
Abstract

Colonies of social insects are capable of solving complex tasks that far exceed the
abilities of each individual insect. The colonies do not use any supervisor or blueprint
to organize their work, instead the solutions emerge from the interactions between the
insects and their environment. Two of the tasks that social insects perform are cluster-
ing of corpses and sorting of brood. In this thesis we describe our work with creating
swarms of simple agents that perform similar tasks. Previous research within this
field has hand-coded the behavior of the individual agents and then seen if a swarm
of the agents is capable of solving the desired task. We take a different approach
and evolve the individual behavior by evaluating the patterns that are formed by the
swarm. We evolve swarms to solve three different types of tasks: Clustering, patch
sorting, and annular sorting. The first two tasks involves the grouping of identical
objects, and the grouping of different types of objects into separate groups. Annular
sorting involves the creation of a targe-like structure that contains circular bands.
This task has not been solved successfully in the past, and we are able to create a
dense and well separated structure. A shorter presentation of the work can be found
in [19].
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Chapter 1

Introduction

Colonies of social insects are capable of solving complex tasks despite the simplicity
of the individual insects. They are able to create complex architectural structures,
optimize their foraging, and sort their brood into different patterns. In none of
these tasks is there any supervisor or blueprint that the insects use to organize their
work. The insects are all relatively simple with only access to information about their
immediate surroundings. Through the interactions between the individual insects,
and the insects and their environment, the colonies are able to solve tasks that far
exceed the abilities of each individual insect.

Social insects have in the later years inspired problem solving in computer science.
This approach has been termed ‘swarm intelligence’, and it emphasizes distributed-
ness, direct or indirect interactions among simple agents, flexibility, and robustness [4].
By replicating the way that social insects solve complex tasks, better techniques may
be discovered in computer science. The replication of insect behavior may also lead
to a better understanding of nature by discovering how the individual behavior is
related to the behavior of the colony as a whole.

One field of research within swarm intelligence is the investigation of social in-
sects’ ability to cluster and sort objects. Some species of ant deposit their corpses
in piles outside the nest, while some species sort their brood into different patterns.
The majority of research within this field has dealt with the replication of insect be-
havior by investigating their behavior, and then forming hypotheses about the rules
governing this behavior. These rules are then hand-coded and tested experimentally
in computer simulations to see if the desired patterns emerge at the global level of
a swarm of agents. If the desired patterns do not emerge, the behavioral rules are
tweaked and re-tested until the patterns emerge.

Our approach to the replication of insects’ ability to cluster and sort objects differs
from the traditional approach described above. We create the individual behavior of
the insects by artificial evolution. Artificial evolution has been successful with solving
problems in a variety of areas, but it has never been used to evolve the individual
behavior of a swarm of insects capable of clustering or sorting objects. The individual
behavior is evolved by allowing a swarm of agents to interact with a collection of
objects for a specified amount of time. Then the behavior is evaluated in terms of
how close the emergent pattern of objects is to the desired pattern.

The tasks for which we evolve swarms of agents are clustering, patch sorting, and
annular sorting. In the clustering task the evolved swarm of agents must group a
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collection of identical objects into a single cluster. The patch sorting tasks consist
of grouping different types of objects into separate clusters, such that each cluster
contains objects of only one type. The tasks of clustering and patch sorting have been
solved by several researchers in the past. The task of annular sorting has, on the other
hand, not previously been solved successfully1. This task involves the creation of a
single target-like structure that contains circular bands of objects, with each band
containing objects of only one type.

In our work we use simple agents that only have information about their immediate
surroundings, and that can pick up and deposit objects in addition to move around.
Through artificial evolution we evolve feedforward neural network controllers that
control the pick up, deposit, and movement actions of the agents. By doing this we
are able to create swarms of homogeneous agents that are capable of clustering, patch
sorting, and annular sorting.

In the next sections of this chapter we introduce the biological background for the
work described in this thesis. We briefly introduce different aspects of social insects,
before giving a more detailed description of some forms of pattern formation in social
insects. After this we introduce the concepts of self-organization and stigmergy. These
concepts describe the emergence of patterns at the global level of a system from
interactions between individuals at the local level. Having introduced the biological
background and important concepts, we move on to giving a formal problem definition
of the tasks to be accomplished in our work. After this we describe our motivations
before giving an overview of the structure of the remainder of this thesis.

1.1 Social Insects

Social insect colonies consist of hundreds or thousands of individuals. Each of these
individuals seem to follow their own agenda, yet the colony appears to be highly
organized. The swarm raids of army ants may for example contain up to 200000
workers and be up to 15 meters wide at the front2. These ants can sweep over an area
that is 1500m2 in a single day. The ants in these raids do not have any knowledge
about the raid as a whole, but rather they respond to stimuli in their immediate
surroundings. Other insects use different strategies to forage. Some ants and honey
bees are able to dynamically choose food sources that are both of the best quality and
closest to the colony. Ants create trails covered with pheromones that show the way
to the richest and closest discovered food source, and honey bees recruit other bees
to good food sources by dancing for the other bees in the colony when they return
with pollen and nectar. In both of these examples the colony as a whole is able to
efficiently select the best food source based on the individual actions of the insects in
the colony.

One of the most astonishing achievements of insects is their creation of nests with
highly complex architectures. Tropical wasps build nests comprised of a series of
horizontal combs protected by an external envelope, and that are connected to each
other by a peripheral or central entrance hole. However, the perhaps most impressive

1Wilson et al. [33] have managed to create an annular-like structure, but this is inferior to our
solutions both in terms of compactness and separation between the bands of objects.

2Raids by the ant Eciton burchelli.
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structures built by insects are termite mounds. Termites of the Macrotermes species
create large mounds that contain fungus gardens that the termites harvest, and the
mounds are air-conditioned to keep the inside temperature at an optimum and to
provide fresh air to the inhabitants.

What is common for the tasks accomplished by social insects is that the individual
behavior of the insects is simple and uncomplicated compared to the global tasks
that are solved by the colonies as a whole. Each individual that is part of a group
performing a particular task does only have knowledge of its immediate surroundings,
and does not know anything about the task that is to be solved at the global level.
A termite that is building a pillar does, for example, not know anything about the
architecture of the termite mound, it is only responding to local stimuli. The insects
are thus capable of performing complex global tasks with each individual operating
at a local level by responding to stimuli.

In the next sections four examples of global pattern formation by social insects are
presented. The first section describes how an ant species forms a wall surrounding its
brood. Then a description is given of how honey bees create a pattern of concentric
regions of brood, pollen and honey on the wax combs of their hive. The last two
sections show that ants are capable of clustering and sorting objects. In all of the
examples the individual insects respond to local stimuli with no knowledge of the
global pattern to be formed, yet swarms of the insects are able to create complex
patterns at the global level.

1.1.1 Wall Building by Ants

The ant Leptothorax albipennis creates nests in narrow crevices in rocks. These ants
are very small, and the cracks which they colonize may be only 2 or 3 cm wide and
long with the gap being only 1 or 2 mm wide. Colonies of Leptothorax albipennis
contain a single queen, workers, and a number of brood in different developmental
stages. The structure of the nest formed by the ants is a C-shaped wall of ‘bricks’ that
surround a cluster of brood and workers. A sketch of a Leptothorax albipennis nest is
shown in Figure 1.1. The wall has only a single entrance, and the cluster is usually
located opposite this entrance. Between the cluster of workers and brood there is a
corridor of open space. When a colony of Leptothorax albipennis ants migrate to a
new crevice, they first cluster the brood. Then the queen and the workers form a
tight cluster over and around the brood. Only after this cluster is formed do the ants
begin to form the surrounding wall which makes up the nest [9].

In their studies of the nest construction by Leptothorax albipennis ants Franks
and Deneubourg [14] have found that the building process has a number of distinct
stages. At the beginning there are a number of external workers that depart from the
cluster of workers and collect a grain of building material. After they have picked up
the grain they walk back to the cluster of brood and workers, and deposit the grain
at a distance of one to two body lengths from the cluster. Ants that carry stones
tend to release their stone after making direct contact either with a cluster of other
workers, or other stones that have been deposited previously. As the building process
advances the use of other stones as a landmark for depositing building material seems
to increase in importance. Later in the construction process the ants appear to use
their carried stone as a battering ram that they push into existing structures of stones,
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Brood

Figure 1.1: Sketch of a Leptothorax albipennis nest.

and only release the stone when they face a certain amount of resistance. This causes
the walls of the nest to be tightly packed. The external workers that fetch material
from the outside of the nest rarely pick up stones that have been deposited inside the
nest. However, the workers that remain in the nest frequently pick up objects in the
nest and push these outwards into the emerging wall.

After observing the creation of the nest structure, Franks and Deneubourg [14]
investigated the behavior of external and internal workers more closely. The external
workers go out into the surroundings of the nest to fetch building material. When
they return to the nest they walk around randomly until they encounter other nest
mates or stones that have been deposited inside the nest. The ants are more likely
to put down their stone when encountering other stones than when meeting nest
mates. At the beginning of the building process the stones may be encountered fairly
randomly throughout the nest, but as the construction progresses other stones are
mostly encountered along the walls of the nest. The internal workers pick up stones
inside the nest and most of the time push them outwards away from the central
cluster of brood and other workers. They bulldoze the stones into other stones, and
this causes a dense packing of the stones in the walls of the nest. The position of the
stones inside the nest determine how likely they are to be picked up and moved by
the internal workers. Franks and Deneubourg [14] found that stones that were most
exposed to ant traffic were the most likely to be moved by the workers. Since stones
that are buried in the wall are rarely encountered by workers compared to stones
that are inside the nest, this means that the workers will mostly move stones that are
not already part of the wall. In other words, the stones that are not in the correct
position are the most likely to be moved by the workers.

Investigation of the behavior of the workers showed that they appear to use the
central cluster of brood and workers as a mechanical template for the formation of
the nest walls. The first building workers that make contact with the cluster turn
around and move away for a short distance before depositing their building material.
The Leptothorax albipennis ants can in this way create a nest that is of the correct
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Figure 1.2: The wax combs of honey bee colonies contain a characteristic pattern of
brood, pollen, and honey.

size with respect to the colony. The size of the cluster of brood and workers will
vary according to the size of the colony, and the building workers can thus use this
cluster to determine where the walls should be placed in order for the nest to be of the
proper size for the colony. The building of walls by Leptothorax albipennis ants can
be summarized to be the effect of simple behaviors of external and internal workers
that do not communicate directly, and that use the formed cluster as a template for
the formation of the nest walls.

1.1.2 Honey Bee Combs

A typical honey bee colony consists of female worker bees, male drones, and a single
egg-laying queen. In addition to these adult bees there is immature brood in various
developmental stages. The colony also stores honey and pollen in a series of parallel
wax combs. These wax combs contain a characteristic pattern of brood, honey and
pollen. A sketch of this pattern is given in Figure 1.2. The different items are
positioned in three distinct concentric regions on the combs. In the center there is a
brood area, which is surrounded by a band of pollen, with a large peripheral region
of honey surrounding the area containing the other two items. This characteristic
pattern of brood, pollen, and honey continue to exist despite the constant actions of
the bees. The queen lays eggs, and other bees deposit pollen and honey in the cells,
as well as remove pollen and honey from the cells. In spite of these continuous actions
and seasonal variations in the availability of pollen and honey, the concentric pattern
on the combs persists.

Camazine [8] and Camazine et al. [10] have investigated the pattern formation on
the wax combs of honey bee colonies. They theorize that the pattern emerges as a
dynamic process involving local interactions. From this standpoint they investigate
the lower-level components of the pattern formation process. A single cell on the wax
comb may contain brood, pollen, or honey, and they investigate egg-laying, pollen
and honey deposition, and pollen and honey consumption to create a hypothesis of
how the global pattern emerges. Their approach is thus to investigate the lower level
components of the system to gain an understanding of how a pattern is formed at
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the global level. Camazine [8] investigated the behavior of a honey bee colony and
formed a hypothesis about the formation of the pattern based on these observations.
He then tested the validity of the assumptions made by performing a Monte Carlo
simulation which incorporated the elements of the hypothesis. In the first hypothesis
he only considered the deposition of pollen and honey in addition to the egg-laying
by the queen. The resulting Monte Carlo simulation did not manage to recreate the
pattern observed in the bee colonies, and so he went back to observe the colonies.
In the second hypothesis he also included the consumption of pollen and honey in
the model. The resulting Monte Carlo simulation successfully recreated the pattern
that was observed in the honey bee colonies. The different rates of consumption and
deposition of pollen and honey in addition to the egg-laying rate in the simulation is
listed below.

1. The maximum egg-laying rate is 1 egg/min, 24h/day.

2. Honey and pollen are deposited in cells 12h/day.

3. The ratio of honey removal to input is 0.6.

4. The ratio of pollen removal to input is 0.96.

5. The ratio of pollen input to honey input is 0.2.

Based on the observed processes in the honey bee colonies and the successful
replication of the concentric pattern in the Monte Carlo simulation, Camazine et
al. [9] made the following observations concerning the processes that contributes to
the formation of the pattern. The central brood area is formed by two different
processes. The first is the egg-laying by the queen. The queen will lay eggs in the
vicinity of other eggs, and this induces a clustering of the eggs. Pollen and honey are
also deposited in the central brood area, but pollen and honey located near brood are
preferentially consumed. This leads to pollen and honey being consumed at a higher
rate near brood than pollen and honey located on the periphery of the comb. The
central brood area is thus formed because it is continually freed of pollen and honey,
while at the same time being filled with new eggs.

The segregation of honey and pollen on the periphery is the result of rates of
consumption of pollen and honey, as well as the rates on which they are collected.
Pollen is consumed at the periphery at nearly the same rate that it is deposited.
This means that when pollen is deposited here, it is soon removed by consumption.
At the same time honey is consumed at a lower rate, in addition to being collected
more often than pollen. This means that the cells where pollen is removed are more
likely to be filled with honey than pollen. As a result of the higher consumption of
pollen and the higher rate of collection of honey, the peripheral region of the comb
will consist almost entirely of honey.

From the description above it is clear that the central area of the comb will contain
brood whereas the peripheral region will contain honey. The question is then why
pollen is located between these two regions. Pollen and honey that is located close
to brood are preferentially removed. This means that cells close to brood will be
emptied at a relatively high rate. Other cells in the central area are also emptied
when the brood is fully developed after 21 days. The only empty cells were pollen
can be deposited is thus near the central region of brood. In this area there is a high
turnover of brood, pollen, and honey. Pollen is consequently located between the
brood and the honey because this is the only place where pollen can be deposited.
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1.1.3 Cemetery Formation

Workers in several species of ants form cemeteries outside their nests. When ants die,
their bodies are carried out of the nest by workers. The workers then deposit these
dead bodies in piles outside the nest. Through this behavior the ants clean their nest
and form cemeteries on the outside of the nest. This cemetery formation has been
observed experimentally in the ants Lasius niger , Pheidole pallidula, and Messor
sancta [4, 11, 12]. Deneubourg et al. [12] observed cemetery formation in the ant
Pheidole pallidula experimentally. They found that when ants die, workers carry the
corpses out of the nest and place them in a pile. Bonabeau et al. [4] report of a more
detailed experiment on cemetery formation in the ant Messor sancta. They found
that if a sufficiently large part of corpses are distributed randomly in the experimental
arena at the beginning of the experiment, then the ants will form clusters within a
few hours. If there were heterogeneities in the experimental arena, then the clusters
were formed such that they followed these heterogeneities, ie. along the edges of the
experimental arena if this was small, or around larger objects in the arena.

Based on observations of the ants in their experiments, Bonabeau et al. [4] de-
scribed the underlying mechanism causing the aggregation of corpses in piles. Ac-
cording to Bonabeau et al. [4] the basic mechanism underlying the aggregation phe-
nomenon is an attraction between dead bodies mediated by the workers. Small clus-
ters of bodies will grow because they attract workers to deposit more bodies. It is
thus a positive feedback mechanism that causes the formation of larger and larger
clusters of corpses (the larger the cluster the bigger is its attraction on bodies). Even
if the basic mechanism underlying the phenomenon is known, the individual behavior
of the ants that implements the positive feedback is still unknown.

1.1.4 Brood Sorting

In an ant nest neither workers, brood nor food are distributed randomly in the nest.
Rather, they all appear to move or be arranged in predetermined patterns. According
to Deneubourg et al. [12] “. . . the eggs are arranged in a pile next to pile of larvae and
a further pile of cocoons, or else the three categories are placed in entirely different
parts of the nest.” The brood in the nest is in other words sorted either in the same
location or in different locations within the nest.

According to the description of brood sorting by Deneubourg et al. [12], the differ-
ent brood are placed in different piles that are separate from each other. A detailed
analysis of the brood sorting in the ant Leptothorax unifasciatus performed by Franks
and Sendova-Franks [15] does, however, show that the brood are not sorted into piles,
but rather into a cluster that has a pattern of concentric rings. Leptothorax unifas-
ciatus ant colonies occupy flat crevices in rocks. In these crevices the ants form a nest
by creating a wall with only one opening that surrounds the nest. Within this wall
the ants position the brood in a single cluster, usually away from the single entrance.
The ant colonies can be easily observed in experiments by creating an artificial crevice
for the ants between two glass plates that are sandwiched together with a piece of
cardboard separating the plates. Franks and Sendova-Franks [15] studied the sorting
of brood by Leptothorax unifasciatus ants by forcing the ant colonies to move from
one nest site to another. By forcing the ants to move their brood they were able to
observe how the ants form a single cluster of the brood.
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When the ant colony is forced to move to a new nest site they initially place the
brood randomly in the new nest. However, brood items that are transported later in
the emigration tend to be deposited next to brood that are already in the new nest.
This happens especially frequently if the two brood items are of the same type. The
brood that are deposited in the new nest site are picked up and relocated, even if all
the brood has not yet been transported to the new site. Brood items that are picked
up are usually deposited in positions that are nearer to larger groups of the same type
of brood. As this occurs several growing clusters of brood are formed. According
to Franks and Sendova-Franks [15] “These growing clusters of items compete with
another to ‘capture’ other brood items that are being moved about. Items seem to be
more frequently removed from smaller rather than large clusters.” This process of
removal and deposition eventually leads to the formation of a single cluster with the
standard pattern.

The brood is distributed in the cluster in a distinct pattern. In the middle of the
brood structure there is a cluster of eggs and micro-larvae, and the other different
brood stages are arranged around this central cluster in concentric rings. Franks
and Sendova-Franks [15] describe the pattern in the finally formed cluster of brood
as follows: “. . . different brood items are arranged roughly in concentric rings in the
brood cluster. The standard pattern is for eggs and micro-larvae to be in the middle,
with the larger larvae further from the center in order of increasing size. Pre-pupae
and pupae are distributed in positions between the outer ring of the largest larvae and
those of the next largest size.” The Leptothorax unifasciatus ants are thus capable of
performing an annular sort of their brood. That is, to create a structure of annular
bands with only one brood type in each band. Even after this structure is formed the
ants continue to sort the brood as the different brood grow and enter a new stage in
their developmental process.

The underlying mechanism that the ants use to sort their brood in annular bands
is still unknown. In their original article, Franks and Sendova-Franks [15] point out
that part of the mechanism may involve conditional probabilities of picking up and
putting down each brood item that depend on each item’s neighbors. They also
propose another mechanism that may be responsible for the sorting of the brood.
In a packet of muesli there is a self-sorting according to size where smaller items
percolate down to the bottom of the packet by moving down the crevices between
the larger items [1]. Franks and Sendova-Franks [15] propose that a similar process
may occur in the sorting of brood, where smaller brood items move toward the center
of the structure by moving between the larger brood. Combined with this there is
a force that attracts the brood towards the center of the structure that is caused by
the clustering behavior of the ants. By leaving larger gaps between the larger brood
the ants will thus be able to move the smaller brood between these larger brood,
and thereby position the smaller brood items closer to the center of the structure.
The mechanism that sets the distance between the various types of brood is however
not known, and may for example use pheromones or metabolic waste products to
determine the correct distance between various brood items.
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1.2 Self-Organization

The previous sections have described collective behaviors by insects that result in
complex patterns at the global level. The complex patterns emerge at the global
level of the social insect societies even though the individual elements, the insects,
are only capable of performing very simple behaviors. Theories of self-organization
were originally developed in the context of physics and chemistry to describe the
emergence of macroscopic patterns out of processes and interactions defined at the
microscopic level [6]. The theory of self-organization has then been extended to social
insects to show that complex collective patterns may emerge from the interaction
among individuals with simple behavior. Camazine et al. [9] have given the following
definition of self-organization: “Self-organization is a process in which pattern at the
global level of a system emerges solely from numerous interactions among the lower-
level components of the system. Moreover, the rules specifying interactions among the
system’s components are executed using only local information, without reference to
the global pattern.” If this is to be interpreted in terms of an insect society it means
that the collective pattern that is displayed by the system, like the pattern of army
ant raids or the clustering of dead bodies, is an emergent property of the system
rather than a property imposed on the system by an external ordering influence like
a blueprint or a supervisor. Self-organization has also been defined as “a set of
dynamical mechanisms whereby structures appear at the global level of a system from
interactions among its lower-level components” [6]. A self-organizing system has four
basic ingredients: positive feedback, negative feedback, amplification of fluctuations,
and multiple interactions. These four ingredients are described below.

The first ingredient of a self-organizing system is positive feedback. Positive feed-
back promotes changes in a system, usually in the same direction as the system is
currently moving. It has been described as “simple behavioral rules of thumb” that
promote the creation of structures [4]. An example of this is the aggregation of some
birds when building nests. Nesting in groups may provide benefits in terms of protec-
tion from predators, or ease in finding food. Because of this, birds may prefer to nest
where other birds nest. If some birds for some reason decide to nest at a particular
location, other birds will be attracted to nest on the same site, because they want
to nest where other birds nest. This constitutes a positive feedback in the form that
the more birds that nest at a location, the more birds will be attracted to nest at
that location, and as a result the nest site will increase in size. Positive feedback
can have a snowballing effect in that it reinforces an initial change in a system in
the same direction as the initial deviation. In fact, explosive chemical and nuclear
reactions are classic examples of positive feedback. Positive feedback consequently
has a destructive potential in that it can create a cascade of change in one direction.

The second ingredient of self-organization is negative feedback. Negative feedback
counterbalances positive feedback and helps to stabilize the collective pattern. As
mentioned above, positive feedback has a destructive potential in that it can have
a snowballing effect. This destructive potential can be counterbalanced by negative
feedback. Negative feedback can work in the opposite direction of a positive feedback
mechanism, and thus provide inhibition to offset the amplification provided by the
positive feedback. By doing this, negative feedback can help shape the amplification
into a specific pattern. Negative feedback can take the form of saturation, exhaustion
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or competition. It often arises from purely physical constraints, for example in the
form of depletion of a resource. The building of a structure may for example be
inhibited by the reduced amount of building material that is available.

Self-organization relies on amplification of fluctuations, which is its third basic
ingredient. These fluctuations may take the form of random walks, errors, deposition
of objects in random positions, and so on. This randomness is a key part of self-
organizing systems. The random events that occur in a self-organizing system are
crucial to the system because they allow the system to discover new solutions. The
random fluctuations that occur in the system can be amplified, and through this,
new structures or solutions may be found. For example in the case of ant foraging, a
forager may get temporarily lost from its current trail and discover a new rich food
source. This food source can then be exploited by the ant colony. If it were not for
the error of the first ant this food source would not be discovered, and the colony
would not be able to exploit it.

The last ingredient of self-organization is multiple interactions. These interactions
may be either directly between the individuals of the system, or indirectly through
the elements that are handled by the individuals in the system. In this latter form two
individuals may interact when one individual modifies the environment, and the other
individual responds to the modified environment at a later time. This modification
of the environment may, for example, take the form of deposition and removal of
objects.

A self-organizing system can usually be characterized by a few properties [6]. They
need not be present, but their presence indicates that the observed phenomenon is
self-organized. The first property is the creation of spatiotemporal structures in an
initially homogeneous medium. These structures may take the form of nest archi-
tectures, foraging trails, or social organization of the individuals in the system. An
example of this is the cemetery formation by ants described in section 1.1.3. Before
any dead corpses are moved out of the nest, the surroundings of the nest are ho-
mogeneous in the sense that there are no clusters of dead bodies. As the workers
clean the nest by picking up corpses and deposit these in piles outside the nest, the
surroundings are no longer homogeneous, but contain spatiotemporal structures in
the form of piles of dead bodies.

The second property of self-organizing systems is the possible coexistence of several
stable states, or multistability. Since structures emerge by amplification of fluctua-
tions, any such fluctuation may be amplified and the system can thus converge to any
one of several possible stable states depending on the initial conditions of the system.
For example, when there are two identical food sources presented at the same dis-
tance from an ant colony, one of them is eventually massively exploited whereas the
other is neglected. The quality of each food source is in theory identical, but based
on random initial events one source will be exploited while the other is left alone [4].

The last property is the existence of bifurcations when parameters are varied.
At bifurcations the behavior of a self-organizing system changes dramatically. Self-
organizing systems thus consist of the four basic ingredients positive feedback, neg-
ative feedback, amplification of fluctuations, and multiple interactions. All of these
ingredients must be present in a self-organizing system. Furthermore, a self-organizing
system is usually characterized by the emergence of spatiotemporal structures in an
initially homogeneous medium, multistability, and bifurcations.
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1.3 Stigmergy

The concept of stigmergy was first introduced by Grassé [17] in 1959, who observed
building behavior by termites, and introduced stigmergy to explain some of the obser-
vations he made. He observed that when termites encountered certain configurations
of the ongoing construction of the nest, they were stimulated to a high degree of activ-
ity and to the addition of further building material to the encountered configuration.
The structure would then grow until it was complete, and the termites would turn to
create another such structure or begin on a different task. From these observations
Grassé [17] inferred that important determinants of an individual’s building behavior
were stimuli from work previously accomplished, either by the individual itself or by
other individuals.

The basis of stigmergy is that previous activities of individuals influence activities
at a later stage. It is in other words a form of indirect communication that works
through modifications to the environment. Grassé [17] saw stigmergy as consisting
of a series of stimulus–response sequences. One specific stimulus triggers a specific
response that alters the environment in a way that causes a different stimulus in
the future, that again triggers a different response. An example of such a stimulus–
response sequence is evident in the construction of nests in termites of the genus
Macrotermes [4]. A configuration of soil pellets triggers a response from a termite that
transforms the configuration. This new configuration of soil pellets will then trigger a
different response from the same or a different termite. The basis of stigmergy is thus
that individuals respond to the environment in a way that alters the environment.
This change then causes the same individual, or a different individual, to respond
differently to the changed environment. By making alterations to the environment
the individuals can thus organize their own activities, or the activities of a group of
individuals.

The basic principle of stigmergy is summarized by Holland et al. [21]: “Traces left
and modifications made by individuals in their environment may feed back on them.
The colony records its activity in part in the physical environment and uses this record
to organize collective behavior.” The colony can record its activity in the environ-
ment in several ways, including the use of pheromones, material structures, or spatial
distribution of colony elements. Although the basic principle of stigmergy is agreed
upon, views of what stigmergy is and how it should be seen differ in the literature.
According to Holland et al. [21] “. . . stigmergy is a mechanism that allows an environ-
ment to structure itself through the activities of agents within the environment.” Here
the state of the environment and the distribution of agents will determine changes
in both the environment and the distribution of agents in the future. Holland et
al. [21] thus see stigmergy as a mechanism that can explain how an environment
changes. They relate stigmergy to self-organization by saying that stigmergy may oc-
cur independent of self-organization, but that only those instances of stigmergy that
give rise to self-organization will produce useful effects. Camazine et al. [9] views
stigmergy from a different perspective. They regard stigmergy not as a complete
theory of building activity, but as an important concept that helps explain the flow
of information between the builders. From this perspective stigmergy is only one of
the mechanisms that is present when a group builds a structure. Stigmergy is thus
a source of information that the individuals use to determine appropriate actions.
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This is the view on stigmergy that we take in our work. We see stigmergy as a way
of indirect communication between the agents that the agents use to modify their
actions. That is, the agents modify the environment in some way, and at a later stage
any one individual may respond to this change in a different way. The agents thus
communicate with each other indirectly, through modifications to the environment,
to organize their collective behavior.

1.4 Problem Definition

Earlier in this chapter we described patterns that are formed by social insects. It
was described how honey bees create concentric regions of brood, pollen, and honey
on the wax combs in their hive, and that ants are able to cluster and sort objects
in different patterns. The way that the social insects solve these pattern formation
tasks have attractive features. The patterns are formed by swarms of homogeneous
individuals that each make use of only local stimuli to select what actions to perform.
This enables the swarms to solve the tasks in a flexible and robust way. The ants are
able to adapt to changing environments and they are robust because the functioning
of the swarm as a whole is not dependent on any one individual. If an individual dies
its work can easily be replaced by another individual. The swarm thus has robustness
and reliability through redundancy.

Inspired by the patterns formed by swarms of insects, we want to replicate this
behavior in computer simulations. We want to create swarms of agents that, like
the ants described, are capable of clustering and sorting objects in different patterns.
The agents created will only make use of local information when deciding on which
actions to perform, and through the interactions of a swarm of identical agents the
collective patterns should emerge. To aid in the construction of these swarms of
agents we make use of the introduced concepts of self-organization and stigmergy.
Self-organization shows how global patterns can be formed based on the actions of
individuals, and thereby gives a theoretical basis for the notion that a group of simple
agents can perform complex tasks through interactions. Stigmergy does, on the other
hand, explain how this interaction can be done indirectly through modifications to
the environment.

It is difficult to design self-organizing systems. The traditional approach to cre-
ating self-organizing systems has been to define the actions of the individuals, and
then see if this leads to the desired properties at the global level of the swarm of
individuals. The paths to problem solving are however not predefined but emergent
in these systems, and result from the interactions among individuals, and between
individuals and their environment, as much as from the behaviors of the individuals
themselves. It is therefore very difficult to determine the individual actions that will
lead to the desired global patterns.

Because of the problems mentioned above with designing self-organizing systems,
we have chosen an evolutionary approach to create swarms of agents that are capable
of forming the desired patterns. Rather than hand-coding the individual behaviors we
evolve the behaviors. The concept of self-organization shows how individual behaviors
can lead to global patterns. This concept can also be used the other way around,
by saying that swarms that create the desired global pattern will have individuals
that display the correct behavior for forming these patterns. We make use of the
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connection from global patterns to the individuals’ behavior in our evolution of the
correct behavior. In our work we will evolve individual behavior by evaluating the
patterns formed at the global level of the swarm. At each stage of the evolution a
variety of different behaviors at the individual level will exist. The desirability of the
different evolved behaviors will be evaluated by allowing a swarm of identical agents,
with each set of evolved behaviors, to interact for a certain amount of time in an
environment containing objects that can be moved. The different sets of behaviors
will then be evaluated in terms of the global patterns that the swarms of individuals
form. Behaviors that lead to desirable patterns will be selected for reproduction,
and through this evaluation of the global patterns that are formed, the individual
behaviors will be evolved.

We have chosen to create self-organizing systems that solve three different tasks of
pattern formation. These are inspired by the cemetery formation and brood sorting
done by ants that were described in sections 1.1.3 and 1.1.4. The first task that
we wish to solve is clustering of identical objects similar to the cemetery formation
performed by ants. This is a fairly simple task to accomplish, and the successful
solution to this task will show that our approach to the creation of self-organizing
systems is viable. The second task that we will address is the sorting of different
types of objects into separate piles. In this task the agents must cluster different
types of objects into separate clusters, such that each cluster contains only objects of
one type, and no two clusters contain objects of the same type. This type of sorting
is called patch sorting [27]. In our work we will create solutions that are capable of
forming separate clusters of two and three types of objects. The last task of pattern
formation that we address is the formation of a cluster with an annular pattern similar
to the brood sorting in Leptothorax unifasciatus described by Franks and Sendova-
Franks [15]. This task is termed annular sorting , and the swarm of individuals must
create a central cluster of one type of object that is surrounded by concentric bands
of other objects, with each band containing only one type of objects. This is a very
difficult pattern to form and there have not previously been any successful attempts
at creating such a pattern that are both compact and where the bands of each type
of objects are well separated.

After describing the different tasks of pattern formation that we are going to
address we are able to give a more formal definition of the problem to be addressed:

Create swarms of homogeneous agents that are capable of clustering,
patch sorting, and annular sorting by evolving individual behavior through
the evaluation of patterns formed at the global level of the swarm.

1.5 Motivation

The two main motivations of the field of swarm intelligence are to gain a better un-
derstanding of nature, and to develop better techniques within computer science. The
motivations thus have a biological perspective and a computer science perspective.
The motivation for addressing the problem of sorting by a swarm of agents can be
seen from both of these perspectives. From the biological perspective the motivation
is that the underlying mechanisms responsible for the behavior leading to sorting of
objects is yet unknown. By evolving behaviors that lead to the desired global patterns
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in simulations, an understanding of the underlying mechanisms may be established.
In our work we use agents that are equipped with a limited sensory apparatus and
a few simple actions, and thereby say something about the minimal requirements at
the individual level that are needed to create the patterns at the global level.

From the computer science perspective the main motivation is that the applica-
tion of social insect behavior may lead to better techniques. Social insects have many
attractive features such as individual simplicity, flexibility, scalability, and robustness
and reliability through redundancy. Algorithms inspired by social insects have pre-
viously been applied successfully to complex problems of optimization, scheduling,
routing, and assignment [13]. They have, for example, been used to provide solu-
tions to the well known traveling salesman problem, to routing in telecommunication
networks, and to schedule jobs in factories [5, 13]. Computer models based on the
clustering and sorting by insects may lead to improved algorithms in a wide range
of areas, such as search, data mining, experimental data analysis, graph partitioning,
and classification problems. The amount of information stored in computers around
the world increases rapidly, and ideas from the insect world can help organize, search,
and visualize these massive amounts of information. The stored information often
consists of complex data that has hidden commonalities. Algorithms based on the
brood sorting performed by ants may, for example, be used to visualize structures
in the stored data. These algorithms do not need any initial information about the
existing structures3, and can visualize the data either by forming clusters of data with
similar characteristics, or by organizing the data in an annular structure of concentric
rings. Social insect behavior also has attractive features in terms of scalability. To
solve problems of increasing magnitude, all that is needed is to add more agents. This
will enable both new and larger problems to be solved, in addition to more efficient
performance of solutions to existing problems.

