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We introduce two versions of a renormalization group scheme for the equal load sharing

fiber bundle model. The renormalization group is based on formulating the fiber bundle

model in the language of damage mechanics. A central concept is the work performed

on the fiber bundle to produce a given damage. The renormalization group conserves

this work. In the first version of the renormalization group, we take advantage of ordering

the strength of the individual fibers. This procedure, which is the simpler one, cannot be

generalized to other fiber bundle models such as the local load sharing one. The second

renormalization group scheme based on the physical location of the individual fibers may

be generalized to other fiber bundle models.

Keywords: fiber bundle model, renormalization group, order space, real space, damage mechanics, order
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1. INTRODUCTION

In an age where computer modeling of fracture and material breakdown is reaching a stage where
the systems one may study span from the atomistic level to the continuum level in a single go
[1, 2], one may wonder what is the use of simplified models. The fact is that such modeling is
more important than ever. The experimental approach tells us what Nature dictates the systems
to do. The computational approach tells us what would happen if we, and not Nature, made the
rules. With the computational approach we are able to know exactly what every single atom in the
material is doing. However, this is not equivalent to understanding what is happening. For this, we
need to find the underlying principles, and this is where the need for simplified models come in.

Looking back in history, the study of equilibrium critical phenomena became “well understood”
in the late seventies. Central to conquest of this field was the Ising spin model [3, 4]. It is hard
to imagine how the deep understanding of the nature of critical phenomena could have evolved
without the guidance of this model and all its more complex relatives.

There are similarities between equilibrium phenomena and fracture, but also large differences.
The similarities come from the development of long-range correlations as the fracture process
proceeds in the same way as such correlations develop when approaching a critical point. On the
other hand, whereas parameters need to be adjusted to approach criticality in equilibrium systems,
in fracture the system approaches this state without the tuning of parameters. The correlations that
develop during the fracture process stem from the way the stress field develops. However, they also
reflect themselves in e.g., the spatial correlations in the post mortem fracture surfaces [5, 6].

The fiber bundle model [7, 8] is a model that plays somewhat the same role with respect to
fracture phenomena as the Isingmodel plays with respect to equilibrium critical phenomena [9, 10].
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In its simplest form, the Equal Load Sharing (ELS) version, it
consists of N parallel fibers of length L placed between two
parallel stiff clamps a distance L + 1 apart. Each fiber responds
linearly with a force f to the load 1,

f = κ1 , (1)

where κ is the spring constant. κ is the same for all fibers. Each
fiber has a load threshold t assigned to it. The load thresholds are
drawn randomly from a probability density p(t). If the load 1

exceeds this threshold, the fiber fails irreversibly. The total load
on the fiber bundle is

F = κ(N − n)1 (2)

when n fibers have failed. This means that all thresholds t ≤ 1

have failed.
It is the aim of this paper to construct a real-space

renormalization group scheme [11] for the ELS fiber bundle
model. We hope, the renormalization group scheme is
generalizable to more complex fiber bundle models such as
the Local Load Sharing (LLS) fiber bundle model [12] or the Soft
Clamp (SC) fiber bundle model [13].

Our goal is to construct a mapping from a fiber bundle
containing N fibers to a fiber bundle containing N′ = N/2 fibers
in such a way that the variables describing the entire fiber bundle,
such as F and 1 remain unaltered. This we do by replacing
the fibers characterized by a spring constant κ and threshold
distribution p(t) by a new set of fibers characterized by a spring
constant κ ′ and a threshold distribution p′(t).

In order to construct the real space renormalization group, it is
necessary to formulate the ELS fiber bundlemodel within damage
mechanics [14–16]. We present in section 2 a new formulation of
the ELS fiber bundle model within such a framework tailored for
the renormalization group formulation to be presented.

It is an important feature of the ELS fiber bundle model that
it is infinite dimensional. That is, all fibers interact with all other
fibers in exactly the same way. This is in contrast to e.g., the soft
clamp fiber bundle model where the closer two fibers are, the
more they interact.

