
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatens navn: Liv Ryssdal Thorsen

Fag: SIF80/H02

Oppgavens tittel (norsk): Extreme Programming i sikkerhetskritiske systemer

Oppgavens tittel (engelsk): Extreme Programming in safety-related systems

Oppgavens tekst:

Safety-related systems place restrictions on the development process – for instance
IEC 61508. Can these requirements be satisfied if developing according to XP?

Oppgaven gitt: 20.01.2002

Besvarelsen leveres innen: 17.06.2002

Besvarelsen levert: 17.06.2002

Utført ved: NTNU

Veileder: Professor Tor Stålhane

Trondheim, 17.06.2002

Professor Tor Stålhane
Faglærer

Extreme Programming
in

safety-related systems

v

Preface
This report is the result of the diploma work at the Department of Computer and
Information Science, NTNU spring 2002. The purpose of the diploma is to evaluate
whether Extreme Programming is suitable for development of safety-related systems
according to the IEC 61508 standard.

I will especially thank my supervisor Professor Tor Stålhane, Norwegian University of
Science and Technology, Dept. of Computer and Information Science for all
contributions and guidance. Thanks to all participating persons; Reseach Scientist Odd
Nordland, SINTEF Telecom and Informatics, Professor Tor Onshus, Norwegian
University of Science and Technology, Dept. of Engineering Cybernetics, Professor
Torbjørn Skramstad, Norwegian University of Science and Technology, Dept. of
Computer and Information Science, for their time and valuable thought about different
approaches discussed in this report. I am grateful for Tor Einar Kjørkleiv’s review of the
report.

Trondheim, June 17, 2002

Liv Ryssdal Thorsen

vi

vii

Abstract
This report discusses whether Extreme Programming (XP) can be employed when
developing safety-related system if conformance to IEC 61508 shall be met. XP is a
recent methodology for software system development. It focuses on short iterative
development, high customer integration, extensive testing, code-centered development
and documentation, refactoring, and pair programming. IEC 61508 on the other hand
includes both hardware and software development of the system, and uses the standard
V-shaped development model. We consider the following the most important
contributions of this report. First, from our comparison of XP and IEC 61508 we are able
to identify several confliction and non-confliction areas. Second, we propose how these
methodologies can be brought closer by proposing a software safety model. Third, our
suggestions include some conditions that can be a subject to further analysis.

The recommendations are based upon a literature research and discussions with domain
experts. The proposal stated in this report includes adoption, either partly or totally, of ten
out of twelve key practices in XP. Practices that are totally adopted are: the planning
game, simple design, testing, pair programming, collective ownership, 40-hour week, on-
site customer, and coding standard. None of these where in conflict with the requirements
in IEC 61508. Refactoring, and continuous integration where only partly adopted.
Refactoring because one has to be careful when modifying safety-related systems, and
therefore care should be taken when one wants to change the code. Continuous
integration depends of the availability of the hardware. If the hardware is developed in
parallel with the software, it is not possible to integrate continuously.

The proposal includes a modified software safety lifecycle, where all the phases
presented in the software safety lifecycle in IEC 61508 are represented in the new model.
This model explicitly specifies iterations, and makes it possible to adopt changes to the
software. The system is based on a stable architecture that should not be modified, but
minor requirement changes are possible with use of refactorings.

In our opinion this proposal have several advantages. The iterative development adds
flexibility to the system, since requirements can be added or changed if they fit the
architecture. Automatic testing makes the verification of the changes in code easy. In
addition the customer is part of the XP team and this makes it possible to give early
feedback and guidance. The programmer can constantly ask the customer if something is
unclear. Knowledge about the system is spread through the team due to collective code
ownership and pair programming. We think that the proposal stated in this report can lead
to faster development, better predictability, more job satisfaction, and achieve an
appropriate level of safety with as low cost as possible.

viii

ix

Table of contents
1 Introduction ... 1

1.1 Motivation ... 1
1.2 Scope ... 2
1.3 Related work ... 2
1.4 Research agenda.. 3
1.5 Report structure ... 3

2 Extreme Programming .. 5
2.1 Practices .. 5
2.2 Refactoring.. 9
2.3 Roles for people .. 12
2.4 Summary ... 12

3 IEC 61508 ... 15
3.1 Safety-related system .. 15
3.2 Overview of IEC 61508 .. 16
3.3 Safety lifecycle.. 19
3.4 Hazard and risk analysis.. 21
3.5 Safety Integrity Level.. 22
3.6 ALARP.. 24
3.7 Compliance.. 25

4 Comparison of XP and IEC 61508.. 27
4.1 High-level.. 27
4.2 Planning... 33
4.3 Design.. 36
4.4 Coding... 37
4.5 Validation and verification.. 41
4.6 Management .. 46
4.7 Documentation .. 48

5 Compatibility of IEC 61508 and XP... 55
5.1 Development cycle.. 55
5.2 Requirements... 63
5.3 The planning game.. 67
5.4 Architecture... 67
5.5 Design.. 68
5.6 Prototyping.. 72
5.7 Implementation.. 73
5.8 Modification.. 74
5.9 Integration and integration testing... 76
5.10 Release .. 79
5.11 Reliability.. 79
5.12 Verification.. 80
5.13 Validation .. 83
5.14 Assessment .. 83
5.15 Documentation .. 83
5.16 Summary ... 85

x

6 Conclusion... 89
7 Further work.. 93
Appendix A: Definitions ... 95
Appendix B: Abbreviation .. 99

xi

Table of figures
Figure 1 Release in Extreme Programming .. 9
Figure 2 Overall safety lifecycle [25] ... 20
Figure 3 Hazard analysis [44] ... 22
Figure 4 Factors affecting Safety Integrity Levels [6] .. 23
Figure 5 Tolerable risk and ALARP [25].. 24
Figure 6 The part structure of IEC 61508 [23].. 25
Figure 7 Software safety integrity and the development lifecycle (the V-model) [25] 28
Figure 8 Software safety lifecycle [25] ... 56
Figure 9 Proposed software safety lifecycle ... 58
Figure 10 Primary cause of control system failure [5].. 64
Figure 11 A story card [1] ... 65
Figure 12 Task cards placed on a storyboard [40][40].. 66
Figure 13 Safe design precedence [47] ... 72
Figure 14 A computer-based control or protection system [54] 77
Figure 15 Software integration.. 78
Figure 16 The systems connection to reliability and safety.. 80
Figure 17 XPs approach to verification... 81
Figure 18 Approach to verifying safety .. 81

xii

Table of tables
Table 1 Examples of refactorings.. 10
Table 2The twelve key practices of Extreme Programming [1] 12
Table 3 Safety integrity levels: target failure measures for a safety function [25] 23
Table 4 High-level comparison of XP and developing according to IEC 61508.............. 27
Table 5 Comparison of XP and IEC 61508 with respect to planning............................... 34
Table 6 Comparison of XP and IEC 61508 with respect to design................................... 37
Table 7 Comparison of XP and IEC 61508 with respect to coding 37
Table 8 Comparison of XP and IEC 61508 with respect to validation, and verification.. 41
Table 9 Static testing technique recommendations for SILs... 42
Table 10 Comparison of XP and IEC 61508 with respect to management....................... 47
Table 11 Objectives for documents produced according to the overall safety lifecycle... 48
Table 12 Documentation structure for XP and software safety lifecycle 50
Table 13 Proposed software safety lifecycle... 59
Table 14 Extreme Programming adoption .. 86

Chapter 1: Introduction

1

1 Introduction
This chapter provides information about the post-graduate thesis, its scope, a brief
overview of related work, and how the report is structured.

1.1 Motivation
The working title of the given assignment had the title “Extreme Programming in safety-
related systems”, and the following paragraph was given as a guideline:

Safety-related systems place restrictions on the development process – for instance
IEC 61508. Can these requirements be satisfied if developing according to XP?

Extreme programming, introduced in 1996, is a lightweight software development
methodology. It departs significantly from traditionally development practices, including
development of safety-related system. In contrast to the sequentially development of
safety-related system, XP is oriented towards delivering incrementally growing software
product. It gives preference to informal oral communication in development team over
methods of written documentation. Industrial interest in the use of incremental
development and XP is rapidly growing. This can be seen as a reaction to earlier,
extensive and document driven development models.

When developing safety-related system it is crucial to be able to verify that the final
system is adequately safe. Standards are used as means to ensure a sufficient level of
safety. Development of safety-related software has strict requirements on how the
development should be performed. Many standards are relevant for development of
safety-related system. The international standard IEC 61508 was published in full in
2000, and are therefore one of the most recently published safety standard on the marked.
The aim of IEC 61508 is to provide directions whereby safety-related systems can be
implemented in such a way that an acceptable level of functional safety is achieved. It has
the advantage over national standards of being a reference source across national
boundaries and therefore a common basis for determining working practice. Since it is
generic, it can be applied to different kind of safety-related systems in many industries. It
has been conceived with a rapidly developing technology in mind and will therefore not
easily be outdated. This is some of the reasons why it is already widely used in the
industry. IEC 61508 has the opinion that the development process must be planned and
controlled in order to achieve the best result. The development of safety-related systems
follows conservative development methods. The safety community does not want to use
new methods before they have been tested thoroughly. Despite the refusal of adoption of
new methods we want to investigate the possibility of using XP. This methodology is a
modern, lightweight development methodology, and many have seen its advantages. Use
of IEC 61508 together with XP faces several challenges. In this report we look into these
challenges and give some proposals on how to manage them. Industry are faced by high
pressure to reduce costs coupled with shorter product life cycles, and a need for a quicker
time to marked. We will investigate whether XP can help to accomplish these goals.

Chapter 1: Introduction

2

1.2 Scope
In this report we will only focus on the standard IEC 61508, due to its widespread use
and applicability to many types of safety-related systems. It applies to safety-related
systems when one or more of such systems incorporate electrical and/or electronic and/or
programmable electronic (E/E/PE) devices. It is based on and applicable to all E/E/PE
safety-related systems irrespective of the application. Another reason for its widespread
use is its generic nature, it is a framework for developing domain-specific safety
standards.

Safety can only be assured by considering all aspects of a system, including both
hardware and software. It is a system issue. IEC61508 covers both the hardware part and
the software part of the development. In this report we will only focus on the software
aspect of the system development.

In addition to the development process, XP has opinions about other areas, such as
facility strategies and working hours. We will only discuss XPs practices concerned with
the development process, other areas are not with in the scope of this report.

1.3 Related work
Grenning wrote an article [17] about adaptation of XP in a company with a large formal
software development process. The division, that started adopting XP, was developing
safety-critical systems. Previously they used up-front requirements documents, up-front
design, reviews, and approvals. They confirm the different view of documentation XP
stated. XP acknowledges that writing documentation requires resources, and therefore
less time is spent on developing the system. The division used to write extensive
documentation of the system, but now they saw the possibility of changing that practice.
Therefore they listed what they wanted from documentation:

ÿ Enough documentation to define the product requirements, sustain technical
reviews, and support the system’s maintainers.

ÿ Clean and understandable source code.
ÿ Some form of interface documentation, due to the impedance mismatch between

groups.

They saw the benefit of documenting what they had built, not what they anticipated to
build. The significant designs were documented within an iteration and reviewed with the
review team. On the XP team, dependencies between features were almost nonexistent.
They built features in the order of customer priority, not internal software framework
order dictated by a Bid Design Up Front (BDUP).

Other methods or techniques they found useful were:
ÿ Use cases
ÿ Clean and simple source code for maintenance purposes
ÿ High-level document to navigate in the system
ÿ Monthly design reviews
ÿ Ask-for-forgiveness design process

Chapter 1: Introduction

3

The article does not say whether they developed systems according to a standard.
Grenning saw many of XPs advantages and they tried to do as many of the XP practices
as they could. They thought XP right out of the book would not work for them.
Documentation and reviews were going to be the big roadblocks.

The development of safety-critical software has been widely addressed in literature.
Several books and articles have also been written about XP. However, an explicit account
of whether XP can be used in developing safety-related system is not available: a gap we
are trying to bridge with this report.

1.4 Research agenda
The result from this thesis is drawn from literature research and discussion with safety
experts who have experience with certification of safety-related system and knowledge of
the requirements stated in IEC 61508. The literature research was comprised of collection
and structuring of relevant documentation of XP, safety-related system, IEC 61508, and
other relevant areas.

This report is mainly organized as a comparison between XP and IEC 61508. First a deep
literature research on the practices found in XP was carried out. Then we proceeded with
a similar study for IEC 61508. Important methods and requirements in the IEC 61508
standard are discussed. Based on these findings we investigated whether the practices XP
represents are sufficient to fulfill these requirements. Is this requirement in contradiction
with XP? How could this requirement be confirmed when developing according to XP?
Which approaches have to be done to satisfy XP and the IEC 61508 requirements? What
practices are not in contradiction?

1.5 Report structure
This report consists of seven chapters.

Chapter 1 Introduction : provides information about the thesis, its scope, a brief
overview of related work, research agenda, and how the report is structured.

Chapter 2 Extreme Programming: contains an overview of the Extreme Programming
(XP) methodology. We have split the practices into four areas: planning, designing,
coding and testing. Refactoring, which is an important part of XP, is discussed next.
Finally, the role for people involved in an XP team is described.

Chapter 3 IEC 61508: presents the international standard IEC 61508. First we give a
brief introduction to safety-related system. The introduction places IEC 61508 in a wider
perspective. Next an overview of IEC 61508 is given, and important parts of the standard
are discussed in more detail. This concerns the safety lifecycle, hazard and risk analysis,
safety integrity level, and ALARP. Finally we select three key areas, and investigate what
has to be fulfilled in order to claim compliance with the standard.

Chapter 4 Comparison of XP and IEC 61508:a comparison of XPs practices and IEC
61508s requirements to software development is presented. First a high-level comparison

Chapter 1: Introduction

4

is introduced, then the individual steps of planning, design, coding, validation and
verification, management, and documentation are further analyzed.

Chapter 5 Compatibility of XP and IEC 61508: contains approximations between XP
and IEC 61508. The fundamental differences discovered in Chapter 4 are further
discussed. A proposal for a new software safety lifecycle is presented. To conclude, the
adoption status of the XP practices that we make use of in the proposal are summarized in
a table.

Chapter 6 Conclusion:brings all the investigated pieces together. We summarise the
proposal, and the most important arguments why it will improve the development of
safety-related system.

Chapter 7 Further work: provides recommendations for further work based on the
findings in this report.

Chapter 2: Extreme Programming

5

2 Extreme Programming
Extreme programming (XP) is a lightweight software development methodology
developed by Kent Beck, and others. Kent Beck wrote the first book[1] about XP in
2000, therefore it is one of the most recently published methodologies. The methodology
comes without much overhead so it can be applied easily. It attracts attention from many
software development teams and its popularity is growing fast. The XP practices have
been selected to form complementary sets in which one of them supports another[1].

Despite the fact that it is a newly published methodology there is little new in XP. Its
practices have been around for years. The difference is that XP does not restrict these
practices to distinct “phases” of a project; they are done all the time. The “extreme” in
XP comes from two things[10]:

1. XP takes proven industry best practices to extreme levels. For example,
designing, code review, testing and refactoring are done continuously, rather than
at dedicated phases of the software process only.

2. XP combines those practices in a way that produces something greater than the
sum of the parts.

2.1 Practices
XP is oriented towards delivering incrementally growing software products. It gives
strong preference to informal oral communication in development teams over written
documentation of design. The source code plays an important role in the development
process: code is documented via test code, the tests themselves are code rather than input
data, and continually code refactoring can make the overall design simple. Direct contact
with the customer representative leads to introducing changes to the project at early
stages. The best strategy is to embrace changes, and perform a quality work. If the
programmers do a good job, they will enjoy working and work well.

Below follows a list of rules and practices of XP. As in[37] and [59], the practices are
split into four areas: Planning, Designing, Coding and Testing.

2.1.1 Planning
P1 The planning game is used to create project plans.The main idea behind the

planning game is to make a rough plan quickly and refine it as things become
clear. A customer representative is making business decisions (choosing the
project scope, development task priorities, composition of releases, dates of
releases, etc.) and developers are making technical decisions (evaluating risk
factors, estimating the effort, system design, process, etc.)[1].

P2 The project team is traveling light.The only artifacts the team is writing and
using are test cases and code.

P3 User stories are written.They serve the same purpose as use cases. Customer
writes them and they are used instead of requirement documents. The developers
estimate how long each user story will take to implement.

Chapter 2: Extreme Programming

6

P4 Release planning creates the schedule.The goal of the release planning game is
to define the set of features required for the next release.

P5 Make frequent small releases.Release the system as soon as it makes sense
(after one to two months). Having a running system with reduced, but
incrementally growing functionality, makes it possible for the client to give
quick feedback. Such an approach minimizes costs of radical changes in the
project because new needs and requirements can be taken into account in one or
more of the nearest increments.

P6 The Project Velocity is measured as a metric.This shows how fast work is
getting done. Effort is estimate in Ideal Engineering Time, which assumes no
interruption, no meetings etc. The Project Velocity describes the amount of Ideal
Engineering Time per month[1].

P7 Iteration planning starts each iteration.A plan of the programming task for that
iteration is made.

P8 Move people around.This refers to moving people around the code base in
combination with pair programming. Developers exchange programming
partners frequently.

P9 A stand-up meeting starts each day. The purpose of this meeting is
communication among the entire team e.g. quick review of status, requests for
help, problems encountered, and discoveries made. Naturally, customers and
managers are invited, and should attend.

P10 Fix XP when it breaks.The team can change what does not work. It is not the
manager’s job to dictate what to change and how, but to point out the need for
change. The team should come up with one or more experiments to run.

P11 Accepted responsibility. There is no top-down planning in XP, responsibility can
only be accepted, not given.

P12 Planning for priorities. The highest business priorities are implemented first.

2.1.2 Designing
D1 Small initial investment.
D2 Simplicity.Make the solution as simple as possible. According to Kent Beck the

simplest design that could possible work; runs all the tests, contains no duplicate
code, states the programmers’ intent for all code clearly, and contains the fewest
possible classes and methods. This rule can be summarized as, “say everything
once and only once.” The more complicated things are, the harder it is to keep
them under control.

D3 Choose a system metaphor.Development is based on a simple story of how the
system works. The metaphor is a communication means between customer
representatives, managers, and developers. It gives the team a consistent picture
they can use to describe the way the existing system works, where new parts fit,
and what form they should take.

D4 Use CRC cards for design sessions.CRC cards (Class, Responsibilities, and
Collaboration) allow the entire project team to contribute to the design.

D5 Create spike solutions to reduce risk.A spike solution is a small, informal
experiment with an idea on how to solve a problem.

Chapter 2: Extreme Programming

7

D6 No functionality is added early.Extra functionality will slow the team down and
waste resources.

D7 Refractor whenever and wherever possible.Refractoring is changing system’s
implementation without changing its behavior. The aim is to increase
readability, flexibility, understandability etc.

2.1.3 Coding
C1 On-site customer.The customer representative is always available to the

developer. Whenever the programmer is uncertain concerning a user story
interpretation, the customer can explain. He also participates in the planning
game and works on acceptance tests.

C2 Code must be written to agreed standards.A coding standard is necessary
because code written by one pair of programmers will be read and modified by
other pairs.

C3 Code the unit test first.This means that a programmer starts coding after the test
cases are written. This helps to understand what can be expected from a unit and
removes “implementation bias” when testing a unit.

C4 All production code is pair programmed.Working in pairs on a single computer
provides instant code review and is reported by programmers as more enjoyable
than individual work[60].

C5 Only one pair integrates code at a time.
C6 Integrate often.Kent Beck calls this practice “continuous integration” and

suggests integration “after a few hours (certainly no more than a day)” [1].
C7 Use collective code ownership.Any person on the team can change any piece of

code if necessary. Everybody owns the code, meaning everybody is responsible
for it: “You break it, you fix it.” The unit tests must run all the time. If someone
break something, it is his responsibility to fix it.

C8 Leave optimization till last.Make the system work, make it right, then make it
fast.

C9 No overtime.Kent Beck says that he wants to be “fresh and eager every
morning, and tired and satisfied every night.” Therefore he suggests a 40-hour
work week.

2.1.4 Testing
T1 All code must have unit tests.“Unit tests are written by the developers, using the

same programming language as is used to build the system itself. Tests are
small, take a white box view of the code, include a check on the correctness of
the results obtained, comparing actual results with expected ones.[11]” XP
prescribes to testeverything that could possibly break[30].

T2 All code must pass all unit tests before it can be released.Unit tests give
developers confidence that their code works.

T3 When a bug is found, a new test must be created.This allows discovering early
if the bug reappears in the future.

T4 Write test before refractoring.

Chapter 2: Extreme Programming

8

T5 Acceptance tests are run often and the score is published.Those tests are written
by the customer representative and they show the status of the project from the
customer point of view.

T6 Other tests. Other tests besides unit test and functional test can be used if
needed.

XP is based on four values that reinforce each other, they are practiced constantly
through the development process. They may be summarized this way:

1. Communication. XP makes it next to impossible not to communicate by
employing practices that can not be done without it. For examples unit testing,
pair programming, and estimating.

2. Simplicity. XP proposes to do the simplest thing that could possible work. Beck
says thatXP is making a bet that it is better to do a simple ting now and pay
tomorrow to change it if necessary, than to do something more complicated now
that might not be used anyway[1].

3. Feedback.Feedback early and often gives opportunity to “steer“ the efforts.
4. Courage. Beck’s opinion is:if you aren’t moving at top speed, you’ll fail[1].

When developers have courage they have the guts to make action when it counts,
such as when code need to be thrown away or changes have to be made late in
the game.

Four variables will be controlled in the project – cost, time, quality, and scope. Kent Beck
says, “of these, scope provides the most valuable form of control” [1]. External forces as
customers and manager get to pick the values of three of the variables. The development
team gets to pick the value of the fourth variable. For example, the external force can
require to get a system following the quality standard ISO 9000 within two month at a
price of $ 900 000. The resultant value is scope, and therefore the programmers can
decide how many system requirements they can implement.

Development in XP must be regulated by dynamic discipline. Architecture is validated by
small, throwaway prototypes. Requirements are detailed by regular consultation between
developers and customers. Quality evolves through automated testing of features and the
units that comprise them.

2.1.5 Release
There are three phases in the Planning Game. A release starts with an exploration phase,
in which business and development discuss what the system should do. The customer
writes stories for feature requests, and the developers estimate how long each story will
take to implement. If a story is too complex to estimate, it is split into smaller stories. In
the subsequent commitment phase the stories are ordered by business priority, sorted by
value, and sorted by risk. Then velocity is set, and scope chosen. These stories then get
implemented in the longest phase (steering phase), which consists of a series of small
iterations (see Figure 1). Iterations should not take more time than one month (one to
three weeks is best). The plan is updated based on what is learned[1].

Chapter 2: Extreme Programming

9

Figure 1 Release in Extreme Programming

2.2 Refactoring
Continuous integration, testing, and refactoring make evolutionary design efficient.
Refactoring is an important component of XP. This subchapter contains a short
introduction.

2.2.1 Introduction
Martin Fowler presented two definitions of refactoring, depending on context[12]:

Refactoring: achange made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior.

Refactoring: to restructure software by applying a series of refactorings without
changing its observable behavior.

