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Abstract

This report describes a stereo vision system to be used on a mobile
robot. The system is able to triangulate the positions of cylindrical
and spherical objects in a 3D environment. Triangulation is done
in real-time by matching regions in two images, and calculating the
disparities between them.
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Chapter 1

Introduction

In this project I hope to create a real-time stereo vision system to track
various objects. The reason for using stereo vision is primarily because I
believe that it would be the best way to pinpoint the location of an object
in a 3D environment. Since the objects are known to me beforehand (shape,
size and color), a single camera could have been used, but the accuracy for
pinpointing location would be more accurate with stereo vision. The results
should be accurate enough to be used for a planner system, the task of which
is to decide the optimal way to pick up the maximum amount of balls and
cylinders. The finished system is to be used as part of a robot that will
compete in Eurobot 2010.

Eurobot 2010 is an annual international robotics competition, in which teams
from many different countries compete. The general premise is that two
robots should compete to get the most points within a 90 second interval.
This competition is well suited for computer vision approaches, stereo vision
in particular. The tasks vary quite a bit from year to year, and even though
some reuse of earlier solutions is possible, a lot of equiptment and software
has to be made anew. So even though some teams have been competing for
a decade, their advantage over more recent teams isn’t that pronounced.

The motivation for this project is mainly to create a working stereo vision
system. Especially measuring distances to various objects, and also learning
more about approaches to stereo vision, and depth imaging in general.

Previous work in the area of stereo vision has been mostly restricted to
either stationary use, or very slow movement. With the introduction of
increasingly faster computing devices, more and more of the things that
required considerable processing time before, can now be done in real-time.
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An example of a rather slow, but functional system for navigation with stereo
vision, is the Stanford cart[21]. The Stanford cart came to be originally from
the need of controlling a robotic unit on the moon, which is too far away
for being remote controlled from earth without any degree of autonomous
behavior, and was one of the first stereo vision systems. The stereo system
was a camera that moved on a rail to get several pictures of the same scene
and then calculate the distance to obstacles. It was very slow and needed 10
to 15 minutes of image processing time between each move.

Stereo Vision as a phenomenon was first described by Charles Wheatstone
in 1838. He did various psychological and optical experiments to try to
understand how humans percieve depth. He also mentioned that Leonardo
da Vinci, several hundred years before, had noticed that it was not possible
to draw something on a canvas and get the same realism as in the real world.

Stereo vision systems essentially try to emulate how the human vision system
works, by modelling a scene using two cameras.

The most common approach is to have two cameras parallel to each other,
with an horizontal offset. Other methods include using vertically aligned
cameras, or cameras tilted towards one another. All stereo vision then comes
down to is finding matching points in both views, and measuring the disparity
between them. This can then be used for tracking objects[14], finding their
position in 3D[19] as well as robot navigation[6]. It has even been used
by NASA in their STEREO project for solar observations[22]. In Norway,
FINN AS, which provides 3D maps of Trondheim, Oslo and other cities in
Norway, uses stereo vision technology from C3 Technologies to do stereo
reconstruction of landscape and houses from aerial pictures[29].

During the writing of this thesis, a surge in use of 3D imaging has been
noticed for motion pictures, TVs and gaming devices such as the Nintendo
3DS. One movie of note is Avatar, in which the entire movie was shot by
special 3D cameras. The same system is currently being designed in a more
mobile format for the next Mars Rover. The system is delivered by Malin
Space Science Systems, and optically it is very impressive. For instance it is
possible to adjust the focal length while still maintaining stereo calibration.
Thus, one is able to increase accuracy for objects far away, while still having
the possibility of a large viewing area.[28]

The remainder of this report is divided into the following chapters:

(2) Theory describes most of the theoretical background used for the ex-
periments and solution, and some theory concerning lenses and depth
imaging.
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(3) Environment presents the environment in which the system is meant to
operate.

(4) System Design describes the system requirements, a brief overview of
the steps involved in the programming of the system, as well as an
overview of the software and hardware used.

(5) Experiments describes the results of testing various approaches to dif-
ferent parts of the stereo vision system.

(6) Solution shows how the final implementation works under various con-
ditions.

(7) Discussion provides an evaluation of the working solution, as well as
some notes about the performance of the system.

(8) Conclusion summarizes the report, and makes some statements with
regards to future work.
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Chapter 2

Theory

This chapter provides all the relevant background material to the stereo vision
system presented later in this report. Subjects to be looked at include depth
images, color conversion, edge detection, camera calibration, mathematical
morphology, color segmentation, epipolar geometry and bayer filtering.

2.1 Stereo Vision Image acquisition

Camera calibration and modelling

Feature extraction

Correspondence analysis

Triangulation

Interpolation

Figure 2.1: Pipeline

Stereo vision is denoted as processes directed on un-
derstanding or analysing three-dimensional visible
object surfaces based on image data. The visual
systems of humans and animals prove that stereo
vision works in complex enviroments. Stereo vision
is a very active field of research in computer vision.

An overview of steps can be seen to the right, in
figure 2.1.

2.1.1 View area in stereo vision

The view area in a stereo vision system is essentially
limited by the view angle of the individual cameras,
and the relative orientation, as well as the distance
between the cameras. See figure 2.2 for illustrations.

The further apart the cameras are, the further away the minimum distance
for successful stereo vision becomes. The advantage of increasing the distance
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2.2. DEPTH IMAGES

between cameras is that the disparity increases linearly with the distance be-
tween cameras. This means that by doubling the distance between cameras,
the depth resolution also doubles at a given distance. The disadvantage is
that it is then impossible to measure the distance to objects very close, and
the imaging system would need other methods to remedy this. This issue is
also present in the human vision system, where we cannot distinguish how
far an object very close to our eyes is without other visual cues.

As can be seen in figure 2.2, this issue can be reduced by mounting the
cameras in such a way that the epipoles1 are no longer parallel to each other.
Instead of at infinity they should meet at a fixed point in front of the cameras,
but then the geometric calculations and disparities would be much harder to
calculate.

Figure 2.2: The green triangle shows the view area

2.2 Depth images

There are many ways to achieve depth images. The image formation process
projects an image of the 3D world onto a 2D surface. Reversing the process
is impossible as some of the information is invariably lost in the projection.
Experiments with our own eyes show that the human visual system is capable
of recovering a lot of this information from stereo vision; contours, texture,
shadows and so on.

Using a single image, depth information can be extrapolated from shading,
textures, contours, focus/defocus and various visual cues.

Shape from shading exploits the fact that if you are able to control the

1Epipoles are the center of the view area of the cameras.
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2.3. IMAGE ACQUISITION

lighting enviroment you are in, you can look at the reflections from surfaces,
and therefore extrapolate the distance.

The way textures are transformed when they are projected from 3D to 2D
can be used to infer depth. For instance, a wallpaper with horizontal stripes
have an equal distance between each stripe when viewed at a perpendicular
angle. When viewed from the side, the distance between stripes far away are
greater than stripes up close.

Providing you know the physical size of an object, contour shapes can be
used for calculating the distance to an object in an image. For example
a perfectly spherical object can be extracted from the image by using the
Hough transform. The radius of the matched circle can be measured, and
you can then compare this to the physical radius of the object and find the
distance.

Shape from focus/defocus exploits the fact that by adjusting the focus of
a lens in consequtive steps, so that various depths of the image come into
focus, and you can then calculate the distance. This might be particulary
useful if the environment is static, and there are no time constraints. It is
commonly used in cameras to give an approximation of the distance to an
object in focus.

Other approaches tend to require more than one image, or have special hard-
ware requirements.

Stereo vision uses two different viewpoints provided by two different cameras.
The offset between them, in the horizontal or vertical direction, can be used to
extract depth information. This is done by finding the pixels in both images
that correspond to the same point in the 3D world, and then checking the
disparity between them. This can then be used to calculate the distance.

Stereo Vision can be aided by using structured light to aid stereo vision in
its task to find correspondences. This is done by for example creating a grid
with lasers, and using the way in which the grid is deformed when it hits an
object to model a 3D environment.

2.3 Image acquisition

For static stereo vision with moving objects, as well as dynamic stereo vision
with static objects, it is essential that both cameras capture images at the
same time. Otherwise, the epipolar lines might not line up, and calculations
of disparities will be wrong due to movement. This means that there needs
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2.3. IMAGE ACQUISITION

to be provisions for getting the image acquisition done in a synchronized
manner. Using regular consumer USB cameras, this can be very difficult. The
cameras typically only have provisions for starting a capture, and stopping
a capture. There is typically not possible to capture single frames, feeding it
a clock signal or enabling any internal synchronization routines.

Various firewire cameras, following the IIDC standard allow for feeding the
cameras a clock signal, which can be used to capture frames in a synchronized
fashion. Some professional cameras, such as used for the system presented
in this report, support auto synchronization.

The best way to synchronize common consumer USB cameras, is to make
sure that the cameras are on their own USB buses. This way requests and
frames can be recieved in a concurrent fashion. The synchronization will
still often drift slightly with varying CPU load, and since there is typically
very little relation between when a frame is captured and when it reaches
the system buffer, trying to make both cameras capture frames at the exact
same time might actually make things worse.

2.3.1 Color conversion

Most digital cameras used these days use a Bayer filter infront of the CCD
sensor. The filter is a mosaic infront of the CCD sensor, and only lets through
the relevant wavelengths for each pixel. The filter pattern is 50% green, 25%
red and 25% blue. This means that for each pixel, only one of the relevant
colors will be in the same pixel position, the rest is taken from neighbouring
pixels. The side effects of this is that for a given pixel in the image, the colors
are often interpolated from neighbouring pixels.

There are numerous different demosaicing algorithms available, with different
algorithms being suitable for different tasks. The algorithms have been split
into two distinct groups. Fast algorithms, and slow algorithms.

Slow algorithms are typically very good at reproducing the colors accurately,
and various implementations such as VNG, AHD and PG are available. They
are most used to import raw images from SLR cameras, in which visual
quality has much higher priority than speed.

The fast algorithms, which are the most relevant for dynamic stereo vision,
tend to either focus on visual quality, or precision. The former kind such
as nearest-neighbour or bilinear demosaicing causes the image to become
somewhat blurred, while linear algorithms that focus on precision causes the
image to become grainy.
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2.3. IMAGE ACQUISITION

This means that to achieve both, it might be better to rely on the camera
itself to convert the Bayer filter into YUV, or spend considerable time trying
to find something that works better. Also, since the bayer filter is typically
non-removable, it means that if the cameras are to be used for computer
vision tasks without color information, using a dedicated Black and white
camera will provide better image quality than a color camera.

A lot of professional cameras support getting the raw sensor data directly
(examples are SLR Digital Cameras, as well as various firewire cameras),
while others only provide MJPEG2 or YUV.

MJPEG is unsuitable for typical computer vision tasks, as it causes the same
visual artifacts as regular JPEG images, so that only leaves getting raw Bayer
filter data, or YUV.

The YUV format has the following components:

• Y is the intensity in the image, and only using this channel essentially
results in a grayscale image.

• U, which can also be written Cb, is the Chromatic Blue, which indicates
the ”blueness” of the pixel.

• V or Cr, is Chromatic Red, and is the ”redness” of the pixel.

The YUV format is much more resilient to noise than RGB, and it also makes
it easier to do color segmentation.

For this thesis, older cameras with YUYV color palette were used, and later
replaced with Firewire cameras using the YUVY format. Both YUV formats
only have 16 bits per pixel: The result is that for two pixels in RGB space,
you have two Y components, but only one U and V component.

| Y 1 | U | Y 2 | V |→| R | G | B | R | G | B | (2.1)

What this means is that in grayscale, the edges are very sharp, while sudden
changes in color in the horizontal direction may result in some visual artifacts.

There are many formulas and standards for the YUV color space. The most
commonly used conversion formula uses the NTSC space. It enables fast
conversion due to only relying on integer maths. Another convenience is
that it can then easily be implemented on simple microcontrollers without
resorting to floating point operations.

2MJPEG is a collection of codecs that do JPEG compression on each frame in an image
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2.4. CALIBRATION

The formula for conversion into RGB using NTSC color gammut is as follows:

R = (298 ∗ (y − 16) + 409 ∗ (v − 128) + 128) >> 8 (2.2)

G = (298 ∗ (y − 16)− 100 ∗ (u− 128)− 208 ∗ (v − 128) + 128) >> 8 (2.3)

B = (298 ∗ (y − 16) + 516 ∗ (u− 128) + 128) >> 8 (2.4)

The results from these equations has to be saturated, so that all values are
between 0 and 255.