Hence, when we in the renormalization group scheme to be
presented choose to replace pairs of fibers by a single fiber by
going from N to N/2 fibers, we may choose to group them
together as we like. We explore this property in section 3.1 where
fibers are grouped together in terms of increasing strength t. This
vastly simplifies the construction of the renormalization group
scheme.

However, if the renormalization group scheme we present is
to have any bearing on the more complex fiber bundle models
such as the LLS and the SC models where the relative position
of the fibers do matter, the renormalization group presented in
section 3.1 is useless. Hence, in section 3.2, we present the real
space renormalization group scheme. We map out the flow in
parameter space and the fixed point structure.

In section 4 we consider how the strength of the fiber bundle
evolves under the renormalization group scheme.

The last section 5 contains a discussion of our results.

2. FIBER BUNDLE MODEL IN A DAMAGE
MECHANICS FORMULATION

We will in this section formulate the equal load sharing
model in a damage mechanics formulation based on energetic
considerations. Damage mechanics is an approach to fracture in
the continuum limit where the fractures are represented by a
continuous damage parameter. Abaimov [15] and Berthier [16]
present some damage mechanics formulations of the ELS fiber
bundle model. Our approach is different from both of them.

When the fiber bundle is loaded, the fibers fail according to
their thresholds, the weaker before the stronger. We suppose that
n fibers have failed. At a load 1, the fiber bundle carries a force

F = Nκ(1− d)1 , (3)

where we have defined the damage

d =
n

N
(4)

and used Equation (2). The damage parameter d becomes
continuous as N → ∞.

A fundamental equation in what follows is the relation
between damage d and the threshold of the weakest surviving
fiber, τ . Since the fibers fail in a sequence ordered from the
weakest to the strongest, we have that

d = P(τ ) , (5)

where the cumulative probability distribution corresponding to
the threshold distribution p(t) is given by

P(t) =
∫ t

0
dt′p(t′) . (6)

The cumulative probability gives the probability to find a
threshold smaller than or equal to t. We will assume first that
the load 1 is our control parameter. Afterwards, we will assume
that the force carried by the fiber bundle F is our control
parameter. We now construct the energy budget according to
damage mechanics. At a load 1 and damage d, the elastic energy
stored by the surviving fibers is

Ee(1, d) =
Nκ

2
12

(

1− d
)

. (7)

We are here assuming the limit N → ∞ and κ → 0 so that the
product Nκ remains constant.

The energy dissipated by the failed fibers is given by

Ed(d) =
Nκ

2

∫ d

0
dδ
[

P−1(δ)
]2

. (8)

The work performed on the system to reach the state (1, d) from
the state (0, 0) is thus,

W(1, d) = Ee(1, d)+ Ed(d)

=
Nκ

2

[

12(1− d)+
∫ d

0
dδ
[

P−1(δ)
]2

]

. (9)
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The force conjugated to the load 1 is

F =
(

∂W

∂1

)

d

= Nκ1(1− d) , (10)

which is identical Equation (3), as it must.
The damage driving force F conjugate to the damage d is

F = −
(

∂W

∂d

)

1

=
Nκ

2

[

12 −
[

P−1(d)
]2
]

, (11)

and the equilibrium condition is

F = 0 , (12)

which when combined with Equation (11) gives

1 = P−1(d) . (13)

This equation is equivalent to Equation (5) when t = 1 and it
simply states that at a load 1 all fibers with threshold less than or
equal to it have failed.

We now turn to controlling the force F rather than the load1.
Using Equation (3), we have

1(F) =
F

Nκ

1

1− d
. (14)

The corresponding work we find via the Legendre transform,

U(F, d) = W
(

1(F), d
)

− F1(F) . (15)

Combining this equation with Equations (9, 14) we find

U(F, d) = −
F2

2Nκ

1

1− d
+

Nκ

2

∫ d

0
dδ
[

P−1(δ)
]2

. (16)

We calculate the damage driving force

F = −
(

∂U

∂d

)

F

=
F2

2Nκ

1

(1− d)2
−

Nκ

2

[

P−1(d)
]2

. (17)

The equilibrium condition Equation(12) gives

F = Nκ(1− d)P−1(d) . (18)

Equation (18) when combined with Equation (5) gives

F = Nκ
[

1− P
(

1(F)
)]

1(F) , (19)

which is the force-load characteristics of the fiber bundle model.
This equation is usually derived using order statistics.We see that
the derivation using damage mechanics leads to the same result.