In addition to the two motivations given above that are connected to the general
motivations of the field of swarm intelligence, we also have two motivations of our
own. The first is to show that artificial evolution is a viable approach to the creation
of swarms capable of clustering and sorting. Previous research within this field has
usually been done by first designing the individual behavior of the agents. Then a
simulation has been performed and the emergent patterns have been observed. If
the desired patterns are not observed, the individual behavior is tweaked until it
leads to the desired emergent pattern. We wish to show that artifical evolution is an
alternative approach to this specification-and-trial process. The second motivation
is that we wish to show that simple individual behavior can lead to the solution of
complex tasks. Previous research has shown that swarms of simple agents can perform
clustering and patch sorting. The task of annular sorting is, however, considerably
more difficult than these tasks. We therefore intend to show that a homogeneous
swarm of simple agents is capable of solving such a difficult task as annular sorting.

3Conventional clustering methods require an initial specification of the number of clusters that
are present.
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1.6 Structure of the Thesis

In this chapter we have described the biological background for the work that we have
done. We have also given a formal definition of the problems that we intend to solve,
and the motivations for investigating these problems. In the next chapter we present
previous research that is related to our work. The work presented constitutes the
most important research that has been done concerning the application of swarms of
agents to clustering and sorting. After describing related work chapter 3 describes
the methods of our work. In this chapter we describe both the components of the
evolved solutions as well as aspects of the evolutionary method. Chapter 4 presents
the five experiments that we have performed. For each experiment the evolutionary
progression is described as well as characteristics of the final evolved solution. In
chapter 5 we discuss certain aspects of the solutions. Chapter 6 ends the thesis with
some concluding remarks.
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Chapter 2

Related Work

The tasks of clustering and sorting have only recently been addressed in the field of
swarm intelligence. The article that signifies the birth of this field of research was
written by Deneubourg et al. [12] in 1991, and since this a limited amount of work
has been published. In this chapter computer simulations and robotic experiments
that address the tasks of clustering, patch sorting, and annular sorting are presented.
For each task both computer simulations and robotic experiments are described.

2.1 Clustering

The task of clustering can be defined as the grouping of objects of the same type
in a continuous area [27]. The modeling of this behavior in ants was the first to be
investigated, and these works have later been extended to patch sorting, experimental
data analysis, and annular sorting.

2.1.1 The Basic Model

In their seminal article Deneubourg et al. [12] present two closely related models
to account for cemetery formation and brood sorting in ants. They say they have
been inspired by how ant colonies sort their brood, and present a distributed sorting
algorithm that is to be used by robot teams. However, they never actually go beyond a
computer simulation of the model and so the algorithm is never actually implemented
in physical robots.

The model is based on randomly moving agents that come across objects in the
environment. The key ingredient of the algorithm is the modulation of probabilities
for whether the agents should pick up or put down objects. When they detect an
object, the probability of picking up the object is greater if the object is isolated. This
means that if the object is encountered in a neighborhood that is sparsely populated
with objects, there is a higher probability of the object being picked up than if it
is encountered in a densely populated neighborhood. When carrying an object, the
agent’s probability of putting down the object is greater if the agent is currently
in a neighborhood that is densely populated with objects. Deneubourg et al. [12]
claim that either one of the pick up and drop down behaviors is sufficient to create a
clustering behavior by the agents, but that the two behaviors combined cause clusters
to be created faster.
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The environment in which the agents reside is a square network of points, and
at the beginning of a run the agents and objects are dispersed randomly in the
environment. Only one object, one agent, or one object and one agent are allowed to
occupy a point in the environment. At each time step in the simulation the agents
are stepped in random order. Each step by an agent consists of a movement and a
decision of whether to pick up or put down an object. The agents pick a random
direction to the north, east, south, or west and move to the neighboring cell in this
direction if there is not a wall in that direction, and the point is not already occupied
by another agent. If the agent has moved to a point that contains an object, and the
agent is not currently carrying an object, it will calculate a probability for whether
it should pick up the object or not. The probability Pp that the agent will pick up
the object is greater if the immediate environment is sparsely populated with objects.
The function used to calculate the probability for whether the agent should pick up
an object is given in Equation 2.1.

Pp =

(

k+

k+ + f

)2

(2.1)

In the equation, k+ is a constant and f is an estimation of the density of objects in
the neighborhood. The probability of picking up an object decreases with f from 1
when f is 0, to 0.25 when f = k+ and less as f tends to 1. If the agent has previously
picked up an object, then for each move it makes that leads to an empty point, the
agent will decide whether to put down the object or not. The probability that the
agent will put down the object, Pd, is greater if the neighborhood is densely populated
with objects. This probability is calculated using the function given in Equation 2.2.

Pd =

(

f

k− + f

)2

(2.2)

Here f is the same as before and k− is a constant. The probability of putting down
a currently carried object increases with f from 0 when f is 0, to 0.25 when f = k−

and more as f tends to 1.
To estimate f , the fraction of nearby points occupied by objects, Deneubourg et

al. [12] provide the agents with a short term memory. This memory records what has
been encountered by the agent in the previous m steps. If the agent encounters an
object after a move, this is recorded in the next position of the memory. Otherwise
a 0 is recorded representing that no object was encountered. The memory functions
as a queue, so that when the agent has moved m + 1 times the oldest record in the
memory is replaced by the current recording. To calculate f , the number of objects
recorded in the memory is divided by the size of the memory, m. In other words, f

is the fraction of objects recorded in the short term memory of the agent.
In their article Deneubourg et al. [12] give an example of the result of an ex-

periment using their algorithm. In the experiment they use 100 agents and 1500
objects in an environment that has 290 × 200 points. The agents have a memory,
m, of 50 steps, the constant k+ is set to 0.1, and the constant k− is set to 0.3. As
the algorithm is run, small evenly spaced clusters rapidly form that later merge into
fewer larger clusters. Throughout the run of the algorithm the clusters are constantly
having objects removed and added to them. This causes a drift of the clusters across
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the environment such that they may meet each other. When two clusters meet they
merge into one cluster. Although a few larger clusters are formed, Deneubourg et
al. [12] do not report of a single cluster forming at any stage. Bonabeau et al. [4] has
replicated the algorithm in a run of their own, and they are not capable of forming
a single cluster either. It is possible, however, that a single cluster may eventually
arise, but that as a few large clusters arise it will take a long time for them to merge.

2.1.2 A Minimal Clustering Model

Martin et al. [25] have recently argued that the intelligence attributed to the ants
in Deneubourg et al’s [12] model is not necessary for the clustering of objects. The
intelligence of the ants in the latter model (section 2.1.1) is reflected in the ants’ ability
to estimate the cluster size by using their short term memory, and act accordingly by
calculating probabilities. Martin et al. [25] propose what they term a ‘minimal model’
that shows that much simpler ants are capable of forming clusters without the need
to calculate pick up and put down probabilities, and with only a local perception of
the size of the clusters. The reason they call their model a minimal one is because
the ants in their model only require a minimal knowledge about their environment in
order to perform clustering.

The main difference between the two models is that the dynamics of Martin et
al’s [25] model is provided by alternating a pick up and deposition rule with a random
walk rule. In addition to this, the ants are not allowed to walk over corpses as they
could in the other model. The pick up behavior of the ants in Martin et al’s [25]
model is as follows. When the ant is not currently carrying an object, it investigates
the contents of its eight surrounding cells. If one of these cells contains an object
the ant will pick up the object. If more than one of the surrounding cells contain an
object the ant will choose one of these objects to pick up randomly. On the other
hand, if the ant is currently carrying an object it will attempt to drop its object,
provided that at least one of its eight surrounding cells contain an object. The ant
will then choose one empty cell in its neighborhood at random and place its carried
object in this cell. Martin et al. [25] believe that it is the pick up and deposition rules
that are significant in relation to Deneubourg et al’s [12] model, although they also
use a different movement rule. The movement of the ants is one cell at the time, but
they will move in the same direction for a specified number of steps. The ants will
randomly select a new direction and length of its walk in three different situations.
First, if the ant has walked the specified number of steps, it will choose a new direction
and length for its walk. Second, if there is an object in the trajectory of the ant, and
the ant does not choose to pick up this object, the ant will pick a new direction and
length. Third, to include obstacle avoidance, the ants will choose a new direction and
length of its walk if there is an obstacle in its trajectory that it cannot pass. At each
time step in the model all the ants are stepped sequentially, and in the same order
each time. Each ant will thus move to the nearest cell along its current trajectory if
this is possible. If not, it will choose a new direction and length of its walk. After
the ant has moved, it will attempt to either pick up or deposit an object.

Martin et al. [25] provide the result of a run of their model. In the experiment 100
ants and 1000 objects are distributed randomly in a 400× 250 cell environment with
periodic boundary conditions. The ants pick a length of their walk randomly from the
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interval [1 . . . 100]. After 1.3 million iterations a cluster that contains all the objects
is formed. To explain why a single cluster is formed, Martin et al. [25] propose an
explanation in terms of the underlying mechanism that biases the dynamics so as to
form only one large cluster. Each cluster in the environment is fed and depleted at the
same rate, but because the dynamics is noisy there are fluctuations that temporarily
favor either growth or depletion of certain clusters. This means that every cluster
may increase or decrease in size at some point. However, once a cluster shrinks to
a certain size there is no way to make it grow again. As a consequence, statistical
fluctuations may cause clusters of any size to vanish, but the probability of this
occuring decreases with the size of the clusters. In short, small clusters have a higher
probability of disappearing than larger clusters. Because of this, smaller clusters will
disappear and larger clusters will increase in size until there is only one remaining
cluster. Martin et al. [25] summarize the underlying mechanism as follows: “. . . the
dynamics is biased towards forming larger clusters, because small ones are more likely
to disappear under statistical fluctuations and clusters cannot build up from nothing.
We term this effect a fluctuation-threshold effect.” They thereby say that the main
ingredient in the cluster formation process is the action of taking an object from one
cluster and adding it to another, and that the agents are purely a local implementation
of this action.

In contrary to Deneubourg et al’s [12] model, Martin et al’s [25] model is capable
of forming a single cluster. However, the formed cluster is not as compact as the
clusters created by the former model. Also, neither of the clusters formed by the two
models is static. In both cases the formed clusters are dynamic as the agents are
constantly picking up objects from the clusters and dropping them somewhere along
the clusters’ perimeter.

2.1.3 Clustering by Robots

Beckers et al. [2] were among the first to design a group of identical robots that
were capable of clustering objects. Inspired by the clustering of corpses performed
by ants, they decided to develop a system using multiple robots to cluster pucks that
are initially dispersed in the environment. In order to make the robots capable of
displacing the pucks the robots were equipped with a C-shaped gripper. This gripper
allowed the robots to push a number of pucks at the same time. In addition to
enabling the robots to push objects, the gripper also aids the robots in estimating
the density of the pucks in their neighborhood. This is done by adding a sensor that
measures the resistance of the pushing of the pucks. If there is a high resistance to
the pushing, this means that there is a high density of pucks in the local environment,
and if the resistance is low, there are not many pucks in the immediate environment.
The resistance applied to the gripper activates a microswitch if the resistance equals
the pushing of three pucks. In addition to the microswitch, the robots are equipped
with two infrared sensors. These enable the robot to detect and avoid obstacles.

The behavior of the robots is based on the subsumption architecture [7], and they
have three possible behaviors with only one active at any time. The default behavior
is active when no sensors are activated. This means that no obstacles are detected
and that the robot may push none, one, or two pucks. When this behavior is active
the robot moves in a straight line. This behavior continues until the microswitch on
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the gripper is activated or an obstacle is detected. When an obstacle is detected the
robot activates the obstacle avoidance behavior. This causes the robot to turn on
the spot away from the obstacle at a random angle. After the robot has turned the
default behavior takes over and the robot moves in a straight line. Because of the C-
shaped gripper, any pucks that the robot was pushing previous to the encounter with
the obstacle are retained in the gripper through the turn. Thus the robot does not
loose any of its currently pushed pucks when facing an obstacle. The third behavior
is triggered by the microswitch. This switch is activated when the robot pushes three
or more pucks in its gripper, or when it encounters a cluster of three or more pucks.
When this happens the puck-dropping behavior is activated. This causes the robot
to reverse its motors for one second and thereafter to turn at a random angle, before
continuing with its default behavior of moving in a straight line. The reversal of the
motors causes the robot to drop the pucks that it was currently pushing. The pucks
are consequently dropped at a location that has a high perceived density of pucks.

In the experiments performed by Beckers et al. [2] the robots are placed in the
center of a square arena of 250×250 centimeters, each pointing in a different direction.
81 pucks are placed regularly in a grid pattern with 25 centimeters between each.
To measure the progress of the robots, every ten minutes of runtime the robots are
stopped and the positions of the clusters of the pucks are recorded. The definition of a
cluster used is a group of pucks that are separated by no more than one puck diameter.
In their experiments three successive qualitative phases are observed irrespective of
the number of robots that are used to perform the clustering. In the first phase at
the early stage of the clustering process, the robots move and collect pucks in their
gripper one at a time. When the robot has collected three pucks in its gripper, it
backs up and drops a cluster of the three pucks. This causes the formation of small
clusters containing three or more pucks. These clusters can not be moved and are
formed within a short time from the beginning of the experiment. In the second
phase, the robots remove a few pucks from the existing clusters by striking them at
an angle. These pucks are then added to other clusters as the robot collides with
them. In this phase some of the clusters grow rapidly, causing the formation of a
few relatively large clusters. The third phase has the longest duration. In this phase
there are occasional removals of pucks from the large clusters that are later added
to one of the other clusters, or the same cluster that they were removed from. This
phase ends with the formation of a single cluster. The formed cluster is, however, not
static as pucks are constantly being removed and added to the cluster.

Beckers et al. [2] provide an explanation as to how the clusters are formed by the
robots. The robots may approach the clusters in three different states. These states
are defined by the robots carrying none, one, or two pucks. If the robot is not pushing
any pucks, then it may remove one or two pucks from a cluster that it encounters.
In the second state the robot is already pushing one puck, and so it may either add
this puck to the encountered cluster or it may remove one puck from the cluster and
consequently end up pushing two pucks. The pushing of two pucks is the third state,
and when the robot encounters a cluster in this state it may only add the two pucks
to the cluster. When evaluating the effects of these states in terms of the size of
the clusters, and when taking the paths of the robots and the angle of approach into
account (to withdraw pucks from a cluster the robot must approach it tangentially,
and to add pucks it must have a frontal approach), Beckers et al. [2] have come to the
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following conclusions: 1) When a robot that is not pushing any pucks encounters a
cluster it can only remove pucks, and the probability of this occuring decreases with
increasing cluster size. 2) Robots that encounter a cluster while pushing one puck
will tend to add the puck to the cluster because the probability of dropping the puck
is greater than the probability of removing a puck from the cluster. The probability
of this occuring increases with increasing cluster size. 3) If the robot is pushing two
pucks it can only add to the size of a cluster, and the probability of this occuring
again increases with cluster size. Because of this, larger clusters will always be more
likely to gain pucks and less likely to loose pucks than smaller clusters. The two
behaviors of the robots, adding pucks and removing pucks from a cluster, will thus
increase the probability of the same outcome happening at the same location in the
future.

2.2 Patch Sorting

Patch sorting involves two or more classes of objects that are individually clustered,
while the clusters of each class are separated from each other. This means that
a successful solution to this task must be capable of separating different types of
objects, such that each type of object forms a continuous group of objects that are
not incident with objects of other types. To solve this problem, both Deneubourg et
al. [12] and others have extended their basic model. The research concerning the task
of patch sorting has split into two directions. The first direction is an extension and
application of Deneubourg et al’s model [12] to the field of exploratory data analysis
where the objects to be sorted can be characterized by a continuous similarity metric.
The other direction is in robotic experiments where robots sort objects that have a
discrete similarity, meaning that they are either identical or not.

2.2.1 Extension of the Basic Model

Deneubourg et al. [12] have provided a simple extension of their clustering algorithm
to perform sorting of two types of objects. The behavior of the ants is the same
and the functions for calculating the probabilities are also the same except for the
calculation of f (see Equations 2.1 and 2.2). When there are two types of objects,
the memory of the ants consists of recordings of either no object, or of an object of
either of the two types. In order to compute f the type of the object being considered
to be picked up or put down must be taken into consideration. To compute f the
fraction of objects in the memory of the same type as the object being considered is
computed. For example, if there are two types of objects, A and B, and the current
memory of the ant of length ten is 0ABBA00AA0, then if an ant is considering if it
should drop or pick up an object of type A, then f = 0.4.

The functioning of the algorithm when used with two types of objects has been
described by Deneubourg et al. [12]. Isolated objects in the environment are picked up,
and small clusters form due to random fluctuations. These small clusters encourage
the agents to drop similar objects in the vicinity of the clusters as the density of
the object type in the neighborhood increases. This positive feedback mechanism
causes the clusters to grow, and any nearby object of another type will be engulfed
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in the cluster and thus make it ‘isolated’. This causes the different type object to be
more likely to be picked up by passing agents. According to Deneubourg et al. [12]:
“Sorting is the consequence of this clustering and crowding out behavior.”

2.2.2 Clustering of Complex Data

Lumer and Faieta [24] have generalized Deneubourg et al’s model [12] to apply it
to exploratory data analysis. The algorithm they propose consists of projecting the
space of the attributes of the data onto some lower dimensional space (in their article
the space is two-dimensional and the attributes are real-valued), such that clusters
occur in this space. Attribute distances between objects in these clusters should be
smaller than the attribute distances of objects belonging to different clusters. The
model consists of ants that perform a random walk on a two-dimensional grid. The
dimensions of the grid are such that its number of sites exceeds the number of ants
by about an order of magnitude, and the number of objects exceeds the number of
ants by at least another order of magnitude. The model has discrete time steps, and
at each step an ant is selected at random. This ant then decides whether it should
pick up or put down an object at its current location. Each time step ends with the
selected ant moving to one of its four adjacent nodes.

The decision of whether to pick up or put down an object is the key ingredient of
the algorithm. The function that calculates the probability for whether an ant should
pick up an item at its current location resembles the function given by Deneubourg
et al. [12] (see Equation 2.1), and is given below in Equation 2.3.

Pp(oi) =

(

k1

k1 + f(oi)

)2

(2.3)

In the equation, the constant k1 plays a similar role to the constant k+ in Equation 2.1
and the estimation of the density of the local neighborhood, f , has been replaced by
the function f(oi). Like the probability function for picking up an object defined by
Deneubourg et al. [12], this function causes objects that are located in a neighborhood
with a high density of dissimilar objects to have a higher probability of being picked
up than objects that are located in a neighborhood with similar objects. There is,
however, a major difference between the function proposed by Deneubourg et al. [12]
and this new function. Whereas Deneubourg et al. [12] only considered objects that
were either identical or not, Lumer and Faieta [24] use objects that have some degree
of similarity to each other. Because of this, some form of continuous similarity metric
must be used when estimating the resemblance of an object to the other objects
in its neighborhood. The similarity metric used, d(oi, oj), is simply the Euclidean
distance between objects oi and oj. This similarity measure is used in the function
f(oi) to measure the similarity between object oi and the other objects in its s × s

neighborhood. The density function f(oi) is shown in Equation 2.4.

f(oi) =

{

1
s2

∑

j

(

1 − d(oi,oj)

α

)

if f > 0

0 otherwise
(2.4)

In the equation the term s2 is a normalizing term that introduces a density dependency
in the function, and the constant α scales the dissimilarities. If the objects in object
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oi’s neighborhood are similar to oi, then f(oi) will tend towards 1 and the probability
of picking up the object is low. However, if the objects surrounding object oi are
dissimilar to oi, f(oi) will be small and the object will have high probability of being
picked up. When the ant is deciding whether an object should be put down or not,
the probabilities are reversed. If the ant is currently in a neighborhood with objects
that are similar to the object being carried, then the ant has a high probability of
putting down the object. Likewise, if the ant is in a neighborhood with objects that
are dissimilar to the carried object, then the probability of putting down the object
is low. The probability function for the deposition behavior is given in Equation 2.5,
where the constant k2 has a similar role to the constant k− in Equation 2.2.

Pd(oi) =

{

2f(oi) if f(oi) < k2

1 otherwise
(2.5)

When Lumer and Faieta [24] ran their experiments they discovered that the al-
gorithm continually produced more clusters in the projected space than there were
clusters in the initial distribution. To correct this tendency to create more clusters
than were present in the initial distribution of the data, Lumer and Faieta [24] added
three features to the algorithm. The first feature is ants with different movement
speeds that modify the probability of picking up and dropping objects. The speed,
v, of an ant is the number of grid units walked in one step in its current direction.
The speed of the ants is distributed uniformly in the interval [1 . . . Vmax] and in their
experiments Lumer and Faieta [24] uses Vmax = 6. The speed of the ants is taken
into account in the density function, f(oi), such that the speed of the ants influences
the probabilities of picking up and dropping objects. The modified density function
is given in Equation 2.6.

f(oi) =







1
s2

∑

j

(

1 − d(oi,oj)

α(1+ v−1

Vmax
)

)

if f > 0

0 otherwise
(2.6)

Due to the modified density function, fast moving ants are not as selective as the
slower moving ants in their estimation of the similarity of an object and the objects
in its neighborhood. The addition of this feature to the algorithm allows the algorithm
to perform a coarse-grained sorting, by the fast moving ants, while at the same time
doing a finer sorting with the slower moving ants.

The second added feature is a short-term memory in the ants. This memory
contains the last m items that the ant has dropped together with the location where
the item was dropped. Every time the ant picks up an object, it is compared to the
objects stored in the memory, and the ant moves towards the location where the most
similar object was put down. The addition of this behavior causes a reduction in the
number of similar clusters that are created. The third added feature is a behavioral
switch which allows the ants to switch from gathering elements to destroying clusters
if they have not picked up an element in a specified number of time steps. This
enables clusters that are formed and which contain ‘acceptably’ similar objects to be
broken up and their objects to be moved to more appropriate clusters.
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2.2.3 Exploratory Data Analysis

The work performed by Lumer and Faieta [24] inspired others to investigate similar
algorithms with the aim of sorting complex data. These algorithms are applied to
large collections of data and have the advantage that the number of clusters present
in the data does not need to be known in advance. In the following, two different
ant-based algorithms for the task of data clustering are presented.

AntClass

Monmarché et al. [22] have presented a hybrid algorithm for data clustering. The
algorithm combines an ant-algorithm with the K-means algorithm, which enables
it to automatically discover clusters in numerical data without prior knowledge of
the number of classes. In the algorithm the objects are vectors of the same length
containing numerical values, and the similarity between two objects is measured by
the Euclidean distance between their corresponding vectors. When the algorithm
starts the objects are scattered randomly on a two-dimensional square grid with
periodic boundary conditions. The size of the environment is decided by the number
of objects, and the relationship between the number of objects, no, and the number of
cells in the environment, m, is m = 2 ×√

no. A cell in the environment may contain
one ant, one object, or a heap of objects. A heap is a collection of two or more
objects located on the same cell. The algorithm runs in discrete steps and at each
step all the ants in the environment are allowed to perform their actions. Each ant can
move in eight directions, and when it is allowed to move it has a certain probability
of continuing to move in its current direction, or else it selects another direction
randomly. The ants also have a speed which specifies how many cells in the current
direction they will move in a single step. These are two of several parameters that
may differ between the various ants in the environment. The algorithm consequently
has a heterogeneous population of ants.

After the ants have moved, they can either perform a pick up or a deposit action
depending on whether they are currently carrying an object or not. If the ant is not
carrying an object, it looks for an object or a heap of objects in its eight surrounding
cells. If an object or a heap is found, there are three different configurations of objects
that may be encountered. First, if a single object is discovered this will be picked up
with a fixed probability. Second, if a heap of two objects is discovered, the ant has a
fixed probability of picking up either of the two objects, thereby destroying the heap.
Third, if a heap of more than two objects is found the ant must consider the similarity
of the objects in the heap. If the objects are sufficiently dissimilar the ant will pick
up the most dissimilar object of the heap. As with the picking up of objects, there
are three different situations that may occur if the ant is currently carrying an object.
The ant again considers its eight surrounding cells in turn. If the ant finds an empty
cell it puts down its currently carried object with a fixed probability. Second, if the
cell already contains an object, the ant will put down its carried object provided that
it is sufficiently similar to the object already in the cell. Finally, if the cell contains
a heap of objects the ant will put down its object provided that it is closer to the
center value of the heap than the most dissimilar object of the heap.

When the ant-algorithm has gone through a specified number of iterations the
K-means algorithm is applied to the objects using the initial partition of the objects
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created by the ant-algorithm as a starting point. The K-means algorithm computes
the center of each heap, and then assigns each object to the heap whose center is
closest to the object. The application of the K-means algorithm helps to assign
isolated objects to clusters, as well as reassigning objects that have been assigned to
the wrong cluster by the ant-algorithm. After the K-means algorithm has finished,
the ant-algorithm is again applied to the objects, only now the ants are capable of
carrying heaps of objects and are unable to break up existing heaps. By applying the
ant-algorithm again in this manner the number of heaps is again reduced, providing
a more accurate number of clusters compared to the underlying distribution of data.
When the modified ant-algorithm has run for a fixed period, the K-means algorithm
is again applied to the objects.

The AntClass algorithm thus consists of four main steps: 1) Ant-algorithm cre-
ating an initial clustering. 2) K-means algorithm using the initial partition provided
by the ant-algorithm. 3) Ant-algorithm applied to heaps of objects, and finally 4) K-
means algorithm providing a final clustering of the data.

ATTA

Handl et al. [18] present an ant-based sorting algorithm that incorporates adaptive,
heterogeneous ants and a time-dependent transporting activity. The algorithm they
present is called ATTA which stands for Adaptive Time-dependent Transporter Ants,
and it is “. . . subjected to the most thorough analytical evaluation of an ant-based
clustering and sorting algorithm undertaken to date” [18].

The algorithm is separated into two main phases, an initialization phase and a
main loop. In the initialization phase the objects are scattered randomly on a toroidal
grid. Each of the agents then randomly picks up one of the objects before it is placed
on a random location of the grid. This constitutes the initialization phase. In the
main loop an ant is randomly selected and allowed to perform its actions. The ant
first moves, and then decides whether to drop its data item or not. If the ant decides
to drop its item, it will do this on the cell where it is currently located, or on an
adjacent empty cell if the cell already contains an item. After the agent has dropped
its item, it selects one of the items on the grid and jumps to its location. Based on
the item’s neighborhood, the ant decides whether to pick up the item or not. The
ant will continue to jump to the locations of new items until it successfully picks up
an item. Only after an ant successfully picks up an item is the main loop of the
algorithm repeated and another ant selected to perform its actions. The main loop
runs through a specified number of iterations.

The neighborhood function used to evaluate an item’s neighborhood is a modified
version of the function given in Equation 2.4 that was used by Lumer and Faieta [24].
The modified function is given below in Equation 2.7.

f ∗(oi) =

{

1
s2

∑

j

(

1 − d(oi,oj)

α

)

if ∀oj

(

1 − d(oi,oj)

α

)

> 0

0 otherwise
(2.7)

The constraint
(

1 − d(oi,oj)

α

)

> 0 causes a heavy penalization of high dissimilarities
which improves the spatial separation between clusters.

In addition to using a different density function than Lumer and Faieta [24], Handl
et al. [18] also use different functions for calculating the probabilities for whether an

27



ant should pick up or put down an item. The probability for picking up an item is
given by Equation 2.8

P ∗

p (oi) =

{

1.0 if f ∗(oi) ≤ 1.0
1

f∗(oi)2
otherwise

(2.8)

and the probability for putting down an item is given by Equation 2.9.

P ∗

d (oi) =

{

1.0 if f ∗(oi) ≥ 1.0
f ∗(oi)

4 otherwise
(2.9)

There is one additional factor that influences the picking up and dropping proba-
bilities through the neighborhood function. Handl et al. [18] use a radius of perception
of the ants that gradually increases over time. This means that in the beginning the
ants only look at the immediate neighborhood when calculating probabilities for the
picking up and dropping of items. Then, as time goes by, the ants consider a neighbor-
hood of increasing size. This accelerates the dissolution of preliminary small clusters
later in the run of the algorithm, while at the same time saving computations at the
beginning of a run of the algorithm. The modification of the considered neighborhood
influences the attainable values of the neighborhood function and thereby the picking
up and dropping actions of the ants. At the beginning of the run of the algorithm
the picking action is deterministic, and it is at this stage only the dropping action
that favors dense and similar neighborhoods of items. As the run continues, greater
values are attainable from the neighborhood function giving an additional bias to-
wards the picking of misplaced data items. According to Handl et al. [18] this has the
effect of decreasing the impact of density for the dropping action while at the same
time increasing it for the picking action. This causes an improved spatial separation
between the clusters formed by the algorithm.

In addition to the neighborhood function, the probability functions, and the in-
creasing neighborhood considered, there are two more important characteristics of
Handl et al’s [18] algorithm. First of all, it extends Lumer and Faieta’s [24] idea of a
short-term memory in the agents. Each agent has a memory of a specified size that
contains the locations of where it has previously dropped items. When an ant carries
an object it evaluates each of the positions in its memory using the neighborhood
function. The position of ‘best match’ is the location that gives the highest score
for the neighborhood function. After investigating its memory, the ant jumps to the
best location with a given probability. If the jump is not made, the ant’s memory
is deactivated until it successfully drops its currently carried object. The second im-
portant characteristic is that there is a short period during the algorithm where the
neighborhood function is altered. After the algorithm has run for a period creating
clusters, the scaling parameter, 1

s2 , is replaced by Nocc in the neighborhood function.
Nocc is the actual observed number of occupied grid cells within the neighborhood,
and thus only similarity, not density, is taken into account in the neighborhood func-
tion. This has the effect of spreading out the data items in a sorted fashion. After
the items have been spread out in sorted regions, the algorithm reverts to using the
original neighborhood function.

The performance of the ATTA algorithm was compared to the performance of
K-means, average link agglomerative clustering, and 1D-SOM1 on several real and

1One-dimensional self-organizing map
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synthetic data sets. In their comparisons, Handl et al. [18] found that the ATTA
algorithm was the only one to perform consistently well on all the synthetic data sets.
However, the results on the real data sets showed that the algorithm had problems
if cluster structures existed on several levels. If this was the case, the algorithm only
identified the cluster structures on the upper level.

2.2.4 Robotic Patch Sorting

The results of the sorting of objects by a group of homogeneous robots has been
reported by Melhuish et al. [27] and Holland and Melhuish [21]. Their system consists
of a homogeneous group of robots that are able to segregate two types of objects that
differ only in their color. This is done using only a limited rule set and with no
capacity for spatial organization or memory. The system is an extension of Beckers
et al’s [2] technique presented in section 2.1.3.

The robots used in the study are equipped with four infrared proximity sensors,
with three facing forward and one facing backward. Instead of the pucks used as
clustering objects by Beckers et al. [2], Melhuish et al. [27] use Frisbees. To enable
the robots to move these Frisbees they are equipped with a gripper designed to sense,
grip, retain, and release the Frisbees. When a robot moves directly toward a Frisbee,
it will fit neatly inside the gripper, and will be retained in the gripper when the
robot turns with the aid of two small weighted ‘barbells’. When a Frisbee is inside
the gripper, its type is detected by an optical sensor that senses the Frisbee’s color.
In order for the Frisbees to be retained in the gripper when the robot reverses, a
small pin is located at the rear of the gripper that may be lowered inside the concave
rim of the Frisbee. When the pin is lowered the Frisbee will be retained when the
robot reverses. In addition to this, the gripper is equipped with a microswitch that
is triggered if the robot pushes two or more Frisbees.

In the first of their experiments, Melhuish et al. [27] reproduce the clustering
behavior observed by Beckers et al. [2]. The behavior of the robots is determined
by the rule set given in Algorithm 2.1. Six robots using these three rules are then

Algorithm 2.1: Clustering algorithm

Rule 1:

if gripper pressed and object ahead then

make random turn away from object
end

Rule 2:

if gripper pressed and no object ahead then

reverse small distance
make random turn left or right

end

Rule 3:

go forward

given the task of clustering 22 Frisbees in an octagonal area with sides of two meters.
When the experiment is run the robots first aggregate the Frisbees in small clusters,
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then form larger clusters, before finally a cluster containing 20 Frisbees is formed
after 1 hour and 50 minutes.

To investigate if the slow progress of the previous experiment was due to the
stability of the clusters, Melhuish et al. [27] modified the behavioral algorithm of the
robots such that the Frisbees were not deposited hard up against each other. In the
experiment they use both red and yellow Frisbees, but the yellow Frisbees are pulled
back a certain distance before being released when the robot hits another Frisbee, or
a cluster of Frisbees. The rules of the pullback algorithm are given in Algorithm 2.2.

Algorithm 2.2: Pullback algorithm

Rule 1:

if gripper pressed and object ahead then

make random turn away from object
end

Rule 2:

if gripper pressed and no object ahead then

if yellow puck carried then

lower pin and reverse pull-back distance
raise pin

end

reverse small distance
make random turn left or right

end

Rule 3:

go forward

The modification of rule 2 causes red Frisbees to be deposited right next to en-
countered Frisbees, whereas yellow Frisbees are deposited some distance away from
the encountered Frisbees. If a robot that is pushing a red Frisbee collides with one or
more Frisbees of any color, it will drop its pushed Frisbee immediately by reversing
a small distance. However, robots that push yellow Frisbees will lower a pin inside
the rim of the pushed Frisbee before reversing, thereby retaining the Frisbee when
reversing. After reversing a set distance the robot raises the pin before reversing some
more, causing the previously pushed Frisbee to be deposited. This causes yellow Fris-
bees to be deposited some distance away from the encountered Frisbees, whereas the
red Frisbees are deposited hard up against the encountered Frisbees.

In the experiment that was performed using the pullback algorithm, 22 Frisbees
of each type were used. After 7 hours and 35 minutes, 20 of the 22 Frisbees were
located in a single cluster. The positions of the Frisbees in the arena at this point
was described as follows:“There is a central dense core of 16 reds, with 11 yellows
and the other reds being packed around this core, and the other yellows scattered more
loosely nearby” [27]. According to Melhuish et al. [27] this outcome can be regarded
as sorting of some kind, and it resembles a type of annular sorting.
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2.3 Annular Sorting

There have been few reports of successful attempts to perform annular sorting by
swarms of agents. One of the few successful attempts has been reported by Wilson
et al. [33]. Their work is inspired by the brood-sorting behavior of the Leptothorax
ant described by Franks and Sendova-Franks [15](see section 1.1.4). Based on three
different hypotheses about the behavior of the Leptothorax ant, they propose three
different mechanisms for producing an annular structure. The first mechanism uses
a simple clustering algorithm on objects of different size. The second mechanism
extends previous work [21, 27, 28], and the third uses a concept termed a ‘combined
leaky integrator’.

