6.

Timestamping in this manner means that we do not perform any physical deletes

in the database, but only logical ones. This is an important point in our work,

since we wish to keep the past status of objects present in the database for

querying.

This approach can be used to implement transactional and bitemporal aspects

defined in chapter 5.3.2. Existence and valid time are also implemented using

timestamps, but in the case of valid time, te cannot be left undefined. Existence

time can be derived from transactional time as the minimum ts and maximum

te of an object which no longer has a te that is undefined (i.e. the objects no

longer exists).

Güting et al. [31] argue that such separate representation of nontemporal and

temporal data is a poor solution, since it does not capture continuous change.

We however, argue that by using bitemporal time, we can indeed represent

continuous change. This is because bitemporal time consists of intervals of valid

time, which when made small enough can be deemed as continuous. Consider

the following example:

Imagine a car moving along a road. We wish to track its position continuously.

Imagine now that we, as database developers, decide that if an object is capable

of changing more that once every 10 seconds, we consider its change to be

continuous (remember: movement was considered as a form of change). It is

reasonable to assume that a car in movement changes its position more that once

every 10 seconds, so we stamp its spatial property (position) with bitemporal

time, setting the granularity of each time interval to 10 seconds. Using this

approach, we store the previous positions of the car in the database as facts

valid over an interval of 10 seconds, while the current position is stored in the

final interval given by the bitemporal property. Thus, all continuously changing

objects can be stamped with bitemporal time where the duration of intervals

73

are set by the frequency of change deemed as continuous by the developers.

Discrete change can be captured using the same timestamping approach. Ob-

jects which move or change their geometric extent in discrete steps, such as

buildings, can be stamped with transaction time.

5.6 Access Methods and Query Language

The spatial data types presented above must be integrated into a database data

model before they can be used. We rely on the object-relational model for our

implementation and illustration purposes. The object-relational model uses the

declarative standard database sublanguage16 SQL for data access [8]. SQL is

arguably the most comprehensive standard in database management systems.

In the upcoming sections, we justify our choice of object-relational over other

data models and briefly introduce SQL and propose extensions in order to make

it suitable for handling spatio-temporal data.

5.6.1 Why Object-Relational?

There are several reasons for our choice of object-relational over object-oriented

or purely relational:

First of all, there is a lack of standards and experience in the field of object-

oriented database management. An object-oriented solution would therefore not

be general enough. There is also a lack of proper query languages, which due

to encapsulation, makes it difficult to retrieve data about one or more objects

simultaneously.

Secondly, issues such as security, data integrity and crash recovery are not dealt

with as comprehensively by the object-oriented model as in the relational. This

reduces the overall performance of the database system. When it comes to

standardization, experience, security, concurrency control and crash recovery,

the relational model by far exceeds the object-oriented.

16A database sublanguage is a programming language designed specifically for initiating

database functions [8].

74

Finally, relational database systems have a strong commercial position are likely

to remain there for quite some time. Their vendors have therefore been forced

to create extensions to make their products cope with more complicated data

management. This has lead to the development of several extensions for re-

lational databases which make them more suited for managing complex data,

hence the term post- or object-relational.

Although database systems based on the relational model have some clear ad-

vantages over object-oriented ones, they too have some limitations. These are

among others support for complex data types and inheritance. The relational

model is based on a fixed set of base data types (integer, real, etc.) and re-

lational algebra operations (based on comparators from base data types). It

does not allow definition of user defined data types and stored procedures. This

strongly reduces development flexibility because database developers are left

with fewer possibilities to define data types and operations.

The object-relational approach combines the strengths of the object-oriented

and relational model. It supports complex data types (object-oriented) as well

as the need for complex querying (SQL) [59]. It also maintains the strong

integrity, concurrency and security features of the relational model. Besides

these features, the object-relational model also allows the definition of triggers17

5.6.2 Structured Query Language (SQL)

SQL was developed by IBM in the 1970s. It was originally named SEQUEL

and was implemented as a language to support IBMs prototype of a relational

database system called System/R. The name was later changed to SQL.

In the 1980s, several computer system vendors, including IBM, released database

systems with SQL as their query language. It thus became clear that SQL was

here to stay, and work on standardization began. This work was done by the

International Standards Organization (ISO) and the American National Stan-

dards Institute (ANSI). The first standard, SQL1, was released in 1987 [35].

17A trigger is a user defined unit of logic embedded in the database and activated when

certain events occur, for example on insertions, deletions, or updates.

75

However, due to criticism about it not fully showing the relational constructs, a

new extended version with integrity enhancements called SQL218 was released

in 1992 [36].

The latest version of the standard, SQL3, containing further enhancements to

SQL2 was produced in 1999 [37, 38]. SQL3 provides mechanisms for creation

of user defined data types and stored procedures in SQL. This is a prerequisite

for the definition of spatial and temporal data types and operations. The added

features in SQL3 are an attempt to extend the relational model by adding

“object-oriented-nes” to tables. This is what we refer to as post-relational, or

object-relational.

The different features of SQL can be divided into three separate groups: data

definition, data integrity and data manipulation:

Data Definition

Data definition in SQL involves commands for declaring the structure of data.

As mentioned previously (section 2.4.2), data in the object-relational model is

stored in relations, also referred to as tables. Tables consists of columns, where

the values in a column are all of the same type. The table name and column

names are decided by the user. The data types can be standards like integer

or string, or more complex data types defined by the user. A column may

be specified as NOT NULL, which means that it can not be left “empty”, i.e.

the user is not allowed to enter null values into it. The use of the command

UNIQUE prohibits the occurrence of the same value in a column. A column

may also have a default value assigned to it.

Data Integrity

Integrity issues in SQL deal with primary and foreign keys, propagation of

changes to data and domain integrity. A primary key may consist of several

columns and is used to set a unique identifier for a row in the table. Foreign

keys are used for referential integrity by propagating changes in a referenced

column in another table. A table can only have one primary key, but several

foreign keys. Propagation is performed using the commands ON DELETE and

18Also referred to as SQL92.

76

ON UPDATE, where the action may be to cascade the changes, set a default

or null value, or no action at all. Finally, the command CHECK is used for

domain integrity by making sure that values inserted into a columns fulfill the

condition.

Data Manipulation

Data can be inserted, updated, deleted and selected from tables. Data can be

retrieved using the SELECT command and by specifying selection criteria in a

WHERE clause. A selection from several tables can be performed by joining

them on a common column. The join-condition is given in the WHERE clause.

The condition may itself be a SELECT statement, referred to as a subquery19.

5.6.3 Extended SQL for Spatio-Temporal Data

The underlying data model of SQL3 is based on ADTs, so standard nontemporal

data types like integers, reals, strings and booleans and temporal types like

time, date and timestamp are implemented features of it. Because of this, only

minor extensions are necessary in order to use SQL for spatio-temporal data

management. Erwig and Schneider [22] propose a list of extensions based on the

spatio-temporal data model. But seeing as we are not considering this particular

data model any further, we adapt their proposals to our needs. Necessary

extensions are:

1. A set of spatial data types, operations and predicates. These features are

already available in extensions delivered by several relational database

vendors. Examples are Oracle Spatial [88], DB2 Spatial Extender [71],

Spatial Extensions in MySQL [81] and PostGIS for PostgreSQL [89].

2. A set of temporal data types, operations and predicates. Temporal data

types such as for example date, time, datestamp and timestamp are avail-

able in all database systems. These can be used to create user defined

data types corresponding to the necessary temporal aspects. Many tem-

poral operations and predicates are also already available. Others can be

created as stored procedures.

19A subquery in SQL is a query nested within another query.

77

3. A set of spatio-temporal operations and predicates. These are obtained by

combining the spatial and temporal operations available in the database

system.

The mentioned spatial extensions are all based on the OpenGIS Geometry Model

defined in the OpenGIS Simple Features Specification for SQL [86]. The spec-

ification is proposed by the Open Geospatial Consortium (OGC), a non-profit,

international consensus organization that is managing the development of stan-

dards in the field of geospatial and location based services [85]. The model

defines a geometrical object as having the following properties:

• It must be associated with a spatial reference system which describes the

coordinate system in which the object is defined.

• It must belong to a geometry class which defines a set of common opera-

tions for all geometrical objects.

Figure 23 shows how the geometry model is constructed. It consists of classes for

defining geometrical objects. The model distinguishes between instantiable and

non-instantiable classes. Non-instantiable classes are “Geometry”, “Curve”,

“Surface”, “MultiCurve”, and “MultiSurface”, which contain a common set

of properties for their subclasses. “Geometry” is a generalization of all other

geometrical objects, and as the model shows, all such objects are composites

of a spatial reference system. Instantiable classes are “Point”, “LineString”,

“Polygon”, “GeometryCollection”, “MultiPoint”, “MultiLineString” and “Mul-

tiPolygon”. A “Point” represents the position of a geometrical object within the

coordinate system. A “Curve” is usually represented as a sequence of points, i.e.

a “LineString”, “Line” or “LinearRegion”. A “Surface” is defined as a “Poly-

gon”, while “GeometryCollection” is used to describe collections of geometrical

objects such as points, curves or surfaces.

The model can easily be related to the work conducted by Güting [28] and

Güting and Schneider [29] regarding geometrical objects. Using the terms de-

fined by Güting and Schneider, we see that a “point” is the same as a “Point”

in the OpenGIS model. Furthermore, a “line” can be seen as equivalent to a

78

Figure 23: The OpenGIS Geometry Model, as shown in [86]

“Curve” in the model, while a “region” can be viewed upon as a “Surface”.

Although Güting and Schneider don’t have a “GeometryCollection” type, this

is no more than a logical collection of points, lines or regions.

The OpenGIS specification also defines a set of operations to use on spatial

data types. Most of these operations are implemented in the mentioned spatial

extensions. Others can be implemented manually as stored procedures. Of the

operations presented in the specification, relevant ones for indoor location based

services are:

• contains(Geometry g1, Geometry g2): Indicates whether or not g1 com-

pletely contains g2.

• within(Geometry g1, Geometry g2): Indicates whether or not g1 is spa-

tially within g2.

• intersects(Geometry g1, Geometry g2): Indicates whether or not g1 spa-

tially intersects g2.

79

• distance(Geometry g1, Geometry g2): Returns the euclidean distance be-

tween any two points in g1 and g2.

These operations are purely spatial, i.e. they do not consider the temporal

aspects of moving objects. We need to add further operations in order to capture

the temporal validity of the data. These can be created by defining stored

procedures in the database system. Examples of such operations are given by

Faria et al. [24]. The operands can be time values or objects (temporal or

spatio-temporal). We propose the following operations as relevant for indoor

positioning systems:

• when(Operand op): Returns the valid time of op, i.e. the time when the

object existed or was present in the database.

• begin(Operand op) and end(Operand op): Returns the start and end time

of op, respectively.

• before(Operand op1, Operand op2): Indicates whether or not the temporal

property of op1 is smaller than that of op2.

• overlap(Operand op1, Operand op2): Returns whether or not the temporal

property of op1 and op2 overlap (exist simultaneously).

• duration(start, end): Returns the duration of a time interval having the

start time given by start and the end time given by end.