It is interesting to note that the equilibrium condition
(Equation 12) can only be satisfied for

F

Nκ
≤ max

d
(1− d)P−1(d) . (20)

If F exceeds this limit, F is positive and catastrophic failure
ensues.

3. RENORMALIZATION GROUP

The renormalization group transformation that we are about
to construct will consist of replacing the original fiber bundle
containing N individual fibers by a new fiber bundle containing
N/2 individual fibers. We introduced the damage parameter
d = n/N in Equation (4), where n is the number of
failed fibers. It is only in the limit N → ∞ that d is a
continuous parameter. It is convenient in the following to use
the notation d(n,N) = n/N in order to indicate that for
finite N, d(n,N) is a discrete variable. We note the following
equality,

d (n,N) = d

(

n

2
,
N

2

)

. (21)

We now demand that the total work performed on the system,
Equation (9), is kept constant by the renormalization group
transformation. That is, we have

WN

(

1, d(n,N)
)

= WN/2

(

1, d

(

n

2
,
N

2

))

. (22)

As we are here assuming N to be finite, we have explicitly
introduced it as a parameter in writing W → WN . Equation
(22) is central in what follows. As the number of individual fibers
is reduced from N to N/2, the possible values that the damage
parameter d(n,N) can take is also reduced by a factor 2. However,
for those values of the damage parameter that remain, the energy
is unchanged.

We have just stated that the energy (Equation 9) is to
remain constant under the transformation. The energy consists
of two parts, WN = EeN + EdN , see Equations (7, 8). In order
to fulfill Equation (22), the elastic energy EeN and the energy

dissipated by the damage EdN each needs to be constant under the
renormalization group transition.

In order for the elastic energy to be constant under the
renormalization group transformation, we need to transform the
elastic constant. The elastic energy will be constant if keep the
load 1 fixed, i.e.,

1 → 1′ = 1 , (23)

and we set

κ → κ ′ = 2κ (24)

so that

Nκ =
[

N

2

]

[2κ] , (25)

when

N → N′ =
N

2
. (26)

We keep the load 1 fixed during the transformation.
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The energy dissipated by the failed fibers, EdN , is constant
under the renormalization group transformation if, in the limit
N → ∞, we have

EdN =
Nκ

2

∫ d(n,N)

0
dδ
[

P−1(δ)
]2

=
(N/2)(2κ)

2

∫ d(n/2,N/2)

0
dδ
[

P−1(δ)
]2
. (27)

When N is finite, Equation (27) becomes

κ

2

n
∑

i=1

t2(i) =
2κ

2

n/2
∑

j=1

t′
2
(j) , (28)

where we have ordered the thresholds, t(1) ≤ t(2) ≤ · · · ≤
t(N−1) ≤ t(N) and t′(1) ≤ t′(2) ≤ · · · ≤ t′(N/2−1) ≤ t′(N/2).

These ordered thresholds are averaged over an ensemble. That
is, we have M samples. The kth largest threshold in sample m is
tm
(k)
, and we have

t(k) =
1

M

M
∑

m=1

tm(k) . (29)

A fundamental result in order statistics is that the average
frequency of the kth ordered threshold is given by

P
(

t(k)
)

=
k

N + 1
, (30)

in the limit whenM → ∞, see Gumbel [17].
In order to complete the renormalization group

transformation, we need to define the threshold transformation

{

t(1), t(2), . . . , t(N−1), t(N)

}

→
{

t′(1), t
′
(2), . . . , t

′
(N/2−1), t

′
(N/2)

}

(31)

so that Equation (28) is fulfilled. There is no unique way
to do this. We will in the following present two different
transformations. The first one, which we call the order space
transformation, consists of grouping the initial thresholds
according to their value. The second one, the real space
transformation, consists of grouping the initial thresholds
according to their location.