In order to compare the annular structures produced by the three different mecha-
nisms, Wilson et al. [33] start by defining a performance metric. This metric consists
of four components, with each component comparing a different characteristic of an
annular structure with the same characteristic in an ideal structure. The ideal an-
nular structure is described as “. . . a compact circular cluster of one type of object,
surrounded by perfect circular bands; each band formed from a different type” [33].
After describing this ideal structure they postulate that an annular sort is a structure
defined by four components: Separation, compactness, shape, and completeness. The
proposed performance metric combines measures of each of these components, with
each component contributing a maximum score of 100%.

The first component is the separation component, which tests every object of the
structure to check if its position infringes on the ‘home zone’ of another object type.
In order to do this, the radial distance from the center of the structure2 for each object
is measured, and then the lower and upper quartiles of distances for each object type
are computed. After this, three different counts of objects are performed. First, the
number of central type objects that have a distance to the center greater than the
lower quartile of any other object type is counted, Nc. This rewards the positioning
of central type objects closer to the center of the structure than the other object
types. The second count that is performed concerns the outermost objects. Here the
number of outermost objects that have a distance to the center lower than the upper
quartile of any other type is counted, No. Outermost objects that are located closer
to the center of the structure than other object types are thus penalized.

The two remaining counts are concerned with intermediate type objects. In their
article, Wilson et al. [33] have given a wrong description of these counts [Sendova-
Franks, personal communication] and the counts described here therefore differ from
the ones originally reported. The first count for the intermediate type objects counts
the number of objects which have a radial distance from the center greater than the
lower quartile range of any object type further from the center, N

g
i . The second

count for intermediate type objects counts the number of objects which have a radial
distance from the center less than the upper quartile of any other object type closer
to the center, N l

i . These counts penalize intermediate objects that are either located
closer to the center than objects belonging to a band of objects nearer the center of the
structure, or located further from the center of the structure than objects belonging
to bands further from the center of the structure. These four counts are combined

2The center of the structure is taken to be at the centroid of the largest cluster of the central
object type.
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as shown in Equation 2.10 to give the score of the separation component (no is the
number of objects in the structure).

Se = 100 ×


1 −
Nc + No +

N
g
i
+N l

i

2

no



 (2.10)

The second component of the performance metric is a measure of the shape of the
structure. This measure consists of two parts. The first part is the fraction of the
central type objects located in the center of the annular structure, fc. Each of the
non-central type objects should form circular bands around the central cluster with
each object located at approximately the same distance from the center as the other
objects of the same type. A measure of this constitutes the second part of the shape
component. To calculate this part the average Euclidean distance from the center of
the structure for each non-central type is calculated, oc, and then the deviations from
this average distance for the object type is summed up, dc. This summed deviation
is then normalized. The equation for the shape component is given in Equation 2.11,
where m is the types of different objects.

Sh =
100 × fc +

∑m
c=2

[

100 ×
(

1 − dc

oc

)]

m
(2.11)

In an annular structure the objects in each band surrounding the central cluster
should be spread out evenly. The completeness component of the metric is a measure
of this spreading. To calculate this component each object type is considered in turn.
For each object type a perfect angle between two objects of the type is calculated by
dividing 2π radians by the number of objects of this type. Then the average deviation
from this perfect angle for each pair of neighboring objects of the current type is
calculated, Dc. The completeness component is the mean of the average deviations
for all the objects, and the equation for the component is given in Equation 2.12.

Cpl = 100 ×
∑m

c=1 Dc

m
(2.12)

The final component of the performance metric is the compactness component,
Cmp. This component measures how tightly the circular pucks are packed in the
annular structure. This is done by comparing the average radial distance of the objects
from the center of the structure, and the average distances of a perfect structure
calculated with Donovan’s algorithm and a poor structure. The four components,
Se, Sh, Cpl, and Cmp, are then summed up to give the performance metric of the
annular structure.

Having defined the performance metric, Wilson et al. [33] present the results of
using three different mechanisms to create annular structures. The first experiment is
performed in simulation only, and investigates whether a simple clustering algorithm
(see Algorithm 2.1) applied to objects of different size may lead to the formation of
an annular structure. In the experiment, pucks of four different sizes are used, and
there are 15 pucks of each size. The first type of pucks is of a standard size, and the
second, third and fourth types of pucks are two, three, and four times the size of the
standard puck. After 500000 iterations the simulation is ended. The results of the
experiment show that there is a slight improvement in the formation of an annular
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structure when the simple clustering algorithm is employed on objects of different
size rather than on identical-sized objects.

The second mechanism investigated by Wilson et al. [33] is an extension of the
pullback algorithm proposed by Melhuish et al. [27](see Algorithm 2.2). In the ex-
tended algorithm, different pullback distances are used for different types of objects.
The puck types that should end up nearer the periphery of the annular structure
are subjected to greater pullback distances than those types that should end up near
the center of the structure. The varying pullback distances means that objects of
the central type are deposited immediately on contact with other pucks, whereas the
other types are pulled back a certain distance before being deposited depending on
the type of the object. The differential pullback algorithm is given in Algorithm 2.3.

Algorithm 2.3: Differential pullback algorithm

Rule 1:

if gripper pressed and obstacle ahead then

make random turn away from object
end

Rule 2:

if gripper pressed and no obstacle ahead then

if Type 1 puck carried then

drop puck
else

reverse distance according to puck type
drop puck

end

reverse small distance
make random turn left or right

end

Rule 3:

go forward

The extended pullback mechanism was first investigated in a series of simulation
experiments. These experiments showed, according to Wilson et al. [33], a reasonably
good separation for two and three different object types, with a reduced separation
for four and five different types. When there were a greater number of types, the out-
ermost object types were less well separated than the central object types. After the
simulation experiments, the mechanism was investigated in a real robotic experiment
with three types of pucks. The result of this experiment was comparable to those
from the simulation experiments.

The third mechanism investigated by Wilson et al. [33] is similar to the differential
pullback algorithm, but with the important distinction that the pullback distances
for the different object types are adaptive. In order to make the pullback distance for
each object type adaptive, they introduce the concept of a ‘leaky integrator’, which
provides information about the dispersal of each object type. There is one integrator
in the form of a counter for each object type. Whenever a puck of the type associated
with the integrator is dropped by the robot the counter is incremented. When the

33



robots are about to drop an object, the pullback distance is calculated by summing up
the values of the integrators that correspond to objects that are to be positioned closer
to the center of the structure than the currently moved object. The integrators are
‘leaky’ such that their values are reduced over time if they are not constantly updated
by continuing dropping operations. The leaky integrator algorithm is presented in
Algorithm 2.4.

Algorithm 2.4: Leaky integrator algorithm

Rule 1:

if gripper pressed and obstacle ahead then

make random turn away from object
end

Rule 2:

if gripper pressed and no obstacle ahead then

if Type 1 puck carried then

add 15 units to Type 1 integrator
drop puck

end

if puck type f carried then

add 15 units to type f integrator
reverse distance proportional to the sum of integrators 1 to f
drop puck

end

reverse small distance
make random turn left or right

end

Rule 3:

if gripper not pressed then

go forward
end

Rule 4:

if time counter reaches threshold then

deduct 1 unit from all integrators and reset time counter
end

The first simulation experiments performed with the leaky integrator algorithm
showed no improvement over the results obtained using the differential pullback al-
gorithm. However, the algorithm requires several parameters to be set and problems
with finding the correct values for these were the cause of the lack of good results
for the algorithm. In an attempt to find more optimal parameters for the algorithm,
Wilson et al. [33] employed a genetic algorithm. When the obtained parameter val-
ues were tested experimentally, an improvement was recorded in both separation and
compactness in the resulting structure. Real robotic experiments using the same
parameter values achieved comparable results.
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2.4 Summary of Related Work

In this chapter we have described previous work on the creation of swarms of agents
that cluster and sort objects. The work includes both models that have been im-
plemented in computer simulations, and work on physical robots. All of the work
share some key characteristics both in the developed models and in the methodology
used to create the models. The researchers have all started with a set of hypotheses
about the individual behavior of the agents that lead to the emergent patterns at the
global level of the system. Based on these hypotheses they create a set of rules that
govern the behavior of the individual agents. These rules all concern the behavior
related to pick up/push and deposition/release of objects. The antecedents of these
rules are either a set of conditions that must be true for the rule to be applied, or a
calculation of a probability that decides whether the consequent of the rule will be
executed or not. The information used by the agents when deciding which rule to
invoke is limited, and only in Lumer and Faieta’s model [24] and ATTA [18] (see sec-
tions 2.2.2 and 2.2.3) do the agents inspect all of their surrounding cells before taking
action. All of the previous research has consequently used a set of rules to control the
agents. The use of other controllers, for example a neural network, has previously not
been investigated. The movement of the individual agents have in all of the previous
research been random. In the computer simulation models the agents either pick a
random neighboring cell to move to, or they pick a random direction and length of
a walk. None of the agents in previous research consequently use information about
the local configuration of objects to modify their movement.

The methodology used to create the set of rules controlling the agents is the
same for all of the previous research. The basis is a set of hypotheses about the
characteristics of the individual behavior that cause the emergence of patterns at
the global level of the system. These hypotheses are then captured in a set of rules
controlling the behavior of the individual agents. When this is done the agents are run
either in simulation or in real-life. If the expected patterns are not observed, the rules
are modified and the agents are run again. This process is repeated until the desired
patterns emerge. The methodology used in previous research is thus a ‘specify–test’
approach where the behavior of the individual agents is first hand-coded, and then
tweaked until the desired patterns emerge. None of the previous research has used
a genetic algorithm to evolve the individual behavior instead of hand-coding it. The
only use of a genetic algorithm so far has been to find the optimal parameters for one
of the models [33].
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Chapter 3

Method

The task to be achieved by the designed system is the evolution of a swarm of agents,
called ants, which are capable of clustering and sorting objects. The structure of the
system is inspired by social insects and their solutions to the tasks of clustering, patch
sorting, and annular sorting. In chapter 1 several social insect systems were described.
In all of these systems there are agents that reside in a physical world. Two of the
things that are needed from the system designed to solve the tasks are consequently
a group, or swarm, of agents and an environment which they inhabit. There must
also be collections of objects in the world that the ants can manipulate. There are
thus three main components of the designed system. These are ants, objects, and a
world in which these two components are located. An overall logical structure of the
system containing these components and their relations is shown in Figure 3.1.

As can be seen in Figure 3.1, the top level construct is an environment which
contains the other components. The environment has a swarm of ants and a collection
of objects that both inhabit a world. The ants in the environment can perceive the
world, that is, sense what is in the world, as well as carry the objects in the world.
The system that is built is based on the Swarm libraries1.

3.1 The Environment

The environment is the main structure that contains everything needed for a solution
to the given tasks. As can be seen in Figure 3.1 the environment contains three logical
components. The first is a collection of objects that are to be moved around by the
second component of the environment, which is a swarm of ants. The third compo-
nent of the environment is a world which contains the objects and ants. This world
is structured as a grid with periodic boundary conditions. The periodic boundary
conditions of the world mean that an ant that moves out of the world on one side
will enter the world on the opposite side. Thus, the two opposing sides of the world
are located ‘next’ to each other in a logical sense. The cells of the world may either
contain one object, one ant, or one ant and one object. This means that objects
cannot be stacked on top of each other, and that only one ant can be located at a
specific location at any one time. Previous work within this field of research has taken

1Swarm is a set of libraries that facilitate the implementation of agent-based models, see
www.swarm.org
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Figure 3.1: Logical view of system components.

different strategies concerning the point of whether ants should be able to move over
objects. That is, the possibility of an ant and an object to be located in the same
cell of the world. In the initial work by Deneubourg et al. [12] the ants were able to
move over the objects, but later work by Martin et al. [25] and Monmarché et al. [22]
removed this possibility. In our work we have chosen to allow the ants to move over
the objects because we feel that this models the behavior of real ants more closely.
This also requires less of the ants as they now only need to be able to pick up objects
that are located in the same cell as themselves, and not objects located in any one of
their eight surrounding cells2. The objects located in the world are elementary. They
contain a location in the form of x and y coordinates as well as a value. The value is
discrete and defines the type of the object such that the objects may be compared in
terms of similarity.

In addition to containing objects and ants in a world, the environment has a notion
of time. An environment goes through a series of discrete time steps that starts at
the ‘birth’ of the environment. The environment consequently has an age that can
determine how long it takes for a swarm of ants to solve a given task. At each time
step, all the ants in the environment are stepped in random order and allowed to
perform their actions.

The important characteristics of the environment can be summed up as follows.
An environment contains a collection of objects and a swarm of ants located in a
grid-world with periodic boundary conditions. At the beginning of the ‘lifetime’ of
an environment, all the objects and ants are placed in random locations of the world.
Then, when the ‘age’ of the environment increases by one unit, all the ants are allowed
to perform their actions. This causes movement of the ants as well as the objects,
mediated through the carrying by ants. As time goes by, the objects that were initially

2The added complexity is not an issue in computer simulations, but in a robotic implementation
the added complexity may be prohibitory.
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randomly dispersed in the world will be placed in patterns according to the desired
solution of the problem. If the task for example is to sort the objects in different
clusters according to type, the objects will be randomly distributed in the beginning,
and as time goes by spatial regions in the world will tend to contain only one type of
object.

An important characteristic of the environment is the relations between the size of
the world and the number of ants and objects. The basic problem here can be phrased
in terms of relating both the size of the world and the number of ants to the number
of objects: Depending on the number of objects to be clustered or sorted, how many
ants are needed to solve the task, and how large should the world be? There are two
tradeoffs involved in this dilemma. The first concerns the number of objects compared
to the size of the world. If the world is too small, then it may be impossible to solve
the task. In the extreme case there may be one object in each cell of the world. If
the task is to perform a patch sort, then it will not be possible to create separate
clusters if every cell of the world is occupied. Even if a solution is possible despite the
high density of objects, it may be difficult to achieve because the ants must search
for a long time for a possible site to drop their currently carried object. On the other
hand, if the world is too big, then a solution will be slow because the ants must move
for a long time before finding possible objects to pick up, or finding possible sites to
drop their currently carried object. We have chosen to use the tradeoff between the
number of objects and the size of the world proposed by Handl et al. [18]. They use
a square world where the length of each side is equal to

√
10 × no , where no is the

number of objects in the world3.
The other tradeoff concerns the number of ants compared to the number of objects.

If there are too few ants, then it will take a long time to solve the task simply because
there are fewer workers to perform the task. On the other hand, if there are too many
ants, then they may interfere with each others work and thus slow down the overall
progress. Ramos and Merelo [30] have suggested that the ratio of the number of
objects to the number of ants should be ten to one. In other words, the number of
ants divided by the number of objects should be 0.1. The environment thus contains
two parameters that are dependent on the number of objects. The first is the size of
the square world were the sides are of length

√
10 × no, and the second is the number

of ants, na, where na = 0.1 × no.

3.2 The Ant

The ant is the component of the environment that actually performs the actions. It is
the ants that move around in the world and manipulate objects, thereby solving the
given tasks. The ants have very limited capabilites in order to keep them as simple
as possible. They have limited sensory capabilities and the unitary actions they are
capable of can be split in two groups, the handling of objects and movement. The
ants are capable of picking up objects, carrying objects, and putting objects down in
addition to basic movement abilities.

To aid the ants with their actions they are equipped with limited sensory abilities.
In a grid-based world every cell has eight neighbors. Since an ant occupies a single

3The resulting number is rounded upwards to the nearest integer.
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Figure 3.2: Sensory input numbers of the ant’s surrounding cells when having the
directions north, northeast, and east.

cell at any one time, it always has eight surrounding cells which define its eight-cell
neighborhood. The ants are only capable of perceiving the objects contained in this
neighborhood, in addition to the object that is currently being carried. For each cell
in the neighborhood the ant is able to determine if there is an object located in the
cell, and the value of any such object. The same is the case for the object being
carried. The ant can sense if it is carrying an object, and if this is the case, the value
of the carried object. Every ant’s sensory apparatus is thus very limited since it can
only perceive objects in a limited spatial area (objects in its immediate neighborhood)
and it is unable to sense other ants at all.

Since the experiments are performed in computer simulations and not in the real
world, noise is added to the perceptions to simulate the non-determinism of real-life
behavior. In one percent of the perceptions the actual perception is replaced by one of
the other possible perceptions. For example, if an ant senses that there is an object in
a specific cell in its neighborhood, then the perception of this object may be replaced
by the perception of one of the other possible objects in the environment, or with
the perception of no object. Since no information about other ants is available to the
ants, they can be seen as operating independently of each other, although they do
affect the same world with their actions.

The ants all have a direction giving their current orientation in the world. This
direction can take on eight values: north, northeast, east, southeast, south, southwest,
west, and northeast. The direction of an ant affects both its movement and its
perception. The direction of the ant is taken into account when the ant perceives its
neighborhood such that the cell directly in front of the ant always constitutes sensory
input number two to the ant. The sensory input number of the eight cells in the ant’s
neighborhood when the ant has the directions north, northeast, and east are shown
in Figure 3.2.

Since the ants are capable of perceiving their eight surrounding cells as well as the
object they are currently carrying, the ants have a total of nine perceptual inputs.
These inputs are given to the ant’s controller to create a control sequence that de-
termines the actions of the ant. The controller may be any type of construct as long
as it converts a nine object input into a six digit control sequence. In our ants we
use a neural network controller which is further described in section 3.3. When the
sensory input is given to the controller it produces a six-digit binary sequency. Each
of these digits controls a unitary action that may be performed by the ant. The first
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Figure 3.3: Possible movement directions of the ant.

digit of the sequence controls the picking up behavior of the ant. If the ant is not
currently carrying an object and the first digit of the sequence is a 1, then the ant
will attempt to pick up an object. The ant may only pick up an object from the cell
where it is currently located. There are thus three conditions that must be satisfied
in order for an ant to pick up an object. First, the ant must not already be carrying
an object. Second, the control sequence must indicate that the ant should attempt
to pick up an object. Third, the ant will only pick up an object if there is an object
located in the ant’s current position. If the first digit of the sequence is a 0, the ant
will continue to the next digit of the control sequence.

The second digit of the control sequence handles the deposition behavior of the
ant. If the ant is carrying an object, then it may attempt to drop this object at its
current position. Since each cell in the world may only contain one object, the ant
cannot drop an object if the cell at its current position already contains an object.
As with the picking up action of the ant, there are three conditions that must be
satisfied in order for an ant to put down an object. First, the ant must be carrying an
object. Second, the second digit of the control sequence must be a 1, and third, the
cell at the ant’s current position must be empty. If any one of these conditions is not
satisfied then the ant will not be able to put down an object at its current position.

As described above, the first two actions defined by the control sequence has to do
with the manipulation of objects. The remaining four digits of the control sequence
all influence the movement of the ant. The ant is only capable of moving one cell at a
time, but it may move to any one of its eight surrounding cells. The possible moves of
the ant are shown in Figure 3.3. Four basic movement capabilities enable the ant to
move in these eight directions. The first two are movement forwards and backwards.
Forward movement is controlled by the third digit of the control sequence. If this
digit is a 1 then the ant will move one cell forward. However, any one cell of the
world cannot contain more than one ant, and the ant may therefore not be capable
of moving if the cell it wishes to move to is already occupied by another ant. If this
is the case, then the ant will remain stationary until it again is given the chance to
move. The fourth digit of the control sequence controls the backward movement of
the ant. If this digit is a 1 then the ant will move one cell backward. As with the
forward movement, the ant will not move if the cell behind it is already occupied by
another ant. One thing to note with the forward and backward movement is that
they may cancel each other out if they are both active at the same time, thereby
leaving the ant stationary.
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If the ants were only capable of moving forwards and backwards, they would
only be able to move to two of the cells in their neighborhood. In order to add the
ability of moving to any one cell of their neighborhood, the ants are equipped with
the actions of turning left and right. If the fifth digit of the control sequence is a
1 the ant will turn left, and if the sixth digit of the sequence is a 1 then the ant
will move to the right. As with the forwards and backwards movement, the left and
right turning may cancel each other out if they are both active at any one time.
The combination of the turning behavior with the forward and backward movement
allows the ants to move to any of their eight surrounding cells. A combination of
forward movement and left or right turning will, for example, allow the ant to move
diagonally with respect to its current direction. Since the ants are not capable of
sensing other ants, deadlock situations of ants being unable to move may occur. This
could happen if two or more ants wish to move to each others positions. To prevent
these deadlocks from continuing for an infinite period of time, a counter is added to
the ants that counts the number of steps for which the ant has remained stationary.
If an ant remains stationary for ten consecutive steps, or ‘moves’, the ant will move
to a random position in the world that is not occupied by another ant.

In the previous section describing the environment the notion of time steps was
introduced. At each time step of the environment, all the ants are stepped in random
order. The behavior of the ant when stepped is summarized in Algorithm 3.1.
When an ant is stepped it first perceives its eight cell neighborhood, as well as its
possibly carried object. These perceptions are then sent to the ant’s controller which
returns a six digit control sequence. The ant will then first attempt to pick up an
object if it is not carrying an object and the control sequence instructs it to do so. If
the ant is already carrying an object, then it will attempt to drop this object if this
is indicated by the control sequence. After the picking up or dropping behavior is
completed, the ant will turn left or right before moving forwards or backwards. The
movement behavior concludes the ant’s actions when stepped by the environment.

3.3 The Controller

The controller used by the ants to decide on which actions to perform depending
on their perceptions is a feedforward neural network. Feedforward networks are a
subclass of acyclic networks, and connections from nodes in one layer are only allowed
to nodes in the next higher level [26]. The topology of the feedforward networks used
can be seen in Figure 3.4. The networks all have nine groups of inputs and six
output nodes. The number of nodes in the hidden layer varies because the number is
dependent on the number of different objects that may be encountered by the ants.

The network has nine inputs. These nine inputs correspond to the nine different
perceptions that the ants may perform. There are eight inputs from the surrounding
cells of the ant, as well as one input from the possible perception of the object that the
ant is currently carrying. Figure 3.4 shows the mapping from the ant’s perceptions
to the input nodes of the network. The nodes 1–8 correspond to perceptions from
the ant’s eight surrounding cells, and the node A is the perception of the object that
the ant is carrying. In the experiments where there is only one type of object that
may be encountered by the ants, there is only one input node for each perceptual
input. When there is only one type of object in the environment, then each of the
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Algorithm 3.1: Ant behavior

perceive neighborhood;
get control sequence Ctrl;
if not carrying object then

if Ctrl = pickup and object at current location then

pick up object;
end

else

if Ctrl = drop and no object at current location then

drop carried object;
end

end

if Ctrl = turn left then

turn left;
end

if Ctrl = turn right then

turn right;
end

if Ctrl = forward then

move forward;
end

if Ctrl = backward then

move backward;
end

if no movement possible then

increment immobility counter;
if immobility counter > maximum immobility then

move to random location;
reset immobility counter;

end
end
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Figure 3.4: Topology of the feedforward network and the mapping of the ant’s per-
ceptions to the inputs of the network. The input to node A is a perception of the
object that the ant is currently carrying.
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Figure 3.5: The feedforward network used for the task of patch sorting with two
different object types. The network has three hidden nodes and nine groups of input
nodes with two nodes in each group.

ant’s neighboring cells may either contain an object or be empty. To make a correct
perception of what is in each of these cells it is thus only necessary with two different
stimuli, one for the existence of an object and one for an empty cell. This binary
sensory stimuli can be represented in the input nodes with the nodes either firing
or not. In the networks used in the experiments, an input node fires if an object is
sensed by the ant in the corresponding sensory field.

When there is more than one type of object, a binary sensory stimulus is no longer
sufficient. For each of the perceptual inputs the ants must be capable of differentiating
between the different types of objects, in addition to the case were there is no object.
This means that the inputs to each node in the input layer are no longer binary, and
so the different sensory stimuli can no longer be represented by the input nodes being
on or off. There are two different solutions to this problem. The first is to represent
the different sensory stimuli with different firing activations of the node. In this case
each input node is not simply firing or not, but there is a scale of different firing levels
that represent the different sensory stimuli. The approach taken in this research is
the alternative solution. Instead of having one input node for each perception, there
are groups of input nodes for each perception. The networks have nine input groups,
with the same number of input nodes in each group as there are object types. If, for
example, an object of type A is located directly in front of the ant, then only the node
corresponding to a type A object in the second input group will fire. Consequently it
is only possible for one node in each input group to fire at any one time, because only
one object may be perceived in any one of the ant’s perceptual fields. A network used
for patch sorting when there are two different types of objects is shown in Figure 3.5.
This network has, like every other network, nine input groups. Each of these groups
has two nodes corresponding to the two types of objects that may be perceived. In
addition there are four nodes in the hidden layer.

All the networks used have six output nodes. The outputs of these nodes are used
to create the six digit control sequence given to the ants. Each of the output nodes
has a binary output and the control sequence will thus consist of six binary digits.
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The first two outputs control the pick up and deposit behaviors of the ant (nodes P
and D in the figures). The remaining four outputs control the movement behavior of
the ant. Output nodes three and four control the forward and backward movement (F
and B in the figures), and the remaining two nodes control the left and right turning
behavior (L and R in the figures).

The hidden nodes and the output nodes of the network use similar activation
functions. The hidden nodes of the network use the sigmoid function given in Equa-
tion 3.1.

f(net) =
1

1 + exp−net
(3.1)

In the equation, net is the sum of the inputs to the node multiplied by their weights.
The computation of net is shown in the equation below, where xi is the output of the
node’s ith input node and wi is its corresponding weight.

net =
∑

i

xi × wi (3.2)

The activation function of the output nodes is very similar to the activation function
of the hidden nodes. The only difference between the two functions is that in the
output nodes a step function is applied to the output of the sigmoid function. This
means that whereas the output of the hidden nodes are values in the interval [0. . . 1],
the output of the output nodes are discrete valued and may only take on the values
of 0 or 1. The activation function of the output nodes is shown in Equation 3.3.

f(net) =

{

1 if 1
1+exp−net ≥ 0.5

0 otherwise
(3.3)

3.4 Evolution

In order to find solutions to the tasks of clustering, patch sorting and annular sorting,
a genetic algorithm is used. A genetic algorithm maintains a population of evolving
competitive problem solutions [23]. There is thus a space of candidate solutions which
the genetic algorithm searches. However, not every possible solution is created and
evaluated. The genetic algorithm finds solutions by examining only a small fraction
of the possible candidate solutions [29]. A general version of the genetic algorithm
used in this work is shown in Figure 3.6.

The genetic algorithm used consists of five major steps that are repeated until
a good enough solution is found, or until the algorithm has gone through a specific
number of repetitions. The first step in the algorithm is the initialization of the next
generation. If this is the first cycle of the algorithm, then every individual in the
generation must first be created before they are initialized. After every individual in
the current generation has been initialized, the next step is to run each individual in
the generation. When an individual is run it will create a proposed solution to the
desired task. If for example the task is to cluster the objects, then each individual
will attempt to form a cluster of the objects contained in its grid-world. After each
individual has run for a specified time, the next step in the genetic algorithm is to
evaluate the proposed solutions. The evaluation of the solutions is used to create a
mating pool consisting of the best individuals of the current generation. The individ-
uals in this mating pool are then used as parents for the next generation by combining
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initialize generation

run each individual

evaluate individuals

create mating pool

create offspring by mating

two and two individuals

Figure 3.6: The genetic algorithm cycle.

pairs of the current individuals. This concludes the cycle of the genetic algorithm,
and the new generation of possible solutions is initialized in the beginning of another
cycle of the algorithm. For more details on genetic algorithms, see [16, 20, 29].

3.4.1 Phenotype and Genotype

The individuals of the generations in the genetic algorithm are the environments
described in section 3.1. Each individual thus contains a swarm of agents and a
collection of objects that are located in a grid-world. When the individuals of a
generation are initialized a random positioning of ants and objects is defined. Then
each environment is set up such that they all have this same random positioning of
objects and ants. When each individual environment in the current generation is run,
the environment is stepped a specified number of steps. This causes the ants in the
environment to perform pick up and deposition actions, as well as move around in
the world. An individual in the genetic algorithm can thus be said to be a swarm
of ants that are allowed to move around in a world and move objects for a specified
number of steps. The actions of the swarm will cause the objects in the world to have
different positions at the end of the run compared to the beginning of the run.

The positioning of the objects constitutes the phenotype of the individuals in the
genetic algorithm. After the individuals of the current generation have completed
running, they are evaluated in terms of the positioning of the objects in their world.
The objects that are currently being carried by the ants are not considered part of
the world, and are thus not part of the individual’s phenotype. The evaluation is
done by giving the positions of the different types of objects to a fitness function.
Depending on the task to be solved, this fitness function will give different scores to
the various spatial configurations of objects. If the task, for example, is to cluster
identical objects, a dispersed configuration of objects will receive a lower score than
a densely packed spatial configuration of objects.

46



1.34 -2.6 9.4 3.43 4.7 1.03 9.673.87 -2.61.563.41 -9.5 2.21 -6.5 5.89 3.54 2.72

weights between hidden nodes

and output nodes

weights between input nodes

and hidden nodes

weights applied to

the input of one node possible crossover point

Figure 3.7: The genotype of an individual.

Whereas the phenotype of the individuals is the positioning of their objects, the
genotype is what can be said to be responsible for this positioning at the lowest level.
The positioning of the objects is formed by a swarm of agents, where each agent
is controlled by an identical controller. It is the basis of this controller that is the
genotype of an individual. The controllers used are feedforward networks, and the
genotype of each individual is an array containing the weights of the networks. An
example of this array of weights is shown in Figure 3.7. There are different levels of
abstraction at which the array of weights may be seen. At the lowest level the array
can be seen as consisting only of real-valued positive and negative numbers. At the
next level of abstraction the weights are divided in groups, with each group defining
the weights on the inputs to a specific node. The networks are all fully connected
such that there are connections between all the input nodes and the hidden nodes,
and all the hidden nodes and the output nodes in the network. Each group of weights
thus consists of all the weights on the connections from the nodes in the next lower
layer and the ‘current’ node. This level of abstraction views the array of weights as
describing the different nodes in the hidden and output layers of the network. The
next level of abstraction views the array as being divided in two parts. One part
describing the weights on all the connections from the input layer to the hidden layer,
and the other part describing the weights from the hidden layer to the output layer.

The array of weights in combination with the topology of the network describes
the feedforward networks controlling the individual agents in the environment. There
is an intricate path from the genotype to the phenotype of an individual, and this
is sketched in Figure 3.8. The genotype of an individual is an array of weights
which define a network. This network controls an individual ant which is part of a
swarm of identical ants. The swarm of ants resides in a world containing objects,
and the ants move these objects around. The actions of the swarm of ants cause a
spatial configuration of the objects in the world which constitutes the phenotype of
an individual.

3.4.2 Crossover and Mutation

Both the crossover and mutation operators work on the genotype of the individuals.
The crossover operator is responsible for creating a new genotype from two existing
genotypes. When two genotypes are crossed over the following takes place. The
first thing that is done is to calculate the number of possible crossover points. To
avoid the crossover operation from being too much of a disruptive force, crossover
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is not allowed to split the weights that are applied to the inputs of the same node
in the network. Thus crossover can only occur between the groups of weights that
belong to the same nodes (see Figure 3.7). After the number of possible crossover
points has been determined, one of the points is selected at random. The groups of
weights located before this point from the first parent genotype is then combined with
the groups of weights located after this point in the second parent genotype. The
crossover operator thus uses a one-point crossover with the first part of the resulting
genotype coming from the first parent, and the second part coming from the second
parent.

The mutation operator may affect every weight of the genotype. It goes through
all the weights, and for each weight decides whether it should be altered or not. Each
weight is changed with a certain probability, and if the weight is to be changed it is
increased or decreased with a random number from the interval [−1 . . . 1].

3.4.3 Selection Mechanisms

The selection mechanism used in the genetic algorithm is a combination of eliti-
sism and tournament selection. Elitisism forces the genetic algorithm to retain some
number of the best individuals at each generation [29]. After the individuals of a gen-
eration have been evaluated, the five best individuals of that generation are copied
into the next generation, only undergoing mutation in the process. This reduces the
chance of good individuals not being selected for reproduction, or being destroyed by
crossover.

Tournament selection is the second selection mechanism employed by the genetic
algorithm. Five individuals are chosen at random from the current generation. These
five individuals then compete for inclusion in the mating pool. The best individual
of the five-individual tournament is selected for inclusion in the mating pool with a
probability of 0.75. If this individual is not selected, then one of the five individuals
(including the best) is selected at random. The number of tournaments that are per-
formed is equal to the size of the current generation minus the number of individuals
that were selected by the elitist mechanism.

After the mating pool is created from the tournament selections, pairs of individ-
uals are selected randomly for mating. The two individuals have a certain probability
of crossing over with each other. If they are to undergo crossover, then the two are
first crossed over with the first parent being first, and then the second parent being
first. This results in two offspring, one with its first half from the first parent and the
second half from the other parent, and the other with the first part from its second
parent and its last part from the first parent. If the two parents are not subjected to
crossover they reproduce by cloning themselves. After the children have been created
they undergo mutation. The mating process is repeated until the next generation
contains the same number of individuals as the current generation, including the in-
dividuals that were subjected to elitisism. A summary of the genetic algorithm used
in the experiments is given in Algorithm 3.2.
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Algorithm 3.2: Genetic algorithm

create first generation of populationsize individuals;
for gen = 0 to runlength do

/*initialize current generation */

pick random positions for ants and objects;
initialize each individual;
/*run current generation */

foreach individual do

for i = 0 to runtime do

randomize list of ants;
step each ant in the list;

end
end

/*create next generation */

calculate fitness of all individuals;
copy the elitistnum best individuals into the next generation;
/*create mating pool */

for j = 0 to populationsize - elitistnum do

select five individuals at random;
pick a random number p;
if p < 0.75 then

select the best individual;
else

select an individual at random;
end

put the selected individual in the mating pool;
end

/*make offspring */

for k = 0 to
populationsize−elitistnum

2
do

select two individuals at random from the mating pool, ind1 and ind2;
pick a random number r;
if r < 0.7 then

crossover the individuals with ind1 as first parent;
crossover the individuals with ind2 as first parent;

else

clone individuals ind1 and ind2;
end

end

expose all individuals of the next generation to mutation;
end
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Parameter Value

Number of objects 50 60
Size of world 23 × 23 25 × 25
Number of ants 5 6
Individual runtime 4000
Population size 50
Generations 6000
Crossover rate 0.7
Mutation rate 0.05

Table 3.1: Parameter values used in the experiments.

