
June 2010
Svein Erik Bratsberg, IDI
Øystein Torbjørnsen, Fast, a Microsoft® subsidiary

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Compression in XML search engines

Ola Natvig

Problem Description
Examine how compression techniques may be used efficiently in XML search engines. Focus
should be on the following aspects: Compressed index size and query performance.

Assignment given: 15. January 2010
Supervisor: Svein Erik Bratsberg, IDI

Abstract

The structure of XML documents can be used by search engines to answer struc-
tured queries or to provide better relevancy. Several index structures exist for
search in XML data. This study focuses on inverted lists with dictionary coded
path types and dewey coded path instances. The dewey coded path index is large,
but could be compressed. This study examines query processing with indexes
encoded using well known integer coding methods VByte and PFor(delta) and
methods tailored for the dewey index.

Intersection queries and structural queries are evaluated. In addition to standard
document level skipping, skip operations for path types are implemented and evalu-
ated. Four extensions over plain PFor methods are proposed and tested. Path type
sorting sorts dewey codes on their path types and store all deweys from one path
type together. Column wise dewey storage stores the deweys in columns instead
of rows. Prefix coding a well known method, is adapted to the column wise dewey
storage, and dynamic column wise method chooses between row wise and column
wise storage based on the compressed data.

Experiments are performed on a XML collection based on Wikipedia. Queries are
generated from the TREC 06 efficiency task query trace. Several different types of
structural queries have been executed.

Experiments show that column wise methods perform good on both intersection
and structural queries. The dynamic column wise scheme is in most cases the best,
and creates the smallest index. Special purpose skipping for path types makes some
queries extremely fast and can be implemented with only limited storage footprint.
The performance of in-memory search with multi-threaded query execution is lim-
ited by memory bandwidth.

Preface

This is a master thesis for the Master in Computer Technology program at the
Department of Computer and Information Science at the Norwegian University of
Science and Technology. The work have been performed during the spring of 2010.

I like to thank my supervisors; Svein Erik Bratsberg and Øystein Torbjørnsen.
Their ideas and feedback have been very valuable. I would also like to thank
Microsoft R© corporation for lending me hardware for experiments.

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Background and motivation . 2

1.1.1 Compressed inverted indexes 2
1.1.2 High throughput and lightweight compression 3
1.1.3 Managed programming languages 3

1.2 Index structure . 4
1.3 Prior work . 5
1.4 Readers guide . 5

2 Problem definition 7
2.1 Path selection . 7
2.2 Path selection in search engines . 8
2.3 Structural containment search . 9
2.4 Important features in the XML index 9
2.5 Concrete problem statement . 10

3 Theoretical background 13
3.1 Shannon’s information theory . 13
3.2 Huffman coding . 14
3.3 Compression of inverted indexes . 15

3.3.1 Bit oriented methods . 15
3.3.2 Variable byte length coding (vByte) 23
3.3.3 Word aligned codes . 24
3.3.4 A taxonomy of inverted list compression techniques 28

3.4 Compression of dewey codes . 31
3.4.1 Node labeling schemes for dynamic XML documents 31

3.5 Skipping . 37

4 Overall solution proposals 41

i

4.1 Skipping . 41
4.1.1 Skipping index columns . 41
4.1.2 Document identifier skipping 42
4.1.3 Path type skipping . 43
4.1.4 Combined document identifier and path type skipping 45

4.2 Inverted index compression . 45
4.2.1 Modified VByte algorithm . 46
4.2.2 Fine grained skipping . 48
4.2.3 Column wise dewey encoding 49
4.2.4 Dynamic column wise dewey storage 51
4.2.5 Prefix coding for columnwise dewey encoding 51
4.2.6 Path type sorting . 52

5 Implementation 57
5.1 Index structures . 57

5.1.1 Buffer manager . 58
5.1.2 Posting file concepts . 60

5.2 Query processing algorithms . 61
5.2.1 Intersection queries . 62
5.2.2 Structual containment search 62
5.2.3 Generic skip support . 66

5.3 Compressed column implementations 69
5.3.1 A note regarding VByte . 70
5.3.2 Non scope columns . 70
5.3.3 Scope column . 72
5.3.4 A note regarding SkipToScope implementations 78

5.4 Unmanaged code . 79
5.5 Coding details . 80

5.5.1 Object reuse to avoid high garbage collection costs 80
5.5.2 Buffer invalidation by sequence number 81
5.5.3 Loop optimizations . 82

5.6 NETing statistics . 83

6 Design of experiment 85
6.1 Test collection and query trace . 85

6.1.1 Intersection queries . 86
6.1.2 Structural containment search queries 87

6.2 Experiment methodology . 87
6.2.1 Main memory resident index 88
6.2.2 Multi-threaded tests . 89
6.2.3 Different query classes . 89

6.3 Compression method labeling scheme 89
6.4 Compression schemes to test . 90
6.5 Performance measurements . 91
6.6 Concrete experiment plan . 91

6.6.1 Test regarding the impacts of number of results 92

ii

6.6.2 Native code implications . 92
6.6.3 Test impact of concurrency 92
6.6.4 Structural containment queries, skip order 93

7 Results 95
7.1 PFor cuttoff parameter tuning . 96
7.2 Previous results from pre project . 97
7.3 Experiment results . 101

7.3.1 Impact of number of results 101
7.3.2 The impact of concurrency 105
7.3.3 Different skip orders . 108
7.3.4 Managed code versus unmanaged 110

7.4 Critique . 112

8 Conclusion and further work 115
8.1 Further work . 117

Bibliography 119

A All query results 127

iii

iv

List of Figures

1.1 Simple scope index example . 4

3.1 Selectors transitions as described in [AM04] 20
3.2 A PFOR compressed block. 22
3.3 Skip pointers as proposed by Zobel and Moffat in [MZ96]. 37

4.1 A four byte value encoded using two VByte methods. 46
4.2 Dewey codes entropy in three different XML collections 50
4.3 Examples of columnized dewey encoding. 51

5.1 Layout of NETing posting file . 58

6.1 Value distribution for the dewey elements in the Wikipedia collection. 86

7.1 Scope column size, Wikipedia collection. Thesis version. 96
7.2 Scope column size, Wikipedia collection. Prestudy version. 98
7.3 Index write time for 100, 200 and 300 000 wikipedia documents. . . 99
7.4 Index decoding time for 382 737 wikipedia documents. 100
7.5 Throughput for intersection queries at different result set sizes. . . . 102
7.6 Throughput for sentence-scope queries at different result set sizes. . 103
7.7 Throughput for intersection queries with different number of threads. 105
7.8 Throughput per thread for intersection queries. 106
7.9 Latency for intersection queries with different number of threads. . . 107
7.10 Throughput for scope queries with different skip order. 109
7.11 Throughput for intersection queries , managed and unmanaged code. 111
7.12 Throughput for sentence queries, managed and unmanaged code. . . 112

v

vi

List of Tables

2.1 Description of XPath axes. 8

3.1 Examples of Unary, γ, δ and Golomb (Rice) codes. 16
3.2 Simple-9 coding schemes as described in [AM05]. 25
3.3 Relative-10 coding schemes as described in [AM05] 26
3.4 Carryover-12 coding scheme as described in [AM05] 27
3.5 Taxonomy of compression methods. 28
3.6 Order preserving and Prefix comparable codes 32
3.7 Bits required for dewey elements using methods from [HHMW07] . . 33
3.8 Stepwise code length growth. 34
3.9 Two part length descriptor . 34
3.10 Example of control token codings with k = 4 35

4.1 Branch free VByte datastructures. 46
4.2 Different compression methods and fine-grained skip granularities. . 49
4.3 Different path type orderings . 54

5.1 Loading levels for chunks in the inverted index. 60
5.2 Skip operations used by the query processing algorithms. 61
5.3 NETing codebase statistics . 84

6.1 Wikipedia collection statistics. 85
6.2 Occurrence statistics for the four selected path types. 88
6.3 Labels for compression schemes. 89
6.4 Index configurations selected for testing. 91
6.5 Experiments with number of results as variable. 92
6.6 Experiments with different levels of concurrency. 93
6.7 Experiments with different skip order. 93

7.1 Compressed index sizes (in KB) . 95
7.2 Number of queries used in intersection query experiment. 101
7.3 Number of queries used in sentence query experiment. 103
7.4 Number of queries for the different path types. 108

A.1 Full results for intersection queries with a variable number of results. 128

vii

A.2 Full results for sentence queries with a variable number of results. . 129
A.3 Full experiment results, intersection queries, variable number of threads130
A.4 Full results for structural queries with differet skip order. 131

viii

Chapter 1

Introduction

Searching in large collections is a common task in peoples day to day life. Common
to most types of search is a query language and results ranked based on some
measure of relevance. Several models for providing ranked results to different types
of queries exist. Textbook models such as the vector model and the probabilistic
model are examples of such methods, where each document is interpreted as a bag
of words[BYRN99].

Interpreting documents as bags of words is a simple, yet quite effective way of
providing a basis for answering the queries specified from the user. Bag of words
indexes can also be constructed with quite low storage costs[MRS09a]. However,
the bag of word view of a document removes a lot of the structure which might be
very important in order to calculate good ranks for the documents. Also, modern
users may not want to retrieve documents any longer, perhaps the granularity of
searches is changing. Modern users might want to get only the relevant parts of
documents.

XML is one way to represent structured and semi structured data. It is a quite
popular one, and XML is for instance used in document formats for many text
processors. By indexing XML instead of plain text, one can include structural
information into the index.

While the text-book bag of words models are quite space economical, storing XML
information in the index is not. The focus of this thesis will be on the storage and
compression schemes for the XML structural information included in the index and
how queries against these representations can be executed efficiently. The index
representation assumed in this thesis will be described in more detail in Section 1.2.

This is a master thesis in the course TDT4900 - Computer and Information Science,
Master Thesis spring, 2010. The task has been to investigate compression tech-
niques for inverted indexes in a XML search system. The work has been performed

1

in cooperation with Microsoft R© Corporation which have provided the initial idea
to the task, example data collections and hardware for experiments to be run on.
This work extends on a pre project done in the fall 2009, this will be discussed
more in depth in Section 1.3.

1.1 Background and motivation

As described previously in this chapter, advanced query features require more com-
plex index structures. In this section some of the most important sources of inspi-
ration for this thesis will be mentioned. In general one could say that this thesis is
an experimental study of how to adapt some of the most common inverted index
compression techniques to XML indexes. Therefore the main background will be
the field of inverted index compression and query processing, XML search engines
and also implementation details.

1.1.1 Compressed inverted indexes

The uncompressed inverted index for document collections, will consume about
40% of the size of the document collection[MRS09a]. Since collections often are big,
inverted indexes can become very big. A large index will require a large number of
hard drives which in turn is expensive. Standard inverted list compression method
can reduce the storage requirements for a given index by as much as 75%[MRS09a].

Saving disk space is a good thing, but there are several other reasons for com-
pressing the inverted index. If the index consumes less space then it is also faster
to load that index from disk during query processing. This way, spending extra
CPU-cycles to decompress the index can make query processing faster, since the
disk otherwise would be the limiting device.

Modern search engines caches data in main memory. This data can be results of
frequent queries, the inverted lists for frequently used terms or parts of these lists
(probably all of the three)[ZLS08]. Compression greatly affects the amount of data
which can reside in such main memory caches, making it possible to answer many
queries without ever accessing the disk.

In the future there will probably be search engines keeping all; or most of its
index in main memory. Index compression will most certainly be a key technology
in enabling this. Modern computers have several types of memory, ranging from
the very slow hard drive to the extremely fast registers. The CPU on a modern
computer can have several megabytes of on-chip super fast cache, compressed data
can also lead to better hit ratios for such caches.

2

1.1.2 High throughput and lightweight compression

Compression involves a trade off between the compression ratio obtained, and the
amount of computation required to decode (and encode) each value. Much recent
research has focused on obtaining very fast decompression, while sacrificing some
of the compression ratio. The fastest of these methods achieves decoding rates of
several gigabytes per second [ZHNB06], while still retaining acceptable compres-
sion. Common to many of these high throughput methods is that the architecture
of modern CPUs and memory systems are taken into account.

The key to many of the fastest available compression schemes is that they group
values together before compressing them. This way, the algorithms can decode
multiple values at once, possibly even a fixed number of values at once, making it
easier for the implementor to write the code as optimal as possible for the one case
where there are for instance 32 values to be decoded.

1.1.3 Managed programming languages

Most prior experimental studies on compression have been performed using pro-
gramming languages such as C and C++ which is compiled into native machine
code. Several modern search engines are built using newer programming languages,
such as Java and Microsoft .NET. Especially Java has seen a large number of open
source search engine implementations. Lucene, probably the best known open
source search engine was originally developed using Java and there exists a Lucene
implementation in .NET. Terrier [OAP+06] and MG4J [Vig09] are other examples
of Java search engines.

Programs written for runtimes such as Java and Microsoft .NET is not compiled
into machine executable code, instead they are compiled into an intermediate code
which is executed on top of a virtual machine. These virtual machines supply
memory management through garbage collection, and just-in-time compilation of
intermediate code to machine executable code. The performance implications of
both garbage collection and just-in-time compilation are hard to predict prior to
execution. This might be the reason why most experimental studies employ the
more predictable statically compiled languages.

There exist methods for the virtual machine languages to invoke statically compiled
programs. One might suggest doing this in performance critical parts of programs
to leverage the more predictable and probable higher performance of programming
languages such as C and C++. However, such “out-of-runtime” calls will come at a
higher cost than regular method invocations, and this might offset the performance
gains. However, when looking at such techniques in combination with the new very
fast compression schemes which compresses multiple values at the time one might
amortize each such expensive “out-of-runtime” call over multiple decoded values.

3

1.2 Index structure

Since there are several possible ways to organize XML indexes, one specific way is
selected as the case for this thesis. This organization is based on additional XML-
scope information encoded in a normal word-level inverted index. In addition to
occurrence positions, one XML-scope field is added to each occurrence. The scope
field consists of two parts, the first part is the path type id, the path type id uniquely
defines the sequence of labels representing the scope of the occurrence. The other
part is a dewey code which specifies the position of the occurrence within the
document. The dewey code can be seen as the instance of the scope, while the
path type is the type of the scope. An early adoption of the dewey scheme can be
found in [TVB+02].

All the unique paths in the collection is kept in an array and can quickly be accessed
by the path type identifier. One way to assign path type identifiers is to assign
the identifiers in the order of which the pat types are seen during indexing. If the
collection is homogeneous, the most common path types will be observed early, and
therefore get assigned lower path type identifiers. An example of a index with path
types and dewey codes are shown in Figure 1.1. This is the type of index which is
assumed in this thesis, and the concrete version is adapted from [Gri07].

<document> 1
<p>Text</p> 1.1(.1)
<list> 1.2
<elem>E1</elem> 1.2.1(.1)
<elem>E2</elem> 1.2.2(.1)
<elem> 1.2.3
<big>Big</big> 1.2.3.1(.1)

</elem>
<elem> 1.2.4
<small>Text</small> 1.2.4.1(.1)

. . .

(a) Document with Dewey order

1 document
2 document/p
3 document/list
4 document/list/elem
5 document/list/elem/big
6 document/list/elem/small

E1 (2, 4, 1.2.1.1)
E2 (3, 4, 1.2.2.1)
Big (4, 5, 1.2.3.1.1)
Text (1, 2, 1.1.1), (5, 6, 1.2.4.1.1)

(b) Unique paths and a word level in-
verted file. Index entires of the form
((posi, path_typei, deweyi)+)

Figure 1.1: Simple scope index example

The dewey code of a scope is defined as dp.c where dp is the dewey code of the
parent scope, and c is the ordinal position of the scope within the parent scope. If
for instance a scope 1.2.1 has four children, the second child node has the dewey
code 1.2.1.2. This means that if two occurrences have some common ancestor in
the document structure, they will share some prefix of their dewey codes.

4

This index structure makes it possible to see the path type of each occurrence,
and the position of the occurrence within the structure of the XML document.
However, since only the scope of the single occurrence itself is coded in the index,
the information regarding the full structure of the document is not available.

Using this structure makes it easy to for instance select occurrences from a specific
set of path types. One can compare occurrences in different inverted lists to check
if they are within the same scope. Some of the specific use cases that will be
evaluated in the thesis will be described in detail in Chapter 2.

1.3 Prior work

In the fall of 2009 the author worked with similar problems in the course TDT4590
- Complex Computer Systems, Specialization Project. This preliminary work in-
cluded a study of the state of the art in index compression. Also experiments were
conducted with a focus on compressed index size, index build time and time to
decode the index. Some methods to compress or improve compression of XML
indexes were suggested and tested. The project report [Nat09] contains detailed
descriptions of the experiments and the results.

Some portions of this thesis will include material produced for the project report in
[Nat09]. Either in a form close to the original, or in a more summarizing manner.
Specifically, the background information on index compression in Section 3.3 and
3.4 will be very similar to that found in [Nat09]. The path type sorting method
(Section 4.2.6), and the column-wise dewey encoding (Section 4.2.3 were also in-
troduced and tested in [Nat09]. Last, the results presented in Section 7.2 are the
results produced in [Nat09].

This master thesis aims to extend the work done in [Nat09] by focusing on query
processing. Also this thesis will offer a more in depth description of the imple-
mentation details, as well as the architecture of the NETing minimal XML search
engine.

1.4 Readers guide

The remainder of this thesis is structured as following, Chapter 2 contains a more
in depth explanation of the problem statement. In Chapter 3 an introduction to
the theoretical background of the field of index compression and query processing
towards compressed indexes will be given. Possible methods and ideas for both
compression schemes and query processing techniques will be proposed in Chap-
ter 4, and an introduction of the solutions actually implemented will be given in
Chapter 5. In Chapter 6 the set of experiments needed for the experimental study

5

will be described and Chapter 7 will describe the results of these experiments. In
addition a brief description of the results from [Nat09] can be found in Section 7.2.
The concluding remarks and ideas for further work is located in Chapter 8.

6

Chapter 2

Problem definition

While XML query languages such as XPath and XQuery are very rich. The main
focus of this study is the compressed index representation and not XML-query
processing in general. A few key query operations towards the compressed inverted
index will be selected for further experimentation. In the following sections a
description of why these operations are important tasks in answering more complex
queries will be given.

The XML scope information in the index may not necessarily be used to answer
XML queries specified in XPath or XQuery. They can be used as input to ranking
algorithms or perhaps to enhance phrase search. In a search engine these use cases
could be equally important as many of the more exotic features present in rich
query languages.

2.1 Path selection

An XPath expression selects sets of nodes from XML documents [Cla99]. A special
syntax is used to specify the (possible partial) path from the root of a document
to the nodes matching the expression. The path expressions look very much like
URLs or paths in the file system hierarchy.