Refactoring is cleaning up code in an efficient and controlled manner. The purpose of
refactoring is to make the software easier to understand and modify. Refactoring can also
help the programmer to understand some code that needs to be modified. In addition, it
can improve design, improve readability, and reduce the number of bugs. All this
improves quality. Even though refactoring can lead to simpler designs it does not weaken
flexibility. The most common time to refactor is when a new feature shall be added to
some software. Refactoring can also help when a design does not let the programmer add
a feature easily.

Most of the performed refactorings is low level, such as creating or deleting a class,
variable, or function, or changing attributes of variables and functions, such as their

Time

Scope

Exploration phase

Commitment phase

Steering phase

Chapter 2: Extreme Programming

10

access permissions and functions, or moving variables and functions between classes. A
smaller set of high-level refactorings are used for operations such as creating an abstract
superclass, simplifying a class by means of subclassing and simplifying conditionals, or
splitting off part of an existing class to create a new, reusable component class. The more
complex refactorings are defined in terms of the low-level refactorings. Fowlers approach
was motivated by concern for automated support and safety[12].

2.2.2 Refactorings
Fowler has collected a catalog of refactorings, which range from simple modifications to
more substantial changes comprising several different smaller refactorings. He grouped
the refactorings after the purpose they serve. Table 1 shows a selections of refactorings
for each group proposed by Fowler[12].

Table 1 Examples of refactorings

Composing methods: Simplifying conditional expressions:
Extract method Decompose conditional
Inline method Consolidate conditional expression
Replace temp with query Consolidate duplicate conditional fragments
Introduce explaining variable Remove control flag
Split temporary variable Replace nested conditional with guard

clauses
Moving features between objects:
Move method Making method calls simpler:
Move field Rename method
Extract class Add parameter
Inline class Remove parameter
Hide delegate Separate Query from modifier

Parameterize method
Organizing data:
Self encapsulate field Dealing with generalization:
Replace data value with object Pull up field
Change value to reference Push down field
Change reference to value Extract superclass
Replace array with object Extract interface

Replace inheritance with delegation
Big refactorings:
Tease apart inheritance
Convert procedural design to objects
Separate domain from presentation
Extract hierarchy

Chapter 2: Extreme Programming

11

2.2.3 Bad smells in code
Refactorings are applied whenbad smellsare detected in the code. Examples ofbad
smells[12]:

ÿ Duplicated code
ÿ Long method
ÿ Large class
ÿ Long parameter list
ÿ Divergent change (changed in different ways for different reasons)
ÿ Shotgun surgery (a lot of small changes to a lot of different classes)
ÿ Feature envy (a method seems more interested in a class other than the one it

actually is in)
ÿ Data clumps (Bunches of data that hang around together ought to be made into

their own object.)
ÿ Primitive obsession (Replace data value with object, replace type code with class,

etc.)
ÿ Switch statements (when you see a switch statement you should consider

polymorphism.)
ÿ Parallel inheritance hierarchies (when you have to make a subclass of one class,

you also have to make a subclass of another)
ÿ Lazy class
ÿ Speculative generality
ÿ Temporary field (an object which an instance variable is set only in certain

circumstances)
ÿ Message chains
ÿ Middle man (delegating to other class)
ÿ Inappropriate intimacy
ÿ Alternative classes with different interfaces (methods that do the same thing but

have different signatures for what they do.)
ÿ Incomplete library class
ÿ Data class
ÿ Refused bequest (subclass that does not need inherit method)
ÿ Comments (often used as deodorant. When you feel the need to write a comment,

first try to refactor the code so that any comment becomes superfluous.)

2.2.4 Problems
Something that is disturbing about refactoring is that many of the refactorings do change
an interface. There is no problem changing a method name if you have access to all the
code that invoke that method, but it is a problem if the interface is being used by code
that you cannot find and change. One has to retain both the old interface and the new one,
at least until the users have had a chance to react to the change.

2.2.5 Conclusion
Refactoring can be an alternative to upfront design. One just code the first approach that
comes into your head, get it working, and then refactor it into shape. Even though

Chapter 2: Extreme Programming

12

extreme programmers use refactoring, they design first. They will try out several ideas
with CRC cards or the like until they have a plausible first solution. Only after generating
a plausible first shot they will code and then refactor. The point is that refactoring
changes the role of upfront design.

2.3 Roles for people
XP requires five roles to make the team function – customer, programmer, manager,
tracker, and a coach.

2.3.1 Customer
The customer is the person or group who represent the users. The customer is responsible
for identifying the features (stories in XP) that the programmers must implement,
providing detailed acceptance tests for those stories and assigning priority to them.

2.3.2 Programmer
The programmers have the primary role in XP. They implement the stories written by the
customer, and pass any tests that the customer specifies. Besides programming they are
also responsible for estimating how long it will take to implement the stories.

2.3.3 Management
There are three prominent roles in managing XP:

ÿ Managermanages the team and fix problems. He face outside parties, and obtain
resources.

ÿ Trackerhelps the team to know if they are on track for what they have promised
to deliver. This is a part-time role.

ÿ Coachhelps the team to use and understand the XP approach. He mentors the
team, and handles problems.

A team may organize these roles in the way they prefer, but each of these areas must be
addressed.

2.4 Summary
Extreme programming is a lightweight methodology for small teams. It is suitable for
vague and rapidly changing requirement. Table 2 summarizes the twelve key practices of
XP.

Table 2 The twelve key practices of Extreme Programming[1]

Planning game Quickly determine the scope of the next release. Development
estimates user stories, and the customer prioritizes them.

Small release A simple system is put into production quickly, and then new
versions are released on a very short cycle.

Metaphor All development is guided with a simple shared story of how
the whole system works.

Chapter 2: Extreme Programming

13

Simple design The guiding design principle is to do the simplest thing that
could possibly work. Extra complexity is removed as soon as it
is discovered.

Testing Unit tests and acceptance tests are run continuously
Refactoring Continuously improve the design without changing the

functionality.
Pair programming Production code is developed by pairs of programmers.
Collective ownership Developers can modify any piece of code.
Continuous integration Integrate changes immediately instead of developing them in

separate branches.
40-hour week Programmers work 40 hours max, to keep them fresh and

creative.
On site customer A customer is on the team to discuss feature requests and

domain concepts.
Coding standards Ensure agreement on simple coding conventions.

All the practices should be implemented to get the maximum benefit. There are two
things in addition to the practices that are important for success – verbal communication
and human relations. “If members of the team do not care about each other and what they
are doing, XP is doomed”[1].

The last rule stated by Kent Beck is “By being part of an Extreme team, you sign up to
follow the rules. But they are just rules. The team can change the rules at any time as long
as they agree on how they will assess the effects of the change”[2].

Chapter 2: Extreme Programming

14

Chapter 3: IEC 61508

15

3 IEC 61508
In this chapter we give a brief overview of safety-related systems (subchapter 3.1), and a
comprehensive overview of the standard IEC 61508 from The International
Electrotechnical Commission (IEC). Within this chapter we are primarily interested in the
international standard IEC 61508, although the standard is linked with safety-related
systems. The safety-lifecycle presented in IEC 61508, hazard analysis, safety integrity
level, ALARP, and how to achieve compliance with the standard are further discussed.
Subchapter 3.3 is concerned with the safety-lifecycle presented in IEC 61508. It is used
as a framework to structure IEC 61508s requirements. Hazard and risk analysis,
presented in subchapter 3.4 are used to investigate the safety implications of a system.
The former looks at the identification of situations that could endanger human life or the
environment, and the latter considers the risks associated with these events. If a system is
found to have safety implications it must be allocated an integrity level reflecting its level
of criticality. The safety integrity level will determine the methods of design and
implementation to be used for the system. Section 3.5 will therefore discuss what safety
integrity level is and how it is assigned. The acceptability of a given level of risk is
determined by the benefits associated with the risk, and by the amount of effort that
would be required to reduce it. Acceptance of a particular risk is based upon a decision as
to whether the risk isas low as is reasonably practicable(ALARP). Finally, subchapter
3.7 looks at areas in the standard that have to be fulfilled in order to claim compliance.

3.1 Safety-related system
Before looking at safety-related system, we will discuss the term safety. Definitions of
safety vary considerably. The standard IEC 61508, that will be discussed later in this
chapter, states this definition:

Safety is freedom from unacceptable risk.

A system is said to be safe if it will not endanger human life or the environment.
Computer systems can only influence safety if they are used to control some physical
process which can lead to harm. In order to relate the concept of safety to computer
systems, the standard introduces the notion that computer systems offer services to the
controlled equipment. They operate in order to try to satisfy some goal in the
management of the equipment which the computer system is designed to control or
influence. IEC uses the term Equipment Under Control (EUC), and defines the term
safety-related system as follows:

Safety-related system is a designated system that both
- implements the required safety functions necessary to achieve or

maintain a safe state for the EUC.
- is intended to achieve, on its own or with other E/E/PE safety-related

systems, other technology safety-related systems or external risk
reduction facilities, the necessary safety integrity for the required
safety functions.

Chapter 3: IEC 61508

16

The term safety-critical system is normally used as a synonym for a safety-related
system, but in some contexts it can suggest a system of higher criticality than a safety-
related system. In this report safety-critical system and safety-related system are used as
synonyms.

Safety-critical systems are a special class of composite system whose development has
traditionally relied on close adherence to structured methods, strict quality control and the
occasional use of time-consuming and expensive formal methods. Closer inspection,
however, reveals that these systems have in fact a limited number of safety-critical
aspects or components [42].

Examples of safety-related systems:
ÿ Crane automatic safe load indicator
ÿ Fairground roller-coaster control system
ÿ Fire and gas detection system
ÿ Machinery guard/access interlocking system
ÿ Machinery emergency shutdown
ÿ Process plant emergency shutdown system
ÿ Railway signaling
ÿ Steam boiler controls

Even a safety-critical system can not be absolutely safe. The goal when developing a
system is to make it adequately safe for its given role. The standard IEC 61508, that we
will explain next, can help in that process.

3.2 Overview of IEC 61508
International standards such as IEC 61508 covers the design and application of safety-
related systems. These standards fulfill several important roles [54]:

ÿ Help staff to ensure that a product meets a certain level of quality.
ÿ Help to establish that a product has been developed using methods of known

effectiveness.
ÿ Promote a uniformity of approach between different teams.
ÿ Provide guidance on design and development techniques.
ÿ Provide some legal basis in the case of a dispute.

IEC 61508 is a standard for developing safety-critical systems and a framework for
developing domain-specific safety standards. It has been approved and published in full.
The four first parts of IEC 61508 were published in 1998; the three remaining parts were
published in March and April 2000. It is titled “Functional safety of
electrical/electronic/programmable safety-related systems”, and is a seven part
international standard. The titles of the parts are:

ÿ Part 1: General requirements (IEC 61508-1)
ÿ Part 2: Requirements for electrical/electronic/programmable electronic systems

(IEC 61508-2)
ÿ Part 3: Software requirements (IEC 61508-3)
ÿ Part 4: Definitions and abbreviations (IEC 61508-4)

Chapter 3: IEC 61508

17

ÿ Part 5: Guidelines on application of Part 1 (IEC 61508-5)
ÿ Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3 (IEC

61508-6)
ÿ Part 7: Bibliography of techniques (IEC 61508-7)

Part 1, 2, 3, and 4, except for the annexes to Part 1, state the definitive requirements of
the standard. Part 5, 6, and 7 offers guidance and supplement to the other parts.

The standard is generic, it is not limited to any specific industrial sector or application
area. It is intended to be used as a basis for development of more specific standards.
Examples of application specific standards derived from IEC 61508 are IEC 61511 for
the process sector, IEC 61513 for the nuclear sector and IEC 62061 for the machinery
sector. Where application specific standards don’t exist, IEC 61508 can be used directly.
It can be applied both to systems which operate ‘on demand’ and to those that are
required to operate continuously to maintain a safe state.

IEC 61508 applies to safety-related systems when one or more of such systems
incorporate electrical and/or electronic and/or programmable electronic (E/E/PE) devices.
It is generically based on and applicable to all E/E/PE safety-related systems irrespective
of application. It is recognized that the consequences of failure could also have serious
economic implications and in such cases the standard could be used to specify any
E/E/PE safety-related system used for the protection of equipment or product [21].

The range of E/E/PE safety-related systems to which IEC 61508 can be applied includes
[21]:

ÿ Emergency shut-down systems
ÿ Fire and gas systems
ÿ Turbine control
ÿ Gas burner management
ÿ Dynamic positioning (control of a ship's movement when in proximity to an

offshore installation)
ÿ Railway signaling systems (including moving block train signaling)
ÿ Crane automatic safe-load indicators and
ÿ Machinery guard interlocking systems.

Many companies have already adopted this international standard in order to protect
persons, equipment and the environment. According to [4], the key objectives of the
standard are to:

ÿ Release the potential of the technology to facilitate improvements in both safety
and economic performance.

ÿ Enable the technological developments to take place within an overall safety
framework.

ÿ Provide a systematic approach to all safety lifecycle activities and all elements of
the system including hardware and software.

ÿ Provide a technically sound, systems based approach with sufficient flexibility for
the future.

Chapter 3: IEC 61508

18

ÿ Provide a risk based approach for the determination of the required performance
of safety-related systems.

ÿ Provide a generically based standard which could be used directly by industry but
which also facilitate the development of sector standards. A major objective of the
publication of IEC 61508 is to enable the development of application sector
international standards by the Technical Committees responsible for that
particular sector. This should lead to a higher level of consistency (e.g. of
underlying principles, technical requirements for a specified performance).

ÿ Provide confidence to users and regulators when using computer-based
technology.

ÿ Provide a coherent standard based on common underlying principles which would
facilitate:

o Improved efficiencies in the supply chain for suppliers of subsystems and
components to various sectors.

o Improvements in communication and requirements (i.e. to enable
improved clarity of what was required by the system).

o The development of techniques and measures that could be used across all
sectors which could provide high resources gearing.

o The development of conformity assessment services if stakeholders
required this.

IEC 61508 can therefore help to develop a product in a well defined safety-oriented
development process that fulfills its safety requirements, reduce cost or time-to-marked,
increase confidence within the own organization, and easier get acceptance by customers
[5].

The aim is to address all possible causes of dangerous failures. Such failures could arise
due to faults in hardware, software in any part of the safety-related system or from human
error. Further, faults can be introduced at any stages of the lifecycle of a system, from its
initial concept, through design, installation and operation to eventual decommissioning.

The strategy of the standard is first to derive the safety requirements of the safety-related
system from a hazard and risk analysis. Thereafter, the safety-related system should be
designed to meet those safety requirements, taking into account all possible causes of
failure including random hardware faults, systematic faults in both hardware and
software, and human factors.

IEC 61508 is based on safety functions. A safety function is an action, which is required
to ensure that the risk associated with a particular hazard is tolerable. It is specified in
terms of its functionality and its safety integrity [7]. Furthermore, it describes measures
and techniques which the safety-related system has to be designed, developed and
implemented according to, in order to achieve the necessary safety integrity. Safety
functions also describe how the safety integrity of a system has to be estimated. This
approach is independent of a specific technology and architecture of the system and its
subsystem.

Chapter 3: IEC 61508

19

According to the standard it is not valid to assume that, if the EUC and its control
systems are built well and are reliable, they will be safe, but it is a good starting point.
The safety lifecycle presented in the next section provide a systematic approach to all
development activities.

3.3 Safety lifecycle
IEC 61508 uses the safety lifecycle as a framework to structure its requirements. It covers
not merely a systems development, but all the principal phases of its existence. The
essence is that all activities relating to functional safety are managed in a planned and
methodical way. This enables a process of verification whereby a check is made at the
conclusion of each phase to confirm that the required outputs have, in fact, been produced
and planned. The premise is that such a structured approach will minimize the number of
systematic faults that are ‘built-in’ to the safety-related system [7].

The safety lifecycle also clearly identifies activities related to the planning of the later
stages of the development process. These tasks are shown as taking place in parallel to
the realization phases of the project. The safety lifecycle covers all aspects of a project,
from the conception of a system to its eventual decommissioning. It also considers the
impact of modifications during the system’s life.

Chapter 3: IEC 61508

20

Figure 2 Overall safety lifecycle [25]

The phases of the safety lifecycle are represented by numbered boxes in the diagram (see
Figure 2). Each phase has an input, a defined function and an output. The output from
one phase represents the input to the next. Verification and assessment take place within
each phase to ensure that these activities are performed correctly. For instance, the hazard
and risk analysis associated with phase 3 of the model is used within phase 4 to determine
the appropriate integrity level for the system. This will in turn determine the form of the
other phases of the model, e.g. which methods and techniques that are appropriate. Thus,
the model can be used for developing systems of differing levels of integrity, and the

Chapter 3: IEC 61508

21

activities represented by the boxes may be very different. The safety of a system is
determined not only by its design and development, but also by how it is installed, used
and maintained [54]. For this reason an overall strategy for commissioning, operation and
maintenance is established at an early stage in the development process, at a time when it
can influence the detailed design of the system.

Activities related to the management of functional safety, verification and functional
safety assessment are also part of the overall lifecycle, but they are not included in the
overall safety lifecycle model in order to reduce its complexity.

3.4 Hazard and risk analysis
Hazard and risk analysis are at the heart of any system safety program. For any system
that is safety related, a detailed hazard and risk analysis is required in order to determine
an appropriate integrity level for the project. Hazard analysis is concerned not only with
the characteristics of the system, but also with details of the design. Its aim is to define
the EUC risk, quantitatively or qualitatively, and to determine a ‘tolerable’ level of risk.
The hazard and risk analysis is phase three of the safety-lifecycle - see Figure 2. The
result of this phase allows the necessary risk reduction. Hazard and risk analysis involves
hazard identification, hazard analysis, and risk assessment. Hazard analysis will normally
continue throughout the development process. Redmill [41] stresses the essential for a
hazard identification: “The importance of hazard identification cannot be emphasized too
strongly – for the risks associated with unidentified hazards will remain unreduced – and
care should be taken in cutting corners in carrying it out.”

The hazard and risk analysis shall consider the following (IEC 61508-1 7.4.2.10):
ÿ Each determined hazardous event and the components that contribute to it.
ÿ The consequences and likelihood of the event sequences with which each

hazardous event is associated.
ÿ The necessary risk reduction for each hazardous event.
ÿ The measures taken to reduce or remove hazards and risks.
ÿ The assumptions made during the analysis of the risks, including the estimated

demand rates and equipment failure rates; any credit taken for operational
constraints or human intervention shall be detailed.

ÿ References to key information (see IEC 61508-1 clause 5 and annex A) which
relates to the safety-related systems at each E/E/PES safety lifecycle phase (for
example verification and validation activities).

Hazard analysis is used for [44]:
ÿ Developing requirements and design constraints
ÿ Validating requirements and design for safety
ÿ Preparing operational procedures and instructions
ÿ Test planning
ÿ Management planning

and serves as:
ÿ A framework for ensuing steps

Chapter 3: IEC 61508

22

ÿ A checklist to ensure management and technical responsibilities for safety are
accomplished.

Figure 3 Hazard analysis [44]

Hazard analysis affect, and is affected by all aspects of the development process, see
Figure 3. Hazards are managed through identification, evaluation, elimination, and
control. System hazards are not failures. Failures may contribute to hazards, but hazards
are system states that, combined with certain environmental conditions, cause accidents
[45]. Strict definitions of these concepts can be found in Appendix A.

Hazard is not a characteristic of the system or equipment alone. In order to do a hazard
and risk analyses, these factors have to be understood; the system, how the system is
used, and the system’s environment [5].

3.5 Safety Integrity Level
The consequences of failure vary greatly between applications. Therefore the concept of
levels of integrity was introduced. Levels of integrity reflect the importance of correct
operation. The assigned safety integrity level (SIL) of a project determines the methods
of design and implementation used for the system. SILs are defined in terms of failure
rates of a function [38]. They depend not only on the failure rates of safety functions, but
also on the acceptability of the risks involved [38].

Based on the assessment of the hazard and risk analysis, an appropriate safety integrity
level can be allocated. Several factors are affected when SIL is allocated, see Figure 4 for
an illustration.

Hazard analysis

Design

Test

QA

TrainingOperations

Maintenance

Management

Chapter 3: IEC 61508

23

Figure 4 Factors affecting Safety Integrity Levels [6]

A safety integrity level must be allocated to each safety function. The SILs are used for
specifying the target level of safety integrity for the safety functions to be implemented
by the E/E/PE safety-related systems. The SIL for a safety function is determined by
Table 3. The table distinguish between whether the safety integrity requirements is
expressed in terms of the average probability of failure on demand, or the probability of a
dangerous failure per hour of operation.

Table 3 Safety integrity levels: target failure measures for a safety function [25]

Safety
integrity
level

Low demand mode of operation

(Average probability of failure to
perform its design function on
demand)

High demand or continuous mode of
operation

(Probability of a dangerous failure per
hour)

4 ≥ 10-5 to < 10-4 ≥ 10-9 to < 10-8

3 ≥ 10-4 to < 10-3 ≥ 10-8 to < 10-7

2 ≥ 10-3 to < 10-2 ≥ 10-7 to < 10-6

1 ≥ 10-2 to < 10-1 ≥ 10-6 to < 10-5

IEC 61508 specifies the requirements to be met for each safety integrity level. Using the
process implied by a SIL does not mean that the reliability represented by the SIL has
been achieved. Achieving the SIL does not imply that the system is safe, and meeting the
requirements of a SIL offers confidence, not proof. SIL provide targets for risk reduction.
Although SIL is based on risk, it is not a measure of risk – it is the probability of failure
of a system or function.

Input Output

Software development methods

Software architecture
Safety Integrity Level

Quality assurance

Project management

Some
combining
function

Chapter 3: IEC 61508

24

3.6 ALARP
The ALARP principle is a tool for determining tolerance to risks. IEC 61508 divides the
levels of risk into three ranges: unacceptable, acceptable, and ALARP. The uppermost
band of this figure represents hazards where the risk is so great that it is considered to be
intolerable and can not be justified on any grounds. In contrast, the lowermost band
represents hazards where the risk is so small that it can be neglected. In the ARLAP
region, between these two, the risk can be acceptable under certain circumstances. The
criterion for acceptance of a particular risk is based on a decision as to whether it is “As
Low as Reasonably Practicable”, (ALARP). This method acknowledges that when
reducing process risk there is often a point of diminishing returns. Risks cannot be
completely eliminated, even if an infinite amount of money is expended.

Figure 5 Tolerable risk and ALARP [25]

While the cost versus benefit philosophy makes this an attractive methodology, care must
be taken in implementation. The benefit associated with installing or improving a safety-
related system design is often a reduction in the number of injuries or fatalities. In order
to make sure that the benefits are measured as carefully as the perceived costs, the user of
this method must place a quantified value to each potential injury or fatality. Otherwise,
an individual project budget would determine the value. This is unacceptable from a
corporate risk standpoint [56].

Chapter 3: IEC 61508

25

3.7 Compliance
IEC 61508 has three key areas that have to be fulfilled in order to claim compliance with
the standard. These areas are; general requirements, techniques and methods, and third
party certified components. All the statements below are collected from the IEC website
[20].