3.1. Renormalization Group in Order Space
We write the sum in Equation (28) as

n
∑

i=1

t2(i) = 2

n/2
∑

j=1

[

t2
(2j−1)

+ t2
(2j)

2

]

= 2

n/2
∑

j=1

t′
2
(j) . (32)

Hence, we define the order space threshold transformation at the
indivdual sample level as

tm(i) → t′
m
(j) =

[

(tm
(2j−1)

)2 + (tm
(2j)

)2

2

]1/2

, (33)

where as in Equation (29) the indexm identifies the sample.
Equations (23, 24, 26, and 33) define the order space

renormalization group transformation, fulfilling Equation (22).
Using Equation (30), we have

P(t(2j−1)) = P(t(2j))−
1

N
, (34)

when N ≫ 1. To first order in 1/N, this gives

t(2j−1) = t(2j) −
1

Np(t(2j))
. (35)

Combining this expression with renormalization group
transformation Equation (33), gives

t′(j) = t(2j) −
1

2Np(t(2j))
, (36)

where t′(j) is the jth smallest average threshold out of N/2 and
t(2j) is the 2jth average threshold out of N. Hence, for large
N, any threshold distribution p(t) will be invariant under this
renormalization group transformation.

We show in Figure 1, the evolution of the distribution of
individual thresholds of M = 106 samples, each having N =
212 fibers, as we reiterate the order space renormalization group
transformation. The N = 212 thresholds for the initial system
were generated from a flat distribution on the unit interval. As
we see from the figure, the distribution does not change as the
renormalization group transformation is iterated. In fact, the
formulation in Equations (32–36) are quite general in nature
and the results should not depend on the type of thresold
distribution.We have produced numerical results (Figure 2) for a

FIGURE 1 | Evolution of threshold distribution for M = 106 fiber bundles, each

containing N = 212 fibers when repeating the order space renormalization

group transformation. The initial threshold distribution was uniform on the unit

interval. We have added a constant factor to p(t) for each iteration of the

renormalization group in order to separate them.
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non-uniform thresold distribution with the power-law type form
p(t) = (1 + α)tα , with α = 1. It is clear from Figure 2 that the
non-uniform threshold distribution also remains invariant under
the renormalization group transformation.

The renormalization group transformation in terms of the
parameters of the model, Equations (23), (24), and (33), defines
the flow in parameters space,





1

κ

d



→





1′

κ ′

d′



 . (37)

We will now study the flow of the parameters (1, κ , d) under the
renormalization group.

For the uniform distribution on the unit interval, i.e., P(t) = t,

the work Equation (9) is

WN(1, d) =
Nκ

2

[

12(1− d)+
d3

3

]

. (38)

We will in the following assume this threshold distribution for
simplicity.

We assume that N is finite. Let us define a strain 1N(n) such
that if 1 > 1N(n), at least n fibers have failed when the bundle
is in equilibrium whereas if 1 < 1N(n), up to n − 1 fiber have
failed when the bundle is in equilibrium. We calculate the value
of 1N(n) by demanding continuity,

lim
δ→0

WN

(

1N(n)+ δ,
n

N

)

= lim
δ→0

WN

(

1N(n)− δ,
n− 1

N

)

, (39)

FIGURE 2 | Evolution of threshold distribution for M = 104 fiber bundles, each

containing N = 212 fibers when repeating the order space renormalization

group transformation. The initial threshold distribution was non-uniform (linearly

increasing) on the unit interval. We have added a constant factor to p(t) for

each iteration of the renormalization group in order to separate them.

which for the uniform distribution on the unit interval gives

1N(n) =

√
1− 3n+ 3n2

√
3N

. (40)

For a given load 1, we then have

· · · < 1N(n− 1) ≤ 1 ≤ 1N(n) < 1N(n+ 1) < . . . , (41)

giving rise to the flow diagram shown in Figure 3, which is a
projection into the (κ , d) plane of the flow Equation (37). For
each iteration where N → N/2 and κ → 2κ , the position of
1 in the sequence of inequalities Equation (41) determines the
damage level.

We show in Figure 4 the force-load curve for each
renormalization group iteration. For each iteration, there is load
1c

N for which the force F is maximal. This maximum occurs for

n =
{

1 if N = 1 ,
N
2 + 1 if N = 2, 4, · · · .