XPath expressions are divided into steps. Each step can contain two or three
elements. An axis, a node test and an optional predicate. XPath defines several
axes. Each axis encodes a relationship in the XML-tree. All XPath axes are shown
in Table 2.1. The syntax for a XPath step is axis::node-test[predicate].

In compact syntax, the child axis is often written as / and the descendant axis
as //. The node test filters the nodes returned from the axis on their label. For

7

Axis Description
child Selects all nodes which is the children of the current

node.
parent Selects all nodes which is the parent of the current node.
ancestor Selects all nodes which is the ancestor (parent, grand-

parent etc..) of the current node.
ancestor-or-self Same as ancestor but result includes the current node

as well.
decendant Selects all nodes which is the descendant (child, grand-

child etc..) of the current node.
decendant-or-self Same as decendant but result includes the current node

as well.
following Selects all nodes after the closing tag of the current node.
following-sibling Selects all sibling (shares same parent) nodes after the

current node.
preceding Selects all nodes before the start tag of the current node.
preceding-sibling Selects all sibling nodes before the current node.
self Selects the current node.
attribute Selects the attributes of the current node.
namespace Selects all namespaces of the current node.

Table 2.1: Description of XPath axes.

instance an expression child::paragraph will only match child nodes with the
label “paragraph”. Node tests can be on the type of node also. One could for
instance select all text nodes which is the children of the current node with the
expression child::text().

The last and optional “predicate” applies extra filtering, based on the nodes re-
turned. XPath defines several functions usable in predicates. Predicates can test
both the content of the nodes and the position of the nodes (for instance only select
the first child node).

For a more in depth explanation of XPath, the XPath tutorial at http://www.
w3schools.com/XPath/ could be consulted.

2.2 Path selection in search engines

Different parts of documents have different importance for users. A uses which
searches for any given topic will most certainly be more satisfied if the results
returned describes the topic in document header, or perhaps in bold face text.
Search engines can employ zone-scoring in order to give various document parts
more importance[MRS09b].

8

http://www.w3schools.com/XPath/
http://www.w3schools.com/XPath/

Path selection can be used to search parts of the documents, one could for instance
search only headers. XPath supports selecting the first n child elements of a given
node, this could also allow the search engine to search in perhaps the three first
paragraphs of each document. The inclusion of such fine grained access methods
could be used in advanced ranking algorithms, or it could be exposed to the users
through some advanced search interface.

2.3 Structural containment search

When scoring multi-term queries the intersection of the different inverted lists
will need to be calculated[MRS09c]. In some search systems word positions are
indexed in order to answer “phrase-search” queries. When using word position,
phrases might not be real phrases. Phrases with consecutive word positions might
span document structures. With XML scopes in the index, one can specify phrase
queries that require the phrase to be contained within the same XML-scope for
instance the same paragraph.

Such a phrase query should be specified as the phrase and an XPath expression
which selects the valid scopes. The paths of the words matching the queries should
be descendants of the XPath expression in the query. If the phrase should be
contained within the //paragraph it could also contain postings from for instance
paragraph/bold scopes as long as the words share the same paragraph node.

Searching for words in the same scope are useful even when no phrase requirements
are specified. Users might be interested in documents where a set of words appear
in the same scope. One could for instance search for “Pink Floyd” and “Dark Side
of The Moon” in the same paragraph. Or perhaps “achilles ” and “injury” in the
same sentence. Proximity based search (comparing word position) might be able
to achieve somewhat similar results, however, without attention to the structure of
the document.

2.4 Important features in the XML index

Assuming the index structure described in the introduction (Section 1.2). Many
XPath expressions can be evaluated by only looking on the path types. The only
XPath features which cannot be answered by analyzing path types are the predicate
parts of the expressions.

Some XPath predicates can be applied in a post processing step. Others, such
as the last() predicate are difficult to answer, since the index does not contain
information about the cardinalities of the different XML-nodes. To answer such
queries extra info need to be encoded. However, execution of XPath in general is

9

beyond the scope of this thesis.

Structural containment will also require effective path type filtering. Occurrences
with a scope prefixed by the containment paths will be candidates for the results.
In addition auxiliary data structures describing which path types that are prefixes
of others will be needed. Two word occurrences can only be within the same scope
if their path types share a common prefix long enough to identify the containment
scope. Also, the dewey code for each of the identifiers need to share a prefix of
the same length. This means that one will need efficient mechanisms to compare
prefixes of dewey codes.

These two operations, path type filtering and dewey prefix compraison will probably
be key functions in XML query evaluation. The compressed representation of the
XML index will be a key enabling factor for supplying these features in a speedy
manner. Compression affects both the amount of data to be transfered between
disk, main memory and the CPU. Compression also affect the computational cost
of query operations. Either for the better if query components can operate effi-
ciently on the compressed representation, or for the worse if the data need to be
decompressed first.

Additionally, an index representation which allow query processors to disregard
some portion of the data during processing might result in more efficient processing.
One such method often refereed to in the literature is skipping [MZ96, MRS09d,
SC07]. Skipping will be discussed in Section 3.5.

Even if the index is to be used to answer XML-aware queries the basic functionality
for calculating inverted list intersections need to be present. It might still be that
for many structural queries the intersection of a document level index data will be
the most demanding task.

2.5 Concrete problem statement

The focus of this thesis is XML index compression and the interactions between
XML index compression and query processing. Both theoretical and experimental
analysis should be performed in order to propose the best index representation. Due
to limitations in available time, only a small subset of the query types described in
the preceding sections can be evaluated.

In order to assess the index representations ability to answer regular queries the
performance of AND queries should be measured and commented on. Regular
information retrieval tasks often include both intersections and unions of inverted
lists. For instance the continue-strategy for answering ranked queries proposed in
[MZ96] consists of two phases where the first phase is similar to a union (OR) of
some of the terms in the query. The second phase calculates the intersection (AND)
between the results of the OR phase and the remaining terms. In general OR-

10

queries are more computational intensive to evaluate since there are more results.
However, when focusing on compression; AND-queries are more interesting since
the information encoded in skip pointers can be used to speed up the execution of
the queries[MZ96].

Experimenting with structural containment queries will provide insight into how
well different compression methods handle list intersection, path type filtering and
dewey prefix comparison. Different algorithms for evaluating such queries should
also be examined.

For structural containment queries it might be that different algorithms suit some
queries better than other. For instance, if occurrences within a very common scope
such as the paragraph scope should be processed different from queries matching
a more exotic scope such as a company scope.

Experiments should be performed on both well known methods and proposed new
solutions. The implementations should run on the Microsoft .NET framework, and
should preferably be implemented in the C# programming language. It could,
however, for performance reasons be interesting to implement certain portions in
C or C++. The possible gains from “going native” should be evaluated.

11

12

Chapter 3

Theoretical background

The field of compression in general is a large field. In this chapter an introduction
to the state of the art compression methods used in inverted lists will be provided.
Also, an introduction to skipping as an optimization available to query processing
will be given.

3.1 Shannon’s information theory

In 1948 Claude Elwood Shannon published the article “A mathematical Theory
of Communication” [Sha48]. This article lays out a mathematical framework for
establishing bounds compression and reliability of communication channels. Shan-
non introduces Entropy as a lower bound for compression. Shannon’s definition
of entropy for a collection of n symbols each with the probability pi is shown in
Equation 3.1.

H = −
n∑
i

pi log(pi) (3.1)

One interpretation of entropy of a message is the amount of choice involved in
generating it. Therefore, entropy is closely linked to the probabilities of the various
symbols within a message. An extreme is when the content of a message is known
by the receiver before it is sent. The amount of choice is zero and so is the entropy.
On the other extreme if any symbol in a text of length n is equally probable the
entropy will approach log(n). This result is shown in Equation 3.2.

13

H = −
n∑
i

pi log(pi)

H = −n
(

1
n
∗ log

(
1
n

))
H = log(n)

(3.2)

In computer science it is common to extract the information content of a single
symbol from the entropy definition. The information content is the negative loga-
rithm of the probability of a symbol. The relationship between information content
and the entropy is shown in Equation 3.3 and 3.4.

I(s) = − log2(P (s)) (3.3)

H =
∑
s

P (s) ∗ I(s) (3.4)

The unit of I(s) is number of bits, for instance a symbol with a probability of 0.25
needs at least − log2(0.25) = 2 bits to be encoded[WMB99].

3.2 Huffman coding

Huffman codes is an adaptive coding technique. It can be adapted to any prob-
ability distribution, and creates an optimal prefix-free code for that distribution.
A code is prefix free, if no codeword is a prefix of another. There is no need for
special end markers for the decoder to know if the code has ended[WMB99].

Huffman coders builds a Huffman-tree which is a binary tree constructed so that
the least probable symbols are placed deep in the tree. The two edges from one
node to it is child nodes are given a value 0 or 1. The bit string consisting of the
bits encountered in the path from root to a symbol at the leaf is the code for that
symbol.

When Huffman codes are decoded, each bit in the input “chooses” one edge in the
Huffman tree, when the coder reaches a leaf, the decoder emits the symbol, and
starts at the root of the tree.

Symbols placed deep in the tree are assigned longer codewords than those higher
up in the tree. This is consistent with Shannon’s information theory in that a very
probable symbol (with low entropy) should receive short codewords.

Huffman codes are not optimal in the context of Shannon’s information theory
since it encodes symbols, using a integral number of bits. In a two symbol alphabet

14

0, 1 with probabilities 0.01, 0.99, 1 should idealy be encoded in less than one bit
(− log2(P (1)) = − log2 0.99 ≈ 0.014). In order to approach the entropy of such
distributions, arithmetic coding is needed. Arithmetic coding is beyond the scope
of this report, and it is usually very slow[WMB99].

3.3 Compression of inverted indexes

The literature contains several studies of inverted list compression. In the follow-
ing sections some of the most popular techniques as well as some new and more
novel approaches are presented. Most of these methods are general integer coding
techniques and have applications beyond the encoding of inverted files. Several of
them were invented in the sixties and the seventies, and the original papers do not
even mention inverted indexes as a targeted platform.

Common to all of these methods are that they exploit the fact that even though
inverted files might contain large values, the values are generally small. Further-
more, since the inverted files are sorted in a strictly increasing order; it is common
that the compression methods works with the gaps between the postings instead of
the posting values themselves. The gaps in this increasing sequence contain even
smaller values than the original sequence. These assumptions of “small” values give
several algorithms where “large” values receive code words longer than in the un-
compressed form. The extreme example of this is the Unary coding scheme which
codes each value as a zero terminated string of one-bits[WMB99].

3.3.1 Bit oriented methods

Several different bit oriented methods have been described, ranging from the ex-
tremely simple Unary codes [WMB99, ZM06] to the more elaborate interpolative
coding[MS00, Tro03]. Other methods are Elias γ and δ codes [WMB99, ZM06,
Tro03] and the most popular ones are perhaps Golomb and Rice codes[Gol66,
WMB99, Tro03]. Examples of some of the encoding schemes described in this
section are shown in Table 3.1.

3.3.1.1 Unary encoding

The unary codes will as described earlier code each value as a string of one-bits
terminated by a single zero-bit. The number three will be encoded as 110. There
are not many studies of this encoding scheme; however, it has it uses, especially as
part of other bit oriented methods.

In the context of Shannon’s information theory (Section 3.1) the unary coding is

15

x Unary Elias-γ Elias-δ Golomb
b = 3 b = 8 (Rice)

1 0 0 0 0 0 0 0 0 0 000
2 10 10 0 10 0 0 0 10 0 001
3 110 10 1 10 0 1 0 11 0 010
4 1110 110 0 10 1 0 10 0 0 011
5 11110 110 1 10 1 1 10 10 0 100
6 111110 110 10 10 1 10 10 11 0 101
7 1111110 110 11 10 1 11 110 0 0 110
8 11111110 1110 0 110 0 0 110 10 0 111
9 111111110 1110 1 110 0 1 110 11 10 000
10 1111111110 1110 10 110 0 10 1110 0 10 001

Table 3.1: Examples of Unary, γ, δ and Golomb (Rice) codes.

optimal if the probability a symbol x is as given in Equation 3.5. That is, unary
coding is optimal when there are half as many occurrences of x+ 1 than x.

P (x) = 2−x for x > 0 (3.5)

3.3.1.2 Elias γ and δ codes

In Peter Elias’s paper from 1975 [Eli75] two coding schemes for integers called γ
and δ are introduced. The Elias γ code codes one integer x in two parts, first the
number 1 + blog2 xc in unary code, followed by x − 2blog2 xc coded in binary. The
second part of the code only requires blog2 xc bits. The unary part of the code
then gives the length of the binary coded part. Decoding γ codes consists of first
extracting the unary part cu, then read the next cu bits as a binary value cb. The
decoded integer is then 2cu−1 + cb.

An optimization of these basic Elias-γ codes described in [BC06, Eli75] is based on
the insight that if cu = k then cb cannot be represented in less than k bits. This
again means that the most significant bit in cb (bit number k) will always be 1, and
therefore can be omitted from the codeword. This saves one bit for every codeword
and can be implemented very easily. One can choose to “invert” the unary part of
the code so that it becomes a run of zeros terminated by a one. Then the single
one terminating the unary code might be used as the most significant bit in the
binary code, thus, allowing the unary and binary coded codeword overlap. This
optimization have not been applied to the compressions shown in Table 3.1.

The encoded length of an integer x is approximately equal to lx,γ = 1 + 2 log2(x)
bits. By using the information content definition in Equation 3.4 the probability
distribution best encoded by the Elias γ code is given in Equation 3.6.

16

Pγ(x) = 2−lx,γ ≈ 2−(1+2 log2 x) = 2−12− log2(x2) = 1
2x2 (3.6)

An extension over the γ encoding is the δ encoding scheme. This methods uses the
γ code to encode the cu value instead of the unary code. This comes at a price for
lower values, however, as the number to be encoded increases the required number
of bits decline. The length of Elias-δ codewords, together with the probability
distribution best encoded by this method is shown in Equation 3.7.

lx,δ = 1 + 2blog2 log2 2xc+ blog2 xc

Pδ(x) ≈ 21+2 log2 log2 x+log2 x = 1
2x(log2 x)2

(3.7)

Since Pδ(x) is larger than Pγ(x) for large values of x it is clear that the δ-codes
compresses data with high values better than the γ codes.

In [BC06] γ-codes are extended to a “Generalized Unaligned Binary Code” (GUBC).
Here the length of the binary part of the code is a result of the unary code mul-
tiplied with a parameter σ. This means that if the unary code has value of 4 and
the σ parameter is 3, the binary part of the code will be 12 bits long. Making it
possible to save space when coding lists with large values. The σ parameter can
be selected in a brute force search for the best value of σ ∈ [1, 15] in the range,
the paper states that this search should not be performed on the entire list to be
compressed but the histogram of the values within that list. A even more elaborate
scheme proposed is the “Generalized Unaligned Binary Code with n Components”
(GUBC-n). Here a sequence of values [σ1, . . . , σn] is calculated and the length of
the binary codeword is calculated as shown in Equation 3.8.

|cb| =
{∑cu

i=1 σi if cu ≤ n∑n
i=1 σi +

∑cu
i=n σn if cu > n

(3.8)

The motivation behind the GUBC-n method is that the probability distributions of
the gaps in posting lists might have several different local maximums. At least this
is the case for the schema-independent [CCB95a, CCB95b] index used in [BC06].
In the paper a GUBC-3 method is implemented and is shown to deliver com-
pression ratios comparable to Interpolative coding (Section 3.3.1.4), while query
performance is comparable to vByte (Section 3.3.2). It should be noted that a
document level index did not show any significant advantage for the new methods
in terms of compression ratio.

17

3.3.1.3 Golomb and Rice encoding

A method introduced in 1966 by Solomon W. Golomb [Gol66] allows for tunable
compression. These Golomb codes employ one tunable parameter m and encode a
value in two parts, the quotient (q =

⌊
x−1
m

⌋
) and the remainder (r = x− qm− 1).

The quotient is encoded as q + 1 in unary code, while the remainder is encoded
in binary. The number of bits required to store the binary encoded part either
dlog2 me or blog2 mc. The extra one bit is required when the remainder is larger
than the pivot value p = 2blog2 mc+1 − m. If r < p the remainder is written in
blog2 mc bits, if not r + p is stored in binary [Tro03, WMB99].

In Golomb’s original paper the case where m is a power of two is mentioned as a
special case where the remainder never requires any more than log2 m bits. This
means that if one restricts the tuning parameterm to values which are full powers of
two encoding and decoding will be easier. Such encodings are called Rice encoding
after Robert F. Rice.

The mathematical insight behind the Golomb codes are based on run length coding
of a binary event. If one binary event occurs with a probability p. Assuming inde-
pendence the probability of having one occurrence following x− 1 non occurrences
follows the geometric distribution shown in Equation 3.9.

P (x) = (1− p)x−1p (3.9)

In Golomb’s original paper the application is the British secret service agent 00111
playing roulette, communicating his winning run-lengths over a binary channel.
However, this model also fits the gaps in an inverted list where the chance of a
term occurring in one document is p and x is the gap value.

The choice of the parameter m is very important to the effect of the coding scheme.
If large values are to be encoded a small m would lead to high values for the
quotient, for small values a high m would lead to a large remainder. In [WMB99]
it is suggested that for an array of integers a, a good choice for m is m ≈ 0.69 ∗
mean(a).

The Rice variant of the Golomb codes poses restrictions on the tuning parame-
ter, this leads to some loss in compression ratio, however, these losses are usually
surpassed by computationally much simpler and effective implementation.

3.3.1.4 Interpolative coding

Interpolative coding is a method described in [MS96, WMB99, MS00]. Interpolative
codes do not work on the gaps in the posting files, but the original strictly increasing
sequence. Interpolative codes exploit the fact that if the list [2, 4, 7, 8, 9] is to be

18

encoded, and assuming that every other value is known, the values between the
known pointers have a relative restricted set of valid values. For instance, if 2 and
7 is known and 4 which lies between these two values are to be encoded the only
possible values are 3, 4 or 5. Thus, only two bits is required to compress this value.
An extreme is when encoding 8 between 7 and 9, zero bits are used.

The list of known values required to encode or decode a sequence is approximately
half of those original list. The interpolative coder can be applied to this subsequence
as well. Giving a recursive method.

Assuming that a value in a range 1 . . . r is to be encoded, using codewords of length
dlog2 re might be wasting some bits (2dlog2 re− r bits to be exact). To counter this
the interpolated values can be written in a minimal binary code.

A minimal binary code can be constructed the same way as in the Golomb codes.
A pivot is created p = 2blog2 rc+1 − r values less than p is receive short codewords
(blog2 rc) while those larger than p gets the long code word (dlog2 re). One trick
which has shown a slightly better compression ratio is to assign the shorter code-
words to the center of the range [MS00].