3.7.1 Requirements
The termshall used in a requirement indicates that the requirement is strictly to be
followed if conformance to the standard is to be claimed. Where the termshould(or it is
recommended that) is used, this indicates that among several possibilities one is
recommended as particularly suitable, or that a certain course of action is preferred but
not necessarily required. The text in a normative element usually contains both shall and
should. In IEC 61508, the following parts contain normative elements: part 1 (excluding
annexes); part 2 (including annexes); part 3 (including annexes A and B, excluding annex
C); and part 4 (excluding the annex). There are no normative requirements in parts 5, 6
and 7 of the standard. Informative elements of the standard provide additional
information intended to assist understanding or use, but with which it is not necessary to
conform in order to be able to claim compliance. The text in an informative element
cannot contain shall. Notes and footnotes are always informative. In IEC 61508, the
following are informative: the annexes of part 1; annex C of part 3; the annex of part 4;
and all annexes of parts 5, 6 and 7.

Figure 6 The part structure of IEC 61508 [23]

3.7.2 Techniques and measures
Although all four normative annexes contain recommendations for the use of particular
techniques and measures, they differ in what is required for compliance. When a

Chapter 3: IEC 61508

26

technique or measure that is highly recommended for the safety integrity level is not used
the rationale behind not using it shall be documented in great detail. Annexes A and B of
IEC 61508-3 contain the appropriate techniques and measures that shall be selected
according to the safety integrity level. Anyone claiming compliance with the standard is
required to consider which techniques or measures are most appropriate for the specific
problems encountered during the development of each E/E/PE safety-related system.
These may include techniques and measures recommended by the standard and may
include others; the tables give only recommendations as to which techniques and
measures may be appropriate.

Since a large number of factors affect software safety integrity, IEC 61508-3 cannot
prescribe generically how to combine techniques and measures in order to guarantee that
the required software safety integrity is achieved. The annexes contain a recommendation
that the rationale for not following the guidance for highly recommended or not
recommended techniques or measures should be detailed during the safety planning, and
agreed with the assessor. In both IEC 61508-2 and IEC 61508-3, the choice of techniques
for each lifecycle phase needs to be documented (see clause 5 of IEC 61508-1). Other
subclauses require some of this documentation to include a justification of the choice of
techniques and measures, even if all recommendations are followed. See for example
7.3.2.2 e), 7.4.2.9 of IEC 61508-2, and 7.4.3.2 a) of IEC 61508-3.

3.7.3 Third party certified components
One does not have to use third party certified components in order to comply with IEC
61508. The standard requires that a functional safety assessment is carried out on all parts
of the E/E/PE safety-related system and for all stages of the lifecycle (see clause 8 of IEC
61508-1). The level of independence required of the assessor ranges from an independent
person in the same organization for safety integrity level 1 to an independent organization
for safety integrity level 4. The required level of independence for safety integrity levels
2 and 3 is affected by additional factors including system complexity, novelty of design,
and previous experience of the developers. There is also a specific requirement that the
assessor shall be considered competent for the activities to be undertaken.

Chapter 4: Comparison of XP and IEC 61508

27

4 Comparison of XP and IEC 61508
Chapter 2 and Chapter 3 discussed Extreme Programming and IEC 61508 separately. In
this chapter we perform a comparison of XP and IEC 61508. First we present a high-level
comparison, then the individual steps of planning, design, coding, validation and
verification, management, and documentation are further analyzed. Each attribute is
briefly discussed with respect to XP and IEC 61508, followed by some comments.
Attributes which are fundamentally different with respect to XP and IEC 61508, are
further discussed in Chapter 5.

Only the most important attributes presented in the high-level comparison will be
analyzed later in this chapter.

4.1 High-level
Table 4 shows a top-level comparison between XP and IEC 61508. It provides a
framework to zoo in on some low-level issues that will be presented in the following
subchapters.

Table 4 High-level comparison of XP and developing according to IEC 61508

XP IEC 61508
Development lifecycles Evolutionary lifecycle,

small increments, iterations
(1-3 weeks)

V-model (safety lifecycle)

Planning Short-range Long-range
Design Evolutionary design

(simple)
Planned design (full up-
front)

Integration Continuous (every few
hours)

Infrequently

Releases Small, frequent (3-6 month) Big, seldom
Level of scale Small teams (up to ten

developers)
Medium or large teams

Competence of persons Communication skill Safety knowledge
Role of developers Steer process and product,

use predefined techniques
to do so.

Develop product

Role of managers Steer process and product,
use predefined techniques
to do so.

Steer process and product,
use predefined techniques
to do so (see clause 6).

Role of customers Provide input to steer
process; are involved (on-
site).

-

Type of technology Lightweight technology is
preferred.

Certified technology is
preferred.

Purpose of development Product delivery while
doing satisfying work.

Develop E/E/PE safety-
related system.

Chapter 4: Comparison of XP and IEC 61508

28

Documentation User stories, tests and code From all phases of the
development cycle

Communication Person-to-person Via documentation
Scope Development (maintenance) Development, installation,

maintenance, and
decommission (technical
and business processes)

4.1.1 Development cycles
XP: In XP planning, analyzing, designing, testing, and implementation are done in
small increments throughout software development.

IEC 61508: The overall safety lifecycle describes required activities associated with
safety during the entire lifecycle of the equipment, from the concept phase to the
decommissioning phase. The development of the software is structured into defined
phases and activities (see Figure 7).

Figure 7 Software safety integrity and the development lifecycle (the V-model) [25]

Comments: The use of an iterative vs. a V-model development model will be
discussed further in Chapter 5. Which methods and techniques that are appropriate are
discussed in relation to the SIL levels.

Chapter 4: Comparison of XP and IEC 61508

29

4.1.2 Planning
XP: Kent Beck says: “Do only the planning you need for the next release, the end of
the next iteration. You can do long-range planning in not great detail [1].” Thus, XP
makes only detailed planning for the next release, and spends less time planning the long-
range.

IEC 61508: The functional safety planning in IEC 61508 shall define the strategy for
the software procurement, development, integration, verification, validation and
modification to the extent required by the safety integrity level of the E/E/PE safety-
related system (IEC 61508-3 6.2.2).

Comments: The XP practices and IEC 61508 requirements about planning contradict.
The safety planning described in the standard is necessary and has to be performed. See
Chapter 5 for a further discussion.

4.1.3 Design
XP: Evolutionary design means that the design of the system grows as the system is
implemented. The project starts with a simple design that constantly evolves to add
needed flexibility and remove unneeded complexity. Design in XP is part of the
programming process, and as the program evolves, the design changes. A feeling for the
whole is needed up front, but only requirements for the current feature can be clearly
defined.

IEC 61508: The planned design approach focus on the big issues before programming.
Design techniques are used to work at an abstract level, and design documents are
produced. The system should be designed full up-front according to IEC 61508.

Comments: This different is fundamental, and will be discussed further in Chapter 5.

4.1.4 Integration
XP: The system is integrated and build many times a day.

IEC 61508: The system is integrated after the implementation is finished.

Comments: This different is fundamental, and will be discussed further in Chapter 5.

4.1.5 Release
XP: In XP, simple versions of the system are put into production quickly. The
customer pick the most valuable stories that make sense together, and let the XP-team
implement those and put them into production. New versions are released on a short
cycle, new stories are selected and implemented.

Chapter 4: Comparison of XP and IEC 61508

30

IEC 61508: IEC 61508 does not mention releases, but in the view of the safety
lifecycle, the releases will be large and seldom, it takes time to make something useful
for the customer.

Comments: Like integration, the different practice on release is significant, and will be
further discussed in Chapter 5.

4.1.6 Level of scale
XP: XP addresses only small teams, up to ten developers, that must be co-located.

IEC 61508: IEC 61508 does not specify the size of the team, but because of the
required competence of persons the addressed team will be medium or large.

Comments: When developing safety-critical systems, every person involved should
have the right competence (see below). The safety aspect of the system requires more
competence than a traditionally XP team can give. They should for example have safety
engineering knowledge appropriate to the technology, and knowledge of the legal and
safety regulatory framework. See appendix A in IEC 61508-1 for more details. The scale
of the team will therefore be larger than a traditionally XP team, but to make use of XP in
the development process the number of developers should not exceed ten persons.

4.1.7 Competence of persons
XP: The value of communication represents the XP belief that communication
between project members is important for a successful project, and hence the persons
involved should have good communication skills. Instead of specialists (analysts, testers,
coders, architects), XP encourages generalists who are handy with all aspects of software
development. To pair-program effectively it is recommended that at least one of the
programmer is a senior.

IEC 61508: All person involved in safety lifecycle activities, including management
activities, should have the appropriate training, technical knowledge, experience and
qualifications relevant to the specific duties they have to perform.

Comments: The different focus at competence areas does not exclude each other. A
system safety engineer (as a member of the XP team) also requires good communication
skills, in addition to knowledge of system safety engineering. A software safety engineer
should have good knowledge of both hardware and software. This engineer also needs the
ability to communicate with and influence both software engineers and hardware
engineers. A software safety engineer is responsible for software safety analyses and for
software inputs to system safety analyses. They must participate in design reviews and sit
on the configuration control board. The software safety engineer establishes and oversees
the audit trails for identified software hazards. The software safety engineer should
participate in the integration tests and other activities [48].

Chapter 4: Comparison of XP and IEC 61508

31

4.1.8 Role of developers
XP: Developers have the opportunity to steer the development process, but they have
the XP practices as a basis. They can also influence the product through the dialog with
the customer.

IEC 61508: The developers responsibility are to develop the product, were they follow
the recommendations proposed by the standard or the management.

Comments: To get conformance to IEC 61508, the degrees of freedom of the XP team
will have to be reduced. But the standard does not specify all aspect of the development
process, and these the developers have the opportunity to steer. E.g. use of pair
programming, use of stand-up meetings, and furnishing.

4.1.9 Role of managers
XP: The managers are concerned with the technical execution and evolution of the
process, and guide the tracking. The job is to get everybody else making good decisions.

IEC 61508: Manager in a safety-related system shall develop, nurture and maintain a
genuine safety culture. Management decision and authority is needed to guide and
enforce the use of administrative and technical controls. See IEC 61508-1 clause 6 for a
detailed description.

Comments: The role of the managers is not in contradiction, most of their job is to
motivate others, and take important decisions on behalf of the team.

4.1.10 Role of customers
XP: Representatives from the customer have the responsibility for the business
decisions that take place all through the life of a project. Therefore, the customer is a part
of the XP team, and for best result they sit with the rest of the team and are available full-
time to answer questions.

IEC 61508: The role of customers is not mentioned in the standard. It is unlikely that
the customer is involved in the development.

Comments: Having an on-site customer in the team is not in contradiction with the
requirements in IEC 61508.

4.1.11 Type of technology
XP and IEC 61508 have a different understanding of the termtechnology. XP focus on
the process while IEC 61508 concentrates on the realization of the system.

XP: The choice of technology is a business decision, but one that must be taken with
input from the developer. XP prefer lightweight technology. In XP, they use technology
only insofar as it fits the framework of predefined techniques. The technology used

Chapter 4: Comparison of XP and IEC 61508

32

should not have an inherently exponential cost curve, the code should be clean and
simple [1].

IEC 61508: IEC 61508 applies to safety-related systems when one or more of such
systems incorporate electrical and/or electronic and/or programmable electronic (E/E/PE)
devices.

Comments: The type of methods used in XP can be in contradiction with the
technology used in safety-critical systems. Especially avoiding technology that have an
exponential cost curve. “If the cost of change rose slowly over time, you would act
completely different from how you do under the assumption that costs rise exponentially.
You would make big decisions as late in the process as possible, to defer the cost of
making the decisions and to have the greatest possible chance that they would be right”
[1].

Employing complex technology in safety-related system has several disadvantages. For
example, the implementation of complex technology requires a higher level of
competence at all stages, from specification up to maintenance and operation. The use of
other, simpler, technology solutions may be equally effective and may have several
advantages of the reduced complexity [25]. These thoughts correspond with XP view of
simplicity.

In the context of low complexity E/E/PE safety-related systems, certain requirements
specified in IEC 61508 can be unnecessary, and exemption from compliance with such
requirements is possible. However, dependable field experience must exist which
provides the necessary confidence that the required safety integrity can be achieved.

4.1.12 Purpose of development
XP: Making software development a humane experience is a key motivation of XP.
Doing satisfying work is equally important as delivering a product.

IEC 61508: IEC 61508 provides a method for the development of the safety
requirements specification necessary to achieve the required functional safety for E/E/PE
safety-related systems.

Comments: Doing satisfying work is also possible when developing safety-critical
systems, and therefore XP and IEC 61508s purpose of development can be united.

4.1.13 Documentation
XP: XP uses face-to-face human communication in place of written documentation
wherever possible. User stories, tests and code will be produced when following the XP
practices. If the team need needs additional documents they should produce them.

IEC 61508: IEC 61508 has several requirements to documentation (IEC 61508-1 5.2):

Chapter 4: Comparison of XP and IEC 61508

33

ÿ The documentation shall contain sufficient information, for each phase of the
overall, E/E/PES and software safety lifecycles completed, necessary for effective
performance of subsequent phases and verification activities.

ÿ The documentation shall contain sufficient information required for the
management of functional safety.

ÿ The documentation shall contain sufficient information required for the
implementation of a functional safety assessment, together with the information
and results derived from any functional safety assessment.

Comments: XP and IEC 61508 have quite different view on the amount of
documentation that is necessary to produce. But XP gives the opportunity to produce
documents that are needed, and therefore they are not completely in contradiction. See
section 4.1.13 and Chapter 5 section 5.15 for a further discussion.

4.1.14 Communication
XP: Communication is one of XPs four values that are needed for a successful project.
Many of the XP-practices can not be done without verbal communication.

IEC 61508: The standard impose the engineers to make documents to communicate.

Comments: XP often uses verbal-communication instead of documentation. Safety
related activities also require verbal-communication, but in addition documents are
written. See section 4.1.13 for a further discussion.

4.1.15 Scope
XP: XP covers the development process for building software with vague and rapidly
changing requirements. Kent Beck [1] notes that “maintenance is really the normal state
of an XP project”.

IEC 61508: IEC 61508 can be applied to the implementation, operation including
maintenance, installation, and decommission of any safety-related control or protection
system based on electrical/electronic/programmable electronic technology.

Comments: IEC 61508 has a bigger scope than XP. Chapter 5 gives a proposal on how
XP can replace the development process and maintenance process described in IEC
61508.

4.2 Planning
Next follows a comparison of XP and IEC 61508 with respect to selected planning
aspect. Some comments for each attribute follow.

Chapter 4: Comparison of XP and IEC 61508

34

Table 5 Comparison of XP and IEC 61508 with respect to planning

XP IEC 61508
Project plan Rough plan that will be

refined.
Out of scope

Planning phase Exploration phase, iteration
planning

Overall planning

Focus on environment None High
Lifecycle requirements No Yes
Tool selection Integration, build, test Qualified, suitable for

purpose

4.2.1 Project plan
XP: Planning in XP is an activity in which the development team, manager and
customer decide on what to do in each release and iteration. The planning game is used to
create a rough plan quickly and refine it later as things become clear.

IEC 61508: A project plan is not in the scope of the standard, and is therefore not
specified.

Comments: XPs plan is not in contradiction with IEC 61508s requirements because
the standard does not specify a project plan.

4.2.2 Planning phase
XP: A release starts with an exploration phase, in which customer and developer
discuss what the system should do. Iteration planning starts by asking the customer to
pick the most valuable stories. The team breaks the stories down into tasks. Next the
programmers signs up for the tasks they want to be responsible for implementing. The
programmer estimates the task in ideal programming days.

IEC 61508: The overall planning in IEC 61508 includes operation and maintenance
planning, safety validation planning, and installation and commissioning planning.

Comments: The exploration phase in XP might be considered a parallel to
requirements analysis in traditionally software engineering. In this phase, the developers
have the freedom to experiment with the solutions they will be proposing and
implementing. The overall planning in IEC 61508 covers future planning aspects as
opposed to XP short planning aspect. Planning in XP and in IEC 61508 have different
focus, and does not contradict.

4.2.3 Focus on environment
XP: XP has no specific focus on the environment except that it should be possible to
realistically test software.

Chapter 4: Comparison of XP and IEC 61508

35

IEC 61508: The concept- and overall scope definition-phase focus on the environment.
The objective of the concept-phase is to develop a level of understanding of the
equipment under control and its environment sufficient to enable the other safety
lifecycle activities to be satisfactorily carried out. One of the objectives of the overall
scope definition phase is to specify the scope of the hazard and risk analysis, for example
environmental hazards.

Comments: The focus on environment does not contradict. IEC 61508 requires also
that it should be possible to realistically test software.

4.2.4 Lifecycle requirements
XP: XP recommends the developer to follow the XP practices, but let them change
them if something does not work.

IEC 61508: The objective of the software safety lifecycle requirements in IEC 61508
is to structure the development of the software into defined phases and activities. This
structure and its related requirements are IEC 62508-3 7.1.2.1-7.1.2.8.

Important issues are:
ÿ A safety lifecycle shall be selected and specified
ÿ Quality and safety assurance procedures shall be included in the safety lifecycle
ÿ Each phase of the safety lifecycle shall be divided into elementary activities with

the scope, input and output for each phase
ÿ It is acceptable to tailor the depth, number and work-size of the phases of the V-

model
ÿ It is acceptable to order the software project differently to the organization of this

standard provided that the objectives and requirements ofclause 7 Software safety
lifecycle requirementsare met.

ÿ For each lifecycle phase, appropriate techniques and measures shall be used
ÿ The result shall be documented
ÿ If, at any stage of the software safety lifecycle, a change is required pertaining to

an earlier lifecycle phase, then that earlier safety lifecycle phase and the following
phases shall be repeated

Comments: In principle the lifecycle requirements do contradict, but both XP and IEC
61508 are to a certain degree receptive to changes. IEC 61508, does, however, require
that the requirements in the standard must be fulfilled, but these requirements do not
completely restrict the development process. In Chapter 5 a model different from the
software safety lifecycle in IEC 61508 are proposed.

4.2.5 Tool selection
XP: It is important to XP to have tools that support a fast integration/build/test cycle
[1]. See section 4.2.5 for a description of testing framework.

Chapter 4: Comparison of XP and IEC 61508

36

IEC 61508: IEC 61508 provides requirements for support tools such as development
and design tools, language translators, testing and debugging tools, and configuration
management tools. IEC 61508 gives detailed guidance on the tools that are appropriate
for the various phases of a project, for systems of various levels of integrity. The
selection of development tools will depend on the nature of the software development
activities and the software architecture. The tool selection must be performed according
to IEC 61508-3 7.7.2.7:

ÿ All equipment used for validation shall be qualified according to a specification
traceable to an international standard (if available), or to a national standard (if
available), or to a well-recognized procedure.

ÿ Equipment used for software validation shall be qualified appropriately and any
tools used, hardware or software, shall be shown to be suitable for purpose.

A suitable set of integrated tools, including languages, compilers, configuration
management tool, and when applicable, automatic tools, shall be selected for the required
safety integrity level. The availability of suitable tools (not necessarily those used during
initial system development) to supply the relevant services over the whole lifetime of the
E/E/PE safety-related system should be considered. (IEC 61508-3 7.4.4.2)

Comments: XP accept almost every tool, and does not contradict with IEC 61508s
requirements with respect to tools. We recommend using the testing framework
developed for unit testing.

4.3 Design
Beck [1] describes a good design as follows:

ÿ It organizes the logic so that a change in one part of the system does not always
require a change in another part of the system.

ÿ It ensures that every piece of logic in the system has one and only one home.
ÿ It puts the logic near the data it operates on.
ÿ It allows the extension of the system with changes in only one place.

An ideal specification according to IEC 61508 should have a number of characteristics,
including that it should be [54]:

ÿ Correct
ÿ Complete
ÿ Consistent
ÿ Unambiguous

Table 6 gives a comparison of XP and IEC 61508 with respect to design. Some
comments for each attribute follow.

Chapter 4: Comparison of XP and IEC 61508

37

Table 6 Comparison of XP and IEC 61508 with respect to design

XP IEC 61508
Approaches to discuss
requirements

Prototype Formal textual requirements

Architecture System metaphor Specific configuration of
hardware and software
elements in a system (IEC
61508-4 3.3.5).

4.3.1 Approaches to discuss requirements
XP: XP prefers using prototypes to discuss requirements and ensure timely feedback
from customers.

IEC 61508: IEC 61508 uses formal textual requirements. The specification of the
requirements for software safety shall, according to IEC 61508-3 7.2.2.3, be sufficiently
detailed to allow the design and implementation to achieve the required safety integrity,
and to allow an assessment of functional safety to be carried out.

Comments: The different approach to discuss requirements will be discussed further in
Chapter 5.

4.3.2 Architecture
XP: In XP, part of the architecture is captured by the system metaphor. A good
metaphor can tell the team how the system works. The metaphor guides all development
with a simple, shared story of how the overall system works. The first iteration puts the
architecture in place.

IEC 61508: The software supplier and/or developer shall establish the proposed
software architecture design, and a description of the software architecture design shall
be detailed. IEC 61508-3 subclause 7.4.3.2 state the requirements of the description. The
architecture shall be unambiguously defined.

Comments: The system metaphor in XP will be too vague when developing safety-
critical system. A further discussion can be found in Chapter 5.

4.4 Coding
Table 7 gives a comparison of XP and IEC 61508 with respect to coding and coding
methods. Some comments for each attribute follow.

Table 7 Comparison of XP and IEC 61508 with respect to coding

XP IEC 61508
Refactoring Yes No
Programming language Smalltalk, Java See comments in section

Chapter 4: Comparison of XP and IEC 61508

38

4.4.2.
Coding standard Yes Yes
Reuse of software - Attractive
Redundant source code Eliminate -
Method for writing
production code

Pair programming -

4.4.1 Refactoring
XP: XP recommends the programmer to refractor to remove duplication, improve
communication, simplify, or add flexibility. The program is restructured, but its behavior
is not changed. XP use refactoring as an alternative to up-front design. See Chapter 2 for
a more detailed description of refactoring.

IEC 61508: It should not be necessary to refractor when developing according to the
software safety lifecycle.

Comments: The developer of a safety-critical system will have to check whether the
refactoring does change the code in such a way that the system can become unsafe.
Extensive use of refactoring in XP can easily result in an unsafe system. Chapter 5
discusses this further.

4.4.2 Programming language
XP: “XP assumes that the development team makes use of modern development
environment (Smalltalk, Java), and aims at taking maximal advantage of the resulting
benefits” [11].

IEC 61508: A consideration when selecting a programming language for safety-related
system is the portability of the code, that there are no differences between the
development on environment and on the target system.

In safety-critical systems, the choice of programming language is of great significance.
The functional characteristics, the availability and quality of the support tools, and the
expertise available within the development team must be considered before choosing a
language.

According to IEC 61508-3 subclause 7.4.4.3 the selected programming language shall:
ÿ Have a translator/compiler which has either a certificate of validation to a

recognized national or international standard, or it shall be assessed to establish its
fitness for purpose.

ÿ Be completely and unambiguously defined or restricted to unambiguously defined
features.

ÿ Match the characteristics of the application.
ÿ Contain features that facilitate the detection of programming mistakes.
ÿ Support features that match the design method.

Chapter 4: Comparison of XP and IEC 61508

39

Comments: XP wants to use modern, high level development language. One advantage
of using high level languages is that they make the end code readable, and hence easier to
analyze. Therefore will first investigate whether it is possible to develop safety-related
system using such languages. Kent Beck’s Testing Framework is widely available for
Smalltalk, Java and C++ [27], and therefore we will look at these languages first.