(42)

Combined with Equation (40), this gives

1c
N =

{

1√
3

if N = 1 ,

1
2N

[

4
3 + N (N + 2)

]1/2
if N = 2, 4, · · · ,

(43)

and the corresponding peak stress is

FcN
N

=

{

κ1c
N if N = 1 ,

κ1c
N

2 if N = 2, 4, · · · .
(44)

This is illustrated in Figure 5.

FIGURE 3 | Flow in parameter space under the renormalization group

transformation (37) projected onto the (κ,d) plane. The initial number of fibers

was N = 215, and the data are averaged over 106 samples. The

renormalization group is iterated 15 times so that the last bundle contains one

fiber. The threshold distribution was uniform on the unit interval.
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FIGURE 4 | The force-load curve as we iterate the order-space renormalization

group. The initial number of fibers was N = 215 and the uniform distribution on

the unit interval was assumed. Averages were taken over 106 samples.

FIGURE 5 | 1c
N
and the corresponding force Fc

N
/N as we iterate the

order-space renormalization group. The initial number of fibers was N = 215

and the uniform distribution on the unit interval was assumed. Averages were

taken over 106 samples.

3.2. Renormalization Group in Real Space
The order space renormalization group we have defined and
explored in section 3.1 is tailored for the ELS fiber bundle model
since the physical position of the fibers do not matter. Hence, for
the renormalization group procedure to be generalizable to more
complex models than the ELS fiber bundle model, the LLS fiber
bundle model being an example, we group neighboring fibers
together.

We assume the fibers to be placed along a one-dimensional
line. They are numbered from 1 to N. Hence, we are considering
a one-dimensional system. The procedure that we describe is
straight forward to generalize to e.g., having the fibers positioned
at the nodes of a square lattice.

FIGURE 6 | Evolution of the cumulative threshold probability under the real

space renormalization group iteration is shown where lines represent the P(t)

values for different renormalization steps. The initial number of fibers was

N = 215. A uniform threshold distribution on the unit interval is assumed, so

that the cumulative probability is P(t) = t (dotted line) at the initial stage.

Averages are taken over 106 samples.

We follow the same procedure as for the order space
renormalization group except that the group together of pairs
of fibers are now in real space rather than in order space.
Fiber number i has a threshold ti. The renormalization group
transformation of the thresholds then becomes

tm(i) → t′
m
j =

[

(tm2j−1)
2 + (tm2j )

2

2

]1/2

(45)

at the individual sample level. As in the order space
renormalization group, the work performed on the fiber
bundle is conserved, see Equation (22). For an N = 2 fiber
bundle, the order and real space renormalization groups are
identical. Hence, we may see the real space renormalization
group as Equation (1) grouping neighboring fibers into fiber
bundles of size N = 2 and Equation (2) do an order space
renormalization group iteration on each pair of fibers.

In contrast to the order space renormalization group, the
threshold distribution is not invariant under the real space
renormalization group. We show the evolution of the uniform
distribution on the unit interval in Figures 6, 7. In Figure 6

we show the cumulative probability P(t) as it evolves (lines
represent the P(t) values for different renormalization steps) from
the initial P(t) = t. We note that all the iterated cumulative
probabilities pass through the same point [tc, P(tc)]. In Figure 7,
showing the evolution of the threshold distribution, we see
that the threshold distribution is becoming increasingly peaked
around tc. Since the work is conserved as for the order space
renormalization group, we will have that 11(1) = 1/

√
3

also in this case. Since the threshold distribution is no longer
invariant under the renormalization group, but approaches a

Frontiers in Physics | www.frontiersin.org 6 July 2018 | Volume 6 | Article 65

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pradhan et al. Renormalization Group Procedure for FBM

delta function, we must have that tc = 1/
√
3. We can calculate

the fixed point value tc = 1/
√
3 through the following argument,

which is valid both for order and space renormalization group
schemes: The final single fiber must have a strength which can
conserve the energy of the whole bundle (with N fibers) we
started with. From the energy conservation, we can write for an
uniform distribution of fiber thresholds within (0, 1)

1

2
Nκt2c =

1

2
Nκ

∫ 1

0
t2p(t)dt; (46)

which gives tc = 1/
√
3. Since WN(1N(n), n) is a monotonously

increasing function in n, and therefore also 1N(n), we must have
that tc is a symmetry point with half the thresholds smaller and
half the thresholds larger than tc. Hence, we have P(tc) = 1/2.
This is what is seen in Figure 6.