Interpolative coding has been shown to achieve remarkable good compression ratios
[MS96, Tro03, MS00, AM05, BC06, AM04], this is due to the ability to exploit local
clustering in the inverted files. However, the recursive and somewhat complex
nature of the algorithm makes its implementations slow. However, the results
in studies like [Tro03] finding interpolative compression approximately ten times
slower per decoded value than for instance vByte (see Section 3.3.2) might be to
pessimistic. In [BC06] a highly optimized version of the interpolative algorithm
performed is only three or four times slower than vByte. This suggests that there
are much performance to be gained by implementing the bit-oriented algorithms
correctly.

3.3.1.5 Selectors

An idea used in the word-aligned compression schemes (Section 3.3.3) is to let a
part of the encoded data specify the number of bits for a selected number of values.
This idea is applied in [AM04] to create the Selectors algorithm.

The Selectors method introduces two concepts, width which is the bit-width for
the next values, span which is the number of codes to be encoded with the selected
width. Selectors emitted in the encoded data govern the transitions between various
widths and spans. These transitions are made relative to the previous encoded
chunk and a transition table shown in Figure 3.1. The transition table should of
course be adjusted when the width of the previous encoded chunk is near the end
of the ranges so that no selection codes are wasted.

19

Width Span
s1 s2 s3

−3 Code 1
−2 Code 2 Code 3
−1 Code 4 Code 5 Code 6
0 Code 7 Code 8 Code 9

+1 Code 10 Code 11 Code 12
+2 Code 13 Code 14
+3 Code 15

max Code 16

Figure 3.1: Selectors transitions as described in [AM04]

The assignment of selectors, might be seen as a shortest path problem. The nodes
in the graph are pairs (p, w) where p is the position in the list to be compressed, and
w is the width used previously. Edges are placed in the graph for every selector
code which “fits”, for instance a code 9 edge from (p, w) to (p + s3, w) is only
possible if the s3 elements after p need no more than w bits. The cost of one edge
is h + sw where h is the size of the selector, s is the span and w is the bit width
used.

An artificial node is created (0, wmax) and used as the start of a one-to-all shortest
path. There are at most wmax nodes at the nth position and the one with the
lowest cost represents the path which should be used to encode the list. The
shortest path algorithm for directed acyclic graphs (DAGs) is linear (O(n)) where
n is the number of nodes in the graph[CLRS01], however, it still comes at a cost.

A greedy method is suggested, one traverses the graph by choosing the “best” edge
out of each state. The definition of the “best” edge used in the paper is the edge
with the lowest cost defined as: the savings due to high spans minus the bits wasted
due to to high bit-widths. This much simpler method gives very good results.

Homogeneous or structured lists where large portions of the lists contain similar
values benefit from high span values amortizing the cost of the selector over more
values. Several different choices for the span values [s1, s2, s3] are experimented
with, and the overall best compression ratios are achieved with [2, 4, 6] or [2, 4, 8].

Further improvements are achieved when a multiplier parameter is selected for each
list. This multiplier adjusts the span values so that homogeneous and structured
lists receive large span values, while more noisy lists are encoded using shorter
spans. The authors of the paper suggest a brute force search for the optimal
multiplier parameter.

Another trick used to encode homogeneous lists more efficiently is the insertion

20

of a 4-bit escape after each sequence encoded using the s3 span. This escape
represents an extension of the encoded run with a number of values in the range
[0, 15 ∗multiplier].

Both the multiplier and the escape-nibble give improved compression ratio for the
test collections used the paper. But the compression rate is still outperformed
by Golomb and Interpolative codes. Retrieval time is improved over both vByte
(Section 3.3.2) and Carryover-12 (Section 3.3.3.3).

3.3.1.6 PFOR and PFORDelta

Introduced in [ZHNB06], the PFOR and PFORDelta methods are motivated by
current hardware architecture. Modern CPUs are said to be super-scalar, that is;
they are able to issue multiple instructions per clock cycle. However, to exploit
this ability fully, the algorithms running should exhibit certain characteristics. The
focus when designing the PFOR and PFORDelta methods were the following:

• The data should reside in cache-memory: Avoiding the extra cost of
fetching data from main memory on cache misses.

• Branches (if-then-else) should be avoided: This avoids miss predicted
branches causing CPU pipelines to be flushed and several cycles lost.

• Iteration in loops should be independent: This allows compilers and
CPUs to vectorize the program, performing instructions on several pieces of
data in one clock cycle.

PFOR is short for Patched Frame of Reference. It is an optimized version of a
method called Frame of Reference (FOR). In FOR one maintain a single value
minc for each disk block, and every value c[i] is encoded as c[i] − minc using
dlog2(maxc −minc − 1)e bits where minc is the smallest value in the block, and
maxc is the largest. PFORDelta is an extension of PFOR useful for sorted lists.
In PFORDelta the gaps in the list of numbers are stored, rather than the numbers
themselves, this makes PFORDelta suitable for inverted list compression. It seems
that in litterature the name PFORDelta are often used even when deltas are not
encoded, for instance [YDS09b] uses a PFORDelta method to compress term fre-
quencies, which will probably not encode the gaps, since the gaps of frequencies
can contain many negative numbers.

Since FOR uses dlog2(maxc −minc − 1)e bits for each value; outliers could damage
the compression ratio significantly. Therefore PFOR selects a code width smaller
than than this. Values which require higher values are coded as exceptions. This
allows for good compression when there are only few large values.

The major contribution of the PFOR methods are the Patching mechanism. The
main body of the data is encoded in the “code section” all using b bits per value.

21

For values that are exception a relative pointer to the next exception is stored.
This way, by storing a pointer to the first exception in the preamble of a encoded
block it’s possible to traverse the linked list of exceptions. Furthermore it poses a
requirement that the distance between exceptions must be less than 2b − 1. If this
is not the case a value that otherwise would fit in b bits is coded as a compulsory
exception. An example of a list of numbers compressed using PFOR is shown in
Figure 3.2. In the first phase of the algorithm all the data in the “code section”

Header entry points

1 2 1 1 3 3 1

3 3 1 2

5819

Figure 3.2: A PFOR compressed block for the sequence
[1, 2, 1, 5, 3, 8, 1, 3, 3, 1, 2, 9]. One forced exception is showed with
bold typesetting. Exception regions grows backwards.

is unpacked. Then the linked list of exceptions are followed and the exceptions
patched into the list. The PFOR algorithm is applied to chunks of values, the
paper suggests that a chunk size of 128 is suitable. Highly optimized code can be
written which packs and unpacks a chunk of 128 b-bit values. Such a loop can be
written without branches, with independent iterations. With a chunk size of 128
the data will fit in cache on most modern architectures. A nice property obtained
since one select chunk sizes which is a divisible with 32 is that independent of the
selected b-value; the compressed data will be aligned on a 32-bit machine word
boundary.

The patching phase does not follow the property that every iteration in the loop
should be independent, however, one should choose b in such a way that the number
of exceptions are small.

3.3.1.7 NewPFD and OptPFD

The compulsory exceptions of PFor and PForDelta become more frequent as one
chooses low b values. For instance, if one chooses a b value of 2, every exception
cannot be more than 4 spaces apart. To alleviate this limitation, [YDS09b] intro-

22

duces two new methods similar to PForDelta. Theese two methods are NewPFD
and OptPFD. When encoding a block with a given b value, one stores the lower b
bits of any exception inside the encoded block. The remaining owerflow bits, and
the position of the exception are stored in two separate arrays, which in turn are
compressed using another method. In [YDS09b] the overflow values and positions
are compressed using the Simple-16 method. In another paper by the same authors
[DHYS08] the NewPFD algorithms were applied recursively on the exceptions and
exception positions.

In the original PForDelta paper the b value were selected so that close to 90%
of the values where within range. In [YDS09b] the authors discuss that a fixed
threshold such as 90% is not optimal. Assuming that the decompression speed if a
PFor compressed block is goverened by the number of exceptions, one can choose
to increase the b value, thus lowering the number of exceptions, but possibley
increasing the compressed size in order to trade space for speed. The paper states
that all blocks are initially compressed using the b value which yields the smalled
index size. Then one might increase the b value for the block which will give the
most time savings per increase in space.

The experiments performed in [YDS09b] use a document collection which is sorted
to yield smaller gaps in the index. That is, the documents were ordered so that doc-
uments sharing many terms recieved document identifiers which were close to each
other. For this collection, the NewPFD and OptPFD methods were significantly
better than the original PForDelta method.

3.3.2 Variable byte length coding (vByte)

One very popular method described [WZ99] is the variable byte length encoding
(vByte). The method is extremely simple and can be implemented efficiently. Each
code word is a whole number of bytes, this leads to fast decoding since most
computers can handle operations on single bytes faster than operations on single
bits. The simplicity of the algorithm itself also contributes to its high-throughput
nature.

vByte works by using seven bits per byte to code a value and one bit per byte to
signal if the that byte is the last byte in the codeword, or if there are more bytes.
The operation to decode one byte is very simple. Assuming that the signal bit
is the most significant bit in the byte on can use the AND operation and the bit-
mask 01111111 to isolate the value, then a accumulator variable might be shifted
seven bits to the left and the masked byte can be added to the accumulator. This
operation is shown in Equation 3.10.

v = (v << 7) + (b & 01111111) (3.10)

23

vByte does not offer especially good compression ratios. For instance very small
gaps which might be encoded in zero or just a couple of bits using a interpolative
coder will consumes a whole byte using vByte. The pseudocode for the vByte
encode and decode operation is shown in Algorithm 1 and 2.

Algorithm 1: vByte encoding
Input: val
Output: byte stream
count← 01

while val ≥ 128 do2

WriteByte((val & 127) | 128)3

val← val >> 74

count← count+ 15

end6

WriteByte(val)7

return count8

Algorithm 2: vByte decoding
Input: byte stream
Output: decoded number
value← 01

repeat2

byte← NextByte()3

value← value << 74

value← value+ (byte & 127)5

until byte < 1286

return value7

There exists other byte aligned codes which support some parameterization. These
codes are called (S,C)-Dense codes and are described in [BFNE03]. The usage of
(S,C)-dense codes are not that widespread as vByte, probably because the fast bit
shifting and masks in the vByte algorithm has to be replaced with slow operations
such as division and multiplication in (S,C)-Dense.

3.3.3 Word aligned codes

Recent publications [AM05, AM06] have shown algorithms which show decom-
pression speed comparable with vByte while acheaving much better compression
ratios. While the compression ratios of these methods are worse that those of
the best bit-oriented methods such as Golomb (Section 3.3.1.3) and Interpolative
coding (Section 3.3.1.4) decoding speeds are much higher.

3.3.3.1 Simple-9 and Simple-16

Simple-9 was introduced in [AM05] and works on whole 32-bit long machine words.
Of these words four bits (the selector) are used to select a scheme for how the
remaining 28 bits are to be used. Simple-9 has nine such schemes. These schemes
are shown in Table 3.2.

Some of the various schemes do not utilize all the bits the machine word, and only
nine of the sixteen distinguishable schemes a four bit selector can address is used.
These observations have led to the Simple-16 scheme described in [ZLS08]; for

24

Selector Values Length Wasted bits
a 28 1 0
b 14 2 0
c 9 3 1
d 7 4 0
e 5 5 3
f 4 7 0
g 3 9 1
h 2 14 0
i 1 28 0

Table 3.2: Simple-9 coding schemes as described in [AM05].

instance the case for the selector e in Table 3.2 wastes three bits, but in Simple-16
it is replaced by two different schemes; one with three six-bit values followed by
two five-bit values, and another with two five-bit values followed by three six-bit
values. [ZLS08] does not provide a listing of the cases. In [YDS09b] a version
of Simple-16 called Simple-16-128 is described, this version allocates most of the
selectors for small values and fewer for the large ones.

[AM05] shows that Simple-9 performs on par with vByte in terms of decompression
speed while it provides compression ratios better than vByte. Similar results are
shown in [YDS09b, ZLS08] for all different Simple-9/16 versions.

3.3.3.2 Relative-10

Introduced in the same paper as Simple-9 ([AM05]) Relative-10 makes better use
of the selector bits by choosing one using the scheme employed in the previous
encoded block when coding the next block. Each block is encoded relative to the
previous one. Relative-10 only uses two bits in each machine word to select the
coding scheme and has 30 bits left to encode the actual value. The various coding
schemes described in the original paper is shown in Table 3.3.

Relative-10 works well if the inverted list is homogeneous, minimizing the impact of
the limited ability to choose the selector values. Since Relative-10 permits 30 data
bits; it performs very well on small values, packing more one and two-bit values
into each code word. Relative-10 achieve compression ratios slightly better than
Simple-9 with equal decompression speed.

If one knows the maximal value within the list to be compressed, the relative scheme
selector table can be shifted to the left. That is, the maximal code “escape” (se-
lector 3 in Table 3.3) can escape to a lower value, thus yielding better compression
ration. In the experiments performed in the original paper [AM05], the maximal
encoding scheme required for a given block where encoded in a header field of the

25

Selector Count Length Wasted
Next selector

a b c d e f g h i j
a 30 1 0 0 1 2 3
b 15 2 0 0 1 2 3
c 10 3 0 0 1 2 3
d 7 4 2 0 1 2 3
e 6 5 0 0 1 2 3
f 5 6 0 0 1 2 3
g 4 7 2 0 1 2 3
h 3 10 0 0 1 2 3
i 2 15 0 0 1 2 3
j 1 30 0 0 1 2 3

Table 3.3: Relative-10 coding schemes as described in [AM05]

block, enabling this optimization.

3.3.3.3 Carryover-12

Clearly Relative-10 provides some improvements over Simple-9, however, as shown
in Table 3.3 there are still selectors which waste bits. Measures similar to those
taken in the Simple-16 variants could probably be employed, but [AM05] describes
another method called Carryover-12. Instead of creating additional cases for the
ones where bits are wasted, these wasted bits are used to store the selector for the
next codeword. This way the next codeword can employ all of its 32 bits to store
data.

This results in two different encoding schemes, one scheme where the previous
codeword contained the selector of the current word, and another scheme when the
word itself need to contain the selector. The two schemes is shown in Table 3.4.
The transitions between various selectors are implemented in the same way as in
Relative-10.

The compression ratios of Carryover-12 is better than those of Relative-10 and
Simple-9, however its slightly more complex implementation makes the decompres-
sion time higher. However, the decoding speed is still comparative with vByte and
[AM06] also reports this same findings.

Carryover-12 can take advantage of the same optimization with respect to the max
value escape selector as the Relative-10 method.

26

Selector Previous selector No previous
Count Length Next Count Length Next

a 32 1 30 1
b 16 2 15 3
c 10 3 Yes 10 3
d 8 4 7 4 Yes
e 6 5 Yes 6 5
f 5 6 Yes 5 6
g 4 7 Yes 4 7 Yes
h 4 8 3 9 Yes
i 3 10 Yes 3 10
j 2 15 Yes 2 14 Yes
k 2 16 2 15
l 1 28 Yes 1 28 Yes

Table 3.4: Carryover-12 coding scheme as described in [AM05]

3.3.3.4 Slide

Slide is a word aligned scheme presented in [AM06]. Slide works somewhat similar
to Carryover-12 packing minimum width binary codes into machine words. How-
ever, Slide makes full use of the trailing bits at the end of a partially full codeword.

Slide permits codes of any length, unused bits at the end of one codeword is prefixed
at the beginning of the next word. Since Carryover-12 does not allow this kind of
word-boundary spanning there is no selector for 13-bit codes, it would waste more,
and it would not allow any more values than if 15-bit words were used. The
availability of all different codeword widths removes this internal fragmentation.
Also since unused space at the end of a encoded value s prefixed the next word
external fragmentation is also reduced.

In Slide, selectors are three bits wide. These describe a relative shift of the codeword
length just as in Relative-10 and Carryover-12, one selector values is reserved for
“Use the widest codewords available” to accommodate sudden jumps in the values.
Given a previous code word length s then the selector might choose values in the
range [s − 3, . . . , s + 3, smax]. The three bit selectors is not really enforced by the
algorithm, the paper mentions that the impact of choosing either two-bit selectors
(three relative values) or four-bit selectors (fifteen relative values) is quite small.

A scheme for handling zero-bit code words are also sketched out. The selector
might set the code width to zero, and then a fixed width binary number might
state the number of zeros in the run. But this adds complexity to the algorithm
which might result in to slow decompression, so representing zeros as one-bit codes
might be just as good a solution.

The authors of [AM06] argue whether this encoding scheme still is word aligned

27

or not. The codes span word boundaries and require somewhat more complex
decoding mechanisms, but the data which is accessed is fixed width binary codes,
and no operations are performed on single bits. In experiments the Slide algorithm
performs better than Carryover-12 in terms of compression ratio, and comparable
with both vByte and Carryover-12 in decompression speed.

3.3.4 A taxonomy of inverted list compression techniques

The make it easier to discuss the methods used to compress inverted lists the various
methods could be divided in several classes. In this section a simple taxonomy for
the various methods will be described. The taxonomy will contain three axes, these
are summarized below. The methods described in this chapter are classified using
the taxonomy in Table 3.5.

Single value Chunk of values
Bit Byte Word Bit Byte Word

P
ar
am

et
er
iz
ed Golomb (S,D)-dense Selectors

Rice PFOR
GUBC PFORDELTA
GUBC-n NewPFD
Huffman OptPFD

N
on

pa
ra
m
et
er
iz
ed

Elias-γ vByte Interpolative Simple-9
Elias-δ Simple-16
Unary Relative-10

Carryover-12
Slide

Table 3.5: Taxonomy of compression methods.

3.3.4.1 Individual value or chunk

When implementing inverted list compression special care has to be taken if the
data is to be compressed using a method which works on multiple values at the
same time. Method like vByte and the Elias methods can be used on single values
as well as long runs of values. However, other methods like Simple-9, Carryover-12,

28

Interpolative and PFOR require multiple values to be encoded at once. The layout
of the inverted file need to be adapted if such methods are to be used.

3.3.4.2 Bit, Byte and Word alignment

A classification already employed in this chapter is the level of alignment offered
by the various algorithms. The alignment of encodings affects the decompression
performance, but it also affects how various encodings might be used together.
For instance a bit oriented encoding such as the Unary code would be wasteful
together with the byte aligned vByte method since one would have to pad the
unary codewords to get byte aligned.

3.3.4.3 Parametrized vs. non parametrized

Some methods are parameterized, one or more parameters are chosen to adapt
the compression method to the data. This parameter might be chosen globally or
for some local quantity. The latter will often yield better compression ratio, but
at the cost of some local analysis of the data. Examples of parameterized codes
are Golomb codes (the m parameter) and PFOR (the b parameter). Examples
of non parameterized codes are vByte, unary codes and the Elias codes. This
categorization is also used in the Managing Gigabytes book [WMB99].