The main problem with Java in safety-critical systems will probably be the extensive use
of dynamic memory management and the garbage collection, which will make both
maximum memory usage and worst-case response times hard to predict [19]. In addition,
Java is based on libraries that are not certificated.

Smalltalk will not be a suitable programming language for implementing a safety-critical
system. Smalltalk compilers are free to cheat, and Smalltalk system play games with
integers [52]. That is not acceptable when implementing safety-critical code.

All SIL highly recommend a strongly typed programming language. C++ have been used
with success both in XP [55] and in safety-critical systems. Although an object-oriented
approach offers many potential benefits, some of the features associated with OOD
languages must be avoided when developing safety-critical systems. One such problem
area is linked with the use of dynamic dispatching, which requires that certain operations
are determined at runtime. This feature causes great problem for verification and
validation of the system’s operation. To reduce the probability of introducing
programming faults and increase the probability of detecting any remaining faults we
recommend using a subset of C++ when developing safety-related system. The language
is examined to determine programming constructs which are either error prone or
difficult to analyze. A language subset is then defined which excludes these constructs.
Before any decisions are made one should discuss a suitable programming language for
each individual system.

To be able to make the most of XPs methods, it makes a different which programming
language is used. SIL 4, and in some cases SIL 3, may require other programming
languages that does not fit to XP. In those cases we recommend to follow IEC 61508.

4.4.3 Coding standard
XP: XP requirements to coding standard are: “call for the least amount of work
possible, consistent with the Once and Only Once rule (no duplicate code). The standard
should emphasize communication. Finally, the standard must be adopted voluntarily by
the whole team” [1].

IEC 61508: The coding standard shall according to IEC 61508-3 requirement 7.4.4.5
and 7.4.4.6:

ÿ Be reviewed as fit for purpose by the assessor.
ÿ Be used for the development of safety-related software.
ÿ Specify good programming practice.
ÿ Proscribe unsafe language features (for example, undefined language features,

unstructured designs, etc.). Specify procedures for source code documentation. As

Chapter 4: Comparison of XP and IEC 61508

40

a minimum, the following information should be contained in the source code
documentation:
o Legal entity (for example company, author(s), etc.)
o Description
o Inputs and outputs
o Configuration management history

Comments: IEC 61508s requirements about coding standard are not in contradiction
with XP since XP does not require a specific coding standard.

4.4.4 Reuse of software
XP: XP does not mention reuse of software. XP says that the programmer should
design and codethe simplest thing that could possibly work, it is possible that this does
include reuse of software.

IEC 61508: “Because of the high cost of software development, particularly for critical
applications, the reuse of existing software from other projects is commercially very
attractive” [54]. IEC 61508 is open for the possibility to use previously developed
software.

Comments: Reuse of software is a possibility for both XP and IEC 61508.

4.4.5 Redundant source code
XP: XP insists on stating everything “once and only once” and therefore tries to fully
eliminate redundant code. The redundancy is removed by refactoring. When the
refactoring is done throughout the entire lifecycle, time is saved and quality increased
[59]. See Chapter 2 section X for a description of refactoring.

IEC 61508: All methods of fault tolerance are based on some form of redundancy.
This involves having a system which is more complex than that needed simply to perform
the required task [54]. IEC 61508 does not mention use of redundant source code.

Comments: Redundancy can increase reliability and reduce failures. However, it
assumes a model of random wear out. It is not so effective at common-cause or common-
mode failures, which may affect all redundant parts equally. Redundancy can also add so
much complexity to the system (to coordinate the redundant components) that the
complexity causes failures. Certainly, redundancy has its place, and it can be useful in
reducing hardware failures. Therefore we recommend using redundancy in hardware, and
not in the software part of the system.

4.4.6 Method for writing production code
XP: The responsible programmer finds a partner to write the production code with.

IEC 61508: IEC 61508 does not state any method for writing production code.

Chapter 4: Comparison of XP and IEC 61508

41

Comments: It is possible to pair-program safety-critical code because the standard
does not state any method. Advantages when using pair programming will be discussed
in Chapter 5.

4.5 Validation and verification
Validation, and verification are important activities when developing software. Because
of the similarity between these activities, we have placed them in the same subchapter.
Table 8 gives a comparison of XP and IEC 61508 with respect to validation, and
verification. Some comments for each attribute follow.

Table 8 Comparison of XP and IEC 61508 with respect to validation, and verification

XP IEC 61508
Quality assurance Yes Yes
Safety assurance No Yes
Static testing Yes, source code review Yes, e.g. reviews,

inspections and design
walkthroughs.

Unit/module testing Yes Yes
Integration testing Yes Yes
Acceptance testing Yes Yes
Other tests Any test Performance testing,

probabilistic testing
Validation Not in scope of XP Yes
Verification Yes Yes
Certification Some process Not in the scope of the

standard

4.5.1 Quality assurance
XP: Acceptance tests are run often in a XP project and the result is published. The
work products and services are therefore objectively evaluated. Quality assurance (QA) is
an essential part of the XP process. In some project QA is done by a separate group,
while in others QA will be integrated into the development team. External forces
(customers, managers) get to pick the values of any three of the variables – cost, time,
quality, and scope. The development team gets to pick the value of the fourth variable.

IEC 61508: Quality assurance procedures are integrated into safety lifecycle activities.
Examples of such activities are verification activities and assessment.

Comments: Both XP and IEC 61508 focus on quality assurance, but the standard are
more concerned about having documentation of the process. In addition IEC 61508
carries out more quality assurance procedures than XP.

4.5.2 Safety assurance
XP: XP has not specific safety assurance.

Chapter 4: Comparison of XP and IEC 61508

42

IEC 61508: Safety assurance procedures are integrated into the safety lifecycle
activities. Examples of such activities are hazard and risk analysis, and software safety
validation.

Comments: IEC 61508s requirement on safety assurance can not be said to be in
contradiction with XP because XP does not require that assurance. See Chapter 5 for a
discussion of safety focus and software development.

4.5.3 Static testing
Static testing investigates the characteristics of a system or component without operating
it. When code is subject to static testing, the structure and properties of the software are
studied. This testing, which is also called static code analysis, is “static” in the sense that
the code is not executed but is simply analyzed [54].

XP: XP performs static testing by code reviews. These reviews do not have to be
formal – pair programming provides continuous code reviews through the entire
development process.

IEC 61508: The source code shall be verified by static methods to ensure conformance
to the specified design of the software module, the required coding standard, and the
requirements of safety planning. The static methods can be inspection, review, formal
proof, and walkthroughs.

Comments: IEC 61508 suggests more testing than XP, see Table 9 for
recommendation of techniques.

Table 9 Static testing technique recommendations for SILs

Technique Ref SIL 1 SIL 2 SIL 3 SIL 4
Formal proof Table A.9

IEC 61508 -3
--- R R HR

Static analysis Table A.9
IEC 61508 -3

R HR HR HR

Boundary value analysis
(static analysis)

Table B.8
IEC 61508 -3

R R HR HR

Checklists (static analysis) Table B.8
IEC 61508 -3

R R R R

Control flow analysis (static
analysis)

Table B.8
IEC 61508 –

3

R HR HR HR

Data flow analysis (static
analysis)

Table B.8
IEC 61508 –

3

R HR HR HR

Error guessing (static
analysis)

Table B.8
IEC 61508 –

R R R R

Chapter 4: Comparison of XP and IEC 61508

43

3
Fagan inspections (static
analysis)

Table B.8
IEC 61508 –

3

--- R R HR

Sneak circuit analysis (static
analysis)

Table B.8
IEC 61508 –

3

--- --- R R

Symbolic execution (static
analysis)

Table B.8
IEC 61508 –

3

R R HR HR

Walkthroughs/design reviews
(static analysis)

Table B.8
IEC 61508 -3

HR HR HR HR

Explanations of the recommendations [25]:
--- : The technique has no recommendation for or against being used.
R : The technique is recommended for this safety integrity level as a lower
recommendation to a HR recommendation.
HR: The technique is highly recommended for this safety integrity level. If this
technique is not used then the rationale behind not using it should be detailed during
the safety planning and agreed with the assessor.

4.5.4 Unit/module testing
XP: Unit testing in XP means testing a unit of code. A unit of code is generally a class
in an object-oriented system. It could, however, also be a component or any other piece
of related code [55].

Unit test are small, take a white box view on the code, and include a check on the
correctness of the result obtained, comparing actual result with the expected ones. Tests
are an explicit, but not integrated part of the code, and are put under revision control.
Tests does not interact with each other, they are isolated and automatic.

An XP programmer writes a test under the following circumstances [1]:
ÿ If the interface for a method is at all unclear.
ÿ If the interface is clear, but the programmer imagines that the implementation will

be the least bit complicated.
ÿ If the programmer thinks of an unusual circumstance in which the code should

work as written, he writes a test to communicate the circumstance.
ÿ If the programmer finds a problem later, he writes a test that isolates the problem.
ÿ If the programmer is about to refractor some code, and he are not sure how it is

suppose to behave, and there is not already a test for the aspect of the behavior in
question, he writes a test first.

IEC 61508: A software module is according to IEC 61508-4 a construct that consists
of procedure and/or data declarations and that can also interact with other such
constructs.

Chapter 4: Comparison of XP and IEC 61508

44

The requirements for module testing according to IEC 61508 are:
ÿ Each software module shall be tested as specified during software design.
ÿ The test shall show that each software module performs its intended function and

does not perform unintended functions.
ÿ The results of the software module testing shall be documented.
ÿ The procedures for corrective action on failure of test shall be specified.

Comments: Both XP and IEC 61508 test each software module, and the test shows that
the module performs its intended function. The unit testing in XP can also easily include
tests that show that each software unit does not perform unintended functions. IEC 61508
also have requirements for documentation of the results, and procedures for corrective
actions.

4.5.5 Integration testing
XP: Testing in XP is typically done using a testing framework such asJunit developed
by Gamma and Beck [3]. Junit supports Java, but similar testing frameworks are
developed for Smalltalk and C++. The framework automatically invokes all test methods
of a test class, and collects test cases into test suites. Test results can be checked by
invoking any of the assert methods of the framework with which expected values can be
compared to actual values. Testing success is visualized through a graphical user
interface showing green bar as the tests progress, as soon as a test fail, the bar becomes
red [11].

IEC 61508: The integration tests shall ensure that the software satisfies the
specification of requirements for software safety at the required safety integrity level.
Software integration tests shall be specified concurrently during the design and
development phase (IEC 61508-3 7.4.8.1). According to IEC 61508-3 subclause 7.4.8.2
integration testing shall specify:

ÿ The division of the software into manageable integration sets.
ÿ Test cases and test data.
ÿ Types of tests to be performed.
ÿ Test environment, tools, configuration and programs.
ÿ Test criteria on which the completion of the test will be judged.
ÿ Procedures for corrective action on failure of test.

Comments: The integration procedure for XP and IEC 61508 are almost equal. The
standard requires, in addition to XPs requirements, procedures for corrective action.

4.5.6 Acceptance test
XP: At the beginning of an iteration in XP, the customers think about what would
convince them that the stories for an iteration are completed. These thoughts are
converted into system tests. These tests accumulate the customers’ confidence in the
correct operation of the system.

Chapter 4: Comparison of XP and IEC 61508

45

Acceptance tests are created from user stories, as black box system tests. Each acceptance
test represents some expected result from the system. Customers are responsible for
verifying the correctness of the acceptance tests and reviewing test scores to decide
which failed tests have the highest priority. Acceptance tests are also used as regression
tests prior to a production release.

IEC 61508: Acceptance test is within the scope of IEC 61508, but the standard does
not specify how it should be organized.

Comments: Both XP and IEC carry out acceptance testing. IEC 61508 has no
restrictions to the executions or constructions of the tests, and therefore acceptance
testing does not contradict.

4.5.7 Other tests
XP: If other tests are needed in an XP project, any suitable test can be written in
addition to unit and acceptance tests [1].

IEC 61508: Annex A in IEC 61508-3 mentions performance testing, probabilistic
testing as examples of other tests.

Comments: Other tests do not contradict, both XP and IEC 61508 are receptive to
using other test.

4.5.8 Validation
XP: Validation is not with in the scope of XP, it is up to the customer to find out
whether the system is appropriate for its purpose.

IEC 61508: The software safety validation must provide results according to IEC
61508-3 7.7.2.8. Testing shall be the main validation method for software, animation and
modeling can be used to supplement the validation activities.

Comments: IEC 61508s requirements about validation are fundamentally different
from what is required in XP, since XP does not require any validation at all. This
difference will be further discussed in Chapter 5.

4.5.9 Verification
XP: The source code will be continually reviewed through pair programming. XP runs
at least three test; unit tests, integration tests, and acceptance tests. The acceptance tests
are seen as the most important once, since it is the customer’s verification of the system.
As soon as the acceptance tests are ready and the tasks for a story are complete, the
acceptance tests are run to verify that the story works [1].

IEC 61508: The verification requirements that shall be met for each overall safety
lifecycle phase are specified in 7.18 (IEC 61508-1 7.1.4.8).

Chapter 4: Comparison of XP and IEC 61508

46

The following verification activities shall be performed (IEC 61508-3 7.9.2.7):
ÿ Verification of software safety requirements (see 7.9.2.8).
ÿ Verification of software architecture (see 7.9.2.9).
ÿ Verification of software system design (see 7.9.2.10).
ÿ Verification of software module design (see 7.9.2.11).
ÿ Verification of code (see 7.9.2.12).
ÿ Data verification (see 7.9.2.13).
ÿ Software module testing (see 7.4.7).
ÿ Software integration testing (see 7.4.8).
ÿ Programmable electronic integration testing (see 7.5).
ÿ Software safety requirements testing (software validation) (see 7.7).

IEC 61508 verification is done by review, analysis and/or tests. Selection of techniques
and measures for verification, and the degree of independence for the verification
activities, will depend upon a number of factors, including:

ÿ Size of the project.
ÿ Degree of complexity.
ÿ Degree of novelty of the design.
ÿ Degree of novelty of the technology.

Comments: The verification activities in IEC 61508 are comprehensive. XPs
verification activities are a subset of the standard’s verification activities. The verification
of requirements, architecture, and design are not present in XP. See Chapter 5 for a more
comprehensive discussion of the verification activities.

4.5.10 Certification
XP: Before the software is ready to go into production there will be some process for
certification. New tests can be necessary to prove that the software does what it is
suppose to do. Parallel testing is often applied at this stage [1].

IEC 61508: Certification is not in the scope of the standard.

Comments: Certification does not contradict the standard since it is not in the scope of
IEC 61508.

4.6 Management
The management is of great importance regarding the result of the project. Table 10 gives
a comparison of XP and IEC 61508 with respect to management. Some comments for
each attribute follow.

Chapter 4: Comparison of XP and IEC 61508

47

Table 10 Comparison of XP and IEC 61508 with respect to management

XP IEC 61508
Responsibility Allocating resources. Specify all management and

technical activities to
achieve and maintain the
required functional safety.

Roles for people Customer, tester, coach,
consultant, big boss

Developer of the E/E/PES,
developer of the software,
supplier, user, hazop and
risk analysis people,
assessment people, domain
experts, management
people

4.6.1 Responsibility
XP: The managers job is to run the Planning Game, to collect metrics pertaining to
project management and control, to make sure that the metrics are seen by those whose
work is being measured, and occasionally to intervene in situations that can not be
resolved in a distributed way [1].

IEC 61508: Specify all management and technical activities to achieve and maintain
the required functional safety (IEC 61508-1 6.2.1)

Comments: The basic XP management tool is the metrics. The role of management is
crucial to the effective use of the standard. IEC 61508 does not prescribe exactly what
should be done in any particular case. Top management’s participation in safety issues is
the most effective activity in controlling risk and reducing accidents. Upper management
also needs to assign capable people to the system safety effort and give them appropriate
objectives and resources. Appropriate organization structures must be set up to ensure
that the person responsible for the safety effort has the authority, as well as the
responsibility, to ensure system safety. Lastly, upper management must be responsive to
initiatives by others [48].

The management responsibilities include setting policy and defining goals. Management
must define responsibility, fix accountability, and grant authority. These three properties
must be distributed so that people responsible and accountable for system safety have the
authority and resources to affect the design and contribution of the system.
Communication channels must exists to collect information necessary for safety
engineers to perform their tasks, and the system safety effort must be able to disseminate
information in such a way as to affect the system designers [48].

4.6.2 Roles for people
XP: Roles in XP: programmer, customer, tester, tracker, coach, consultant, and big
boss [1].

Chapter 4: Comparison of XP and IEC 61508

48

IEC 61508: IEC 61508 mention the following roles: developer of the E/E/PES,
developer of the software, supplier, user, hazop and risk analysis people, assessment
people, domain experts, management people.

Comments: All the roles specified in XP can be found in IEC 61508, and there is
therefore no role conflict between XP and IEC 61508.

4.7 Documentation
As we could see from the comments in section 4.1.13, XP and IEC 61508 have different
view on what is necessary to document and to what extent. This subchapter discusses
further the views XP and IEC 61508 have on documentation.

4.7.1 XP
XP has often been believed to drop documentation and traceability altogether, which is
not true. The unit tests serve as excellent documentation. A complete set of tests for a
class is often a good starting point for someone looking at that class for the first time and
attempting to discover what it does [55].

“Documents can always be produced in the same manner as code is produced, which
means that any demands for specific documents are captured as user stories” [55].

4.7.2 IEC 61508
IEC 61508 specifies documents to be produced during the development. Table 11 shows
the objectives for each document.

Table 11 Objectives for documents produced according to the overall safety lifecycle

Document Reference to
IEC 61508-1

Objectives

Concept 7.2.2.6 Understanding of the EUC and its
environment.

Scope definition 7.3.2.5 Determine the boundary of the EUC and the
EUC control system, in addition to specify
the scope of the hazard and risk analysis.

Hazards and risk
analysis

7.4.2.11 Determine the hazards and hazardous events
of the EUC and the EUC control system,
determine the event sequences leading to the
hazardous events, and determine the EUC
risks associated with the hazardous events.

Safety requirements
specification

7.5.2.7 Develop the specification for the overall
safety requirements, in terms of the safety
functions requirements and safety integrity
requirements, for the E/E/PE safety-related
system, other technology safety-related

Chapter 4: Comparison of XP and IEC 61508

49

systems and external risk reduction facilities,
in order to achieve the required functional
safety.
Allocate the safety functions, contained in
the specification for the overall safety
requirements, to the designated E/E/PE
safety-related systems, other technology
safety-related systems and external risk
reduction facilities. Allocate a safety
integrity level to each safety function.

Overall operation and
maintenance plan

7.7.2.1 Ensure that the required functional safety is
maintained during operation and
maintenance.

Safety validation plan 7.8.2.2 Facilitate the overall safety validation of the
E/E/PE safety-related systems.

Installation plan and
commissioning plan

7.9.2.3 Develop plans for the installation and
commissioning of the E/E/PE safety-related
systems in a controlled manner, to ensure
that the required functional safety is
achieved.

Modification and retrofit 7.16.2.4 Develop a plan for the modification and
retrofit of the E/E/PE safety-related systems
to ensure that functional safety for the
E/E/PE safety related system is appropriate,
both during and after the modification and
retrofit phase has taken place.

Decommissioning and
disposal impact plan

7.17.2.2 Ensure that the functional safety for the
E/E/PE safety-related systems is appropriate
for the circumstances during and after the
activities of decommissioning or disposing
of the EUC.

Verification plan and
verification report

7.18.2.1,
7.18.2.4

Demonstrate, for each phase of the overall,
E/E/PES and software safety lifecycles (by
reviews, analysis and/or tests), that the
outputs meet in all respects the objectives
and requirements specified for the phase.

Functional safety
assessment plan

8.2.8 Investigate and arrive at a judgment on the
functional safety achieved by the E/E/PE
safety-related systems.

4.7.3 XP versus IEC 61508
Table 12 shows the documentation structure for XP and software safety lifecycle
presented in IEC 61508. Some comments for each phase follow.

Chapter 4: Comparison of XP and IEC 61508

50

Table 12 Documentation structure for XP and software safety lifecycle

Phase XP IEC 61508
Requirements User stories Specification
Architecture System metaphor Description
Design Source code System and module

specification
Coding Source code and coding

standards
Source code and coding
standards

Review - Code review report
Testing Unit test and acceptance

test
Module test, integration
tests (module, system,
architecture)

Validation - Plan and report
Verification - Plan and report
Assessment - Plan and report
Modification - Instruction, request, report

and log

4.7.3.1 Requirements
XP: The first decisions to make about an XP project are what it could do and what it
should do first. These decisions are typically the province of analysis. The overall
analysis is described as stories.

Each user story must be business-oriented, testable, and estimatable. User stories should
only provide enough detail to make a reasonable low risk estimate of how long the story
will take to implement. When the stories shall be implemented, the programmers can
contact the customers and receive a detailed description of the requirements orally. User
stories have focus on user needs.

IEC 61508: See IEC 61508 specifies documents to be produced during the
development. Table 11 shows the objectives for each document.

Table 11 contains description of the objectives of the requirement document according to
IEC 61508. The specification of the requirements for software safety shall be sufficiently
detailed to allow the design and implementation to achieve the required safety integrity
level, and to allow an assessment of functional safety to be carried out (IEC 61508-3
7.2.2.3).

To the extent required by the chosen safety integrity level, the specified requirements for
software safety shall be expressed and structured so that they are (IEC 61508-3 7.2.2.6):

ÿ Clear, precise, unequivocal, verifiable, testable, maintainable and feasible,
commensurate with the safety integrity level

ÿ Traceable back to the specification of the safety requirements of the E/E/PE
safety-related system

Chapter 4: Comparison of XP and IEC 61508

51

ÿ Free of terminology and description which are ambiguous and/or not understood
by those who will utilize the document at any stage of the software safety
lifecycle.

Comments: The requirement document described in IEC 61508 is more formal than
XPs user stories. It is also traceable back to the specification of the safety requirements
that is out of the scope of XP. See Chapter 5 for a further discussion of requirement
document.

4.7.3.2 Architecture
XP: In XP, part of the architecture is captured by the system metaphor. A good
metaphor can tell the team how the system works. The metaphor guides all development
with a simple, shared story of how the overall system works.

IEC 61508: A description of the software architecture shall be detailed. See IEC
61508-3 7.4.3.2 for details.

Comments: The system metaphor described in XP is not sufficient for developing a
safety-critical system. It is important to have a stable architecture which limits the need
for modification. The modification cost in a safety-critical system is considerable higher
than in a non safety-critical system. See Chapter 5 for a further discussion of the
architecture document.

Design
XP: In XP, the design is generally not explicitly documented; it is described by the
source code.

IEC 61508: The design representation shall be based on a notation which is
unambiguously defined or restricted to unambiguously defined features (IEC 61508-3
7.4.2.5).

Comments: The different requirement about design document does contradict. When
developing a safety-critical system it is necessary to have some documentation of the
design. See Chapter 5 for a further discussion.

Coding
XP: The XP programmers write the source code according to a coding standard.

IEC 61508: The source code shall according to IEC 61508-3 7.4.6.1:
ÿ Be readable, understandable and testable
ÿ Satisfy the specified requirements for software module design
ÿ Satisfy the specified requirements for the coding standards
ÿ Satisfy all relevant requirements specified during safety planning

Comments: The source code does not contradict IEC 61508 since the requirements in
XP (write code according to the coding standard), does not contradict (see section 4.4.3).