Finally, we need a set of spatio-temporal operations which can be applied to

objects with both spatial and temporal aspects. Such operations can be created

by extending spatial operations with temporal dimensions [24], p. 4. The

operands can be spatial, temporal, time values or spatio-temporal objects. Our

proposal includes the following operations:

• trajectory(Geometry g, Time t): Returns the trajectory of a spatial object

g over a given timeframe t. The operand t can be given as a null value,

indicating that we wish to calculate the trajectory of g regardless of time.

80

• distance(Geometry g1, Geometry g2, Time t): Returns the distance be-

tween spatial objects g1 and g2 for all intervals of temporal intersections

within the time interval t.

5.7 Research Question 2

Our second research question was (chapter 1.5): How can we capture the spa-

tial and temporal aspects of data when modeling spatio-temporal databases, and

how do we implements these as data types with corresponding operations in a

database system?

We solved the issue of spatio-temporal modeling by extending the domain model

of chapter 4.7 with constructs that enable it to capture the spatial, temporal and

spatio-temporal aspects of geometrical objects that change. We also presented

data models for supporting these aspects and how they can be implemented,

for example by extending existing database systems, regardless of vendor. This

is in accordance with our desire to propose general solutions which can be

implemented independently of specific database systems.

81

6 Object-Relational Implementation

Database systems are used to effectively store and manage large amounts of

information. The database can be viewed upon as a model of reality in the

sense that it represents a selected set which is deemed important enough to

be represented in digital form. Before we can construct the database, we must

identify the selected set that we wish to represent and determine how we wish

to represent it.

In chapter 4 we created a domain model with the intention of using it for indoor

location based services. In chapter 5 we extended the model by adding temporal

properties to the geometrical objects, making them spatio-temporal. The model

thus describes objects, their properties and relationships within the intended

domain and can be viewed as our selected set. It serves as the conceptual

model for any spatio-temporal application, including database systems.

We begin this chapter by mapping the classes and relationships in our conceptual

model from chapter 5.4 to relations used in the object-relational model. We

also present in detail the timestamping approach we have chosen to capture the

temporal aspects defined so far. Finally, we use the object-relational model to

implement a spatio-temporal database and discuss the issue of spatio-temporal

data management for indoor location aware systems.

6.1 Mapping from Object-Oriented to Object-Relational

There are several fundamental differences between the object-oriented and object-

relational model. The most obvious difference is how data is structured. Al-

though the object-relational model incorporates many of the object-oriented

aspects, it still structures data in tables, i.e. relations. A relation R is written

as R(A1:D1, A2:D2, . . . , An:Dn) where An is an attribute and Dn is its re-

spective value domain. The domains can be standard types like integers, reals,

booleans or strings, or more complex types like points, lines or regions.

Because of this difference, we must map the classes in our object-oriented con-

ceptual model to relations in an object-relational model before we can implement

82

it. If our work is to have any realistic practical potential, the mapping process

should be carried out in such a way to ensure that we capture relevant elements,

concepts and associations from object-oriented to object-relational.

Guidelines for mapping from object-oriented to purely relational are given by

Sparks [58]. He defines a series of twelve steps that should be followed to

ensure no loss of information. Since we are not mapping to relational, but

object-relational, we are not forced to follow the complete set of steps. This is

because issues such as inheritance and complex data types are supported by the

object-relational model and can thus be implemented as modeled (no mapping

is required). We adapt the remaining steps proposed by Sparks to our needs.

The following issues must then be considered in the mapping process:

Identify Persistent Classes

We begin by identifying persistent classes in our model. Persistent classes are

classes that exists even when they are not the current subject of a programmer’s

or computer’s attention. These classes are permanently stored on a persistent

storage medium, such as a hard disk, and are not lost if for example the power

is lost. We assume that each persistent class maps to one relation (table).

Although this is a big assumption, Sparks argues that it works in most cases:

The logical extension of this is that a single object (or instance of a

class) maps to a single table row.

[58], pp. 16.

Map Class Attributes

The next step involves mapping attributes to columns. Each class is given

a suitable primary key (a unique ID). Other attributes are mapped to table

columns. The object-relational model allows us to map complex data types

such as geometrical types to single columns. We also have the possibility to

define our own data types.

83

Map Relationships (Associations, Aggregations and Compositions)

Once we have mapped classes to tables and attributes to columns, we turn

our attention to associations, aggregations and compositions. Associations are

mapped with primary/foreign key pairs. Aggregations and compositions (i.e.

strong aggregations) are dealt with in the same way. There are however a few

important points to consider.

In cases where aggregation describes a many-to-many relationship, a separate

primary/foreign key table is required. If aggregation shows exclusive ownership

of one object over another, the table corresponding to the owned object could

have an extra column containing the id (primary key value) of its owner. This

column could be set to NULL if the object is currently not owned by anyone.

Strong aggregation, i.e. composition, implies that an object is composed of

separate parts. The separate parts depend on the existence of the object as a

whole. If the object ceases to exist, so do its parts. This requires strict integrity

constraints which demand the use of foreign keys with the constraint that on

deletion of the object, the part is deleted to.

6.2 The Database Model

Figure 24 shows the database model once the mapping process from object-

oriented to object-relational is complete. The model is created using the UML

database modeling syntax. We wish to keep the model as simple as possible for

illustration purposes. Because of this, no attributes, constraints or procedures

are shown at this point. This model is merely meant to show the necessary

tables. Beside the mapping steps, considerations have been taken to reduce

redundancy and secure integrity. Situations where these considerations cause

special changes are explained in the following models, which show the different

tables and associations (including cardinality) in detail.

Composition, such as a 2-dimensional spaces belonging to a 3-dimensional space

is mapped to a primary/foreign key table showing the whole-part relationship.

Associations of the kind one-to-many and many-to-many are also mapped to

84

S

pa
ce

3D

2D
B

el
on

gs
T

o3
D

S

pa
ce

2D

T
ra

ns
iti

on

B
ui

ld
in

g
Fl

oo
r

 W
in

g

S
pa

ce

E
ve

nt

P
la

ce
dI

n

Lo
ca

te
dI

n
M

ov
ab

le

O
bj

ec
t

O
ffi

ce

H
as

R
ol

e

O
cc

up
ie

s

P
er

so
n

E
le

va
to

r

R
ol

e

R
ec

re
at

io
na

lA
re

a
C

or
rid

or

D
oo

r
O

pe
nA

re
a

Lo
ck

ab
le

D
oo

r

S
ta

tu
s

Figure 24: Main database model, without attributes, constraints and procedures

85

primary/foreign key tables. This is for example the case with the relationship

between persons and offices, where an office can be occupied by several persons.

Complex data types such as geometrical ones are simply mapped to column at-

tributes of the corresponding type. Temporal types such as bitemporal or trans-

actional time can either be created as user defined types, or mapped to columns

containing standard temporal attributes such as timestamp and date. Since

transactional and bitemporal time both have start and end times that change,

implementing them as user defined temporal types means creating composites

which are difficult to maintain and update. Instead of this, we can use standard

temporal types such as TIMESTAMP and DATE20. Which type to use in which

case depends on the granularity of time we wish to model. TIMESTAMP allows

for smaller intervals, e.g. seconds, which makes it ideal for modeling continuous

change. Discrete change can be modeled using both types. Existence time is

not explicitly implemented, since the lifespan of objects can be derived from

their transactional or bitemporal properties (described in chapter 5.5.3).

Inheritance is modeled in a similar manner as in the domain model, with an

arrow pointing from the child to the parent table. The child table inherits all

the attributes of its parent.

Figure 25 shows the details of 2- and 3-dimensional spaces. A 3-dimensional

space (building, floor, wing or space) is stored as a record in its respective table,

inheriting all symbolic and geometric properties from “3DSpace”. The same

is true for 2-dimensional constructs, such as doors and open area transitions.

These inherit their symbolic and geometric properties from “2DSpace”. The

table “2DBelongsTo3D” shows which 2-dimensional constructs belong to which

3-dimensional spaces. An example of this is doors belonging to an office. We

could have used the same approach to model 3-dimensional spaces containing

others, such as buildings containing floors, wings and spaces. However, since

we can use the geometric information of spaces to find set/subset relationships,

we believe its unnecessary to include an extra table for this in the database.

Geometric information can also be used to determine which 3-dimensional space

20We chose this approach after feedback on the difficulties of composite type maintenance

from Tom Lane, one of the many contributing developers of the PostgreSQL database system.

86

 S
pa

ce
3D

S

pa
ce

2D

2D
B

el
on

gs
T

o3
D

id

 I
N

T
E

G
E

R

P
K

na

m
e

 T
E

X
T

ex

te
nt

P

O
LY

G
O

N

t_
s

 D
A

T
E

t_

e
 D

A
T

E

id

 I
N

T
E

G
E

R

P
K

na

m
e

 T
E

X
T

ex

te
nt

R

E
G

IO
N

t_

s
 D

A
T

E

t_
e

 D
A

T
E

P
K

2D

_i
d

 I
N

T
E

G
E

R

3D
_i

d
 I

N
T

E
G

E
R

P

K

t_
s

 D
A

T
E

t_

e
 D

A
T

E

lo
ck

ed

B

O
O

LE
A

N

B
ui

ld
in

g

Lo
ck

ab
le

D
oo

r
D

oo
r

T
ra

ns
iti

on

S
pa

ce

W
in

g
Fl

oo
r

O
pe

nA
re

a
ow

ne
r

 T

E
X

T

t_
s

 D

A
T

E

t_
e

 D

A
T

E

P
K

P

K

P
K

P

K

1.
.1

1.

.*

1.
.*

1.

.1

 P
K

_i
d

P
K

_3
D

_i
d

P
K

_i
d

 P
K

_2
D

_i
d

Figure 25: Database model of 2- and 3-dimensional spaces

87

O
bj

ec
t

P
la

ce
dI

n

ob
j_

id

IN

T
E

G
E

R

M
ov

ab
le

id

IN
T

E
G

E
R

P

K

ty
pe

T

E
X

T

po
si

tio
n

P

O
IN

T

P
K

P
K

t_
e

 D

A
T

E

t_
s

 D

A
T

E

t_
s

 T

IM
E

S
T

A
M

P

t_
e

 T

IM
E

S
T

A
M

P

S
ta

tu
s

st
at

us

T

E
X

T

ob
j_

id

IN

T
E

G
E

R

P
K

P
K

na
m

e
T

E
X

T

t_
s

D
A

T
E

t_

e
D

A
T

E

P
K

ob
j_

id

IN

T
E

G
E

R

po
si

tio
n

 P
O

IN
T

t_

e

 T
IM

E
S

T
A

M
P

t_

s

 T
IM

E
S

T
A

M
P

P

K

P
K

 Lo
ca

te
dI

n

1.
.1

 1.
.*

1.
.1

1.