3.3.4.4 Using the taxonomy

The taxonomy described above might be used as a guideline when selecting com-
pression methods. For instance, if one has an inverted list layout which is some-
thing like (d, fd, p1 . . . pfd)+ compressing document ids and frequencies using a
chunk method will be hard. As described in [AM05] chunk methods are vulnerable
to value distributions like [1, l, 1, l . . .] where l is some relatively large value. All
known chunk methods will encode the low values (the ones) using to large code-
words. This suggests that even though the inverted list might be looked upon
as just a sequence of integer, chunked compression will benefit from compressing
“similar data” together. Thus, a layout resembling a column store like the one
shown below will be easier to adapt to a chunk method.

(d+, f+, (pd1,1 . . . pd1,f1) . . . (pdk,1 . . . pdk,fk))

That said, chunk methods which do not require very long chunks (for instance
Simple-9) could be used compressing positions in former list layout. This leads
to another possible problem, most “short-chunk” methods are word aligned, this

29

means that one might pad the representation of the document id and the frequency
to be able to start the position list at a word boundary.

Efficient query evaluation requires other access methods than just sequential scan
through the posting files [MRS09d]. This often involve skipping through the list
reading only some values. Parameterized codes would require special attention
when skipping since one jump might hit a section of the posting which is compressed
with another “parameter” than the other. This also applies for alignment, codes
with a larger unit of alignment will often be easier to skip into. Chunk methods will
be difficult to skip into, especially the relative coding schemes such as Carryover-
12, Slide and Relative-10 where the coding of one chunk depends on the coding of
the previous one.

None of these problems are impossible to bypass, skip pointers might include the
“context” required to start decompressing the data at the target site, or perhaps
reset the “context” at every skip pointer position. However, this will make ran-
dom access structures more expensive. And therefore this should be taken into
consideration when choosing compression method.

Index construction will often include merging already created sub indexes[WMB99].
Assuming that one sub index contains postings for documents with identifiers in
the range [d0 . . . dk] and the other sub index contains the posting for documents
in the range [dk+1 . . . dn] merging these the lists for each term in these indexes
could be done by just concatenating them. This is trivial to achieve when using
unparameterized single value methods, and parameterized single methods where
the parameters are equal. However chunk method, and parameterized methods
with different parameters might require the two postings to be uncompressed before
they are concatenated and compressed again.

The last concern is the memory requirements. For parameterized codes one will
require some amount of the data to reside in memory in order to estimate the best
values for the parameters. This is not the case for the unparameterized codes where
the data can be outputted “on-the-fly”. Also chunked methods will require some
additional memory, to collect the values before writing them in chunks.

3.3.4.5 Taxonomy conclusion

Since most of the classes except perhaps the single value non-parameterized comes
with some limitations or will require some extra care. Taking into account that
these methods are among the simplest to implement this might explain their
widespread usage.

If one is to choose a method from the other classes it would be to bypass the
less-than-optimal compression ratio and compression throughput offered by the
non-parameterized single value codes. When building an inverted index system
from scratch more options will be available. One should for instance consider a

30

column-store layout, which will make it possible to utilize the full potential of the
chunk methods.

3.4 Compression of dewey codes

Dewey codes will in its uncompressed form occupy much storage. Compression
should give improvements on this, and in this section recent work on dewey com-
pression will be described. The dewey node labeling scheme assumed in this report
is only one of many, and several approaches exists, however, an exhaustive study
of these methods is beyond the scope of this report. There exists a lot of research
on labeling schemes for XML documents. [SCCS09] is an up-to-date survey of the
various schemes available.

3.4.1 Node labeling schemes for dynamic XML documents

The focus in [HHMW07] is a Dewey labeling scheme which allows modifications to
the documents. A labeling scheme which allows efficient insertion of new nodes in
existing XML documents poses requirements far beyond the simple Dewey codes
assumed in this report. However, the paper describes several possible compact
methods to represent Dewey codes, several of which can be applied in this study.

3.4.1.1 Desirable properties of dewey encoding

Even though any general integer coding technique such as those described in the
previous sections can be used to encode deweys, some methods will be better
than others. [HHMW07] describes some extra features which are desirable when
compressing deweys.

• Order preserving: If two Dewey codes D1 and D2 subject to D1 < D2 then
the compressed versions should also be subject to C(D1) < C(D2). This
makes it possible to answer “occurs before” and “occurs after” predicates
without decompressing the deweys.

• Prefix comparable: If for instance two Dewey codes are equal on their
first three elements, then the compressed versions should be equal on some
prefix corresponding to the first three elements as well. This means that
when searching for prefix-equality one might just compress the search key
and compare the compressed data to the compressed key.

When using compression methods which have these properties, query-processing
can be faster than when working with uncompressed data. For instance, if one were

31

to compare two uncompressed Deweys one might need to execute one operation per
dewey element, if the data was compressed so that several elements would be packed
for instance inside one machine word multiple elements might be compared in one
operation.

Some of the compression method described in Section 3.3 have these features or can
be adapted with little effort. For instance vByte (Section 3.3.2) has these feature
when the “signal”-bit is the most significant bit in the code. All the methods
described in Section 3.3 which is order preserving and prefix comparable are shown
in Table 3.6.

Method Remarks
vByte Most significant bit as “signal”-bit and Big-Endian byte

order.
Golob and Rice Given that the search key are compressed with the same

b-parameter value.
Unary
Elias-γ and δ

Table 3.6: Order preserving and Prefix comparable codes

3.4.1.2 Dewey coding techniques in [HHMW07]

In the following the techniques described in [HHMW07] will be adapted to the sim-
pler static use-case of dewey codes which is the context of this report. The number
of bits required to code the different dewey element values using the mentioned
methods are shown in Table 3.7.

Static scheme, with prior knowledge If one knows the largest values within
each level in the Dewey codes a fixed bit-width might be assigned to each level in
the Dewey codes. If the values within one level is very skewed this might cause
this compression to be very inefficient.

Given that the prior knowledge of the maximal values within each level this en-
coding can probably be implemented quite efficiently. However, to obtain good
compression ratios one should probably encode relatively small chunks of Dewey
codes using local maximums to determine bit-widths, making the impact of spo-
radic large values smaller. On the downside this will break order preservation and
prefix comparison. If one choose to encode the Dewey codes using the global max-
imal values the order preservation and prefix comparison properties will be kept,
but the achieved compression ratio could be very low.

32

Encoding methods Code length for value
7 27 214 221 228

Optimal 3 7 14 21 28
Length fields
Fixed length 4 bits 7 11 18 - -

5 bits 8 12 19 26 33
Stepwise growth u = 2 5 13 24 34 48

u = 3 6 10 20 30 40
u = 4 7 11 18 29 36

Two part 2 bits 7 12 19 27 34
3 bits 8 13 20 28 35

Control tokens k = 3 6 12 21 33 42
k = 4 4 12 20 28 40
k = 5 5 10 20 30 35

Separators m = 2 6 12 20 30 33
m = 3 9 12 18 27 33

Prefix free
Bit aligned 4 12 21 29 36
Byte aligned 8 16 16 24 32

Table 3.7: Bits required for dewey elements using methods from [HHMW07]. The
best methods are shown in boldface.

Fixed width length field: By prefixing every element in the dewey with a
fixed width field specifying the bit-width of the next element. Such a variable
length encoding can handle sporadic large values without wasting to much space
for the smaller values. However, the length of this fixed width field need to be
determined. The cost of this length is paid for every dewey element, and a too
large value for this field will waste storage.

The authors introduce a technique which is applied to all the next methods de-
scribed in the article. This is a well known method called range expansion. Range
expansion makes use of the information that if a value v requires n bits, then v is
no smaller than 2n, thus when encoding v one can write the value v − 2n. This
makes the range of possible values being encoded in a variable width codeword
somewhat larger.

If the length of the code is Lf and the element to be encoded ei then Equation 3.11
must hold.

ei ≤
Lf∑
j=1

2j = 2Lf+1 − 2→ Lf = log2(ei + 2)− 1 (3.11)

33

One could use the methods from the static scheme where the maximal values de-
cided the code word width to decide the width of the length field for each level in
the dewey. However, a non-global configuration of the length field would break the
order preservation and prefix comparability properties of the encoded values.

This method is far from optimal in that it wastes bits for the length field when
encoding small values. This could be countered by letter the length of the length
field be variable.

Variable length length field: The paper describes two schemes for variable
length length fields. Both schemes are both prefix comparable and order preserving.
The first version uses a stepwise growing length field. The length field consists of
code-units of length u, one of the 22 possible codewords is used to signal that there
will be one additional codeword. In Table 3.8 shows codeword lengths when u = 3
and 111 is the continuation codeword.

Length field Codeword length Length field Codeword length
000 1 110 7
111 000 8 111 110 14
111 111 000 15 111 111 110 20

Table 3.8: Stepwise code length growth.

It is clear that this length field will be very long for the larger values. The second
scheme counters this by creating a two part length descriptor. The first part
has fixed length and will describe the length of the second one. By using range
expansion and by letting the length of the first field be two bits, code lengths shown
in Table 3.9.

Length field Codeword length Length field Codeword length
00 0 1 00 1 2
01 00 3 01 11 6
10 000 7 10 111 14
11 0000 15 11 1111 30

Table 3.9: Two part length descriptor

This encoding consumes fewer bits for the length descriptor, and is therefore supe-
rior to the first version. However, if one need to encode values larger than 231 − 1
two bits for the fixed length selector is not enough. Adding an extra bit to that
field will in practice reserve quite a lot of wasted coding lengths.

Both the variable length selector schemes add extra cost for really small values.
Thus, they are not optimal, however, especially the two-part scheme seems practical

34

with respect to implementation, and will provide reasonable compression.

Control tokens: The paper then describes one approach very similar to vByte
(Section 3.3.2). A special prefix is added to each encoded element, this prefix is in
unary code and represents the number of “encoding-units” used for the element.
Each encoding-unit has a fixed size k.

Range expansion is applied so that when encoding a value which requires m encod-
ing units one subtracts the maximal value which can be encoded in m − 1 units.
When k = 8 this scheme will produce a byte aligned encoding.

The relationship to vByte is that this if the unary prefix of the encoded value
is spread across all the encoded units as “signal bits” this will become a vByte
encoding. This control token method is actually a possible improvement of the
standard vByte algorithm, allowing the first byte to carry all the signal bits which
will allow decoders to just look at this first byte when determining the codeword
length. The simple vByte method would benefit form range expansion as well.

Examples of the variable length codes with k = 4 is shown in Table 3.10. This
code will provide nibble-alignment, which in turn will make entire deweys com-
pressed using this method nibble aligned. This nibble alignment means that at
most four bits are wasted if the code need to be byte aligned for some underlying
data structure (which in fact is the case for the XML database system described
in the paper).

m Pattern Value range
1 0xxx 0 - 7
2 10xx xxxx 8 - 71
3 110x xxxx xxxx 72 - 583

Table 3.10: Example of control token codings with k = 4

Separators: Another approach using encoding units is the separator method.
The encoded dewey consists of several m-bit units. The units are interpreted as
digits in a Base-(2m − 1) number system. One of the possible encoding units is
reserved as the level separator. If m = 2 and the digits assigned to each codeword
is 00 = 0, 01 = 1, 10 = 2 and 11 = .. The dewey 1.3.7 is shown below.

01 11 01 00 11 10 01
(1 ∗ 30) (1 ∗ 31) + (0 ∗ 30) (2 ∗ 31) + (1 ∗ 30)

1. 3. 7

Making the separator an explicit code unit might not be optimal when compressing

35

really small element values. Also this method will break comparability and it is
not order preserving, since digits and separators might be compared to each other.

Prefix free codes: The last proposed method is to use a prefix free variable
length code to specify the length of the encoding for each element in the Dewey.
This prefix free code can be determined using a Huffman algorithm (Section 3.2).
By letting Huffman-codewords be assigned in increasing order for increasing values
the code is prefix comparable and order preserving.

The dewey elements are encoded using the Huffman derived prefix free code Ci and
the encoded element with length Li.

Prefix coding: The most efficient scheme described in this paper is the use of
prefix coding which is applied for each storage block. When storing deweys the
first dewey, the reference dewey, is stored in its uncompressed from. Subsequent
deweys are coded in two parts. The first part is the length of the common prefix.
The second part is the uncompressed representation of the remaining elements.

It is possible to encode the remainder using one of the other compression methods.
This case will improve compression even more, but it will also introduce one inter-
esting property. Since the prefix compression cuts away the dewey elements close
to the root, very many of the lowest dewey element values are removed. Thus,
the average value of each dewey element increases which will impact the choice of
coding method for the remainder part.

The paper provides a coding scheme which is optimized for the remainder of the
deweys when encoded using the prefix coding. Also the scheme are adapted to
produce byte aligned codes, wasting no bits on padding and supporting efficient
byte level comparisons.

Prefix coded deweys are not directly prefix comparable and order preserving, how-
ever, when comparing one “query”-dewey one might encode that dewey relative to
the same reference dewey and using the same compression for the remainder. This
representation retains the prefix comparable and order preserving properties.

3.4.1.3 Paper conclusion and relevancy for this project

The paper reports that prefix coding alone yields improvements better than 40%.
Together with the Huffman based prefix free codes the compressed sizes close to
20-30% of the uncompressed size. Taking into account that the dewey scheme
used in the paper assigns higher element values in order to support updates. The
compression result might be even better for static dewey codes.

The prefix compression scheme described might not lend it self equally well to

36

inverted lists since the deweys in each posting are from many different documents.
However, the idea of not repeating prefixes will surely be useful. A scheme where
the reference dewey are chosen more frequently might provide better compression
ratios for inverted lists, but at the cost of more complex query processing.

Many of the methods for encoding the dewey values are not very different form
many of the inverted list compression methods shown in Table 3.6. But they point
out some possible improvements such as the use of range expansion to improve the
compression ratio of for instance vByte.

3.5 Skipping

Calculating the intersection of two or more inverted lists is a very important op-
eration in may IR applications. These lists are typically sorted on the document
identifiers. The problem is therefore to merge the lists as fast as possible. Skipping
can speed up this merging process[MRS09d].

One approach is to divide the index into blocks of n entries. Each such block is
annotated with a header containing the first document identifier in that block, and
a pointer to the beginning of the next block. During query processing the header
of the first block is decoded and the pointer to the next block is used to decode
the next block. Then one can determine whether the target document identifier is
inside the first block (dblock1 ≤ dquery < dblock2).

〈5, 1〉 〈8, 1〉 〈12, 2〉 〈13, 3〉 〈15, 1〉 〈18, 1〉 〈23, 2〉 〈28, 1〉 〈29, 1〉 . . .
(a) Original inverted index (di, fi) pairs.

〈5, 1〉 〈3, 1〉 〈4, 2〉 〈1, 3〉 〈2, 1〉 〈3, 1〉 〈5, 2〉 〈5, 1〉 〈1, 1〉 . . .
(b) d-gaps (di, fi) pairs.

〈〈5,a2〉〉 〈5, 1〉 〈3, 1〉 〈4, 2〉 〈〈13,a3〉〉 〈1, 3〉 〈2, 1〉 〈3, 1〉 〈〈23,a4〉〉 〈5, 2〉 〈5, 1〉 〈1, 1〉. . .
(c) Skip pointers with a block size of three. ai is the address of the begining of skip block i.

〈〈5,a2〉〉 〈1〉 〈3, 1〉 〈4, 2〉 〈〈8,a3 − a2〉〉 〈3〉 〈2, 1〉 〈3, 1〉 〈〈10,a4 − a3〉〉 〈2〉 〈5, 1〉 〈1, 1〉. . .
(d) Skip pointers gap encoding and document id of first entry removed from the list.

Figure 3.3: Skip pointers as proposed by Zobel and Moffat in [MZ96].

In Figure 3.3 the structure of skip pointers as described in [MZ96] are shown. In
3.3c skip pointers with a block size of three are added to the index. In Figure 3.3d
some redundancy are removed, and the document identifiers of the skip pointers are
gap coded. This data structure will allow skipping to traverse the inverted index
in larger blocks, this way a smaller portion of the index will need to be decoded.

37

The effect of skipping is as mentioned above that only parts of the index will need
to be read. However, the granularity of the skips affects efficiency. A fine grained
skip list with small blocks will make it possible to skip several times, however, it
would cause some overhead related to the comparison with skip pointers needed.
Skip pointers also require storage space. A coarser skip list will result in fewer
skips, but also fewer comparison and less storage. In [MRS09d] a simple heuristic
for skip list granularity is suggested. For a posting list of length P , it is suggested
to use

√
P evenly spaced skip pointers.

In [MZ96] a more elaborate model is proposed. This model assumes that there are
p postings in the inverted list. Among these p postings, there are k documents of
interest. Assuming that each of the k documents are within separate blocks one
would on average need to decode half of each such block to find the document.
If there are p1 skip pointers (and blocks) each block will contain p

p1
postings.

Additionally one would have to decode the skip pointers as well, the size of the
skip pointers is approximated to the size of two regular postings ((di, fi) pairs).
This gives the total processing time shown in Equation 3.12. In Equation 3.12 td
is the cost of decoding one posting and Td is the total decoding time.

Td = td

(
2p1 + kp

2p1

)
(3.12)

The decoding time is minimized when p1 =
√
kp

2 . These numbers do not take
the extra IO requirements from the skip information. Assuming that the cost of
reading one posting is tr the total cost is given in Equation 3.13.

T = td

(
2p1 + kp

2p1

)
+ tr(p+ 2p1) (3.13)

The total time is minimized when p1 =
√
kp/(1+tr/td)

2 . The paper also discusses
the use of several levels of skips. Skipping in the skip pointers reduces the process-
ing required, however, such pointers require extra storage. In [MZ96] equations
describing the costs of multi level skip lists show a slight advantage for skip lists of
level two and three over the single level approach. However, in a real world imple-
mentation these improvements could be offset by a more complex implementation.

The k parameter need to be known when the index is built. In [MZ96] experiments
are performed with different k values. High k values is favored by boolean queries
with few terms, while longer queries favor low k values. The paper concludes that
a k between 100 and 1000 is appropriate for most queries. Assigning different k
values to different lists are suggested as one optimization. However, it’s not simple
to determine the best k values for any given list.

A slightly different approach for in-memory indexes are used in [SC07]. Assuming

38

that a inverted list is b bytes long and has b1 skip pointers. Skip pointers is assumed
to occupy four bytes of memory, and each skip pointer skips db bytes. Then the
expected number of bytes processed is given in Equation 3.14.

4b1 + min
(
kdb
2 , b

)
(3.14)

The reasoning behind the min
(
kdb

2 , b
)
part of the equation is that one will never

decode more than the entire skip list. Also, if the number of documents to be
located in the list is larger than the length of the list and therefor the effect of
skipping is assumed to be very low, one could choose to ignore skip pointers. The
paper summarizes the relationship between b, k, b1 and the time estimate (unit:
number of decoded bytes) shown in Equation 3.15.