Chapter 4: Comparison of XP and IEC 61508

52

Review
XP: Despite continually code review, there is not produced any review documents.

IEC 61508: Each module of software code should be reviewed. There is no explicit
requirement for producing a physical document of the result.

Comments: Since IEC 61508 does not require a physical document of the review
result, this process does not contradict IEC 61508.

Testing
XP: Unit test and acceptance test are written in XP.

IEC 61508: The result of software module and integration testing shall be documented,
stating the test results, and whether the objectives and criteria of the test criteria have
been met. If there is a failure, the reasons for the failure shall be documented (IEC 61508-
3 7.4.7.3, 7.4.8.4).

Comments: The unit and acceptance test in XP can be written in such a way or the
developer can use special testing tools that make it possible to easily extract the result. If
such methods are used, it can be said that XP and IEX 61508 does not contradict with
respect to testing results. See Chapter 5 for a further discussion.

Validation
XP: Validation is not in the scope of XP.

IEC 61508: IEC 61508 specifies documents to be produced during the development.
Table 11 shows the objectives for the documents.

The plan for validating the software safety shall consider the following (IEC 61508-3
7.3.2.2):

ÿ When the validation shall take place
ÿ Who shall carry out the validation
ÿ The relevant modes of the EUC operation
ÿ Identification of the safety-related software which needs to be validated for each

mode of EUC operation before commissioning commences
ÿ The technical strategy for the validation, for example analytic methods, statistic

tests etc. (see IEC 61508-3 7.3.2.3)
ÿ The measures and procedure that shall be used for confirming that each safety

function comply with the specified requirements for the software safety functions,
and the specified requirements for software safety integrity

ÿ Specific reference to the specified requirements for software safety (see IEC
61508-3 7.2)

ÿ The required environment in which the validation activities are to take place
ÿ The pass/fail criteria (see IEC 61508-3 7.3.2.5)

Chapter 4: Comparison of XP and IEC 61508

53

ÿ The policies and procedures for evaluating the results of the validation,
particularly failures

Comments: IEC 61508s requirement for validation plan can not be said to be in
contradiction to XP because validation is not in the scope of XP. See Chapter 5 for a
discussion of the development aspect and safety aspect.

Verification
XP: There is no verification document produced in XP.

IEC 61508: IEC 61508 specifies documents to be produced during the development.
Table 11 shows the objectives for the documents.

Comments: See Chapter 5 for a further discussion.

Assessment
XP: XP does not perform any assessment.

IEC 61508: IEC 61508 specifies documents to be produced during the development.
Table 11 shows the objectives for the documents.

Comments: See Chapter 5 for a further discussion.

Modification
XP: The source code can be constantly modified by refactoring. Refactoring involves
change made to the internal structure of the software to make it easier to understand and
cheaper to modify without changing its observable behaviour. Since refactoring is done
continually through out the development process, the source code is constantly modified.
XP does not produce any document which prove modifications.

IEC 61508: IEC 61508 specifies documents to be produced during the development.
Table 11 shows the objectives for the documents.

Prior to carrying out any modification activity, the necessary procedures shall be planned
(IEC 61508-1 7.16.2.1). The modification and retrofit phase shall be initiated only by the
issue of an authorized request under the procedure for the management of functional
safety (IEC 61508-1 7.16.2.2). An impact analysis shall be carried out before a
modification is performed (see IEC 61508-1 7.16.2.3).

Comments: The modification procedure of XP and IEC 61508 are in contradiction. XP
provides no plan what so ever, and IEC 61508 requires a comprehensive description of
the procedure. See Chapter 5 for a further discussion.

Chapter 4: Comparison of XP and IEC 61508

54

Chapter 5: Compatibility of XP and IEC 61508

55

5 Compatibility of IEC 61508 and XP
“The most striking difference between most ‘non-critical’ systems and safety-critical
systems is that the non-critical systems are only required to work when ‘all is well’, but
safety-critical systems must work even in the presence of failure” [42]. This difference
places restrictions to the development process of safety-related systems. The overall
safety lifecycle should be used as a basis for claiming conformance to IEC 61508.
Nevertheless, a different overall safety lifecycle can be used providing the objectives and
requirements in each clause of the standard are met. Chapter 4 pointed out differences
and conformity between XP and IEC 61508, and adjustments to minor differences were
proposed. In this chapter recommendation to a modified safety lifecycle are presented.
These guidelines do not conflict with IEC 61508. Safety in software is expensive to
implement. The goal of the proposed model is therefore to achieve an appropriate level of
safety with as low cost as possible by using XP practices.

System and software safety plans and tasks should not be separated. Software
development includes the process of defining software safety activities [48]. Therefore,
XP activities will be integrated into the safety activities. First a modified software safety
lifecycle is presented in subchapter 5.1. The following subchapters in this chapter are
building on this lifecycle; requirements, the planning game, architecture, design,
prototyping, implementation, modification, integration and integration testing. In addition
this chapter further discuss release, reliability, verification, validation, assessment,
documentation. Finally we present a summary.

5.1 Development cycle
Safety considerations affect all stages of a system’s life. It also includes everybody who
is working with it: customer, designers, those responsible for implementation and
installation, maintenance staff, operator, and users of the system. The safety aspects of
the development process can be summarized as follows [42]:

1. Identify potential hazards.
2. Design and verify the system to show that the hazards will not (are sufficiently

unlikely to) arise.
3. Analyze possible failure modes and show that safety is maintained even in the

presence of failure – the key aspect of validation.
4. Control the development process and produce documentary evidence so that it is

manifest that you have done 1, 2, and 3 properly, both in absolute terms and
against any relevant standards.

IEC 61508 states the requirements for achieving safety integrity for the software. It
requires a combination of fault avoidance (quality assurance) and fault tolerance
approaches (software architecture). The standard suggests software engineering
principles such as top down design, modularity, verification of each phase of the
development lifecycle, verified software modules and software module libraries, and
clear documentation to facilitate verification and validation.

Chapter 5: Compatibility of XP and IEC 61508

56

In order to comply with IEC 61508, safety activities have to be carried out. XP can
therefore only replace part of the safety lifecycle. We will in this chapter discuss how XP
can replace or contribute in the execution of some phases of the safety lifecycle. Phase
four and five of the safety lifecycle focus on the safety requirements, and phase nine
covers the software safety lifecycle (see Figure 8). We will therefore focus on these
phases in particular. The other phases in the safety lifecycle focus on other areas than
software development, and have in all likelihood to be carried out to comply with IEC
61508.

Figure 8 Software safety lifecycle [25]

When developing simple systems, some safety lifecycle phases can be merged. The
lifecycle phases are suitable for large, newly developed systems. In small system, it might
be appropriate, for example, to merge the phases of software system design and
architectural design [25]. As discussed in Chapter 4, the number of developers should not
exceed ten persons (according to XP), so the system to be developed is likely to be small.
It is therefore recommendable to follow the proposal of merging the phases of software
system design and architectural design. See subchapter 5.4 for a discussion of the
architecture phase.

Figure 9 shows a modified diagram for the software safety lifecycle which illustrates
iterations in the development. Several of the boxes in Figure 8 are also represented in
Figure 9; software safety requirements specification, software safety validation planning,

Chapter 5: Compatibility of XP and IEC 61508

57

PE integration, and software safety validation. Box 9.3software design and development
in Figure 8 is replaced with box 9.4software design/development/unit testingin Figure 9.
In the proposed module, unit testing have a more important role than in the software
safety lifecycle from IEC. In the same way, box 9.5software operation and modification
proceduresin Figure 8 is replaced with box 9.5software modification/refactoringin
Figure 9. Refactoring is an important part of software development in XP. As a result of
this the code is constantly modified to make it more understandable. In the proposed
model software integration is extracted from box 9.3 in Figure 8 to illustrate the
importance of the integration and the sequence of actions that are performed. Box 9.3
planning gameis the only new contribution to the model. Since this model supports
changing requirements there is a need for planning. The objectives of the planning game
are that important stories are understood and estimated. Less important stories can be
understood during the development. Every phase in the IEC software safety lifecycle is
covered in the proposed model.

Chapter 5: Compatibility of XP and IEC 61508

58

Figure 9 Proposed software safety lifecycle

The rest of the subchapters in this chapter are building on this lifecycle model, and will
discuss every phase of the model.

Software safety requirements specification
(Chap. 5.2)

9.1.29.1.1

9.1

Safety integrity
requirements
specification

Safety functions
requirements
specification

Planning game
(Chap. 5.3)

Software
design/development/
unit testing (Chap.

5.4 – 5.7, 5.12)

Software
modification/

refactoring
(Chap. 5.8)

Software safety
validation
planning

Software
Integration
(Chap. 5.9)

9.3

9.2 9.4 9.5

9.6

Software
validation

(Chap. 5.13)

9.8

PE integration
(hardware/
software)

(Chap. 5.9)

9.7

Chapter 5: Compatibility of XP and IEC 61508

59

The purpose of Table 13 is to clarify the software safety lifecycle, proposed in Figure 9,
and comply with IEC 61508-3 requirement 7.1.2.3. This requirement demands that each
phase of the proposed software safety lifecycle shall be divided into elementary activities
with the scope, input and output specified.

Table 13 Proposed software safety lifecycle

Safety lifecycle phase
Figure
2 box
number

Title
Objectives Scope Requirements

subclause /
recom-
mendations

Input
(information
required)

Outputs
(information
produced)

9.1 Software
safety
requirements
specification

To specify the
requirements for software
safety in terms of the
requirements for software
safety integrity.

To specify the
requirements for the
software safety functions
for each E/E/PE safety-
related system necessary
to implement the required
safety functions.

To specify the
requirements for software
safety integrity for each
E/E/PE safety-related
system necessary to
achieve the safety
integrity level specified
for each safety function
allocated to that E/E/PE
safety-related system.

PES,
software
system

IEC 61508-3
7.2.2

E/E/PES
safety
requirements
specification
(IEC 61508-
2)

Software
safety
requirements
specification

9.2 Software
safety
validation
planning

To develop a plan for
validating the software
safety.

PES,
software
system

IEC 61508-3
7.3.2,
see subchapter
5.13.

Software
safety
requirements
specification

Software
safety
validation
plan.

Acceptance
test
specification.

9.3 Planning
game

To develop a plan for the
programming task.
Understand the stories and
estimate them.

PES,
software
system

See subchapter
5.3.

Software
safety
requirements
specification

Software
iteration plan.

9.4 Software
design/
development/
unit testing

Support tools and
programming languages:
To select a suitable set of
tools, including languages
and compilers, for the
required safety integrity
level, over the whole
safety lifecycle of the
software which assists
verification, validation,
assessment and
modification.

PES,
software
system,
support
tools,
program-
ming
language

IEC 61508-3
7.4.4,
see Chapter 4
section 4.4.2,
4.4.3, and 4.5.5.

Software
safety
requirements
specification.

Software
architecture
design
description.

Development
tools and
coding
standards.

Selection of
development
tools.

Chapter 5: Compatibility of XP and IEC 61508

60

Table 1 (continued)
Safety lifecycle phase
Figure
2 box
number

Title
Objectives Scope Requirements

subclause/
recom-
mendations

Input
(information
required)

Outputs
(information
produced)

9.4 Software
design/
development/
unit testing

Architecture:
To create a software
architecture that fulfils the
specified requirements for
software safety with
respect to the required
safety integrity level.

To review and evaluate
the requirements placed
on the software by the
hardware architecture of
the E/E/PE safety-related
system, including the
significance of E/E/PE
hardware/software
interactions for safety of
the equipment under
control.

PES,
software
system.

IEC 61508-3
7.4.3,
see subchapter
5.4.

Software
safety
requirements
specification.

E/E/PES
hardware
architecture
design (from
IEC 61508-2).

Software
architecture
design
description.

Software
acceptance
test.

9.4 Software
design/
development/
unit testing

Support tools and
programming languages:
To select a suitable set of
tools, including languages
and compilers, for the
required safety integrity
level, over the whole
safety lifecycle of the
software which assists
verification, validation,
assessment and
modification.

PES,
software
system,
support
tools,
program-
ming
language

IEC 61508-3
7.4.4,
see Chapter 4
section 4.4.2,
4.4.3, and 4.5.5.

Software
safety
requirements
specification.

Software
architecture
design
description.

Development
tools and
coding
standards.

Selection of
development
tools.

9.4 Software
design/
development/
unit testing

Detailed design and
development:
To design and implement
software that fulfils the
specified requirements for
software safety with
respect to the required
safety integrity level,
which is analyzable and
verifiable, and which is
capable of being safely
modified.

Software
system
design.

IEC 61508-3
7.4.5,
see subchapter
5.4.

Software
architecture
design
description.

Support tools
and coding
standard.

Software unit
design
specification.

Unit test
specification.

9.4 Software
design/
development/
unit testing

Detailed code
implementation:
To design and implement
software that fulfils the
specified requirements for
software safety with
respect to the required
safety integrity level,
which is analyzable and
verifiable, and which is
capable of being safely
modified.

Individual
software
units.

IEC 61508-3
7.4.6,
see subchapter
5.7.

Software unit
design
specification.

Support tools
and coding
standard.

Source code.

Code review.

Chapter 5: Compatibility of XP and IEC 61508

61

Table 1 (concluded)
Safety lifecycle phase
Figure
2 box
number

Title
Objectives Scope Requirements

subclause /
recom-
mendations

Input
(information
required)

Outputs
(information
produced)

9.4 Software
design/
development/
unit testing

Software unit testing:
To verify that the
requirements for software
safety have been achieved
– to show that each
software unit performs its
intended function and
does not perform
unintended functions.

Software
unit.

IEC 61508-3
7.4.7,
see subchapter
5.7.

Software unit
test
specification.

Source code.

Software unit
test results.

Verified and
tested
software
units.

9.5 Software
modification/
refactoring

To make corrections,
enhancements or
adaptations to the
software, ensuring that the
required software safety
integrity level is sustained.

Individual
software
units.

See subchapter
5.8.

Software unit
test
specification.

Source code.

Software unit
test
specification.

Source code.

9.6 Software
integration

To verify that the
requirements for software
safety have been achieved
– to show that all software
units, components and
subsystems interacts
correctly to perform their
intended functions and do
not perform unintended
functions.

Software
architecture

Software
system.

IEC 61508-3
7.4.8,
see subchapter
5.9.

Software
acceptance
test
specification.

Simulation of
real hardware.

Software
acceptance
test results.

Verified and
tested
software
system.

9.7 PE integration
(hardware/
software)

To integrate the software
onto the target
programmable electronic
hardware.

To combine the software
and hardware in the
safety-related
programmable electronics
of the intended safety
integrity level.

Program-
able
electronics
hardware.

Integrated
software.

IEC 61508-3
7.5.2,
see subchapter
5.9.

Acceptance
test
specification.

Integrated
program-
mable
electronics.

Acceptance
test results.

Verified and
tested
integrated
programmable
electronics.

9.8 Software
safety
validation

To ensure that the
integrated system
complies with the
specified requirements for
software safety at the
intended safety integrity
level.

Program-
able
electronics
hardware.

Integrated
software.

IEC 61508-3
7.7.2

Software
safety
validation
plan.

Software
safety
validation
results.

Validated
software.

- Software
functional
safety
assessment

To investigate and arrive
at a judgment on the
functional safety achieved
by the E/E/PE safety-
related systems.

All above
phases.

IEC 61508-3 8,
see subchapter
5.14.

Software
functional
safety
assessment
plan.

Software
functional
safety
assessment
report.

It should be noted that the creation of an architecture and selection of support tools and
programming languages from box 9.4 should only be carried out as part of the first
iteration. Preceding iteration can skip these activities, since the result from the first
iteration can be used.

Chapter 5: Compatibility of XP and IEC 61508

62

According to requirement IEC 61508-3, requirements 7.4.5.2, the following information
should be available prior to the start of detailed design: the specification of requirements
for software safety (see IEC 61508-3 7.2); the description of the software architecture
design (see IEC 61508-3 7.4.3); the plan for validating the software safety (see IEC
61508-3 7.3). By studying Figure 9 and Table 13, we see that this requirement is fulfilled.

5.1.1 Hazard- and risk analysis
Hazard- and risk analysis is phase three in the overall safety lifecycle, and an important
step to achieve a safe system. The value of early hazard analysis has been thoroughly
discussed by Storey [54] and Leveson [35]. In addition to the requirement presented in
IEC 61508 we will give some suggestions to improvements or guidelines to the execution
of the analysis.

The hazard- and risk analysis are carried out by a team whose members are chosen by
their ability to bring complementary viewpoints to the process. Hazard and risk analysis
is mainly a activity done by people. Thus, the quality of the work done by the people
involved is a critical success factor. The personnel that shall perform the analysis must be
experienced and have knowledge in the areas of system’s development, the system’s
application area, hazard analyses and assessment, and system’s operation and
maintenance [5]. Normally an XP team does not have these qualities. In these cases
personnel outside the XP team should perform the analyses. We recommend that the
project manager and the customers, which is a part of the XP team, are present during this
process to gain safety knowledge that can be forwarded to the project team.

Misunderstood or incompleted requirements are the source of most operational errors and
almost all software contributions to accidents. The problem is dealing with complexity
due to lots of complex requirement. One step in controlling complexity is to separate
external behavior from complexity of internal design to accomplish the behavior [46].

If following the proposal in this report, the software part of system is developed in
iterations (see subchapter 5.1.2). For each iteration an impact analysis will have to be
carried out. If the programmers and customer have the right competence and experience
to carry out the analysis, they will perform the analysis. Otherwise persons outside the
team will do the work. The analysis shall determine if a hazard- and risk analysis should
be performed to detect hazards that arise due to new requirements. Hazard analysis and
controls is a continuous, iterative process throughout system development and use.
Hazard identification should begin as early as the conceptual development of the system
and continue all the way through. As soon as design begins, the programmers focus on
how the hazards can be controlled. During development, it is possible to verify that
hazards have, in fact, been controlled by the design measures already imposed [49].

5.1.2 Iterative development
It has been argued that it is not possible to first define the entire problem, design the
entire solution, and then build the software and test the system. An iterative approach
seem to be the solution. It allows an increased understanding of the problem through

Chapter 5: Compatibility of XP and IEC 61508

63

successive refinement. High-level requirements are defined in phase five in the overall
safety lifecycle presented in Chapter 3. If these are to be changed, one should follow the
requirements stated in IEC 61508. The high-level requirements can further be
decomposed into more detailed requirements. When following our proposal illustrated in
Figure 9, one can easily change the decomposed requirement.

Even though the phases in the lifecycles presented in IEC 61508 are read as sequential,
they do not necessarily have to be executed sequentially. The overall lifecycle (see Figure
1 in Chapter 3), E/E/PES lifecycle and software lifecycle (see Figure 8) are simplified
views of reality, and do not show all the iterations relating to specific phases or between
phases. Iteration, however, is an essential and vital part of development through the
overall, E/E/PES and software safety lifecycles (IEC 61508-1 7.1.1.4). The safety
lifecycle is an approximation. It portrays its phases as being sequential, but several
activities are iterative, e.g. specifying the software safety functions and software integrity
levels and hazard- and risk analysis. Having this perspective to the safety lifecycle
models makes it easier to accept our proposed model. When using XP practices to
develop safety-related system, even more iterations will take place during the
development. See Figure 9 for an illustration.

The iterations illustrated in Figure 9 follow most of XP practices: User stories to be
implemented are chosen in a planning game, and the developers evaluate and accept their
responsibilities. Pair-programming can be extensively used. Unit tests are written before
the code, and is an important part of the verification. A single iteration can involve
further requirement assessment and analysis such as hazard and risk analysis. We
recommend keeping the system as simple as possible, emphasizing the quality of the code
and how well it fits into the system architecture.

When tasks in an iteration are integrated into the system, new failure modes may be
discovered which introduces new event sequence leading to hazardous events. Therefore
a new hazard and risk analysis may be necessary.

After the iteration phase is completed, a team consisting of qualified people evaluates the
result, and thereafter give feedback to the customer. There will be many opportunities to
make correction due to the rapid feedback. It is easier to control the development by
making many small adjustments. In addition it lets the developer learn form each
increments.

5.2 Requirements
Box 9.1 of Figure 9proposed software safety lifecyclecontains the specification of the
software safety requirements. This subchapter discusses the activities related to that
phase, and requirements in general form.

Most software requirements only specify nominal behavior, i.e. requirements are written
to explain what software must and should do. Safety is, however, a property that impacts
software by specifying what software must not do. Disallowing anything outside the
specification is a demand that in all likelihood is impossible to meet. The system hazard

Chapter 5: Compatibility of XP and IEC 61508

64

analysis can derive constraints on the behavior of software. The software component
designers and developers can then take these constraints - with traceability maintained
from the system-level analyses, and write software that is safe within the context of the
system [50].

Design &
implementation

14,7 %

Installation &
commissioning

5,9 %

Operation &
maintenance

14,7 %

Changes after
commissioning

20,6 % Specification
44,1 %

Figure 10 Primary cause of control system failure [5]

Figure 10 shows, based on 34 incidents, the primary cause (by phase) of control system
failure. 44,1 percentage of the failure is caused by specification. It is therefore important
to pay extra attention to that phase. Strategies to achieve functional safety for safety-
related systems are management of functional safety, technical requirements and
competence of persons [5].

Most errors found in operational software can be traced to requirements flaws,
particularly incompleteness [34]. It is therefore recommendable to pay extra attention to
how requirements are formulated. The requirements have to be specified in an
unambiguous way, and some requirements need a formal description depending on the
criticality and the impact it has on the system. They should be sufficiently detailed to
allow the design and implementation to achieve the required safety integrity, and to allow
an assessment of functional safety to be carried out (IEC 61508-3 7.2.2.3). Requirement
7.2.2.6 in IEC 61508-3 states how the requirement for software safety shall be expressed
and structured. They should be:

ÿ Clear, precise, unequivocal, verifiable, testable, maintainable and feasible,
commensurate with the safety integrity level

ÿ Traceable back to the specification of the safety requirements of the E/E/PE
safety-related system

ÿ Free of terminology and descriptions which are ambiguous and/or not understood
by those who will utilize the document an any stage of the safety lifecycle.

Despite these strict requirements, most functional requirements will fit into a task card
(see Figure 11). If it does not, the card can point to additional documents where it can be

Chapter 5: Compatibility of XP and IEC 61508

65

described in detail. If the requirements should be written in an incompleted way, the
developers have the possibility to discuss and clear up any uncertainty with the on-cite
customer and safety specialists.

Figure 11 A story card [1]

IEC 61508 expects requirements to be specified before designing the system. XP argues
that the requirements are never clear at first. The customer does not know exactly what he
wants. Therefore, some requirements (user stories) are specified during the development.
User stories are made up of two components. The written card is the first. The second
component, and by far the most important, is the series of conversations that will take
place between the customer and the programmer, viewed in the light of the story. These
conversations can clarify any misunderstanding. The high-level requirements will have to
be specified in phase five of the overall safety lifecycle. These requirements can be
decomposed in many ways. The possibility of new formulation and, to some degree, new
requirements, adds the flexibility to the system that XP requires. For instance, one can
change the type of hardware device. The assumption of stable high-level requirements
makes it possible to define a stable architecture. Since the architecture is based on these
requirements. If these requirements do not change the architecture should not change
either.