.*

1.
.*

1.
.1

P
K

_i
d

P
K

_o
bj

_i
d

P
K

_o
bj

_i
d

P
K

_i
d

P
K

_i
d

P
K

_o
bj

_i
d

Figure 26: Database model of objects in space

88

P
er

so
n

fir
st

na
m

e
T

E
X

T

tit
le

T
E

X
T

la

st
na

m
e

T
E

X
T

H
as

R
ol

e

O
ffi

ce

R
ol

e

O
cc

up
ie

s

pe
rs

_i
d

 I

N
T

E
G

E
R

pe
rs

_i
d

 I
N

T
E

G
E

R

ro
le

_i
d

IN

T
E

G
E

R

of
fic

e_
id

 IN

T
E

G
E

R

id

IN
T

E
G

E
R

P
K

P
K

P
K

P
K

P
K

t_
s

D
A

T
E

t_

e

D

A
T

E

t_
s

T

IM
E

S
T

A
M

P

t_
e

T

IM
E

S
T

A
M

P

tit
le

T

E
X

T

de
sc

T

E
X

T

P
K

1.
.1

1.
.1

1.
.1

0.
.*

1.
.*

1.

.1

1.
.*

0.
.1

P
K

_i
d

P
K

_i
d

P
K

_p
er

s_
id

P
K

_p
er

s_
id

P
K

_o
ffi

ce
_i

d

P
K

_r
ol

e_
id

P

K
_i

d

P
K

_i
d

Figure 27: Database model of person occupying office and having roles

89

a 2-dimensional one belongs to. This raises the question: why then do we need

the table “2DBelongsTo3D”? The answer is simple: we have already decided

that a door or transition of any sort can belong to only one 3-dimensional space

(chapter 4). Since transitions lie between two 3-dimensional spaces, using geo-

metric information to determine which one they belong to will return two spaces.

For example, a door between office “o02” and corridor “c01” belongs to office

“o02”. Using geometric information will return “o02” and “c01”, indicating

that the door belongs to both spaces.

Figure 26 shows how information regarding discretely and continuously moving

objects is stored in the database (“Object” and “Movable”, respectively). Since

we are dealing with two different types of movement, we introduce a separate

table for continuously moving objects. Positions with respect to time are thus

given by the tables “LocatedIn” for continuous movement and “PlacedIn” for

discrete movement.

OccursIn

Event

event_id INTEGER
space_id INTEGER

id INTEGER

PK

PK

t_s TIMESTAMP
t_e TIMESTAMP

title TEXT
desc TEXT

PK

Space

0..*

1..1

1..1

1..*

PK_id
PK_event_id

PK_space_id

PK _id

Figure 28: Database model of event occurring in space

The database model of persons occupying offices and having different roles is

given in figure 27. The table “Person” has no identifier or any temporal at-

tributes explicitly associated with its other attributes (firstname, lastname and

title). Because it inherits the properties of “Object” via the class “Movable”,

it already has an identifier and the necessary temporal attributes.

90

The final database model, seen in figure 28, shows events occurring in spaces.

Events are the only objects in our domain which are explicitly modeled with

existence time. This is because we assume that events are planned in advanced

and their start and end time are therefore known. The time and location of

events is given in the table “OccursIn”.

6.3 Other Implementation Issues

Now that we have created a database model based on a spatio-temporaly ex-

tended domain model, we are ready to implement it. There are however two

major points that we have to consider before continuing. The first concerns

the limitations of available extensions for spatial data management, while the

second deals with the use of global versus local coordinates for positioning.

6.3.1 2- or 3-Dimensional?

In our models so far, we have considered locations as 3-dimensional spaces with

the z-coordinate as the height of the location. Only transitions between these

spaces have been regarded in 2-dimensions. Unfortunately, the spatial exten-

sions available only support 2-dimensional space, meaning that they cannot be

used to fully implement the database as modeled.

For indoor positioning systems, this problem can be solved by assuming that

every space has the same height (i.e. the same z-coordinate) as the floor in

which it is contained. Different floors can be explicitly numbered so that we

know which floor we are on, and we can further assume that objects within

spaces move in two dimensions only: x and y. This is a common assumption,

since movable objects within buildings, such as persons, seldom move vertically

(e.g. fly or crawl up walls). Based on these assumptions, it is not necessary

to implement the table “Space3D”. All locations and transitions are given as

entries in the table “Space2D”.

This particular solution can easily be integrated with the Ekahau Positioning

System described in chapter 2.3.3, since Ekahau returns the position of a tracked

object in the form of x, y and floor.

91

This also forces us to rethink our solution regarding the elevator. Since we

no longer have a z-coordinate that can be used to determine the position of

elevators, we must explicitly store this information using the numbering scheme

of the floors. Elevators no longer have a spatio-temporal property showing their

position relative to floors, but have a thematic-temporal relationship of the type

integer with the class “Floor” that shows which floor the elevator is in at any

given time.

Figure 29 shows the domain model with the necessary changes to cope with 2-

dimensional instead of 3-dimensional geometric data. Only classes that require

change are depicted. Other classes remain the same, as do their corresponding

tables in the database model. The location of objects within spaces are no longer

given as 3-dimensional coordinates, but as 2-dimensional coordinates and the

floor number which the space is in.

Space

Elevator

Space2D

Floor

is-in

is-in
1..1 1..*

0..*

1..1

contained-in

Th: integer

T

Figure 29: Domain model for 2-dimensional data

The corresponding database model is shown in figure 30. The attribute “floor nr”

is added to the table “LocatedIn”. This is necessary in order to capture the

92

floor number in which the location data was registered. Two new tables are

also added: “SpaceFloor” and “ElevatorFloor”. The table “SpaceFloor” might

seem unnecessary, since a space can be thought of as existing on one floor only.

However, this is not always the case. An example of this are different wings a

building can consist of. Since wings overlap several floors, this particular table is

needed to avoid redundancy in the database. Finally, “ElevatorFloor” contains

data on the current and previous positions of the elevators.

6.3.2 Global or Local Coordinates?

The database model shows floors and wings defined as regions. It also shows

rooms (corridors, offices etc) and open spaces defined as regions within floors

and wings. Since each location in the model is defined as a region, a decision

has to made about how to position objects within the building. Should local

coordinates of each subspace be used, or global ones of the superspace? There

are advantages and disadvantages to both approaches.

Local coordinate systems require additional information and therefore extra

storage capacity in the database when storing data about positions. This is due

to the fact that we now have to store the id of the location along with positioning

information about objects. The id is used to determine in which location the

position was registered. Without explicitly storing the id of a location with

the coordinates, it is impossible to know in which location the coordinates were

registered.

Global coordinate systems do not require the use of location ids when storing

positioning data. They do however rely on a more extensive use of spatial

operations to determine which location a specific set of coordinates belong to.

This requires additional database and application resources.

In our implementation, we use global coordinates. Although the use of both

approaches can be argued, we choose this particular approach because we wish

to demonstrate the use of spatial operations.

93

E
le

va
to

rF
lo

or

el
ev

at
or

_i
d

flo
or

_n
r

in
te

ge
r

in
te

ge
r

P
K

P

K

P
K

t_

s
tim

es
ta

m
p

t_
e

tim
es

ta
m

p

S
pa

ce

Lo
ca

te
dI

n

in
te

ge
r

in
te

ge
r

tim
es

ta
m

p
tim

es
ta

m
p

po
in

t

P
K

P

K

P
K

P

K

t_
e

t_
s

flo
or

_n
r

ob
je

ct
_i

d

po
si

tio
n

E
le

va
to

r

Fl
oo

r

nr

in
te

ge
r

1.
.1

1.

.*

P
K

_e
le

va
to

r_
id

P
K

_f
lo

or
_n

r

P
K

_i
d

nr

1.
.1

1.
.*

1.

.*

1.
.1

P
K

_f
lo

or
_n

r nr

P
K

_f
lo

or
_n

r

nr

1.
.1

1.
.*

S
pa

ce
Fl

oo
r

flo
or

_n
r

sp
ac

e_
id

in

te
ge

r
in

te
ge

r
P

K

P
K

 P
K

_i
d

 f
lo

or
_n

r

1.
.1

1.

.*

Figure 30: Changes to database model for 2-dimensional data

94

6.4 PostgreSQL Database and User Interface

Implementation of the database is done on the PostgreSQL [90] object-relational

database system version 8.0.0beta. It includes the necessary spatial extensions

based on the OpenGIS geometry model and is well suited for our use. In the

following, we introduce and explain key parts of the code generated from the

database model. We also discuss maintenance issues (i.e. updates) related to

the database and present example queries, a few of which are executed through

a user interface written in Java21. The complete source code for the database

and user interface, along with necessary test data can be found on the CD in

the appendix.

6.4.1 Tables

The following CREATE-statements demonstrate how some of the key tables

used for storing information on geometrical locations and transitions are created.

The main table is “Space2D”, from which all other locations and transitions

inherit their geometric properties. Since PostgreSQL done not have a general

instatiable type “Geometry” (unlike MySQL, Oracle or DB2), we use the type

“Polygon” to represent the geometric extent of locations and transitions.

CREATE TABLE Space2D (

id INTEGER NOT NULL,

name TEXT NOT NULL,

extent POLYGON NOT NULL,

t s TIMESTAMP NOT NULL,

t e TIMESTAMP,

PRIMARY KEY(id, t s)

);

Examples of tables representing locations and transitions are given below (“Build-

ing” and “Transition”, respectively). The tables seem odd, since they don’t

21Not all the queries presented in this chapter are implemented in the application. The

application is meant to be a simple demonstration of how data can be retrieved from the

database using a graphical user interface (GUI).

95

have any columns of their own. They inherit necessary columns from the table

“Space2D”. The table “Owner” holds data on the different owners a building

might have had over time.

CREATE TABLE Building (

PRIMARY KEY(id)

) INHERITS (Space2D);

CREATE TABLE Transition (

PRIMARY KEY(id)

) INHERITS (Space2D);

CREATE TABLE Owner (

building id INTEGER NOT NULL,

owner TEXT NOT NULL,

t s DATE NOT NULL,

t e DATE DEFAULT NULL,

PRIMARY KEY(building id, owner, t s),

FOREIGN KEY(building id) REFERENCES Building(id)

ON DELETE CASCADE ON UPDATE CASCADE

);

The table “Person” inherits the properties of “MovableObject”, which includes

an identifier and status. As with all movable objects, a persons position is stored

in the table “LocatedIn”. As we see from the table declaration, it is necessary

to explicitly store the floor number of a person’s location. This is due to the

fact that the geometric point describing the location is in two dimensions (see

chapter 6.3.1 for details).

CREATE TABLE Person (

firstname TEXT NOT NULL,

lastname TEXT NOT NULL,

title TEXT NOT NULL,

96

t s DATE NOT NULL,

t e DATE DEFAULT NULL,

PRIMARY KEY(id)

) INHERITS (MovableObject);

CREATE TABLE LocatedIn (

id INTEGER NOT NULL,

floor nr INTEGER NOT NULL,

position POINT NOT NULL,

t s TIMESTAMP NOT NULL,

t e TIMESTAMP DEFAULT NULL,

PRIMARY KEY(id, t s),

FOREIGN KEY(id) REFERENCES Person(id)

ON DELETE CASCADE ON UPDATE CASCADE

);

Roles that persons might have at different times can be found in the tables

“HasRole” and “Role”. Using the data in these tables we can find out who was

where at what time and with what role.