We observe numerically that p(t) assumes almost symmetric
Gaussian like distribution peaked around the critical load value
tc = 1/

√
3. The variance falls off as 1/

√
N. We show this in

Figure 7 where the data have been fitted to the function

p(t) =
1

√
N

φ

(

t − 1√
3√

N

)

; (47)

FIGURE 7 | (A) Evolution of the uniform threshold distributions on the unit

interval under the real space renormalization group. (B) Rescaling the

thresholds leads to a data collapse. The initial number of fibers was N = 215.

Averages were taken over 106 samples.

where

φ(y) = A exp(−By2) , (48)

with A = 277 and B = 240, 000.
We show in Figure 8 the evolution of the force-load curve

under the real space renormalization group, i.e., the equivalent of
Figure 4 for the order space renormalization group. For a given
cumulative threshold probability P(t), the force-load curve will be
given by Equation (19). Hence, the curves seen in Figure 8 reflect
this equation combined with Equation (47) giving the evolution
of the threshold distribution. Figure 9 shows how the evolution
of threshold distribution influences the peak-stress and peak-
strain values. After few renormalization steps, peak-stress and
peak-strain values converge to same level.

The damage parameter d is directly linked to the threshold
distribution of the fibers. Under the real space renormalization
group scheme, the threshold distribution is not invariant. Hence,
d evolves throughout the entire renormalization group iteration
and not just toward the end of the process as in the order space
renormalization group scheme, see Figure 3. We have shown
in Figure 10 the equivalent flow diagram for the real space
renormalization group. The flow appears in (1, κ , d) space but
has been projected into the (κ , d) plane, see Equation (37). There
are three fixed points: d = 0, d = dc and d = 1. The first and
the last are stable and dc is unstable. For the uniform threshold
distribution on the unit interval, we have dc = 1/2.

An important aspect of the renormalization group is how
fluctuations are handled. Here we consider the avalanche
distribution [9, 10, 18]. The size of an avalanche is the number
of fibers that fail simultaneously as a result of a change of the
external parameters. We consider here a change in the external
force F under quasi-static conditions. It was shown under very
general conditions that the histogram would follow a power law
with exponent −5/2 [18]. We show in Figure 11 the evolution
of the avalanche histogram under the real space renormalization
group. The power law character of the avalanche distribution

FIGURE 8 | Evolution of the force-load curve under the real space

renormalization group. The starting point was 106 fiber bundles each

containing N = 215 fibers. The threshold distribution was uniform on the unit

interval. The dotted curve 1(1− 1) is the initial force-load curve.
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FIGURE 9 | Evolution of the peak-stress and peak-strain under the real space

renormalization group. The starting point was 106 fiber bundles each

containing N = 215 fibers. The threshold distribution was uniform on the unit

interval.

FIGURE 10 | The flow in (1, κ,d) space projected into the (κ,d) plane, under

the real space renormalization group. Initial number of fibers N = 215 having

uniform fiber strength distribution on the unit interval. Averages were taken

over 103 samples.

remains until the number of fibers in the bundle is too low. The
exponent −5/2 remain in place as long as there is a discernable
power law.

We plot in Figure 12 the average of the largest avalanche
occurring before complete failure of the bundle as a function of
bundle size N under the real space renormalization group. We
see that this average reaches unity—the smallest value it can take
on—when the fiber bundle is reduced to a bundle of 25 fibers (we
have started with a bundle of 214 fibers).

4. RENORMALIZED STRENGTH

Now we are going to compare the initial and final strengths of a
fiber bundle, which has gone through the renormalization group

FIGURE 11 | Evolution of the histogram of avalanche sizes as the real space

renormalization group is iterated. The initial threshold distribution was uniform

on the unit interval. The initial number of fibers was N = 214 and averages

were taken over 105 samples.