3.5 Parameter Settings

There are several parameters that must be set for each experiment. The parame-
ters can be divided into two classes: those that apply to each individual, and those
that apply to the genetic algorithm. The first parameter that must be set for each
individual is the number of objects that are to be located in the world. All of the
experiments use either 50 or 60 objects. As described in section 3.1, the number of
objects can be used to determine the size of the world and the number of ants to
use. This means that an environment containing 50 objects will have a 23 × 23 grid
world with 5 ants, and an environment containing 60 objects will have a 25× 25 grid
world with 6 ants. The last parameter that needs to be set for each environment is
how many steps it should be allowed to run. In all the experiments each individual
environment is run for 4000 steps.

The remaining parameters apply to the genetic algorithm. All experiments have
a population size of 50 individuals, and the evolutionary run is 6000 generations long.
The crossover rate is set to 0.7, which means that in 70% of the cases, the parents
selected from the mating pool are crossed over to produce offspring. The mutation
rate is constant and is set to 0.05 for all the experiments. The parameter settings are
summarized in Table 3.1.
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Chapter 4

Experiments

In our work we have designed experiments to solve the tasks of clustering, patch
sorting, and annular sorting by a swarm of agents. This chapter describes five of these
experiments. The first experiment solves the task of clustering. This is the problem
that was first addressed within this field of research by Deneubourg et al. [12] in 1991.
Clustering is the task of grouping a collection of identical objects in a continuous
area. The second and third experiments are concerned with patch sorting. This
task involves the grouping of two or more classes of objects such that each class is
individually clustered, while at the same time the clusters of each class are separated
from each other [27]. The second experiment solves the task of sorting two different
types of objects in to distinct clusters, while the third experiment sorts three different
types of objects. The last two experiments solve the task of annular sorting. Melhuish
et al. [27] have defined annular sorting as “. . . forming a cluster of one class of objects,
and surrounding it with annular bands of the other classes, each band containing
objects of only one type.” In the fourth experiment an annular structure consisting
of two types of objects is formed, and in the final experiment an annular structure
containing three types of objects is created.

4.1 Clustering

In this experiment the task to be solved is the grouping of identical objects in a
continuous area. To solve this task all the objects in the world must be placed
together such that they form a structure that is as compact as possible. This means
that there can not be any empty cells within the structure, and that no objects can
be isolated. If the definition of the clustering task is viewed on a local scale, it can
be rephrased as the requirement that each individual object must be surrounded by
as many other objects as possible. If each object in the world has as many objects in
its eight surrounding cells as possible, the resulting global structure will be a densely
packed cluster of objects. This local view of a cluster is used in the fitness function
of the experiment. To compute the fitness of a proposed solution, every object in the
final configuration formed by the solution is investigated in turn. For each object the
number of objects in its eight-cell neighborhood is counted. The sum of these counts
constitutes the fitness of the solution. The fitness function is given in Equation 4.1.

no
∑

i=1

c(oi) (4.1)
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Figure 4.1: The left structure will receive a maximum score from the fitness function,
whereas the structure on the right will receive a mediocre score.

In the equation no is the number of objects in the world, and c(oi) is a counting
function that returns the number of objects in object oi’s eight-cell neighborhood.
Figure 4.1 shows two different structures that will get a maximum and a mediocre
score by the fitness function.

The controller of the individual ants in the experiment is a feedforward network
with nine input nodes and three hidden nodes. Since there is only one type of object,
it is sufficient to have only nine input nodes, that is, one node in each group described
in section 3.3. The number of hidden nodes was determined experimentally, and was
set to one node more than there are sensory stimuli. For each perception that the ant
makes, it can either sense an object or an empty cell. There are thus two different
stimuli that may be perceived by the ant, and hence a network with three hidden
nodes is chosen as the ant’s controller. In this clustering experiment there are 50
objects and 5 ants located in a 23 × 23 grid-world. Each individual environment
containing objects and ants is stepped 4000 times before it is evaluated, and the
evolutionary run is 6000 generations long.

4.1.1 The Evolution of a Solution

The fitness of the fittest individual and the average fitness of each generation is shown
in Figure 4.2. Only the first 2000 generations have been included in the figure because
there is little change in the fitness of the fittest individual after generation 180, and
the average fitness of each generation stabilizes around generation 300. It is clear from
the figure that a solution to the clustering task is evolved very quickly. The fittest
individual of the first generation has a fitness of 64, and after only four generations
the fitness of the fittest individual has more than doubled and reached a score of 144.
After only 160 generations the fittest individual has reached the maximum achievable
fitness of 324, and 20 generations later the fitness of the fittest individual stabilizes
around this value for the rest of the evolutionary run.

To see what takes place in the evolutionary run during the early period of rapid
change, three of the individuals from this period are selected for an investigation
of their sorting process. Because the change in fitness is so fast during the early
stages of the evolutionary run, the selected individuals will be very close in terms
of the generations that they are from. The first selected individual is the fittest
individual from generation 3, which has a fitness of 102. The next individual is from
generation 6 and has a fitness of 200, and the final individual is from generation 13
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Figure 4.2: Fitness during the evolution of a clustering solution.

with a fitness of 290. By investigating these three individuals1 it is possible to see
how evolution progresses in terms of the individuals becoming increasingly better at
clustering objects. The end results of clustering performed by the three individuals
is shown in Figure 4.3.

The fittest individual from generation 3 clusters around two thirds of the objects
into several small, loose clusters, while the remaining third of the objects are scattered
randomly in the world. The ants of the individual preferentially pick up isolated
objects, but do also occasionally pick up objects that are part of a group. After the
ants have picked up an object they drop it in the next step, irrespective of whether it
is in a densely or sparsely populated neighborhood. The preferential pickup behavior
causes the formation of small groups, while the constant deposit causes some objects
to be isolated. The movement of the ants of this individual is usually in straight
paths backward, but when there are objects present in the ants’ neighborhood they
sometimes turn left.

The movement of the ants of the fittest individual from generation 6 is identical to
the movement of the ants of the fittest individual from generation 3. The individual
is, however, capable of clustering all of the objects into three to five loose clusters.
The formed groups are larger than the ones formed by the previous individual, and
there are no isolated objects. This change is mainly due to the ants only depositing
objects in neighborhoods where there are other objects. After the clusters are formed
the ants continue to remove objects from them, and this sometimes cause parts of the
clusters to break off from the clusters. These fragments are, however, quickly picked
up and deposited in one of the clusters.

The fittest individual from generation 13 is capable of forming one or two dense
clusters. If two clusters are initially formed, one of them is usually much smaller

1A detailed description of the sorts performed by the individuals is given in appendix A.1.
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Figure 4.3: Clustering performed by the fittest individuals from generations 3, 6,
and 13.
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than the other. If the individual is allowed to run for a long time the smaller cluster
is eventually broken down, leading to the formation of a single cluster. The ants of
the individual first form loose clusters that eventually become densely packed with
objects. Then all but one or two of these dense groups are broken down, leading to the
final distribution of objects. The only difference in the movement of the ants of this
individual and the two previously described individuals, is that the ants sometimes
turn right in addition to left when there are objects present in their neighborhood.

From the investigation of the individuals it is evident that the ants of the individ-
uals first evolve a proper pickup behavior, and then a proper deposit behavior. The
ants first evolve a preference for picking up isolated objects, and then a preference for
depositing objects in groups. These behaviors are refined throughout the evolutionary
run leading to progressively better solutions to the clustering task.

4.1.2 The Final Solution

The evolution of a solution to the clustering task was allowed to run for 6000 genera-
tions, even though it later proved that successful solutions had evolved after only 160
generations. At generation 6000 all of the five fittest individuals have received perfect
fitness scores. In fact, for the last 4000 generations the five fittest individuals of each
generation all have received such high fitness scores that they must have clustered
the objects into a single cluster of close to perfect shape. The average fitness of the
last generation is 293.32 with a standard deviation of 52.44. This indicates that at
least one of the individuals of this generation did not perform that well. However,
the fittest individual received a score of 324 which constitutes a perfect score on the
clustering task when there are 50 objects to be clustered.

Figure 4.4 shows an example of a clustering performed by the final solution. After
2100 steps several groups have been formed, and after 2990 steps one of these groups
have grown considerably. A single cluster with a perfect shape is formed after 5840
steps. The way the final solution clusters the objects is as follows. At the begin-
ning of the run of the solution most of the objects are isolated, although there are
some small groups of two or three objects. When the ants encounter an object in a
sparsely populated neighborhood they will pick up the object. Since most eight-cell
neighborhoods only contain one object at the beginning of the clustering process, the
ants will pick up the first object they encounter. These objects are carried by the
ants for a significant number of steps. The reason for this is that the more objects
there are in the ants’ immediate environment, the more likely the ant is to deposit
its carried object. Since the objects in the world are randomly scattered at this point
of the clustering process, the ants rarely encounter an environment in which they are
likely to deposit their object. The ants do, however, occasionally deposit their object
either next to another object, or in most cases next to a pair of objects. These groups
occasionally reach a size of five to six objects. After some time most of these groups
are, however, broken down as the ants pick up objects from them.

At the beginning of the clustering process there is thus a phase were the ants are
mostly loaded with objects. During this phase small groups of objects are occasionally
formed and broken down. This phase lasts until one or more of the groups contains
around seven to eight objects (step 2100 in Figure 4.4). Once this happens the group
will rapidly increase in size. The number of objects needed to trigger the growth of
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Figure 4.4: An example of cluster formation by the final solution. After 5840 steps a
single cluster with a perfect shape is formed.
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a group depends on the shape of the group, but a square group of nine objects will
always grow rapidly.

The growth of one or two groups of objects signifies the onset of the second phase
of the clustering process. In this phase the ants are initially mostly loaded, but as
more and more objects become part of the growing clusters, the ants are loaded less
of the time. This is due to the fact that the ants do only rarely pick up an object
from a large, dense cluster of objects. As more and more of the objects become part
of a cluster of this type there are consequently fewer objects for the ants to pick
up. At the beginning of the growth phase it is mostly the isolated objects that are
deposited in the growing groups (step 2990 in Figure 4.4). After a while all of the
objects become part of either the growing cluster or a smaller group. The smaller
groups are eventually broken down. Depending on whether there were one or two
groups that started growing there may be a third phase of the clustering process. If
only one group started growing the second phase will end with only one cluster, but
if two groups started to grow the phase will end with two clusters, and a third phase
will follow. In this phase the ants are usually unloaded, and the phase may take a
long time to complete. The ants do occasionally pick up an object from one of the
clusters and deposit it in either cluster. As a result of this one of the clusters will
eventually become bigger than the other cluster. The ants will continuously remove
and deposit objects in the clusters until the smaller cluster reaches a critical size of
seven objects or less, depending on the shape of the cluster. Once this happens the
small cluster will rapidly disintegrate leading to the formation of only one cluster.

The clustering performed by the final solution appears to be based on two specific
features of the ants pick up and deposit behaviors. First, the ants mostly pick up ob-
jects that are located in sparsely populated environments, and rarely remove objects
that are part of larger, dense clusters. Second, the ants usually deposit their objects
only in densely populated areas, although they may occasionally deposit an object
next to pairs of objects. These characteristics of the ants’ pick up and deposition
behaviors enable the final solution to cluster a set of identical objects.

The movement of the ants of the final solution is usually in the backwards direction
regardless of whether an ant is carrying an object or not. In fact, the ants display
the same type of movement both when they are carrying an object and when they
are unloaded. When there are no objects present in the ants’ immediate environment
they move in a straight path backwards. However, when they perceive objects in
their eight-cell neighborhood their movement changes. The presence of objects in the
ants’ surroundings cause the ants to turn left or right. In some situations the ants
will also move in the forwards direction. The default behavior of the ants can thus
be said to be in a straight path backwards, with this behavior being modified by the
perception of objects.

The observation of the actions of the ants is not the only way to look at the
clustering process. An alternative approach is to evaluate the distribution of objects
at each step of the process with the fitness function. The score of the process at
each step may then be investigated to see both how the clustering takes place, and
to get an indication of the stability of the cluster once it is formed. The score at each
step of the clustering process of Figure 4.4 is shown in the graph in Figure 4.5. In
the graph it can be seen that there is first a brief period where there is not much
increase in the score from step to step. This is the period when small groups of
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Figure 4.5: The score at each step of the clustering process shown in Figure 4.4.

objects are occasionally formed and broken down. After this brief period the score
starts to increase. The increase is slow at the beginning, before it suddenly increases
rapidly to the maximum value. At the beginning of the increase one of the clusters
has begun to grow. As more and more of the objects become part of the growing
cluster the score of the distribution of objects increases. The reason why the increase
is slower in the beginning than in the end is due to the fact that at the beginning
objects were removed from smaller groups and then deposited in the growing cluster.
Then, after some time isolated objects were moved to the cluster. The objects that
were earlier located next to other objects do not add as much to the score when they
are moved to the growing cluster as isolated objects, and the increase in the score is
thus slower at first. The graph also gives an indication of the stability of the cluster
once it is formed. After the ants have successfully collected all of the objects in a
single cluster, they continue their actions and occasionally remove an object from the
cluster. However, as is evident from the graph, once the cluster is formed it never
deteriorates and it is thus stable once it is formed.

Testing Sensitivity to Initial Conditions

An important feature of the clustering solution is whether it is stable over a wide range
of start configurations (different distributions of objects and ants). To investigate
whether the solution is capable of clustering a collection of objects irrespective of
their initial configuration, the solution was run on 50 different start configurations.
Then the average fitness of the 50 runs and the standard deviation were calculated.
To get an indication of how long the clustering process takes on average, as well as
to see if the clusters are stable once formed, the 50 runs were repeated with different
numbers of steps. The solution was run with run times of 5000, 10000, 15000, and
20000 steps with 50 runs for each runtime. The results of the runs are summarized in
Table 4.1. The first thing to be noticed from the results is that the average fitness of
the runs that were run for 5000 steps is somewhat lower than for the other run times.
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Individual runtime Average fitness Standard deviation

5000 310.36 36.34
10000 319.44 9.71
15000 319.00 9.04
20000 321.28 5.43

Table 4.1: Results of 50 runs of the clustering solution with different start configura-
tions and run times.

The reason for this is probably that if two clusters are initially formed, a runtime of
5000 steps is not enough time for the clusters first to form, and then for one of them
to be broken down. For the longer run times the time is however long enough for
one of the clusters to be broken down completely if two clusters are formed initially.
Another thing to notice is that the standard deviation is very low for the three last
run times. A score of 319 means that all of the objects have been clustered into a
single cluster. The only difference between a cluster with this score and a cluster with
a perfect score is the shape of the cluster. The low standard deviation thus means
that the solution is capable of clustering the different initial configurations of objects
into a single cluster. The high score of the longest run times also means that the
clusters are very stable once they are formed, despite the continuous actions of the
ants.

4.2 Two-Object Patch Sorting

Patch sorting is the task of creating several clusters, each containing objects of only
one type, which are separated from each other. Since there are two types of objects
in this experiment, the task to be solved is to create two clusters that are spatially
separated. Each of the clusters must contain objects of only one of the two types.
As with the clustering task, this task may also be viewed from a local perspective.
In the clustering task each object should be surrounded by as many other objects
as possible. However, since there is now more than one type of object, restrictions
must be applied to the surrounding objects. In a successful patch sort solution each
object should be surrounded by as many other identical objects as possible, but at
the same time it should be surrounded by as few objects as possible of the other type.
To calculate the fitness of a patch sort solution an extension of the strategy used for
clustering is used. The objects of the solution can be located in three different general
kinds of neighborhoods. An object can either be isolated, it can be in an area with
identical objects, or it can be in an area with objects of another type. Objects that
are in each of these different situations should contribute to the overall fitness of the
solutions in different ways. An object that is located in an area with a high density
of identical objects should contribute positively to the fitness, whereas an object that
is located in an area with a high density of different type objects should contribute
negatively to the overall fitness. Objects that are isolated can be said to be neutral in
the sense that they are not pertinent to the overall solution. To compute the fitness
of a solution to the patch sort task, each object in the solution is investigated in turn.
For each object, the surrounding objects in its neighborhood are considered. For each
of these objects that are identical to the object being evaluated a reward is given,
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and for each object that is of a different type a punishment is given. The function
used to calculate the fitness of a patch sort solution is given in Equation 4.2.

no
∑

i=1

c(oi)
∑

j=1

s(oi, oj) (4.2)

In the equation no is the number of objects in the world, and the function c(oi)
returns the number of objects that are located in object oi’s neighborhood. The
function s(oi, oj) is a discrete similarity function that returns 1 if object oi and oj are
of the same type, and −1 if they are of different types.

The feedforward network used as controller for the ants has four hidden nodes
and 18 input nodes. As there are now two kinds of objects, there are three distinct
sensory stimuli that may be perceived by the ant. These are either one of the two
types of objects, and nothing. Since there are three types of sensory stimuli we have
chosen to use four hidden nodes in the networks controlling the ants. The increase
from one to two types of objects causes a doubling in the number of input nodes of
the network. With two types of objects there will be two nodes in each of the nine
input groups of the network, making a total of 18 input nodes. In this experiment
there is a total of 50 objects with 25 objects of each type. These objects are located in
a 23×23 grid-world and are moved around by a swarm of 5 ants. Each individual of a
generation is allowed to step 4000 times before being evaluated, and the evolutionary
process runs for a total of 6000 generations.

4.2.1 The Evolution of a Solution

The fitness of the fittest individual of each generation and the average fitness of the
generations are shown in Figure 4.6. As can be seen in the figure there are two main
phases of the evolutionary run. In the first phase there is a rapid increase in both
the fitness of the fittest individual and the average fitness of each generation. The
fittest individual of the first generation has a fitness of −10.88, but after only 217
generations the fitness of the fittest individual has increased to 166. After a total of
805 generations the fittest individual has a fitness of 284, and this marks the end of
the first phase of the evolutionary run. In the second phase there is not much increase
in the fitness of the fittest individual. However, the fitness of the fittest individual
becomes less variable as the run continues. This is an indication that the fittest
individual becomes better at performing a patch sort from a large variety of initial
distributions of objects and ants. Although there is not much increase in the fitness
of the fittest individual, the average fitness of the generations continues to increase
to some extent throughout the evolutionary run.

Of the two different phases of the evolutionary run, it is the first that is most
interesting in terms of how the sorting process of the fittest individual changes. During
this phase there is a rapid increase in the fitness of the fittest individuals, and it is
clear that the fittest individual of each generation quickly improves on the task of
sorting two types of objects into two distinct clusters. To see how the sorting process
changes during this phase of rapid improvement, the fittest individuals from four
generations are chosen for a closer investigation. These are the fittest individuals
from generations 77, 158, 550, and 720. These individuals have a fitness of 98, 150,
200, and 250 respectively. The first individual that is selected has a fitness of around
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Figure 4.6: Fitness during the evolution of a solution to the two-object patch sorting
task.

100 because it is assumed that individuals that have a lower fitness than this do
not show a behavior that is interesting in terms of patch sorting. After this first
individual, the next are selected for every 50-unit increase in fitness. By examining
the sort performed by these four individuals2 it is possible to get an idea of how a
solution to the two-object patch sorting task is evolved. The result of sorts performed
by the four individuals are shown in Figure 4.7.

The fittest individual from generation 77 is capable of forming three or more loose
groups of type 1 (T1) objects. The type 2 (T2) objects are, on the other hand, only
put in groups of two or three, or they are isolated. The ants of the individual carry
T1 objects longer than T2 objects before they are deposited, and they are mostly put
down in areas with other T1 objects. T2 objects are, on the other hand, deposited in
isolated areas or next to other T2 objects. This leads to the individual first forming
groups of T1 objects, for thereafter to form small groups of T2 objects. The ants of
the individual move in circular paths throughout the sort.

The movement of the ants from generation 158 differs from the movement of the
ants from generation 77 when they are carrying a T1 object. Instead of moving in
circles the ants move in a straight path backwards, and when objects are present
in their neighborhood they turn right. The individual start the sorting process by
first forming several small groups of T1 objects. Then all of these are broken down
except for two or three groups that grow in size until they contain all of the T1
objects. After these groups begin to form, some groups of T2 objects also emerge,
but these are quickly broken down. The end result of the sorting process is two or
three groups of T1 objects that are more compact than the groups formed by the
previous individual. The T2 objects are, however, only scattered and not forming
pairs.

2A detailed description of the sorts performed by the individuals is given in appendix A.2.
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Figure 4.7: Two-object patch sorts performed by the fittest individuals from gener-
ations 77, 158, 550, and 720. In the figures filled circles are T1 objects, and empty
circles are T2 objects.
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The fittest individual from generation 550 forms larger groups of T2 objects, in
addition to one or two groups of T1 objects. This was not done by the previously
described individuals. Like the individual from generation 158, this individual also
begin by forming groups of T1 objects. One of these then increases in size, and as
this happens the T2 objects also begin to be grouped. The T2 objects eventually
form three or four smaller groups that are not as dense as the T1 groups.

The last investigated individual is from generation 720. This individual is capable
of performing an almost perfect patch sort. In contrast to the previous individuals
this individual begins by forming several groups of each type of object. All the groups
of T2 objects are then broken down, except for one that eventually contains all of
the T2 objects. The T1 groups are more stable than the T2 groups and consequently
remains for a longer period than the T2 groups. Most of them are, however, eventually
broken down except for one or two. In most cases this leads to the formation of a single
cluster of T2 objects, and one or two clusters of T1 objects. The movement of the
ants has changed from the previous individuals when they are unloaded or carrying
a T2 object. Like when they carry T1 objects, the ants move in straight paths, and
turn either left or right when there are objects present in their neighborhood.

From the investigation of the individuals it is evident that the evolved individuals
first become proficient at clustering T1 objects, and thereafter T2 objects. For both
types of objects the individuals first become capable of forming several smaller groups
of the types, before finally being able to form a single cluster of the type.

4.2.2 The Final Solution

After a total of 6000 generations the evolutionary run is ended. The final generation
has an average fitness of 256.20 with a standard deviation of 29.80. Towards the
end of the evolutionary run there is not much variation in the fitness of the fittest
individuals from each generation, and it appears that the fittest solutions are capable
of performing patch sorts from a variety of different initial configurations. In the
final generation all of the five fittest individuals have a fitness of 284 or more. The
fittest individual of the final solution, which constitutes the final solution to the patch
sorting task, has a fitness of 292. This score is the maximum achievable fitness, and
it thus represents a perfect patch sort.

The final solution is capable of performing patch sorts from a wide variety of
different start configurations. The time it needs to perform a successful sort does,
however, depend on the initial configuration of the objects. If the initial configuration
contains a small group of either type of object, then this group will quickly ‘attract’
similar objects, and in these cases a patch sort will be performed very quickly. In
other cases the patch sort will take longer time. This may happen if all the objects
are initially isolated, but this is not what makes the patch sort take the longest. The
patch sort takes the longest time if there, at some point, arise several stable clusters
of any type. If this happens then it may take a long time before all but one of the
clusters are broken down. Figure 4.8 shows how a two-object patch sort may be
achieved. In this particular case the patch sort takes a total of 6610 steps, and the
final result has a fitness of 290 which is only two points from a perfect score.

The time the final solution takes to perform a two-object patch sort depends on
the initial configuration of ants and objects, but in most cases it takes between 5000
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Figure 4.8: The final two-object patch sort solution is able to form two separate
clusters in 6610 steps. In the figures filled circles are T1 objects, and the empty
circles are T2 objects.

65



and 7000 steps. At the beginning of a patch sort performed by the final solution, the
ants quickly become loaded with either type of object. Which type of object the ants
pick up at this point seems to be purely a matter of which object is encountered first.
This is because the ants are likely to pick up isolated objects, and at the beginning
of a run most objects are isolated. At this point of the run the objects are carried for
a relatively long time. The reason for this is that the ants are not inclined to deposit
objects in neighborhoods that contain only one, or very few objects, and at this point
of the run the majority of neighborhoods in the world are sparsely populated with
objects. After around 100 steps a small group of type 1 emerges. Once this group
has emerged it does however not increase in size. Then after another 200 steps two
to three other small groups of type 1 emerges, and at the same time one group of T2
objects is also formed. Up until this point most of the carried objects have been of
type 1, but at this stage the two types of objects are carried about the same amount of
time. The groups of T1 objects are very fragile, and they are easily broken down. As
some of the groups are broken down, other groups emerge while some of the existing
groups increase in size. During the formation of groups of T1 objects, T2 objects
are carried a lot of the time but there is no formation of T2 groups. However, after
around 1000 steps one of the T1 object groups has increased in size to a point where
it contains the majority of the T1 objects. The remaining T1 objects are now either
isolated or located in pairs. As this happens a few small groups of T2 objects emerge.
One of these groups then increases in size, whereas the others remain about the same
size as before. As most of the T1 objects become part of a large cluster, the smaller
T2 groups are broken down. The objects removed from these groups are deposited
in the large T2 cluster. This eventually leads to the formation of two large clusters,
each one containing objects of only one type.

When the ants are unloaded or carrying a T1 object their default movement is
in the backward direction only. If the ants perceive any objects in their immediate
surroundings they turn either left or right. The movement behavior of unloaded
ants and ants carrying a T1 object can thus be described as being in straight paths
backwards, with turns being taken if there are objects present in their vicinity. The
movement of ants that carry T2 objects differ from the movements of unloaded ants
and ants carrying T1 objects in two respects. First of all, ants carrying a T2 object
move only in the forward direction. If there are no objects present in the ants’ eight-
cell neighborhood then the ant will move in a straight path forwards. Second, the
underlying cause for the straight movement differs from the reason why unloaded ants
and ants carrying T1 objects move in straight paths. These ants move in a straight
path because none of the turning actions are active. The ants carrying T2 objects,
on the other hand, have both of their turning actions active at the same time. At
each step the ants will turn both left and right. These turns cancel each other out
and the ant therefore moves in a straight path. When an ant carrying a T2 object
encounters objects in its environment it will turn either left or right. Irrespective of
whether an ant is carrying an object or not and what object the ant may be carrying
there are some configurations of objects in its neighborhood that cause the ants to
remain stationary.

The progress and quality of a patch sort may be viewed in terms of the ‘fitness’ of
the distribution of objects at each step of the run of the final solution. By evaluating
the quality of the running sort at each step of the sort it is possible to see both how
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Figure 4.9: The progress of the two-object patch sort shown in Figure 4.8.

the progress of the sort is, and how stable the sort is once the objects in the world
have been separated into two clusters. The fitness at each step of the patch sort shown
in Figure 4.8 is given in the graph in Figure 4.9. From the graph it is clear that the
score of the ongoing sort increases very rapidly at the beginning of the sort. The
initial configuration of objects in this particular sort has a score of −2. After 1970
steps the score of the configuration of objects in the world has increased to 192. The
reason for this rapid increase is that at the beginning most of the objects are isolated.
Then when objects are put next to similar objects, both the deposited object and the
neighboring objects will have more neighbors and thus the score will increase. After
several groups are formed there will not be much increase in the score when these
are broken down to form a single cluster. This is because the objects in the smaller
groups already have many similar neighbors. There is thus not a large change in the
score of a world that contains a few groups of objects and one that contains one large
cluster of each type of object. This is why as the score of the ongoing patch sort
gets closer to 200 there is a slower increase in the score. After the patch sort has
reached its maximum score after 6610 steps it is evident from the graph in Figure 4.9
that there is not much change in the score. This means that once the solution has
performed a patch sort, the sort does not deteriorate despite the ongoing actions of
the ants. The evolved solution consequently appears to perform stable patch sorts
in the sense that once the objects have been sorted, they are not moved around in a
way that destroys the ‘sortedness’ of the objects.

Testing Sensitivity to Initial Conditions

To further investigate the stability of the evolved solution and its sensitivity to ini-
tial conditions, it was run 50 times on different random start configurations. If the
average fitness of these runs is relatively high, this is an indication that the evolved
solution is stable because it can successfully sort objects with a wide variety of initial
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Individual runtime Average fitness Standard deviation

5000 270.04 14.16
10000 274.48 10.22
15000 274.76 10.78
20000 275.12 11.08

Table 4.2: Results of 50 runs of the final two-object patch sort solution with different
start configurations and run times.

distributions. To see approximately how long a patch sort takes, and if the sort is
stable once it is formed, the 50-run trials were repeated with different run times.
The evolved solution was run 50 times on different configurations in four turns with
individual run times of 5000, 10000, 15000, and 20000 steps. The results of these runs
are given in Table 4.2. From the results of the runs it is first of all evident that a
two-object patch sort in most cases takes between 5000 and 10000 steps. Even though
the average score for 5000 steps is reasonably high, the scores for the other run times
are slightly higher and consequently indicate that the runtime for a successful sort is
longer than 5000 steps. Apart from the runtime of 5000 steps the remaining results
are very similar. This shows that once the objects have been sorted, the formed
clusters are very stable despite of the ants occasionally removing objects from them.
The scores are also relatively close to the maximum achievable score, and a sort that
has a score above 270 will, when inspected visually, in most cases be judged to be a
successful patch sort. The results of these four trials of 50 runs thus show that the
evolved solution is stable both in terms of the different initial object distributions
that it can handle, and in terms of the fact that once a sort has been done it remains
stable despite the dynamics introduced by the ongoing actions of the ants.

4.3 Three-Object Patch Sorting

The task to be solved in this experiment is the same as the task to be solved in the
two-object patch sort experiment, only now there are three different types of objects
instead of two. A successful solution must therefore form three spatially separated
clusters with only one type of object in each cluster. The fitness function used to
evaluate the proposed solutions is the same as the one used in the two-object patch
sort experiment (Equation 4.2). Since there are now three types of different objects
the networks used to control the ants have five hidden nodes, one more than the
number of different sensory stimuli perceived by the ants. Because there are three
different types of objects there are also three nodes in each of the nine input groups
of the network, leading to a total of 27 input nodes. In the experiment there are a
total of 60 objects with 20 objects of each type. Since there are now more objects
than in the previous experiments the objects are located in a 25× 25 grid-world with
a swarm of 6 ants. The evolution runs for 6000 generations, with each individual in
a generation stepping for 4000 steps.
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Figure 4.10: The fitness of the fittest individual and the average fitness of each
generation during the evolution of a three-object patch sort solution.

4.3.1 The Evolution of a Solution

Figure 4.10 shows the fitness of the fittest individual and the average fitness of each
generation during the evolutionary run. From the figure it appears as if the evolution
of a solution to the three-object patch sorting task has happened in three major
phases. At the beginning of the evolutionary run there is a phase of rapid increase
in fitness. This phase begins with the first generation and ends after around 360
generations. In this phase there is a steady increase in the fitness for the first 150
generations. At this point there is a sudden drop in the fitness before it again starts to
increase. When the evolution has reached generation 366 the fittest individual has a
fitness of 212, and after this there is a phase with only a minor increase in the fitness.
During the second phase of only a modest increase in the fitness, there is actually
only an increase of 20 points during the 2200 generations that this phase lasts. After
a total of approximately 2500 generations the fitness of the fittest individual of each
generation again begins to increase. This is the final major phase of the evolutionary
run. During the first 2000 generations of this phase the fitness increases at a steady
rate, before it levels out and only increases a little for the rest of the duration of the
evolutionary run.

To see how a solution to the three-object patch sort task evolves, the fittest in-
dividual from four generations during the evolutionary run is selected for a closer
investigation. During the first phase it is likely that there is a large change in the
sorting process of the individuals because of the rapid increase in fitness. Two indi-
viduals are selected from this phase to capture this change. The first individual is
the fittest individual from generation 87, which is before the sudden drop in fitness.
This individual has a fitness of 108. The next individual is chosen after the fitness
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has increased another 50 points. This individual is the fittest individual from gener-
ation 253 which has a fitness of 156. The third individual is from the point of the
run where the increase in fitness slows down, which is where the second phase of the
evolutionary run begins. This is the fittest individual from generation 366 which has
a fitness of 212. The last individual chosen for a closer investigation is selected from
around the middle of the initial growth phase of the third phase of the evolutionary
run. This is the fittest individual from generation 3273 which has a fitness of 280. By
investigating these four individuals3 it is possible to get an indication of how a solu-
tion to the three-object patch sorting task is evolved. The results of sorts performed
by the investigated individuals are shown in Figure 4.11.

The fittest individual from generation 87 is capable of clustering only type 3 (T3)
objects. Some of the type 2 (T2) objects are grouped in small groups, whereas the
type 1 (T1) objects remain scattered randomly in the world. The individual first
forms a cluster of T3 objects, and as this begins to form some of the T2 objects
are deposited in small groups that are continuously built and broken down. The T1
objects are deposited immediately after they have been picked up by the ants, and
consequently remain scattered in the world. The movement of the ants is the same
throughout the evolutionary run. Irrespective of whether they are carrying an object
and what type of object they carry, they move in a straight path forward. If there are
objects present in their surrounding cells then they turn either left or right, before
continuing in a straight path.

The fittest individual from generation 253 also begins by forming a group of T3
objects. After the T3 objects form a single cluster, the T2 objects begin to form small
groups. These groups are very fragile and are continuously formed and broken down
throughout the remainder of the sorting process. The T1 objects are only carried
short distances by the ants, and they are deposited either in isolated locations or in
pairs. The end result of a sort by the individual is a single cluster of T3 objects, while
the T1 objects mostly remain scattered. Most of the T2 objects form loose groups,
which are often in the form of loose chains instead of dense groups.

The ants of the fittest individual from generation 366 are able to sort the T2 and
T3 objects into one large cluster each. However, the ants do not carry T1 objects for
very long, and as a result of this they remain scattered in the world. The individual
start by forming groups of T3 objects, and to a lesser degree, T2 objects. In contrast
to the previous individual the T2 groups begin to form before there is a single cluster
of T3 objects. After the homogeneous groups are formed, one of each type increases
in size while the other groups are broken down. This eventually leads to one cluster
each of T2 and T3 objects, while the T1 objects remain scattered.

The fittest individual from generation 3273 forms two or three loose clusters of T1
objects, in addition to one cluster each of T2 and T3 objects. This individual begins
by forming groups of T3 objects, then T2 objects, and finally T1 objects. The T3
objects are the first to form a single cluster, and as this happens the T2 objects are
first forming loose groups, before being moved to a single cluster. After the T3 and
T2 objects are clustered, the T1 objects are grouped into one or two loose groups
that are only barely connected.

From the descriptions of the investigated individuals it is clear that during the
evolutionary run the individuals first become able to cluster T3 objects, then T2

3A detailed description of the sorting processes of the individuals is given in appendix A.3.
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Figure 4.11: Three-object patch sorts performed by the fittest individuals from gen-
erations 87, 253, 366, and 3273. In the figures filled circles are T1 objects, empty
circles are T2 objects, and triangles are T3 objects.
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objects, and finally T1 objects. The sequence in which individuals are evolved that
cluster the different types of objects is also reflected in the sequence in which the
later evolved individuals cluster the different types of objects. They first cluster T3
objects, then T2 objects, and finally T1 objects.