CREATE TABLE Role (

id INTEGER PRIMARY KEY,

name TEXT NOT NULL,

tasks TEXT NOT NULL

);

CREATE TABLE HasRole (

person id INTEGER NOT NULL,

role id INTEGER NOT NULL,

t s TIMESTAMP NOT NULL,

t e TIMESTAMP DEFAULT NULL,

PRIMARY KEY(person id, role id),

FOREIGN KEY(person id) REFERENCES Person(id)

97

ON DELETE CASCADE ON UPDATE CASCADE,

FOREiGN KEY(role id) REFERENCES Role(id)

ON DELETE CASCADE ON UPDATE CASCADE

);

6.4.2 Functions

Two examples of user-defined functions are presented below. These are imple-

mentations of operations which we deemed as relevant for indoor location based

services, presented in chapter 5.6.3.

The spatial function “within” returns a boolean value (true or false) on whether

or not a point is within a polygon (e.g. whether or not a person is within a

room).

CREATE FUNCTION within(POINT, POLYGON)

RETURNS BOOLEAN AS

‘SELECT $1 @ $2;’

LANGUAGE SQL;

The temporal function “overlap” return a boolean value indicating whether or

not two timeframes overlap. The start and end times of the two timeframes to

be checked for overlap are given as timestamps.

CREATE FUNCTION overlap(TIMESTAMP, TIMESTAMP,

TIMESTAMP, TIMESTAMP)

RETURNS BOOLEAN AS

‘SELECT ($1 < $4 AND $2 > $3) OR ($1 < $4 AND $2 IS NULL);’

LANGUAGE SQL;

6.4.3 Updates

A location aware application periodically updates the database with the posi-

tions of continuously changing22 objects (i.e. objects with bitemporal time).

22Remember: moving is still regarded as a form of change.

98

Positions of discretely changing objects (i.e. objects with transactional time)

are updated only when they actually change. These operations are related to

time and are perhaps the biggest issue concerning maintenance of the database,

that is: how do spatio-temporal databases cope with changes in their location

models? Several different changes may occur:

• Spaces and transitions (e.g. rooms, offices, floors, wings, doors) may be

added or removed.

• Spaces and transitions may change their symbolic names and geometrical

extent.

• Spaces (e.g. buildings and offices) may change owner or occupant.

• Objects (movable and non-movable) and events may be added or removed.

New spaces, transitions or objects must be added manually by the application

administrator or someone with the proper privileges. The same is true for when

elements change their symbolic name, geometric extent, owner or occupant. The

location aware application reflects these changes in the database by updating

necessary relations. To retain temporal and spatio-temporal validity, triggers

are used to update relevant temporal properties. The following example of a

space changing its symbolic name illustrates this.

The location aware application is told that the office known as “o02” is to

be renamed “rc02”. Since we wish to track the history of all objects in our

database, we cannot simply update the name attribute and discard its previous

value. The previous value is kept, and the t e attribute corresponding to it is

set to the time of the change. The t s of the new name and t e of the previous

name are now the same (current date), indicating that the space in question

has a new symbolic name from the given time. The application thus changes

the symbolic name in the location model, updates the temporal validity of the

previous name in the database, and inserts the new name:

UPDATE Space2D SET t e = current date WHERE id = office id;

INSERT INTO Space2D VALUES(office id, ‘rc02’, extent, current date);

99

Here, the attribute current date is given by the database system, while the

attributes office id and extent are provided by the application. As we see from

the example, both the update and insert must be performed explicitly. This is

not necessary using temporal query languages. In such cases, we merely update

the database with the new name, and the proper temporal values and inserts

are added implicitly [62]. But as mentioned, there are no temporal database

systems available with provided support for spatial data. We must therefore

perform all updates and inserts explicitly.

As another example, imagine if office “o02” is to be divided into two new offices

“o02a” and “o02b”, each with its own geometric extent. This means that the

original office ceases to exist, and two new ones must be added. Although

“o02” no longer is a part of the location model, it must still be represented in

the database. This is again due to the fact that we wish to keep historical data

for future querying. We therefore set the t e attribute of the office in relation

“Space2D” to the time of its termination, indicating that the name and extent

no longer are valid. We then insert the two new offices in the location model

and database:

UPDATE Space2D SET t e = current date

WHERE name = “o02” AND t e IS NULL;

INSERT INTO Space2D VALUES

(office id a, ‘o02a’, extent a, current date);

INSERT INTO Space2D VALUES

(office id b, ‘o02b’, extent b, current date);

The same approach is taken for all objects that update temporal attributes.

We begin by updating the temporal attribute of the outdated version, before

inserting a new, temporaly valid object. Using this approach, we keep track of

object history in the database.

6.4.4 Queries

This sections contains example queries that demonstrate the functionality of the

database. The queries are written based on the scenarios described in chapter

100

5.2. They are meant to demonstrate the practical use of such databases. The

queries consider the status and roles of different objects/persons as well as their

positions. All the queries have been tested to ensure that they compile, run and

return the proper result, based on test data for which we already know what

results they will return.

The section also contains screenshots of a simple application used to retrieve

information from the database. The application is written in Java and allows

users to query the database about present and historical information. In cases

where execution of a query requires certain parameters, users can enter or change

these via the interface. We wish to emphasize that this application in not a

location aware system. It is merely a demonstration of how a graphical interface

towards the database can be created.

Query 1: Where am I (assuming that “current position” and “floor nr” are

given by the location aware application)?

SELECT S.name

FROM FROM Space2D S, SpaceFloor SF

WHERE S.t e IS NULL

AND S.id = SF.space id AND SF.floor nr = floor nr

AND within(current position, S.extent);

This is a fairly simple query. It is purely spatial and requires the use of one

spatial operation: within. Since a space may have changed its geometry and

names over time, we select the latest by checking that the temporal attribute

t e is null.

Query 2: Where is “Behreng Mirzaei”?

SELECT SN.name

FROM Space2D S, Person P, LocatedIn L, SpaceFloor SF

WHERE P.firstname = ‘Behreng’ AND P.lastname = ‘Mirzaei’

AND P.t e IS NULL P.id = L.id

AND L.t e IS NULL AND L.floor nr = SF.floor nr

101

AND SF.space id = S.space id AND S.t e IS NULL

AND within(L.position, S.extent);

This query retrieves the latest position of “Behreng Mirzaei” by checking the

t e attribute for null in the relation “LocatedIn”. The tuple that satisfies this

criteria is used with the spatial operation within to determine where this po-

sition is. The geometry and name of the location are selected as in query 1,

that is, by selecting the latest entry. Figure 31 shows the query executed by the

application.

Figure 31: Searching for the current position of a particular person

The two first queries are usually not executed in the database. The queries ask

for information regarding the present position of objects, which the location

aware application is capable of answering. We have included these queries to

demonstrate that the database can answer queries regarding the present. It is

in cases where we are interested in the past that the information in the database

becomes relevant. The following queries illustrate this.

Query 3: Who was in office “o03” on November 20. 2004?

SELECT DISTINCT ON (P.firstname, P.lastname)

P.firstname||‘ ’||P.lastname AS was in o03

FROM Person P, LocatedIn L, Space2D S, Office O, SpaceFloor SF

WHERE P.t e IS NULL AND P.id = L.id

102

AND overlap(L.t s, L.t e, ‘2004-11-19 23:59’, ‘2004-11-20 23:59’)

AND L.floor nr = SF.floor nr AND SF.space id = S.id

AND S.t e IS NULL AND S.name = ‘o03’

AND within(L.position, S.extent);

In this query, the positions of all persons for the date in question are retrieved

by first using the temporal operation overlap to ensure the selection of values

within the given timeframe and then the spatial operation within to determine

which one of these were inside office “o03”. We also use the standard SQL

operation DISTINCT because a person might have been inside office “o03” on

several different occasions during the given date. A screenshot of the application

executing this query is given in figure 32.

Figure 32: Searching for names of persons in a room at a given time

Query 4: What were the locations of employees who were project managers

between November 20. 2004 and November 24. 2004?

SELECT DISTINCT ON (P.firstname, P.lastname, S.name)

P.firstname||‘ ’||P.lastname AS name, S.name AS location

FROM Space2D S, Person P, LocatedIn L, HasRole HR, Role R

WHERE P.t e IS NULL AND P.id = HR.person id

AND HR.role id = R.id AND R.name = ‘project manager’

AND overlap(HR.t s, HR.t e, ‘2004-11-19 23:59’, ‘2004-11-24 23:59’)

103

AND overlap(L.t s, L.t e, ‘2004-11-19 23:59’, ‘2004-11-24 23:59’)

AND P.id = L.id AND within(L.position, S.extent)

ORDER BY P.firstname, P.lastname;

Here, we make sure that only values which lie within the desired timeframe are

selected by checking the temporal attributes of positions and roles. We do this

by using the temporal operation overlap twice: once to determine the names

of those who had the role of “project manager” during the desired timeframe

(including those who received the role after November 20. 2004 and kept it

longer than November 24. 2004), and again to determine positions within the

same timeframe. Locations of the selected project managers are determined by

the spatial operation within. The clause ORDER BY orders the result of the

query so that it becomes easier to read. Figure 33 shows a screenshot of the

application executing this query.

Figure 33: Searching for previous positions of persons related to their roles

Query 5: Did any project co-workers attend staff meetings on November 20.

2004?

SELECT DISTINCT ON (P.firstname, P.lastname)

P.firstname||‘ ’||P.lastname AS attended staff meeting

FROM Person P, HasRole HR, Role R, LocatedIn L, Event E,

OccursIn O, Space2D S

104

WHERE P.t e IS NULL AND P.id = HR.person id

AND HR.role id = R.id AND R.name = ‘project co-worker’

AND overlap(HR.t s, HR.t e, ‘2004-11-19 23:59’, ‘2004-11-20 23:59’)

AND L.id = P.id AND E.title = ‘staff meeting’ AND E.id = O.event id

AND overlap(O.t s, O.t e, ‘2004-11-19 23:59’, ‘2004-11-20 23:59’)

AND O.space id = S.id AND within(L.position, S.extent);

Once again we use the temporal operation overlap twice: first to select names

of employees who were project co-workers during the desired timeframe, then to

select identifiers for locations in which staff meetings occurred within the same

timeframe. Finally, we use the spatial operation within to determine which

one of the project co-workers were in locations where staff meetings were held.

Query 5: Which project managers met on November 20. 2004, and where did

they meet?

This is the most complicated query we have tested so far, because it requires us

to make a few assumptions about what we deem as “meeting”. Needles to say,

the database possesses no artificial intelligence in order to “understand” what

it means for two or more individuals to meet. We have to somehow define a

meeting with conditions that have to be true for the database to recognize such

an event. We propose the following conditions: First of all, for a meeting to

take place, the involved individuals must be on the same floor and in the same

location at the same time. Secondly, the duration of this time must be longer

than a given minimum, and finally, the distance between the individuals must

be less than a given maximum. Simply being in the same room at the same

time does not qualify as a meeting, since people can be in the same corridor,

room or open area without exchanging a single word.