T (b, k, db) =


b if k > b

4b1 + b if k ≤ b and kdb
2 > b

4b1 + kdb
2 otherwise

(3.15)

The paper points out that b and k have an important relationship. If b is large,
then the list is probably a long list (a common word). Many query evaluation
strategies evaluate the longest inverted lists late, when the number of interesting
documents are low (k is low). When b is low, k is expected to have a higher value.
The authors therefore suggest to select the skip lengths (db) based on the length
of the lists.

In the paper, queries from a TREC query trace were executed and recordings
of the length of each list b and the number of matching documents k was used
together with Equation 3.15 to select the optimal db. In general very short lists
does not benefit much from skipping. Lists between 104 and 105 bytes long works
best with very short skips (20-50 bytes). Lists longer than 106 bytes benefit from
short skips but are best with longer skips. From this the paper chose to consider
skips of lengths between 50 and 200 bytes. In experiments it is shown that such
a dynamic assignment of skip lengths achieve better query throughput than any
static scheme[SC07].

39

40

Chapter 4

Overall solution proposals

In this chapter several methods which can be used to efficiently support the require-
ments of an XML index described in Section 2. Some of these possible solutions
will be implemented and tested, implementation details and test results will be
shown in Section 5 and 7. Some of the ideas described in the following sections will
be left as further work.

The solutions assume an overall index representation like the one described in
Section 1.2 where XML-scopes are encoded as path type identifiers and dewey
codes for specifying the within-document XML-node. The solution also assumes
that the index is a column store with separate columns for: documentId, frequency,
position and scope.

4.1 Skipping

As mentioned in Section 3.5 skipping is a way to disregard portions of the index
while executing queries. During query processing information embedded in the
index structure (or in some auxiliary structure) allows for skipping forward in the
inverted lists.

4.1.1 Skipping index columns

In general when skipping forward in any of the columns, one would need to skip
forward in the other columns. If for instance the scope column skipped n entries the
position column will have to skip the same number of entries. However, document
identifiers and frequencies columns might skip fewer entries. In fact, the word
frequencies within each document will decide how many entries one need to be

41

skipped in the other columns. In the following, the concept occurrence identifier is
used. The occurrence identifier represents the ordinal position of a single occurrence
within the inverted list. The occurrence identifiers of the document identifier and
frequency column is shown in the recursive definition in Equation 4.1.

occIdi =
{

0 if i = 0,
occIdi−1 + fi−1 if i > 0

(4.1)

The occurrence identifier is similar to the storage key concept used in for instance
C-store[SAB+05].

4.1.2 Document identifier skipping

Skipping on document identifier have been discussed in Section 3.5. Skip pointers
are embedded into the index structure and used to speed up search. Document
identifier skipping allows for quickly calculating the intersection of inverted lists in
a document level index.

Assuming that the intersection of two lists for the term “the” and “termite” is to
be calculated. The word “the” is a stop-word and should perhaps been filtered out
during indexing. But the point is that when intersecting a short list with a very
long one, skipping can provide great savings.

Skipping on document identifiers is quite well known and tested and implementa-
tions usually encode skip pointers which include the document identifier positioned
at the end of the pointer. This way if searching for document identifier x one can
traverse the skip pointers as until the value at the end of the pointer is larger than
x. More elaborate schemes with several levels of skip pointers are simply recursive
applications of the single level approach.

One alternative for storing the skip pointers is to store the pointers together in its
own portion of the inverted list. This way all skip pointers are located together.
Assuming a query processing method without any early termination like the ones
used in [AM04, AM05] it should be safe to assume that one would have to decode all
skip pointers. Given enough memory to hold all the pointers in some uncompressed
form; one could decode the skip-pointer part first and then use them during query
processing. This method has the advantage that one can do binary or interpolative
searches with good locality in the skip pointers, thus giving the advantages of multi
level skip lists without having to store several level of pointers. The method might
be more complicated while building the index, however, the improved locality of
the searches might offset that extra cost. Additionally, some compression schemes
works better when “similar” data is compressed together. Storing the skip pointers
together will probably improve compression effectiveness when those methods are
used.

42

Additionally if the query processing system used is written using the iterator design
pattern [GHJV95]; query processing without skipping would cause a lot of invoca-
tions of the next()1 method. These are often interface method invocations which
might incur some extra overhead for each call. Skipping will potentially replace a
series of invocations of the next() method of iterators with a single SkipTo() in-
vocation. In programming languages where method invocations are expensive the
savings related to fewer invocations might be significant. Some smart compilers
might in-line calls to the next() method, however, interfaces calls will often be
hard to in-line.

As mentioned in Section 4.1.1 when skipping in one column the other columns
need to be aligned on the same occurrence identifier. When skipping on document
identifiers frequency, position and scope columns must be aligned on the resulting
occurrence identifier. Even if the position column is gap-encoded this should be
simple since the column will be positioned at the first occurrence of the resulting
document, which in turn is the occurrence where the gap-encoding algorithm for
the positions is reset.

4.1.3 Path type skipping

When answering path type filtering queries, one might want to skip to the next oc-
currence in a scope matching the query. One could do this by looping through each
occurrence and return those who matches the query. However, it would probably
be more efficient to skip through the scope column until a interesting path type is
encountered, and when such a path type is encountered.

Aligning on the occurrence id resulting from such a path type skip is somewhat
more difficult than a simple document identifier skip. First one needs to locate the
document identifier of the occurrence. The occurrence identifier of this document
identifier might be less than or equal to the target occurrence identifier. The
document identifier column might also be gap encoded which need to be decoded
while searching for the correct document. When this is done, one would also need
to skip in the position column. If the position column is gap coded it would first
need to be aligned at the first occurrence of the target document, and then moved
to the target occurrence id while taking gap coding into account.

Since the scope column is not sorted on the path types, skipping need examine the
path type of every entry in the column, or it could use summaries encoded into
the index. For instance for every 128 scope entry, one could encode the different
path types present. These summaries can be either complete summaries of the
different path types in the block, or some probabilistic summary such as a Bloom-
filter[Blo70].

Bloom filters are bit-vectors of some size associated with a set of hash function. It
1Here next(), refers to the method which moves the iterator to the next item.

43

supports two operations, one can add values to the filter and one may query the
filter. When adding values, the values is hashed using the hash functions in the
filter, and the bits at the hash values positions are set to true. When querying the
the filter, the same hash functions are used and the hashed positions in the filter is
tested. If all the tested position are true, there is a probable match, if one of the
positions are false, there are definitely no match. Bloom-filters can produce false
positives, but never false negatives when queried.

4.1.3.1 Path type skipping with summaries

One way to support path type skipping is to split the scope column into blocks of
some size. These blocks can be given a header, which in turn can store which path
types that exists within the block. Skipping then consist of reading the header of
one block, skipping the block if the path types present does not match the query.

If the block has some overlap with the query, a fine grained traversal should be
performed. It is also possible to include several levels of path type skipping. One
could for instance encode the summary for blocks of 256 entries, and then divide
the 256 entry block into four sub - blocks, each with their own summaries.

It could be that different summary encodings are better at different levels. One
would for instance suspect that the number of distinct path types are higher for
high-level (large) blocks. Here, encodings such as a bit-vector can be beneficial.
While on small blocks, just listing the different path types could be enough. Also,
since the cost of examining a large block is much higher than that of a small block,
probabilistic summaries such as bloom-filters might be better fits on the low level
blocks.

Since it is not that many different path types even small Bloom filters with for
instance 2 or 4 bytes could be efficient. Given a similar summary of the matching
path types the overlap can be calculated using a simple bitwise AND operation. If
the hash function used to populate the bloom filter is the just the lower 4 or 5 bits
of each path type the summary can be built very fast as well.

The way path type identifiers are assigned to each unique path types could cause
similar path types to receive consecutive identifiers. Using the lower n bits of the
path type identifiers directly as keys in the bloom filter might be to simplistic. If
for instance one query matches a set of path types that has consecutive path type
identifiers; a small bloom filter could loose some of its effect. Larger bloom filters
or more elaborate hash functions could therefor be worthwhile.

Assuming that the set of matching path types for a given query were represented
as a bit-vector and the bloom-summary are four bytes long. The summary of a
query can be calculated as the running bitwise OR of all the 32 bit integers in the
query bit-vector. At least it’s imaginable that such operations can be implemented
quite effectively.

44

4.1.4 Combined document identifier and path type skipping

When evaluating structural containment queries as introduced in Section 2.3 one
need to perform both a document identifier merge and path type filtering. First
one need to get the postings which matches the query. These collections need to
be intersected on document identifier in order to be matches. Then one need to
merge the within-document-occurrences located within the same scope.

Whether one should skip on document identifier first and then on path type or the
reverse could depend on several factors. Consider the case where one is skipping to
a very small subset of the available path types, then there will probably be very few
matching occurrences. If the index support efficient skipping past non-matching
path types. It could be wise to skip on path type first, and then try to skip to
the document identifier. When looking for more common path types, document
identifiers will probably be the most effective method.

It would be fair to assume that for most cases, document identifier skipping would
be very fast, since it searches through fewer values (df versus df ∗ favg), and that
the values are sorted. However, if one searches for a very frequent term but for a
very infrequent scope, the selectivity of skipping on path type is much higher.

The choice of skipping order might be a task for a query optimizer, and could
include extra statistics, both on the properties of the data such as path type fre-
quencies, but also on the index performance characteristics.

In any case, there is no need to align the remaining columns (actually just the
position column) on occurrence identifier before both the document identifier and
the path types are located. This way some decoding operations could be saved.
The ability to wait with such alignment will probably be the only advantage of
merging the combined skipping operation into one operation, since the required
work for doing the skip operations in the path type column and the document
identifier column will be about the same as in the regular case.

4.2 Inverted index compression

As discussed in Section 3.3 there exists several index compression methods with
different performance in both decoding speed and compressed index size. One
chooses to compress the index in order to save disk and main memory space, but
also to make better use of the bandwidth between disk and main memory, and
between main memory and the CPU.

Compression and skipping must at some level be aware of each other when used
together. Since most compression schemes prohibits random access, one need to
include synchronization points, which the skip algorithm skip to. Also as mentioned
in Section 4.1.3 columns which is gap coded need some extra consideration when

45

skipping into them.

In the following sections ideas related to index compression are described. These
ideas will be related to the index structures assumed in the previous sections as well
as the considerations regarding skipping in the compressed columns of the index.

4.2.1 Modified VByte algorithm

In [Nat09] a modification to the VByte compression method was proposed. By
moving the signal bits of the encoded value to the first byte in the codeword only
one byte need to be examined in order to decode the value. The different schemes
for a four byte value are shown in Figure 4.1. This method is inspired by the dewey
control tokens encoding scheme proposed in [HHMW07].

Regular method: 1xxx xxxx 1xxx xxxx 1xxx xxxx 0xxx xxxx

New method: 1110 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Figure 4.1: A four byte value encoded using two VByte methods.

The idea behind this alternative method is to reduce branching, in the above exam-
ple only one branch need to be taken based on the first byte value. In the original
VByte algorithm one would need to decode the value inside a loop, causing one
branch for every byte. Since there are no more than 256 possible single byte val-
ues it is possible to pre calculate the interpretation of the first byte and store the
results in a single array.

Structure Description
Extra[0...256] Holds a mapping from byte value to the number of extra

bytes.
Offsets[0...256] Holds a mapping from byte value to a special offset value.
Masks[0...8] Holds a mapping from codeword length to a bit-mask.

Table 4.1: Branch free VByte datastructures.

It is even possible to decode the new method without using any branches. A few pre
calculated data structures are required for this. Those data structures are shown
in Table 4.1. If a codeword is encoded in L bytes, then the Offsets mapping for
the first byte of that codeword holds a value which is shown in Equation 4.2.

Offsets[byte] = MaxV alL−1 + remainder (4.2)

46

Here, remainder is the value of the bits not used to encode the length of the
codeword. Then when decoding a value starting at position p in the byte array B
the steps in Equation 4.3. It can easily be seen that none of the steps contains any
branches. One of the primary insights in the super fast PFor method described in
Section 3.3.1.6 is that the inner loops of the decoding mechanism is without any
branches.

However, while branch-free, this new VByte method still retain dependencies be-
tween its iterations. However, such data dependencies, are said to be less costly
than control dependencies (branches) [ZHNB06].

E = Extra[B[p]]
value = Offsets[B[p]] + ((Masks[E] & DeRefPointer(B[p+ 1]) << (8− E − 1)

p = p+ E + 1
(4.3)

There are some issues related to the second step of the decoding algorithm. When
dereferencing an eight byte long pointer from position B[p + 1] the pointer could
span the boundaries of the allocated memory. To avoid this problem the memory
buffers used could be padded with eight bytes.

Also, in Equation 4.3 the offsets table is assumed to hold the value of the lower
8−E− 1 bits of the codeword. If one instead encodes the highest 8−L bits in the
offset table the left shift operation in the second line could be omitted. This will,
however, it will make the encoding algorithm a bit more awkward.

From Equation 4.3 the usage of the Masks array is to select those parts of the
next eight bytes that are part of the value being decoded. Those masks can be
calculated using Equation 4.4. It is clear that a codeword with 0 extra bytes, the
mask is 0. While a codeword with eight extra bytes the mask includes all the 64
bits.

Masks[i] = (1 << (i ∗ 8))− 1 (4.4)

While the general VByte algorithm can be used to encode and decode arbitrarily
large values, this new method is only practical if the range of values to be coded
can be determined up front. However, encoding 64-bit integers should be enough
for almost any practical use case. At least when used on inverted indexes. On
architectures where 32-bit operations are more effective one could use a even more
restricted version when the encoded values are known to fit in four extra bytes. Or
perhaps for frequencies a version restricted to two extra bytes.

47

4.2.2 Fine grained skipping

As mentioned in the preceding Sections 4.1 and 4.2 skipping interacts with com-
pression in several areas. Often when skipping into the inverted list there are no
skip pointers at the exact location of the value one is searching for. In those cases
one will have to traverse the list. This is especially true in the column store in-
dex layout assumed in this chapter. When aligning on occurrence identifier skip
pointers might not be available and one would need to traverse the list instead.

If it is known in advance that one need to skip k entries in the index, and that one
does not need to know any of those values, decoding them would be a waste. This
is the case when skipping in a portion of the index that is not gap encoded such
as the path type column. Or when it is known that the state of the gap encoding
will be reset at the occurrence skipped to which is the case when skipping to the
first occurrence of one document in the position column.

Since there is no need to decode the values, it is possible to speed up the traversal.
For instance when skipping past values encoded using VByte one can only examine
the signal bits of the bytes in the stream. Or even better, if the values are encoded
using the new VByte method proposed in Section 4.2.1 one only need to execute
Equation 4.5 for each value that is to be skipped.

p = p+ Extra[B[p]] + 1 (4.5)

Similar shortcut traversal opportunities exists in many method. In for instance the
word aligned codes described in Section 3.3.3 one can read the number of values
encoded in each word by looking at the selector bits. And for the PFor methods
described in Section 3.3.1.6 one can easily skip the bit unpacking operations if one
knows that none of the values are to be used.

Table 4.2 shows the granularities and high level descriptions of fine-grained skipping
capabilities of some of the compression schemes described in Section 3.3.

Most compression schemes employ some sort of variable length encoding where
parts of the code specify the length of the code word. Therefore the fine grained
skipping described in this section should give some performance gains for almost
all methods since the work otherwise put into building the resulting values could
be avoided. The only part needed would be the part of the decoding operation
which determines the length of the code words. The changes necessary would also
probably be small for almost any method since the implementation of a SkipValue
function would be the same as the DecodeValue function where some code are
deleted.

The only method among those described in Section 3.3 which does not share this
composite representation of code length and code word is the interpolative coding in

48

Method Section Skip granularity Description
VByte 3.3.2,4.2.1 1 Look at signal bits, or first

byte if the method in Sec-
tion 4.2.1 is used.

Word aligned 3.3.3 1-32 Analyze selector bits, for
Relative-10, Carryover-12
and slide maintain state
while traversing.

Pfor 3.3.1.6 128 Analyze header for bit-
width and number of ex-
ceptions, skip through ex-
ceptions.

Selectors 3.3.1.5 s1-s3 * multiplier Analyze selector bits,
maintain state while
traversing.

Table 4.2: Different compression methods and fine-grained skip granularities.

Section 3.3.1.4. This is because the codeword length of a single value is dependent
on the decoded values before and after. Huffman codes will also be hard to skip
through efficiently.

4.2.3 Column wise dewey encoding

In [Nat09] a dewey code compression scheme where deweys were stored column
wise instead of after each other. This way dewey elements at the same positions
are encoded together. The idea is that value distribution of the the dewey elements
at position i has more in common with other deweys elements at position i in than
it has with position i− 1 and i+ 1 in the same dewey.

Experiments done in [Nat09] calculated the (naïve2) entropy for the different dewey
positions in three XML collections. The results are shown in Figure 4.2. The results
clearly show that all the collections have some positions where the entropy of the
value distribution is very low and therefore should be lend the, selves nicely to
chunked compression methods.

2Naïve in the sense that no other factors than the frequencies of the different dewey values at
the various positions were taken into account. A more complex probability distribution for the
values taking for instance preceding values and path types into account could have yielded other
results.

49

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

B
its

Position

Xmark
Wikipedia

DBLP

Figure 4.2: Dewey codes entropy in three different XML collections. Since every
well formed XML document may only have one root node position
zero has been omitted. From [Nat09]

Since most parameterized compression methods works better when the data com-
pressed exhibit somewhat similar value distributes this columnized dewey encoding
scheme can improve compressed file size. In Figure 4.3 the idea is illustrated. The
figure clearly illustrates that the column wise encoding contains more similar data
than the original row wise encoding. Actually the row wise encoding shown in
Figure 4.3b resembles the worst case scenario of pointed out by Ahn and Moffat
in [AM05]. A sequence 〈1, l, 1, l, 1...〉 where l is a rather large value will not be
compressed very effectively by a method encoding several values into one unit of
compression.

Another opportunity which presents itself with this column wise storage scheme
is that in cases where only a limited prefix of the dewey elements is needed for
query processing, one does not have to read or decode the remaining columns.
This is a more general feature of columnized storage schemes where projections3

can be evaluated very effectively since one does not have to read all the attributes
[SAB+05]. Exploring these opportunities will be left as further work.

3The π operator in relational algebra.

50

〈0.0.3.2.1.4〉 , 〈0.0.3.4.0〉 , 〈0.0.3.4.0.1〉 , 〈0.0.3.5〉
(a) Original deweys codes.

0, 0, 3, 2, 1, 4, 0, 0, 3, 4, 0, 0, 0, 3, 4, 0, 1, 0, 0, 3, 5
(b) Rowwise dewey column data.

〈0, 0, 0, 0〉 , 〈0, 0, 0, 0〉 , 〈3, 3, 3, 3〉 , 〈2, 4, 4, 5〉 , 〈1, 0, 0〉 , 〈4, 1〉
(c) Columnwise dewey column data.