2.4 Calibration

2.4.1 Undistortion

Undistortion is the act of mathematically removing radial and tangential
distortions. There are many other forms of distortions, but these have mi-
nor effect for an image processing viewpoint and are not considered further.
In theory, it is possible to design a lens that will introduce no distortions.
However, in practise no lens can be manufactured flawlessly.

2.4.2 Radial distortions

Radial distortions occur because of the shape of the lens. There are essen-
tially two types of radial distortion; Barrel distortion and Pincushion distor-
tion. The effect of Barrel distortion is that the image manification is greater
in the centre of the image than around the edges. The result is essentially
that a plane will look like it has been projected onto a sphere.

Pincushion distortion, which is primarily only seen with older or cheap tele-
photo lenses has the opposite effect. Objects far away from the image centre
are magnified more than objects in the middle of the image.

The distortion can be approximated by:

xcorrected = (1 + k1r
2 + k2r

4 + k3r
6) (2.5)

ycorrected = (1 + k1r
2 + k2r

4 + k3r
6) (2.6)

Where k is a constant, r is the radius from the center, and x,y is the image
coordinates.
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2.4. CALIBRATION

2.4.3 Tangential distortions

Tangential distortions are usually a result of the assembly process of the
camera. This is due to the imaging sensor not being perfectly parallel to the
imaging plane[8]. It can be characterized by the Taylor series:

xcorrected = x+ [2p1y + p2(r
2 + 2x2)] (2.7)

ycorrected = y + [p1(r
2 + 2y2) + 2p2x] (2.8)

2.4.4 Rectification

Figure 2.3: Example from rectification

There are many objects that can be used for stereo rectification, and there
are examples of using three-dimentional objects that do not require you to
use more than one image for calibration. The most practical choice how-
ever, unless you have the hardware necessary, is a regular pattern such as a
chessboard[13].

The calibration is done by taking multiple images of the chessboard with both
cameras at the same time, and looking at where each corresponding point is
in the images. By using a lot of images, and making sure that you stretch
the image in such a way that the epipolar lines line up in every single image
set, you can calculate how the pixels in each image needs to be stretched for
all the epipolar lines to line up. By these calculations you can create some
matrices that can be used to remap the pixels in incoming images rather
quickly.

Another factor, which is desireable when doing reprojection, is that the view-
ing area should be as large as possible. One algorithm to achieve this is Bou-
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2.5. BLOCK MATCHING

quet’s algorithm[13, p433]. The algorithm attempts to maximize the shared
viewing area, while minimizing the amount of change caused by reprojection.

2.4.5 Epipolar geometry

Once the image system has been calibrated, a horizontal line in the left image
should be at the same level in the right image[26]. This means that when
searching for corresponding features in both images, it is only necessary to
search the same epipolar line, reducing a 2D search space to 1D. If the camera
coordinate systems are only translated parallel to each other, it holds that
Zl = Zr = Z and the triangulation can be simplified to:

d = Xl −Xr (2.9)

Z =
f ∗ b
d

(2.10)

Where d is the distance between the cameras, f is the focal length and b is
the disparity.

The size of the viewing area in the x and y direction can be calculated by:

posx = 2 ∗ Z ∗ tan(
δ

2.0
) (2.11)

posy = 2 ∗ Z ∗ tan(
θ

2.0
) (2.12)

Where δ is the horizontal field of view, while θ is the vertical field of view.

2.5 Block Matching

A block is a collection of pixels, typically in an n-by-n grid. Block matching
use the assumption that corresponding pixels have very similar intensities.
One pixel is not enough because there are typically many potential candi-
dates, and therefore neighbouring pixels also have to be checked.

An approach to reduce the computational strain is to match large blocks of
pixels, and use the information to perform more fine-grained matches with
smaller blocks.

In its simplest form, block matching merely requires that you use some sim-
ilarity measure to measure a set of pixels in each image, decide if the blocks
correspond or not, and then calculate the disparity between them to find the
distance.
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2.6. EDGE DETECTION

2.5.1 Similarity measures

Similarity measures in block matching are used to determine how well a block
in one image matches a block in the other image. This is typically done by
using some metric for the difference between two blocks of pixels.

SAD - sum of absolute differences

This metric simply takes the difference of each pixel in the block to be
matched, and sums it into a single value. Two commonly used methods
are described below.

SAD = |(A1−B1)|+ |(A2−B2)|+ ...+ |(An−Bn)| (2.13)

One thing that makes SAD especially appealing when dealing with modern
x86 processors supporting SSE4.13, is that there is an optimized instruction
just for doing SAD, mpsadbw, mostly designed for decoding HD video.[18]

MSE - mean squared error

The MSE is one of many approaches to quantify the difference between an
estimator, and the true value of what is being measured. With block match-
ing the estimator is typically the block in one image that you want to find
in the other.

E =
((A1−B1) + (A2−B2) + ..+ (An−Bn))

n
(2.14)

MSE = E2 (2.15)

2.6 Edge detection

A major part of feature-based stereo vision is edge detection. An edge is a
transition between two surfaces, genereally a sudden shift in intensity and/or
color. Edge detection therefore typically entails finding these sudden shifts
in intensity, and based on some threshold, mark them as edges.

3SSE4.1 is an instruction set supported by AMD K10 processors and Intel Core mi-
croarchitecture and newer.
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2.6. EDGE DETECTION

2.6.1 Canny Edge detector

The Canny edge detector[9] is based on three objectives; a low error rate,
that the edge points should be well localized in the image, and that there
should be a one and only one edge response. Canny worked with expressing
these three criteria mathematically, attempting to find optimal solutions for
them.

The fact that edge points should be well localized is important when calcu-
lating disparities for edges, because otherwise, the disparities could be more
inaccurate than aliasing issues allow. This makes the Canny edge detector
a better choice than more simple edge detectors, as it is crucial to for the
edges to be correctly localized.

A typical Canny edge implementation has the following steps:

• Calculate gradient in x and y-direction

• Calculate direction of edges based on gradients, and also the gradient
magnitude.

• Non-maxima suppression (removing directions that are not maximized)

• Based on two threshold parameters, high and low, detect and follow
edges.

The gradient can be calculated by using the Sobel mask for y-direction, and
x -direction, while the gradient direction can be calculated by arctan(Sx, Sy).
The non-maxima suppression ensures that there is one and only one edge
response. This is done by checking the gradients on both sides of an edge,
making sure it is the most prominent one. Then a search for gradients above
a specified high threshold is done, and the edge is traced, using the edge
direction information, with each pixel being marked, as long as the gradient
is above a certain lower threshold. This is repeated until the end of the image
is reached.

2.6.2 Edges in multi-channel images

Analysing edges in multi-channel images is significantly more difficult than
in greyscale images. The difficulty lies in the fact that the different chan-
nels might contain conflicting information. An edge in one channel might
not appear at all in another channel, and they might even have opposite
directions[16, p399-401].
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2.7. CIRCLE DETECTION

2.7 Circle detection

Circles are a rather simple geometric shape, in which the edge is a fixed
distance from the centre. This can be exploited in several ways to recognize
and detect circles.

Provided a region segmentation, for example by using color segmentation, one
could exploit these properties by doing various calculations on the region
itself. One approach is to calculate the compactness of a region. This is
achieved by calculating the distance around the region squared, divided by
the area of the region. The smallest possible compactness value is a circle[20,
p356].

compactness =
(region border length)2

area
(2.16)

It is also possible to calculate the eccentricity, which is the ratio between
the minor and major axis. In a perfect circle, this should be equal to 1.0[20,
p355].

Both these calculations combined with a successful segmentation of a cir-
cle, has the potential to work quite well. The problem lies in accurately
segmenting out the regions without the process being too slow.

An entirely different approach, which does not require segmentation, but just
edge detection, is the Hough transform.

2.7.1 Hough Transform

The Hough transform[15] is a technique that locates shapes in images. It
can be used to extract lines, circles and ellipses from images. The algorithm
defines a mapping from the image to an accumulator space, also known as
the Hough space. This is achieved by using a function that describes the
shape one wants to match[23].

In the Hough transform for circles, the basis is the equation for a circle 2.17.

(x− x0)2 + (y − y0)2 = r2 (2.17)

The Hough transform for circles, draws a circle for each edge pixel into the
hough space, increasing each point by one, which is the votes for a center
with radius r for each edge pixel. This means that it is necessary to extract
the edges before running the Hough transform, using an appropriate edge
detector.
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2.7. CIRCLE DETECTION

Figure 2.4: Hough transform, fixed radius.

The algorithm is as follows:

for each edge pixel in image:

for angles 0 to 359:

x0=round(x-r*cos(angle))

y0=round(y-r*sin(angle))

accumulator(y0,x0)++

Completing this, the accumulator should have peaks where circles are most
likely to be present. All that is then required is to select an appropriate
threshold. Care should be taken when selecting the threshold value, as false
positives should be avoided, while avoiding to miss real circles.

Parameter decomposition

The Hough transform as described above is very slow. In order to obtain a
reasonable run-time another approach needs to be used.

One approach is to take advantage of the fact that the line perpendicular
to a tangent of a circle should point towards the center. So by drawing a
line along the normal of each tangent, there should be a peak of votes close
to the center of the circle. One can then figure out the size of the circle by
running the inner-loop of the algorithm described in 2.7.1 for a selection of
radiuses[23, p212-216].
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2.7. CIRCLE DETECTION

2.7.2 Fast Finding and Fitting

The Fast Finding and Fitting algorithm is published by Marshall and Yi,
2000[31], and describes a method to find circles based on the geometric sym-
metry of a circle. It makes a comparison of different approaches to HT, and
comes with a few insights. It exploits the fact that circles are symmetrical
along the vertical and horizontal axis.

* find edge pixels.

for all horizontal pixels in F:

for all vertical pixels in F:

find all edges:

Find the middle between them

add the middle to accumulator space G(y,x).

use HT on accumulator space G:

extract all possible vertical symmetry axises Lv

For all pixels in edge image:

If pixel is symmetric to Lv:

put pixel into F_h

for all vertical pixels in F_h:

for all horizontal pixels in F_h:

find all edges:

Find the middle between them

add the middle to accumulator space L(y,x).

use HT on accumulator space L:

extract all possible horizontal symmetry axies Lh

For all pixels in F_h:

if pixel is symmetric to Lh:

put pixel into F_hv

For all pixels in F_hv:

Judge if they are circles.
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2.8. COLOR RECOGNITION

2.8 Color recognition

Human eyes are very good at detecting if a surface has an uniform color or
not, and often fills in the blanks when there is a lot of specular reflection.
The problem with this is that most algorithms typically look at colors from
a local viewpoint. For example, if a blue surface is strongly illuminated, the
result may be that a lot of pixels might actually be grey in an image instead
of blue, even though we see the region as blue.

There are several ways to combat this. One method that reduces the problem
is normalization. There are a lot of different approaches to normalizing an
image. Among the most common ones are:

1. r = R
B

2. r = R
(R+G+B)

3. r = R√
(R2+G2+B2)

According to Jähne[16, p156] method 2 has a higher degree of accuracy than
the other approaches.

2.8.1 YUV-space

Since YUV space essentially puts all intensity information into one channel,
and color in the two others, the normalization requirements are less than in
RGB space. This is because RGB-space has the intensity information stored
in all 3 channels.

2.8.2 Chromatic space

Chromatic space is similar to an intensity histogram, except you map color
channels in a 2D space instead of intensities in 1D. With an RGB image as
basis, the best results are achieved by mapping the red channel along one axis
and the green axis along the other. The blue channel is discarded, as most of
the color information is deemed to exist in the red and green channels. With
a YUV image, you can map the chromatic red along one axis, and chromatic
blue along the other for similar effect.

Before converting to chromatic space, Jähne[16] recommends to apply a
smoothing filter to the image, to make the individual pixels more repre-
sentative of the true color of the objects and less susceptible to noise.
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2.9. DETERMINISTIC IMAGE RESTORATION

2.9 Deterministic image restoration

Deterministic image restoration is applicable to images with little noise, and
a known degradation function. The idea is that the Fourier transform G of
the degraded image g has the following in relation to the desired image f :

G = H·F +N (2.18)

Where H is the Fourier transform of the degradation function, F is the Fourier
transform of the undegraded image, and N is the Fourier transform of the
additive noise.

In a robot vision domain, where the angular velocity is known and it is
assumed that the robot only rotates while standing still, this can be used to
predict the degradation due to linear motion blur. Furthermore it is assumed
that the objects that require our attention are primarily stationary.

According to Rosenfeld and Kak[27] the relative moment of camera and ob-
ject has the following properties:

Relative movement between the object and camera during the shutter open
time t causes the image to be smoothed. if the relative moment is at a
constant speed v, the fourier transform H(u,v) of the degradation caused in
time t is given by:

L = vt (2.19)

Where L is the length in pixels the image is blurred.