Since this query requires a great number of clauses, we simplify it by first

creating a view which contains the identifiers of individuals who were project

managers during the desired timeframe and had a distance of less than the given

maximum to each other at the same time. The view also contains the start and

end times for when the distance was less than the given maximum. We use the

view to select the names of those who were close enough to each other with a

105

duration longer than the given minimum, along with the name of the location

they were in.

CREATE VIEW Temp AS

SELECT P1.id AS P1 id, P2.id AS P2 id,

MIN(L1.t s) AS L1 min, MAX(L1.t e) AS L1 max,

MIN(L2.t s) AS L2 min, MAX(L2.t e) AS L2 max,

FROM Person P1, Person P2, HasRole H1, HasRole H2,

Role R, LocatedIn L1, LocatedIn L2

WHERE P1.id <> P2.id

AND P1.t e IS NULL AND P2.t e IS NULL

AND overlap(H1.t s, H1.t e, ‘2004-11-19 23:59’, ‘2004-11-20 23:59’)

AND overlap(H2.t s, H2.t e, ‘2004-11-19 23:59’, ‘2004-11-20 23:59’)

AND P1.id = H1.person id AND P2.id = H2.person id

AND H1.role id = R.id AND H2.role id = R.id

AND R.name = ‘project manager’ AND P1.id = L1.id AND P2.id = L2.id

AND L1.floor nr = L2.floor nr

AND overlap(L1.t s, L1.t e, L2.t s, L2.t e)

AND distance(L1.position, L2.position) < given maximum

GROUP BY P1.id, P2.id;

SELECT DISTINCT ON (P1.firstname, P1.lastname)

P1.firstname||‘ ’||P1.lastname||‘ met ’||P2.firstname||‘ ’||P2.lastname

AS met on nov 20 2004, S.name AS met in

FROM Temp T, Person P1, Person P2, LocatedIn L, Space S

WHERE P1.id <> P2.id

AND P1.id = T.P1 id AND P2.id = T.P2 id

AND duration((SELECT MIN(L1 min) FROM Temp),

(SELECT MAX(L1 max) FROM Temp)) > given minimum

AND duration((SELECT MIN(L2 min) FROM Temp),

(SELECT MAX(L2 max) FROM Temp)) > given minimum

AND within(L.position, S.extent);

106

There is of course some degree of uncertainty regarding the assumptions we

have made. Two people might for example be standing next to each other

several minutes without interacting in any way. The query therefore really

answers whether or not individuals could have met. This is the best result we

can achieve without introducing some form of artificial intelligence or explicitly

storing information on random meetings.

6.5 Research Question 3

Our third and final research question was (chapter 1.5): Based on spatial, tem-

poral and spatio-temporal data, how can we construct spatio-temporal databases

that are able to reflect changes in their location models?

We have answered this question in this chapter. We began by creating a

database model based on the conceptual model that was used as a basis for

the location model. This ensured that entities, events and relationships which

are important in the location model are also present in the database model.

Changes in the location model, e.g. new spaces, transitions, objects and events

being added, or spaces changing extent or name can be handled by the database

in a manner that does not conflict with the integrity of the location model.

107

7 Reflections and Evaluation

This chapter is dedicated to evaluation of, and reflection over the scientific work

conducted in this thesis. We begin by presenting how the work was conducted

in practice, including mistakes, misunderstandings and lessons learned. We

continue by presenting how our selected research approach was applied to the

topics. This is followed by evaluation of our research, including a discussion on

the validity of our proposed answers to the research questions (see chapter 1).

We then discuss how our research approach might have affected the results, and

whether or not other approaches might have yielded different ones.

7.1 Scientific Work

Conducting the scientific work for this thesis was indeed a cumbersome task.

Although scientific papers discussing the issues of location modeling and spatio-

temporal databases were easy to find, examples and studies of implementations

were less common. Because of the lack of implementation examples and guid-

ance, problems and misunderstandings occurred during our work which in sev-

eral occasions lead to major changes.

7.1.1 Problems, Misunderstandings and Changes

During the course of our work, problems and misunderstandings that arose

were discussed with our supervisors, and their recommendations were followed.

These recommendations often resulted in changes to specific issues in modeling

and implementation. A few recommendations however, caused redefinition of

the research questions. We now present these aspects in detail.

Location Modeling

We decided at an early stage to use a hybrid approach for location modeling.

The decision was made based upon the fact that we wanted to represent symbolic

as well as geometric information in our location model. Our first location model

was created using a tree structure. However, we soon discovered that a tree could

108

not model a building according to all possible relationships between its different

constructs. Because of this, we redefined our location model as a lattice. We

also defined the principles of the lattice using mathematical set theory, but

we soon discovered that our mathematical discussion was to complicated and

indeed unnecessary, since it only validated what mathematicians already have.

We therefore decided to not include the chapter on mathematical validation.

Creating the location model itself also posed a challenge. We began by creating

a hybrid location model using the proposed syntax by Dürr and Rothermel [16].

This syntax however could not model locations well enough for range-queries.

It also lead to extremely complicated models when the building to be modeled

consisted of many floors, wings and rooms. To cope with these shortcoming, we

proposed our own syntax and created a location model based on it.

Spatial and Spatio-Temporal Databases

To begin with, we focused on purely spatial databases. We started by presenting

work conducted in that area, including a lengthy discussion on the underlying

geometrical basis that is required in order to implement geometrical data models

in computer systems. The reason for this was that computer number systems

cannot cope with the infinite properties of Euclidean geometry and are thus

obsolete for coordinate based geometry [18]. Although this is to some extent

relevant in our work, it does not have any direct influence on how we model and

construct databases for geometrical data. The discussion was therefore removed

from the thesis.

The second change regarded the incorporation of temporal aspects to geometri-

cal data. After a few attempts to model changing geometrical object based on

purely spatial data types, we discovered that time is an important factor and

must be dealt with in some manner. This is because the position and extent of

changing geometrical objects are time dependent, i.e. they change with respect

to time. We therefore decided to use spatio-temporal database systems instead

of just spatial ones. Unfortunately, this decision was made late in the process,

which meant that large sections of chapter 5 had to be rewritten.

109

Research Questions

Because of the mentioned changes to the work conducted, we were forced to

redefine the second and third research questions (chapter 1.5). The changes were

made so that the questions now focused on spatio-temporal data management,

a opposed to the just spatial. The first research question, regarding location

modeling, was not redefined during the work despite changes to the models.

Implementation

Once we had created a location model and modeled a spatio-temporal database,

we attempted to implement it for testing. Our first implementation efforts

were based on an object-relational approach. This proved to be more difficult

than anticipated, because the available spatial extensions did not have all the

features required. Because of this, we had to define several functions and data

types ourselves. During this part of our work we were fortunate enough to

receive help from several members of the PostgreSQL community through e-

mail correspondence.

Besides function and data type implementation issues, there was one serious

problem that had to be dealt with: none of the currently available database

system supported 3-dimensional geometric data. This meant in effect that it

was impossible to implement our database model based on existing standards.

We were however able to solve this problem by explicitly numbering floors and

assuming that objects only move in two spatial dimensions (longitude and lati-

tude, not altitude).

When time came to demonstrate the practical use of the database, it became

obvious that issues related to events occurring in spaces and persons having

different roles had been neglected. The concept of persons having roles was

not even modeled in the first versions of the domain or database models, which

meant that these had to be redone. This was done after discussions with our

supervisors and necessary tables based on the new models were added to the

database. Furthermore, additional queries were written to test both issues.

Finally, the implemented database has yet to be tested properly with an in-

door positioning system. This was the initial intention, but by the time the

110

implementation was completed, a positioning system was not yet installed. The

database has been manually filled with data and tested, but its true potential

can only be discovered once it’s properly run with a location aware system.

7.1.2 Applied Research Approach

The scientific work in this thesis was conducted following the steps defined in

design research (chapter 3.2, figure 2). The steps were applied to two differ-

ent topics: location and spatio-temporal database modeling for indoor location

aware services.

In the case of location modeling, we began by identifying the problem as the

lack of location modeling techniques that are suited for nearest-neighbor as well

as range queries (step 1). We then proposed a solution to the problem based

on an extended hybrid location model (step 2) and used our own proposal to

develop a new modeling technique (step 3).

The same steps were applied to the next topic. We identified the problem as

a lack of constructs for conceptual modeling of spatio-temporal databases for

indoor positioning systems (step 1). As a solution to this problem (step 2), we

proposed an extended version of an already existing modeling language (UML).

We followed our proposal and created a conceptual model that defines objects,

events, actions and relationships that occur in indoor environments (step 3).

The steps were followed with multiple iterations in both cases. We had to repeat

steps 1 through 3 several times due to the problems and misunderstandings

mentioned previously.

The above discussion only covers the three initial steps of design research. The

question that has yet to be answered is: What about steps 4 and 5, i.e. evalu-

ation and conclusion? We answer this question in the next section.

7.2 Evaluation of Research

In order to evaluate our research, we must take several different issues into

consideration. First of all, we must evaluate the data gathered and determine

111

how it was analyzed and used. We must also evaluate the results achieved

to prove their validity. The entire process of evaluation must be performed

with the selected research approach in mind. This is a very important point to

remember, since the approach itself could in many ways have (and most likely

has) affected the research.

7.2.1 Evaluation of Data

The data gathered and used in this thesis is based on observation of three dif-

ferent concepts: (1) The architectural design of buildings to determine a set

of general constructs which can be used to describe how buildings are con-

structed and the relationship between these constructs (location modeling), (2)

events, actions and changes associated with these constructs, including actions

occurring in them, such as objects moving and events taking place (location-

awareness), and (3) spatial, temporal and spatio-temporal properties of (1) and

(2).

Evaluating this means asking whether or not the data is relevant and valid

according to the topics we wish to research. The answer to this question is

closely associated with the type of result we aim at producing, namely concep-

tual models. This in turn, is associated with the selected research approach,

demonstrating how it directly affects the research. Since our chosen approach

presumed conceptual models, we knew from the beginning that we needed to

gather data which could be used to create such models:

(1) The first concept, regarding location modeling, produced a set of data con-

taining different classes and associations used to conceptually model buildings.

Since the basis for the model is object-oriented design, it can be extended to

include other classes which other developers might yield as important. The data

was in part validated by reference to previous work done in this field, and part

by creating a location model of a given building. The location model was tested

for validity by performing general queries to check if it is capable of answering

these. Data was recollected and the model redefined until it could answer the

necessary queries.

112

(2) The second concept, concerning location-awareness, was also based in parts

on previous work in the field of location aware systems. We gathered the most

general concepts and incorporated these into our data set. This included con-

cepts such as events and status of objects. As a further concept, we extended

the data set to include different roles persons might have. We deemed this as

an important construct, since the location of persons is often associated with

the roles they have.

(3) Once the fundamental data had been gathered, we added spatial, tempo-

ral and spatio-temporal properties to it. We did this by observing particular

properties of the different types of data in order to determine specific spatial,

temporal or spatio-temporal aspects. We found for example that all buildings

have a geometric extent of some sort and that this can change over time, thus

making it spatio-temporal. The conceptual modeling technique used to illus-

trate these aspects was found in previous research.