4.3.2 The Final Solution

The evolution is allowed to run for 6000 generations. At this point the final generation
has an average fitness of 270.88 with a standard deviation of 32.97. The five fittest
individuals of the final generation all have a fitness of 306 or more. In fact, the
five fittest individuals of the generations toward the end of the run are all capable
of performing patch sorts that are visually satisfactory, although they do not yield
perfect fitness scores. The reason for this is that the fitness function awards extra
points for the shape of the clusters and not only for the clusters of each type being
separated. The fittest individual of the final generation, which constitutes the solution
to the task of three-object patch sorting, has a fitness of 314. This corresponds to
94% of the maximum achievable fitness which is 334.

The final solution is capable of performing a successful three-object patch sort
of a large variety of different start configurations. The time it takes to perform the
patch sorts does however vary. This varying time is caused by the formation of two
equally sized clusters of one type of object. If there are created two clusters of any of
the three types of objects that are approximately of the same size, then the solution
takes longer time to finish successfully. The reason for this is that the objects in a
large cluster of identical objects are not easily picked up, and it therefore takes a long
time before one of the clusters is finally broken down, and the objects moved to the
other cluster of the same type. Figure 4.12 shows how a patch sort may happen in
7970 steps. The final structure has a fitness of 334, which is the maximum score.

The movement of the ants of the final solution is only in the forward direction.
Irrespective of whether or not the ants are carrying an object, and what type of
object they carry, they show the same kind of movement. If the ants move in desolate
areas of the world they will move forward in a straight path. In the case of the ants
being unloaded or carrying a T2 or T3 object, the ants move in straight paths simply
because they are neither turning left nor right. However, if the ants are carrying a T1
object they move straight because they are at each step turning both left and right.
The two turning behaviors thus cancel each other out and the ants move straight
ahead. When the ants perceive any objects in their eight-cell neighborhood their
movement is modified. In most cases the occurrence of objects in the ants’ immediate
surroundings causes the ants to turn either left or right, before continuing in a straight
path. However, there are some configurations of objects in the ants’ environment that
cause them to move in both directions, thereby leaving the ants stationary. The ants
are in most cases only stationary for one step because they also turn in addition to
moving both forwards and backwards, and the perceptual input of the ants are thus
different in the next step allowing the ants to move forward again.

When the final solution is run on a three-object patch sort task, its ants quickly
become loaded with any type of object. After only a few steps the majority of the
ants are however carrying a T2 or T3 object. The reason for this is that when the
objects are scattered, it is mostly the T1 objects that are deposited because these
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Figure 4.12: The final three-object patch sort solution is capable of forming three
separate clusters in 7970 steps. In the figures filled circles are T1 objects, empty
circles are T2 objects, and triangles are T3 objects.
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are not only deposited in neighborhoods that are densely populated with identical
objects. It is not long before all of the T3 objects are part of a small group. Shortly
after this happens, one or two of the groups of T3 objects begin to quickly increase in
size as the smaller groups of T3 objects are broken down. When this happens most
of the T2 objects also become part of smaller groups of identical type. One of these
groups then begins to grow such that it is considerably larger than the other groups
(step 600 in Figure 4.12). Shortly after this growth occurs the T3 objects are all
grouped into one cluster. If there was initially only one T3 group that increased in
size, this will eventually contain all the objects of this type, but if it were two that
initially began to grow, one of these will increase in size while the other is broken
down. As all the T3 objects become part of one large cluster, and one or two of the
T2 groups begin to grow, most of the T1 objects are also grouped into small groups.
When this occurs the ants are not loaded as much of the time as they were earlier
in the run. The run continues with the T1 objects being collected in fewer, larger
groups. At the same time the T2 objects are all collected in a single cluster (step
3240 in Figure 4.12). As this happens one of the T1 groups increases in size while
the other groups of this type are slowly broken down. The objects will eventually be
sorted in three clusters with each cluster containing only objects of one type.

To summarize the patch sorting performed by the final solution one can say that
it sorts the three types of objects in order. First the T3 objects are grouped, and then
the T2 objects are grouped. Then the T3 objects are clustered into a single cluster,
and the T2 objects are grouped in fewer groups. At the same time the T1 objects are
grouped in several smaller groups. After the T3 objects are all contained in a single
cluster, one of the T2 groups will increase in size until it contains all the objects of
this type. As this cluster is formed the T1 objects are grouped in fewer groups until
eventually one of the groups grows until it contains all of the T1 objects. The patch
sorting thus happens by first forming a T3 cluster, then forming a T2 cluster, and
finally forming a T1 cluster.

The patch sort performed by the final solution may be investigated in terms of an
evaluation of the current progress at each step of a run of the individual. For each
step of the individual the distribution of the objects in the world is evaluated with the
fitness function used during the evolution of the solution. Figure 4.13 shows a graph
giving the fitness of the progressing sort depicted in Figure 4.12. From the graph
it is evident that the sort progresses very rapidly in the beginning. During the first
3200 steps there is a rapid increase in the score of the ongoing sort. After this point
the rate of increase in the score slows down somewhat until it reaches its maximum
after 7970 steps. The reason for the reduced rate of increase is the following. At
the beginning of the sort most of the objects are isolated. As objects are picked up
and put down next to other objects of the same type, the score of the ongoing sort
increases rapidly. However, after some time most of the objects are located in groups
of identical objects. At this point objects that are moved from one group to another
do not add as much to the score as isolated objects that were previously added to
the groups. Because of this the score of the sort does not increase as rapidly as it did
earlier in the sorting process.

The graph in Figure 4.13 also gives an indication of the stability of the performed
sort. Even after all three types of objects have been separated into three distinct
clusters, the ants continue to move around in the world and occasionally pick up
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Figure 4.13: The fitness at each step of the sort shown in Figure 4.12.

Individual runtime Average fitness Standard deviation

5000 285.02 23.49
10000 298.52 14.91
15000 306.64 14.78
20000 311.92 13.98

Table 4.3: Results of 50 runs of the final three-object patch sort solution with different
start configurations and run times.

objects. It is therefore possible for the ants to destroy the performed sort. The graph
does, however, show that after the objects have been separated into three clusters
the score of the sort remains relatively high. There are some times when the score
decreases, but then it goes back up again. It thus appears that the performed sort is
stable despite the ongoing actions of the ants.

Testing Sensitivity to Initial Conditions

As mentioned previously the evolved solution uses different times to perform a suc-
cessful sort depending on the initial configuration of objects. To investigate how long,
on average, the solution takes to perform a successful sort, and to ensure that the
solution is stable in terms of being able to sort different initial distributions of ob-
jects, the solution was run with several different initial distributions of objects and
for varying amounts of time. The final solution was run for 5000, 10000, 15000, and
20000 steps on 50 different initial distributions of objects. Then the average score of
these 50 runs and the standard deviation were calculated. These results are shown
in Table 4.3. When looking at the results of the runs it is first of all evident that
the successful sort of three types of objects does on average take quite a long time.
The average score of the runs continues to increase as the solution is allowed to run
for a longer time. It is evident that a successful sort rarely takes place in 5000 steps,
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although perfect sorts have been shown to complete in less than this time. It ap-
pears that a relatively good sort that is visually satisfactory takes between 10000 and
15000 steps to complete. The results in Table 4.3 also show that the solution is ca-
pable of performing relatively well on the different random start configurations since
the standard deviation is low. Furthermore, it appears that once a sort is performed
successfully it is quite stable despite of the ongoing actions of the ants. Even when
the ants are allowed to step 20000 times the sort does not deteriorate even though it
probably takes less time to complete. In fact, the average score of the 50 runs that
are allowed to run for the longest is higher than for the other runs.

4.4 Two-Object Annular Sorting

The task to be solved in this experiment is that of annular sorting. This consists of
forming a cluster of one type of object that is surrounded by bands of the other types
of objects, with each band containing only objects of one type. Since there are two
types of objects in this experiment a successful solution must create a dense cluster of
one type of object that is surrounded by a band of the objects of the other type. The
central type objects are hereafter only called central objects, and the outermost type
objects are called outermost objects. To achieve this task a global fitness function is
used. This fitness function is a modified version of the metric used by Wilson et al. [33]
to judge the quality of annular structures (see section 2.3 for a description of the
metric). The metric consists of four components which are compactness, separation,
shape, and completeness. However, Wilson et al. [33] argues that the compactness and
separation components are the most important when evaluating annular structures.
The notion of compactness and separation as being most helpful in describing annular
structures was strengthened further when Scholes et al. [31] found that the annular
structures formed by real ants got a high score for these two components, but a
very low one for the other two. Influenced by these findings we chose to include
the compactness, separation, and shape metrics in our fitness function with each
component giving a maximum score of 100.

Since the original metric was used to evaluate structures formed by circular ob-
jects, it must be adapted to the ‘square’ objects located in our grid-worlds. The first
component of the fitness function is the compactness component. We have chosen to
replace Wilson et al’s [33] compactness component with a function using the equa-
tion used as fitness function for the clustering task (see section 4.1). The task to be
achieved in clustering is to create a dense structure containing all the objects, and it
will consequently give higher scores for compact structures. The compactness metric
takes the score obtained by the fitness function used for clustering (Equation 4.1) and
gives this as a fraction of the maximum achievable score with no objects in the world.

C = 100 ×
∑no

i=1 c(oi)

m(no)
(4.3)

In the equation c(oi) is a function that returns the number of objects in oi’s neigh-
borhood, and m(no) is a function that returns the maximum achievable score of
Equation 4.1 when there are no objects.

The second component is the separation component. In a perfect annular structure
there are three general types of objects. These are the central objects, the outermost
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Figure 4.14: The structure on the left has better separation than the structure on the
right.

objects, and intermediate objects. These three types should have different positions
in the structure. The innermost objects should all be located in the center of the
structure, and the outermost objects should be located further from the center of the
structure than any other type of object. The center of the structure is taken to be
at the centroid of the largest cluster of central objects. For the intermediate objects
the situation is a bit more complicated. Every object that belongs to an intermediate
band of objects should be closer to the center than objects belonging to bands located
further from the center, while at the same time be further from the center than objects
belonging to bands that are located closer to the center. It is these notions that the
separation component captures by counting the number of objects that infringe on
the ‘home zone’ of another object type. Said simply, the number of objects that are
located in wrong positions are counted. Figure 4.14 shows two different structures
that have good and only mediocre ‘separatedness’.

To count the number of objects that infringe on the home zone of another object
type, the first step is to measure the Euclidean distance from the center of the struc-
ture for each object. The distances for each type of objects are then sorted and the
upper and lower quartiles are found. These quartiles are then used in four different
counts. The first count considers the central type objects. These objects should be
located closer to the center than objects of other types. To give a measure of this the
number of central type objects that have a distance to the center greater than the
lower quartile of any other object type is counted, Nc. The second count performed
considers the outermost objects. These objects should be located further from the
center of the structure than objects of other types. To measure this notion the num-
ber of outermost type objects that have a distance to the center that is less than the
upper quartile of any other object type is counted, No.

The last type of objects to consider are the intermediate objects, which are lo-
cated in bands between the central and outermost objects. When evaluating these
object types both objects located closer to and further away from the center must
be considered, and consequently two counts are involved for intermediate objects.
The first of these two counts signifies the notion that objects belonging to a band
should not be further away from the center than objects belonging to bands located
further away from the center. In this count the intermediate type objects that have
a distance to the center of the structure that is greater than the lower quartile of any
other object type further away from the center are counted, N

g
i . Objects belonging
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Figure 4.15: The structure to the left will receive a high score on the shape component,
whereas the structure to the right will receive a mediocre score. This is because in the
structure on the right there is a second cluster of central type objects, and because
the outermost objects do not all have the same distance to the center of the structure.

to a band should also not be located closer to the center than objects belonging to
bands closer to the center. This notion is realized in the final count. Here objects
that have a distance to the center that is less than the upper quartile of any other
object type closer to the center is counted, N l

i . The four counts are combined to form
the separation component of the metric as shown in Equation 4.4.

Se = 100 ×


1 −
Nc + No +

N
g
i
+N l

i

2

no



 (4.4)

The last component of the fitness function is the shape component. This compo-
nent has two parts. The first part considers the central type objects. In a perfect
annular structure the central cluster should contain all the objects of this type. The
first part of the shape component calculates the fraction of central type objects that
are located in the center of the annular structure, fc. The remaining types of objects
should form bands around the central cluster. Every object in each of these bands
should have approximately the same distance to the center. This is what is measured
in the second part of the shape component. For each non-central type the average
Euclidean distance to the center is calculated, oc. Then the deviations from this av-
erage are summed up for all the objects of the same type, dc. This summed deviation
is then normalized. The equation for the shape component is given in Equation 4.5,
where m is the number of object types. Figure 4.15 shows two structures that will
receive a high and a mediocre score on the shape component.

Sh =
100 × fc +

∑m
c=2

[

100 ×
(

1 − dc

oc

)]

m
(4.5)

In a recent study Sendova-Franks et al. [32] found that the brood of the Leptotho-
rax ant was first clustered and thereafter spread out to form the annular structure.
This might signify that clustering is of particular importance in the formation of an
annular structure. Influenced by this we have decided to give the compactness com-
ponent twice the weight of the other two components in the fitness function when
they are added together. The combination of the three components in the fitness
function is given below in Equation 4.6.

F = 2C + Se + Sh (4.6)
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The feedforward controllers used in the annular sorting tasks use the same number
of hidden nodes as the controllers in the patch sorting tasks. This means that the
feedforward network used for the two-object annular sorting task has four hidden
nodes and 18 input nodes. Each individual in the evolutionary run has a total of 50
objects with 25 objects of each type in a 23 × 23 grid-world, and a swarm of 5 ants
to perform the annular sorting.

4.4.1 The Evolution of a Solution

The increase in fitness of the fittest individual of each generation is very rapid in
the beginning of the evolutionary run. This can be seen in Figure 4.16. The fittest
individual of the first generation has a fitness of 113.26, and after only 21 generations
the fittest individual of the generation has a fitness of 246.69. This rapid increase
in fitness continues until generation 45 were the fittest individual has a fitness of
299.60. After this generation the increase in fitness is reduced. Although the fitness
continues to increase at a relatively high rate, the explosive growth in fitness that
occurred in the first 45 generations is no longer evident. This reduced rate of increase
in fitness continues until generation 331 where a peak is reached in the fitness of the
fittest individual of the current generation. After this point the fitness of the fittest
individual drops for a few generations before it again begins to increase. However,
this increase is much slower than the previously observed rates of increase. This
slower rate of increase in fitness continues until around generation 1000. From this
point and through the rest of the run there is not much increase in fitness, and the
fitness of the fittest individual varies to a lower degree than earlier in the run. This
means that the fittest individual of each generation is capable of performing well on
all start configurations that it is given.

During the rapid increase in fitness in the beginning of the evolutionary run, the
best individual of each generation is clearly becoming better at solving the annular
sorting task very fast. To see how the sorting process of the individuals changes during
the first two phases of rapid increase in fitness, four individuals from this stage of the
evolutionary run have been selected for a closer investigation. These are the fittest
individuals from generations 21, 45, 217, and 331. The fitness of these individuals are
246.69, 299.60, 349.45, and 389.54 respectively. The first individual has been selected
because it is from the last part of the period of rapid increase in fitness, and the
second individual is selected because it is from the period of transition between the
first two growth phases. The third individual is from the middle of the phase of slow
increase in fitness, whereas the last is from the peak in fitness. By investigating the
sorting behavior of these individuals4 it is possible to get a notion of how a solution
to the two-object annular sorting task is evolved. The result of sorts performed by
the investigated individuals are given in Figure 4.17.

The fittest individual from generation 21 start by forming three different types
of groups. The first two groups are small groups containing either only central or
outermost objects. The third type of group is larger than the other two, and contain
both types of objects. As the sort progresses most of the initial groups are broken
down, except for two or three groups that contain both types of objects. These groups

4A detailed description of the sorting process of the investigated individuals is given in ap-
pendix A.4.

79



Generation

0 1000 2000 3000 4000 5000 6000

F
itn

es
s

0

100

200

300

400

Fittest individual
Average fitness

Figure 4.16: Fitness during the evolution of a solution to the two-object annular
sorting task.

are not annular in their structure, but the central objects tend to be grouped together
in the center of the structure with the outermost objects mostly located on the edges.
The movement of the ants of the individual is only in the backwards direction, and
if there are no objects in their immediate surroundings they move in a straight path.
If the ants perceive any objects they turn either left or right.

The movement of the ants of the fittest individual from generation 45 has changed
compared to the individual described above when the ants carry outermost objects.
Instead of moving in straight lines, the ants move in circular paths when they carry
outermost objects. The individual start by forming two to four groups of central
objects. During the formation of these groups some of the outermost objects are
moved to their edges, but most remain scattered in the world. However, after the
central groups are formed, all of the outermost objects are moved to these groups.

The fittest individual from generation 217 also begins by forming central type
clusters. As these begin to form the ants also begin to position outermost objects on
the edges of the clusters, or in groups of identical objects. All of the formed clusters
are eventually broken down, except for one. The final sort performed by the individual
consists of one central cluster with most of the outermost objects positioned along
its edges. The remaining outermost objects are either scattered, or located in small
groups of identical objects. The movement of the ants has changed back to being in
straight paths, irrespective of whether or not they are carrying an object, and what
type of object they carry. This movement pattern remains for the remainder of the
evolutionary run.

The sorting performed by the fittest individual from generation 331 differs from
the sorts performed by the previously described individuals. The individual starts by
forming several groups of central objects, before all of these, except one, are broken

80



Generation 21

0 5 10 15 20

0

5

10

15

20

Generation 45

0 5 10 15 20

0

5

10

15

20

Generation 217

0 5 10 15 20

0

5

10

15

20

Generation 331

0 5 10 15 20

0

5

10

15

20

Figure 4.17: Two-object annular sorts performed by the fittest individuals from gen-
erations 21, 45, 217, and 331. In the figures filled circles are central objects, and
empty circles are outermost objects.
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down. It is not until all of the central objects are part of a single cluster that the ants
of the individual begin to move outermost objects to a large extent. These objects are
either moved to the edges of the central cluster, or deposited next to other outermost
objects. The final sort performed by the individual consists of a single cluster of
central objects that are surrounded by some of the outermost objects. The rest of
the outermost objects form one or more smaller groups.

From the descriptions of the investigated individuals it is evident that individuals
that form mixed clusters of objects are evolved first. Then individuals that form
several annular-like groups are evolved. As the evolution progresses the evolved indi-
viduals form fewer and fewer groups, until they finally form a single annular structure.
The later evolved individuals also differ from the earlier evolved individuals in that
they cluster the central objects completely before beginning to move the outermost
objects.

4.4.2 The Final Solution

The evolutionary run ends after 6000 generations. At this point the final generation
has an average fitness of 362.48 with a standard deviation of 31.93. The five best
individuals of the final generation all have a fitness above 387. The fittest individual
from this generation, which constitutes the final solution to the task of two-object
annular sorting, has a fitness of 392.54. This fitness corresponds to 98.14% of the
maximum achievable fitness. In practice this fitness score represents a structure that
from a visual perspective is perfect. This is due to the fact that the shape metric can
never reach a score of 100 in the experiments.

The final solution is capable of forming an annular structure. However, the time
that it uses to perform an annular sort depends on the start positions of the objects.
Some initial configurations of objects allow the individual to perform an annular sort
in a short amount of time, whereas other configurations cause the individual to use
longer time before finally achieving an annular sort. Figure 4.18 shows how an annular
sort is performed by the final solution in 5080 steps. The annular structure that is
formed has a fitness score of 392.90. The compactness component of this score is
100.00, but since it is multiplied by two when the components are added together
it contributes a total of 200.00 to the final fitness. The separation component has a
score of 100.0, and the shape component has a score of 92.90. The structure is thus
perfect in terms of compactness and separation, and a score of 92.90 for the shape
is very high since a maximum score for this component is not possible. The final
evolved solution is thus capable of performing visually perfect annular sorts that are
compact and well separated.

The default direction of movement of the ants of the final solution is backwards,
but when the ants are unloaded some configurations of objects in their immediate
environment cause the ants to move forward. This forward movement is however
very rare. In some situations when the ants are unloaded they also become immobile
due to the forwards and backwards actions being active at the same time. Other
than these exceptions the ants will move backwards when they are unloaded, and
when the ants perceive objects in their neighborhood they will turn either left or
right. When the ants pick up an object they will only move backward, and when
there are no objects in their neighborhood they will move in a straight line. However,
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Figure 4.18: A two-object annular sort performed by the final solution. The final
structure has a fitness of 392.90 with perfect scores for the compactness and separation
components. In the figures filled circles are central objects, and empty circles are
outermost objects.
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the movement in a line is caused by different basic actions depending on what type
of object the ants are carrying. If the ants carry a central object they move straight
because none of the turning actions are active. On the other hand, when they are
loaded with an outermost object their straight movement is caused by both turning
actions being active at the same time, and they consequently cancel each other out.
When there are objects in their neighborhood the ants will turn either left of right
depending on their sensory stimuli. There are also some sensory stimuli that cause
the ants to become immobile by activating both directions of movement at the same
time.

At the beginning of a run of the solution most of the objects in the world are in
isolated locations. The ants are at this stage unloaded, and when the ants encounter
an object of either type they pick up the object. This leads to the ants being initially
loaded with both types of objects. However, after a brief period all of the ants
become loaded with only the central object type. The reason for this is that the
outermost objects are easier to deposit than the central objects. The central objects
are deposited in areas with a high density of central objects, and since there are no
such areas in the world in the beginning, these objects are carried for a long time
by the ants. This leads to the ants becoming loaded with central objects since the
ants carrying these objects do not deposit them. The ants that were initially carrying
outermost objects will eventually also become loaded with central objects since they
easily deposit their outermost object, but once they pick up a central object they are
‘stuck’ with this object for a long time. After some time with this carrying behavior
there is a fluctuation in the world that causes the formation of a small group of central
objects. This group quickly increases in size, and once a central object becomes part
of this group the ants are not likely to pick it up. This causes the ants to carry
the outermost objects more of the time than previously in the run. These outermost
objects are for the most part put down along the edges of the central type cluster,
but some are put down next to other outermost objects or in isolated positions. The
outermost objects that are positioned along the edges of the cluster are rarely picked
up by the ants. When all of the central objects and most of the outermost objects
become part of the structure, the ants mainly pick up the outermost objects that
are scattered around the world in small groups or in isolated positions. All of these
objects are eventually moved to the cluster such that it in the end is an annular
structure containing all of the objects in the world. After the annular structure is
formed the ants will occasionally remove an object from the structure for thereafter
to deposit it in the structure again. The final sort that is formed by the solution is
thus dynamic in nature in that it never reaches a final static configuration.

The progress of a two-object annular sort may be viewed in terms of the devel-
opment of the ‘fitness’ of the distribution of objects at each step of the run. The
development of the fitness for the run displayed in Figure 4.18 is given in Figure 4.19.
As can be seen in the graph there is first a brief increase in fitness before it suddenly
drops. Then there is a rapid increase in fitness that continues until an annular sort
has been performed, and the objects of the world form an annular structure. The first
structure that contains all 50 objects is formed after 5080 steps. It is evident from
the graph that the annular structure created is very stable. After around 3200 steps
there is not much variation in the fitness of the structure. Although the fluctuations
increase towards the end of the run they are not significant and may very well be the

84



Steps

0 5000 10000 15000 20000 25000 30000

F
itn

es
s

0

100

200

300

400

Figure 4.19: Development of fitness during the annular sorting of two types of objects
shown in Figure 4.18.

Individual runtime Average fitness Standard deviation

5000 362.22 30.63
10000 360.78 30.66
15000 365.33 19.82
20000 361.41 21.47

Table 4.4: Results of 50 runs of the final two-object annular sort solution with different
start configurations and run times.

result of misplaced objects due to the random noise added to the ants’ perceptions.
The low variability in fitness indicates that once the structure is formed it remains,
even though the ants are occasionally picking up and depositing objects.

Testing Sensitivity to Initial Conditions

To investigate the stability of the evolved solution and its sensitivity to initial con-
ditions, it was run with 50 different random start configurations. Then the average
fitness and standard deviation for these runs were calculated. In addition to in-
vestigating the stability of the solution these runs were also used in an attempt to
determine approximately how many steps the solution needs to make a good annular
structure. To do this we repeated the 50-run evaluations with four different individ-
ual run times. The final solution was first run on 50 different start configurations for
5000 steps. Then this was repeated with individual run times of 10000, 15000, and
20000 steps. The results of these runs are given in Table 4.4.

As can be seen in the table the average fitness is always above 360. This is a quite
good score since a structure with this score will appear to have an annular structure
when inspected visually. The evolved solution is thus capable of forming an annular
structure in each of the four run times. In addition the structures formed by the
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evolved solution appear to be very stable as the score after 20000 steps is about the
same as the score after 5000 steps. The standard deviation is lower for the last two
run times indicating that when the evolved solution is run for a long time there is
less variation in the final formed structures. From these results it is evident that
the solution is capable of performing an annular sort on objects that have different
initial configurations, and that the sorted structure is stable even though objects are
occasionally removed and deposited.

4.5 Three-Object Annular Sorting

The task to be solved in this experiment is the same as in the two-object annular
sorting experiment, only now there are three types of objects. This means that a
successful solution must have an intermediate band of objects between the central
cluster and the outermost band of objects. These objects are called intermediate
objects. However, when there are the same numbers of each object type, and every
object must be part of the structure, it is not possible to form a perfect annular
structure. This means that a solution will be successful even if the two outer bands
do not surround the structure completely. The fitness function used is the same as in
the two-object annular sorting experiment (Equation 4.6). The feedforward network
used to control the ants has one more hidden node than the network used in the
annular sorting experiment with two types of objects. This means that the network
has five hidden nodes, and a total of 27 input nodes with three nodes in each of the
nine input groups. Each individual in the evolutionary run has 60 objects that are
moved around by a swarm of 6 ants in a 25 × 25 grid-world. Each individual is run
for 4000 steps, and the evolutionary run is 6000 generations long.

4.5.1 The Evolution of a Solution

From Figure 4.20 it can be seen that in the beginning of the evolutionary run there is
a rapid increase in both the fitness of the fittest individual of each generation and the
average fitness of the generation. This high rate of increase in the fitness ends around
generation 200, where the fitness of the individuals begin to increase at a lower rate.
After 1600 generations the fittest individual of the generation has a fitness of 373.68.
From this point on the fitness of the fittest individuals of the generations appear
to remain relatively stable with only minor variations in fitness. These variations
are to be expected as the different random start configurations of each generation
may present tasks of different complexity. Since each individual is only allowed to
step 4000 times it is not certain that the time given to the individuals is enough to
form an annular structure from the objects in every situation, if in any at all. The
average fitness of the generations shows greater variation than the fitness of the fittest
individuals, but neither does it increase much after generation 1600.

To see how a solution to the annular sorting task evolves, the fittest individuals
from four generations are selected for a closer examination of how they attempt to
solve the task. Since the fitness increases very rapidly in the first generations, the
first individual selected is the fittest individual from generation 31 with a fitness of
201.73. Then the fittest individuals from the generations are selected for every 50-
unit increase in the fitness. This results in the selection of the fittest individuals from
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Figure 4.20: Fitness during the evolution of a solution to the three-object annular
sorting task.

generations 44, 240, and 1420, with fitness of 250.09, 302.67, and 352.9 respectively.
The results of sorts performed by the investigated individuals5 is shown in Figure 4.21.

The fittest individual from generation 31 starts by forming a cluster containing
most of the central objects. As this happens most of the intermediate objects are
isolated, but some also form pairs. After the central cluster is formed, it is broken
down, only to surface at another location. For the remainder of the sort the central
cluster is continuously built and broken down, while the other two types of objects
are rarely moved, and consequently remain scattered. The movement of the ants is
in straight paths in the forwards direction. When they perceive objects they turn
either left or right. This type of movement is evident throughout the remainder of
the evolutionary run.

After 44 generations of the evolutionary run, the fittest individual from the gen-
eration creates two to three clusters of central objects surrounded by intermediate
objects. Some of the outermost objects are also located on the edges of the clus-
ters, but the majority of outermost objects remain scattered. The individual start
by forming two or three stable clusters of central objects. These are in contrast to
the cluster formed by the previous individual not broken down. After these clusters
are formed the ants position the intermediate objects along the edges of the clusters.
Finally, some of the outermost objects are also moved to the edges of the cluster, but
most remain scattered.

The fittest individual from generation 240 also begins by forming clusters of central
objects. After one or two clusters are formed the ants begin to move intermediate
objects. These are either moved to the edges of the formed clusters, or they are

5A detailed description of the sorting performed by the investigated individuals is given in ap-
pendix A.5.
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Figure 4.21: Sorts performed by the fittest individuals from generations 31, 44, 240,
and 1420. In the figures filled circles are central objects, empty circles are intermediate
objects, and triangles are outermost objects.
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deposited in small groups that may contain outermost objects. The outermost objects
mostly form small groups, but some are also moved to the edges of the clusters. The
small groups that are formed are continuously built and broken down, and some
of their objects are also dropped in isolated locations. The end result of a sort
by the individual is a cluster of central objects, that is surrounded by most of the
intermediate objects and a few outermost objects. The objects that are not part of
the cluster are either isolated, or located in small groups.

The last investigated individual is the fittest individual from generation 1420. This
individual is capable of clustering all the objects into a single cluster. The individual
does, like the previously described individuals, start by creating a cluster of central
objects. As this cluster is formed most of the intermediate objects are moved to the
edges of the cluster, but some also form groups of identical objects. The outermost
objects either form groups of only outermost objects, or they are formed around an
intermediate object. When most of the intermediate objects have been moved to the
edges of the central cluster, the outermost objects also begin to be moved to the edges
of the cluster. In the end, all of the intermediate and outermost objects have been
moved to the edge of the central cluster. Most of the intermediate objects are located
closer to the center of the structure than the outermost objects, and this leads to the
formation of annular bands that are somewhat noisy.

From the investigation of the individuals it is clear that individuals that cluster
central objects are first evolved. Then individuals that position intermediate and
some outermost objects around the central clusters are evolved. As the evolution
progresses the evolved individuals first become capable of forming a single cluster of
central objects that are surrounded by all of the intermediate objects, and finally
forming an annular structure containing all the objects.

4.5.2 The Final Solution

After 6000 generations the final generation has an average fitness of 309.00 with a
standard deviation of 48.96. The five fittest individuals of the final generation all
have a fitness above 366, and the fitness of these individuals has remained relatively
stable for the last 3000 generations. The fittest individual of the final generation, and
thus the final solution to the task, has a fitness of 378.38. This score is 94.60% of the
maximum achievable fitness.

The final solution is capable of performing a three-object annular sort. The time
required for this task is considerably longer than for the two-object annular sort-
ing task, and may vary with different initial configurations of objects to be sorted.
Figure 4.22 shows an example of the three-object annular sorting task performed by
the final solution. This sort took 14190 steps before the final annular structure was
formed, and the annular structure has a fitness of 382.70. The score on the three
components making up the fitness of the structure is as follows. The structure has
a score of 96.94 on the compactness component. This component thus contributes a
total of 193.88 to the total fitness since the component is weighted. The separation
component has a score of 96.55, and the shape component has a score of 92.27. As
was the case with the two-object annular sort displayed in Figure 4.18, the structure
receives a lower score on the shape component than on the other two components.
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Figure 4.22: A three-object annular sort performed by the final solution. The final
structure has a fitness of 382.70, with a score of 96.94 on the compactness component,
96.55 on the separation component, and 92.27 on the shape component. In the figures
filled circles are central objects, empty circles are intermediate objects, and triangles
are outermost objects.
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The collective behavior of the ants of the final solution when performing an annular
sort is as follows. At the beginning of the annular sorting run all the ants quickly
pick up an object. At this early stage most of the objects are relatively isolated, and
the ants pick up any one of the three object types. After around 60 steps the ants
mostly carry objects of the central type. The ants carry these objects for a long time,
as they appear to require a neighborhood containing several central objects before
putting these objects down. As one or two groups of central objects are formed, the
ants are not loaded as much of the time as previously, and they also begin to carry
the other two object types. This trend continues as a single cluster of the central
object type is formed. When all the central objects are located in the cluster the ants
begin to put down intermediate objects along the edges of the cluster. The outermost
objects are also moved to some extent at this stage, but they are mostly put down in
isolated locations. As more and more of the intermediate objects are located along
the edges of the cluster, the outermost objects are moved to a larger extent. Some of
these objects are still being put down in isolated locations, but the larger part of the
objects are put down along the edges of the cluster. At this stage of the formation
of the annular structure some of the outermost objects also temporarily form small
groups of two or more objects. Eventually all of the outermost objects are moved to
the edges of the cluster, and at this time an annular structure has been created.

The formation of an annular structure by the final solution can be summarized
as follows. First the ants form a stable cluster of central objects. Then the ants
move intermediate objects to the edges of the cluster, before doing the same with
the outermost objects. The center of the created structure can be seen as creating
an attractive force as objects that become part of the structure are not likely to be
removed from the structure. However, some objects are occasionally removed, and
the attractive force is thus not absolute. Instead, objects that become part of the
structure are unlikely to be removed, and because of this the ants turn to moving the
objects that are not yet part of the structure.

The movement of the ants in the final solution resembles the movement that has
been observed throughout the evolutionary run. The ants always move forwards, and
they turn both left and right with each turn being performed about the same number
of times. The ants thus move in straight lines with the direction of movement being
influenced by the presence of objects in their eight-cell neighborhood. The presence
of objects will cause the ants to turn either left or right before they continue in a
straight path.

The progress of the fitness during the three-object annular sorting task shown in
Figure 4.22 is displayed in the graph in Figure 4.23. As is evident from the graph
the fitness of the evolving structure increases rapidly from the beginning of the sort
performed by the ants. This rapid increase continues until the individual has run
for 1540 steps. At this point the increase in fitness slows down. After 3600 steps
the formed structure has a fitness of 362.70. From this point and until the ants
have sorted the objects in 14190 steps the fitness of the structure only goes through
minor changes. There are two reasons for the fitness not increasing further during
this period of the sorting. First of all, any objects carried by the ants result in a
lower fitness of the structure. The difference between the fitness after 3600 steps and
14190 steps is only 20 points, and every object of the structure may be involved in
the three components making up the fitness of the structure. If many objects are
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Figure 4.23: Development of fitness during the annular sorting of three types of
objects shown in Figure 4.22.

Individual runtime Average fitness Standard deviation

5000 326.99 43.43
10000 329.23 39.09
15000 332.22 37.50
20000 331.65 35.64

Table 4.5: Results of 50 runs of the final three-object annular sort solution with
different start configurations and run times.

carried by the ants the fitness of the structure may be lower. Second, as there is
such a small difference in the fitness, any misplaced object may have a high impact
on the difference. If, for example, an outermost object is located in the center of the
structure, then it may take a long time before an unloaded ant walks to this location
and picks up the object. It is therefore possible that random misplacements of objects
cause the solution to receive a low fitness for a significant number of steps.