H(u, v) =
sin(Luπ)

Lsin(uπ)
(2.20)

Which, centered and normalized for the image size is:

y =
u− w

2
(2.21)

H(u, v) =
sin(Lyπ

w
)

Lsin(yπ
w

)
(2.22)

Where w is the width of the image, and y is the centered u.

2.9.1 Inverse filtering

Inverse filtering merely uses the properties of equation 2.18, ignoring noise.
We get the equation[20, p165]:

F = G ∗H−1 (2.23)
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2.10. MATHEMATICAL MORPHOLOGY

This works reasonably well if we can approximate the degradation function,
and no noise is present. All the information for each pixel should still be
stored in the image, just degraded. This of course works on the assumption
that we are not limited to discrete pixels with only 8 bits per channel.

The problem is that even though no noise is visible in the input image, the
frequencies of the invisible noise exceeds the signal in the high frequency
areas of the Fourier transform. Therefore, unless a threshold is applied to
the inverse function, the result is often just noise.

2.10 Mathematical Morphology

The basic idea in binary morphology is to probe an image with a simple, pre-
defined shape, drawing conclusions on how this shape fits or misses the shapes
in the image. Frequently used shapes, or structuring elements are the cross,
circle and the rectangle. The structuring element is used when probing the
image, and is used to determine which parts of the image should be checked
when performing a morphological operation. Structuring elements have two
properties, shape and size.

There are essentially two basic morphological operators, dilation and erosion.
Most of the other morphological operators can be defined as a combination
of erosion and dilation along with various set operators. Erosion removes
border pixels from objects, by removing bright pixels not surrounded by other
bright pixels. This will enlarge holes and small gulfs in the regions, and also
separate two regions that are barely touching each other. A side effect is that
all regions will decrease in size. Dilation however, will make regions larger.
This is done by probing the image with the structuring element, and filling
areas covered by the structuring element if a bright pixel is found.

Opening is erosion followed by dilation. It will remove sharp edges and
smooth object boundaries while preserving its size. In the case of a greyscale
image, it will darken bright regions that are smaller than the structuring
element, while preserving larger features in the image.

Closing is dilation followed by erosion. It will remove dark features smaller
than the structuring element from the image, while preserving the size of
regions. In the case of greyscale images, it will fill small dark regions, while
preserving larger regions[12].
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2.11. SKELETONS

2.11 Skeletons

By skeletonizing, a region is reduced to a graph by thinning. This can be
used for a large variety of image processing problems, from inspection of
printed circuit boards to counting asbestos fibers in air filters[25]. A simple
implementation just iterates around a region, reducing it one pixel at a time,
till the region has thickness of one pixel.

2.12 Contour properties

Once you have a closed contour, a lot of different properties can be calculated.
The bounding box can be calculated by figuring out the rightmost, leftmost,
uppermost and lowest pixels in a contour. This can then be used to give a
rough estimate of where the region is in the image.

2.12.1 Rotating calipers

Rotating calipers is an algorithm[30] for solving various geometric measuring
problems. The name comes from the analogy of rotating a spring-loaded
caliper around a convex polygon. Every time one blade of the caliper touches
the edge of a polygon, the other side of it touches the opposite blade. This
forms antipodal pairs around the entire polygon, which can be used to find
the narrowest and widest part of the polygon. It is then possible to find the
minimum enclosing rectangle.

When the minimum area enclosing rectangle is found, it can then be used to
calculate the minor axis, major axis, orientation and a good approximation
of the center of the region.

The center is simply the point in the middle between two sets of points (top-
left and bottom-right or top-right and bottom-left) in the rectangle. The
minor axis is then shortest of the sides in the rectangle, while the major
axis is the largest. The orientation is given by the orientation of the entire
rectangle.

The circumference can be calculated by simply counting how many points
the contour consists of.
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2.13. COLOR SEGMENTATION

2.13 Color segmentation

One approach for color segmentation is to go through the image with a patch
of size nxn, and comparing the variance with a slightly larger patch of size
n + 1xn + 1, and doing this for several iterations.[7] This algorithm makes
sure the areas with similar color are “flattened”, and the different areas are
separated from each other.

Pseudo-code:

for each pixel P in image:

normalize P

until no significant change, do:

for each pixel P in image:

calculate v1= the variance over a 3x3 square, with P in the center

calculate v2= the variance over a 5x5 square, with P in the center

if v2 < v1 + tolerance:

for each color component P_c of P:

P_c= the average of c over a 3x3 square, with P in the center

2.13.1 Watershed segmentation

Grey-scale images can be seen as topographic maps, in which pixels with
high intensity are hills, while low intensity values are basins. Watershed
segmentation uses this information to fill basins in the image, in which each
basin can be seen as a single region. The length of a gradient can be used
as height information, further improving results. One approach to watershed
segmentation is to find the regional minimas and build up a water source
from each regional minima, till the watersheds meet.

2.13.2 Gradient of greyscale images

The gradient is a measure of change in a specific direction. The most com-
mon directions to calculate it in the field of computer vision is horizontally,
vertically and diagonally. Since images are typically discrete, and calculating
it very accurately is difficult, the Sobel operator is most used. To use it, the
image is convolved with the sobel operator, which consists of integer values,
resulting in a gradient image. To get a gradient in a specific direction, the
horizontal or vertical sobel mask is used, and to get the gradient strength,
the result of both calculations can be combined.
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2.13. COLOR SEGMENTATION

horizontal gradient:  −1 0 1
−2 0 2
−1 0 1


vertical gradient:  −1 −2 −1

0 0 0
1 2 1


2.13.3 Color difference

One metric for color difference is the sum of absolute differences between the
different color components of two pixels, calculated by:

difference = |r1− r2|+ |g1− g2|+ |b1− b2| (2.24)

The same metric can be used for I1,I2,I3 color metrics, which are calculated
from R,G,B values in the following fashion, proposed by otha et al[?].

I1 = (R +G+B)/3 (2.25)

I2 = (R−B)/2 (2.26)

I3 = (2G−R−B)/4 (2.27)

The difference can then be found by:

difference = |I1− I1|+ |I2− I2|+ |I3− I3| (2.28)

Equation 2.28 is less prone to intensity variances than 2.24, but calculating
the I1,I2,I3 values require more computational power. This means that it
might be better to separate regions, but not so good at separating two objects
of essentially the same color.
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Chapter 3

Environment

3.1 Enviroment overview

This project was done as part of a solution to track balls and cylinders for a
mobile robot competing in Eurobot 2010[4]. The playing field is 3 m × 2 m,
and the details of the configuration can be seen in figure 3.1.

Essentially there are two competing teams, one starting in the blue corner,
and one in the yellow corner. The task is to pick up as many of the red and
yellow balls, as well as the white cylinders as possible.By the end of a round,
all balls must be moved into the goal location at the bottom of the table,
on the opposite side of the starting position. There are also black cylinders
present on the table, but they cannot be picked up. This means that there
are four different objects that need to be tracked and picked up:

• Red balls with a diameter of 100 mm, lying on the green floor.

• Orange balls on top of cylinders, also with a diameter of 100 mm.

• Black and white cylinders, placed on the ground, in vertical position,
50 mm in diameter.

There are 14 red balls, 7 black cylinders, 11 white cylinders and 12 orange
balls. The balls are in fixed positions, while the white and black cylinders
can have a number of different configurations. The complete details can be
seen in the Eurobot 2010 rules[4].
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3.1. ENVIROMENT OVERVIEW

Figure 3.1: Playing field, Eurobot 2010.

Figure 3.2: The Robot
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3.2. REQUIREMENTS

3.2 Requirements

3.2.1 Functional requirements

The functional requirements are based on the Eurobot 2010 rules[4].

1. Must be able to find the location of as many balls as possible on the
field.

2. Must be able to find cylinders, and distinguish black cylinders from
white cylinders.

3. Must be able to distinguish orange balls from red balls.

3.2.2 Non-Functional requirements

Robustness

1. Should be easily adjustable to different light conditions.

2. Must be able to calculate location while in motion.

Performance constraints

Processing an image should take no longer than 500 ms. It is not necessary
to update the information more often, as the artificial intelligence, which
is responsible for processing the data, spends approximately 3 seconds to
update the plan. The primary advantage of having more frames per second
is that you might be able to cover a larger area of the playing field if the
robot is rotating very fast.

Size

According to the Eurobot regulations, the robot cannot have a circumference
larger than 1200 mm. So ideally, the computer and cameras should take up
as little space as possible, to make room for other parts of the robot. This
includes machinery for gathering, delivery and storage of player elements,
batteries and driving systems.

This means that for a square object to fit into the robot, it should not
be larger than 300mmx300mm. When you add in a proper casing for the
computer system, the system itself should not exceed 200mmx200mm.
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3.3. COLOR PROPERTIES

3.3 Color properties

Figure 3.3: Colors on the playing field

The colors on the playing field are orange, red, green, black and white. The
ground at the starting positions are yellow and blue instead of green, but
these can be filtered out easily, and they are not very important to see.

Looking at the intensity alone, there are a few issues. The orange seems
to be essentially the same intensity as the green background, and therefore
simply using the intensity gradient works very poorly. No single metric in
RGB, YUV or HSV space is able to differentiate the colors properly.

3.4 Balls

The balls are round, with a diameter of 10 cm. They can be either orange
or red. An image of a ball can be seen in figure 3.5.

3.4.1 Roundness

The balls are too soft to be perfectly round, gravity will compress them some
against the ground. This causes them to be rather unsuitable to for use with
Hough Transform for circles, as the balls look elliptical unless seen directly
from above. The issue is not an issue with the orange balls, as these are
made of a harder material.
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3.4. BALLS
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Figure 3.4: Color difference graph for different color spaces.

3.4.2 Reflection

The balls are extremely reflective, probably due to the fact that they are
juggling balls, designed to be flashy and look nice. This causes some problems
for edge detection as well as segmentation. For example using edge detection,
the difference between the general color of the ball, and the reflective regions,
is much higher than the difference between the red color and the background.
Another problem is that most of the cylinders are white, which means that
just ignoring white is not possible. Using region segmentation, the same
issues generally apply, as you are still reliant on change of color or intensity
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3.4. BALLS

Figure 3.5: Red ball against green background

in the image to separate regions.

One possible solution to this is to find all the white regions, and check if
they are surrounded by a red border. Alternatively it is possible to just trace
around all red regions, and ignore the inner parts. An issue with tracing
around the regions is that sometimes the reflective areas are so close to the
borders of the region that it is not possible to go around them.

3.4.3 Color

Orange and red is close to each other no matter what metric you use as a
basis. In HSV, the hue value of orange is right next to red. Also, since red is
the largest component in RGB for both colors, the hue will be considered red
for both. Using RGB, the regions are very similar, except the Orange has a
slightly larger green component. An issue with this is that the background
is green, which means that the outer regions of the red balls will look very
orange.

This means that the only sensible way to compare the color of the balls, is to
find some metric for the color of the entire region, and not just its individual
parts. This can either be done using a histogram and finding the tallest
peaks, or just taking the average.

3.4.4 Shades

Shades in the image are in general rather easy to deal with, as normalizing
the shades produces the right colors. However, the borders of the playing
field, as well as about one third of the cylinders are black. In a typical scene
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3.5. CYLINDERS

this would not cause many issues, because most of the light hitting the black
regions would not be biased with a certain color component, meaning they
could have been separated by comparing R:G:B difference. On the playing
field however, because it is green, the light hitting the cylinders is also heavily
biased towards green, meaning that the green shades and the black cylinders
have the same color components.

3.4.5 Similarity

When using segmentation approaches that are dependent on changes in color
or intensity, objects of similar (or same color) in close proximity to each other
could cause issues.

For example if a black cylinder is close to the border of the playing field, the
border and the cylinder will be considered the same region. This is also the
case if two balls are very close to each other, unless something like the Hough
circle transform is used.

One way to combat this is to use stereo vision. If you’re able to determine
that the border and the cylinder is the same in both images, a comparison
of the two should be able to pinpoint the location of the cylinder. Another
approach could be to use template matching, since all the shapes in the scene
are available a priori.

3.5 Cylinders

The cylinders are white or black, and 20 cm tall, with a diameter of 5 cm.
The black cylinders are fastened to the table, while the white ones are not.

3.5.1 Shape

The cylinders are solid, and made out of wood. The wood is not grinded
down very smoothly, so there are significant grooves in the wood that could
prove difficult for segmentation.

3.5.2 Placement

When the cylinders are lying down, the gradient along the surface of the
cylinders become very strong, and this can cause issues with segmentation,
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3.6. OCCLUSION

as the color difference in one part of the ball to another might be bigger than
the difference between the background and the cylinder.