FIGURE 12 | Evolution of the largest avalanche occurring before complete

failure as the real space renormalization group is iterated. The initial threshold

distribution was uniform on the unit interval. The initial number of fibers was

N = 214 and averages were taken over 105 samples.

scheme. We have, so far only considered the uniform threshold
distribution on the unit interval. In the following, we consider a
power law on the unit interval,

p(t) = (1+ α)tα , (49)

where α ≥ 0.When α = 0, we have the uniform distribution.We
will study the initial and final fiber bundle strength at imposed
load 1 under the order or real space renormalization scheme.
The force on a bundle at load 1 is

F(1) = Nκ1(1− P(1)) = Nκ1(1− 1α+1); . (50)
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FIGURE 13 | Initial and final strengths of the fiber bundle vs. power law index

(α) under both the order space and the real space renormalization group

schemes. For α = 0, the distribution is reduced to the uniform distribution and

the initial and final strength values match well with our numerical results.

By solving dF/d1 = 0 for 1 gives us the initial strength of the
fiber bundle (with N fibers),

(1c
N)initial = (

1

α + 2
)

1
1+α . (51)

Since the work performed on the fiber bundle is conserved by the
renormalization group, at the final renormalization step (when
N = 1) we must have (see Equation 46)

(1c
N)

2
final =

∫ 1

0
t2p(t)dt; (52)

which gives the final strength of the bundle (with N = 1 fiber)

(1c
N)final =

√

α + 1

α + 3
. (53)

Figure 13 compares the initial and final bundle strengths as a
function of power law index α.

We see that the final strength of a bundle has gone
up as a result of the renormalization group scheme ! Our
renormalization group transform consists of replacing pair of
fibers in the original bundle by single fibers. To keep the energy
constant under the trasformation, the strength of the new fiber
is chosen according to Equation (33), where the final strength of
single fiber is always greater than the average strength of the two
initial fibers - and this is the origin of the strength enhancement
in the final renormalized strength of the bundle.

5. CONCLUSION AND DISCUSSION

We have in this paper introduced a renormalization group for the
equal load sharing fiber bundle model based on formulating the

fiber bundle in the context of damagemechanics. The idea behind
the damage mechanics formulation is to introduce a continuous
damage variable so that the binary nature of the single fibers is
no longer in focus. In this way, we are able to group together
the fibers belonging to a given fiber bundle into smaller fiber
bundles and map the parameters of the larger fiber bundle onto
the smaller bundles. A central concept in this mapping is the
conservation of the work applied to the fiber bundle to create a
certain level of damage, Equation (9). This work is kept invariant
under the renormalization group procedure.

We have presented two versions of the renormalization group.
In the order space formulation, we group the fibers together
according to their failure strength. The three parameters (1, κ , d)
are mapped according to Equations (23, 24, and 33). Under this
version of the renormalization group, the threshold distribution
remains invariant (see Figures 1, 2).

The problem with the order space renormalization group
scheme is that there is no obvious way to generalize it to other
fiber bundle models such as the local load sharing model. Rather
than grouping together the fibers according to their strength,
we may group them together according to their locations, hence
defining the real space renormalization group scheme. The flow
Equations are then given by (23, 24, and 45). This real space
renormalization groups scheme has been formulated for the
equal load sharing fiber bundle model.

In order to formulate a real space renormalization group
scheme for fiber bundle models with non-trivial stress
redistribution, such as the local load sharing model, it is
necessary to replace the equal load sharing model work function
W(1, d), Equation (9) by one i that takes into account the
stress intensification inherent to this model. The coarse graining
inherent in the renormalization group equations would then
proceed as in the equal load sharing case but with different flow
equations ensuing.

We have in this paper only presented the renormalization
group schemes themselves together with a number of
their properties. We have not attempted to implement the
renormalization group on more complex fiber bundle models.
We do see a strong potential in the use of the renormalization
group as a tool to investigate the fiber bundle models, in
particular in connection with fluctuations (see Figure 1) and
strength enhancement (see Figure 13).
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