Testing Sensitivity to Initial Conditions

To investigate the stability of the final evolved solution and its sensitivity to initial
conditions, it was run 50 times on different random start configurations. After these
50 runs were performed the average fitness and standard deviation of the formed
structures were calculated. The 50 runs were repeated four times with the individual
allowed to run for a different number of steps on each repetition. The results of
the four 50-run evaluations is given in Table 4.5. As can be seen in the table the
average fitness is approximately the same in all four cases. However, when the runs
were repeated a number of times the average fitness achieved when the individual
were allowed to run for 5000 steps were considerably lower than for the other three
durations. This indicates that, on average, it takes more than 5000 steps to perform
an annular sort of 60 objects.
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The average fitness of the runs may appear to be low. The reason for this is
that in some runs two clusters of the central type objects that are of equal size are
formed. When these are formed they are surrounded by a band of intermediate type
objects and this structure is not easily broken down. As a result of this there may
be two annular structures in the world for a long period before one is finally broken
down. The formation of two annular structures is penalized by all three components
of the fitness function. The separation and shape components especially penalize the
formation of two structures heavily. Because all types of objects are located in both
of the structures, there will be large variations in the distances to the assumed center
of the structure6 within each object type. For the shape component this leads to large
deviations from the average distance of each object type, in addition to the fact that
not all central objects are located in the assumed central cluster (see Equation 4.5).
In the separation component the large variability in distances cause the home zones
of each type of object to be both wide and to overlap each other. This causes many
objects to be considered as infringing on the home zone of another object type. If
two annular structures are formed this leads to such a low fitness that they will affect
the average fitness considerably.

6The center of the structure is the centroid of the largest cluster of central type objects
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Chapter 5

Results Analysis and Discussion

The last chapter described the different performed experiments and their evolved
solutions. The evolved solutions solve three different types of tasks, yet there are
some important similarities among the different solutions. In this chapter we discuss
three of these similarities. We also analyze the individual behavior of the ants in the
three-object annular sorting solution that enables the swarm of ants to solve the task
at the collective level.

5.1 Limited Sensory Capabilities

One of the goals of this work has been to keep the individual agents simple, and
the ants have therefore been equipped with a limited sensory apparatus. The ants
only have nine perceptual inputs, where the first eight inputs come from the eight
cells surrounding the cell where the ant is currently located, and the last sensory
input comes from a perception of the object that the ant is possibly carrying (see
Figure 3.4). These nine perceptual inputs may at a first glance seem sufficient, but
there is one important perception that has not been included in the ants’ sensory
apparatus. This is a perception of the object located in the same cell as the ant.
This perception was not included because we wanted the ants’ sensory apparatus to
be as simple as possible. Deneubourg et al. [12] have suggested that the sorting of
different objects can be done either with a pick up rule or a deposit rule. From this
we inferred that it was sufficient for the ant either to perceive the object it was about
to pick up, or the object it wanted to deposit. Since it seems natural that the ant
will know what it is carrying, we selected a perception of this object. The ants are
consequently not able to sense if there is an object in the current cell that they can
pick up, and what type this object is.

When an ant is able to pick up an object it can not already carry an object, and
therefore the pick up decisions of the ants are only dependent on objects located in
the ants’ eight surrounding cells. In the clustering task the limitation of the ants not
being able to sense the object that they may pick up is not important, because all
the objects are of the same type in this task. The ants can simply make a decision of
whether an object should be located in their current position or not, depending on
the density of surrounding objects. In the tasks of patch sorting and annular sorting
the ants’ inability to sense the object they are considering whether to pick up or not
is more important. This is due to the fact that there is now more than one type
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of object. Given the same configuration of surrounding objects, the object that is
located in the ant’s current cell may either be located in a proper position, or in a
wrong position, depending on the type of the object. In a patch sorting task, for
example, an object that is different from the objects in its eight surrounding cells is
located in the wrong position, whereas an object that is identical to its surrounding
objects is located in the correct position. However, the ants are unable to sense the
type of the object in their current cell, and they are therefore unable to make this
decision. The only thing the ants can decide is whether an object located in the
current position is located in a wrong position regardless of the type of the object. In
the case of patch sorting this means that an object that has many different types of
objects as neighbors is located in a wrong position, since all the objects in a successful
patch sort must be located in homogeneous neighborhoods.

Because the ants can not sense the type of the object that they are considering
picking up, the deposition behavior of the ants becomes the most important behavior
with respect to a successful solution of the tasks. When the ants are picking up an
object they may only make a decision that holds for the general case. They can
only decide if an object located in the considered position would generally be located
in a wrong position irrespective of the type of the object. Whereas the ants can
only make pick up decisions on general terms they can be specific in their deposition
behavior depending on the type of object that they are considering whether to put
down. This means that it is only when the ants are depositing an item that they can
decide whether an object of a specific type would be in a wrong or correct position
if it is located in the current position. In the case of patch sorting this means that it
is only when the ant considers whether to deposit an object that it can tell that an
object that is different from all the surrounding objects does not belong in the current
position. If the ant was considering whether to pick up an object in this situation it
would not be able to sense that the considered object was of a different type than the
other objects, and so it would leave the object even though it is in a wrong position.

The deposition actions of the ants are even more important in the annular sorting
tasks than in the patch sorting tasks. When performing an annular sort all the objects
will eventually be located in a single cluster with several types of objects. It is thus
extremely difficult for the ants to decide whether an object with many surrounding
objects should be picked up or not, even if the objects are of several different types.
The deposition behavior thus becomes extremely important in this case because it is
so hard to decide if an object should be removed once it becomes part of the growing
cluster. The ants must thus only deposit objects in the cluster if they are confident
that the carried type of object belongs in their current position. It is clear that
the deposition behavior is more significant than the pick up behavior because only
the deposition behavior may be influenced by the type of the object that the ant is
considering to act on.

The ants’ inability to sense the type of the object that they are considering to pick
up makes two characteristics of the solutions extremely important in terms of error
correction. These two characteristics are the ants’ ongoing actions after they have
sorted the objects into clusters, and the noise that is added to the ants’ perceptions.
If, for example, an object is placed in a cluster of a different type of objects then
it is clearly in a wrong position, but it will not be picked up by the ants because
the surrounding objects are identical. However, because the ants are continuously
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walking around in the world the ants will continue to walk over the wrongly placed
object. Also, because noise is added to the input in 1% of the perceptions, it is
probable that the wrongly placed object will eventually be picked up if the sort is
allowed to run for enough time. Once the object is picked up the ant may deposit it in
the correct position because it is able to sense the type of the object. The occasional
picking up of objects regardless of whether they are in the presumably correct position
consequently enables the solutions to correct errors that are made during the sorting
of the objects.

5.2 Emergent Phases in Sorting

In both of the patch sort solutions, the ants start by sorting one or two of the types of
objects. They first create small groups of one type, before all of these groups except
one are broken down. The remaining group eventually contains all the objects of
the type. After this the ants begin to form small groups of the next type of object,
before finally a single cluster of this type is formed as well. This continues until all
the object types have been clustered in separate clusters. In the two annular sorting
solutions the ants begin by clustering the central type objects. When the central type
objects are all part of the same cluster, the ants begin to focus on the objects that
are to surround the central cluster. The surrounding objects are picked up by the
ants and deposited along the edges of the central cluster, with intermediate objects
being moved before the outermost objects.

It is evident that both patch sorts and annular sorts happen in distinct phases.
During these phases the ants carry mostly one type of object, and position the objects
of this type in the proper locations. Since the emergent phases occur for all the
sorting tasks, there must be some kind of commonality in the behavior of the ants
of the solutions. This common behavior must be evident in either the pick up or
deposit behaviors, or in both of these behaviors. We begin by investigating the pick
up behavior. When looking at the sorts while running, only two obvious similarities in
the pick up behaviors of the solutions are observed. First of all, when the sorts begin
the ants quickly become loaded with any type of object before they turn to focusing on
only one type of object. Second, in all the solutions the ants pick up isolated objects
when they encounter them in an unloaded state. These two similarities are due to
the same characteristic of the pick up behavior, and that is that isolated objects are
likely to be picked up by the ants (when a sort begins the ants are unloaded and most
objects are isolated).

The ants act based on the sensations they receive from each of their nine percep-
tual inputs. Depending on what the ants perceive they respond with a corresponding
behavior. The controllers of the ants consequently map different combinations of
sensory stimuli into appropriate actions. To see if there are some ‘hidden’ common-
alities between the pick up actions of the various sorting solutions, it is possible to
look for commonalities in the combinations of sensory stimuli that cause the ants to
pick up, or not to pick up, objects when they are unloaded. When looking at these
sensory combinations there are no obvious similarities between all of the solutions
that can account for the observed phases in the different sorts. There are, however,
some important similarities between the solutions to the three-object patch sort and
annular sort. First of all, when counting the different combinations of sensory stimuli
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that either cause the ants to pick up or not to pick up an object, there are a lot more
combinations that cause the ants not to pick up an object than to pick it up. This
indicates that the ants are restrictive when they are considering whether to pick up an
object. The other similarity between the two solutions is evident when looking at the
different sensory combinations leading to the two pick up decisions and computing,
on average, how many of each type of object that are present in the combinations.
The sensory combinations that cause the ants to pick up an object, on average, con-
tain fewer sensations of each type of object than the combinations that lead the ants
to not pick up an object. This is what causes the isolated objects to be picked up,
because the ants will pick up objects when many of their eight surrounding cells are
empty.

It is not surprising that it was not possible to find any similarities in the pick
up behavior of the ants that could account for the observed phases in the different
sorts. As discussed in the previous section, the deposition behavior is considered to
be the most significant when performing the sorts. It is therefore likely that there
are similarities in the deposition behaviors of the ants of the different solutions that
cause the emergent phases. When all the solutions are run the ants quickly pick up
the first isolated object they encounter irrespective of the type of object. However,
after only a few steps the ants that are not carrying the objects on which they will
focus on first (primary objects) deposit their objects. In the annular sort solutions,
for example, the ants will first pick up any type of object, but after a short period the
ants that did not carry a central type object will usually have deposited their object.
The quick deposition of non-primary objects appears to be a common characteristic
of all the runs throughout the duration of the runs. During any phase of a sorting run
the ants will pick up objects that are not already clustered or part of the emerging
sort. However, the objects that are not currently focused on at the particular stage of
the sort will quickly be dropped by the ants. For example, in the three-object sorting
task this behavior is evident when the ants are focusing on the second type of objects.
At this point of the sort they rarely pick up T3 objects as these are mostly part of
a single cluster, whereas the ants continously pick up T1 and T2 objects. However,
the ants that pick up T1 objects will quickly deposit their object, and the majority
of the ants will thus carry T2 objects. In the light of these observations it appears as
if the deposition behavior may be responsible for the observed phases of the run.

A similarity between all the sorts is found when investigating the combinations of
sensory stimuli that cause the ants to deposit the different objects. This is that there
are fewer sensory combinations that cause the ants to deposit their object when they
carry primary objects, than when they are carrying the other types of objects. In
fact, there is a clear ordering of the number of sensory combinations that cause the
ants to drop their objects when carrying each of the different types. There are fewest
combinations that cause the ants to deposit the primary objects. For the objects on
which the ants focus last, there are the largest numbers of sensory combinations that
cause the ants to drop the object. If there is an intermediate stage in which the ants
focus on a third type of object, the number of sensory combinations that cause the
ants to drop this type of object will be between the numbers for the other two types
of objects. The number of sensory combinations that cause the ants to deposit their
object when carrying each type of object for all the sorting solutions are summarized
in Table 5.1. In the table it can, for example, be seen that in the three-object annular
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Two-object patch sort Two-object annular sort

Type 1 310 Central type 802
Type 2 421 Outermost type 3207

Three-object patch sort Three-object annular sort

Type 1 2470 Central type 10054
Type 2 1881 Intermediate type 19079
Type 3 7085 Outermost type 35465

Table 5.1: Number of combinations of sensory stimuli that cause the ants to deposit
different types of objects in the different sorts.

sort there are 10054 sensory combinations that cause the ants to deposit central
objects, whereas for the intermediate and outermost type objects there are 19079 and
35465 combinations, respectively, that cause the ants to drop their objects. There
is however one exception to this numbered ordering of sensory combinations. In the
three-object patch sort solution there are far more combinations of sensory stimuli
that cause the ants to deposit the primary objects than for the remaining two types
of objects. However, if the actual combinations are studied it is evident that these
are combinations that are rarely encountered, and that will never be found in the
world at the beginning of a sort. Examples of such combinations includes situations
in which the ants are surrounded by objects, which will not occur at the beginning
when the objects are scattered.

To summarize, we have made three different observations that may help to explain
the emergence of phases. First, the ants will pick up any type of object, but the objects
on which the ants are not currently focusing will be quickly deposited. Second, the
numbers of combinations of sensory stimuli that cause the ants to drop their different
objects are correlated to the stages in which the ants focus on the different types
of objects. There are fewer combinations leading to deposition of primary objects,
and then increasing numbers of combinations for the objects on which the ants focus
in later stages. Third, the three-object patch sort contains a contradiction to this
numbered ordering. In this solution there are far more combinations that cause the
ants to deposit the primary objects than there are for the remaining two object
types. However, the object structures causing these combinations of sensory stimuli
are encountered at the beginning of a sort.

Based on these three observations the following explanation for the occurrence of
stages may be given. At the beginning of the sort the ants will pick up any type of
object. They will then carry this object around in the world and look for a suitable
position at which to deposit the object. However, for the primary objects there are
fewer combinations of sensory stimuli, and hence fewer structures of objects in the
world, that cause the ants to deposit their object. Because of this the ants will not
be able to deposit the primary objects, while at the same time being able to deposit
the other objects, as these are deposited in a larger number of situations. Every time
the ants pick up a primary object they will thus be unable to deposit their object.
The ants consequently become ‘stuck’ with their object. This causes the ants to carry
these objects for the most time, thus focusing on these objects, simply because they
are unable to deposit this type of object. Then after some time a structure emerges
by chance that causes the ants to deposit their objects in the vicinity of this structure.
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As most of the primary objects become part of this structure the ants will not pick up
these objects. This is because these objects are now located in their proper positions,
and objects located in their correct location are not likely to be picked up. Because
of this the ants will only pick up the other types of objects. The ants will now focus
on the second type of object because it is relatively more difficult to get rid of these
objects than the third type of objects. The ants thus have various difficulties with
depositing the different types of objects, with the objects focused on earlier in the
runs being harder to deposit than the objects focused on later in the runs.

The observed phases in the sorts in which the ants focus on different types of
objects are consequently the result of a combination of both the pick up and deposit
behaviors of the ants. The deposit behaviors cause the ants to have varying difficulties
with depositing the different types of objects, and as a result the ants will at each
stage carry the object that they have the greatest difficulty with getting rid of. The
deposit behavior thus causes the ants to focus on one of the object types at each stage
of the run. The pick up behavior does, on the other hand, limit the types of objects
on which the ants can focus. Once all, or most, objects of an object type are located
in the correct positions, the ants will no longer pick up these objects. As a result of
this the ants will be limited in the types of objects they can pick up and carry, and
thus there will be fewer types of objects on which the ants can focus.

5.3 Individual Behavior in the Three-Object

Annular Sorting Solution

The different sorting solutions emerge from the combined actions of the ants. The
groups of ants are capable of clustering and sorting the objects which are quite com-
plex tasks, yet at the individual level the ants only have a simple set of actions that
they can perform. These simple actions of the ants are what lie at the bottom of the
different sorting solutions. It is therefore interesting to analyze the behavior of the
individual ants to see what kind of individual behavior that gives rise to the collec-
tive behavior of the ants as a group. The behavior of the individual ants is controlled
by a neural network controller, and it is the actions of this controller that must be
analyzed in order to say anything about the behavior of the individual ants. Of the
actions that the ants perform it is the pick up and deposition actions that are most
central to the sorts that are performed. It is therefore only these two actions that
are investigated. The solution to the three-object annular sort is the most interesting
solution, and we have therefore decided to investigate the neural network controller
of the ants in the evolved solution to this task.

There are several ways of investigating the neural network controller. We have
chosen to investigate the controller using two different methods that look at the
controller from different perspectives. Both of the methods give the same kind of
result. What the controller is doing is to take perceptions from the ants and convert
these perceptions into actions. The perceptions of the ants are observations of what
type of object is located in each of the ant’s perceptual fields. What the controller
does is thus to look at the configuration of different types of objects in the ant’s
eight-cell neighborhood and its carried object, and then decide on which action it
is appropriate to take. The results of the two methods are a numbered evaluation
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of how much each type of object located in each of the perceptual fields biases the
controller towards taking the action in question. A central type object located directly
in front of the ant may, for example, bias the ant more strongly towards depositing
its currently carried object than a central type object that is located behind the ant.
The two methods look at different aspects of the controllers in their analysis. The
first method uses the different combinations of sensory stimuli causing the various
actions as the basis for its analysis, whereas the other method looks at the weights of
the neural network controller. If both methods yield similar results then the results
are likely to be reliable. The method that looks at the sensory combinations also
shows clearly how empty perceptual fields influence the behaviors.

The first method looks at the different combinations of sensory stimuli that cause
the ants to perform the action that is to be investigated. This is done by first cal-
culating all the different combinations of sensory stimuli in which the ant is in the
appropriate state and decides on the investigated action. For example in the case
of pick up behavior, all combinations of sensory stimuli that are possible when the
ant is not carrying an object and that leads to a pick up action are extracted. The
combinations of sensory stimuli are investigated by looking at the percentages of the
combinations of each sensory stimulus in each of the perceptual fields. The higher
this percentage is, the more likely it is that the corresponding sensory stimulus will
bias the ant into taking the considered action. If for example a sensory stimulus cor-
responding to a central type object has a high percentage of occurrence in perceptual
field two, which is directly in front of the ant, then the ant will be biased towards
taking the investigated action when it encounters a central type object directly in
front of itself.

The second method looks at the weights of the neural network controller. The
neural network is a fully connected feedforward network. This means that each input
to the network is given as input to each of the nodes in the hidden layer, whose
values are given to each of the nodes in the output layer. Each node in the output
layer corresponds to a specific action, and each input to the network will contribute
in some way toward firing each of these nodes. What this method of investigation
does is assign a value between 0 and 100 to each possible input to the network. This
value indicates how much each input contributes to the firing of a specific output
node, and hence to a specific action. Each input to the network corresponds to
the perception of a specific type of object in a specific perceptual field, and the
assigned values consequently indicate how much each type of object in each of the
ant’s perceptual fields bias the ant toward taking the considered action. This is
also what was done in the other method, although this method inferred the bias
directly from the combinations of sensory stimuli leading to the different actions.
How much each input to the network contributes to the firing of a specific output
node is determined as follows. If the network is viewed as a graph then there are
several paths between each input node and the output nodes. For each pair of input
node and output node it is possible to go via each of the hidden nodes. Each of these
paths is weighted differently. The raw score of each input is calculated by summing
the products of the edges of each path. This is illustrated in Figure 5.1.

In the case of the controller for the three-object annular sort there are five hidden
nodes. This means that for each input there are five different paths that each consist
of two edges. There is one edge between the input and the hidden node, and one
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Figure 5.1: To calculate how much node I1 contributes to the firing of node P, the
edges of each path between the two are multiplied together, and then the results are
summed. In this case node I1 contributes to the firing of node P with A1 × A2 +
B1 × B2 + C1 × C2.

between the hidden node and the output node. The weights of each pair of edges
are multiplied before these products are added together. The raw score of each input
consequently looks at how each input propagates through the network, and assigns
a score showing how it influences the final outcome of the investigated output node,
which corresponds to a specific action. After the raw scores have been calculated
they are normalized to a value between 0 and 100 as follows. First the lowest score is
set equal to 0 by adding the distance between this number and zero to all the values
(the lowest score is negative). Then each score is divided by the largest score and
multiplied by 100. By doing this each score will be normalized in the range [0 . . . 100].

5.3.1 Pickup Behavior

When looking at the pick up behavior of the ants during three-object annular sorting
it is evident that the pick up behavior serves both a disruptive and a conserving
role. The ants pick up objects that are generally in the wrong positions, and hence
disrupt the existing distribution of objects. However, the behavior also conserves
existing local distributions of objects that have a correct structure by not removing
objects from these local areas. As discussed in section 5.2 the pick up behavior also
contributes to the sorts occuring in phases by limiting the types of objects that the
ants pick up, and consequently move around.

We start by looking at the weights of the network that influence the pick up action
of the ants. The normalized scores obtained from the appropriate weights are given
in Table 5.2. The table gives the scores for each type of object occuring in each of
the ant’s eight surrounding cells (the numbering of the cells is shown in Figure 5.2).
There are no entries for objects carried by the ant because when the ant picks up an
object it can not currently carry an object, and hence the input from this perceptual
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Figure 5.2: Locations of the ant’s perceptual fields.

Central Intermediate Outermost

1 65.07 86.99 72.98
2 0.00 36.27 49.07
3 45.28 78.86 100.00

4 40.87 66.14 89.50

5 7.70 53.96 39.03
6 97.55 67.07 78.44
7 16.48 69.35 44.97
8 37.78 48.36 60.69

Table 5.2: Pick up weight scores for each type of object in perceptual fields
1 through 8.

field will always be zero when the ant is considering whether to pick up an object
or not. The most obvious feature of the scores is that in all of the perceptual fields,
except field 6, the score achieved by the presence of a central type object in the field
is lower than the scores for the presence of the other two types. This means that
if the ant perceives central type objects around itself that are not located directly
behind it (perceptual field 6) the ant is not likely to pick up an object. The presence
of central type objects thus inhibits the ant from picking up objects. This behavior
is clearly appropriate because when there are many central type objects in the ant’s
surroundings it is located in, or near, a cluster of central type objects. A cluster of
central type objects is one of the features of the desired structure, so when the ant
senses the presence of this cluster it should not remove objects because they are likely
to be located in their correct position. Another result of the scores being higher for
the presence of intermediate and outermost objects is that if there are many of these
present in the ant’s surroundings then they will be picked up. This is appropriate
because there should be no dense groups of either, or both, intermediate or outermost
type objects. The presence of intermediate type objects bias the ants most towards
picking up objects if they are located in perceptual fields 1 and 3. Outermost type
objects bias the ants most towards picking up objects if they are present in perceptual
fields 3, 4, and 6.

An analysis of the combinations of sensory stimuli shows how the presence of
empty cells around the ant affects the pick up behavior of the ant in addition to the
presence of various types of objects. Table 5.3 shows for each combination of sensory
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1 2 3 4 5 6 7 8

Nothing 19.79 52.64 26.42 22.25 48.32 17.41 29.73 38.31

Central type 30.86 9.33 18.31 22.59 6.31 60.94 1.41 29.84

Intermediate type 30.14 14.33 17.73 20.30 10.30 7.44 44.58 23.07

Outermost type 19.20 23.71 37.54 34.86 35.06 14.20 24.28 8.79

Table 5.3: Percentage of occurrence of each combination of stimulus and perceptual
field in the sensory stimuli that cause the ant to pick up an object.

stimulus and perceptual field, the percentage of times this combination is present in
the combinations of sensory stimuli that cause the ant to pick up an object. A central
type object is for example located directly in front (position 2) of the ant in only 9.33%
of the situations where the ant will pick up an object. From Table 5.3 it is clear that
the ant is likely to pick up objects if there are empty cells surrounding it. The absence
of objects in the perceptual fields 2, 5, and 8 bias the ant particularly towards picking
up objects. For the different types of objects the ant will be biased towards picking
up objects if they are present in the following perceptual fields. Central type objects
will bias the ant towards picking up objects if they are located in perceptual fields
1, 6, and 8. Intermediate type objects will bias the ant towards picking up objects
if they are present in perceptual fields 1 and 7. And finally, outermost type objects
will bias the ant towards picking up objects if they are present in perceptual fields 3,
4, and 5.

The results of the two different methods of analysis can be combined to draw the
following conclusions about the pick up behavior of the ant. First, the ant will pick
up objects if there are many empty cells surrounding the ant, particularly if these are
directly in front of the ant, directly to the left of the ant, or back and to the right
of the ant. Second, the ant is not likely to pick up objects if there are many central
type objects in the ant’s surroundings. Central type objects located directly in front
of the ant or to the sides behind the ant will inhibit pick up behavior most. However,
if there is a central type object located directly behind the ant then the ant will be
biased towards picking up an object. Third, the ant will pick up objects if there are
several intermediate or outermost type objects in the ant’s surroundings. These are
the most clearly observed features of the ant’s pick up behavior.

5.3.2 Deposit Behavior

The deposit behavior of the ants is considered to be the most important behavior in
terms of being able to solve the different sorting tasks successfully. This is because it
is only when the ants are depositing objects that they can make a decision of whether
an object of a specific type belongs in a specific location or not. In the three-object
annular sort there are three types of objects present in the environment. Because
of this the deposition behavior can be seen as consisting of three different deposit
actions. There is one action for each type of object. For each type of object the ant
is carrying it must be able to decide whether the object should be deposited or not,
depending on the presence of other types of objects in its immediate surroundings.

Even though the deposition behavior is considered to consist of three different
actions depending on the type of object that the ant is currently carrying, the weights
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Central Intermediate Outermost

1 46.80 50.03 57.79
2 84.55 62.66 68.81
3 41.68 29.57 24.07
4 56.10 50.04 42.83
5 100.00 36.91 57.07
6 28.69 50.59 36.07
7 42.92 47.99 96.06

8 35.61 58.45 48.15
A 0.00 21.33 39.91

Table 5.4: Deposit weight scores for inputs from the ant’s eight surrounding cells
(1–8) in addition to the object the ant is carrying (A).

of the network can only be analyzed for all three actions together. The result of the
analysis of the network controller for the deposition behavior of the ant is given in
Table 5.4. In contrast to the analysis of the pick up behavior, the input from the
object that the ant is carrying is also included in this analysis in addition to the
perceptions from the cells surrounding the ant. In fact, the scores for the different
types of object that the ant is carrying are very important for the deposition behavior.
This is because one of these scores will always be ‘active’ when the ant is carrying
an object. These scores consequently function as a weighted baseline that determines
how large the other scores must be for the ant to engage in deposit behavior. When the
ant is carrying a central type object the score for the perception of the carried object
is 0, and hence this must be counter-balanced by the scores for the other perceptual
fields being higher in order for the ant to engage in deposit behavior. When the
ant is carrying an outermost object the baseline is highest, and when carrying an
intermediate object the baseline is halfway between the other two baselines. Another
way to see this is that it takes more in order for the ant to deposit its object when it
is carrying a central type object than when it is carrying intermediate and outermost
objects, respectively. This correlates with the reason for the observed phases discussed
in section 5.2. The ants have greater difficulties with depositing central type objects
because of the low baseline, and hence focus on these objects first. Then the ants
focus on intermediate and outermost objects because these have gradually higher
baselines.

Since the deposition behavior can be said to consist of three different actions
depending on which type of object the ant is carrying these are analyzed in turn
below.

Deposition of Central Type Objects

The central type objects of an annular sort form a cluster in the center of the structure.
This means that the ants should only deposit central type objects in areas that contain
other central type objects, and possibly intermediate objects. There are in other words
a restricted number of situations in which the ants should deposit their object when
they are carrying a central type object.
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1 2 3 4 5 6 7 8

Nothing 23.95 9.65 27.74 12.74 12.28 29.67 14.68 25.10

Central type 29.50 51.18 25.77 56.82 64.89 14.60 30.38 23.74

Intermediate type 21.37 25.07 21.40 19.74 5.95 19.16 26.69 26.65

Outermost type 25.17 14.09 25.08 10.69 16.88 36.57 28.26 24.51

Table 5.5: Percentage of occurrence of object types in each of the ant’s surrounding
cells when depositing a central type object.

When analyzing the weights of the network with respect to the deposit behavior, it
is seen that when an ant is carrying a central type object the score for the perceptual
field of the ant’s carried object will always be zero. This means that when carrying
a central type object the ant is initially biased towards not depositing its object.
In order for the ant to deposit the object there must either be many other objects
located in the ant’s surroundings, or objects must be present in perceptual fields that
yield high scores. The higher the total sum of scores the more biased the ant becomes
towards depositing its object. When looking at the weights it is seen that the scores
for central type objects are particularly high when these are present in the perceptual
fields 2, 4 and 5 (see Table 5.4). This means the ant is likely to put down its object
if there are central type objects located directly in front of the ant, directly to the
right of the ant, and behind and to the right of the ant. Apart from this, the main
conclusion that can be drawn from the weight analysis is that it is less likely that the
ant will deposit a central type object than one of the other types of objects given the
same configuration of surrounding objects.

The analysis of the combinations of sensory stimuli that cause the ant to deposit
its central type object sheds more light on the ant’s deposit behavior when carrying
central type objects. The results of the analysis are shown in Table 5.5. When there
are empty cells around the ant it is not likely to deposit its central type object. None
of the cells surrounding the ant is empty in more than 30% of the situations where
the ant will deposit a central type object. The perceptual fields 2, 4, 5, and 7 have
particularly low occurences of empty cells. This means that if there are no objects in
front of the ant, to the right of the ant, or behind the ant on either side, then the ant
is not likely to deposit its object. This observation seems logical since the ant should
not deposit central type objects in isolated areas. The ant is most likely to deposit its
object if there are central type objects located in its perceptual fields 2, 4, or 5. The
ant will, in other words, be likely to put down a central type object if there are central
type objects directly in front of the ant, or to the right of the ant. When it comes
to the presence of intermediate and outermost type objects, intermediate objects are
mostly present directly in front, or behind and to the left of the ant in the situations
where the ant deposits a central type object. The outermost type objects are mostly
present directly behind the ant when the ant deposits a central type object. However,
they are also present either in front and to the side of the ant, or behind and to the
side of the ant.

If the two methods of analysis are combined the following observations can be
made concerning the ant’s deposition of central type objects. First, there are fewer
situations in which the ant deposits a central type object than the other two object
types. Second, the ant is most likely to deposit a central type object if there are
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1 2 3 4 5 6 7 8

Nothing 24.90 14.75 28.95 17.61 18.55 29.15 19.38 30.22

Central type 22.99 40.02 17.12 45.24 59.99 13.02 22.38 15.69

Intermediate type 22.85 26.95 21.59 22.34 6.92 18.83 26.31 27.65

Outermost type 29.25 18.28 32.34 14.81 14.53 39.00 31.93 26.43

Table 5.6: Percentage of occurrence of object types in each of the ant’s surrounding
cells when depositing an intermediate type object.

central type objects located in front of the ant, or to the right of the ant. Third,
the ant is likely to deposit its central type object if there are intermediate objects on
the ant’s left side. And finally, the ant will be biased towards depositing its object if
there is an outermost object directly behind the ant.

Deposition of Intermediate Type Objects

When the ants have created a cluster of central type objects they deposit interme-
diate type objects along the edges of this cluster. This means that the intermediate
type objects are mostly put down next to central type objects in the final structure.
The analysis of the weights of the network first of all shows that when carrying an
intermediate type object, the ant is more biased towards depositing its object than
when carrying a central object, but less biased towards depositing the object than
when carrying an outermost object (see Table 5.4). The ant consequently deposits
an intermediate object more easily than a central object. Because the weight score
for the occurrence of central type objects is so high when they are located directly in
front of the ant and behind to the right, it is likely that the ant will deposit its inter-
mediate type object if central type objects are encountered in these positions. The
intermediate type objects receive the highest weight scores if they are present in the
perceptual fields 1, 2, 4, 6, 7 and 8. This means that the occurrence of intermediate
type objects in all of the ant’s surrounding cells, except for the cells to the right and
in front or behind the ant, will bias the ant towards depositing its object.

It is easier to see what influences the deposition of intermediate objects when
looking at the analysis of the combinations of sensory stimuli that cause the ants
to deposit their intermediate type object. The results of this analysis is given in
Table 5.6. In similarity with the deposit of central type objects, the intermediate type
objects are usually not deposited if there are empty cells around the ant. However,
the percentage of occurrence of empty cells is generally higher than was the case
for the deposition of central type objects. Central type objects are located either
directly in front or to the right of the ant, or behind and to the right of the ant, in
most of the situations where the ant deposit an intermediate type object. When it
comes to other intermediate type objects, they do not occur very often in any of the
ant’s surrounding cells. This means that the ant will not deposit intermediate type
objects in groups of the same type. When intermediate type objects do occur in the
ant’s surroundings when depositing an intermediate object, they are mostly located
in front and to the sides of the ant, and behind to the left. Outermost objects occur
more frequently than intermediate objects in the situations where the ant deposits
its intermediate object. These objects are either located on the sides in front of the
ant, or behind and to the left of the ant.
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1 2 3 4 5 6 7 8

Nothing 24.62 18.30 28.22 21.49 24.53 28.63 22.16 29.04

Central type 22.48 33.24 18.35 35.35 43.34 15.71 21.70 17.04

Intermediate type 23.83 26.87 22.76 24.13 12.44 21.16 25.59 27.38

Outermost type 29.07 21.59 30.67 19.04 19.69 34.50 30.55 26.54

Table 5.7: Percentage of occurrence of object types in each of the ant’s surrounding
cells when depositing an outermost type object.

Based on the analysis of the sensory stimuli it is possible to determine in which
situations the ant is most likely to deposit an intermediate type object. The deposition
of intermediate type objects seems to be particularly influenced by the occurrence of
central and outermost type objects in specific locations. All of these combinations of
object type and position in relation to the ant occur in more than 25% of the situations
in which the ant deposits its intermediate type object. The ant is most biased towards
depositing its intermediate type object if there are central type objects located in the
perceptual fields 2, 4, and 5, and outermost type objects located in the perceptual
fields 1, 3, 6, 7, and 8. This means that the ant for example will deposit its object if
there is a central type object in front of the ant, or to the right, and outermost type
objects behind and to the left of the ant. The ant will thus deposit its intermediate
type object between the central and outermost objects, which is where the band of
intermediate objects should be located in the annular structure.

Deposition of Outermost Type Objects

The outermost type objects form a band surrounding the intermediate type band
of objects in a three-object annular structure. This means that all the outermost
objects are located between a layer of intermediate objects and empty cells. The
objects should generally not be located next to central type objects. When looking
at the analysis of the weights of the network in Table 5.4, it is evident that when
the ant is carrying an outermost object it is biased towards depositing its object
irrespective of the presence of other objects in its surroundings. The outermost type
objects are therefore the most easily deposited since the ant have an initial bias
towards depositing this type of object. This bias is caused by the score of 39.91 from
a perception of an outermost object carried by the ant. Outermost objects located
behind and to the left of the ant give the highest scores in the weight analysis of the
outermost type object scores. This is followed by outermost objects located in front,
in front and to the left, and behind and to the right of the ant. The most important
information that may be inferred from the analysis of the weights of the network with
respect to the depositing of outermost type objects is that these objects are deposited
most easily of the three types of objects.