3.6 Occlusion

Because there are a lot of objects that are partially occluded by something
else in the scene, handling occlusion is very important. This means that it
might be a better idea to match red or orange regions in the image, rather
than circular ones to recognize balls. It could also be difficult to separate
two cylinders semi-occluded by eachother. Cylinders semi-occluded behind
balls should not be difficult to detect.

3.7 Movement

Since the robot will move around at upto 1m/s, with objects being very
close, there will be a lot of visible movement. Blur is a major issue while
rotating or turning. Because the robot can move forward while turning, it is
not as simple as just removing horizontal blur. There are a few ways to deal
with this:

• Use cameras that require low enough exposure time so that the blur
becomes insignificant.

• Remove the blur using algorithms (in software or hardware).

• Use algorithms that are not as prone to blur.
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Chapter 4

System Design

This chapter will present the implementation of the system, as well as the
hardware used.

4.1 Hardware

Initially, the preferred hardware for this application would be a small laptop
or notebook. Then you have a self-contained unit with its own power supply,
screen and keyboard. But, due to performance and budget constrains this
was quickly discarded as a viable option.

Ideally the system should be as compact as possible, as this leaves more room
in the robot for the mechanical parts and storage. Power consumption was a
concern, but because the robot only has to run for 1 minute and 30 seconds
during the competition, and a few minutes in standby, this was not much
of a factor when considering different options. We also needed to make sure
that our batteries would be able to deliver the required power.

The following system components were selected:

• Intel Mini-ITX Socket LGA775 board (Intel DG45FC)

• Intel Core 2 Quad Q9550s (4 cores @ 2.83 GHz, 12 MB L2 Cache, 65
W TDP)

• 4 GB RAM DDR2 ( 2 x 2 GB )

• 16 GB Compact Flash storage (using SATA-CF adapter)

• PicoPSU M3-ATX 125W
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• Firewire 400 (2 ports) PCI-E expansion card. (the top had to be
trimmed to fit in the case properly)

The selected computer isn’t based on the latest x86 designs (Core i7), but
none of the newer processors with a power usage equal or less than 65W is
able to deliver the same performance. The motherboard has no provisions
for handling any CPU with a higher power requirement. The CPU itself runs
quite cool when in use, but the system itself, due to being put into a very
tight space, is running very hot. No stability issues were observed during
operation

Under testing the entire system would use about 20 W when idle, and up to
80 W under full load.

Figure 4.1: Overview of the computing device during testing

4.2 Old cameras

As a starting point it was decided to use the cameras from Eurobot 2009, be-
cause the color adjustment was very good, and the resolution was more than
acceptable. The cameras were simple consumer cameras, primarily designed
for laptop use. There exists a desktop variant with somewhat quicker focus-
ing etc, but the size was prohibitive. The cameras used were also UVC[5]-
compliant (USB Video Class), giving them good compatibility with Windows,
Mac as well as Linux.

Model: Logitech, Inc. QuickCam Pro for Notebooks (046d:0991)
Supported resolutions: 160x120, 176x144, 320x240, 352x288, 640x480 (15
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fps), 800x600 (15 fps), 960x720 (10 fps)
Interpolated resolutions: 1600x1200 (5 fps)

The cameras had a fairly long exposure time, which could be counteracted
somewhat by increasing the gain and brightness, with the side effect that
more noise was produced. Another problem was that the image was updated
in a scanline fashion, so that with very fast movement, the top of the image
was what the camera was seeing currently, while the bottom might have been
something seen just recently, resulting in a ”wobbly” effect. The effect was
only visible during fast movements.

4.3 New Cameras

Since the old cameras had too long exposure time to be suitable for fast
movement, and the synchronization using threads with USB cameras worked
less than optimal when the system had very varying load. It was therefore
decided to get new Firewire cameras with auto-synchronization and better
optics.

Unibrain Fire-i Board Pro - 1024x768 @ 36 fps native resolution.

The cameras were used with a shutter time of 6 ms, manual focus, hue,
saturation, sharpness, brightness, gain, contrast, f-stop and zoom. Auto-
synchronization is supported as long as the cameras are on the same Firewire
bus, and a specific non-IIDC1, a compliant register is set.

Not much is known of how the auto-synchronization works, as it is a propri-
etary system, but the important part is that it does take approximately one
minute before the frames are synchronized after you start a capture. During
testing the time to synchronize mostly seemed to be related to the framerate,
so it took approximately twice as long for the frames to synchronize using
7.5 fps vs. 15 fps.

The cameras have a status register telling when the images are synchronized,
and this can be used to ensure that the cameras are properly synchronized.
However, the frames are often more than sufficiently synced long before the
status register is set, so manual checking can be preferable to waiting.

The final system ended up using 1024x768 @ 7.5 fps with YUV format, but
Bayer pattern with 8-bit or 12-bit precision could be captured directly from
the camera.

1IIDC (Instrumentation & Industrial Digital Camera) is the FireWire data format
standard for live video, and was designed for machine vision tasks
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Due to the bandwidth constraints of the Firewire bus, the acceptable resolu-
tions were 1024x768 @ 15 fps with 8-bit Bayer filter, or 1024x768 @ 7.5 fps
with 16-bit YUV (or 12-bit Bayer using 16-bit datatypes). The color repro-
duction was better with the built in YUV conversion than with 7 different
tested debayering algorithms, and it was decided that higher resolution was
preferable to higher framerate.

Other notable features is that an electronic shutter can be used with the
cameras, and this could have been used in conjuction with the propulsion
system on the robot. This would have made it possible to only take pictures
when the robot was not moving, avoiding blur and synchronization issues.

Figure 4.2: The cameras mounted on the computing device

4.3.1 Noise

The CCD sensor is on a separate PCB connected with a 16-pin flat cable,
and this makes it rather prone to external noise. Using two small 20 cm
Firewire cables also causes major noise issues, with diagonal lines as well as
salt and pepper noise.

This is not very fortunate as the space available on the robot is severely
limited. It is possible to avoid it by placing one camera PCB in a 90 degree
angle facing away from the other, as well as replacing one of the short cables
with a longer 1.8 m cable. It is possible that the issue could be resolved with
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a more suitable 50 cm cable, but due to time constraints this hypothesis
remains untested.

The cables themselves were also prone to breaking easily, so care must be
taken when handling them.

4.3.2 Lenses

The Firewire camera has the possibility of using C- and Cs-mount lenses.
These are quite common for security appliances and machine vision research.

The main requirements for the lenses was a focal length below 5mm, giving a
suitable view angle, and a large shutter opening. The suitable view angle was
primarily to be able to see atleast half the playing field at the starting posi-
tion, but also to see as many elements as possible at the same time. Another
factor was trying to avoid having a too small focal length, as the distortions
of the lens become rather nasty at very wide angles. The distortions are
rectified in software on this system, but a very large view angle would still
cause less precision.

A low f-stop is very important, as more light on the CCD chip means a
lower shutter time is required to capture frames. It also reduces the need to
increase gain to amplify the signal, which reduces noise issues.

The solution was a lens with the following properties:

• Manufacturer: Tamron

• Model name: Mega Pixel M13VM308

• Focal Length: 3-8 mm (21.6mm-56mm in 35mm equivalents with a
1/3” sensor)

• Iris: F/1.0

• Manual Focus, Manual Iris, Manual Zoom

Since all the properties of the lens are manually adjustable, it means that the
performance of the lens in different conditions is very predictable. For proper
calibration of the setup, a fixed zoom and focus is necessary, as changing any
of them would require recalibration. The iris could be adjusted easily, and
with varying light intensities, it provides a quick way to adjust the brightness.

Having a very open iris caused the items to become slightly blurred, but
there was no noticeable performance degradations of the algorithm itself.
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To get the zoom and focus as similar as possible, a caliper can be used
to measure the distance from the front of the lens housing to the lens on
both cameras, and then adjusting the zoom untill the image is sharp for
both cameras. The cameras have a very noticeable barrel distortion, most
pronounced at the lower focal lengths, but this was easily rectified in software.

4.3.3 Firewire interface

Since there was no firewire card onboard, a small PCI-E2 low profile card was
connected to the PC. The only noticeable issue with the firewire interface was
that if some power saving features for peripheral devices were not disabled
in the BIOS, many of the frames arriving became corrupted unless the frame
rate was set very low. Without the power saving enabled, no corruption
issues were apparent, and the capture setup failed gracefully with an ”out
of bandwidth” message if any unsupported resolution and framerate was
selected.

One thing worth mentioning is that for 1024x768 Stereo Vision, Firewire 400
Mbit is a bit on the low side, and cameras supporting Firewire 800 Mbit
(or perhaps USB 3.0) would be necessary to get the full potential of the
cameras. With 400 Mbit, it should be possible to do 36 fps at 1024x768
using 8-bit bayer filtering, or approximately 20 fps with 1024x768 with two
cameras unsynchronized.

4.3.4 Camera mount

To have any chance of getting a proper stereo vision setup, a camera mount
is vital. The camera mount with USB cameras used in the beginning of the
project was far too large to be mounted on the robot. The advantage was
that the distance between cameras could easily be adjusted between a few
centimeters all the way up to half a meter.

The design requirements for the firewire camera mount was rigidity and stur-
dyness. The epipoles on the camera mount are fixed with a 8.5 cm separation,
which is a good compromise between common view area and precision. The
entire mount is made in Polyoxymethylene (POM), which is an engineering
thermoplastic used in precision parts that require high stiffness. It proved
very sturdy during testing, and it was one of the main materials used for

2The casing for the PC isn’t designed for any expansion cards, so the firewire controller
card had to be cut by 5 mm at the top.
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the robot construction, in addition to aluminium and plexi-glass. The cam-
era circuit boards are not screwed into the mount directly, but holes were
made to fit the lens mounting bracket, and the mount is tightened around
the mounting bracket, so that the CCD circuit board is behind the mount,
while the lenses are connected in the front. Figure 4.2 shows the cameras
mounted to the PC using the camera mount.

The camera mount fitted perfectly with the lens mounting bracket, and no
noticeable degree of deviation was noticed during use. However, the lenses
have a tendency to not fit perfectly with the mounting bracket, so if pressure
is applied to the cameras, the epipolar lines can shift out of place, so special
care has to be made to avoid ruining the calibration.

The most likely solution to this is to find a way to make the lens fit better
against the mounting bracket, possibly using thread seal tape or locktight.
Since the CCD is approximately 5 mm along the long edge, and there are
1024 pixels, it is obvious that extremely small shifts in movement will cause
noticeable changes in the image positions relative to eachother.

4.4 Software

4.4.1 Operating System

For the operating system, we decided to use Ubuntu Linux, as this has been
used for previous years for the Eurobot competition. The drivers for the
CAN3-bus, as well as everything else made in previous years, are verified to
work on Linux. There are plenty of Linux distributions that might have been
better suited, but due to time constraints, nothing else was tested.

4.4.2 Compiler

The Intel C++ Compiler 11.1[10] was selected as it generally generates much
better performing code than GCC 4.x[2]. On Linux, it is free for private and
non-commercial use. Also, OpenCV, which is a good library for computer
vision applications, can use specific Intel-optimized routines to improve per-
formance. The main performance advantage with ICC vs. GCC is that GCC
can only auto-vectorize a small subset of what ICC is capable of. This means
that certain tasks, even though the amount of operations is identical, can be

3Controller-area Network, originally designed so that microcontrollers can communicate
with eachother without using a host computer
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several times faster. All of this can also be optimized by hand, but this is
tedious work and generates less readable code.

4.4.3 Libraries

OpenCV

OpenCV (Open Source Computer Vision) is a library of programming func-
tions for real time computer vision[24]. It has general image processing func-
tions, image pyramids, segmentation, geometric descriptors, camera calibra-
tion, machine learning, matrix mathematics and a lots of useful datatypes. It
is BSD licensed, and a lot of routines are optimized by Intel(R). OpenCV[24]
is used for:

• Rectification and calibration routines

• Load and store images

• Convenient data formats for images, matrices, contours etc.