Figure 4.3: Examples of columnized dewey encoding.

4.2.4 Dynamic column wise dewey storage

Column wise dewey storage might be a good choice when there are many elements
to be encoded. However, some methods such as PFor are unpractical when the
number of elements is to small. While row wise storage schemes encode a stream
of dewey elements, the column wise method encode the columns, if every dewey is
for instance six elements long, the stream of the elements is six times longer than
the content of each of the dewey columns. If Pfor need to encode for instance
100 elements in order to be effective, there is quite a large window where the row
wise encoding has more than 100 elements, and the column wise methods does not.
A method which automatically chooses between row wise and column wise dewey
storage could boost performance.

4.2.5 Prefix coding for columnwise dewey encoding

In [HHMW07] prefix coding for dewey codes were one of the most effective mech-
anisms for dewey compression. Used together with other effective methods great
compression results will be possible. Prefix coding were experimented with in
[Nat09] with mixed results, compression seemed quite good, however, decoding the
index was slow. However, it was pointed out that the method tested in [Nat09]
were quite suboptimal in terms of utilizing the locality of the value distribution
within each dewey column. The method copped off the suppressed prefix of the
deweys and encoded the first element in the remaining dewey at position zero. As
described in Section 4.2.3 and Figure 4.2, the different columns of the dewey have
different value distributions.

One possible way of improving prefix coding is to maintain the position of every
dewey element, if a prefix of length three is removed, then one should start encoding
the remaining dewey into the fourth column of the column wise dewey storage.

Also in [Nat09] the prefix lengths for the prefix coded versions were encoded using
a fixed width binary code. To make the implementation more flexible, one could
encode the prefixes as one of the dewey columns, possibly using a PFor method.

51

4.2.6 Path type sorting

Another method proposed in [Nat09] is the path type sorting method. The main
insight behind this method is that when sorting the dewey codes on their path type
identifier, dewey codes from the same path types will be placed after each other.
Such a grouping has several impacts.

First, the value distribution of the deweys from the same path types might be
similar. This might especially be true if the index consist of data from several
different collections. As shown in Figure 4.2 the entropy of the deweys differs
between collections.

Second, a query often matches only a subset of the path types in the index. In this
case the dewey codes for each of the matching path types are stored together. This
could lead to fewer decoded values if the implementation allows for independent
decoding of the dewey groups.

In order to be practical during indexing the path type sorting need to be performed
on a chunked basis. A chunk consists of a the occurrences for some number of docu-
ments for instance 128 documents as used in [ZLS08, YDS09b, YDS09a, DHYS08].
Then when writing the index, the deweys are sorted using a stable sorting algorithm
such as Counting-Sort. A stable sorting algorithm will preserve the internal order
among elements with the same sort key[CLRS01]. Counting-Sort is a O(n + k)
stable sorting algorithm, where n is the number of elements to be sorted, and k
is the width of the range of the values [Knu98]. The extra overhead from method
during compression will be one additional pass over the scope fields in the chunk,
and a single pass over the value range. Since the number of different path types is
assumed to be quite small the value of k is limited.

The decoding algorithm for a path type sorted inverted list is shown in Algorithm 3.
The algorithm uses an auxiliary table (P) of pointers into the sorted dewey array.
The table of pointer is constructed by Algorithm 4. Together these two methods
are similar to a Counting-Sort algorithm, and could be considered the inverse of
the operation used while encoding the file.

Implementations will probably be a bit more elaborate than Algorithm 3 in order
to factor in for instance selective decoding. Path type sorting can also be combined
with a column wise encoding scheme, the P array should contain pointers into the
different dewey columns.

Several variants of this method were mentioned in [Nat09]. One could for instance
select the compression method of the dewey codes in one group based on the path
types. This way if some path types have very special value distributions one can
choose to encode these deweys using a special method. The order of the different
path types were also a subject that were discussed. One can for instance sort on

52

Algorithm 3: Decoding for path type sorting, Advance is a function which
moves a dewey pointer to the next dewey.

Input: Occs occurences.
Data: P mapping from PathTypeId to pointer into dewey storage.
Data: D dewey storage.
foreach Occ ∈ Occs do1

DeweyPtr ← P [Occ.PathTypeId]2

Occ.Dewey ← D[DeweyPtr]3

Advance(DeweyPtr)4

end5

Algorithm 4: Path type pointer construction, Keys is a function which
returns the keys in a mapping, Predecessor returns the key imidiately
before the key passed to it.

Input: Occs occurences.
Data: P mapping from PathTypeId to pointer into dewey storage.
Data: C mapping from PathTypeId to the number of occurences with that

Id.
foreach Occ ∈ Occs do1

Increment(C[Occ.PathTypeId])2

end3

P [1]← 04

foreach i ∈ Keys(C) do5

P [i]← C[Predecessor(i)] + P [Predecessor(i)]6

end7

the depth of the path types, or the lexical ordering of the different path types. If
one choose to sort on the lexical ordering will place paths with the same ancestors
together. This could be effective since many queries might match all children of
some path. Frequency ordering were also proposed, if the most frequent paths are
stored first most queries will read these paths, but probably not the less frequent
path types. Example path type orderings are shown in Table 4.3.

One positive side effect from sorting the path types by their frequency is that the
C mapping store din the index can be gap coded. This could make the compressed
index smaller. Also, sorting by frequency is computationally very easy.

53

Depth Lexical Frequency
para/sentence/url para para/sentence/
para/title/subtitle para/sentence/ para
para/sentence/ para/sentence/url/ para/sentence/url/
para para/title/subtitle para/title/subtitle

Table 4.3: Different path type orderings

4.2.6.1 Index building cost

The algorithm used during indexing is described in Algorithm 5. In the for loop in
line 1 − 3 the path type counts are calculated. Then in line 8 − 12 the path type
sorting and the mapping from path types to positions in the output are calculated.
The P array will at position i contain the offset of the deweys belonging to the ith
path type. Also the ordered path types and their counts are written as headers to
the index. In line 14 − 17 the deweys themselves are written to the index. Using
the P array to decide the output positions.

The complexity of Algorithm 5 is dominated by the two passes over the Occs
collection. However, in the worst case all occurrences contain unique path types the
sorting operation might have a cost of O(n lgn). Therefore the running time of the
algorithm is O(n lgn)4. In general however, there will be many more occurrences
than unique path types and in those cases the two passes over the source collection
will dominate the cost.

4Sorting in general is O(n lgn), even though there exists methods which achive better results
than O(n lgn) they usually assume something abouth the values which is to be sorted. If we assue
that the number of unique path types is less than O

(
n

lg n

)
the cost of the sorting step will be

O
(

n
lg n

lg
(

n
lg n

))
wich in turn is O(n), thus the path type sorting algorithm is O(n) if we assume

that the number of uniqe path types is O
(

n
lg n

)
54

Algorithm 5: Path type soriting index building procedure.

Input: Occs the occurences to be encoded.
Data: C mapping from PathType to the number of occurences with that

path type.
Data: K mapping from PathType to the ordinal position in the sorted path

types.
Data: P mapping from ordinal position to output position.
foreach Occ ∈ Occs do1

IncrementOrAdd(C, Occ.PathType)2

end3

P ← new int[UniqueKeys(c)]4

K ← new int[UniqueKeys(c)]5

P [0] ← 06

ordinal ← 07

foreach key ∈ SortedKeys(C) do8

WriteHeaderValue(key, GetCount(C, key))9

P [ordinal] ← P [ordinal + 1] + (GetCount(C, key) ∗ key.DeweyDepth)10

K[key] ← ordinal11

ordinal ← ordinal + 112

end13

foreach Occ ∈ Occs do14

WriteDeweyAt(P [K[Occ.PathType]], Occ)15

P [K[Occ.PathType]] ←16

P [K[Occ.PathType]] +Occ.PathType.DeweyDepth
end17

55

56

Chapter 5

Implementation

In order to perform experiments, a minimal XML-search engine has been created.
This search engine is called NETing and will be described in the following sections.
The search engine is implemented using the Microsoft .NET framework. NETing is
written in the C# programming language with some components written in C++.
This search engine is based on the work done in [Nat09].

5.1 Index structures

There are three main index structures used in NETing, the dictionary, the scope
directory and the inverted index. The dictionary is implemented as a simple hash
map from term to a pair: 〈pointer, documentFrequency〉. The dictionary is not
compressed, and is held entirely in main memory during execution.

The scope directory is a data structure which manages a dictionary coded collec-
tion of the path types encountered in the indexed document collection. The data
structure is similar to that one described in Section 1.2 and [Gri07]. This data
structure is also held in main memory and it is not compressed when stored on
disk.

The inverted index is a word level inverted index with extra scope information
added. Each occurrence of a word is indexed as a triple 〈pos, pathType, dewey〉.
Additionally, each document occurrence is indexed as a single document identifier
and a in-document-term-frequency. This way one logical entry in the inverted index
will be of the form: 〈docId, tf, 〈pos, pathType, dewey〉+〉.

The detailed physical layout of the inverted index is configurable, however, the
implementation enforces a column store layout which resembles the one used in

57

[ZLS08, YDS09b, YDS09a, DHYS08]. This layout allows for high flexibility in
terms of available compression methods and allows the various columns to be stored
using different storage schemes. The layout of the NETing posting file is shown in
Figure 5.1.

Disk: Block Block Block Block Block

Inverted list: Header Chunk Chunk Chunk Chunk

Meta data 128 DocIds 128 Frequencies
∑

f pos
∑

f scopes

Figure 5.1: Layout of NETing posting file,
∑
f refers to the number of occur-

rences in the chunk, it is equal to the sum of the in-document fre-
quencies.

Each inverted list is divided into several chunks. Each chunk contains the data
for 128 documents. Inside one chunk the values of one column (for instance the
position column) is stored contiguously. Also each chunk contain some meta data,
this meta data contain pointers into the beginning of each of the columns, as well
as data which can be used during skipping.

There have been created a common interface for the code which should write and
read the posting file. This interface makes it easy to create different column imple-
mentations. Each column is allowed to write both meta data and column content.
One possible use for the column meta data is for the scope column to write path
type summaries used while skipping (Section 4.1).

The posting file is word aligned, each column will start at a word boundary. How-
ever, there are no limitation to the alignment of the encoded data within each
column. This enforced word alignment might waste some space for very short
posting, however the cost of this is assumed to be small.

5.1.1 Buffer manager

As shown in Figure 5.1 the posting file is divided into blocks. Even though the
posting file is disk resident these blocks can be cached in main memory. This
caching is managed by a component called the buffer manager. The buffer man-
ager manages a pool of blocks which can hold portions of the posting file. When
answering queries the posting file readers request blocks from the buffer manager
instead of issuing the IO operations themselves. The buffers are fixed size, and a

58

size of 16KB has been selected. Each buffer is identified by its position in the file,
for the block-id of the block starting at position 0 is 0, while the block-id of the
block starting at the offset 64KB is 4.

During query processing the operation of the buffer manager is quite simple. When
a certain block is requested, the buffer manager checks whether the block already
exists in memory, if not it reads the block into memory and returns it to the caller.
When the pool of blocks is empty, the buffer manager needs to evict one block
which is currently not in use. This is managed through a Pin() and UnPin()
mechanism which maintains a pin-count for each block. If a block has a pin count
of zero, it is safe to evict the block from memory.

During index building the buffer manager has the additional task of cleaning blocks.
A block is marked as dirty if the content of it has been changed. And during
indexing that is what happens. New content is written to the buffers, and the
buffer manager must write these changes to disk. This writing of the new data is
handled by a separate thread. This way the client, in this case the indexer does not
need to wait for IO to finish before continuing with the construction of the index.

The buffer manager maintains two queues. The clean and dirty queue. These
queues contain all the buffer with a pin count of zero. When a buffer is unpinned
and its pin-count reaches zero it is entered into one of these queues. The dirty
queue if the buffer has changes, the clean queue otherwise. The eviction policy is a
simple LRU policy where used buffers are entered into the end of the clean queue,
and evicted from the front of the clean queue. The tread which cleans blocks take
blocks from the dirty queue, writes their changes to disk and enters the buffer into
the clean queue.

The mechanisms for manipulating the various queues and the other data structures
inside the buffer manager require that some synchronization between threads are
done. So in order to allow for better concurrency during query processing the buffer
manager is partitioned across several “shards”. Each access to the buffer manager
is first hashed on its block-id to one such “shard” and processed at that “shard”.
This reduces the amount of waiting during accesses to the buffer manager.

During the implementation work some experiments were performed. Several dif-
ferent number of shards were tested in order to find the best shard count param-
eter. The tests consisted of a query trace consisting of 1000 AND-queries run over
a collection of 300000 Wikipedia articles, good performance were defined as high
throughput. On a dual core computer, 16 gave the best results, for a quad core the
best performance was achieved with 64 shards. However, the difference between 32
and 64 shards for the quad core computer were very small.

59

5.1.2 Posting file concepts

The implementation of the posting file introduces a few concepts. These concepts
are used in the description of the query processing algorithms introduced later in
Section 5.2. The notion of occurrence identifier is used on the chunk-level. That is,
within each such 128 document chunk, occurrence identifiers uniquely identifies the
different occurrences. This means that the range of occurrence identifiers within
one chunk is given in Equation 5.1.

0 ≤ occId <
∑

tfi (5.1)

Since each chunk resets the occurrence identifiers, one can skip into the chunk
without maintaining state related to the occurrence identifiers.

There are three levels of loading for each column in a chunk. These three levels
are summarized in Table 5.1. This three level system exists in order to make sure
that the less data is read and decoded when skipping through the posting list. For
instance, a position column will start out in the start state. And if for instance a
skip operation is issued which does not have any hits in the chunk it never has to
enter any of the “higher” states. This means that for the position column, no data
were decoded and only a small header were loaded.

Level Decription
Start Header loaded.
Examine Header decoded for examination.
Ready Content loaded and ready to be loaded.

Table 5.1: Loading levels for chunks in the inverted index.

The header should as mentioned earlier contain information which makes it possible
to discard the chunk column during skip processing. Columns which does not
participate in such a skip operation does not need to leave the start state. While
columns, such as the document id column or the scope column which is needed to
process the skip will enter the examine state, or the ready state if necessary.

Section 4.1.4 introduced the combined path type and document identifier skip op-
eration. Typically if one would execute those two operations as one document
identifier skip, and another path type skip one would need to sync the different
columns after the first skip. By combining the two skips, one may postpone the
sync until the end of the path type skip. For the different load levels. If there are
no hits for the second operation then for instance a position column does not need
to leave the start state.

If the query processing algorithm only uses for instance the document identifier
column to identify a match, the other columns will not be synced before a result

60

Name Parameters Description
SkipToDocument skipTo Moves to the first docu-

ment identifier ≥ skipTo.

SkipToDocumentIdAndPathTypes skipTo,
pathTypes

Moves to the first docu-
ment id ≥ skipTo which
also has a path type in the
supplied pathTypes col-
lection.

SkipToScope skipTo,
depth,
pathTypes

Moves to the first occur-
rence which has a dewey
that ≥ skipTo when
looking at a prefix of
length depth or is at a
documentId > skipTo
which also has a path
type that in the supplied
pathTypes collection.

Table 5.2: Skip operations used by the query processing algorithms.

has been found. This way, when processing regular intersection queries the scope
column and position column of chunks without any matches will remain in the start
state.

5.2 Query processing algorithms

The algorithms used to process the queries are built to work with an arbitrary
index implementation. The algorithms are based on skip operations supplied by
the index implementation and a generic merge operation. Three different query
processing algorithms have been implemented.

All the algorithms are based on selecting the “highest” list, the one where the
next occurrence has the highest document identifier. And then try to skip the
other lists to the corresponding occurrence. This is done successively until all lists
is positioned on matching occurrences. The algorithms uses a predefined set of
skipping-primitives which the index implementation supplies. The primitives are
shown in Table 5.2 and are described more in detail in Section 5.2.3.

Keeping the processing algorithms “constant” while varying the column implemen-
tations make it easier to compare the different implementations performance.

61

5.2.1 Intersection queries

Intersection queries are based on a document identifier skip. The inverted lists of all
the terms in the query is kept in a binary max-heap. This data-structure provides
access to the maximal element in a collection in O(1) time, with O(lgn) updates
[CLRS01]. The maximal element is extracted (the highest document identifier)
and then the remaining lists are skipped to this document identifier. If one list is
exhausted the algorithm terminates. If the skip operation hits a document identifier
“after” the previous maximal value, the algorithm starts all over again.

When all lists ends up on the same document identifier after the skip operations,
there is a match. Then all the occurrences within the document in all the lists is
returned as the match. This means that the unit of retrieval for the intersection
queries is all the occurrences for the terms in the query within the matching doc-
ument. A more formal definition of the structure of the unit of retrieval is shown
in Equation 5.2. Here, d is the document identifier of the matching document, d is
underlined as it’s a unique key for the result set of the query. That is, there will
be at most one result for each document. These results will contain the key d and
possible several lists of occurrences.

〈
d, (occ+)+〉 (5.2)

As mentioned earlier in Section 5.1.2 the intersection algorithm will only use the
document identifier column during the search operation. The synchronization of the
other columns (on occurrence identifier) is therefore postponed until the algorithm
knows for sure that there is a match. If the retrieval unit of the algorithm were
only the resulting document identifiers, the alignment operation would not have
been necessary at all. However, such a restricted version have not been created.
The implementation for this thesis assumes that the user might want to employ
some ranking algorithm on the results which will use both the word positions and
the scope information to deliver ranked results.

The algorithm for answering regular intersection queries is shown in Algorithm 6. It
is worth to notice that during the development of the code for the query processing
components a profiler were used to determine where the execution time of the
program were used. This was done in order to select the “hot spots” to focus the
tweaking efforts on. The profile revealed that almost all time is spend on skipping
and result construction.

5.2.2 Structual containment search

The structural containment algorithm is more complex than the intersection algo-
rithm. Since the results of this algorithm is located within the same document,

62

Algorithm 6: Intersection query algorithm.
Input: lists inverted lists for all words in the query.
Data: heap max-heap over the lists based on document-id.
while True do1

skipTo ← Max(heap)2

foreach list ∈ Rest(heap) do3

if not SkipToDocument(list, skipTo) then4

TerminateQuery5

end6

IncreaseKey(heap, list)7

if list > skipTo then8

GotoLine 29

end10

end11

AlignColumns()12

BuildResult()13

end14

document level intersection is a subtask of the algorithm. The retrieval unit for
the structural containment searches is a scope inside one document, and all the
occurrences of the query terms within this scope. The structure of the retrieval
unit is more formally defined in Equation 5.3.