The results of the analysis of the combinations of sensory stimuli that cause the
ant to deposit an outermost type object is given in Table 5.7. When comparing
the results with the results in tables 5.5 and 5.6, it is clear that there is a gradual
increase in the percentage of combinations where fields 2, 4, 5, and 7 are empty when
the ant deposits an outermost object, compared to when depositing the other two
types of objects. However, even though outermost objects will be located next to
empty cells in the annular structure, it is evident that the ant prefers to deposit the

107



outermost objects next to other objects instead of empty cells. Central objects are in
similarity with the deposition of intermediate objects most often encountered in the
perceptual fields 2, 4, and 5 when the ant deposits its object. However, central type
objects are not present in as many of the sensory stimuli combinations that cause
the ant to deposit outermost objects as for the other two object types. This is not
surprising as the outermost objects should generally not be deposited next to central
type objects. Of the ant’s perceptual fields, intermediate type objects are encountered
most often in fields 2, 4, 7, and 8 when the ant deposits an outermost object. In fact,
the intermediate objects are frequently located in all of the ant’s surrounding cells,
except the cell behind on the right, when the ant deposits an outermost object. Other
outermost objects are most frequently present in the perceptual fields 3, 6, and 7, and
least frequently present in fields 4 and 5 when the ant deposits an outermost object.
This means that the ant will deposit outermost objects next to other outermost
objects if these are located in front and to the right, or behind and to the left of the
ant.

When looking at what combinations of objects in the perceptual fields of the ant
that bias the ant most towards depositing an outermost object, a somewhat surprising
fact is discovered. The ant is most biased towards depositing its outermost objects if
there are central objects in the perceptual fields 2, 4, and 5, and outermost objects
in the fields 3, 6, 7, and to a lesser degree 8. Intermediate objects are also frequently
present in fields 2, 7, and 8 when the ant deposits an outermost object. The surprising
finding is that the presence of central objects bias the ant towards depositing its
outermost object, because the outermost objects should not be positioned next to
central type objects. However, when the ants carry outermost objects the central
objects are located in a single cluster surrounded by intermediate objects. The ants
will consequently not be able to deposit their outermost object when sensing central
type objects. The weight genes responsible for this behavior may therefore have a
low selection pressure, and as a consequence simply drifted to high values. From
these observations it is clear that the ant will deposit outermost objects if outermost
objects are located behind and to the left of the ant. Intermediate objects will bias
the ant towards depositing the outermost object when encountered in all positions
except for behind to the right of the ant.

5.3.3 Key Mechanisms in the Annular Sort

The previous sections have given a detailed description of the pick up and deposition
actions of the ants. Based on these descriptions and the observations of annular
sorts in progress, it is possible to summarize the key mechanisms that lead to the
formation of an annular sort: 1) Objects are picked up if they are isolated, or there
are several outermost objects surrounding the object. 2) Objects are not picked up
if they are located in a neighborhood that is densely populated with central objects.
3) Outermost objects are most easily deposited, followed by intermediate objects.
Central objects are deposited in fewer situations than the other to object types.
4) Central objects are deposited when there are central objects in front or to the
right of the ant. 5) Intermediate objects are deposited when there are central objects
in front and to the right of the ant, or outermost objects behind and to the left of
the ant. 6) Outermost objects are deposited when there are other outermost objects
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behind and to the left of the ant. They are also deposited when there are intermediate
objects in the ant’s surroundings.

The key mechanisms described above are involved in the formation of an annular
sort in the following way. At the beginning of the sort most objects are isolated, and
they are therefore picked up by the ants. Intermediate and outermost objects are
more easily deposited than central objects. This leads to some of these being put
down next to other objects, whereas the ants carrying central objects are unable to
deposit their objects. The ants will carry the central objects until there is a random
fluctuation in the world that leads to a small group of central objects being formed.
Because central objects are only deposited next to groups of central objects, all of
the central objects will eventually be deposited in this growing group.

Since objects are not picked up when they are in a neighborhood densely populated
with central objects, the objects in the emerging group will not be picked up once
they become part of the cluster. This leads to the ants only picking up intermediate
and outermost objects once all the central objects have become part of the cluster.
Outermost objects are more easily deposited than intermediate objects, and the ants
therefore carry intermediate objects most of the time. The intermediate objects are
deposited when there are central objects in front and to the right of the ant, and as
a consequence they are deposited along the edges of the central type cluster. Once
they are located on the edge of the cluster they are not picked up because they
are in a neighborhood with several central objects. All of the intermediate objects
eventually become part of the growing structure, because once they are part of it,
they are not removed. This leads to the outermost objects being the only objects
that are picked up by the ants. These objects are most easily deposited when there
are intermediate objects in the ant’s surroundings. The only place where there at
this point are intermediate objects is on the edge of the growing structure, and the
outermost objects are consequently moved to the edges of the structure. Once they
are part of the structure they are not likely to be removed. This is because objects
are most easily picked up when they are isolated or only have outermost objects
in their surroundings. The presence of intermediate objects consequently inhibits
the pick up of outermost objects from the edge of the formed structure. Because
objects are generally likely to be deposited in the structure, but not removed from
the structure, the emerging structure will eventually contain all the objects. At this
point the annular sort is complete, and the emerged structure will have an annular
pattern.

5.4 Self-Organization in the Evolved Solutions

Self-organization has been defined by Bonabeau et al. [6] as: “. . . a set of dynamical
mechanisms whereby structures appear at the global level of a system from interactions
among its lower-level components. The rules specifying the interactions among the
system’s constituent units are executed on the basis of purely local information, without
reference to the global pattern, which is an emergent property of the system rather
than a property imposed upon the system by an external ordering influence.” From
this definition of self-organization it seems likely that self-organization is present
in the evolved solutions to the clustering and sorting tasks. The evolved solutions
create structures on the global level, in the form of sorted distributions of objects,
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and this is caused by the interactions of the swarm of ants. The ants have only
access to local information when deciding on which action to perform, and they
have no knowledge of the global pattern that signifies a successful solution to the
task that they are solving. It is evident that the properties of the evolved solutions
closely resemble the definition of self-organization. Based on this closeness it is likely
that the evolved solutions are self-organizing systems where pattern formation occurs
through interactions internal to the system, without intervention by external directing
influences [9]. If the evolved solutions are in fact self-organizing systems then they
must have four specific ingredients, which are positive feedback, negative feedback,
amplification of fluctuations, and multiple interactions [4, 6].

The first ingredient that exists in self-organizing systems is positive feedback, or
amplification, which promotes the creation of structures. Positive feedback is present
in all of the evolved solutions in the form that growth of groups of objects encourages
further growth of the groups. This is most evident in the clustering solution. During
a run of this solution there is at some point formed a group of objects. Once this is
formed the ants will quickly deposit the remaining objects that are scattered around
the world in this growing group. Positive feedback is thus involved because as a group
of objects grows, its attractive force on the other objects in the environment increases.
In other words, the larger the cluster the more likely the ants are to deposit their
object in this cluster. This form of positive feedback is also present in the sorting
solutions. In the patch sort solutions a group of identical objects will encourage the
ants to deposit objects of the same type in this group. As the different groups of
objects grow, their attractive force on the other objects of the same type increase. In
the annular sort solutions, positive feedback is also present, although its occurrence is
slightly different because the growing structure will contain several types of objects.
However, the growth of the structure still encourages the ants to deposit their object
in the structure, and so there is a positive feedback mechanism involved. Positive
feedback is consequently a key ingredient in all of the evolved solutions.

The second ingredient of self-organization is negative feedback. Negative feedback
counterbalances the positive feedback and helps to stabilize the collective pattern.
It may take the form of saturation, exhaustion or competition, and in the evolved
solutions it takes the form of exhaustion of objects. In all the solutions the growing
structures will continue to grow until there are no more objects that are not already
part of the structures. In the clustering solution the ants will continuously move
objects to the growing structure, until there are no more objects in the environment
that are not already located in the structure. If the ‘building blocks’ of the structure
were never exhausted the ants would continue to move objects to the cluster, and it
would increase in size indefinitely. In the two patch sort solutions the various groups
of identical objects also stop growing when negative feedback kicks in. The different
homogeneous groups that are formed in these solutions will continue to grow until
there are no more objects of the same type present in the environment. Negative
feedback is also present in the annular sorting solutions. In these solutions the ants
will stop moving one type of object when there are no more objects of this type that
are not already part of the emerging structure. The carrying and deposition of one
type of object is thus stopped when this object type is exhausted, because there are
no more of these objects that are not already in their correct positions. Negative
feedback is strongly involved in creating the emergent phases that are observed in
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the sorting solutions (see section 5.2). Negative feedback forces the ants to start
working on other types of objects when an object type is exhausted. An object type
is exhausted when all of its objects are located in positions from which the ants do
not pick up objects, for example in a cluster of central type objects.

Self-organization relies on the amplification of fluctuations, and this is the third
ingredient of self-organizing systems. When all of the evolved solutions are run the
objects are at first scattered randomly in the environment. After some time, one or
more of the objects are deposited next to another object, or in a small group, such
that there is a fluctuation in the random distribution of the objects. Once this small
group is formed, it quickly increases in size. The initial fluctuation is consequently
amplified through the growth of the created group. Because it is the amplification of
fluctuations that causes a group of objects to be formed, the global pattern is rarely
the same in two different runs of the solution. The fluctuations that are amplified
rarely happen in the same place of the environment, and thus the formed structures
will be located at different positions of the world in the different runs of the solutions.

The final ingredient of self-organization is multiple interactions. This is clearly
present in all of the evolved solutions as they all contain a swarm of ants that create
the various structures. In addition to interacting with each other, the individual
agents in a self-organizing system should be able to make use of the results of their
own and other agent’s activities [4]. This is also the case for all of the evolved
solutions as the ants make use of the emerging structures independently of whether it
is themselves or other ants that have created the structures. When there are multiple
interactions among the agents in the system, they clearly must interact in some way,
either directly or indirectly. Section 1.3 introduced stigmergy, and this is the way
in which the ants in the evolved solutions interact. The sensory apparatus of the
ants does not enable them to sense each other, only the objects in the world. The
ants can thus not interact directly, but only indirectly through the positioning of the
objects in the environment. Each of the ants modifies the environment by picking
up and depositing objects, and the other ants respond to the changed state of the
environment at a later time. The ant also responds to the changes that it itself made
to the environment.

In addition to the four ingredients that must be present in self-organizing systems,
there are some key properties that usually characterize self-organizing phenomena.
These three properties are the creation of spatiotemporal structures in an initially
homogenous medium, the possible coexistence of several stable states (multistability),
and the existence of bifurcations [3, 4].

The two first properties are characteristics of all the evolved solutions. Spatiotem-
poral structures are formed in an initially homogeneous medium. At the beginning
of a clustering or sorting task there is no grouping of objects of any type, if this does
not happen by chance, and the objects are scattered randomly in the environment.
The environment can therefore be said to be a homogeneous medium because there
is a random distribution of objects. As the different solutions are run on the initial
distributions of objects, structures eventually emerge. In the clustering task identical
objects are initially scattered in the environment, for thereafter to be clustered by the
evolved solution. This also happens in the annular sorting tasks, but in these there
are several types of objects that are initially scattered, and the final cluster has a
specific internal structure. In the patch sorting tasks there are initially several types
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of objects scattered in the world, and when the solutions are done the objects have
been clustered in groups containing only one type of object.

Multistability is also a property of the evolved solutions. The structures emerge
by amplification of random deviations, and any such deviation may be amplified. The
systems can thus converge to any one of several possible configurations, depending
on the initial distribution of objects and the fluctuations that occur. For the different
evolved solutions this means that when they are run, the location of the clusters
may be in any one of a variety of possible locations. Depending on where in the
environment the initial groups of objects are formed, the final structures will be
located in different positions of the world. There are thus several possible final states
of the evolved solutions because each time they are run, the emerging structures
may form at many different locations of the environment depending on the initial
positioning of objects and ants.

Bifurcations when parameters are varied have not been observed in any of the
evolved solutions because it has not been investigated. It is however possible that
bifurcations may occur if the ratio between the number of ants and objects are varied.

From the discussion above it is clear that the evolved solutions are all self-
organizing systems. The solutions all have the key ingredients of a self-organizing
system, and they have two of the three typical properties. This shows that artifi-
cial evolution can be used successfully to create such systems. The fitness of the
individual behaviors is evaluated by looking at the global pattern formed through
the interactions of a group of agents with the same behavior. It is thus possible to
evolve the individual behaviors by specifying characteristics that should be present
at the global level. This is a promising alternative to the hand-coding of individ-
ual behavior, because when modeling self-organizing systems the global patterns are
known, whereas the individual behaviors leading to the patterns are unknown. It is
therefore favorable to start by defining properties of the known patterns, rather than
attempting to define the rules governing the unknown individual behavior.
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Chapter 6

Conclusion

This thesis has presented our work with evolving swarms of homogeneous agents
capable of clustering and sorting objects. Our work has been inspired by social insect
societies, and in particular ant colonies where ants cluster dead bodies outside the
nest, or sort their brood either in separate piles or in a pattern of concentric rings.
In these societies the individuals are simple, yet at the collective level of the colony
complex patterns emerge. Based on these observations we have designed agents with
limited sensory capabilities that can pick up and deposit objects as well as move
around. The behavior of the agents has been evolved by evaluating the patterns that
are formed at the global level when swarms of agents interact with different types
of objects. With this as a basis we have been able to evolve swarms of agents that
can perform clustering, patch sorting, or annular sorting of simple objects. Earlier
research dealing with the clustering and sorting seen in insects has been successful in
creating swarms of agents that can perform clustering and patch sorting. However,
there has up to this date only been limited success with creating swarms capable of
forming an annular pattern. The swarm of agents and the collection of simple objects
can be seen as a self-organizing system as described in section 5.4. The agents interact
with each other and the objects at the individual level, and at the collective level of
the system a pattern in the distribution of objects emerges. Thus, we have created
self-organizing systems in which clusters, patches and annular patterns emerge.

One of our main motivations for performing this work has been to show that arti-
ficial evolution is a viable approach to creating swarms of agents capable of clustering
and sorting. The power of artificial evolution in finding solutions to problems has
been shown in a wide range of different research fields, but its application to the
creation of swarms of agents has been limited. Within the field of research concerned
with creating swarms of agents capable of clustering and sorting, artificial evolution
has rarely been used at all. The normal approach within this field of research has
been to observe the individual behavior of insects and then form a set of rules, or
a mathematical model, that describes the individual behavior. After having defined
the individual behavior, the system is run in a simulation and evaluated in terms
of whether the desired emergent patterns occur or not. If the desired patterns do
not occur, the individual behavior of the agents is modified and the simulation is
repeated. The traditional approach to the creation of swarms capable of clustering
and sorting is consequently to hand-code the individual behavior and then tweak
this until it leads to the desired patterns. Our approach is in a way the opposite
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of this approach. We define measurable characteristics of the desired patterns, and
then evolve the individual behavior by evaluating it in terms of the patterns that
emerge. Thus, instead of starting by defining the individual behavior we start by
defining properties of the desired patterns. This is a favorable approach because the
characteristics of the desired patterns are known in advance, whereas the behavior
of the individuals is unknown. By being able to create a solution to such a complex
task as that of annular sorting we have shown that this approach is viable, and that
artificial evolution also is a viable approach within this field of research.

Another of our main motivations has been to show that simple individual behavior
can lead to systems that are capable of solving complex tasks. Previous research has
shown that swarms of agents with simple behaviors are capable of tasks such as
clustering and sorting objects into separate clusters. However, it has not been shown
earlier that swarms of individuals with simple behaviors are capable of solving a task
as complex as annular sorting. Annular sorting is considered to be a much more
difficult task to accomplish than clustering and patch sorting. By evolving swarms
that are capable of annular sorting we have shown that swarms of agents with simple
sensory apparatus and behavior are able to solve complex tasks. The formation of
annular clusters by a swarm of robots has previously been described by Wilson et
al. [33]. The annular sort performed by the group of robots that they describe is
however much less compact, and the different types of objects are not as clearly
separated as in the solutions we have created.

Our second motivation above is closely connected to one of the main motivations
within the field of swarm intelligence. This is to gain a better understanding of
nature. By replicating phenomena found in nature in computer simulations a better
understanding of their underlying mechanisms may be gained. In our work we have
shown what is needed at the individual level in order for the tasks to be solved at the
global level. By doing this we have also, by omission, shown what does not need to be
inferred about the observed phenomena. First of all, we have shown that for a swarm
of agents to solve the given tasks there is only a limited amount of information that
is needed by each individual. The agents in our work only have information about
the objects that are in their immediate neighborhood. Thus, the only information
the agents have about the distribution of objects in the environment is which objects
are surrounding them. Consequently, at the individual level, there is no need for
knowing anything about the overall distribution of objects, or the distances to the
closest objects at each side of the agent. Also the agents do not need to know what
they pick up, only what they put down. This further underlines the point that very
limited information is needed at the local level in order for the tasks to be solved at
the global level of the system.

The simplicity of the individual agents that are needed in order to solve the tasks
is further emphasized by the use of simple feedforward networks as controllers for
the agents. These networks only map input patterns to output patterns, and do not
retain any knowledge of previous activity. The successful use of this type of network
consequently indicates that the individuals do not need an explicit knowledge of their
previous actions. By using only information from their current neighborhood and a
feedforward network to control their behavior, the individual agents do not need any
form of internal memory to solve the different tasks [12, 18, 24].
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The clustering and sorting tasks have been solved by agents that only have access
to limited local information about the distribution of objects, and that are capable
of only simple behaviors. This indicates that we do not need to infer anything else
about the natural systems that show the same emergent patterns. It is, for example,
not necessary to attribute the annular brood sorting to templates either in the form
of pheromones or mechanical structures [15].

The most important discovery during our work is the emergent phases that occur
in the sorting experiments. In both the patch sorting and the annular sorting exper-
iments the ants sort the objects in phases. The ants first position one type of object
in the correct position according to the desired pattern, then the next type and so
on. The occurrence of the emergent phases in all of the experiments indicates that
there must be some advantage with this phenomenon. When considering an annular
sort the occurrence of emergent phases seems logical. It does not make sense to start
positioning of objects further out in the annular structure before the inner parts are
formed. Before the central cluster is formed it is not possible to create a band sur-
rounding this cluster and so on. In an annular structure it therefore seems plausible
that the sorting of objects should occur in phases, where objects closer to the center
of the structure will be positioned before objects further out in the structure. This
sorting in phases presents an alternative to the two phases that have been recently
observed in the Leptothorax ant by Sendova-Franks et al. [32]. They have observed
that when migrating to a new nest, the ants will first create a dense cluster of brood
before they spread out the cluster. It is only when the brood are spread out that
the annular structure of brood is formed. The sorting of objects in distinct phases
presents an alternative to this observed clustering and spreading out technique. Even
though the sorting in phases seems logical in the context of annular sorting, its sig-
nificance in patch sorting is less apparent. It is possible that the sorting in phases is
an efficient way of organizing the work to be done, but this needs to be investigated
further. It is however clear that there must be some adaptive significance to the
organization of sorting in distinct phases since this is present in all four of the sorting
experiments.

The first motivation of swarm intelligence, to achieve a better understanding of
nature, was described above. The second motivation does, in a sense, work in the
opposite direction. This motivation is that the study and application of characteristics
of social insects to computer science may lead to better techniques. Algorithms
based on social insects have, for example, lead to improved solutions to optimization,
scheduling, and data analysis problems [13, 18]. The collective behavior of social
insects has attractive properties such as robustness, scalability, and adaptability. The
solutions to the tasks described in this thesis are both reliable and robust. All of the
evolved solutions are capable of forming the desired patterns from a wide variety
of initial distributions of objects and agents. The solutions are consequently both
reliable and adaptable in that they successfully form the desired patterns in a wide
variety of situations. Another attractive feature of social insects is robustness through
redundancy. In all of the evolved solutions the desired patterns will still be formed
even if some of the agents are removed. The solutions are thus robust in that they
will still solve the tasks successfully even if some of the agents stop functioning.
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6.1 Future Work

The work in this thesis can both be improved and extended. A problem with the
work that is performed is the dependency of the neural network controllers on the
number of different types of objects in the tasks to be solved. The number of different
objects determines both the number of input nodes and the number of hidden nodes
in the neural networks. An improvement to the achieved solutions would therefore
be to remove these dependencies. The easiest improvement is for the networks to
separate different object types quantitatively instead of qualitatively. In the current
form the networks separate different object types by associating each type of object
with specific input nodes. The structure of the network must consequently be altered
according to the different types of objects present in a task. If the networks separated
object types quantitatively instead, this alteration of the structure would not be
necessary. A way to do this is for the network to receive different valued inputs
depending on the type of object present. It is more difficult to remove the dependency
between the hidden nodes and the types of objects. The number of hidden nodes is
related to the dimensionality of the problem, and the more types of objects present,
the higher this dimensionality will be. It is consequently difficult to remove the
dependency between the types of objects and the number of hidden nodes, though
a possible solution might be to use a different type of network than a feedforward
network. If the two mentioned dependencies were removed then the evolved solutions
might be applicable to a greater number of tasks. That is, the same swarm of agents
might, for example, be able to perform annular sorts of both two and three types of
objects.

A possible extension to the work described here is to allow the agents to handle
complex objects that are more or less similar, instead of simple objects that are
either identical or different. One way to do this is to make the objects arrays of
properties, and then define a similarity metric to calculate a real-valued similarity
between objects. The network controller can be modified to handle this extension by
changing the inputs to the network to be the result of a similarity measure between
the perceived object in the corresponding perceptual field, and the object carried by
the ant. If this modification is made, it is possible to extend our work to areas such
as sorting and visualizing data, and classification of cases.

By letting the arrays represent elements in a database it is possible to sort or
visualize the data in the database. Objects in a database often have a high dimen-
sionality (many properties) and are therefore difficult to visualize. Thus, the sorting
by ant-like agents is attractive because they group the data in two dimensions, and
consequently perform a sort of topographic mapping [18]. Lumer and Faieta did, for
example, extend their algorithm to visualize commonalities in banking data [5]. By
extending our research, complex data may be visualized either in the form of separate
clusters, or in the form of an annular structure.

If the objects are made to represent different cases, it is possible to extend our
research to classification tasks. The evolved agents continue with their sorting activi-
ties even after all of the objects have been assigned to the correct clusters. A possible
future line of research is therefore to investigate what happens if new objects are in-
troduced after the initial collection of objects is sorted. Will the introduced objects,
for example, only be positioned in one of the existing clusters, or do they cause a
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reorganization of objects and new clusters to form? By sorting the initial collection
of objects, and then observe where new objects are positioned, it is possible to extend
the research to classification tasks.

A different direction of future research is to investigate whether it is possible
to implement the annular sorting behavior in swarms of physical robots. Previous
robotic experiments have only managed to produce a loose cluster with a separation
that is inferior to the one produced by our evolved agents. It would therefore be
interesting to see if robots equipped with approximately the same sensory apparatus
as our agents, could be evolved to create annular structures of the same quality that
was observed in our experiments.

Finally, even though we have identified the key mechanisms involved in an annular
sort by our agents (see section 5.3.3), it is not likely that these are the ones that are
responsible for the brood sorting performed by ants. This is because we have not
replicated the exact characteristics of the biological systems, but rather formed a
system that loosely models some of the properties of the natural systems. However,
we have shown that the evolution of individual behavior is a promising alternative to
the previous hand-coding of behavior. It might therefore be possible to discover the
underlying biological mechanisms by making a model that is biologically plausible,
and then evolve the behavior of the agents in this model. If the model is successful,
then the mechanisms involved in the sorting in the model may very well be the same
mechanisms that exist in nature, or at least provide a better understanding of these
mechanisms.

6.2 Concluding Remarks

When we started our work it was from an inspiration of social insects and how they
are able to solve complex tasks in spite of their individual simplicity. Each individual
insect is capable only of a limited set of simple actions, yet the insect societies as a
whole are capable of solving complex tasks that exceed the abilities of each individual
insect. We found it fascinating that systems modeling the characteristics of social in-
sect societies could be implemented and applied successfully to problems in computer
science. These systems are able to exploit the promising features of insect societies,
such as flexibility, error tolerance, distributed control, and indirect communication.

As we explored the field of swarm intelligence we were surprised to find that most
of the research to this date has used hand-coded rules to control the individual agents
in the developed systems. The problems that are addressed by swarm intelligence are
characterized by a knowledge of the properties of the final solution, whereas the
individual behavior of the agents that is responsible for the emergence of the solution
is unknown. It therefore seems strange that the norm so far has been to attempt to
capture the unknown mechanisms at the individual level without exploiting what is
known about the final solution. As we have mentioned, this has been done by tweaking
the individual behavior until the desired solutions emerge. The characteristics of
the problems addressed by swarm intelligence suggests that an evolutionary strategy
might be appropriate, and a promising alternative, to create the behavior of the
individual agents. By implementing numerical measures of the properties of the final
solutions in a fitness function, the individual behaviors of the agents in a swarm can
be evolved such that they lead to the emergence of the desired solutions. With this
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approach the knowledge about the final solution is exploited to create the unknown
individual behavior. In our work we implemented numerical measures of properties
of different patterns that insects create. These patterns gives rise to what is referred
to within computer science as clustering, patch sorting, and annular sorting.

By ultimately solving the annular sorting task, which is a well known problem
within the artificial intelligence community, we have further contributed to the claim
that ant-based systems can solve complex problems. We have also shown a promising
alternative to the traditional approach of hand-coding a set of rules controlling the
agents in these systems. This is the evolution of the individual behavior with a ge-
netic algorithm, and the use of alternative controllers for the agents, such as a neural
network. However, even though we have identified a promising alternative to the
traditional approach of programming swarm-intelligent systems, the task of program-
ming such systems is still difficult. This is because of the inherent property of the
systems whereby solutions emerge due to interactions both between the individuals
in the system, and between the individuals and their environment. Before evolving
the behaviors of the individual agents one must therefore not only know what types
of behaviors it must be possible to control, but also what types of interactions that
are needed between the elements of the system for the solution to emerge.

Swarm intelligence is a young field of research that is yet at a theoretical level [13],
and there has been few practical applications of the theories developed within the
field. However, as the theoretical research continues, the understanding of the theory
within the field increases, and this will hopefully eventually lead to the creation of
algorithms that are practically applicable. Even though the field is still at a theoretical
stage, some of the research shows promising results. This includes work within ant
colony optimization [13], which is the largest and most developed research area within
swarm intelligence, and the clustering algorithm created by Handl et al. [18]. Through
extensive comparisons with standard clustering algorithms, Handl et al. [18] have
shown that their algorithm has a better performance than the standard techniques
on some sets of data.

Even though research within the field of swarm intelligence has not yet found many
practical applications, we believe that the field has a promising future. The ant-based
algorithms have many attractive features, such as adaptivity to changing conditions,
error tolerance, distributed control, scalability, and indirect communication. These
features will become more important in the future as the problems to be solved
increase in complexity. An ant-based system that sorts large collections of data can,
for example, be implemented on relatively simple hardware due to low demands on
processing power, and can easily be scaled to different sized data collections by simply
varying the number of agents in the system. Ideas from swarm intelligence may also
find new applications in newer research fields, such as nanorobotics. Research within
this field attempts to create microscopic robots that manipulate elements at the
molecular level. Because of the size of the robots they must be simple, and when they
operate in groups communication is an issue. Swarm intelligence is highly appropriate
to the design of such systems as it deals with swarms of relatively simple agents
capable of solving complex tasks through indirect interaction. Swarm intelligence thus
has a promising future both in the development of the current theoretical research
field, and in the application to new research fields.
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Appendix A

Descriptions of Investigated

Individuals

A.1 Clustering

Generation 3

The fittest individual from generation 3 achieved a fitness of 102 during the evolution-
ary run, and when it is run it clusters around two thirds of the objects into several
small, loose clusters while the remaining third of the objects are scattered randomly
in the world. At the beginning of a run of the individual, most of the objects are
located in isolated positions. During this stage of the run the ants frequently pick
up objects, for thereafter to drop them in the next step. This causes a sensation of
drift of the objects. The objects appear to glide around in the world, although their
movement is mediated by the ants. When the objects are moved one step, their new
location may be either an isolated position or next to other objects. If the object
is located in a densely populated neighborhood then it is less likely to be picked up
by the ants. The ants consequently move mostly the isolated objects in the world.
These objects will eventually be deposited next to other objects, and combined with
the ants’ preferential pickup of objects this causes a formation of groups of objects.
When the world has reached a state containing several groups of objects, the objects
are not moved as much as before, although the ants never cease to move objects
completely. The continuous movement by the ants causes some of the groups to be
broken up and others to be formed. Some objects are also occasionally deposited in
isolated positions. The result of the clustering by this individual is a dynamic state
of the world where about two thirds of the objects are part of groups, whereas the
remaining third are isolated.

The movement of the ants is the same regardless of whether the ant is carrying an
object or not. The ants only move in the backwards direction, and they usually move
in a straight path. If there are no objects present in the ant’s eight-cell neighborhood,
then the ant will move in a straight path backwards. However, when there are objects
present in the ant’s neighborhood the ant will sometimes turn left, but never right.
The movement of the ants is thus in straight paths backwards with an occasional
turning to the left.
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Generation 6

The movement of the ants of the fittest individual of generation 6 is identical to
the movement of the ants of the fittest individual from generation 3. The sorting
behavior does however differ significantly. This individual is capable of clustering all
the objects into three to five loose clusters. There are thus no isolated objects, and
the groups of objects are larger than the groups formed by the previous individual.
Soon after the beginning of a run of the individual, all of the ants become loaded
with an object. At this stage of the run most of the objects are isolated, and the ants
pick up the first object they encounter. Once the ants have picked up an object they
carry this object for some time. It is not until they encounter a group of objects that
they deposit their object, and since there are not many such groups at the beginning
of the run, the ants carry their objects for some time during the early stages of the
run. After a while several groups of objects emerge. Some of these groups are quickly
broken down, while other groups increase in size. Once these groups emerge it does
not take long until all the objects in the world are part of one of the groups. As this
happens the ants are not loaded as much of the time as they were earlier. The formed
groups are loose in their structure and very fragile, and as time goes by all but a few
of the groups are broken down. The end result of a run of the individual is a dynamic
state consisting of a few loose clusters. In the dynamic state objects are continuously
removed from the clusters for thereafter to be deposited in the same, or another,
cluster. The loose character of the clusters cause parts of them to occasionally break
off from the cluster leaving isolated objects or small groups next to the larger clusters.
These broken off objects are, however, quickly moved to one of the clusters again.

Generation 13

The fittest individual from generation 13 is capable of forming one or two dense
clusters of objects. When two clusters are formed, one is usually much smaller than
the other. If the individual is allowed to run for a long time the smaller cluster is
in most cases eventually broken down, and the individual is capable of placing all
of the objects in only one dense cluster. The movement of the ants is the same as
the movement of the ants of the previously described individuals with one exception.
The ants of this individual also turn right in addition to left.

A run of the individual that leads to the formation of one or two clusters happens
in the following way. At the beginning of a run most of the objects are isolated, and
the ants usually pick up the first object that they encounter. They then carry these
objects around until they encounter a group of objects. As objects are mostly isolated
at the beginning of the run the ants carry objects for the longest time at this stage of
the run. After a short time several groups of objects emerge. These groups are first
loose in their structure, but as time goes by they become more densely packed with
objects. While most objects become part of a group at this time there are still some
objects that remain isolated in the world. When most of the objects have become
part of groups the ants are not loaded as much of the time anymore. In fact, the
fewer and larger groups of objects there are, the less time the ants spend carrying
objects. This is because the ants do not usually pick up objects from neighborhoods
that are densely populated with objects. The clustering process thus seems to slow
down as fewer groups of objects are formed. The dense groups that were formed by
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the ants soon contain all the objects in the world. After this happens two or three
groups increase in size while the other groups are broken down. As time goes by one
or two of these groups are also broken down leading to a final distribution of objects
in one or two clusters. If the individual is allowed to run for a sufficient amount of
time the end result is in all cases the formation of a single dense cluster.

A.2 Two-Object Patch Sorting

Generation 77

The ants of the fittest individual from generation 77 are capable of forming three
or more loose groups of type 1 (T1) objects. The type 2 (T2) objects are, on the
other hand, only put in groups of two or three, or they are isolated. The collective
behavior of the ants that leads to these formations is as follows. At the beginning
the objects are scattered in the world, and the ants soon encounter an object that
they pick up. This leads to most of the ants quickly becoming loaded with either
of the two types of objects. However, the T2 objects are deposited quicker than the
T1 objects, and this result in the majority of the ants being loaded with T1 objects.
After some time most of the ants are carrying T1 objects, with the remaining ants
being unloaded. At this point an unloaded ant may occasionally pick up a T2 object,
but this is quickly deposited. When the individual has run from between 1000 to
2000 steps, a few small groups of T1 objects emerge. These groups do initially only
contain two or three objects, but as the run of the individual continues they may
increase in size. In fact, if they do not increase in size they are rapidly broken down
by the ants. This causes the formation of a few larger groups of T1 objects. As these
groups arise the ants will carry T2 objects more of the time. These objects are mostly
put down next to other T2 objects, leading to the formation of several pairs of T2
objects. As the run continues all of the T1 objects eventually become part of three
or more large groups of T1 objects. When these groups grow the ants are not loaded
as much of the time as they were previously, and they also carry T2 objects more
than earlier. As a result of the increased carrying of T2 objects, these objects are
grouped in several small groups of two or three. However, even though most of the
T2 objects eventually become part of a small group, several of them remain isolated
in the world. This positioning of T2 objects together with the few large groups of T1
objects constitutes the final ‘patch sort’ performed by this individual.

The movement of the ants is only in the backwards direction, and much of the
time they move in circles that are sometimes displaced. The movement of the ants
is identical irrespective of whether an ant is loaded or not, and with what type of
object it is loaded with. The circular movement is caused by the ants only moving
backwards and turning right at each step. The circles the ants move in are displaced
by forward and backward movement occasionally being active at the same time,
causing the ants to remain stationary for one step. Also the ants sometimes remain
stationary for extended periods when there are certain configurations of objects in
their neighborhood.
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Generation 158

The movement of the ants of the fittest individual from generation 158 is in some
respects similar to the movement of the ants of the fittest individual of generation 77.
The ants only move in the backward direction, and when they are unloaded or carry
a T2 object they move in circles. However, the behavior of the ants differs markedly
when they are carrying a T1 object. If an ant is carrying a T1 object it moves in a
straight path backwards, and when there are objects present in its neighborhood it
will turn right. However, irrespective of what type of object the ants are carrying,
there are still some configurations of objects in their environment that cause the ants
to remain immobile.