The data acquired in (2) and (3) were validated by creating a prototype database

based on a conceptual model derived form them. The database was queried on

issues we deemed as significant for indoor location aware applications. As with

(1), the data in (2) and (3) was recollected and models based on them redefined

until the database could answer the queries satisfactory.

7.2.2 Validation of Results

According to Tichy [61], validation of research results can (and should be) be

done by experiments. But, as he argues further, experiments used to validate

scientific work in computer science are less common relative to other sciences.

The reasons for this are several fallacies that dominate scientific work in this

field. These are, among other things, based on the wrongful impressions that

experiments cost to much, slow the progress and that enough experiments are

already being conducted. Another fallacy, which is probably the reason why

researchers in computer science conduct few proper experiments, is:

113

Demonstrations will suffice.

[61], p. 35

In our work, we present examples of usage, where we simply demonstrate the

modeling of a simple scenarios using our proposals for location and database

modeling. Although we also argue how the same models would be difficult to

construct without our proposed extensions, the demonstrations merely illustrate

the potential of the result, they do not validate it.

A proper experiment based on different scenarios, different data types and ac-

tual implementations into functional applications would be helpful in validating

or rejecting the result. Such an experiment would show if the proposed model-

ing technique is applicable to all scenarios containing geometrical objects that

change. It would also show if models based on this technique can be mapped

into useful applications, which essentially is the goal of the research.

Our research relies to a large extent on previous work based on constructive

and design research, or as referred to by March and Smith, design science. We

thus continue the work in the same tradition by constructing a model “that

serves human purpose” [47] p. 253. However, since we do not properly evaluate

our work by conducting experiments, we cannot say that we fully follow the

steps of design research23. Steps 4 (measurement and evaluation of the results)

and 5 (conclusion based on the 4. step) are not dealt with in a satisfactory

manner. It is therefore difficult to conclude that the result is valid for all sce-

narios regarding changing geometrical objects. The fact that only one scenario

is used to demonstrate the use of the models also makes it hard to evaluate the

generalizability of our results.

Although this discussion implies that it is difficult to evaluate the research

approach since we cannot tell whether it has contributed to a valid result or

23Design science consists of similar steps, but as pointed out by March and Smith [47] p.

254, the basic activities are build and evaluate. In this thesis, the evaluation step is poorly

covered.

114

not, it is clear that the selected approach has yielded results of the expected

(and wanted) type: conceptual models.

7.3 Alternative Approaches

It is quite clear that we use a positivistic constructive research approach in

this thesis (chapter 3.2). We chose this approach because we knew from the

beginning that the intended solution would be conceptual models based on

the observation of geometrical constructs. There are however other research

approaches which might have lead to different results. What would the outcome

have been have we adopted a different point of view?

An Interpretive Approach

We believe that an interpretive approach to the research questions would include

human perception of changing geometrical objects. Although research data is

collected empirically, the general human perception of it is not mapped. It might

be argued that the data is influenced by how we ourselves perceive it. We have

however been as humanly objective as possible, meaning we have attempted to

collect data on the basic elements which buildings consist of along with events

and objects inside those building without distortion of our personal feelings or

interpretation.

We also believe that an interpretive approach would consider the practical use

of spatio-temporal applications more closely. In our work, we use an office

management and a hospital monitoring system as examples, but there is no

discussion on the general practicality of spatio-temporal applications. According

to us, an interpretive stance would seek to discover further scenarios where

people find such applications useful.

All this is not to say that an interpretive point of view could not yield conceptual

models as result, it might just as well do so. It is however highly probable that

models based on this approach would turn out dissimilar to the ones we have

proposed. The reason for this is of course human awareness of its surroundings.

Since humans experience events differently, their descriptions of them are also

different. Thus, human perception of how geometrical objects change might not

115

be the same as capabilities and actions such as intersection, containment, and

trajectory, deemed significant by us. The same could be true for the temporal

aspects presented in this paper. Humans might value other temporal qualities

than valid and transaction time, or use other terms to describe these phenomena.

Collecting such data would require tedious work, based on surveys and inter-

views to uncover what the research objects mean to humans, i.e. which capa-

bilities humans view as important. The data would then have to be sorted,

interpreted, and a model based on it created. An interpretive stance could re-

veal other spatio-temporal constructs which would have to be embedded into

the model and the result, although it could still be designed as a conceptual

model, would be different.

Quantitative Data Acquisition

It is obvious that the research conducted in this thesis uses no quantitative

means what so ever. All data is gathered and presented in a qualitative manner,

describing the properties and relationships of geometrical objects and using

graphical symbols to depict these.

As an alternative to this, we could have used quantifiable data to create math-

ematical models describing the research objects. However, such an approach

would not fulfill the purpose of the thesis.

Mathematically based artifacts, such as mathematical models are not concep-

tual models. In informatics, mathematical models are used to analyze, test,

simulate or control systems, i.e. they are used to “explain behavior and im-

prove performance” [47], p. 259. Conceptual models on the other hand, are

used to describe a system using symbols and descriptive language before it is

implemented. Such semantic models are easier to understand since they “bet-

ter correspond to the end user’s conceptualization” [47] p. 259. Based on this,

we found that a quantitative approach would indeed not have answered our

research questions, since they aimed at creating conceptual models.

The quantitative approach is not restricted to mathematical models. We are

of the opinion that it could have been used together with surveys and ques-

tionnaires to find the dominant capabilities that humans associate with moving

116

geometrical objects. The most prominent capabilities could then have been used

in the development of our conceptual models. This could lead to potentially dif-

ferent models than the ones presented by us.

Deeper Insight or General Description?

We have used the constructive approach because our purpose is to create con-

ceptuals model representing locations and objects with spatial and temporal

properties within those locations. We assume that other approaches could have

been used to either give deeper insight into the research topic, or to provide

general descriptions of it.

Deeper insight could have been given using the ideographic approach [14]. We

presume that the we then would have had to observe a geometrical object in

its natural environment over some time to describe its behavior. This could for

example be the observation of a typhoon from the time it is created until is

disappears, or the development of the population density in a geographic area.

However, the description of these phenomena would not be useful in creating

a conceptual model for describing spatio-temporal constructs. Deeper insight

is not what we seek to give. We therefore deem an ideographic approach as

unsuitable for answering the research questions.

In order to give a general description of the research topic, we could have used

the nomothetic approach. This would mean an empirical study of the research

topic with the idea to provide general laws/theories. Although it can be said

that results based on this approach lie within the scope we set, i.e. to give

a general description of location aware applications, the outcome would most

likely not be a conceptual model. We thus believe that also the nomothetic

approach is unsuitable for answering the research questions.

7.4 Final Reflections

During our work, we had to perform several unexpected and at times large

changes in order to cope with problems and misunderstandings. This was an

eye opener for us, particularly since we expected to conduct the scientific work

according to the initial research questions and expectations. We were prepared

117

for some drawbacks, and experienced enough to know that problems will occur

and that changes must be done to overcome these, but the extent in which

they occurred was at times very discouraging. However, in the aftermath of our

“struggle”, we realize that it was indeed the problems and misunderstandings

that were the real source of scientific research. It was through them that we

managed to improve our work and learn. The experiences gained and lessons

learned from rewriting, remodeling, redesigning and reimplementing have left us

with a vast array of knowledge regarding modeling and construction of spatio-

temporal databases for indoor location aware systems.

The theoretical discussion on research methodology was also a great learning

experience. It opened a new world of research approaches and methods to us,

which we were unfamiliar with until then. It also showed us how our selected

approach in part affected our work, and how other approaches would have at-

tempted to solve our research questions. We learned that although several of the

other approaches could have resulted in conceptual models, it is very unlikely

that these would be the same as the ones presented in this thesis.

118

8 Conclusion

We have discussed two related topics in this thesis: the design of location models

and spatio-temporal databases for indoor positioning systems. We conclude our

work with a short recapitulation of the main issues presented and a justification

of the limitations, followed by suggestions for further research and our final

thoughts.

8.1 Location Modeling

Different aspects of location modeling were discussed, among them symbolic,

geometric and hybrid location models. We found that only the hybrid form is

suited for our purposes, that is to accurately position objects within a domain

and relay this information to users in an understandable way.

As a modeling technique, we proposed a solution using basic constructs of UML

with added extensions. We created a domain model containing objects and

relationships between them which we deem as relevant for indoor location aware

systems, including the geometric extent of locations and transitions.

8.2 Spatio-Temporal Databases

We defined spatio-temporal databases as databases which manage data on geo-

metrical objects that change (movement is also considered as a form of change).

Although research in this area has received much attention in the past decade,

no functional spatio-temporal systems are available. Purely spatial database

systems however are. We therefore proposed a solution based on timestamp-

ing spatial data, thus capturing its temporal aspects and in effect making it

spatio-temporal.

In order to create a conceptual model of such a database for indoor location

aware applications, we used our own domain model for location modeling and

proposed extensions to it in order to capture specific spatial, temporal and

spatio-temporal aspects. We used the conceptual model to create a prototype

database, demonstrating the concepts proposed by us.

119

8.3 Limitations

The limitations of our work were presented in chapter 1.6. These included

querying mechanisms, indexing techniques, storage capacity/management, posi-

tioning technology and legal and ethical issues. These were deemed as beyond

our scope of research because our main objective was based on a conceptual

approach. Our results were thus meant to be valid regardless of these areas.

Although these limitations exclude important aspects of location aware systems

from our work, they have no direct influence on our results. The models we

have proposed will be the same regardless of how positioning data is physically

stored, how fast it is queried, with what technology it is gathered and who has

legal access to it.

8.4 Further Work

Our research covers only a small part of a vast area regarding databases for

location aware systems, as seen by the limitations. Needless to say, further

research in those areas is required in order to expand our knowledge of such

databases and create more effective and flexible solutions. Below, we present

other areas which we consider to be more closely related to our work, and

propose ideas for future research in those fields:

• Approximate queries: Incoming data to an indoor location aware ap-

plication will typically be in the form of data streams, e.g. through sensors

placed in the building. In most cases the total amount of the data gath-

ered over time will be very large and require rapid updates. Imagine for

example if we were to store the individual positions of 100 persons once

every minute over a period of five years. Physically storing such large

amounts of data is possible, but difficult. Even if we were to somehow

store all of it, no indexing technique currently available would be efficient

due to its size, and exact query processing would be expensive. Approx-

imate query processing focuses on approximate summerized information

about objects that satisfy a set of spatio-temporal predicates and thus

120

reduces the processing costs put on the database. An example of an ap-

proximate query can be to calculate the number of persons in a room at

a given time, as opposed to exact information about those persons (e.g.

names, statuses, roles).

• Uncertainty: All positioning systems are faced with the inherent chal-

lenge of uncertainty. The question is, simply put: how accurate is the

positioning information received from the sensors? If a person is tracked

to a particular position, how certain can we be that this person actually

is at that position? Another interesting and perhaps more complicated

issue regarding uncertainty is the question of tracking who we think we

are tracking. Since most location aware applications communicate with

their surroundings through sensors and not face/voice recognition, how

can we be certain that the person we think is carrying a particular sensor

actually is carrying it?