〈
d, s, (occ+)+〉 (5.3)

In Equation 5.3 the pair d, s is underlined to emphasis the fact that document
identifier and scope together is the unique key for the results set. That is there
can be multiple results for each document, however, only one for each scope in
the document. It also means that if one assume that there is a higher number
of distinct scopes at level L + 1 than on level L the result of specifying the path
portion of the query as for instance document/paragraph/sentence instead of
document/paragraph will result in a possible higher number of result, since every
sentence with the required matches would be returned, instead of the matching
paragraph. The matching paragraph could contain several matching sentences.
However, as a result of this; the returned results from the the query at the sentence
level would contain fewer word occurrences.

To answer containment queries two preprocessing steps are applied to the set of
matching path types. First, since all matches which is “under” the queries path
types should be included in the query the union of all the descendants of the query
path types should be added to the set of candidate path types. Second, since the
prefix of dewey elements need to be analyzed during query processing the prefix of
different path types that actually need to match is calculated. This is achieved by

63

a bread-first-traversal where for each path type pt with children c ∈ children(pt)
the query depth qd(pathType) for each children is assigned by using Equation 5.4.

qd(c) = min(qd(c), qd(pt)) (5.4)

If the search starts with the query path types in ascending depth and in breadth
first order the qd array will contain the shortest prefix of each path type which
matches the query.

As described in Section 4.1 skipping for containment queries should include skipping
on both path types and document identifiers. Variants regarding the order of
these operations are mentioned. In the following, these variants are encapsulated
in a generic SkipToDocumentIdAndPathTypes. The algorithm is a two phased
algorithm. First a document match need to be located, this is similar to the general
intersection operation, however, with path type restrictions based on the query. It
is, however, important to note that a document match does not mean that there
is a true match. Occurrences can be located within different scopes, and the path
types might not share the required prefix. For instance if one searches in sentence
scopes, some occurrences may be in a paragraph/sentence scope while others are
in the title/sentence scope. Both scopes will match a sentence query, but they
are not the same even if their dewey codes match. This top level algorithm is shown
in Algorithm 7. It is very similar to the intersection algorithm (Algorithm 6) but
differs in the skip method used and the possible multiple calls to IsTrueMatch and
the possibility for multiple results from each document.

The IsTrueMatch step traverses the postings from the different lists trying to locate
a collection of occurrences where all the postings are both in matching path types
and within the same scope. The path type matching is determined by a longest
common prefix algorithm between the path types. The pairwise longest common
prefix between path types are cached in a two matrix lcp where lcp(t1, t2) is the
longest path type which is a prefix of both of them. To conserve memory space
only the upper half of this matrix is calculated, however, the size of the matrix is
still O(n2) where n is the number of distinct path types. There exists algorithms
to achieve longest common prefix in constant time with no more than linear extra
memory[Gus07]1, however, these would have been very hard to implement, and is
out of scope for this thesis. The number of distinct path types are not that high
either, so the squared memory cost is a rather low price to pay for fast constant
time lcp lookup.

The top generic IsTrueMatch algorithm is shown in Algorithm 8 the algorithm uses
a SkipToScope function in order to align the lists on a matching scope. The list
with the scope with the highest lexicographical value is used as the value the other
lists are skipped to. This is similar to the methodology used in both document

1The problem is the same as solving the lowest common ancestor of the tree containing all the
path types.

64

Algorithm 7: Top level intersection algorithm for structural queries.
Input: lists inverted lists for all words in the query.
Input: pathTypes lookup structure for all the path types which matches

the query.
Data: heap max-heap over the lists based on document-id.
while True do1

skipTo ← Max(heap)2

foreach list ∈ Rest(heap) do3

if not SkipToDocumentIdAndPathTypes(list, skipTo, pathTypes)4

then
TerminateQuery()5

return False6

end7

IncreaseKey(heap, list)8

if list > skipTo then9

GotoLine 210

end11

end12

AlignColumns()13

while IsTrueMatch(pathTypes) do14

BuildResult()15

end16

end17

level intersection and the top level intersection algorithm for structural queries
described in the preceding paragraphs. The skip to scope function has a double
return value, the first value is a boolean status flag teller whether the skip operation
succeeded. The other value is a boolean flag which tells whether the occurrence
that was skipped to is a match or not. It is possible for it to be both. SkipToScope
skips to the first scope which is greater than or equal to the skipTo parameter on
the supplied depth, if there are no occurrences which is prefix-equal to the skipTo
parameter, the next occurrence is retrieved, the skip operation succeeds, but there
are no match.

Inspection of Algorithm 8 reveals that the IsTrueMatch algorithm has three stop
criterion. First if one of the inputs are exhausted the algorithm terminates. Sec-
ond, if one of the inputs skip “beyond” the document of the skipTo parameter,
the algorithm terminates, it is the top level intersection algorithms responsibility
to establish document level matches. The third case is when all the inputs has
matches.

Determining the lexicographical highest scope value might be computationally in-
tensive, so, instead the position column is used to determine which list to use as

65

Algorithm 8: Top level intersection query for structural queries.
Input: lists inverted lists for all words in the query.
Input: pathTypes lookup structure for all the path types which matches

the query.
Data: heap max-heap over the lists based on document-id and dewey order.
while True do1

skipTo ← Max(heap)2

depth ← qd[skipTo]3

foreach list ∈ Rest(heap) do4

(skipOk,matches) ← SkipToScope(list, skipTo, depth)5

if not skipOk then6

TerminateQuery()7

return False8

end9

if list.DocumentId > skipTo.DocumentId then10

return False11

end12

IncreaseKey(heap, list)13

if not matches then14

GotoLine 215

end16

end17

AlignColumns()18

return True19

end20

the skip-target. Since all the occurrences are drawn from the same document, the
positions and the scopes have the same ordering. That is, for to given occurrences i
and j with positions pi and pj , and scopes si and sj . si ≤ sj if and only if pi ≤ pj .
Comparing the integer values of the position column is a much simpler operation
than comparing more complex dewey codes in the scope column. However, this
comes at a price. Since the algorithm uses the values from the position column
these values has to be decoded, bringing the position column into the ready-state.
However, compared with the scope column the position column is very small (and
simple), and profiling has revealed that very little time is spent on decoding the
position column.

5.2.3 Generic skip support

For easy experimentation and experimental comparability a generic skip interface
was created. The three different skip methods were shown in Table 5.2 and used
through the algorithms in Section 5.2. In the following sections, the algorithms

66

used to orchestrate the skip operations on a inverted-list level will be described.
The terminology introduced in Section 5.1 where each list is divided into chunks
will be key in the following section. At a high level, the generic skip algorithms will
focus on quickly loading the correct chunk of the list, and also reduce the amount
of data decoded. All while using generic interfaces to the column implementations
of each chunk. The idea is that the query processing algorithms should use the
generic skip support supplied by the inverted list, while the algorithms described
in the following sections will manage the skipping on the chunk-level.

The column implementations have two roles in supporting skip functionality, there
are coarse skipping which uses data encoded in the header of the inverted list.
A document identifier column can for instance store a collection of entry points
here. These entry points will be pairs of document-identifier and file offsets, when
answering document identifier skip operations these entry points can give the basis
for a coarse level skip. The possibility of storing skip pointers together in the
header of the list were described in Section 4.1.

Second the column implementations allow for low level skipping. This is the type
of skipping which provides answers of the type, yes, the value you are looking for
is here at position X or the value you are looking for is not in this chunk. Low
level skipping uses both in-chunk meta data and the data of the column itself. For
instance the document identifier column described in the previous paragraph, could
store the largest document identifier in each chunk as part of a chunk-header. Skip
operation could examine this header in order to exclude the chunk during process-
ing. Sometimes, for instance when the document identifier the user is skipping to
is less than the maximal document identifier in the chunk the values has to be de-
coded and scanned through in process the skip, this is also handled by the column
implementations.

5.2.3.1 Document identifier skipping

The first step in the document identifier skip is to extract an EntryPoint from the
column implementation. This corresponds to the coarse level skip described earlier.
The entry point could as described earlier have been extracted from the list header,
but for columns that do not have implemented advanced coarse skipping features
the entry point could just be the current state of the index reader.

When at the entry point, the skip algorithms continue by reading the necessary
meta-data from each chunk and possibly skipping the chunk based on the content of
this meta-data. This functionality is however left to the chunk implementation to
handle. The generic skip algorithm will just call SkipTo on the document identifier
column-chunk and act upon the results from that call.

The SkipTo method of a document identifier chunk should return the occurrence
identifier of the resulting occurrence, or if there are no match inside the chunk

67

one occurrence identifier which is larger than the number of occurrences in the
chunk. For instance, if there are 432 occurrences in the chunk and the document
identifier chunk examines its meta data and concludes that the document identifier
the skip operation is targeting must be in a later chunk, it can return 433. The
skip algorithm will then continue with the next chunk.

The document skip algorithm does not sync the other columns when it returns.
This would have caused extra work in the cases where position and scope data
are not needed. An example of such cases is when a intersection query only has
partial matches across the lists in the query. The operation to sync the remaining
columns is placed in a separate function SynchColumns which also were used in the
algorithms in Section 5.2.

Algorithm 9 shows the generic document identifier skip algorithm. The loading
of the document identifier chunk meta data has been made explicit it order to
illustrate that the other columns have no interactions during the algorithm.

Algorithm 9: Generic document identifier skip algorithm.
Input: docId document identifier to skip to.
Data: docIdColumnChunk the current document identifier chunk.
Data: chunkMaxOccurrenceId the largest occurrenceId in the chunk.
entryPoint ← GetEntryPoint (docId)1

ReadAt (entryPoint)2

DecodeDocumentIdChunkMetadata ()3

occurrenceId ← SkipTo (docIdColumnChunk, docId)4

while occurrenceId > chunkMaxOccurrenceId do5

MoveNextChunk ()6

DecodeDocumentIdChunkMetadata ()7

occurrenceId ← SkipTo (docIdColumnChunk, docId)8

end9

5.2.3.2 Path type skipping

The generic path type skipping method is built around the same template as the
document identifier skip operation. First the entry-point is located through some
list level meta data managed by the column implementation. Then chunks are
processed successively.

Here, as for the document identifier skip operation it is responsibility of the column
implementation to supply good entry points as well as en efficient in-chunk SkipTo
function which for instance can use in-chunk meta data to avoid decompressing
chunks which does not match the query.

As discussed in Section 4.1.3 path type skipping is harder than document identifier

68

skipping because the data is not sorted. Encoding summaries for the path types
were proposed as a solution. These summaries can be coded in the list-global
header and processed in the GetEntryPoint function. Chunk-level summaries are
handled by the SkipTo function of the column chunk implementation.

Algorithm 10: Generic path type skip algorithm.
Input: candidate the set of candidate path types.
Data: scopeColumnChunk the current scope column chunk.
Data: chunkMaxOccurrenceId the largest occurrenceId in the chunk.
entryPoint ← GetEntryPoint (candidate)1

ReadAt (entryPoint)2

DecodeScopeColumnCunkMetadata ()3

occurrenceId ← SkipTo (scopeColumnChunk, candidate)4

while occurrenceId > chunkMaxOccurrenceId do5

MoveNextChunk ()6

DecodeScopeColumnCunkMetadata ()7

occurrenceId ← SkipTo (scopeColumnChunk, candidate)8

end9

The generic path type skip algorithm is shown in Algorithm 10. Also here the
synchronization with the other columns is left out in order to allow optimizations
where only the one column is needed. The implementation of the SyncColumns
function is quite straight forward, a function which moves the columns to one spe-
cific occurrence identifier within the current chunk is called for each of the columns
which is out of sync. The implementation of that function is up the column im-
plementation itself. The implementations can range from simply iterating through
the items in the chunk until the correct occurrence identifier is reached. However,
all the column implementations tested in this thesis have more advanced meth-
ods implemented. These methods uses the fine-grained skip capabilities of the
compression schemes described in Section 4.2.2.

5.3 Compressed column implementations

All methods tested depends on one or more of three basic methods, these are VByte,
Pfor and Simple9. Two implementations exists for VByte, the regular method from
the literature implemented as described in Section 3.3.2 and the proposed improved
method described in Section 4.2.1.

PFor is implemented by using the NewPFD method proposed in [YDS09b] and de-
scribed in Section 3.3.1.7. Exception values are encoded using the Simple9 method
described in Section 3.3.3. The bit packing procedure of NewPFD is generated by
a python script and contains fully unrolled code for packing 32 values into b bits

69

wide slots. Similar to the method used in [ZLS08], chunks are padded with zeroes
if the number of values is between 100 and 127, however, if there are fewer than
100 values to encode, the values are coded using VByte.

The PFor and Simple9 methods are implemented in Visual C++ and can be com-
piled as both native code and managed code running on the .NET CLR. This will
be described in detail in Section 5.4. In the following sections the concrete im-
plementations are described. The details that will be focused on is the layout of
the compressed chunks, and how the skip and sync-to-occurrence identifier meth-
ods work. There are only three different implementations for the three non-scope
columns and these are reused for the different scope column variants.

5.3.1 A note regarding VByte

During implementation some micro benchmarks were performed on the VByte im-
plementation. It turned out that for values encoded in one or two bytes, the
branch free version which uses a sort of “one-size-fits-all” model to avoid branches
was slower than one alternate version. The cost of accessing an (not aligned) eight
byte integer made the method slower.

The alternate version selected uses a single branch on the result from the Offset
array in Equation 4.3 to select how to decode the value. If the value is less than
MaxV al1 the code is 1 byte long, if it is less than MaxV al2 the code is two bytes
long and so on. This method is the one that will be used in the experiments.

Evaluation of the branch free version on data where the encoded values need more
bytes can be done in further work.

5.3.2 Non scope columns

The non scope columns are documentId, frequency and position. For simplicity the
code for managing the documentId and frequency columns are written in a single
component. The column is refered to as the document column. This means that
there are two column implementations for the three non scope columns, for each
compression implementation.

5.3.2.1 Uncompressed implementation

Skipping to DocumentId within the uncompressed chunk representation is handled
by a simple binary search within the column. The frequency column does not store
the frequencies, instead it stores the running sum of prefixes which in fact equals
the definition of the occurrence identifier. The frequency can be inferred by taking
the difference between one occurrence identifier and the previous one. Storing the

70

occurrence identifiers instead of the frequencies themselves means that when skip-
ping on document identifier no post processing is required after the binary search,
if the frequencies were stored one would need to iterate through the frequencies in
order to devise the occurrence id the skip operation stopped at. Also, when syncing
the document column to one occurrence id a single binary search in the frequency
column is enough.

The uncompressed implementation of the position column is trivial. It is a single
array of integers. No skip operations is supported, but syncing to occurrence
identifier consists of simply accessing the occurrenceId’th position in the array.

Uncompressed column implementation does not encode any header information.
The document identifier is encoded as four byte unsigned integers, while both the
frequency and position column is encoded using two byte unsigned integers.

5.3.2.2 VByte implementations

Even though there are two VByte implementations they are discussed as one in
the following paragraphs. The implementation for the VByte document column
encodes one single piece of header information. The largest occurrence identifier
in the chunk is encoded in the header in order to exclude the chunk quickly when
processing document identifier skipping. The document identifiers are gap encoded
and when syncing to on specific occurrence identifier the elements in the document
id and frequency columns are traversed together while calculating the running sum,
the running sum of the frequencies adds up to the occurrence identifier.

The position column is also gap encoded so that the first occurrence in each docu-
ment are encoded with its original value and subsequent occurrences are encoded
with gaps. When syncing to one occurrence identifier the implementation first
skips to the first occurrence identifier of the document that the target occurrence
identifier is located in, and then continues forward while calculating the running
sum. The first skip can utilize the fine grained skipping optimization for VByte
described in Section 4.2.2.

5.3.2.3 PFor implementations

PFor methods are only capable of decompressing chunks of 128 elements at the
time, this means that it has to decompress the entire document identifier column
of a chunk if the values are to be retrieved. To avoid doing this to often, the
largest document identifier in the chunk is encoded in the header. Just as with
the VByte implementation this header value are examined in order to exclude the
block if the document identifier that is skipped to is not present in the chunk. The
document column is gap coded and the frequency column store the frequencies of
the documents and the running sum need to be calculated in order to maintain the

71

occurrence identifier during both skipping and column syncing.

The position column is gap encoded the same way as the VByte version and syncing
to occurrence identifier is handled the same way here as for VByte. The fine level
skipping mechanism supported by the PFor method is used to move the decoder
to the first occurrence of the document that is being skipped into and then the
running sum is calculated while iterating forward. It should be pointed out that
the granularity of the fine grained skipping supported by PFor is quite coarse.
Only blocks of 128 elements can be skipped over, however, skipping such a block
is much faster than in the VByte case.

5.3.3 Scope column

The scope column is the most complex column to compress and it has the most
different number of implementations. Most of the versions are implemented using
PFor compression as the compression primitive, but also uncompressed and VByte
implementations exist. In the following sections each of the implementations will
be described.

5.3.3.1 Uncompressed scope column

The uncompressed column is simply a long array of two byte unsigned integers.
There are two pointers into this array. The pathTypeIdPointer which starts in
first position in the array and moves one step for each occurrence that is retrieved.
The second pointer is the deweyPointer which starts at the first position after
the path types and together with the path type (which defines the dewey depth)
this pointer specifies the dewey of the occurrences. For each retrieved occurrence
deweyPointer is incremented by the dewey depth of the previous path type. Both
path type skipping and occurrence identifier syncing are managed by scanning
through occurrences and maintaining the deweyPointer with respect to the dewey
depths.

5.3.3.2 VByte scope column

Both VByte versions share the same scope column implementation. The only thing
that is different is the compression algorithm it self and how fine grained skipping
is implemented. The layout of the column is quite simple, first all the path types
are stored after each other compressed using VByte, then all the dewey elements
are stored after each other.

The scope column for VByte has one value in the header of the chunk, the number
of extra bytes in the path type section of the column. Here extra bytes is defined
based on the insight that no value can be coded in less than one byte when using

72

VByte, extra bytes is the difference between the number of bytes used to compress
the path types in the chunk and the number of path types. If all path types are
encoded in one byte the value will be zero. This is a small optimization which
means that the header field can be compressed better than if the total number of
bytes used to encode the path types were to be stored.

Also here two pointers are used to point at the locations where the values are to
be decoded from. The pathTypePointer starts at the first position in the column
chunk, and is moved according to the number of bytes used for each of the encoded
values. The deweyPointer starts at the byte number number of occurrences plus
the number of extra bytes stored in the header. The dewey pointer is moved forward
while decoding the dewey elements required for each occurrence. The path type
decide how many dewey elements that are retrieved and VByte decides how many
bytes to move the pointer for each of the values.

Path type skipping and occurrence identifier syncing are done by traversing the
path types while maintaining the total number of dewey elements passed. Then
the dewey column is skipped the correct number of entries forward using the fine
grained skip ability of the VByte implementation.