• Display images

• Optimize remapping of incoming frames for rectification

• morphological operations (erode, dilate)

• rotating calipers for minimum rotated rectangle calculation

• Canny edge detection (own implementation included, but much slower)

• Sobel operator, gaussian blur, Hough lines implementation

• conversion from RGB→BW

• finding contours (Moore border tracing implemented, but the OpenCV
implementation has a lot more features)

• drawing lines, circles and text in the images

OpenCV can also capture frames from cameras, but it is severely limited for
selecting resolution, format and setting parameters such as brightness and
sharpness.
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Unicap

Unicap[3] provides an uniform interface to video capture devices. It allows for
the use of different cameras using Firewire as well as USB. You can also set
the resolution and format you want, and if desired, deal with all the decoding
of the actual pixel data yourself. It was tested using both user buffers and
system buffers. The former gives you greater control when you want to read
frames, while the system buffer approach essentially just creates a message
handler, and it sends you a message with an attached buffer when the frame
is ready. The system buffer offers much lower CPU usage, and also resultes
in much better synchronization between USB cameras. It was only used for
the setup with the old cameras, as libdc1394, which will be described in the
next section, proved to be much more suitable for Firewire cameras.

Libdc1394 2.1.2

Libdc1394 is a library that provides a high level API for controlling and
capturing from cameras following the DCAM and IIDC specifications. The
library is only supported on Mac OS X and Linux at the current time, so it is
not very suitable from a cross-platform perspective. It is available under the
LGPL license, which means that it can be linked to even from proprietary
programs.

All conceivable propeties such as resolution, frame rate, white balance, gain,
brightness, shutter time and so on are adjustable via this library.

One of the major features used unrelated to capturing frames from the cam-
eras is the demosaicing routines. It supports nearest-neighbour, bilinear,
bicubic as well as more advanced debayering like AHD, PG and VNG demo-
saicing. For Firewire cameras it is preferred over Unicap because the API is
simpler, and more Firewire specific features are exposed.

The developer of the cameras, Unibrain, also offer their own API, but it
is only available for Windows. The advantage with using the API made
by Unibrain is that the algorithm used on the cameras is included in the
proprietary API, and seems to work better than all the routines provided by
libdc1394.

FFTW3 - Fastest Fourier Transform in the West v3.0

For working in fourier space, it is desired that the discrete fourier transform
and its inverse as fast as possible. Even though it is quite easy to implement
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a n log n FFT algorithm, there are still many ways to make the operations as
fast as possible. Several papers on optimizing the FFT has been presented
over the years, FFTW3[1] is the fastest and was therefore selected. What
makes it especially fast is its ability to do a performance characeristic of the
system the routine is running on, to try to maximize the performance as
much as possible.

POSIX threads (pthreads)

Since the processor had four cores, and the cameras should be as synchronized
as possible, a way to create threads and deal with them in a sensible way was
needed. For this system, pthreads was chosen as the thread handling library.
In retrospect, the Boost threading library might’ve provided better features
for threading object-oriented code, albeit with a neglible higher memory
footprint.

4.4.4 Applications of note

• Gnuplot is used for all graphs.

• LaTeX for text formatting.

• GIMP is used to quickly analyse image properties such as histograms,
pixel values and pixel positions.

• Firecontrol - resetting Firewire bus and checking non-IIDC registers.

Firecontrol

Firecontrol is a very simple program that can be used to reset the Firewire
bus and write and read to/from all Firewire memory adresses.

To enable auto-synchronization, the following had to be inserted:

w 1023 0 0xFFFFF2F10018 4 0000003

w 1023 1 0xFFFFF2F10018 4 0000003

e

and the values could be checked by:
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r 1023 0 0xFFFFF2F10018 4

r 1023 1 0xFFFFF2F10018 4

e

Where the first column is read/write, second is the Firewire card, third is
the device ID, and the fourth is the auto-synchronization register address
followed by how many quads you wish to read/write, followed by what to
write.
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4.5 Software implementation

Calibration

color recognition and segmentation

find contours and their properties

find corresponding regions in both images

image acquisition and adjustment

find distance and position

calculate absolute position

update list of object positions and send to AI

Figure 4.3: System overview

The main program uses four separate threads for different purposes. One
is used to handle incoming messages from the artificial intelligence (start
message, object pickup messages, request for initial cylinder configuration,
stop message) as well as navigation (own position, enemy position). One
thread is dedicated to tasks that require information from both images as well
as displaying results. The two remaining threads are for stereo independent
tasks, such as remapping, converting colors, morphological operations, color
segmentation and recognition, finding contours and contour properties.

The main thread and the camera threads are synchronized only by using
barriers, while the main thread and the communication threads share infor-
mation via datatypes that have mutexes to ensure that only one thread reads
or writes a value at the same time.

Only one thread deals with fetching data from the camera buffers directly,
and then the data from one of the cameras is copied for use by the slave
camera thread. To ensure faster synchronization, the cameras are polled in
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reverse order every other time.

Before the initial message from AI to get the cylinder configuration, the
system runs in a special synchronization mode, where it spends nearly all
the execution time waiting for data from the cameras rather than processing.
Then, once the initial cylinder configuration has been detected, the system
switches to the default execution mode, which can be selected as described
in section A.1.2.

The system is designed so that the actual processing of the images can be
easily replaced. All algorithms have to have two parts, one which entails
everything that needs to be done on each frame individually, and one that
does everything that requires both images.

The software system created in this project is able to capture images from
two cameras in a synchronized fashion, and calibrate them for stereo vision,
so that the epipolar lines line up. It can also convert the raw image data into
various color formats, and do color thresholding and edge detection on the
converted images. It can also segment images into blobs, and the distance
to these ”blobs” can be determined, as well as their shape. Figure 4.3 gives
an overview of the system, while figure 4.7 is a more detailed description of
the implementation.

4.5.1 Calibration

Calibration is done by using Boquet’s algorithm available through the OpenCV
library. This is done by first capturing a lot of images of a chessboard pat-
tern, and then running the calibration routines required to calibrate the
images properly. The result is then stored, so that when the setup has been
calibrated once, no further calibration is required.

4.5.2 Image acquisition and adjustment

Image acquisition is done by using the libdc1394 library to capture frames,
and then converting the raw image data to the desired color format. The
image is then adjusted by using the matrices created by the calibration pro-
gram.
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4.5.3 Thresholding

The only objects of interest in the scene are either red, orange or has a high
intensity. This can be exploited by thresholding away all pixels that do not
have a certain red/green ratio, as well as checking if they have a certain
intensity.

All pixels that do not have the desired red-green ratio or the desired intensity
are set to black (0,0,0). Two separate images are created, image α for pixels
of high intensity, and image β with the desired red-green ratio.

4.5.4 Morphology

The morphology operator is only executed on the β image, and then the α
image is merged into it. It is used to remove specular reflections from the
balls, so that balls are segmented properly. Without it, the balls will still
be segmented into regions, but they will have large holes, and the outer con-
tour will often have large cavities, which can make matching the contours
more difficult. The operator used is a ”opening” with a circle as structuring
element. See section 2.10 for more information. Since OpenCV’s implemen-
tation for erode and dilate is used, the size of the structring element can be
adjusted. If the structuring element is too large, balls that are far away will
lose their proper shape, while too small structuring elements will not be able
to mend the balls that are close (and therefore have larger holes). The size
of the structuring element used in the implementation is 5x5, and this was
arrived at through systematic experimentation.

The size will cause the balls that are right next to the camera often ex-
hibits very small holes, but these can easily be discarded when analysing the
contours later.

4.5.5 Color segmentation

The color segmentation, which is probably the step that took the longest to
arrive at, is surprisingly simple. It started off as an attempt for improving
the gradients for edge detection. The balls do not have any hard edges, so
using intensity works very poorly as the intensity gradually changes along
the ball, instead of abruptly changing versus the background. This means
that a lot of research has gone into trying to find a single metric, that could
be represented as a single integer for each pixel, that would give much more
pronounced edges around the edges.
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An approach that compares each R,G,B pixel value individually, and com-
bines them using sum of absolute differences was introduced.

4.5.6 Combination of color difference and Sobel oper-
ator

An approach that works surprisingly well is to combine the basics of the
Sobel operator, with the metric for color difference 2.24.

The sobel operator is replaced by: a b c
d e f
g h i


where the color difference δ is calculated as:

horizontal : δ(a, c) + 2 ∗ δ(d, f) + δ(g, i) (4.1)

vertical : δ(a, g) + 2 ∗ δ(b, h) + δ(c, i) (4.2)

This essentially means that it is a Sum of absolute differences of each in-
dividual color value in a certain pattern. The current implementation is
approximately 2-4 times slower than the Sobel operator.

4.5.7 Color segmentation using scan line

The approach used here calculates the RGB gradient, and then goes through
the image row by row in a scanline fashion, averaging the pixel values between
each area of high gradients. It then proceeds to do the same along each
vertical line in the image, but this time averaging the averaged color values
in each horizontal line. The result is regions of pretty much uniform color,
as long as the thresholds are set low enough.

The main issue with the scanline and color difference implementation is that
if you set the threshold too high, regions will not be segmented properly,
and you risk getting streaking artifacts. These artifacts are much more pro-
nounced than using a slower variance based approach. If the threshold is
set too low, a region might not be properly segmented, and small holes and
irregularities in the color will appear.

It works best with very vibrant colors, and normalization could be an ad-
vantage for better segmentation, but due to illumination causing shadows,
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setting a proper threshold is hard. The result is a much faster segmentation
algorithm that works well when you have objects and backgrounds with very
vibrant and distinct colors.

Cleaning up routines

Running the segmentation routine several times will make segmented regions
even more uniform, and if combined with a cleanup routine of some sort
(like a single black pixel surrounded by the same color on all sides), the
segmentation can be significantly improved.

4.5.8 Finding contours & properties

Contours are found by tracing around all pixel regions of non-zero value.
This is done by OpenCV’s cvFindContour() function, as it provides ways to
exclude regions that are within regions, and it is easy to calculate various
contour properties on it. Moore border tracing was implemented, but due to
time constraints it wasn’t used in the finished system.

4.5.9 Matching contours

The contours are matched using the following properties:

• average color of region

• bounding box

• minimum and maximum disparity (distance should never be below 30
cm, and never above 3 meters).

• minimum rotated rectangle

• center of region

The average color of a region is calculated by taking the neighbouring pixel
of the contour all around the region and averaging it. The region itself
should be pretty much a single color, but averaging avoids irregularities.
The bounding box is merely calculated as described in section 2.12, and the
minimum rotated rectangle is done by OpenCV, which uses rotating calipers.
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4.5.10 Calculating disparity

Once matching contours are found, the disparity between a match in the left
image and the right image is calculated. This is done by checking what the
disparities are for each corresponding epipolar line on the leftmost and right-
most side of the contours. This is put into an array, and only the disparities
with the highest matches is used. This avoids potential irregularities in the
region segmentation, which would have affected the result if an averaging
method had been used.

For a ball that is behind a cylinder (the most common semi-occlusion issue in
this project), the biggest disparity should always be the correct one. There-
fore the largest of the left-disparity and the right-disparity is used as a basis.
Considerable time was spent testing it, and it makes sense intuitively. This
is because when a ball is behind a cylinder, the edge between the ball and the
cylinder will be a point that is further to the right in the left image than in
the right image. The disparity will then be lower than the real disparity. The
other side (that is not occluded by the cylinder), will have a nice properly
segmented edge which gives the correct result. An illustration can be seen in
figure 4.4.

right

camera
left

camera

Figure 4.4: Illustration of how semi-occlusion of a ball behind a cylinder
affects disparity

4.5.11 Calculating relative position and distance

The distance is a linear relation to the disparity. Given by distance =
k

disparity
. This is verified by experimentation in section 5.3. The constant
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k has to be adjusted after recalibration due to small adjustments in view
area etc. For most of the project a k value of 4700 − 5200 was used. The
accuracy is also further discussed in section 5.3.

When the distance is calculated, simple triogonometry is used to figure out
how many pixels offset from the center of the view area the object is.

4.6 Updating position of game elements

After finding the initial cylinder configuration, the placement of all the game
elements is known. Using the absolute position of the robot, and its orien-
tation, it is then possible to figure out which of the game elements should
be visible when a frame is captured. This information can then be used to
update only the elements that are visible. It can also be combined with an
error metric, so that objects that are far away but still within the margin of
error are not updated, since the initial position is most likely more accurate
than the measured one. An example of this is if a ball is 210 cm away, the
margin of error is approximately 20-30 cm, and a measurement of 220 cm
from the computer vision would then be discarded. Generally it is a good
idea not to swamp the AI with too many unnecessary updates.

The steps to update elements is as follows:

• use last known position of all elements

• figure out which elements are within the field of view.

• compare found objects with objects that should be within the field of
view.

• match each found object with the nearest object that should be visible.

• if found objects exceeds objects visible, use an ID of an object that is
not visible anymore, or update the nearest non-visible object.

• send update to AI.

4.7 Using position and orientation

The following properties are known:

• The camera height vs. the ground
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• The camera angle vs. the ground

• The camera’s position relative to the rotational axis of the robot.