• Privacy/legal issues: Location aware applications used to track the po-

sition of people have a great potential for abuse. Management and use of

personal data is most often bound by legislative restrictions. Using such

information without the explicit consent of the parties involved can lead

to legal consequences. However, it is not only the legal aspects that are

important to consider, but also the moral and ethical points of view. Ques-

tions that should be asked are: Is information about a persons position in

public buildings or a private building not owned by that person deemed

as personal data on the same level as for example social security numbers?

Who should have access to such information, and what limitations should

be set for its use?

8.5 Final Remarks

This thesis has been more than just a scientific paper. It has been a learning

experience in the field of research. It has taught us how such work should be

conducted, from the initial planning and draft, till the final evaluation. We

have learned how to gather, organize and use scientific data effectively, both

121

regarding related research, and on the research subject itself.

Another important lesson learned during the past year is that knowledge is

found in many different places, not just in the library, through supervisors or

on the internet. Other students, scholars at other institutes of higher learning

and developers of particular technologies used in our prototype have contributed

with knowledge, ideas, suggestions and answers which we ourselves would never

have thought of.

Although our work merely touches a small fraction of spatio-temporal database

research, we believe that this is how research and development is driven forward,

where scientists, through their work, contribute with one of the missing pieces

of an endless puzzle. Keeping this in mind, we have tried to provide research

material that is not too trivial in terms of theoretical contribution, and at the

same time not too large in terms of practical implementation and testing that

is required to validate the result.

Finally, during the course of our work, we have realized that patience indeed is

a virtue.

122

Appendix

The following CD contains the complete source code for the prototype database,

along with test data and example queries. An example application is also in-

cluded, also with its source code. To install the database system, insert testdata

and run queries and the application, please read the manual on the CD (“in-

dex.html”).

123

References

[1] Abel, David; Ooi, Beng Chin (eds.) (1993): Proceedings of the 3rd Inter-

national Symposium on Large Spatial Databases, Singapore, LNCS 692,

Springer

[2] Abraham, Tamas; Roddick, John (1999): “Survey of Spatio-Temporal

Databases”, GeoInformatica, Vol. 3, No. 1, p. 61-69

[3] Atkinson, Malcolm; Bancilhon, François; DeWitt, David; Dittrich, Klaus;

Maier, David; Zdonik, David (1989): “The Object-Oriented DatabaseSys-

tem Manifesto”, Proceedings of the First International Conference on De-

ductive and Object-Oriented Databases (DOOD), p. 223-240

[4] Bancilhon, François (1992): “The O2 Object-Oriented Database System”,

Proceedings of the 1992 ACM SIGMOD International Conference on Man-

agement of Data, p. 7

[5] Bauer, Martin; Becker, Christian; Rothermel Kurt (2001): “Location Mod-

els from the Prespective of Context-Aware Applications and Mobile Ad

Hoc Networks”, Workshop on Location Modeling for Ubiquitous Comput-

ing, UBICOMP 2001, Technical Report

[6] Beigl, Michael; Decker, Christian; Zimmer, Tobias (2002): “A Location

Model for Communicating and Processing of Context”, Personal and Ubiq-

uitous Computing, Vol. 6, No. 5-6, p. 341-357

[7] Becker, Christian; Dürr, Frank (2005): “On Location Models for Ubiqui-

tous Computing”, Personal and Ubiquitous Computing, Vol. 9, No. 1, p.

20-31

[8] Beynon-Davies, Paul (2004): Database Systems, New York, USA: Palgrave

Macmillan, p. 87-155, 381-425 and 512-523

[9] Böhlen, Michael; Busatto, Renato; Jensen, Christian (1998): “Point- Ver-

sus Interval-based Temporal Data Models”, Proceedings of the 14th Inter-

national Conference on Data Engineering (ICDE), Orlando, p. 192-200

124

[10] Brumitt, Barry; Shafer, Steven (2001): “Topological World Modeling Using

Semantic Spaces”, Workshop on Location Modeling for Ubiquitous Comput-

ing, UBICOMP 2001, Technical Report

[11] Buchmann, Alejandro; Günther, Oliver; Smith, Terrence; Wang, Yuan-F.

(eds.) (1989): Proceedings of the First International Symposium on Large

Spatial Databases, Santa Barbara, LNCS 409, Springer

[12] Chen, Peter (1976): “The Entity-Relationship Model: Toward a Unified

View of Data”, ACM Transactions on Database Systems, Vol. 1, No. 1, p.

9-36

[13] Codd, Edgar Frank “Ted” (1970): “A Relational Model of Data for Large

Shared Data Banks”, Communications of the ACM, Vol. 13, No. 6, p. 377-

387

[14] Cornford, Tony; Smithson, Steve (1996): Project Research in Information

Systems - A Student’s Guide, New York, USA: Palgrave

[15] Domnitcheva, Svetlana (2001): “Location Modeling: State of the Art and

Challenges”, Workshop on Location Modeling for Ubiquitous Computing,

UBICOMP 2001, Technical Report

[16] Dürr, Frank; Rothermel, Kurt (2003): “On a Location Model for Fine-

Grained Geocast”, Workshop on Location Modeling for Ubiquitous Com-

puting, UBICOMP 2003, Technical Report

[17] Egenhofer, Max (1994): “Spatial SQL: A Query and Presentation Lan-

guage”, IEEE Transactions on Knowledge and Engineering, Vol. 6, No. 1,

p. 86-95

[18] Egenhofer, Max; Frank, Andrew; Jackson Jeffrey (1989): “A Topological

Data Model for Spatial Databases”, Design and Implementation of Large

Spatial Databases, First Symposium SSD ’89, p. 271-286

[19] Egenhofer, Max; Herring, John (eds.) (1995): Proceedings of the 4th In-

ternational Symposium on Large Spatial Databases, Portland, LNCS 951,

Springer

125

[20] Erwig, Martin; Güting, Ralf Hartmut; Schneider, Markus; Vazirgiannis,

Michalis (1998): “Abstract and Discrete Modeling of Spatio-Temporal Data

Types”, Proceedings of the 6th ACM International Symposium on Advances

in Geographic Information Systems, Whashington, p. 131-136

[21] Erwig, Martin; Güting, Ralf Hartmut; Schneider, Markus; Vazirgiannis,

Michalis (1999): “Spatio-Temporal Data Types: An approach to Modeling

and Querying Moving Objects in Databases” (Revised Version), Geoinfor-

matica, Vol. 3, No. 3, 269, 296

[22] Erwig, Martin; Schneider, Markus (2002): “STQL - A Spatio-Temporal

Query Language”, in Ladner, Roy; Shaw, Kevin; Abdelguerfi, Mahdi

(eds.) (2002): Mining Spatio-Temporal Information Systems, Boston, USA:

Kluwer Academic Publishers, p. 105-126

[23] Etzion, Opher; Jajodia, Sushil; Sripada, Suryanarayana (eds.) (1998):

Temporal Databases: Research and Practice, LNCS 1399, Springer

[24] Faria, Glaucia; Medeiros, Claudia; Nascimento, Mario (1998): “An Exten-

sible Framework for Spatio-Temporal Database Applications”, TIMECEN-

TER Technical Report TR-37

[25] Funk, Harry; Miller, Christopher (2001): “Location Modeling for Ubiqui-

tous Computing: Is This Any Better?”, Workshop on Location Modeling

for Ubiquitous Computing, UBICOMP 2001, Technical Report

[26] Gregersen, Heidi; Jensen, Christian (1998): “Conceptual Modeling of

Time-varying Information”, TIMECENTER Technical Report TR-35

[27] Günther, Oliver; Schek, Hans-Jörg (eds.) (1991): Proceedings of the 2nd

International Symposium on Large Spatial Databases, Zurich, LNCS 525,

Springer

[28] Güting, Ralf Hartmut (1994): “An Introduction to Spatial Databases”,

Special Issue on Spatial Database Systems of the VLDB Journal, Vol. 3,

No. 4, p. 357-399

126

[29] Güting, Ralf Hartmut; Schneider, Markus (1995): “Realm-Based Spatial

Data Types: The ROSE Algebra”, The VLDB Journal - The International

Journal on Very Large Databases, Vol. 4, No. 2, p. 243-286

[30] Güting, Ralf Hartmut; Papadias, Dimitris; Lochovsky, Fred (eds.) (1999):

Proceedings of the 6th International Symposium on Large Spatial Databases,

Hong Kong, LNCS 1651, Springer

[31] Güting, Ralf Hartmut; Böhlen, Michael; Erwig, Martin; Jensen, Christian;

Lorentzos, Nikos; Schneider, Markus; Vazirgiannis Michalis (2000): “A

Foundation for Representing and Querying Moving Objects”, ACM Trans-

actions on Database Systems, Vol. 25, No. 1, p.1-42

[32] Guttman, Antonin (1984): “R-Trees, A Dynamic Index Structure for Spa-

tial Searching”, Proceedings of the 1984 ACM SIGMOD International Con-

ference on Management of Data, p. 47-57

[33] Hadzilacos, Thanasis; Manolopoulos, Yannis; Roddick, John; Theodor-

idis, Yannis (eds.) (2003): Proceedings of the 8th International Symposium

on Large Spatial and Temporal Databases, Santorini Island, LNCS 2750,

Springer

[34] Harter, Andy; Hopper, Andy (1994): “A Distributed Location System for

the Active Office”, IEEE Network, Vol. 8, No. 1, p. 62-70

[35] ISO (1987): “Database Language SQL”, ISO/IEC 9075, Geneva, Interna-

tional Standards Organization

[36] ISO (1992): “Database Language SQL”, ISO/IEC 9075, Geneva, Interna-

tional Standards Organization

[37] ISO (1999): “Database Language SQL - Part 2: Foundation”, ISO/IEC

9075-2, Geneva, International Standards Organization

[38] ISO (1999): “Database Language SQL - Part 2: Persistent Stored Mod-

ules”, ISO/IEC 9075-4, Geneva, International Standards Organization

127

[39] Jensen, Christian; Schneider, Markus; Seeger, Bernhard; Tsotras, Vassilis

(eds.) (2001): Proceedings of the 7th International Symposium on Large

Spatial and Temporal Databases, Redondo Beach, LNCS 2121, Springer

[40] Jiang, Changhao; Steenkiste, Peter (2001): “A Hybrid Location Model

with Computable Location Identifier for Ubiquitous Computing”, Work-

shop on Location Modeling for Ubiquitous Computing, UBICOMP 2001,

Technical Report

[41] Kamil, Grajski; Kirk, Ellen (2003): “Towards a Mobile Multimedia Age -

Location-Based Services: A Case Study”, Wireless Personall Communica-

tions, Vol. 26, Kluwer Academic Publishers, p. 105-116

[42] Korkea-Aho, Mari; Tang Haitao (2001): “Experiences of Expressing Loca-

tion Information for Applications in the Internet”, Workshop on Location

Modeling for Ubiquitous Computing, UBICOMP 2001, Technical Report

[43] Koubarakis, Manolis; Sellis, Timos et al (eds.) (2003): Spatio-Temporal

Databases, The CHOROCHRONOS Approach, LNCS 2520, Springer

[44] Kuhn, Thomas (1996): The Structure of Scientific Revolutions, Chicago:

University of Chicago Press

[45] Leonhardt, Uli (1998): Supporting Location-Awareness in Open Distributed

Systems, PhD-thesis, Imperial College London, Department of Computing

[46] Leung, Hubert Ka Yau; Burcea, Ioana; Jacobsen, Hans-Amo (2003): “Mod-

eling Location-Based Services with Subject Spaces”, Proceedings of the

2003 Conference of the Centre for Advanced Studies Conference on Col-

laborative Research, Toronto, October 6.-9., p. 171-181

[47] March, Salvatore; Smith, Gerald (1995): “Design and natural Science re-

search on information technology”, Decision Support Systems, Vol. 15, No.