At the beginning of the run of the fittest individual from generation 158, some
of the ants quickly become loaded with objects of type 1. None of the other ants
pick up objects of type 2, but rather remain unloaded. After a few hundred steps
a few small groups of T1 objects emerge. When these emerge some of the ants do
occasionally pick up T2 objects, but these are quickly deposited by the ants. Most
of the ants are thus either loaded with a T1 object or they are unloaded. As the run
continues some of the T1 groups are broken down whereas others increase in size.
This eventually leads to the formation of two or three large groups of T1 objects.
As these groups emerge more and more of the ants become unloaded, rather than
picking up T2 objects that are still randomly dispersed in the world. When all of
the T1 objects have become part of one of the large groups there is not much change
in the distribution of objects in the world. Both types of objects are occasionally
picked up, and the T1 objects are quickly deposited in one of the large groups. The
T2 objects, on the other hand, are either put down next to other T2 objects or in
isolated locations. This leads to the emergence of a few groups of T2 objects. These
groups are, however, easily broken down, such that the final distribution of T2 objects
is in a few small, unstable groups with the rest of the objects scattered around the
world.

Generation 550

The movement of the ants of the fittest individual from generation 550 has many
similarities with the movement of the ants of the fittest individual from generation
158. When the ants are unloaded they move in circles by moving backwards and
turning right at each step. When they are carrying a T1 object they move in straight
paths backwards, and turn right when there are objects present in their eight-cell
neighborhood. However, the behavior of the ants when carrying T2 objects differs
significantly. For the first time the ants move in the forward direction. When an
ant picks up a T2 object it moves in circles by moving forward and turning right
at each step. The ants now have three different characteristic patterns of movement
depending on whether they are carrying an object or not, and what type of object
they are carrying.

The fittest individual from generation 550 is, like the previous two investigated
individuals, capable of forming large groups of T1 objects. In addition to this it
is also capable of forming larger groups of T2 objects, which was not done by the
previously described individuals. The collective behavior of the ants that results in
a rough type of patch sorting is as follows. At the beginning of a run all of the ants

122



quickly become loaded with either type of object. These objects are then put down
next to other objects of the same type. However, it appears that after an ant has
put down an object next to a similar object, it picks it up again in the next step
if it remains stationary. That is, objects are put down next to objects of the same
type, but objects that are only located next to a similar object are also picked up
by the ants. As a result of this there is a period where pairs of similar objects are
continuously formed and broken up. After some period where this type of behavior
is dominant a larger group of T1 objects emerges. Shortly after this happens a group
of T2 objects also emerges. The group of T1 objects then quickly increases in size.
Although the group of T2 objects also grows, its rate of growth is nowhere near the
growth of the T1 object group. At the same time as these two groups of objects
increase in size other groups of objects are also formed. The other T1 objects are
typically grouped in one or two large groups, whereas the other T2 objects begin to
form a few small groups. The T1 objects eventually form one or two dense groups
of objects. The T2 objects, on the other hand, are not grouped to the same extent
as the T1 objects. The T2 objects form three or more smaller groups that are not
as dense as the T1 object groups. This is the final sorting that is performed by this
individual.

Generation 720

The fittest individual from generation 720 is capable of performing an almost perfect
patch sort of two types of objects. The individual is capable of forming a single dense
cluster of T2 objects, but it creates one large and one smaller cluster of T1 objects.
The collective behavior of the ants that leads to the formation of these clusters is as
follows. At the beginning of a run, all of the ants quickly become loaded with either
type of object. These objects are then deposited next to objects of the same type.
This leads to the formation of several small groups of objects of the same type. As the
run continues some of these groups are broken down, whereas other groups increase
in size. When this occurs the ants become unloaded more of the time as more and
more of the objects become part of larger groups of identical objects. At this point
there are several groups of each type of object, and each consists of between four and
eight objects. The T2 groups appear to be less stable than the T1 groups, and as
a result these are broken down. The objects from these groups are deposited in the
largest group of T2 objects causing this group to increase in size until it contains all
the objects of type 2. The groups of T1 objects are also broken down as time goes
by, but at a much slower rate than the T2 groups. A square group of four T1 objects
seems to be particularly stable, and as a result of this a few groups with this shape
are formed, while the remaining objects of type 1 form two large groups. As the run
of the individual comes to an end there are typically one or two clusters of each type,
although there is more often a single cluster of T2 objects than of T1 objects.

The movement of the ants of the fittest individual from generation 720 differs
from the movement of the ants of the fittest individual from generation 550 when
they are unloaded or carrying a T2 object. When the ants are carrying a T1 object
the behavior is the same. The default behavior of the ants is to move in a straight
path backwards unless there are objects present in its eight-cell neighborhood. If
there are objects in the neighborhood then the ant will turn right. This type of
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behavior is now also present when the ants are unloaded, or when they are carrying
a T2 object. When the ants are unloaded they exhibit the exact same behavior as
when they are carrying a T1 object. The ants move in a straight path backwards, but
when they perceive one or more objects in their environment they turn left. When the
ants carry a T2 object the movement is in the opposite direction. The ants move in
straight paths forward, and when there are objects located in their environment they
turn right. There are now also fewer configurations of objects in the ants’ immediate
environment that cause the ants to remain immobile for extended periods of time.

A.3 Three-Object Patch Sorting

Generation 87

The fittest individual from generation 87 is capable of clustering only type 3 (T3)
objects of the three object types in the world. Some of the type 2 (T2) objects are
grouped in small groups, whereas the type 1 (T1) objects remain scattered randomly
in the world, although the ants do occasionally pick them up. The collective behavior
of the ants during a run of the individual is as follows. At the beginning of the
run some of the ants pick up an object. The ants may pick up any of the object
types, although they carry T3 objects for the most time at this stage of the run.
The objects that are picked up are quickly deposited by the ants. Throughout the
run of the individual only around half of the ants are loaded with objects. At some
times most of the ants are loaded, but at other times the majority of the ants are not
carrying any objects. After a short period of time the ants have deposited some of
the T3 objects in small groups. These groups are, however, very fragile and are soon
broken up by the ants. After this some of the T3 and T2 objects are collected in pairs
of the same type. As the run continues a larger cluster of T3 objects emerges. When
this cluster reaches a size of around ten objects it appears to have reached a stable size
as it is not easily broken down. Even so, objects are occasionally removed from this
cluster and deposited either in isolated locations or in small groups. At the same time
the T2 objects are continously deposited in small groups or in isolated locations. The
small groups of T2 objects are extremely fragile and are broken down and rebuilt at a
steady rate. As the run of the individual continues all of the T3 objects do eventually
become part of a single large cluster. The T2 objects are continuously deposited
in and picked up from small groups or isolated locations, whereas the T1 objects
remain scattered throughout the world. The ants of this individual thus appear to
be concerned mainly with T2 and T3 objects, since the T1 objects remain randomly
dispersed in the world. Despite this, the ants do actually pick up each type of object.
But, the T1 objects that are picked up are deposited at once by the ants such that it
appears that they are not being carried by the ants at all.

The movement of the ants of the fittest individual from generation 87 is only in
the forwards direction. If the ants are unloaded or carrying a T2 or T3 object they
show the same kind of movement. The ants will move in a straight path forwards
if there are no objects present in their eight-cell neighborhood, but if they perceive
any objects they will turn either left or right. If the ant is carrying a T1 object
the behavior is significantly different. When carrying a T1 object the ants will move
forward and turn left at each step, thereby moving in a circle. If there happens to be
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any objects present in the vicinity of this circular path, then the ant may displace the
path either by not turning or by turning right. However, the movement behavior of
ants carrying T1 objects only occur under artificial conditions because the ants will
deposit their T1 object at once, and thereby never travel any distance while carrying
a T1 object.

Generation 253

The ants of the fittest individual from generation 253 are loaded more of the time
than the ants of the fittest individual from generation 87. At the beginning of a
run of the individual the ants quickly become loaded with any of the three types of
objects. However, T1 and T2 objects are deposited quicker than T3 objects, and this
causes the majority of the ants to carry T3 objects after a short period of time. The
T1 and T2 objects that are put down by the ants at this time are deposited next to
similar objects, leading to a few groups of two or three objects of each of these types.
After some time a small group of T3 objects emerges. This group then grows in size
until it eventually contains all the objects of this type. As more and more of the T3
objects become part of this group they are not carried as much by the ants any more.
This leads both to a larger portion of the ants being unloaded, but also to the ants
carrying more of T1 and T2 objects. These objects are initially deposited in pairs.
When all of the T3 objects are part of the large cluster, the ants that carry objects
carry T2 objects for the most part. The T1 objects that are picked up by the ants
are deposited quickly, and are put down both in isolated positions and next to other
identical objects in pairs. When all the T3 objects are grouped in a single cluster the
ants continually create and break down loose groups of T2 objects. Because these
groups are so fragile they never reach a considerable size, and the largest groups of
this type of object take the form of loose chains instead of dense clusters. However,
in contrast to the T1 objects it is clear that the T2 objects are clustered to some
degree. Through the remainder of the run the T2 objects are continuously clustered
in loose groups that are later broken up, while the T1 objects occasionally form pairs
but for the most part remain isolated and randomly distributed in the environment.

The movement of the ants of the fittest individual from generation 253 is identical
to the movement of the ants described previously. Irrespective of what the ants may
carry they display the same kind of movement. The ants will move in a straight path
forward in the absence of objects in their eight-cell neighborhood. However, if they
do perceive any objects in their surroundings they will turn either left or right.

Generation 366

The ants of the fittest individual from generation 366 move in straight paths and
turn when they perceive objects. The direction of turning does however appear to
differ slightly depending on what type of object the ants are carrying. If the ants are
carrying a T2 object they will turn more often to the right, but if they are carrying a
T3 object they will turn mostly to the left. The T1 objects are carried for such short
periods by the ants that it is not possible to describe any movement behavior of the
ants while carrying these objects.
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The ants of the fittest individual from generation 366 are able to sort the T2 and
T3 objects into one large cluster each. However, the ants do not carry T1 objects for
very long, and as a result of this they remain scattered in the world. Soon after the
beginning of a run of the individual the ants pick up an object. Since the ants carry
T1 objects for only short distances, the ants that become loaded mostly carry T2
and T3 objects. The T3 objects that are carried by the ants are put down in areas
where there are objects of the same type. Because of this several small groups of T3
objects emerge after some time. T2 objects, on the other hand, are deposited both in
the vicinity of other T2 objects and in isolated locations. There is thus less grouping
of this type of object. A short period after the groups of T2 objects and T3 objects
are formed, one or two of each type of group increase in size while the other groups
are broken down. Whether there are one or two groups that increase in size seems
to depend on whether the two groups both have reached a critical size of more than
five objects. Once the groups begin to increase in size they grow rapidly, and soon
they contain all the objects of their respective types. When this happens the ants are
mostly unloaded. This is due to the fact that the ants are not likely to pick up T2 and
T3 objects that are located in neighborhoods that are densely populated with objects
of the same type. However, objects are occasionally removed from the clusters for
thereafter to be deposited in the same cluster, or if there are two clusters of the same
type, in the other cluster. This occasional removal and deposition of objects already
contained in a cluster will, in the case where there are two clusters of the same type,
eventually lead to one cluster decreasing in size while the other cluster increases in
size. After varying periods of time the growing cluster will eventually ‘absorb’ all the
objects of the type, and the other cluster vanishes. However in some cases this does
take a significant period of time. The end result is the formation of one cluster each
of T2 and T3 objects, while the T1 objects are randomly scattered throughout the
world.

Generation 3273

The fittest individual from generation 3273 is capable of forming one or two loose
clusters of T1 objects in addition to one cluster each of T2 and T3 objects. For the
first time of the evolutionary run the ants are now carrying T1 objects for a significant
amount of time. As a result of this it is for the first time possible to describe the
movement of the ants when carrying a T1 object. The movement in this situation
is identical to the unloaded ants and ants carrying T2 or T3 objects. The ants will
move in a straight path forwards in desolate areas, but when they perceive objects in
their eight-cell neighborhood they turn either left or right.

A run of the individual that leads to a nearly perfect patch sort is as follows.
Soon after the beginning of a run of the individual all of the ants become loaded
with objects. The ants then deposit these objects in the vicinity of identical objects.
After a short period of time all of the ants are carrying either a T2 or T3 object,
and after another few steps most of the ants are carrying a T3 object. It appears
that the reason for this is that the T3 objects are only deposited in neighborhoods
with a high density of objects of the same type. T2 objects do not require as many
identical objects in their vicinity in order to be put down by the ants, and the T1
objects require the least identical objects in their environment to be put down. Ants
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that pick up T3 objects are thus stuck with their objects for a longer period of time
than ants that pick up T2 or T1 objects. Groups of each type of objects emerge after
a few hundred steps. T3 objects are grouped in two or three groups that contain all
the objects of this type. The groups of T1 and T2 objects are on the other hand
smaller and do not contain all the objects of the type. As time goes by all the T3
objects become part of one or two dense clusters of this type. At the same time
the T2 objects form a few loose groups, with the T1 objects being either isolated or
located in groups of objects that are barely connected. As the run continues the T2
objects are eventually clustered together in one large cluster. If there were formed
two clusters of T3 objects earlier in the run, one of these will be broken down with the
other cluster eventually containing all the T3 objects. The T1 objects are grouped
into one or two clusters, but these clusters are very loose in their shape and they are
only barely connected. In the final distribution of objects there is one cluster each of
T2 and T3 objects, and two loose clusters of T1 objects.

A.4 Two-Object Annular Sorting

Generation 21

The fittest individual from generation 21 is not capable of forming a structure re-
sembling an annular structure. At the beginning of a run of the individual some of
the ants become loaded with an object. At this stage most of the objects in the
world are isolated, and the ants pick up both central and outermost objects. The
central objects that the ants pick up are in most cases deposited next to other cen-
tral objects. However, the central objects are also occasionally deposited next to an
outermost object. The outermost objects are both deposited next to outermost and
central objects. This causes the formation of three different types of groups early in
the run of the individual. The first two groups contain either only central objects or
only outermost objects. These groups typically contain two to three objects. The
third group contains mostly central objects, but also a few outermost objects. These
groups are typically larger than the other two groups. As the individual keeps on
running there are fewer and fewer objects that remain isolated in the world. When
most objects are part of a group, the ants will pick up objects from these groups and
deposit them in the same, or in another, group of objects. This leads to the formation
of several groups containing both types of objects. As time goes by most of the groups
are broken down, leading to the formation of two or three groups of objects. These
groups are not annular in their structure, but the central objects tend to be grouped
together in the center of the structure with the outermost objects mostly located on
the edges of the structure. Objects are constantly picked up and deposited even after
the groups of objects have emerged. Some of the objects that are removed from the
groups are deposited in isolated locations, and these are mostly of the outermost type.

The movement of the ants is only in the backward direction. When the ants
perceive objects in their eight-cell neighborhood they will turn either to the left or
to the right, depending on what type of objects are in each of their perceptual fields.
There are also some situations in which the ants remain stationary. In these cases
both forward and backward behavior are active, causing the ants not to move in any
direction.
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Generation 45

The movement of the ants of the fittest individual from generation 45 resembles the
movement of the ants of the individual from generation 21. The ants only move
backwards, and when there are objects in their immediate neighborhood they turn
either left or right. There are also some configurations of objects in the neighborhood
that cause the ants to remain stationary. There is, however, a marked change in the
behavior of the ants when they have picked up an object. If the ants pick up a central
type object they still move in a straight line backwards and turn either left or right
depending on the occurrence of objects in their neighborhood. However, if the ants
pick up an outermost object they move in circles. This behavior is caused by the
ants turning to the left at each step. The circular paths in which the ants move are
occasionally displaced due to alternate behavior caused by the noise in the sensor
input. When ants pick up an outermost object they thus move in circular paths.

At the beginning of a run of the individual the ants quickly pick up an object.
The ants pick up both types of objects, but the majority of the objects carried by the
ants are of the central type. After some time groups of central objects appear. These
groups do occasionally have outermost objects located next to them. The remaining
outermost objects appear to be randomly scattered in the world. As time goes by
all of the central objects become part of two to four groups of objects. These groups
do initially only contain some of the outermost objects, but as time passes all of the
outermost objects are moved to the existing groups of objects. Eventually all of the
objects have become part of a cluster of objects. The ants continue to pick up and
deposit objects, and as a consequence of this clusters do occasionally disappear. A
cluster disappears if all of its central objects are removed. If this happens there is a
short period of time where the cluster only contains outermost objects, but these are
quickly picked up and deposited on the edge of a cluster containing central objects.
The final sort performed by the individual consists of several groups containing both
types of objects.

Generation 217

In the fittest individual from generation 217 both the movement behavior and the
collective sorting behavior of the ants have changed. The ants now display the same
movement if they are unloaded, or if they carry either type of object. They always
move backwards, and they turn either left or right depending on the types and the
configurations of objects that are perceived.

At the beginning of a run of the individual all the ants quickly become loaded with
a central object. These objects are carried by the ants until they encounter another
central object. The ants then deposit their object next to this object. This causes
the formation of several groups of central objects. Objects are occasionally removed
from these groups and deposited next to other groups. This leads to the elimination
of some groups while other groups increase in size. As most of the central objects
become part of a few large clusters, the ants begin to pick up the outermost objects.
These objects are either deposited next to other outermost objects or on the edge of a
central type cluster. At the same time some of the central type clusters are broken up
leading to the existence of only one, or sometimes two, central type clusters. When
all the central objects are part of a large cluster, the ants only occasionally pick up
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an object. The objects that are picked up at this point are usually outermost objects
that are either isolated, or in a homogenous group of two or more outermost objects.
These objects are deposited next to other outermost objects, on the edge of a central
type cluster, or in isolated locations. Because the outermost objects that are located
along the edges of a central type cluster are picked up at a lower rate than outermost
objects in other locations, the final configuration of the world is a central type cluster
surrounded by most of the outermost objects. The remaining outermost objects are
either isolated or form small groups of identical objects.

Generation 331

The ants of the fittest individual from generation 331 displays the same movement
behavior as the ants of the fittest individual from generation 217. However, the
collective sorting behavior is different. When the individual is run the ants quickly
become loaded with either type of object. At this point of the run the outermost
objects appear to be easier to deposit than the central objects. As a result of this
most of the ants will be loaded with central objects, because when an ant picks up a
central object it will not deposit the object. The ants do not deposit a central object
unless they encounter a group of central objects. After some time a few small groups
of central objects are formed. One of these groups then begins to increase in size as
the ants deposit central objects along the edges of the group. At this point the ants
start to carry more of the outermost objects. These objects are deposited next to
either type of object. When the individual has run some more, the central objects are
either part of the large cluster, isolated, or part of a group where the other objects are
solely of the outermost type. As the run continues the central objects are removed
from the small groups and deposited in the large cluster. This causes the formation
of groups containing only outermost objects. The final configuration of the world
consists of a single cluster of central objects. This cluster is surrounded by some of
the outermost objects while the rest of the outermost objects are part of one or more
smaller groups of only outermost objects.

A.5 Three-Object Annular Sorting

Generation 31

The behavior of the ants of the fittest individual from generation 31 is the first to be
examined. In the beginning of a run to form an annular structure the ants quickly
become loaded with objects. It appears that the ants are equally likely to pick up
any type of object at this time. After around 600 steps a cluster of the central
object type start to form. At this time the intermediate objects are either isolated
or located in groups of two, while the outermost objects remain isolated. The central
object type cluster does not contain all the central objects, and as time goes by
the cluster disappears only to surface at another location. It is evident that central
objects continually form clusters that are then broken down, only to form a cluster at
another location. When the first central type cluster begins to form the ants no longer
carry the other two types of objects. The picking up of intermediate and outermost
objects seem to happen only in the beginning of a run. Because of this the dominant
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behavior of the fittest individual from generation 31 is the continuous generation of
central type clusters that are later broken down. The remaining two types of objects
are hardly moved at all, and therefore remains randomly scattered in the world.

When it comes to the movement of the ants they always move forwards, but
the direction of movement is influenced by the presence of objects in their eight-cell
neighborhood. The general movement of the ants is in a straight line, but when
there are objects present in their neighborhood they will turn either left or right, for
thereafter to continue in a straight line.

Generation 44

The next individual that was examined is the fittest individual from generation 44.
This individual had a fitness of 250.09 in the evolutionary run. At the beginning of
the sorting task the ants all become quickly loaded with objects of any type. This
situation does however only last for a very brief period. After an initial period the ants
only occasionally carry objects of the outermost type. As a result of the ants rarely
moving objects of the outermost type, these objects remain randomly dispersed in the
world for a long period of the run. The ants are thus mainly concerned with moving
objects of the central and intermediate types. After only around 400 steps, one or two
clusters of the central object type are formed. In contrast to the central type clusters
formed by the individual from generation 31, these clusters are stable. In fact, after
two or three clusters of the central type are formed they are never broken up, and it is
thus impossible to create only one annular structure containing all the objects. After
the central type clusters are formed, the ants start gathering the intermediate objects
and drop these around the edges of the central clusters. After all the intermediate
objects are located along the edges of the clusters, some of the outermost objects are
moved to the clusters as well, although a larger portion of them remain randomly
scattered. A final ‘annular sort’ performed by this individual consists of two or
three clusters with central type objects surrounded by intermediate and outermost
objects, with most of the outermost objects remaining scattered around the world.
The movement of the ants is still only in the forward direction with left and right
turns caused by the presence of objects in the vicinity of the ants.

Generation 240

After another 200 generations the fittest individual from generation 240 has a fitness
of 302.67. In the beginning of the run of the individual the ants are more restricted
in what kinds of objects they carry compared to the individuals from generations 31
and 44. The ants carry mostly central objects, and only occasionally do they pick up
an intermediate or outermost object. This type of behavior continues until one or two
stable clusters of central type objects are formed. After this it is the central objects
that are only carried occasionally. The intermediate objects are now for the most
part moved to two different locations. Most of the intermediate objects are moved
to the edges of the central type clusters, but some also form groups of three to five
objects that may contain outermost objects. Some of the outermost objects are moved
to the edges of the central type clusters, but most are moved such that they form
small groups of objects, either containing only outermost objects, or a combination of
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outermost and intermediate objects. After the groups of outermost and intermediate
objects are formed they remain for a period of around 100 steps. Then the ants
engage in a behavior that continues indefinitely. Most of the intermediate objects are
now moved to the edges of the central type clusters, but only a few of the outermost
objects remain along the edges. At the same time the small groups of objects are
continuously broken down and rebuilt. Objects from the band around the central
type objects are also picked up and moved. In this phase intermediate and outermost
objects are to a larger degree than previously dropped in isolated locations, causing
them to appear to be randomly dispersed in the world.

Compared to the previously described individuals the movement of the ants has
changed in one aspect. The ants no longer turn to the left and right at the same
rates. The ants turn mostly to the left, and only occasionally do they turn to the
right.

Generation 1420

The next individual examined is from generation 1420 and has a fitness of 352.90.
The behavior of the ants at the beginning of the run is considerably different from the
previously examined individuals. The ants are in the beginning no longer concerned
almost exclusively with the central objects. Although the ants start by forming a
central type cluster, they also move the other two types of objects around while
forming this cluster. This did not happen in previous generations. As the clusters
of central type objects grow, more and more of the other two types of objects are
moved. The intermediate objects are mostly moved to the edges of the central type
clusters, but they also form groups of intermediate objects. The outermost objects
are not moved to the edges of the clusters, but are brought together to form groups
of outermost objects. These groups consist either solely of outermost objects, or they
are formed around isolated objects of the intermediate type. The next marked change
in the solution occurs when most of the intermediate objects have been moved to the
edges of the clusters. When this has happened the outermost objects begin to get
moved to the edges of the clusters. However, the outermost objects also continue
to form small groups. The final solution to the annular sorting task created by this
individual consists of one or two clusters of central objects surrounded by intermediate
and outermost objects. Most of the intermediate objects are located closer to the
center of the structure than the outermost objects, but not all. This results in the
creation of annular bands around the central cluster that are somewhat noisy.

The movement of the ants is still only in the forward direction, but the turning
behavior of the ants has again changed back to what it was in the beginning of the
evolutionary run, with the ants turning to the left and right at approximately the
same rates.
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Appendix B

Weights of the Neural Network

Controllers

B.1 Weights of the clustering solution

H1 H2 H3

I1 3.1107 −14.4967 −15.9730
I2 0.3222 −11.6929 −1.5600
I3 6.2391 8.5052 −14.3601
I4 −0.4779 3.1421 −9.9979
I5 2.0499 −12.2403 2.6699
I6 −2.9943 9.3006 6.9935
I7 7.5171 −0.9134 −8.2900
I8 11.9525 0.5346 −9.4779
A −28.7961 7.9842 8.3222

Weights between the input nodes and the hidden nodes of the neural network con-
troller for the clustering solution.

P D F B L R

H1 −1.2403 3.3515 −3.5095 11.1076 0.3159 1.2931
H2 −1.1508 −3.2327 11.1198 −4.6414 −15.3891 4.7596
H3 5.8120 −12.6881 −15.0424 27.4108 16.1974 −3.5708

Weights between the hidden nodes and the output nodes of the neural network con-
troller for the clustering solution.
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B.2 Weights of the two-object patch sorting

solution

H1 H2 H3 H4

I1 5.6002 −16.2402 14.0999 23.9295
7.9841 −5.5929 6.6927 −2.7108

I2 4.3165 −2.2771 1.0747 −13.6771
17.5028 0.6621 2.1644 12.1704

I3 −11.9105 −17.0927 11.0559 −15.7878
1.6364 1.7711 −4.0369 8.5820

I4 6.8636 −8.7017 −8.3461 7.8752
−0.6096 −3.4830 6.1018 18.5047

I5 7.3927 −2.0107 −1.0524 −14.8289
−3.3592 5.3683 0.4717 0.7588

I6 −17.1602 7.6619 16.0639 7.2301
−10.4314 11.2137 13.5808 −2.7221

I7 −13.8524 7.9977 −1.7952 −1.5079
−1.1849 9.0065 6.4820 0.7849

I8 −27.6461 −6.1788 21.3263 −22.3737
1.0733 6.4512 15.3626 7.5397

A 5.9107 19.4707 0.2596 0.9555
−18.3946 −13.0619 −4.6963 19.5859

Weights between the input nodes and the hidden nodes of the neural network con-
troller for the two-object patch sorting solution. The first weight of each input group
is from a node that fires if a type 1 object is present in the corresponding perceptual
field, and the second weight corresponds to a type 2 object.

P D F B L R

H1 17.7389 9.7945 −19.5107 11.8007 8.7227 −15.7849
H2 3.8238 −21.3878 2.8795 10.4059 −5.5041 0.8660
H3 4.3083 −0.0241 1.0680 4.1980 −18.9684 11.7870
H4 −7.1523 −3.0377 0.8704 −13.2677 2.1745 2.2805

Weights between the hidden nodes and the output nodes of the neural network con-
troller for the two-object patch sorting solution.
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B.3 Weights of the three-object patch sorting

solution

H1 H2 H3 H4 H5

3.3541 −25.4446 13.6689 16.0428 13.8740
I1 12.8193 3.8095 1.2592 −3.6374 −7.6841

11.5273 −10.8833 9.9939 −5.4113 −20.0440
9.3146 4.1321 −1.0011 12.1906 3.8887

I2 −4.4775 −3.3402 −0.2462 5.7080 −9.0826
−1.1605 11.7657 −3.3369 3.0961 1.2245

7.9293 −2.9274 −19.4614 5.6394 −10.5460
I3 16.5778 4.4187 2.9386 −7.3148 −7.3458

5.0681 −11.2353 −13.4852 12.4980 12.4890
0.0525 2.5331 0.2181 13.4991 2.4232

I4 1.1557 −22.4689 −0.0628 0.9610 2.5305
−2.3234 2.2153 −7.3777 −20.9970 10.3447
−6.3472 −3.1651 4.5932 2.7281 −19.4205

I5 16.3485 0.1885 3.5683 −17.7841 1.3746
0.5268 −7.8854 −18.1666 −14.9891 8.7779

−6.5117 6.3174 −1.3137 −10.2336 5.1309
I6 20.6424 −12.7488 1.0705 −1.8666 6.8733

−3.1483 −12.0396 3.7478 −2.8741 16.0958
2.7148 0.2848 0.2023 4.7393 10.4021

I7 −3.4126 0.5025 12.8690 −6.6377 −4.1878
6.0847 3.8313 −14.9403 22.9183 9.2738

−7.3006 10.3460 1.2295 −1.0570 −5.9386
I8 −4.1824 −10.0057 −11.1513 5.9993 −16.5323

−1.5886 −1.5862 −15.4475 −12.0426 6.3114
9.1325 −5.9095 5.2893 4.6507 −21.2847

A 30.6163 4.0826 −1.9228 12.4924 8.2391
−13.3674 13.2600 −25.5827 9.3581 −13.5895

Weights between the input nodes and the hidden nodes of the neural network con-
troller for the three-object patch sorting solution. The first weight of each input
group is from a node that fires if a type 1 object is present in the corresponding per-
ceptual field, the second weight corresponds to a type 2 object, and the third weight
corresponds to a type 3 object.

P D F B L R

H1 −5.1515 −21.5614 4.8220 −7.7488 16.5151 −13.5899
H2 24.4677 −3.1167 13.3974 −12.8607 2.0561 −21.6119
H3 −0.8339 17.4578 5.0999 −4.2554 −3.6840 9.4964
H4 3.5128 −6.4436 −8.5323 −0.8453 −11.5349 7.4893
H5 −0.9027 7.9916 0.2067 −5.9687 −18.6608 12.0358

Weights between the hidden nodes and the output nodes of the neural network con-
troller for the three-object patch sorting solution.
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B.4 Weights of the two-object annular sorting

solution

H1 H2 H3 H4

I1 8.1890 −9.1868 3.1409 4.8142
1.0076 −1.7416 4.5289 4.8240

I2 5.1977 1.9047 9.4553 −19.3064
−4.1217 2.9905 −0.0484 −2.6161

I3 15.3271 −11.0520 23.8277 −13.3209
13.8338 4.4095 14.0208 4.9465

I4 6.0292 −14.9325 7.8478 −5.4735
−7.4794 1.8048 −8.2678 −8.3053

I5 −7.6470 −14.4518 −24.2674 −3.5971
5.7927 1.2805 9.2334 −25.5180

I6 9.3056 −8.7271 −9.8991 −8.2958
6.4006 −1.2731 −13.6622 5.7557

I7 2.1711 −6.3158 −12.5694 −19.1546
13.6253 −0.4342 −6.5302 −8.6460

I8 −1.5564 −9.2240 0.7326 15.5749
−1.4222 −1.1981 −5.3620 −5.4486

A −3.7348 29.7273 4.7268 5.4405
13.3194 1.6192 −0.8239 −6.1060

Weights between the input nodes and the hidden nodes of the neural network con-
troller for the two-object annular sorting solution. The first weight of each input
group is from a node that fires if a central object is present in the corresponding
perceptual field, and the second weight corresponds to an outermost object.

P D F B L R

H1 −6.1060 2.6558 −23.0238 4.5430 −0.6813 11.6831
H2 16.2657 −20.9214 −6.6839 20.6548 −2.7601 −6.1537
H3 6.2403 −5.8251 −6.4594 −10.1856 16.0479 −13.4615
H4 2.8049 −2.3875 2.3464 −7.6824 −13.7999 −4.4325

Weights between the hidden nodes and the output nodes of the neural network con-
troller for the two-object annular sorting solution.
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B.5 Weights of the three-object annular sorting

solution

H1 H2 H3 H4 H5

−8.8554 −6.9773 4.7543 −5.0067 −5.6242
I1 0.0636 −10.2601 2.6005 −6.5896 −4.6053

4.9090 −7.1958 −6.6436 21.3629 3.5585
−10.4066 −12.4964 −20.6907 9.3474 10.5577

I2 −4.4742 −7.8706 −11.3700 −5.6217 10.8974
40.0854 −14.6717 −2.6005 17.8471 9.4462

−13.3812 −7.7892 16.4772 −1.2652 5.3211
I3 −0.4145 1.5788 8.8592 10.3969 6.4543

2.8677 9.6823 −7.2485 −7.4688 −4.3220
−12.5645 1.6202 −23.0578 −17.1913 −9.9539

I4 −3.7842 −4.0423 −2.9160 10.7070 −3.3007
−0.9512 −5.9577 4.5904 0.9817 −6.4934
−4.1354 −18.5600 −29.7086 10.2509 8.7577

I5 −4.4189 −5.7110 19.1680 17.1326 16.9818
−13.2337 −14.1586 9.1074 −9.0013 3.0825
−6.5137 −6.1416 20.4864 −9.7952 −9.7862

I6 0.4599 12.4709 12.2297 12.1516 11.1230
3.6858 7.5152 −12.0451 9.4021 3.5342

−14.7397 −0.3089 1.8071 −7.7787 16.4815
I7 −6.5361 −1.9316 −4.0502 11.3361 −11.0411

−3.3573 −28.9402 −11.6406 −5.6689 −3.3256
−17.8851 −5.7448 21.9404 −0.2007 5.6772

I8 −1.9204 −14.0966 5.3706 4.5334 6.4374
−0.0601 −7.2883 6.0055 8.2013 21.5769
22.9544 9.4024 12.6595 6.2381 −7.9057

A 7.8931 0.4131 10.5549 −15.9924 11.0764
−1.4041 2.8481 −7.4620 −9.6113 18.9744

Weights between the input nodes and the hidden nodes of the neural network con-
troller for the three-object annular sorting solution. The first weight of each input
group is from a node that fires if a central object is present in the corresponding
perceptual field, the second weight corresponds to an intermediate object, and the
third weight corresponds to an outermost object.

P D F B L R

H1 11.0764 −5.4093 8.4537 −29.6185 −16.4671 21.6694
H2 2.6739 −20.1966 −6.4421 −4.9010 −25.4109 −15.2076
H3 3.8054 −10.8612 8.5909 14.3441 28.5957 −12.1485
H4 −1.1835 2.4962 1.8131 −5.2162 −5.8019 −4.1271
H5 −5.3439 1.4049 16.0352 −1.1580 −3.0617 −6.5533

Weights between the hidden nodes and the output nodes of the neural network con-
troller for the three-object annular sorting solution.
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