• The placement of the borders on the table

The robot also has systems to figure out its own position and orientation,
as well as the opponent’s position. All this information can be exploited to
figure out which regions of the image are undesireable.

The vision system gets the robot’s own position and orientation 100 times per
second, and the opponents position 10 times per second. All the information
is time stamped and put into a FIFO buffer that makes it possible to figure
out where the opponent and our own robot was at a specified time. The data
is also interpolated in a linear fashion to improve the resolution, as most of
the robot’s movement is constant.

4.8 Mapping out the opponent

The enemy robot can be made out of wood, steel, plexi or a number of other
materials, and also have very different shapes. It is therefore easier to try to
map out the robot from the images, rather than trying to separate it from
the playing elements. It is done by combining the absolute position of the
opponent and the robot to figure out the relative position, and then mapping
it into the image. The robot’s maximum circumference is 1200 mm, and all
the robots are very compact and mostly circular, so a virtual box of 40 cm
width was created around the enemy.

4.9 Mapping out everything not on the play-

ing field

Making sure that the objects seen are part of the playing field is done by
drawing a line a few centimeters below the borders of the playing field, and
checking each contour to see if the minimum of the bounding box is below
or above the line. If it is above - the object is not on the playing field, if it
is below - it is.
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4.10 Finding the start configuration

The robot has a fixed starting position and orientation on each side. This
means that no recognition is required to figure out if a cylinder at a certain
position is white or black. All that needs to be done is to check specific
regions of the image and calculating the average intensity.

Since the robot is placed so that at least half the table is visible, and the
cylinder configuration is mirrored along the center of the table, it is possible
to figure out the placement of the black cylinders from the starting position.

Once the average of each region is checked, the four darkest regions are
marked as black, while the rest is marked as white. This means that even if
one cylinder is not on the table, you will still get the correct configuration.

This approach is similar to what was done by[17], and in the Eurobot com-
petition, the starting position was found without error every single time.

Even if the routine is simple, it is the most important contribution of the
computer vision system, as without it, the robot has to avoid all cylinders,
and not just the black ones. This causes the driving route to become ex-
tremely complicated.

Figure 4.5: Checked image regions drawn in blue

4.11 Other features

The main program can also run various other algorithms instead of finding
objects. It can create anaglyphic stereo images, run a thresholding test
routine to adjust the color recognition parameters, as well as running edge
detection with colors for direction, and outputting adjacent colors around
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edges. It is possible to run a standard Hough transform with a fixed radius for
testing purposes. There are modes to find circles in the image using the hough
transform, and finding corresponding circles. The Fast Finding and Fitting
algorithm is implemented, and color segmentation without thresholding is
also available.

A separate program to calculate the Fourier transform of images, and doing
inverse filtering was created separately for testing the reduction of horizontal
blur. It merely takes in two images on the command-line, calculates the
transform of the incoming image, and then runs inverse filtering with a certain
blur factor. This was done separately because restoring images is much easier
done in a controlled environment, rather than with live images.

4.12 Communication

Computer Vision system
Navigation system

AI
robot position and orientation

w/timestamp

enemy position

w/timestamp

request for cylinder configuration

cylinder configuration

pick up element

position of white cylinders

position of tomatoes and oranges

stop message

1024x768 16-bit YUV image w/timestamp

camera 0 camera 1

1024x768 16-bit YUV image w/timestamp

Figure 4.6: Overview of the system’s external communication

The computer vision system communicates with the navigation and artifi-
cial intelligence by using POSIX messages. The navigation system receives
odometry readings with timestamps from the sensor system, as well as rel-
ative positions to the enemy robot from a laser beacon system. This is
converted into absolute positions, and sent to the computer vision system. 4

The enemy position is sent approximately 10 times per second, while the
robot’s own position is sent 50-60 times per second. This information is then
used by the computer vision system to figure out where the cameras were
looking at the time of capture.

4The sensor system as well as the gateway for communication was written by Ole
Lillevik, while the navigation system was written by Kristin Haaland.
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4.12. COMMUNICATION

The artificial intelligence only sends requests for the initial cylinder configu-
ration, the stop message, as well as a message every time it thinks an object
has been picked up.

The information the artificial intelligence expects from this system is only
related to the game elements and their positions.

main cam #0

wait for

camera ready

start capture

match contours

calculate average disparity

calculate distance and relative position

interpolate own position at the time of capture

send cylinder and ball positions to AI

wait for incoming frame

remap image

color conversion

color thresholding

opening (morphological)

color difference calculation

color segmentation

color recognition

update own position, enemy position

create thread()

create thread()

find contours

calculate contour properties

calculate absolute position of objects

find which previously found objects should be visible

update object positions

wait for incoming messagecam #0

wait for incoming frame

remap image

color conversion

color thresholding

opening (morphological)

color difference calculation

color segmentation

color recognition

find contours

calculate contour properties

create thread()

Figure 4.7: Complete overview of the system during processing
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Chapter 5

Experiments

This chapter describes all the various steps of the solution that were tested,
as well as some solutions that didn’t work out too well, and also some pre-
liminary results from the algorithm that locates the positions of spherical
objects.

5.1 Calibration

Substantial time was spent trying to calibrate the cameras properly. Find-
ing a good way to calibrate the cameras could be a project on its own. It
was therefore decided to try to find a decent pre-made implementation of
camera calibration. OpenCV has a reasonable implementation of Boquet’s
algorithm[13, p433]. To do calibration a stable camera mount is required,
and preferably the cameras should be as aligned as possible to maximize the
usable view area. The details of the camera-mount are explained in section
4.3.4. A pattern for calibration was created by printing a chessboard pattern
on an A3 size paper, and gluing it to a cardboard-like surface. It is very
important that the pattern is as flat as possible, or else the calibration could
be more inaccurate than what is acceptable. Figure 2.4.4 shows an example
from rectification input.

Testing shows that for best results one should try to take pictures of the
chessboard when it occupies pretty much every part of the image. Images
that are blurry because of movement during exposure needs to be excluded,
or else the calibration becomes inaccurate.

The results of the calibration are stored as matrices describing how much
each pixel should be shifted vertically and horizontally. These can then be
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5.2. ANAGLYPHIC STEREO

used to remap pixels on the fly by the stereo vision system.

5.2 Anaglyphic Stereo

To show of the results of simple rectification, real-time anaglyphic images
were produced. An example can be seen in figure 5.1. Anaglyph images
are simply two images superimposed on each other, with a certain offset to
provide a 3D effect. This was achieved by simply converting the incoming
camera frames to RGB, and taking the red channel from the left image, and
the blue and green channel from the right image, superimposed on each other.
Ordinary red and cyan 3D glasses must be worn to see the 3D effect. Because
using glasses makes the images slightly darker, all the color channels were
multiplied by 1.1 to increase the brightness slightly.

By using 3D glasses, you can get a rather good 3D effect, albeit with some-
what reduced colors. This is by far the cheapest way to achieve 3D images,
as the only requirement is some semi-transparent plastic in the right colors.

Figure 5.1: The lab in anaglyphic stereo

5.3 Triangulation accuracy

To test the accuracy of the stereo setup, the images from the cameras are
thresholded with a minimum value for chromatic red, and testing is done
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5.3. TRIANGULATION ACCURACY

with a red cube. Then, using Canny edge detection with parameters (30.0,
100.0) edge images are obtained. The images are then run through a simple
scan-line algorithm along the epipolar lines that checks the difference between
edge n in the left image, and edge n in the right image. The result is simply
the largest disparity found. Figure 5.2 shows the test in action.

Using this, the distance Z, given the right k, is:

Z =
k

disparity
(5.1)

The error, due to aliasing, and the fact that one point might be two pixels
in one image and one pixel in the other, is assumed to be:

E = | k

disparity
− k

disparity − 1
| (5.2)

and

E = | k

disparity
− k

disparity + 1
| (5.3)

Figure 5.2: Initial testing distance to cube, disparity=138, measured dis-
tance: 41.7 cm, real distance: 47 cm

5.3.1 Distance

As figure 5.3 shows, the disparity is given by disparity = distance/k, where
k is dependent on the focal length and the distance between cameras. Given
this, the distance, Z, can then be calculated by equation 5.1. This is also
confirmed by (2.10). For later use, with 800x600 resolution and a distance
between cameras of 11.5 cm, the constant had to be increased to 7500. This
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5.3. TRIANGULATION ACCURACY

essentially doubles the practical depth resolution, but as can be seen from
the graph, the depth resolution decreases very rapidly, and even without
any aliasing issues, an increase of 1 in disparity is over 20 cm at 4 meters
distance, and over 40 cm with the lower resolution and shorter distance
between cameras.
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4000/x

Figure 5.3: Disparities at various distances, distance between cameras d = 8
cm, resolution 640x480, see appendix B.1 for raw data

5.3.2 Position

When we have the distance, the only thing we need to calculate is how many
pixels a plane at a certain distance would occupy, and from that calculate the
positions in the horizontal and vertical direction. The view area is calculated
by equations 2.11 and 2.12. The position in the horizontal and vertical
direction can then be measured by finding the middle and diving the view
area by the amount of pixels in each direction.

posx =
coordinatex − width

2

viewx
(5.4)

posy =
coordinatey − height

2

viewy
(5.5)
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5.4. EDGE DETECTION WITH DIRECTION AND ADJACENT
PIXELS

5.4 Edge detection with direction and adja-

cent pixels

As edge detection does not provide enough information on its own to be very
good for a more general correspondence analysis, some work was put into
getting edge direction, and also the pixel colors of adjacent pixels.

Finding the edge direction can be done easily by doing a Sobel mask in the
horizontal and vertical direction for each matched edge, by for example the
Canny edge detector. Finding the adjacent colors is done by finding the edge
direction, and checking the pixels on each side of the edge (along the normal).
The color on the edge itself seemed rather irrelevant. Figure 5.4 shows the
two algorithms in action.

(a) Original image (b) Edge-adjacent colors

(c) Edge direction

Figure 5.4: The original image, the colors adjacent to the edges, and the
direction of the edges.

5.5 Color recognition

For color recognition, the easiest approach was to take advantage of the YUV
space, mapping chromatic blue and chromatic red into a 2D matrix. I also
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5.6. BLOCK MATCHING

added the brightness at the bottom of the thresholding window. This is very
similar to working on a normalized RGB image when mapping them into
rg-space. However, using YUV gave more accurate results. An example is
shown in figure 5.5.

(a) image before thresholding (b) thresholding window

(c) image after thresholding (d) thresholding window

Figure 5.5: Color recognition in action, showing the image before and after
thresholding, the image is shown with the YUV values mapped directly to
RGB, G=Y, R=U, B=V, not properly converted.

5.6 Block matching

For block matching it was attempted to match blocks of various sizes with
several different similarity measures, such as SAD, but there seems to be too
many false positives. There is an amazing amount of similar regions in a
typical image, especially when the environment is as free of texture as the
playing field previously described. The use of edge data, as well as edge
direction has been attempted, and requires further attention.
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5.7. OTHER WORK

Compared to using more advanced algorithms, block matching seems far
better suited for obstacle avoidance than object recognition, as you seem to
end up primarily with unrecognizable blobs of depth data, rather than easily
recognizable shapes.

5.7 Other work

Some current implementations were tried from Daniel Scharstein’s website
about Stereo Vision[11], which has a lot of comparisions of different corre-
spondence algorithms. This was mostly to see what one could expect from
simply trying to create depth images. All the examples took from five min-
utes to one hour to execute. The algorithms are designed to be accurate,
not fast. They use a Markov Random Field, which is essentially a graphical
model with a set of random variables have a Markov property described by
an undirected graph. Output of the standard MRF algorithm can be seen in
figure 5.6.

(a) left image (b) right image

(c) output of MRF algorithm,
depth resolution: 16, runtime:
63.7 seconds

(d) output of MRF algorithm,
depth resolution: 256, runtime:
765.7 seconds

Figure 5.6: Testing of one algorithm using Markov Random Fields
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5.8. HORIZONTAL MOTION BLUR

5.8 Horizontal motion blur

During testing, it was noticed the USB cameras required quite a long expo-
sure time to get proper images, and using inverse filtering to counter-act the
effects of motion blur was explored.

Using the camera setup with the new firewire cameras this is not a problem,
but the results from the testing might still be of interest. The results are
shown in figure 5.7 . As can be noted, the inverse filtered image is much
sharper than the blurred image, but there are a lot of artifacts. Inverse
filtering without a threshold proved futile, as the noise exceeded the signal in
the high frequency areas in the Fourier transform. A threshold was devised,
to avoid using the filter where the noise exceeded the signal.