4, p. 251-266

[48] Naiburg, Eric; Maksimchuck, Robert (2001): UML for Database Design,

Boston, USA: Addison-Wesley, p. 119-148

128

[49] Parent, Christine; Spaccapietra, Stefano; Zimànyi, Esteban (1999):

“Spatio-Temporal Conceptual Models: Data Structures + Space + Time”,

Proceedings of the 7th ACM International Symposium on Advances in Ge-

ographic Information Systems, p. 26-33

[50] Rao, Bharat; Minakakis, Louis (2001): “Evolution of Mobile Location-

Based Services”, Communications of the ACM, Vol. 46, No. 12, p. 61-65

[51] Robson, Colin (2002): “Approaches to Social Research”, in Robson, Colin:

Real World Research, Oxford, UK: Blackwell

[52] Roddick, John; Patrick, Jon (1992): “Temporal Semantics in Information

Systems - A Survey”, Information Systems, Vol. 17, Nr. 3, p. 249-267

[53] Scholl, Michel; Voisard, Agnès (eds.) (1997): Proceedings of the 5th In-

ternational Symposium on Large Spatial Databases, Berlin, LNCS 1262,

Springer

[54] Sellis, Timos (1999): “CHOROCHRONOS - Research on Spatio-Temporal

Database Systems” in Agouris, Peggy; Stefanidis, Anthony (eds.) (1999):

Integrated Spatial Databases: Digital Images and GIS, Portland, LNCS

1737, Springer, p. 308-316

[55] Shashi, Gadia (1988): “A Homogenous Relational Model and Query Lan-

guages for Temporal Databases” ACM Transactions on Database Systems,

Vol. 13, No. 4, p. 418-448

[56] Smith, Clint; Collins, Daniel (2002): 3G Wireless Networks, New York,

USA: McGraw-Hill, p. 59-80

[57] Snodgrass, Richard (ed) (1995): The TSQL2 Temporal Query Language,

Boston, USA: Kluwer Academic Publishers

[58] Sparks, Geoffrey (2001): “Database Modelling in UML”, Methods & Tools,

Vol. 9, No. 1, p. 10-23

[59] Stonebraker, Michael (1996): Object-Relational DBMSs: The Next Great

Wave, San Fransisco, USA: Morgan Kauffman

129

[60] Takeda, Hideaki; Veerkamp, Paul; Tomiyama, Tetsuo; Yoshikawam, Hi-

royuki (1990): “Modeling Design Processes”, AI Magazine, Vol 11, No. 4,

p. 37-48

[61] Tichy, Walter (1998): “Should Computer Scientists Experiment More?”,

IEEE Computer, Vol. 31, No. 5, p. 32-40

[62] Torp, Kristian; Snodgrass, Richard; Jensen, Christian (1997): “Correct

and Efficient Timestamping of Temporal Data”, TIMECENTER Technical

Report TR-4

[63] Tryfona, Nectaria; Jensen, Christian (1999): “Conceptual Data Modeling

for Spatio-Temporal Applications”, Geoinformatica, Vol. 3, No. 3, p. 245-

268

[64] Tryfona, Nectaria; Jensen, Christian; Price, Rosanne (2003): “Conceptual

Data Modeling for Spatio-Temporal Applications (Revised Version)”, in

[43], p. 79-117

[65] Want, Roy; Hopper, Andy; Falcão, Veronica; Gibbons, Jonathan (1992):

“The Active Badge Location System”, ACM Transactions on Information

Systems, Vol. 10, No. 1, p. 91-102

[66] Worboys, Michael (1994): “A Unified Model for Spatial and Temporal

Information”, Computer Journal, Vol. 37, No. 1, p. 26-34

[67] http://www.esri.com/software/arcgis/arcinfo/

(last visited March 7, 2005)

[68] http://www.esri.com/software/arcview/

(last visited March 7, 2005)

[69] http://www.cs.aau.dk/ tigeradm/atsql.html

(last visited March 7, 2005)

[70] http://www-306.ibm.com/software/data/db2/udb/

(last visited March 7, 2005)

130

[71] http://www-306.ibm.com/software/data/spatial/

(last visited March 7, 2005)

[72] http://www.ekahau.com/

(last visited March 7, 2005)

[73] http://www.ekahau.com/pdf/EPE 3.0 datasheet.pdf

(last visited March 7, 2005)

[74] http://www.ekahau.com/products/engine/

(last visited March 7, 2005)

[75] http://www.gis.com/whatisgis/

(last visited March 7, 2005)

[76] http://www.gsmworld.com/

(last visited March 7, 2005)

[77] http://www.gpsworld.com/gpsworld/

(last visited March 7, 2005)

[78] http://java.sun.com/products/jdo/

(last visited March 7, 2005)

[79] http://www.mysql.com

(last visited March 7, 2005)

[80] “MySQL Reference Manual”

http://dev.mysql.com/doc/

(Last visited March 7, 2005)

[81] http://dev.mysql.com/doc/mysql/en/Spatial extensions in MySQL.html

(last visited March 7, 2005)

[82] “Location Based Services: Considerations and Challanges”,

http://www.northstream.se/download/LocationBasedServices.pdf

(last visited March 7, 2005)

[83] http://www.objectdb.com

(last visited March 7, 2005)

131

[84] http://www.objectdb.com/database/jdo/manual/odb-manual.pdf

(last visited March 7, 2005)

[85] http://www.opengeospatial.org/

(last visited March 7, 2005)

[86] “OpenGIS Simple Features Specification For SQL”

http://www.opengeospatial.org/docs/99-049.pdf

(last visited March 7, 2005)

[87] http://www.oracle.com/database/

(last visited March 7, 2005)

[88] http://www.oracle.com/technology/products/spatial/

(last visited March 7, 2005)

[89] http://postgis.refractions.net/

(last visited March 7, 2005)

[90] http://www.postgresql.org/

(last visited March 7, 2005)

[91] http://www.cs.auc.dk/TimeCenter/

(last visited March 7, 2005)

[92] http://www.uml.org/

(last visited March 7, 2005)

[93] http://www.w3.org/XML/

(last visited March 7, 2005)

132

Index

access methods, 74

ACID, 18

Active Badge, 12

ArcInfo, 8

ArcView, 8

C++, 20

change

continuous, 24

discrete, 24

conceptual model, 59

DAG, 37

data model, 19, 69

object-oriented, 19

object-relational, 19, 74

relational, 19

data type

abstract, 24, 60

spatial, 22, 60

spatio-temporal, 24, 69

temporal, 23, 62

thematic, 64

database system, 18

geometric, 21

image, 21

pictoral, 21

spatial, 21, 109

spatio-temporal, 3, 5, 23, 56, 109

temporal, 22

DB2, 77

design research, 111

design science, 114

domain model, 63

Ekahau, 16

ER-model, 59

GIS, 8

GPS, 8

graph-based, 11, 38

GSM, 8

hierarchical, 11

IBM, 75

DB2, 20

indoor location service, 12

Java, 20

lattice, 37

LBS, 7

location based services, 7

location information, 33, 35

location-awareness, 5, 9, 112

mapping, 82

MediaCup, 14

MemoClip, 14

model

combined, 11

domain, 45

geometric, 10

hybrid, 10

location, 2, 9, 11, 32, 50, 108, 112

symbolic, 10

133

MySQL, 20, 77

nearest-neighbor-queries, 11

O2, 20

ObjectDB, 20

OGC, 78

OpenGIS

Geometry Model, 78

Oracle, 20, 77

PostgreSQL, 20, 77, 95, 110

query language, 74

spatio-temporal, 25

range-queries, 11

research

approach, 28

constructive, 28

empirical, 27

ideographic, 28, 117

interpretive, 26, 115

method, 28

methodology, 26

nomothetic, 28, 117

paradigm, 26

perspective, 27

positivist, 26

qualitative, 27

quantitative, 27, 116

theoretical, 27

SDT, 22, 60

SEQUEL, 75

set-based, 11, 38

SmallTalk, 20

Smart-Its, 14

spatial

containment, 11

spatial aspects, 60

spatial closeness, 10

spatial containment, 10

specification box, 65

SQL, 74, 75

data definition, 76

data integrity, 76

data manipulation, 77

extended, 77

STDT, 69

STER, 59

System/R, 75

TDT, 23, 62

temporal aspects, 61

time

bitemporal, 62

duration, 63

existence, 63

transaction, 62

valid, 62

timestamping, 72

trigger, 75

UML, 32, 59

134

	Preface
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Location Modeling
	Spatio-Temporal Databases
	Other Requirements
	Research Questions
	Limitations
	Structure of Thesis

	Related Research
	General Location Based Services
	Location-Awareness
	Location Models
	Hierarchical (Set-Based) vs. Graph-Based
	Combined Location Model

	Indoor Location Based Services
	Active Badge
	MemoClip
	Ekahau

	Database Systems
	General Concepts
	Data Models
	Spatial Databases
	Temporal Databases
	Spatio-Temporal Databases

	Summary

	Research Methodology
	Research in Informatics
	Paradigms
	Perspectives
	Approaches and Methods

	Research Approach

	Location Modeling
	What is a Location Model?
	Practical Use of Location Models
	Location Information
	Modeling Guidelines
	Basic Location Models
	Symbolic Modeling
	Geometric Modeling

	Hybrid Location Model
	Domain Model
	Validation of Domain Model
	Validation Results

	Research Question 1

	Spatio-Temporal Database Systems
	What is a Spatio-Temporal Database?
	Practical Use of Spatio-Temporal Databases
	Conceptual Model
	Spatial Aspects
	Temporal Aspects

	Extended Domain Model
	Data Model
	Spatio-Temporal Data Types (STDTs)
	The Spatio-Temporal Data Model in Practice
	Timestamping Data

	Access Methods and Query Language
	Why Object-Relational?
	Structured Query Language (SQL)
	Extended SQL for Spatio-Temporal Data

	Research Question 2

	Object-Relational Implementation
	Mapping from Object-Oriented to Object-Relational
	The Database Model
	Other Implementation Issues
	2- or 3-Dimensional?
	Global or Local Coordinates?

	PostgreSQL Database and User Interface
	Tables
	Functions
	Updates
	Queries

	Research Question 3

	Reflections and Evaluation
	Scientific Work
	Problems, Misunderstandings and Changes
	Applied Research Approach

	Evaluation of Research
	Evaluation of Data
	Validation of Results

	Alternative Approaches
	Final Reflections

	Conclusion
	Location Modeling
	Spatio-Temporal Databases
	Limitations
	Further Work
	Final Remarks

	Appendix
	References
	Index