We recommend writing the story in just a couple of sentences on a cardand then pointing
to any supporting documentation. The task cards can be placed on a board according to
XP (see Figure 12), and additional comments can be written on the back on the card. All
closed tasks are removed from the board. Data, such as tasks risk and task tracking, can
be extracted from the card. The task card can further be put into a spreadsheet that makes
them easy to trace. When following this procedure, unambiguous requirements are
written, and a separate requirement document is produced. When every task is
implemented, the requirement document is completed.

Chapter 5: Compatibility of XP and IEC 61508

66

Figure 12 Task cards placed on a storyboard [40][40]

In safety-related systems, safety issues also form part of the requirements. In addition,
there is a need to communicate requirements outside the team. It is therefore common to
produce a separate safety requirements document which sets out what is required of the
system to ensure adequate safety. Safety requirements can be specified as user stories
independently of functional requirements. These user stories can be placed in a separate
document.

The stories must be validated to make sure that they are consistent with each other. When
specifying user stories one should ensure that they could be validated independently.

If a task is estimated to take more than a few days, it should be broken down into smaller
tasks [1]. In many cases the customer knows what he wants, but does not understand the
details of the logic behind it. Technical safety considerations can be outside their
expertise. In these cases safety specialist can be helpful. Specialist can decompose
comprehensive tasks, in the same way as XP recommend. A story can include element
from both software and hardware. The outcome of some events can be dependable of
earlier events, and the time elapsed since these events have occurred. The previous course
of events can influence the output. It is important that the stories include such
information. That information is used to make good tests. The tests in XP are more
critical than traditional tests, since the test can be seen as a part of the specification.
Features not described in the stories will be missing, and therefore not tested.

To understand the software components of a system, essential information about the
components interacting with the environment must be captured. Thus, the user stories
should include essential assumptions about the environment in which the software will
operate.

Requirements tracing is largely a matter of documentation, with each requirement
identified and followed through the implementation and testing process. Since XP’s base
documentation processes are largely informal, requirements tracing would almost
certainly require a substantial increase in the paperwork in the project. One solution is

Chapter 5: Compatibility of XP and IEC 61508

67

described above, but to make the traceability even easier, the stories can be associated
with acceptance tests.

In XP, the customer’s most important requirements is implemented first, so if further
functionality has to be dropped it is less important than the functionality that is already
running in the system [1]. The safety requirement will often be implemented first because
the customer will give them the highest priority.

5.3 The planning game
The goal of the planning game is to determine the next release’s or iteration’s scope,
combining business priorities and technical estimates. The customer decides scope,
priority, and dates from a business perspective, whereas technical people estimate and
track progress. The cards of the planning reflect the current status of the project. By
studying the cards, the team members will know who is responsible for which tasks, what
tasks have to be solved next, and what tasks are already solved. The planning game is
included in the proposed software safety model in Figure 9.

Once the hazards have been identified, the software safety requirements determined, and
the planning for the next iteration is completed, the system must be built to minimize risk
and to satisfy these requirements. The next subchapter describes some of the methods that
can be used.

5.4 Architecture
From a safety viewpoint, the software architecture phase is where the basic safety
strategy is developed for the software. The software architecture defines the major
components and subsystems of the software. It identifies how they are interconnected,
and how the required attributes, particularly safety integrity, will be achieved. Major
software components include systems, databases, plant input/output subsystems,
communication subsystems, application program(s), programming and diagnostic tools
etc [25]. Software architecture has two objectives according to IEC 61508. The first is to
make an architecture that fulfils the specified requirements for software safety with
respect to the required safety integrity level. The second objectives is to review and
evaluate the requirements placed on the software by the hardware architecture of the
E/E/PE safety-related system, including the significance of E/E/PE hardware/software
interactions for safety of the equipment under control.

When designing and developing a new system, the system’s architecture is one of the
variables that can be used to remove hazards and reduce risks. An architecture can be
chosen, a hazard and risk analyses can be performed, and it can be checked that the risk is
low enough. If it is not, the architecture may need to change and the process repeated[5].

XP specifies the system architecture through a system metaphor. This description will be
too vague for a safety-related system. According to IEC 61508-3 requirement 7.4.3.2 the
description of the software architecture design shall be detailed. The description shall:

ÿ Select and justify an integrated set of techniques and measures during the
software safety lifecycle phases to satisfy the specification of requirements for

Chapter 5: Compatibility of XP and IEC 61508

68

software safety at the required safety integrity level. These techniques and
measures include software design strategies for both fault tolerance (consistent
with the hardware) and fault avoidance, including (where appropriate) redundancy
and diversity.

ÿ Be based on a partitioning into components/subsystems, for each of which the
following information shall be provided:
o Whether they are new, existing or proprietary
o Whether they have been previously verified, and if yes, their verification

conditions
o Whether each subsystem/component is safety-related or not
o The software safety integrity level of the subsystem/component

ÿ Determine all software/hardware interactions and evaluate and detail their
significance.

ÿ Use a notation to represent the architecture which is unambiguously defined or
restricted to unambiguously defined features.

ÿ Select the design features to be used for maintaining the safety integrity of all
data. Such data may include plant input-output data, communications data,
operator interface data, maintenance data and internal database data.

ÿ Specify appropriate software architecture integration tests to ensure that the
software architecture satisfies the specification of requirements for software
safety at the required safety integrity level.

In order to be able to verify the architectural design process, to ensure that the resulting
top-level design is a true representation of the specification, the architecture specification
have to be detailed. The architecture should point out the features that influence each
module. This identification can ease the integration of new requirements. An early, stable
architecture is important to avoid costly modification or changes of it later in the
development process. Therefore, the creation of the architecture will only be performed
during the first iteration illustrated in Figure 9. As discussed earlier, the assumption of
stable high-level requirements from phase five of the overall safety lifecycle, makes it
possible to define a stable architecture. To conform to IEC 61508, the requirements
described above should be met.

5.5 Design
From the discussion in Chapter 4 we saw that the design practices in XP and IEC 61508
are fundamentally different. Some aspects are nevertheless the same. First, we will focus
on those that are equal, and then try to bring closer to each other the different views on
design.

Two approaches to achieve safety are simplicity and structure [42]. Simplification may in
most situations eliminate hazards. The more complex the design, the more likely it is that
errors will be introduced by the protection facilities themselves [47]. Complexity can also
be a direct barrier to understanding. A “simple” system has a small number of unknowns
in its interactions within the system and with its environment [49]. When the system is
simple it is easy to structure. When the structure is good, the system can be divided into
parts which are intelligible by themselves. Safeware Engineering Corporation says that

Chapter 5: Compatibility of XP and IEC 61508

69

software should only contain code that is absolutely necessary to achieve the required
functionality [47]. XP practices the same principles; the design should be as simple as
possible, and the design should be organized so that a change in the system affects only a
few part of the system. Unit tests in XP also encourage the developers to write many
small methods, each responsible for a clear and testable story. In this area IEC 61508 and
XP follows the same design rules.

One means of coping with complexity is analytic reduction. The system is divided into
distinct parts for analysis purposes, and the parts are examined separately. Analytic
reduction relies on three important assumptions [49]:

1. The division into parts will not distort the phenomenon being studied.
2. Components are the same examined singly as when playing their part in the

whole.
3. Principles governing the assembling of the components into the whole are

themselves straightforward.
Analytic reduction is used when developing safety-related system, but it is also a method
used in XP. The method is not mentioned in XP literature, but the unit testing relies
strongly on these assumptions.

XP’s design philosophy is minimalistic and pragmatic. In contrast to the process used to
develop safety-critical system, it does not start with a full up-front analysis and design. A
quick analysis of the entire system is carried out, and then the first iteration starts.
Grenning [17], when developing safety-related system, discovered that evolutionary
design could relieve a lot of pressure from the team. They did not have to create the best
design for all time, the design could evolve with the system. These observations support
the belief that evolutionary design is possible when developing safety-related system.

In XP the system is constantly modified, in contrast to IEC 61508 where modification are
avoided. But IEC 61508 consider the capacity for safe modification during the design
activities in order to facilitate implementation of these properties in the final safety-
related system (IEC 61508-3 7.4.2.3). Designing for upgrade can significantly reduce the
safety and cost impact of future changes. The following should be considered when
designing for upgrade: [15]

ÿ Architectural design that includes ease of changes should be considered (e.g.
design simplicity, modularity, high cohesion, and low coupling).

ÿ Automated tools for design and verification should be implemented.
ÿ Methods to identify and isolate the impact of an upgrade should be explored (e.g.

keeping design data and traceability current).
ÿ Tools to identify the dependencies among different system components should be

used (e.g. system modeling tools used to evaluate the dependencies of system
components and change to software).

ÿ Cost models should be used to anticipate changes and to evaluate their impact.

XP practices some of these recommendations; ease of change, automated tool for
verification.

Chapter 5: Compatibility of XP and IEC 61508

70

The design strategy in XP is always to have the simplest design that runs the current test
suite. Practicing XP does not include documenting design - “the source code is the
design”. Some prefer using CRC-cards to document the design. The level of system
representation provided by CRC-cards lies somewhere between unstructured notes and
sketches and more formal design techniques. Some of its advantages [8] are easy
searching and editing, and it is possible to maintain version control which is important
both in software evolution and when developing safety-related system. IEC 61508-3
requirement 7.4.2.5 states that the design representations shall be based on a notation
which is unambiguously defined or restricted to unambiguously defined features.

UML Use cases can be used instead of CRC-cards. Johannessen, Grante, Alminger,
Eklund, Torin [31] and Grennig [17] have found them useful. Johannessen, Grante,
Alminger, Eklund, and Torin integrated a modified Functional Hazard Assessment and
Use cases. The analysis generated valuable results used as design requirements and
dependability analysis input. They found that their structured way of finding possible
functional failures gave almost all the possible functional failures. The UML use case
[13] is a tool to capture requirement in early design phases. It is a set of scenarios tied
together by common user goal. You do not need to draw a diagram to useuse cases, it is
possible to keep each use case on an index card and sorting the cards into piles to show
what needs to be built in each iteration. Grenning [17] did not draw diagram, because he
did not think they could add any value to the development team. The similarity between
use cases and CRC-cards can imply that CRC-cards also can be used when developing
safety-related system.

“The requirement that different design techniques should be used for different integrity
levels implies that some methods are demonstrably better than others. There is no
scientific or quantitative basis for this assumption” [42]. Still we recommend using CRC-
cards or use cases only for SIL1 and SIL2.

Normally, XP does not focus on testability and the capacity for safe modification which
is a requirement in IEC 61508-3 (7.4.2.3), but when developing safety-related system this
must be taken it into consideration. The safety-related part of the software shall as far as
practicable be minimized according to IEC 61508-3 7.4.2.6.

A safe software design includes not only standard software engineering and fault
tolerance techniques to enhance reliability, but also special safety features. The next
sections discuss design features directly related to safety.

One important aspect of developing safety-related systems is to identify and resolve
hazards. The design process is highly affected on the hazard analysis. There is a clear
precedence to resolving hazards [50]:

1. Eliminate the hazard
2. Prevent or minimize the occurrence of the hazard
3. Control the hazard if it occurs
4. Minimize the damage

Chapter 5: Compatibility of XP and IEC 61508

71

The best alternative is to eliminate the hazard. Often, if done during the requirements
specification or design phase, hazard elimination adds no cost. There may be some
hazards that can not be eliminated from the system. The goal in this case is to minimize
the occurrence of the hazard. One way to do this is to carefully control the conditions
under which the system can move from a safe state to a hazardous state. The third option
is to try to control the hazard if it occurs. One way to do this is through operator training.
These four steps do not have to be taken one at a time. If a hazard can not be eliminated it
is still a good idea to try to control the hazard and minimize the damage it may cause if it
leads to an accident [50].

Once the potential causes of hazards have been uncovered, design constraints can be
placed on the system, software, and human operators. The system can, with these
constraints in mind, be designed to eliminate or control hazards. Any hazards that can not
be fully resolved within the system-level design must be traced down to component
requirements, such as software requirements. This traceability is important, as it is the
only way to ensure that remaining hazards are eliminated or controlled within the context
of individual components [50].

Designing the system for controllability can reduce hazards. The system can be made
easier to control, both for humans and computers. Incremental control can be used. Steps
can be performed incrementally rather than in one big step, and provide feedback to test
the validity of assumptions and models upon which decisions are made. Feedback may
also be provided in terms of intermediate states and partial results. Controllability can be
enhanced by lowering time pressures, and perhaps by slowing the process rate [47].

Chapter 5: Compatibility of XP and IEC 61508

72

Decreasing cost

Increasingeffectiveness

Figure 13 Safe design precedence [47]

5.6 Prototyping
The capability to dynamically analyze, or execute, the description of a software system
early in the development lifecycle has many advantages. Dynamic analysis can help the
customer to evaluate and address poorly understood aspects of a design, improve
communication between people involved in development, allow empirical evaluation of
design alternatives, and is one of the more feasible ways of validating a system [57].

When considering a possible prototyping method for safety critical systems the following
criteria must be met [57]:

ÿ The language should support methods to assure the correctness of the system
ÿ A prototype of the system should be available early in the development life cycle.

If a subset of C++ is used as the programming language, both of these requirement are
fulfilled when following XP. Prototyping can even be used in parallel with phase one to
five in the overall safety model. Prototyping/animation is recommended for all SILs in
the context of modeling.

Substitution
Simplification
Decoupling
Elimination of human errors
Reduction of hazardous materials or conditions

Design for controllability
Barriers

Lockins, lockouts, interlocks
Failure minimization

Safety factors and margins
Redundancy

HAZARD ELIMINATION

Substitution
Simplification
Decoupling
Elimination of human errors
Reduction of hazardous materials or conditions

HAZARD REDUCTION

HAZARD CONTROL

DAMAGE REDUCTION

Chapter 5: Compatibility of XP and IEC 61508

73

One argument against evolutionary prototyping is that it often leads to unstructured code
and difficulties with maintaining the systems. Furthermore, incremental changes to the
prototype may not be captured in the requirements specification and design
documentation which leads to inconsistent documentation and a maintenance nightmare
[57]. If the code is constantly refactored, it will be easy to modify and it will be
structured. XPs documentation techniques, and the suggestions in subchapter 5.15 do not
lead to inconsistent documentation.

5.7 Implementation
After a design session the programmer shall implement software that fulfils the specified
requirements for software safety with respect to the safety integrity level. The design,
implementation and unit testing are closely connected in our proposal, therefore these
activities are placed in the same box in Figure 9. Next follows recommendations how to
carry out the implementation. It is recommendable to have the project manager and one
or more safety specialists sitting full-time with the development team. They have
knowledge from the hazard- and risk analysis and can help the development team explain
the system requirements with respect to safety.

Implementation must proceed with safety in mind. Developers should use defensive
programming practices. It should not be assumed that correct parameters are passed in or
that called functions operate correctly. It is good practice to separate critical functions
from the rest of the code. The critical functions can then be more carefully reviewed and
audited independently. A clear separation reduces the effort for testing the safety-related
system. The interaction between software components should be limited and
straightforward. Reducing and simplifying interfaces will eliminate errors and make
designs more testable. The safety-critical routines should be kept as small and as simple
as possible. Adequate isolation should be achieved between the software modules. These
recommendations correspond to IEC 61508-3 where requirements 7.4.5.3 says that the
software should be produced to achieve modularity, testability, and capacity for safe
modification. In addition, these recommendation do not conflict to XPs programming
practices.

IEC 61508-3 has a requirement which includes several guidelines to the source code. The
source code shall according to requirement 7.4.6.1:

ÿ Be readable, understandable and testable
ÿ Satisfy the specified requirements for software module design (see IEC 61508-3

7.4.5)
ÿ Satisfy the specified requirements of the coding standards (see IEC 61508-3

7.4.4)
ÿ Satisfy all relevant requirements specified during safety planning (see IEC 61508-

3 clause 6)
The three first requirements are also stated in XP. XP does not contain safety planning,
but it can correspond to the planning game, and is therefore not in conflict with XP.

Chapter 5: Compatibility of XP and IEC 61508

74

Alistair Cockburn and Laurie Williams found that pair programming increased the
development expense with 15 %. This initial increase is recovered in the improvements in
design quality, reduced defects, reduced staffing risk, enhanced technical skills, improved
team communication and it is considered more enjoyable at statistically significant levels
[9]. Other publications [60] [61] [39] have also demonstrated that pair programming is
beneficial. When the code is continually under code review, mistakes are found as they
are entered. This leads to saving the cost of compilation, and providing the economic
benefit of early defect identification and removal. Coding standards are followed more
accurately with the peer pressure to do so. In addition, team members learn to talk
together and work together. As a result of frequently changing partners, system
knowledge is shared between the members of the team. Pair programming does not
conflict with any of the requirements in IEC 61508, and we believe that pair
programming will improve the implementation process of safety-related system. The
benefits reported when developing ‘non-critical’ system will also apply to safety-related
system.

5.8 Modification
Kent Beck notes that “maintenance is really the normal state of an XP project” [1]. The
programmer who “owns” a task will try to find a partner who is familiar with the code
affected to save time. It is therefore likely that at least one of the pair programmer have
knowledge of the code to be changed. Thus, the XP programmer will rarely have to
understand the code all alone. IEC 61508, on the other hand, have strict requirements
when performing a modification, and does not recommend any modification if it is not
completely necessary. Considering modifications in a safety-related system is a heavy
process which has lead to constraining development and integration procedures. Prior to
carrying out any software modification, software modification procedures shall be made
available according to IEC 61508-3 requirement 7.8.2.1. Before any modification is
performed an impact analysis shall be carried out. This analysis shall determine all
software modules impacted, and the necessary re-verification and re-design activities
performed in compliance with IEC 61508-3 requirement 7.4.8.5. The analysis shall also
determine whether or not a hazard and risk analysis is required, and which software
safety lifecycle phases we will need to repeat - IEC 61508-3 7.8.2.3. The impact analysis
results obtained shall be documented - IEC 61508-3 7.8.2.4.

“A comprehensive set of unit tests reduces the comprehension space when modifying
source code” [11]. After a change is made to the code, the result from running the unit
tests will tell whether the change leads to errors. This can reduce the risk and complexity
of conducting an impact analysis.

A modification shall, according to IEC 61508, be initiated only on the issue of an
authorized software modification request under the procedures specified during safety
planning (see clause 6) which details the following (IEC 61508-3 7.8.2.2)

ÿ The hazards which may be affected
ÿ The proposed change
ÿ The reasons for change

Chapter 5: Compatibility of XP and IEC 61508

75

The documentation due to a modification is comprehensive when following IEC 61508.
Details of all modifications shall be documented, including references to (IEC 61508-3
7.8.2.8):

ÿ The modification/retrofit request
ÿ The results of the impact analysis, which assesses the impact of the proposed

software modification on the functional safety, and the decisions taken with
associated justifications

ÿ Software configuration management history
ÿ Deviation from normal operations and conditions
ÿ All documented information affected by the modification activity. The

documentation shall include (IEC 61508-2 7.8.2.1):
o The detailed specification of the modification or change
o An analysis of the impact of the modification activity an the overall system,

including hardware, software, human interaction and the environment and
possible interactions

o All approvals for changes
o Progress of changes
o Test cases for components including revalidation data
o E/E/PES configuration management history
o Deviation from normal operation and conditions
o Necessary changes to system procedures
o Necessary changes to documentation.

If all these procedures have to be performed for every refactoring, refactoring will be
pointless. A unit test has to be written before any refactoring, and this can to some degree
detect most of the failures that can arise due to refactoring. The modification procedures
described in IEC 61508 are meant for modification after the software design and
development are finished, in contrast to refactoring that is performed during the
development. Refactoring and adding new code are compatible. Before new code is
added, it is recommended to investigate whether a new hazard and risk analysis should be
performed. Refactoring is often carried out before adding new code, and the affect of this
process can be taking into consideration in the hazard and risk analysis, and therefore no
extra work has to be done. The primary goal of refactoring is to make the code more
understandable. Most of refactorings proposed by Fowler [12] leads to a simpler code,
which is especially important in safety-related system. Software modification and
refactoring is represented in the proposed software safety lifecycle (Figure 9) as box 9.5.
The figure illustrates that modifcation and refactiong are performed in parallel with
development.

In Chapter 4 we recommend to use C++ as programming language. Using refactoring
with C++ is hard [55]. Manfred Lange suggests in addition to Martin Fowler some
refactorings that has focus on C++ [55]. He argues that with good tools it is possible to
refactor C++ code.

It is difficult to determine the correctness of each change and to perform a through
change impact analysis, if changes are made at the same time. In XP, current changes are

Chapter 5: Compatibility of XP and IEC 61508

76

part of the development practice. However, software changes can be implemented
simultaneously (provided they do not affect the same area of the code), as long as each
software change is incorporated individually into an existing baseline [43]. To assure
correctness of each change, the change should be verified both individually and as a part
of the overall system. Unit tests and acceptance test satisfies this requirement.

Rapid changes in code add risk. We need to be sure of two things: that the new capability
works, and that we have not broken anything that used to work. XP makes it possible to
develop modifiable code [1]:

ÿ A simple design, with no extra design elements.
ÿ Automated tests, which detects accidentally fault because of change in the

existing behavior of the system. These tests are run in almost zero time, and this
makes it possible to run all test before and after any change.

ÿ Lots of practice in modifying the design, which leads to confidence to change the
system if needed.

If the system have a stable architecture, as discussed in subchapter 5.4, it can limit the
need for modification. Small changes can have serious impact, and proper pre-coding
planning could help to solve this. We will most likely have fewer modification that in a
traditionally XP project.

A software modification can be handled as a minidevelopment [43]. Plans should be
established for development, software quality assurance, software configuration
management, and verification/testing. Once the plans are established, the changes should
be implemented following those plans. It is important to have a defined, structured, and
rigorous process, when changing software in safety-critical systems. A process change
should include, as a minimum, change impact analysis, change planning, change
implementation and verification, problem reporting and analysis, a process to access and
address problems, software quality assurance, and software configuration management
[43].

5.9 Integration and integration testing
Integration in XP involves merging the changes made with the code written by other
developers. Whenever a task card is solved, the solution should be integrated. Integration
phases occur several times a day. XP describes only software integration, integration of
software and hardware is not within the scope of XP. We have separated software
integration and PE integration as different phases in the proposed software safety
lifecycle (Figure 9). This separation is done due to the different frequency and activities
involved. Software integration will be carried out every time a task is solved. Software
integration immediately follows development, including integration testing.

Programmable electronic (PE) integration (box 9.7 in Figure 9) involves combining the
software with the programmable electronics “to ensure their compatibility and to meet the
requirements of the intended safety integrity level”. Functional, black box and
performance testing are suggested as appropriate methods for achieving PE integration.
We recommend to use functional and black box testing as described below.

Chapter 5: Compatibility of XP and IEC 61508

77

Initial versions of the system can be evaluated in a simplified environment containing e.g.
failure free sensors and actuators. Interfaces for the external components can be defined
so that failure signals are an input to the software. Failure will therefore not be detected at
this stage because the software gets information from a non-realistic, simplified version
of the “environment”. This allows the programmer to focus on how the software should
respond to error conditions rather than how these conditions are detected.