(a) original image (b) with horizontal motion blur of
L=5

(c) inverse filtering

Figure 5.7: This shows inverse filtering in action. The improvement is very
visible on screen, but due to the printer having a tendency to introduce
artifacts of its own, and blurring, it’s very hard to see in print.
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5.9. CORRESPONDING CIRCLES

5.9 Corresponding circles

Since part of the problem to be solved is to track balls, a fast way to both
detect and match circles in the corresponding images seemed appropriate.
This was done by performing color thresholding on the images from both
cameras, and then doing a gaussian blur, followed by a Canny edge detector
to extract edges, gathering evidence as to where potential circle centres might
be. Finally the Hough transform was performed for the circles that has more
matches than a certain threshold.

The evidence is gathered by exploiting the fact that the normal to the tangent
of a circle, will go through the center of the circle. Finding the normal (or a
rough approximation of the normal) can be done by calculating the direction
of an edge. By drawing a line from the minimum radius to the maximum
radius, and increasing each point, we will get a definite spike at the centre
of the circle.

Once we have created an accumulator image in Hough space, the data is
cleaned up by making sure that each circle center checked for has the largest
accumulated function in its 8 connected neighborhood.

The color thresholding improves the robustness of the algorithm quite a lot
as the edges stay sharp instead of being reduced to a blurry line. The thresh-
olding is set so that there are a few false positives in the real world, but on
the field used in the competition, the only objects that are even remotely
red, are the balls on the ground that we are tracking. Even with a lot of
unnecessary pixels from over-thresholding, the algorithm performs very well.

Substantial testing was performed with both a moving camera mount, and a
moving ball, and the results look very promising.

See figure 5.9 for an example.

61



5.9. CORRESPONDING CIRCLES

(a) left image (b) right image

(c) left image after thresholding (d) right image after thresholding

(e) matched circle in both images

Figure 5.8: Corresponding circles algorithm, showing the input images, the
color recognition, and the matched circle.
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5.10. COLOR SEGMENTATION

5.9.1 Initial Accuracy testing

Position
Data Real Triangulated

disparity Xl Xr X Y Z X Y Z
96 350 446 0 cm -1.5 cm 80 cm 2.239700 -5.262307 78.125000
96 462 558 14 cm -1.5 cm 80 cm 16.175612 -5.262307 78.125000
96 222 318 -15 cm -1.5 cm 80 cm -13.687056 -5.262307 78.125000
128 328 456 0 cm -1.5 cm 60 cm 1.119850 -4.172258 58.593750
128 162 290 -15 cm -1.5 cm 60 cm -14.371409 -4.285022 58.593750
126 546 672 20 cm -1.5 cm 60 cm 21.709686 -4.353038 59.523810
188 304 494 0 cm -1.5 cm 40 cm 1.194507 -3.722390 39.473684
214 286 500 0 cm -1.5 cm 35.5 cm 0.725635 -3.574715 35.046729

Table 5.1: Triangulation testing with corresponding circles algorithm, 800 x
600, distance between cameras=12.5 cm, X is the horizontal position, from
left to right, Y is the height, going from top to bottom, and Z is the depth

From the initial results, listed in table 5.1, it seems that the center between
the epipoles is slightly off from what is expected, slightly higher up and to
the left. The triangulated distance is consistently below the real, measured
values, which means that the constant for disparity to distance conversion
needs minor adjustments. This is verified by the fact that the offset is larger
at greater distances, as each pixel further away is represents a longer distance
than closer to the cameras.

5.10 Color segmentation

As can be seen, the scanline approach works rather well, even though it does
suffer from some pepper noise. This is due to the fact that the scanline
approach is not very robust when it comes to noise in the input image.
The playing field also had some dust and small parts of wood lying on the
table, also affecting the segmentation. The other approach, described in
2.13 is however much better at dealing with noise, but the approach is also
significantly slower.

Normalization was attempted to in order to improve the segmentation, but
even through systematic tuning, it was never possible to normalize an entire
ball without turning the black cylinders white. The result of normalizing the
rectified input image can be seen in figure 5.10.
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5.10. COLOR SEGMENTATION

(a) rectified input image

(b) Color segmentation using the approach from sec-
tion 2.13

(c) Color segmentation using this report’s scanline ap-
proach

Figure 5.9: Color segmentation using the approach described in section 2.13
took about 1200 ms to execute, while the scanline approach took 55 ms (20 ms
calculating gradients, 20 ms for one scanline iteration, 15 ms for smoothing)
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5.10. COLOR SEGMENTATION

Figure 5.10: Normalization of the rectified input image. The thresholded
pixels are painted blue.

Figure 5.11: Color Segmentation at IDI’s Computer Vision Lab
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Chapter 6

Solution

In this chapter the results of the final solution is presented. It starts off
with showing how distances to red balls, orange balls and white cylinders are
calculated, and also shows some cases where the segmentation does not work
as well as expected.

All the tests are performed with a threshold of 70.0 for the scanline color
segmentation.

6.1 Distance precision

Getting the disparities and the relative pixel positions to match up is possible
in theory, but it requires knowledge such as the exact focal length, size of
the sensor and the distance between cameras. None of these parameters
are that hard to come by but problems arise when rectification is applied.
Atleast in the implementation used here the rectified image is scaled by a
certain factor, and this causes calculations such as focal length and size to
become rather useless. It is also difficult to measure distances accurately. The
distances and relative position is therefore achieved by systematic tuning of
the disparity/distance factor, and also adjusting the view angle.

The fluctuations in the readings are apparent in table 6.1.

The coefficient k in equation 5.1 was 4750.0 in this test. Better figures can
be achieved by adjusting the coefficient further.

The calculations are also affected by the 23 degree tilting of the cameras
towards the ground. By using simple trigonometric functions the solution
ought to be

√
Z2 − (35− 5)2, where 35 is the height of the cameras vs. the
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6.1. DISTANCE PRECISION

Figure 6.1: Distance to objects in centimeters, with relative position

Position
Item Real Position Distance horizontal offset
item Z X Zmin Zmax Xmin Xmax

Red 150 cm -20 cm 147.7 cm 151.9 cm -18.6 cm -19.1 cm
Orange 175 cm 30 cm 177.6 cm 183.9 cm 28.4 cm 29.5 cm

Red 125 cm 30 cm 126.75 cm 129.8 cm 27.3 cm 28.01 cm
Orange 100 cm -20 cm 99.3 cm 101.1 cm -18.2 cm -18.7 cm

Red 75 cm 30 cm 78.9 cm 80.0 cm 25.9 cm 26.4 cm
White (Bottom) 50 cm -20 cm 53.9 cm 55.9 cm -18.0 cm -19.1 cm

White (top) 50 cm -20 cm 51.5 cm 53.2 cm -18.0 cm -19.1 cm
White 150 cm 80 cm 156.4 cm 151.9 cm 75.5 cm 77.8 cm

Table 6.1: Distance and positions readings, with fluctuations

table, and 5 cm is the height to the center of a ball. Testing data has shown
that due to rectification, this is not correct.

The relative positions, which seems to measure marginally too low, is deter-
mined by the calculated distance, and the offset in pixels for each camera.
The relative position is calculated for both the left and the right image, and
then averaged.

The inaccuracy in the measurements appears to be greater at the outskirts of
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6.1. DISTANCE PRECISION

relative position from middle point

distance

Figure 6.2: Distance and relative position from centre

the field of view than at the center. The most likely cause of this is that the
chess board used for rectification is not perfect (it warps some over time), or
that not enough calibration was done.
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6.2. DISTANCES TO SEMI-OCCLUDED BALLS BEHIND CYLINDERS

6.2 Distances to semi-occluded balls behind

cylinders

In this test case, the most typical arrangement for the computer vision system
is introduced. Quite a lot of the red balls are occluded behind white and black
cylinders, while all the cylinders are standing upright. All balls but one is
matched properly.

(a) left image (b) right image

(c) left image after thresholding (d) right image after thresholding

Figure 6.3: Input to corresponding objects and distance calculation
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6.2. DISTANCES TO SEMI-OCCLUDED BALLS BEHIND CYLINDERS

(a) left image after color segmentation (b) right image after color segmentation

(c) Distance to objects in centimeters with relative position

Figure 6.4: Distance to objects in centimeters, with relative position
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6.3. SEPARATING OBJECTS WITH SEGMENTATION

6.3 Separating objects with segmentation

(a) input

(b) without morphological operators

(c) with morphological operators

Figure 6.5: Segmentation issues with and without morphological erode-dilate.
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6.3. SEPARATING OBJECTS WITH SEGMENTATION

Separating objects with the color segmentation works quite well in most
cases, but when the balls get very close to each other, some issues do occur.

As can be seen in figure 6.3, all the red balls are a single region. This means
that the stereo vision system will only get a distance to the group of objects
as a whole. Analysing the regions’ contour, as well as the size of the region
vs. the distance would at least register it as multiple objects. The gradients
in figure 6.6 are extremely weak between the balls, and this makes it virtually
impossible to separate the regions without resorting to a priori information
about the regions to segment. An example where it works well is presented
in figure 6.7.

(a) Balls up close (b) RGB gradient strength

Figure 6.6: The RGB gradient in the image
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6.3. SEPARATING OBJECTS WITH SEGMENTATION

(a) left image (b) right image

(c) left image after color segmentation (d) right image after color segmentation

(e) distances and position

Figure 6.7: Color segmentation
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6.4. TRACKING OBJECTS WHILE MOVING

6.4 Tracking objects while moving

Tracking objects while moving poses no noticeable issues to the computer
vision system, as the shutter time is too low to introduce blurring. There are
no noticeable differences between images captured while moving or standing
still. See appendix D for a video of the system with moving objects.

The issue with such a low shutter time, is that if the system is used indoors
under poor lighting conditions, the scenes might be too dark. Some of this
could be solved with additional illumination, heavier amplification of the
image signal, or by using a longer shutter time, but not so long that the
blurring effects cause issues.

6.5 Using trigonometry

A system to calculate where objects would appear in the image, provided the
position and orientation of the robot and the position of objects is known
has been created. It was originally intended to check certain regions of the
image for objects, but the points could be up to 10 cm off far away from the
robot, but just a few centimeters off up close. So therefore this approach was
not possible.

This system was later used to figure out if an object that was detected before
should be visible in the current frame, and calculate where the opponent
robot appeared in the image, to map out undesireable regions in the image. It
was also used to draw corners around the table to avoid calculating distances
to objects not on the table.

The system requires a nearly perfect timestamp calculation for its own po-
sition as well as the opponent. This proves rather difficult, as the Firewire
bus timestamps frames upon arrival at the other end of the bus, and there
are also in the timestamps for position that are recieved from the navigation
system.

During the development of this project, a 2D Lidar was used to provide
distances to a dummy opponent, to check if the opponent robot was mapped
out of the image correctly by the stereo vision system mentioned above.
Figure 6.8 shows an example of the output of the lidar.
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6.6. CYLINDER ORIENTATION

Figure 6.8: Example of lidar output. The outer edges of the green area
denotes obstacles located approximately one meter away from the lidar. The
blue lines are the view angle (240 degrees).

6.6 Cylinder orientation

As can be seen in figure 6.9, calculating the minimum rotated rectangle as
described in section 2.12.1 can be used to determine various properties of a
contour. The threshold used in this test was set higher, as the regions tend
to degenerate when the cylinders are lying down. An example of this can be
seen in figure 6.7.

Using the minimum rectangle, the major and minor axes are easily found,
as well as the center. A minor vs. major axis calculation can be used to
determine if a ball is occluded behind an object, or if it consists of several
objects.

The orientation is merely tan δ(x)
δ(y)

, and if the orientation has an angle over a
certain treshold, it can be determined that the object is lying down. If an
object is lying down, facing directly away from the camera, it will have the
same orientation as the standing cylinders, but this can easily be discerned
by checking how large the major axis is versus the minor axis.

The orientation data from both cameras can probably be used to find even
more properties of the regions, but this has not been explored.

75



6.6. CYLINDER ORIENTATION

(a) Various lying cylinders and balls

(b) Standing cylinders and occluded balls

Figure 6.9: Various minimum rotated rectangle calculations
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Chapter 7

Discussion

7.1 Recognition

The current solution is only designed to find distances to simple monocolored
objects, but it can also find distances to more complex objects.

It should be easy to expand it to more general uses as long as the objects
have strong, distinct colors.

The implementation have some issues that should be resolved. When balls
get too close to each other, the segmentation tends to fail, and two balls
end up as a single object. Another issue is if the segmentation maps two
balls into a single region in one image, and into two separate regions in the
other image. In such a case, the objects will not correspond, and no distance
is calculated. This could either be solved by trying to improve the color
segmentation, or by looking more into the contour properties.

The segmentation performance could have been improved by using a longer
shutter time on the cameras, giving better and more distinct colors, but then
the exposure time would have been too high to avoid blurring during fast
movement.

Regions are not really recognized beyond the fact that they are red, white
or orange. It is easy to figure out if an object is circular or elongated, but
partial occlusion can cause balls to become very elongated, and cylinders can
be come rather compact and squared. Only the color, center position and
bounding box was therefore used to match objects. The disparities were also
only checked within an expected distance of 0.4 m to 3 m.

As such, a ton of additional work could be done to find distances to a large
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7.2. PERFORMANCE

variety of objects. If the segmentation of an object is very accurate, you
could also get the distance to an object at each epipolar line.

7.2 Performance

Processing a set of frames and finding the distance takes between 130 ms
and 170 ms. This gives an effective frame rate of 5-7 Hz. This is more than
fast enough to do the tasks in this project properly, and tracking of objects
still look rather smooth. The AI typically spends up to three seconds to
update the plan, and only receives updates from the navigation system a few
times per second. With the frame rate set to 7.5 fps, a processing time of
maximum 133 ms would be required to avoid dropping frames. This could
have been achieved either by dropping the resolution to 640 x 480 (which
is less than half the pixels of 1024 x 768), and also potentially not using
the morphological operators. Dropping the resolution would have caused
the objects to become very small, and it would have then been necessary to
increase the zoom on the lenses to see objects at a distance properly. This
would have caused the view area to drop signficantly.

Not using the morphological operators would have resulted in much worse
segmented regions for the balls, but in most cases the objects would have
been detected just as nicely as without. A lot of ideas for improving the
actual runtime without sacrificing any recognition performance is presented
later in section 8.1. An overview of the run-time for various operations is
listed in table 7.1.

Operation Time (typical)
Remapping (based on calibration) 9-11 ms
YUYV → RGB 6-9 ms
Morphological operators 40-60 ms
RGB gradient 20 ms
Color Segmentation 20 ms
Finding contours 4 ms
Calculating properties and distances 1 ms
GUI drawing 20 ms
Waiting and other 0-40 ms

Table 7.1: Performance for various operations

Of special note is the GUI drawing, which is essentially just a delay intro-
duced to show images with OpenCV. In actual use (where no human inter-

78



7.2. PERFORMANCE

action is possible), showing the images can be omitted. The remapping can
also easily be reduced by not calculating the remapping, but just having a
lookup table of where each point is shifted.
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Chapter 8

Conclusion

My idea for this project started off with a rather optimistic idea of creating
depth images and then locating objects based on the depth information.
This plan was quickly abandoned. It takes too much time to get low-level
information directly from block-matching or edges.

As time progressed, it was attempted to match circles in each image, and
then matching them based on the center of the circle and the radius. This
restricted the system to only work on a very limited set of problems, but on
the plus side it became quite easy to verify the results as the circle size could
also determine the distance to the object. Furthermore, actually getting
decent edges, and avoiding false positives proved quite difficult in complex
scenes.

A solution that combines the creation of depth images of all objects with
the rigid approach of only matching objects of certain shapes was devised.
It uses color information to segment various objects into monocolored blobs.
These blobs can then be matched using numerous properties such as center
position, size, orientation, color, elongatedness, and an endless supply of
contour matching routines. The method of matching these blobs can be
improved in numerous ways, and it shows good promise for further research.

The system forms a basis that could be useful in a number of higher level
tasks, and distances to just about any object can be found as long as the
region is segmented properly. For a lot of objects, several regions will be
segmented, making it possible to get distances to different parts of the object.
For each individual region it is also possible to calculate the distance at each
epipolar line in the image, even though this is vulnerable to noise if the
segmentation is less than perfect.
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8.1 Future Work

8.1.1 Segmentation

Looking more into the color difference, and maybe making a second color
gradient image comparing pixels at different distances, might improve the
robustness, provided there is enough available processing power. Perhaps
checking several lines at a time instead of one could also be a possible solution
for some tasks. This would reduce the chances of not being able to segment
regions properly, but the regions that were segmented would have a more
crude contour. This crude contour would probably be improved by region
growing.

8.1.2 Performance

Performance could be improved by parallelizing the image processing further.
One approach might be to split each camera’s frame into two separate buffers,
and doing the first operations in four threads, then some in two threads, and
also perhaps trying to do the object matching and measuring in two threads.

The color gradient calculation can most definitely be improved by looking
more into optimizing sum of absolute differences calculations, and the place-
ment of the threading barriers could be redesigned to reduce waiting time
for threads.

Furthermore, since the GUI drawing requires a 20 ms delay, doing all drawing
in a separate thread from the object correspondence might also reduce the
computation time a small amount.

8.1.3 Recognition

Recognition wise, the system could be improved in numerous ways. When
objects are not segmented properly, so that two balls end up as a single
region, it should be possible to analyse the contour of the region,seeing if the
distance to the entire region is consistent, or if there is a distinct difference
in disparity from one part of the contour to another.

A priori information about the size of the objects could also be used, once the
distance is calculated. When you know that the distance to an object is 10
cm, it is trivial to determine how many pixels it should correspond to in the
image, and use that information to determine that what you have segmented
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8.1. FUTURE WORK

is not one single object.

Also, when two objects are segmented properly in one image, but seen as one
object in the other, the metric used to match contours will fail. One solution
to this is to figure out which regions do not match in an image, and trying
to see if several objects in one image are in the same horizontal area as one
object in the other.

For applications other than finding simple objects such as monocolored ob-
jects, and more complex objects, some shape recognition approaches could
be used.
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Appendix A

Usage

A.1 Main

Usage: ./main <color> <option>

A.1.1 color input

1. BW (Y → intensity, rest discarded)

2. YUV (| Y | U | Y | V |→| Y | U | V | Y | U | V |)

3. RGB (| Y | U | Y | V |→| R | G | B | R | G | B |, conversion using
integer-only maths)

4. YUV (thresholding enabled)

A.1.2 option

• 0: capture

• 1: anaglyphic stereo

• 2: Canny edge detection with edge direction

• 3: set colors for thresholding (and testing)

• 4/5: hough matching correspondence

• 6: Hough Circle (specific radius)
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A.1. MAIN

• 7: Hough Circle (unknown radius) (SLOW!)

• 8: Hough Circle (unknown radius, thresholded) (SLOW!)

• 9: Block-matching correspondence (current implementation is slow,
working poorly.)

• 10: Canny edge detection with adjacent colors

• 11: Edge Block matching

• 12: Harris Corner detection

• 13: Normalization

• 14: Color Segmentation (R.E. Blake)

• 15: Fast Finding and Fitting - Symmetrical shape tracker (Circles)

• 16: Color recognition using HSV space + edges

• 17: Color segmentation + hole filling + smoothing

• 18: Color segmentation + smoothing (used to show segmentation re-
sults)

• 19: Normalization and RGB Gradient

• 20: Find cylinders

• 21: Find game elements (SOLUTION)

• capture (produces .png images for later calibration)

As can be seen, there is a few more implemented features in this list than
what is described in the report. This is due that a lot of them are just minor
variations of eachother, and some are parts of full implementations.

The most important options are 18, which is the color segmentation, and 21
which finds the game elements, and the distances. All of the later routines
assume that the color input is RGB (2).

All functions except capture require mx1.bin, mx2.bin, my1.bin, my2.bin
Please note that only a few combinations of colors and options actually work.

87



A.2. CALIBRATION

A.2 Calibration

First capture images, and store them in a list called calibration images.txt,
then run ./calibrate, remove all images that it is unable to match, and hope
for the best.

the calibration writes 4 binary matrices with coefficients:
remapping in the x-direction: mx1.bin, mx2.bin
remapping in the y-direction: my1.bin, my2.bin

A.3 Example run

Tracking of Objects in 3D using Stereo Vision

(C) 2009-2010 Kai Hugo Hustoft Endresen. All Rights Reserved.

Color conversion options:

0: YUYV->BW

1: YUYV->YUV

2: YUYV->RGB

3: YUYV->YUV (thresholded)

Color[0-3]:

3

Algorithms/Options:

0: capture

1: anaglyphic stereo

2: Canny edge detection with edge direction

3: set colors for thresholding (and testing)

4/5: hough matching correspondence

6: Hough Circle (specific radius)

7: Hough Circle (unknown radius) (SLOW!)

8: Hough Circle (unknown radius, thresholded) (SLOW!)

9: Block-matching correspondence (current implementation is slow, working poorly.)

10: Canny edge detection with adjacent colors

11: Edge Block matching

12: Harris Corner detection

13:

14: Color Segmentation (R.E. Blake)

15: Fast Finding and Fitting - Symmetrical shape tracker (Circles)

16: Color recognition using HSV space + edges
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A.3. EXAMPLE RUN

17: Color segmentation + hole filling + smoothing

18: Color segmentation + smoothing

19: Normalization and RGB Gradient

20: Find cylinders

21: Find game elements (SOLUTION)

Option[0-21]:

And when the program is exitting the output is as follows, provided every-
thing works out nicely:

waiting for threads to finish..

capture thread for camera 1 stopped.

capture thread for camera 0 stopped.

freeing memory

all done.

Also 4 windows are presented,”left image”,”right image”,”rectified left”, ”rec-
tified right”, ”disparity” and ”location”.

The left and right window shows the incoming video stream, with color
thresholding (if applied), the ”rectified left” and ”rectified” right shows the
segmented images, while ”disparity” shows the matched objects and their
distances.

To capture the image you are looking at you you can type ”c”, and to quit
the application press ”q”. This needs to be done with one of the windows
active, not in the terminal, because OpenCV’s window displaying routines
are used to handle input. Buttons such as ”y,h,u,j,i,k” can be used to adjust
the view height, downwards angle of the cameras as well as the focus length,
for mapping out objects in the scene.
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Appendix B

Measurements
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Measurements
distance (cm) disparity (pixels)
020 209
025 165
030 141
035 120
060 79
092 44
120 38
121 37
122 37
123 36
124 36
125 35
127.5 35
129.5 34
131.5 34
135.5 33
141.5 31
146.5 30
151.5 29
156.5 28
166.5 26
176.5 25
186.5 24
196.5 22
206.5 22
216.5 20
226.5 20
227.5 19

Table B.1: Disparity measurements with distance between cameras of d=8
cm, and a resolution of 640x480.
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Appendix C

Code

C.1 Code overview

File Purpose
image.cpp/.hpp Data structures for easy

pixel access
main.cpp mostly code related to dis-

playing results and starting
threads.

camera.cpp opening capture devices,
setting camera properties.

individual processing.cpp color conversion, remapping
and parts of the algorithms
that do not require both im-
ages.

conversion.cpp Color conversion, conver-
sion between data struc-
tures

correspondence.cpp all algorithms related
block-matching, thresh-
olding, anaglyphic stereo
etc.

hough.cpp/.hpp Various implementations
of Hough transform and
derivates.
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C.1. CODE OVERVIEW

segmentation.cpp/.hpp Color segmentation imple-
mentation as well as various
routines relating to color
recognition.

board.cpp/.hpp Routines to map out the op-
ponent robot from the im-
age, as well as things not on
the table, as well as finding
the initial cylinder configu-
ration.

ground truth.cpp/.hpp Routines to calculate image
positions from real coordi-
nates, and real coordinates
from image position.

state.cpp/.hpp access to variables relating
to state in a threadsafe fash-
ion.

position.cpp/.hpp Routines to interpolate own
and enemy position, as well
as camera position relative
to the robot’s rotational
axis.

communication.cpp/.hpp POSIX message handling
for communication with the
navigation system and AI.

recognition/game elements.cpp/.hpp Contains the routines for
finding and matching ob-
jects on the playing field, as
well as their distances.

canny.cpp/.hpp Canny edge implementa-
tion (not currently used,
OpenCVs implementation,
cvCanny is much faster)

calibration.cpp Calibration implementa-
tion, just a modification of
the examples in [13, p433]

inverse filtering.cpp Inverse filtering test, re-
quires FFTW3.
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C.1. CODE OVERVIEW

position generator.cpp/.hpp Program to generate posi-
tion data from testing from
2D Lidar readings. It pre-
tends to be the navigation
system, so that various test-
ing can be done.

Since the amount of code is rather huge, it is only available electronically
through DAIM, or on CD. The CD should be in appendix D.
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Appendix D

CD

The CD contains two video files, one which shows the color segmentation
in real-time, and one showing the distance to objects in movement. It also
contains the source code for the stereo vision system, the source code for the
dummy position generator, and the required files from the gateway on the
robot, which all the different modules on the robot requires to communicate
with each other. The structure is as follows:

src/computer_vision/

src/gateway/

src/lidar/

src/firewire_control/

movies/
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