As the understanding of the system and its environment deepens, more user stories are
written, and the environmental models will be refined. Thompson and Heimdahl [57],
and Grenning [17] proposed a similar approach. Thompson and Heimdahl presented an
approach to requirements specification and evaluation that integrates formal requirements
specification and rapid prototyping. Alternatively, the hardware part of the system is
finished before developing the software part. Software versions of the system can be
integrated into the finished hardware part from the beginning of the software
development. Grenning identified, during the iteration planning, the interfaces needed to
support the iteration features. These acted as placeholders for the real hardware. A
simulation of the interface were added which facilitated development and kept volatile
entities from the application logic. This made it possible to simulate the systems
interactions with its environment.

Figure 14 A computer-based control or protection system [54]

The equipment under control (EUC) is the system or equipment with which the
application is concerned. This equipment will have input from, and outputs to, the
environment. The control or protection system interacts with the EUC through sensors
and actuators that are used to monitor and control certain parameters. The logic inside the
dashed box, in Figure 15, can be tested. One should test all combinations of input signals.
One can easily generate tests for digital signals, since the logic does not have memory.
All input are tested to prove that the right output is produced. It is recommended that the
interface to the OS be analyzed.

EUC

Sensors Actuators

Hardware

Software

Chapter 5: Compatibility of XP and IEC 61508

78

Figure 15 Software integration

Distributed system are harder to test, because the complex composition of input signals
and output signals.

According to requirement IEC 61508-3 7.4.5.5 appropriate software system integration
tests should be specified to ensure that the software system satisfies the specified
requirements for software safety at the required safety integrity level (see 7.2). These
tests shall be specified concurrently during design and development phase according to
IEC 61508-3 requirement 7.4.8.1. The tests shall specify the following – IEC 61508-3
7.4.8.2:

ÿ The division of the software into manageable integration sets
ÿ Test cases and test data
ÿ Types of tests to be performed
ÿ Test environment, tools, configuration and programs
ÿ Test criteria on which the completion of the test will be judged
ÿ Procedures for corrective action on failure of test

The integration tests for programmable electronics (hardware and software) shall specify
the following – IEC 61508 7.5.2.2:

ÿ The split of the system into integration levels
ÿ Test cases and test data
ÿ Types of tests to be performed
ÿ Test environment including tools, support software and configuration description
ÿ Test criteria on which the completion of the test will be judged

The objective of software integration testing, phase 9.3 in safety software lifecycle, is to
verify that the requirements for software safety (in terms of the required software safety
functions and the software safety integrity) have been achieved. In addition it shall show
that all software modules, components and subsystems interact correctly to perform their
intended function and do not perform unintended functions. The unit tests and acceptance
test shall reveal unintended behavior.

During the integration testing of the safety-related programmable electronics (hardware
and software), any modification or change to the integrated system shall be subject,
according to IEC 61508-3 7.5.2.6, to an impact analysis which shall determine all
software module impacted, and the necessary re-verification activities. This requirement
does not conflict with the recommendation described earlier in this chapter.

Sensors ActuatorsLogic

Chapter 5: Compatibility of XP and IEC 61508

79

5.10 Release
The number of releases depends on whether the hardware is finished and available to the
team when the development of the software starts. If the hardware is developed in
parallel with the software, a release can, at the earliest, take place when the hardware is
finished. In any case there will be fewer releases than XP recommends. That is due to the
hardware and software integration, in addition to the validation process.

5.11 Reliability
Software reliability ensures that the software performs its specified functions with a
realistic, acceptable failure rate. XP provides good reliability, here are some reasons why
[29]:

1. Unit tests cover “everything that could possibly break”.
2. Acceptance test, independently defined by the customer, test all the requirements.
3. Whenever defects slip through the unit tests, to be detected by the acceptance test,

we recommend that the programmers upgrade the unit tests, not only to show the
existing defects, but to upgrade the testing practices in general based on what was
learned about the “missing” tests.

4. Whenever defects slip through the acceptance tests and are caught by users, the
same practice is used to upgrade both acceptance tests and unit tests, and the
testing practices.

5. All production code is programmed by two programmers working together. This
provides inspection of the code by at least one other person.

6. In XP, code is owned by the team, not by individuals. This mean that over the
course of the project, essentially all the code is viewed and edited by even more
programmers than the original pair who wrote it. This provides even higher levels
of inspection.

7. XP teams release software to users frequently, ideally every couple of weeks. This
ensures that the software gets plenty of assessment in the real working
environment. This enables the team to build an excellent sense of system quality.

Jeffries [29] thinks that high-reliability software is consistent with XP: “It’s my
understanding that for high-reliability software, the practices resorted to are very
comprehensive testing, and very intensive inspection, with occasional use of proof. All of
these practices are consistent with XP and could be added to an XP project without much
difficulty.”

Reliability and safety have some similarities, but also differences. Reliability and
correctness are necessary precursors to safety. High reliability is normally a necessary,
but not sufficient, condition to guarantee safety. “Engineering safety does not imply the
need to achieve correctness. A system may be incorrect, and unreliable, but safe because
its failure modes are not hazardous. Similarly a system may be correct, but unsafe, due to
errors in the specification” [42].

Chapter 5: Compatibility of XP and IEC 61508

80

Figure 16 The systems connection to reliability and safety

The reliability of the system is determined by the degree to which it performs its required
function. Safety is concerned with the consequences rather than the possibility of a
failure. Safety is thus a relation between a system and its surroundings.

Highly reliable components are not necessary safe [49].
1. If the requirements are unsafe from a system perspective, then even correctly

implemented software is still unsafe.
2. If the requirements do not specify some particular behavior required for system

safety (i.e., the requirements are incomplete), then the software will be unsafe.
3. The requirements can be safe and the software implements those requirements,

but the software also has unintended and unsafe behavior beyond what is
specified in the requirements.

5.12 Verification
In subchapter 5.9 we discussed integration testing. This subchapter will discuss other
verification activities such as unit test, acceptance tests, and code review.

The unit tests and acceptance tests in XP verifies that the software performs functions
specified by the customer. The results from the tests show whether the implementation
satisfies the specification. Figure 17 illustrates this relationship. The drawback of this
approach is that the software can do more than what is specified in the requirements.
When verifying a safety-related system this drawback can be crucial.

SystemRequirements Environment
Reliability Safety

Chapter 5: Compatibility of XP and IEC 61508

81

Figure 17 XPs approach to verification

The goal of verifying a safety-related system is to show that the software will not do
anything that will lead to violating its constraints. Therefore, the verification of the
implementation shall be directed against the safety requirements and constraints as
illustrated in Figure 18.

Figure 18 Approach to verifying safety

When developing a safety-critical system, testing is used not only to locate faults within
the software, but also as part of the assessment process to gain certification. Static
analysis is recommended at SIL 1, and highly recommended at higher levels. IEC 61508
recommend several analysis techniques, but the most important is walkthroughs/design
reviews since this is the only technique that is highly recommended for all SIL (see Table
6 in Chapter 4). Continuous design and code review is one of the benefits of pair
programming. This review process is probably more comprehensive than what IEC
61508 expect since it is performed both during design and implementation.

Dynamic testing is essential when developing software system. In XP, they normally use
unit tests and acceptance tests. These test have to be more comprehensive than in
traditionally software development. They should include test cases that check the system
for unwanted behavior. The test shall show that each software module performs its
intended function and does not perform unintended functions. It is also necessary to
execute the testing within the target environment. The unit and acceptance tests in XP are

Software
requirements

Software
implementation

Software
requirements

Software
implementation

Software safety
requirements and
constraints

Chapter 5: Compatibility of XP and IEC 61508

82

automatic and can be an improvement, compared to module and integration tests
traditionally used when testing safety-related system. It is bothersome to have
comprehensive repeatable tests if the result has to be checked manually. The testing
framework proposed by Kent Beck [3], checks the results and reports them to the user of
the framework. In addition the unit test are done continually, instead of only late in the
development. If they break, they have to be fixed immediately. Thus, less reporting has to
be done since the test should always be 100%. Several articles [17] [14] [32] have
reported significant improvements when using unit tests. Unit test and acceptance tests
may be a part of the process to gain certification. Both IEC 61508 and XP suggest
performing other test if needed.

The result of the tests shall be documented according to IEC 61508-3 requirement
7.4.8.4. When executing a test by one of the testing framework [3], e.g. CppUnit, the
result from the test is displayed on the screen and can easily be copied and used as
documentation (according to IEC 61508-3 7.4.7.3 and 7.4.8.4). When the programmer
writes a test, he also writes the feedback that will be displayed if the test fails. The
feedback should include the reason for the failure according to IEC 61508-3 requirement
7.4.8.4. It is benefitional to have good traceability between code and test, since each test
belongs to a piece of code.

In XP the customer, together with a tester from the XP team, should write the acceptance
test. When developing safety-related systems, the people that write the test should have
the right competence and experience. If the customer and tester do not have these skills,
other people should write the tests. In XP, the tests are specified during the design and
implementation process. This is also what IEC 61508 requires according to IEC 61508-3
requirements 7.5.2.1.

In practice, the biggest problem with testing is dealing with multiple, correlated failures.
The practice of developing safety-critical systems is such that few systems fail due to
single failures [42]. Errors are more likely to be found in the interaction between software
components than in the design of the individual components [34]. “The system is
considered as a whole, not just as a collection of components. System safety takes a
larger view of hazards than just components failures. Most accidents come from the
complexity of interactions among system components, not from component failures.
Because reliability improvements address component failures, safety must go beyond
reliability improvement. System safety emphasizes hazard analysis and designing to
eliminate or control hazards. The analyses of system safety tend to be qualitative rather
than quantitative” [50]. The unit test will possibly not catch these failures, and that is why
the acceptance test in XP should be comprehensive.

XP does not specify procedures for corrective action on failure of a test, which is a
requirement 7.4.7.4 in IEC 61508-3. In order to comply with the standard these
procedures should be written.

XP assumes that pair programming replaces explicit code review. Deursen [11] questions
whether the several reported benefits of code review are still applicable if it is done “all

Chapter 5: Compatibility of XP and IEC 61508

83

the time”. Code review is a short, intense, organized session, specifically, focused on
finding and removing errors. Pair programming is a dialog between two people trying to
simultaneously program and understand together how to program better [1]. Therefore,
XP’s decisions to refrain from explicit code reviews is a potential risk: it is, for example,
possible that pair programming with separate explicit review sessions yield better results,
or can be used to find different types of problems [11]. We believe though, that pair
programming can replace code review.

5.13 Validation
Validation process is needed to [5]:

ÿ Proof to customers that the product is applicable for intended purpose.
ÿ Proof to authorities that the product is safe and reliable enough for intended

purpose.
ÿ Proof to the manufacturer that the product is ready for the market.
ÿ Have documentation to help future alterations of the product.

The acceptance test can be seen as a validation activity, since it is the customer’s
responsibility to write these tests. The test specification, acceptance criteria and test
results form an essential part of evidence of safety. These validation activities does not
fulfill the validation requirements for a safety-related system, and we recommend
following the validation planning (IEC 61508-3 subclause 7.8) and validation phase (IEC
61508-3 subclause 7.14) described in IEC 61508. These activities are also presented in
Figure 9 which shows the proposal of a software safety lifecycle.

5.14 Assessment
Functional safety assessment is the critical activity that ensures that functional safety has
actually been achieved. People carrying out the functional safety assessment should be
competent and have adequate independence. They should use these qualities to consider
the activities carried out and outputs obtained during each phase of every lifecycle. In
addition they should judge the extent to which the objectives and requirements of IEC
61508 have been met. According to IEC 61508-3 requirements 8.2.3, the functional
safety assessment shall be applied to all phases throughout the overall, E/E/PES and
software safety lifecycles. Those carrying out the functional safety assessment shall
consider the activities carried out and the outputs obtained during each phase of the
overall, E/E/PES and software safety lifecycles and judge the extent to which the
objectives and requirements in IEC 61508 have been met.

We recommend following the assessment requirements described in IEC 61508. The
assessment shall begin with the formulation of an assessment plan, detailing the scope of
assessment and its basis. The customer and safety specialist shall provide all the evidence
required to demonstrate compliance with the criteria.

5.15 Documentation
Documentation is an important activity according to IEC 61508. Requirement 7.1.2.7 in
IEC 61508-3 demand that the results of the activities in the software safety lifecycle are

Chapter 5: Compatibility of XP and IEC 61508

84

documented. The documentation requirements in IEC 61508 are concerned with
information rather than physical documents. The standard declare explicitly when the
information shall be contained in a physical document. These documents must include
the information necessary for effective execution of subsequent phase and for verification
activities according to IEC 61508-1 requirement 5.2.1. In the same way, the
documentation should include sufficient information required for the implementation of
functional assessment – IEC 61508-1 requirement 5.2.3.

For each phase of the overall safety lifecycle, E/E/PES and software safety lifecycle, a
plan for the verification shall be establish concurrently with the development for the
phase – IEC 6150 7.18.2.1. This goes well with XPs incremental development process.
Information on the verification activities shall be collected and documented as evidence
that the phase being verified has been satisfactorily completed – IEC 61508 7.18.2.4.

According to XP, design documentation has two purposes: to support maintenance and
enhancements of the system, and to serve as input to the next stage of the development
process [55]. The founders of XP are of the opinion that less documentation is needed for
maintenance than for development. For maintenance the design information need only be
on an overview level – additional details appear in the code. For development, detailed
design information is needed as input to later stages, so the additional details must appear
in the high-level design documentation to support the later stages. This need for detailed
design documents is increased and enforced by the long time to coding in a waterfall
project such as a project following IEC 61508. The same applies to the use of module
responsibility, meaning that someone else will do the coding. The first objective of
documentation in IEC 61508 is that all phases of the overall, E/E/PES and software
safety lifecycles can be effectively performed - IEC 61508-1 requirement 5.1.1 The
second objective is to specify the necessary information to be documented so that the
management of functional safety, verification and the functional safety assessment
activities can be performed effectively - IEC 61508-1 requirement 5.1.2. This involves an
increased amount of documentation beyond what XP think is necessary. We see the need
for documenting the process, but we will try to make use of the practices in XP to gather
this information.

XP encourages programmers to use tests for documentation purposes. “The unit tests
show how to create the objects, how to exercise the objects, and what the objects will do.
This documentation, like the acceptance tests belonging to the customer, has the
advantage that it is executable. The tests don’t say what we think the code does: they
show what the code actually does[27]“ [28]. The requirements that all tests must run
100% at all times, ensures that the documentation from unit tests is kept up-to-date. Unit
test can also ease the understanding of the code. If a programmer needs to change an
unfamiliar piece of code, he will try to understand the code by inspecting the test cases.

Ron Jefferies, on of the developers of XP, says [28]:
“If there is a business need for a document, the customer should request the document in
the same way that she would request a feature: with a story card. The team will estimate
the cost of the document, and the customer may schedule it in any iteration she wishes.”

Chapter 5: Compatibility of XP and IEC 61508

85

This statement indicates that XP is receptive to more documentation than user stories,
CRC-cards, code, unit and acceptance tests. This procedure could also be used if some
safety-document is needed. The customer or safety specialist should request the
document with a story card.

In order to conform to IEC 61508s requirement for design document, the significant
designs within an iteration can be documented. After an iteration these documents can be
reviewed. The solutions to issues found at the review can be written as stories to the next
iteration. As suggested by Grenning [17], the design document should be so high-level
that usual modifications and bug fixes do not affect it. Another possibility is to write the
high-level document at the end of the project. The documentation can guide the reader to
the right part of the code for details. Documentation tasks can be planned into any
iteration. One advice is to document what has been built rather then what is anticipated.

We recommend structuring the documents produced during the lifecycle to ease the
traceability, and to make it possible to search for relevant information. It shall be possible
to identify the latest revision (version) of a document or set of information according to
IEC 61508-1 requirement 5.2.10. In addition, the documents should follow the guideline
of IEC 61508-1 requirement 5.2.6. The documentation shall:

ÿ Be accurate and concise
ÿ Be easy to understand by those persons having to make use of it
ÿ Suit the purpose for which it is intended
ÿ Be accessible and maintainable

We are of the opinion that the documentation we have suggested easily can follow these
guidelines.

5.16 Summary
We have in Chapter 4 and this chapter argued that the requirements in IEC 61508 have
been satisfied. Clauses 4, 5, 6 and 8 of Part 1, 2 and 3 in IEC 61508 state requirements
for claiming conformance to the standard, documentation, management of functional
safety, and assessment, respectively.

In part 1, clause 4 of IEC 61508 says: “to conform to this standard it shall be
demonstrated that the requirements have been satisfied to the required criteria specified
(for example safety integrity level) and therefore, for each clause or subclause, all the
objectives have been met.” It is acceptable to order the software project differently from
the organization of this standard, provided all the objectives and requirements of clause 7
in IEC 61508-3 are met according to IEC 61508-3 requirement 7.1.2.5. The different
organization can for example be to use another software safety model.

We have proposed a new safety lifecycle for the development of the software. If the
proposal is used, it should be specified during safety planning in accordance with clause
6 of IEC 61508-1 and IEC 61508-3 requirement 7.2.1.

Chapter 5: Compatibility of XP and IEC 61508

86

To comply with IEC 61508, each phase of the overall safety lifecycle model describes
technical requirements that must be carried out before implementation of these technical
requirements is realizable.

1. Existing safety-related activities and their resulting documentation need to be
reviewed in order to determine if all lifecycle phases are properly addressed.

2. The objectives for each phase have to be described.
3. Persons responsible for achieving the objectives need to be appointed. They must

be competent, well trained and aware of their responsibilities.
4. Data and documentation necessary to meet the requirements need to be identified

and located.
5. Information flows need to be realized in order to ensure that the required data are

available where and when necessary.

Table 14 summaries the adoption of the XP practices (described in Chapter 2) that we
have discussed in Chapter 4 and in this chapter.

Table 14 Extreme Programming adoption

Ref to
Chap. 2

Extreme ProgrammingAdoption
status

Comments

P1 The planning game is
used to create project
plans

Fully adopted For each iteration the planning
game is carried out, and the project
plan can constantly be refined.

P2 The project team is
traveling light

Not adopted Not possible to travel light when
developing safety-related software,
but the proposal presented in this
report leads to a “lighter”
development strategy.

P3 User stories are
written

Fully adopted Complementary comments are
written to each user story. Formal
requirements are written if required.

P4 Release planning
creates the schedule

Fully adopted One of the purposes with the
planning game is to define the set of
features required for the next
release.

P5 Make frequent small
releases

Not adopted Since the integration of hardware
and software is a comprehensive
process it is likely to make only a
small number of releases.

P6 The Project Velocity
is measured as a
metric

Fully adopted This shows how fast the work is
getting done. It is also possible to
learn from the estimation.

P7 Iteration planning
starts each iteration.

Fully adopted For each iteration the planning
game is carried out. Iteration
planning is a part of the planning
game.

Chapter 5: Compatibility of XP and IEC 61508

87

P8 Move people around Partly adopted Assumes the people have the right
competence for the assigned task.

P9 A stand-up meeting
starts each day

Fully adopted This practice does not conflict with
any of the requirement in IEC
61508.

P10 Fix XP when it breaks Partly adopted If the changes does not conflict with
IEC 61508.

P11 Accepted
responsibility

Fully adopted The developer accept the
responsibility, the management does
not force them.

P12 Planning for priorities Fully adopted The most critical and important
tasks are implemented first.

D1 Small initial
investment

Not adopted To have a stable system, the initial
investment have to be considered
thoroughly and have to be
comprehensive so that later
supplement are not too costly.

D2 Simplicity Fully adopted Simplicity is one of the most
important aspects when developing
safety-related system.

D3 Choose a system
metaphor

Not adopted The system metaphor is too vague
for a safety-related system.

D4 Use CRC cards for
design session

Fully adopted We believe that CRC-card is
suitable in safety-related system, but
also acknowledge the possibility of
using UML use cases.

D5 Create spike solutions
to reduce risk

Partly adopted The spike solutions have to be
somewhat more formal.

D6 No functionality is
added early

Not adopted To be able to have a stable system,
some functionality has to be added
early.

D7 Refactor whenever
and wherever possible

Partly adopted

C1 On-site customer Fully adopted Customer and safety specialist on
the development team will possibly
be a significant contribution to the
XP team.

C2 Code must be written
to agreed standards

Fully adopted The same requirement can be found
in IEC 61508.

C3 Code the unit test first Fully adopted IEC 61508 lets the verification
procedures be performed parallel
with the development.

C4 All production code is
pair programmed

Fully adopted We believe pair-programming will
improve the code.

C5 Only one pair
integrates code at a

Fully adopted The integration regards the software
integration.

Chapter 5: Compatibility of XP and IEC 61508

88

time
C6 Integrate often Partly adopted Software integration can often be

performed, but not hardware and
software integration.

C7 Use collective code
ownership

Fully adopted Collective code ownership is
adopted assumed qualified people
changes the code.

C8 Leave optimization till
last

Partly adopted The adoption depends which part of
the code the optimization affect.
Safety-critical code should only be
changed for good reasons.

C9 No overtime Fully adopted Does not conflict with the
requirements in IEC 61508.

T1 All code must have
unit tests

Fully adopted IEC 61508 requires specified tests
for every module.

T2 All code must pass all
unit tests before it can
be released

Fully adopted According to IEC 61508 every test
have to be passed.

T3 When a bug is found,
a new test must be
created

Fully adopted This allows discovering early if the
bug reappears in the future.

T4 Write test before
refactoring

Fully adopted The new tests make the refactoring
less risky.

T5 Acceptance test are
run often and the
score is published

Fully adopted The score shows the status of the
project.

T6 Other tests can be
used

Fully adopted IEC 61508 suggests other tests
besides module and integration
tests.

Chapter 6: Conclusion

89

6 Conclusion
In this report, we have seen that Extreme Programming, as described by Beck [1], is not
suitable for developing safety-related system if conformance to IEC 61508 shall be met.
The most significant differences are: development cycle, design methods, documentation,
scope, although the most important difference is the focus on safety. XP uses an
evolutionary approach suited for vague and changing requirements, and the system is
developed in small increments. IEC 61508, on the other hand, assumes that every
requirement is defined in the beginning of the development. Therefore the V-model is
suitable. This assumption also makes it possible to plan the design up-front while XP
continually evolve the design. XP recognizes the cost and time of updating
documentation, and prefer to use code and tests as documentation to avoid these
drawbacks. They use face-to-face communication in place of written documentation
wherever possible. IEC 61508 on the other hand, uses documentation to assessment in
addition to communication purposes. Every phase of the lifecycle, even to decommission,
shall be documented. XP covers only development and maintenance of the system. The
vital difference is, as said earlier, that XP lack safety focus. For instance, hazard and risk
analysis is vital to a safety-related system and have to be carried out. Despite these
differences, XP includes a number of practices that may have a beneficial effect on the
development of safety-related system.

The development of safety-related software and systems need additional levels of skill in
addition to those needed by other types of systems. Safe systems require time, effort, and
special knowledge and experience. It is of vital importance to have a methodological
approach to the complete development and assessment process when producing safety-
critical systems. This is not to say that it is impossible to produce safe systems with XP,
but XP offers no way of knowing that an adequate level of safety has been achieved.
Neither does it provide the basis for convincing anyone outside the development team,
e.g. a certification authority, that safety has been achieved. One of the most important
aspects of a methodological approach to achieving safety is to have a definition of the
process. IEC 61508 uses the safety lifecycle as a framework to structure its requirements.
It is a basic requirement of the standard that a similar lifecycle is used to structure the
activities relating to the development of the system. Compliance to the standard
exonerates users of any blame in the event of a safety problem. Assessors require a
demonstration of safety, and proof of conformance to the standard may only be one
contributor, though perhaps a significant one, to this. Therefore, we suggest following the
safety lifecycle except for phase 9, the software safety lifecycle. What we have provided
are conjectures related to how the practices of XPmaycontribute to the development of
the software part of safety-related system. We proposed a modified software safety
lifecycle. This model explicit specifies iterations, and makes it possible to adopt possible
changes. The system is based on a stable architecture that should not be modified, but
minor requirement changes are possible with the use of refactorings. It should be noted
that every phase in the IEC software safety lifecycle is covered in the proposed model.

The need to adapt to rapidly changing requirements is impacting software engineering, as
far as flexibility of software development is concerned. XP is a development

Chapter 6: Conclusion

90

methodology that was specifically conceived to work in the face of vague and changing
requirements. The proposal in this report opens for the possibility for some changing
requirements. To be able to adapt the changing requirements we need to modify the code
by refactorings. IEC 61508 have strict, time-consuming procedures for modification of
the software. These modification procedures are, on the other hand, meant for
modification after the software design and development are finished, in contrast to
refactoring that is performed during the development. A unit test has to be written before
any refactoring, and this test detects most of the failures that can arise due to refactoring.
Therefore, we believe that refactoring is possible in safety-related systems. If hardware is
available during the software development, it may be possible to deliver the system
incrementally. Furthermore, the short revision times aid in project tracking and
scheduling.

In addition to the proposed software lifecycle, we have some recommendations to other
phases of the overall safety lifecycle as well. Hazard and risk analysis is carried out early
in the overall safety lifecycle. We recommend having the project manager and some
safety specialists that are a part of the XP team, present during this analysis. In that way
the programmer have the possibility to ask persons at any time about important safety
aspects.

One of the most effective rules for making things safer is simplicity. The simpler the
system is the more likely is it that errors will not be introduced. In addition the system is
easy to understand and structure. Simplicity is one of the values in XP, and the team
should always ask themselves: “What is the simplest thing that could possible work?”
This mutual view on the importance of simplicity is one of the reasons why XP can be
attractive to safety-related system.

IEC 61508 and XP have different view on the amount of documentation that is needed.
We see the importance of documentation when developing safety-related system. If an
XP project gets into trouble, there are few fall back scenarios, as the project may end up
with an undocumented system that is hard to modify and not prepare for the changes of
tomorrow. Therefore we suggest writing all documentation that is necessary for
communication and for carrying out a safety assessment. Any demand for specific
documents can be captured as user stories. If a safety case should be carried out, it should
be possible to identify the reasons why the system is believed to be safe. In many
situations, the safety case will be the major deliverable to the certification process or to
an independent assessment. In practice, the arguments will reflect design information,
reliability calculations, safety analyses, and perhaps proofs of program properties. The
goal is to achieve assurance, and it is therefore important to have control over the process
and have documentation of the process. Even though we recommend writing more
documentation, we make use of some of XPs techniques to make the process easier. For
example, user stories are collected to form the requirement document.

Safety is a system issue and a human factors issue rather than merely a software issue.
The safety of software can not be evaluated by looking at the code alone. Safety can only
be evaluated in the context of which the system operates. Total safety cannot be

Chapter 6: Conclusion

91

guaranteed, so it is important to calculate and understand the risk involved in a given
circumstance and define a ‘tolerable risk’. One have to identify the risk, determine how
and by how much to reduce the risks, justify the decisions, reduce the risks, demonstrate
this reduction, and accept responsibility for all decisions. Safety is about reducing the
risk. Therefore, safety does not depend on the quality of the software alone, but on a
deeper study of potential hazards and their likelihood. A risk-based approach means not
merely following a procedure and assuming that “safety” will result. Compliance to a
standard gives an approval that the software is developed in a certain way and that it can
be trusted up to a certain level of safety. In IEC 61508, techniques and measures shall be
selected according to the safety integrity level. But following these techniques do not
ensure that the software is safe enough for that integrity level [6].

Even though the safety culture is conservative concerning changes and new methods, IEC
61508 has been conceived with a rapidly developing technology in mind. The framework
is sufficiently robust and comprehensive to cater to future developments. This is one of
the reason that some of the practices of XP could be adopted. Our proposal aims at safety
integrity level 1 and 2. These levels do not prevent the use of the practices included in our
proposal. In addition, they do not require use of formal methods in the development.

Most of the XP guidelines were adopted in our proposal. Ten out of twelve key practices
in XP where either fully or partly adopted. The introduced practices are: the planning
game, simple design, testing, refactoring, pair programming, collective ownership,
continuous integration, 40-hour week, on-site customer, and coding standard. The
practices that are not adopted are small releases and metaphor. One solution for adopting
XP is to suggest small changes, introduce simple disciplines and let their benefits speak
for themselves.

Our approach to develop safety-related system has many advantages over the practices
described in IEC 61508. The customer is involved in the development of the software,
and makes it possible to have early feedbacks. Poorly understood requirements can be
early discovered, and there will be many opportunities to make corrections due to the
rapid feedback. Since the customer is part of the XP team, the developer can always ask
the customer if something is vague or unclear. XP’s iterative development can help the
team determine how fast it could go, and give management the feedback they needs. It is
easier to control the development by making many minor adjustments. This does not only
apply to the manger, but the developer can steer the development based on the learning
from every increments. In addition, the iterations add flexibility to the system since
requirements can change, and the most important requirements are implemented first.
Planning sessions can help to spread the design throughout the team. We believe that the
proposal stated in this report can lead to improved quality, faster development, better
predictability, greater job satisfaction, and achieve an appropriate level of safety with as
low cost as possible.

It can be argued that the proposal not complies with XP, since only some of the practices
are adopted. We acknowledge that the proposal does not follow XP in every part. But one
of the major practices in XP, stated by Kent Beck, is as follows [2]: “By being part of an

Chapter 6: Conclusion

92

Extreme team, you sign up to follow the rules. But they’re just rules. The can change the
rules at any time as long as they agree on how they will access the effects of the change.”
This statement opens for changes in XP, and our proposal can be categorized as safety-
XP. Therefore we feel free to conclude that safety-XP can be used and will possibly bring
gain to the development process.

Chapter 7: Further work

93

7 Further work
The literature search revealed the need for more research on consolidating the
recommendations stated in this report. It would be particularly interesting to see the result
of a case study or experiment based on the stated proposal.

Some topics of interest where briefly or not mentioned in the report, and can be subject to
further review. The next paragraphs points out some of these areas.

XP is a methodology for small-sized teams. Thus we have focused on small development
teams in this report. Safety-related systems though, may require bigger teams. Therefore
it could be useful to investigate the possibility to scale up the team. Jacobi and Rumpe
[26] identified several obstacles against scaling up XP. The most important are lack of
documentation, lack of stable interfaces, and lack of stable requirements. If following the
proposals in this report, all these aspects are more comprehensive and stable.
Consequently, scaling up XP will probably be easier in this case than it is in a normal XP
project.

We have discussed the benefits of unit testing, and have suggested use of testing
framework, e.g Junit and CppUnit. No certification of these framework have been carried
out. It would thus be interesting to evaluate it. Another interesting issue that should be
investigated further is the possibility of developing a unit-testing framework suited for
testing of safety-related system.

One of the reasons why XP wants to refactor is redundant software. In safety-related
system however, redundancy is widely used. All forms of fault tolerance are achieved by
some form of redundancy. One research area can be to explore if hardware redundancy
can simplify the software development in such a way that the practices of XP is easier to
perform.

Although this report has focused on the technological aspects of the problem, there are
also managerial and organizational issues that should be considered. Concentrating only
on technical issues and ignoring managerial and organizational deficiencies will not
result in safe systems. Examples of managerial and organizational that can be of interest
are; diffusion of responsibility and authority can leave the burden of ensuring safety on
individuals who do not have the authority to carry out their responsibilities, and safety
personnel with a lack of independence. When safety personnel report to the same
authority that is responsible for budget and schedule considerations, which can be the
case in an XP project, there is some likelihood that schedule or budgetary pressures will
override safety.

Appendix A: Definitions

Equipment under control: “Equipment, machinery, apparatus or plant used for
manufacturing, process, transportation, medical or other activities” [25].

Failure: “ Termination of the ability of a functional unit to perform a required function”
[25].

Functional safety: “Part of the overall safety relating to the EUC and the EUC control
system which depends on the correct functioning of the E/E/PE safety-related systems,
other technology safety-related system and external risk reduction facilities” [25].

Harm: “ Physical injury or damage to the health of people either directly or indirectly as
a result of damage to property or to the environment” [25].

Hazard: “The capability to do harm to people, property or the environment, is termed a
hazard” [54].

Impact analysis: “Activity of determining the effect that a change to a function or
component in a system will have to other functions or components in that system as well
as other systems” [25].

Integration testing: “Is a set of procedures designed to verify whether a given assembly
of components (be they systems, software or tools) does indeed satisfy the requirements
of an organization” [53].

Low complexity E/E/PE safety-related system: “E/E/PE safety related system in which
[25]:

ÿ The failure modes of each individual component are well defined
ÿ The behavior of the system under fault conditions can be completely determined.”

Mode of operation: “Way in which a safety-related system is intended to be used, with
respect to the frequency of demands made upon it, which may be either [25]:

ÿ Low demand mode: where the frequency of demands for operation made on a
safety-related system is no greater than one per year and no greater than twice the
proof test frequency

ÿ High demand mode or continuous mode:where frequency of demands for
operation made on a safety-related system is greater than one per year or greater
than twice the proof check frequency”

Pair programming: “All production code is written with two people looking at one
machine, with one keyboard and one mouse” [1].

Programmable electronic (PE): “Based on computer technology which may be
comprised of hardware, software, and of input and/or output units” [25].

Refactoring: “Programmers restructure the system without changing its behavior to
remove duplication, improve communication, simplify, or add flexibility” [1].

Reliability: The probability of a component, or system, operating as defined within its
specification over a given period of time under a given set or operating conditions [54].

Risk: “Combination of the probability of occurrence of harm and the severity of the
harm” [25].

Risk analysis: “Identification of situations that could endanger human life or the
environment” [54].

Safe system:A system is safe if it can’t (it acceptally unlikely to) cause absolute harm,
or fail to prevent it when it is intended to do so [42].
Designated system that both [25]:

ÿ Implements the required safety functions necessary to achieve or maintain a safe
state for the EUC; and

ÿ Is intended to achieve, on its own or with other E/E/PE safety-related systems,
other technology safety-related systems or external risk reduction facilities, the
necessary safety integrity for the required safety functions.

Safety analysis: “The process of assessing the safety of a system by looking at the
associated hazards and the methods used by the system to cope with them” [54].

Safety function: “Function to be implemented by an E/E/PE safety-related system, other
technology safety-related system or external risk reduction facilities, which is intended to
achieve or maintain a safe state for the EUC, in respect of a specific hazardous event”
[25].

Safety integrity: “Freedom from flaws or corruption which could compromise safety”
[42]. “Probability of a safety-related system satisfactorily performing the required safety
functions under all the stated conditions within a stated period of time” [25].

Safety integrity level: “Discrete level (one out of four) for specifying the safety integrity
requirements of the safety functions to be allocated to the E/E/PE safety-related systems,
where safety integrity level 4 has the highest level of safety integrity and safety integrity
level 1 has the lowest” [25].

Safety-related system:designated system that both [25]:
ÿ “Implements the required safety functions necessary to achieve or maintain a safe

state for the EUC
ÿ Is intended to achieve, on its own or with other E/E/PE safety-related systems,

other technology safety-related systems or external risk reduction facilities, the
necessary safety integrity for the required safety functions.”

Software integration: ”Is the practice of assembling a set of software
components/subsystems to produce a single, unified software system that supports some
need of an organization” [53].

Testing: “The process used to verify or validate a system or its components” [54].

Validation: “The process of determining that a system is appropriate for its purpose”
[54].
“Confirmation by examination and provision of objective evidence that the particular
requirements for a specific intended use are fulfilled” [25].

Verification: “ The process of determining that a system, or module, meets its
specification” [54]. “Confirmation by examination and provision of objective evidence
that the requirements have been fulfilled” [25].

Appendix B: Abbreviation

BDUP big design up front

EUC equipment under control

E/E/PE electrical/electronic/programmable electronic

E/E/PES electrical/electronic/programmable electronic system

FMEDA failure modes, effects and diagnostic analysis

IEC International Electro-technical Commission

SIL safety integrity level

SIS safety instrumented system

SRS safety-related system

UML Unified Modeling Language

XP Extreme Programming

References
[1] K. Beck, Extreme Programming Explained: Embrace Change, Boston: Addison

Wesley, 2000.
[2] K. Beck, Embracing Change with Extreme Programming.Computer, Vol. 32 No.

10, October 1999.
[3] K. Beck, E. Gamma, 1999.JUnit [online]. Place of publication: Available from:

Junit.org. Available from:http://www.junit.org[Accessed date: 05.03.2002].
[4] R. Bell, IEC 61508: Functional safety of electrical/Electronic/programme Electronic

safety-related systems: Overview.Control of Major Accidents and hazards Directive
(COMAH) – Implications for Electical and Control Engineers, Ref. No 1999/173,
IEE Colloquium, 1999.

[5] R. Bell, T. Stålhane, T. Malm, J. Jacobsen. Functional safety of programmable
electronic systems – evaluation according to IEC 61508,Seminar, Stockholm.
February 1999.

[6] P. Bennett, The March Towards Standards in Safety Related Systems.Computers
and Safety. A First International Conference on the Use of Programmable
Electronic Systems in Safety Related Application, 1989.

[7] S. Brown, Overview of IEC 61508: Design of electrical/electronic/programmable
electronic safety-related systems.Computer & Control Engineering Journal,
February 2000.

[8] N. Churcher, C. Cerecke, GROUPCRC: exploring CSCW support for software
engineering,Proceedings., Sixth Australian Conference on, 1996.

[9] A. Cockburn, L. Williams. The cost and benefits of pair programming.Extreme
Programming Examined.Addison-Wesley, 2001.

[10] C. Collins, R. Miller,XP Distilled[online]. Place of publication: RoleModel
Software. Available from:
http://www.rolemodelsoft.com/articles/xpCorner/xpDistilled.htm[Accessed date:
21.01.2002].

[11] A. Deursen, Program Comprehension Risks and Opportunities in Extreme
Programming,Reverse Engineering, 2001. Proceedings. Eight Working Conference
on, 2-5 October 2001.

[12] M. Fowler,Refactoring.USA: Addison-Wesley Longman, Inc, 1999.
[13] M. Fowler,UML Distilled second edition.USA: Addison-Wesley, 2000.
[14] R. Glass, Extreme Programming: The good, the bad, and the bottom line.IEEE

Software, November/December 2001.
[15] D. Gluch, C. Weinstock, 1997.Workshop on the State of the Practice in Dependably

Upgrading Critical Systems[online]. Place of publication: SEI. Available from:
http://www.sei.cum.edu/pub/documents/97.reports/pdf/97sr014.pdf[Accessed date:
08.05.2002].

[16] W. Goble, J. Bukowski, Extending IEC61508 Reliability Evaluation Techniques to
Include Common Circuit Designs Used in International Systems.Proceedings
Annual Reliability and Maintainability Symposium, 2001.

[17] J. Grenning, Launching Extreme Programming at a Process-Intensive Company.
IEEE Software, November/December 2001.

[18] K. Heel, B. Knegtering, A. Brombacher, Safety lifecycle management. A flowchart
presentation of the IEC 61508 overall safety lifecycle model.Quality and Reliability
Engineering International, Vol. 15 No. 6, 1999.

[19] HISE, 2002.Safety critical mailing list[online]. Place of publication: The High
Integrity Systems Engineering Group (HISE), University of York. Available from:
http://www.cs.york.ac.uk/hise/hise4/frames9.html[Accessed date: 12.04.2002].

[20] IEC, 2002. International Electrotechnical Commission. Available from:
www.iec.ch[Accessed date: 24.03.2002].

[21] IEC, 2001.IEC 61508 Sector A: Scope[online]. Place of publication: IEC. Available
from: http://www.iec.ch/61508/Scope.htm[Accessed date: 24.03.2002].

[22] IEC, 2001.IEC 61508 Sector B: Position in overall standards framework[online].
Place of publication: IEC. Available fromhttp://www.iec.ch/61508/Position.htm
[Accessed date: 24.03.2002].

[23] IEC, 2001.IEC 61508 Sector C: Legal status and standard compliance[online].
Place of publication: IEC. Available from:
http://www.iec.ch/61508/Compliance.htm[Accessed date: 24.03.2002].

[24] IEC, 2001.IEC 61508 Sector D: Key Concepts[online]. Place of publication: IEV.
Available from:http://www.iec.ch/61508/Concepts.htm[Accessed date:
24.03.2002].

[25] International Electrotechnical Commission,IEC 61508: Functional safety of
electrical/electronic/programmable electronic safety-related system. Geneva, 1998.

[26] C. Jacobi, B. Rumpe, Hierarchical XP: Improving XP for large-scale projects in
analogy to reorganization processes.Extreme Programming Examined.Addison-
Wesley, 2001.

[27] R. Jeffries, Extreme Testing.Software Testing & Quality Engineering, March/April
1999.

[28] R. Jeffries, 2001.Essential XP: Documentation[online]. Place of publication:
XProgramming.com. Available from:
www.xprogramming.com/xpmag/expDocumentationinXP.htm[Accessed date:
21.01.2002].

[29] R. Jeffries, 2001.XP and Reliability[online]. Place of publication:
XProgramming.com. Available from:
www.xprogramming.com/xpmag/Reliability.htm[Accessed date: 21.01.2002].

[30] R. Jeffries, A. Anderson, C. Hendrickson.Extreme Programming Installed.USA:
Addison-Wesley, 2000.

[31] P. Johannessen, C. Grante, A. Alminger, U. Eklund, J. Torin. Hazard analysis in
object oriented design of dependable systems.Dependable Systems and Networks.
Proceedings. The International Conference on, 2001.

[32] J. Kivi, D. Haydon, J. Hayes, R. Schneider, G. Succi, Extreme Programming: a
university team design experience.Electrical and Computer Engineering, 2000
Canadian Conference on, Vol. 2, 2000.

[33] H. Krosigk, Functional safety in the field of industrial automation: The influemce of
IEC 61508 on the improvement of safety-related control systems.Computing &
Control Engineering Journal, February 2000.

[34] N. Leveson, 2001.The difference between software safety and hardware safety
[online]. Place of publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/differ.shtml[Accessed date:
12.04.2002].

[35] N. Leveson,Safeware: System safety and computers.Addison-Wesley Publishing
Company, Reading MA, 1995.

[36] R.Martin, IEEE Software,extreme Programming Development through Dialog, Vol.
17 No. 4, July/August 2000.

[37] J. Nawrocki, B. Walter, A. Wojciechowski,Euromicro Conference Proceedings.
27th, Toward Maturity Model for extreme Programming, 4-6 September 2001.

[38] O. Nordland, Understanding safety integrity levels.The safety-critical Systems Club
Newsletter, Vol. 11, No. 1, September 2001.

[39] J. Nosek,The Case for Collaborative Programming,Communications of the ACM,
1998.

[40] C. Poole, J. Huisman, Extreme Maintenance.Proceedings. IEEE International
Conference on Software Maintenance (ICSM’01), 2001.

[41] F. Redmill, IEC 61508: Principles and use in the management of safety.Computer &
Control Engineering Journal, February 2000.

[42] F. Redmill, T.Anderson,Safety-critical systems. London:Chapman & Hall, 1993.
[43] L. Rierson, Changing Safety-Critical Software.IEEE AESS Systems Magazine, June

2001.
[44] Safeware Engineering Corporation, 2001.Hazard Analysis[online]. Place of

publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/hazard-analysis.shtml[Accessed date:
12.04].

[45] Safeware Engineering Corporation, 2001.Preliminary Hazard Analysis[online].
Place of publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/prelim-analysis.shtml[Accessed date:
12.04].

[46] Safeware Engineering Corporation, 2001.Software Hazard Analysis[online]. Place
of publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/subsys-analysis.shtml[Accessed
date: 12.04].

[47] Safeware Engineering Corporation, 2001.Design for Safety[online]. Place of
publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/design.shtml[Accessed date:
12.04.2002].

[48] Safeware Engineering Corporation, 2001.Organization and Management[online].
Place of publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/orgmanage.shtml[Accessed date:
12.04.2002].

[49] Safeware Engineering Corporation, 2001.Accidents[online]. Place of publication:
Safeware Engineering Corporation. Available from:http://www.safeware-
eng.com/software-safety/accidents.shtml[Accessed date: 12.04].

[50] Safeware Engineering Corporation, 2001.Overview of a Software Safety Approach
[online]. Place of publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/approach.shtml[Accessed date:
12.04].

[51] Safeware Engineering Corporation, 2001.Conclusions[online]. Place of
publication: Safeware Engineering Corporation. Available from:
http://www.safeware-eng.com/software-safety/conclusions.shtml[Accessed date:
12.04].

[52] D. Smith, 1996.Frequently asked questions[online]. Place of publication: D. Smith.
Available from:http://www.dnsmith.com/SmallFAQ/PDFfiles/index.html[Accessed
date: 12.04.2002].

[53] V. Stavridou, Integration standards for critical software intensive systems.Institute
of Electrical and Electronic Engineers, Inc, 1997.

[54] N. Storey,Safety-critical computer systems. USA: Addison-Wesley, 1996.
[55] G. Succi, M. Marchesi,Extreme Programming Examined. USA: Addison-Wesley,

2001
[56] A.Summers, Draft IEC 61508 Target Safety Integrity Levels,Institute of

Instrumentation and Control Australia Inc, Vol. 14, No. 3, July 1999.
[57] J. Thompson, M. Heimdahl, An Integrated Development Environment for

Prototyping Safety Critical Systems.Rapid System Prototyping, 1999. IEEE
International Workshop on,1999.

[58] K. Van Heel, B. Knegtering, A. Brombacher, Safety lifecycle management. A
flowchart presentation of the IEC 61508 overall safety lifecycle model.The
Netherlands Eindhoven University of Technology, 1999.

[59] D. Wells, 1999.The Rules and Practices of Extreme Programming[online]. Place of
publication: extremeprogramming.org. Available from:
http://www.extremeprogramming.org/rules.html[Accessed date: 01.02.2002].

[60] L. Williams, R. Kessler, W. Cunningham, R. Jeffries.Strenghten the Case for Pair
Programming,Place of publication: IEEE Software. Available from:
http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.pdf. [Accessed date:
13.03.2002].

[61] L. Williams, R. Kessler.The collaborative Software Process.International
Conference on Software Engineering 2000. Limeric, Ireland. Available from:
http://www.cs.utah.edu/~lwilliam/Papers/ICSE.pfd[Accessed date: 05.03.2002].

[62] L. Williams, R. Kessler, W. Cunningham, R. Jeffries, Strengthening the Case for
Pair Programming,IEEE Software, Vol. 17 No. 4, July/August 2000.