5.3.3.3 PFor scope column

The PFor scope column encodes the path types in chunks of 128 entries first, and
continues with the deweys after that last path type value has been encoded. For
each block of 128 path types the total sum of all the dewey depths are stored in
the header. This meta data is used during column syncing. Also a pointer to the
beginning of the dewey data is stored in the header.

During decoding only one path type and dewey block is decoded at the time, when
the next occurrence is retrieved the current block might be exhausted and a new
one will be decoded, this can happen for both path types between occurrences and
for deweys between dewey elements.

Path type skipping is handled by traversing the path types encoded in the chunk,
the running sum of dewey depths are maintained in order to skip the dewey column
forward when the search locates a match. When a match is found the dewey
part of the column is skipped forward using the fine grained skipping mechanism
supported by PFor just like for the PFor implemented position column. Syncing
to an occurrence identifier uses the dewey depth sum information located in the
header to skip past path type blocks as well. The only path type block that
require decompression and dewey depth summation is the block containing the
target occurrence identifier. The dewey depth summation can either be performed
from the beginning of the last block of the sync operation or from the end of the
block, in the latter case the addition to the total number of skipped dewey elements
will be the difference between block total depth and the reverse sum.

73

5.3.3.4 Path type sorted PFor scope column

The path type sorted version of PFor is a implementation of the ideas from Sec-
tion 4.2.6. The path types is stored in the original order, but the dewey codes are
stored in a order which is sorted by their path type. This way deweys coming from
the same path types are placed together. The ordering chosen for this implementa-
tion is based on the path type frequencies in the chunk. Dewey codes for the most
frequent path types are place first in the dewey portion of the column.

This implementation has quite a lot of different header values. First, a VByte
encoded pointer to the beginning of the dewey portion is stored compressed. Then
the number of unique path types in the chunk is stored compressed with VByte.
After these two VByte encoded values a series of values compressed with Simple9 is
stored. These are the path type identifiers and their respective in-chunk frequencies.

Path type identifiers are not stored in their original form, they are stored as the
respective path types rank in the frequency ordered collection of path types. Thus,
the range of possible values in the path type portion of the chunk is narrowed,
allowing for better compression.

The path types are managed the same way as the regular PFor implementation.
One chunk is decoded into memory and when that chunk is exhausted a new one
is decoded. Instead of a single deweyPointer this method maintains a pointer
array with one pointer for each path type. The values of these pointers are the
ordinal dewey offset into the sorted sequence of dewey values. When decoding
the occurrences the pointer for the current path type is extracted. By shifting
the pointer seven bits2 to the left the “block”-number is extracted. The the block
number is three, the third block of dewey values need to be decoded. Of course
every block only need to be decoded once, when the block first is accessed, it is
decoded and stored in a array indexed by the block number. It could be that the
blocks are not accessed in their block number order, in those cases the blocks before
the requested block are skipped past in order to locate the target block. However,
each block is at most skipped past once and skipping past blocks compressed with
PFor can be done very fast.

The dewey pointer array resembles the P array in Section 4.2.6.

The path type counts stored in the chunk header is used as a path type summary
during path type skipping. If the candidate set does not overlap with the path
types present in the header the content of the block can be discarded without
decompression. If there are occurrences of candidate path types in the chunk the
path type are traversed until an occurrence is observed. During this traversal the
number of occurrences of each path type is counted in order to advance the dewey
pointers.

2Or dividing by 128

74

In the early phase of development a method where the path type frequencies were
decreased as their occurrences were returned from the chunk were experimented
with. This would have allowed queries that were searching for a very infrequent
path type to skip past the rest of a chunk if the occurrences of that path type
had been exhausted earlier. However, the code required to make this work during
skipping an occurrence identifier syncing made it slower than it was without.

Occurrence identifier syncing is achieved in much of the same way as the path
type skipping. The occurrences of the different path types is counted during the
traversal and the dewey pointers are advanced according to the encountered path
types. It should, however, be noted that this differs from the way the regular PFor
column handles syncing. There are no skipping in the dewey column involved here.
Since the decoding of the dewey column is done on-demand it is enough to move
the pointers.

5.3.3.5 Column wise PFor scope column

The column wise PFor implementation stores the data in a somewhat different way
than the regular implementation. One chunk contains a repeated structure of 128
path type identifiers followed by the dewey codes for those path types compressed
column wise. That is one PFor block with path type identifiers andmaxDepth PFor
blocks with the dewey values. Here maxDepth refers to the depth of the deepest
path type among the 128 for each such block. Since deweys are of variable length,
the deepest dewey columns will contain less than 128 elements. In order to decode
these values correctly the number of elements in the columns which contain less
than 100 elements need to be encoded in the index. 100 elements is the limit where
the PFor implementation will default back to a VByte implementation instead of
padding the values to fill all the entire 128 slots in a PFor block. For each block of
128 path types; the number of “full” blocks is encoded in a single byte3 and then the
number of elements in the remaining blocks is encoded as single byte values (since
they all are less than 100 using even a single byte is wasteful, however, to keep the
implementation simple (and byte align) full bytes are used for those values.

During decoding only a single block is decoded at once. Pointers into the dewey
columns are maintained and for each occurrence the prefix of the pointers cor-
responding to the deweys depth are moved to the next position in the decoded
values.

Path type skipping is handled by traversing the path type portion of each 128
block, if a match is found the deweys for that block are decoded. If there are no
match the dewey columns can easily be skipped by first skipping the “full”-blocks
number of PFor encoded blocks and then skip past the remaining VByte encoded
values.

3This limits the deweys to a maximal depth of 256.

75

Syncing on occurrence identifier is done in a similar manner, except that the path
type blocks may also be skipped past. Only the target block will need to be decoded
and then the dewey pointers need to be moved according to the depth of the deweys
inside the current block.

5.3.3.6 Dynamic column wise PFor scope column

Column wise PFor seems fine, however, when used on columns with less than
100 occurrences the VByte fall-back mechanism for PFor will be used for on all
the dewey columns. This is quite waste full. To alleviate this a “meta-method”
is introduced. The dynamic column wise PFor scope column will dynamically
select between regular PFor and the column wise version based on the number of
occurrences in the chunk. If there are more than 100 occurrences, the column wise
version will be used, if not the regular version will be used.

This dynamic solution should both improve compression effectiveness and perfor-
mance.

5.3.3.7 Prefix coded column wise PFor scope column

Prefix coding deweys share some resemblance with gap encoded position columns.
The common prefix among dewey codes in one document is suppressed. Instead of
storing the entire dewey, the index contains one integer determining the length of
the shared prefix and the remaining of the dewey elements. The method applied
here stores the remaining deweys column wise in a way that retains the position
of the dewey element. This means that there are maxDepth dewey columns. If
prefix coding removes a prefix of three from one dewey code, the first value that is
encoded for that dewey will be placed in the fourth dewey column.

As an optimization the first dewey code in one document is also prefix coded,
by assuming that there are an occurrence “the minus-one-occurrence” in every
document with a dewey consisting of only zero dewey elements some prefix coding
can be applied to every occurrence in the index.

The prefix coded scope column stores the path types in a contiguous portion of the
chunk. Then all the prefix lengths follow, these are also encoded using PFor. For
each block of 128 prefixes the number of dewey elements in each of the columns are
encoded. This information is used when skipping past dewey codes. Since prefix
coding affects the number of elements in the first columns of the deweys it is easier
to encode the number of elements remaining than to iterate through the prefix
values and calculate the counts based on path type depths and prefix lengths. The
column counts are encoded using single byte values since all the values are less
than or equal to 128.

76

Last the dewey columns are stored, here all dewey elements at position i is stored
in one column. During decoding only one group of 128 values will be decoded from
each column at the time. Then that block is exhausted, a now one is loaded. The
choice of storing the columns together as opposed to the 128-occurrences at the
time method used in the plain column wise PFor method is because the prefix
coding removed many values from the beginning of the deweys, and therefore more
values would be encoded using VByte as the fall-back mechanism. By encoding
more data together these effects will be smaller.

In the header of the prefix coded PFor scope column chunk the offsets to the
prefixes and each of the dewey columns is encoded using VByte. Also the total
count for each of the dewey columns are stored. This is done in order to be able
to decompress the last block in each of the columns. The count is needed in order
to select the VByte fall-back scheme if there are less than 100 remaining values.

Decoding is handled by loading one block of 128 path types and prefix-lengths at
the time. For each new document that is decoded the dewey object is initialized
with only zero element values. Then for each occurrence the path type is retrieved
and the prefix length. Then a loop goes through the values from the end of the
suppressed prefix and to the end of the dewey and adds values from the dewey
columns. The dewey columns also only store one decoded chunk of values for each
of the columns.

Path type skipping is handled by traversing the path types until a match is lo-
cated. Then the algorithm skips past the prefixes until the first occurrence of the
document where the correct pat type were found, and from there iterates through
the deweys. The column-counts encoded together with the prefixes is needed in
order to propagate the dewey columns correctly when the skip operation finishes.

Occurrence identifier synchronization is handled the same way as path type skip-
ping, except that the path type blocks are skipped over instead.

5.3.3.8 Path type sorted column wise PFor scope column

This method is a combination of the column wise dewey storage method and the
path type sorted method. The same type of ordering is used (frequency ordered),
and the same type of header information is included (unique path types, frequen-
cies). In addition, the header contains the offsets to the start of each of the columns.
This method uses the column layout of the prefix coded method, where all dewey
elements at position i are stored in the ith dewey column.

The same method for lazily on-demand loading the different blocks in the dewey
column is used. Pointers are shifted seven bits to the left to get the block number,
then the block is either already in memory, or it is decoded into memory. If the
pointer is to a block which is not the next block in the dewey-column it is skipped
to in order to obtain the offset of the block. Note that each block will be at most

77

skipped past once.

As opposed to the original path type sorted version there is a two-dimensional array
of dewey pointers, one pointer for each (path type, dewey column) combination.
However, if one interpret the rows in this matrix of pointers as a single pointer into
the column wise dewey storage the matrix will resemble the P array described in
Section 4.2.6.

Path type skipping is handled by first looking at the path type summary in the
header of the chunk, then if there are a match the path type portion of the chunk
column is scanned, looking for a matching path type. A count for each of the
encountered path types are kept in order to propagate the dewey pointers correctly
after the skip. Since the dewey blocks are loaded on-demand no other action need
to be taken than to update the dewey pointers.

Synchronization to a given occurrence identifier is done in a way very similar to the
skipping. The path type portion of the chunk column is traversed and the counts
for each of the path types are aggregated in order to move the dewey pointers just
before the operation terminates.

5.3.4 A note regarding SkipToScope implementations

Recall that the SkipToScope function that was part of the structural containment
algorithm described in Section 5.2.2 and Algorithm 8. This method is used to
locate a structural match by comparing a prefix of the dewey codes. In the problem
statement in Section 2.5 dewey prefix comparison were named as one of the key
areas for high performance XML-queries. However, during implementation and
profiling, a naive (brute force) method showed itself as fast enough to make the
time spent inside that skip function negligible.

This is probably because the test collection used contain documents that is too
small. The set of candidate occurrences remaining after a document identifier and
path type match is small enough to be processed naively. However, provided large
enough documents many interesting optimizations could have been made.

The prefix coded columns could for instance use the encoded prefix lengths to iter-
ate through occurrences as long as prefix ≥ posmismatch if the dewey code differed
at position posmismatch. All column wise methods could for instance traverse the
results down the columns, searching for dewey elements that match. Comparing
deweys in their compressed form could also be experimented with, this is the “state
of the art” method with VByte, but it might be possible to achieve similar function-
ality in PFor methods. Further work could try to implement these optimizations
and run tests with larger documents.

78

5.4 Unmanaged code

The Microsoft .NET platform provides several ways to call “unmanaged” code
from within “managed” functions. The terminology “managed” and “unmanaged”
refers to code running on top of the common language runtime and code executing
machine code directly on the computers hardware. Unmanaged code runs without
the memory management and security features offered by the CLR, but possible
higher and more predictable performance.

The common language runtime provides the possibility of running programs written
in different programming languages together. Is is for instance possible to write
a program in C# and use libraries written in Visual C + +. The programs are
compiled into an immediate form called MSIL4 which is executed by the CLR. The
different CLR languages provides similar feature sets, however, the language that is
the most expressive, and that provide the most advanced features is Visual C + +.
The minimal search engine used in this project is written using C#, however, since
Visual C + + provides very simple integration of unmanaged code the PFor and
Simple9 algorithms were implemented in Visual C + + and are used as a library

A description of several ways to call unmanaged code from Visual C++ is found in
[Mic10]. One of the methods are mixed assemblies. These are assemblies (a DLL)
containing both managed and unmanaged. When compiling Visual C + + code
with the correct command line arguments5 the code generated will be managed
code. However, by adding the pragma-directive #pragma unmanaged in front of a
function, that function will be compiled as native unmanaged code. The compiler
will manage all the bureaucracy related to the call out of the managed code and
into the unmanaged function.

It should, however, be mentioned that all functions are managed by default, there-
fore one needs to apply the pragma-directive to all functions that are to be called
from other unmanaged functions. If the Visual C++ code is simple switching be-
tween managed and unmanaged will be easy. For the experiments aiming at testing
the possible performance gains from “going native” the code can just be compiled
without the pragmas.

There are performance implications of calling unmanaged functions from within the
managed runtime. Therefore care has been taken to reduce the number of calls.
The code therefore contains methods like SkipMany which skips through several
PFor encoded blocks. The managed client can call this bulk-method instead of
issuing several calls to a single Skip function.

The interoperability features of the CLR makes the both the C# code calling the
PFor libraries look just like any other static method call, and the Visual C++ code
just calls regular functions.

4Microsoft Intermediate Language
5The /CLR argument

79

5.5 Coding details

High performance requires both good algorithm and good code. In the following
sections some of the details encountered during the implementation of NETing.
Since many of the details explained here were discovered and implemented in a non-
finished test system; the exact performance impact is hard to describe. Measuring
the exact performance gains would not applied to the finished system that the
experiments in Chapter 6 will be executed on. However, some guidance regarding
the performance implications will be provided.

This part of the thesis could be considered the “tips and tricks” section. Even
though some of the details are well known to developers of high performance code
the author has not been able to locate similar information in textbooks. There
surely exists tutorials and text books on writing high performance C, C# and
Java code. The message in most on-line tutorials of “high performance Java”
or “high performance C#” usually state something like: don’t create new objects,
garbage collection will kill performance, avoid exsessive boxing/unboxing, method
calls are expensive and delegates are even more expesive6. All these insights are
sound and one need to keep those in mind when developing high performance code.
In the following sections some concrete examples on how to adhere to some of these
standards will be provided.

5.5.1 Object reuse to avoid high garbage collection costs

One of the easiest ways to destroy high performing code is to allocate a lot of
objects. Object creation in C# is quite fast, however, every object created need
to be collected by the garbage collector. If there are many objects to be collected,
garbage collection pauses could consume most of the execution time of the program.

In NETing there is an object of the class PostingFileEnumerator which handles
the interaction between query processing components and the posting file. All skip
operations are handled through it, as well as plain traversal of the inverted list.
When first implemented, a test run just iterating over the index revealed that 70%
of the execution time were used in garbage collection7.

By running a memory profiler, it was shown that a high percentage of the object
creation came from PostingFileEnumerator. Also, quite some CPU time was used
to build these quite complex objects. To counter this, a PostingFileEnumerator
pool was created. This pool allowed PostingFileEnumerators to be reused be-
tween queries. This rather simple change made time in garbage collector drop to
20% which still is high, compared to final version which uses 2% of the time.

6delegates is the C# version of type safe function pointers.
7The garbage collection statistics were collected using the built-in tool perfmon.exe which is

included in most recent releases of the Windows operating system.

80

Pooling objects can help alleviate garbage collection problems, and it is especially
effective when the creation of new such object is a complex and time consuming pro-
cess, then the object creation cost can be amortized across multiple uses. However,
for very simple objects, the cost of accessing the pool and possible synchronizing
threads at that pool might come at at too high a price.

For small and simple objects “holder” objects can be used. For instance, the output
of the PostingFileEnumerator is occurrence objects. These occurrence objects
contain four fields 〈doc, freq, pos, scope〉 and there are several thousand of them.
Instead of creating new objects for each occurrence, the same object is returned
every time. In stead of allocated the holder object is mutated. This cuts down on
the number of allocations with thousand of objects for each query, and is one of the
methods used to keep the garbage collection time as low as 2% in the final version
of NETing.

5.5.2 Buffer invalidation by sequence number

In languages like Java and C#, memory is cleared when it is allocated. If you
allocate an array of integers, all values are 0. This is different from the default
behavior of ancient languages such as C when allocated memory can contain almost
anything. However, when reusing objects as described in Section 5.5.1, arrays will
contain the data from the previous use, which can be almost anything.

One can write code that will zero-out the arrays, and this is in many cases the
correct thing to do. However, for many of the data structures used internally in
NETing column implementations such as the lazy loading dewey columns in the
path type sorted column wise scope column, clearing arrays are not always a good
use of CPU resources. Clearing a piece of an array is a O(n) operation, if the array
is long, the operation takes longer to complete.

For lazy loading dewey columns a bit vector is used to determine if a dewey block
is loaded into memory or not. When the object using the bit vector is cleared. This
is a very fast operation, however, if the bit vector is going to be used for a very
short list, some of the clearing work would be redundant. The query will never hit
the tail of the vector. Also, the operation is O(n) indicating that if the bit vector
is long, which it could be if the object previously had been used for a very long
scope column, the operation will take some time.

One approach which gets rid of the clearing of the vector is to associate a sequence
number to the “session” of the reused object. Each time the scope chunk reader
object is reused, the sequence number is increased by one. The bit vector is replaced
by an array of integers which stores the last sequence number where the block
was loaded into memory or not. During processing status[blockNum] = True
operations are replaced with status[blockNum] = currentSeq. Clearing is now
reduced to a O(1) operation since it only consists of incrementing the sequence

81

number.

Of course there are some extra memory cost of storing an integer array instead of
a bit vector, however, there is no need to use four or eight byte integers for this.
One can use a single byte unsigned integer to store the sequence number and then
do some extra clearing each time the sequence number counter wraps around. Still
one would need to measure the effect of such changes in order to decide whether
to use them or not.

In the NETing case, changes from clearing to invalidation by sequence number
gave a slight increase queries per second for the path type sorted column wise PFor
index implementation. The throughput went up from 135 to 139 on the query trace
used during implementation. Profiling also revealed that less time was spent in the
method which prepared the chunk column implementation to decode the index.

5.5.3 Loop optimizations

Loop optimization is a well known field within compilers theory and a quick web
search reveals large amounts of resources8. In the context of NETing, loop opti-
mizations apply to a rather simple algorithmic aspects. In Section 5.3.3, skipping
and occurrence identifier syncing is described for the different scope column imple-
mentations. The general theme for the column wise scope columns is to traverse
the path type column and move the dewey pointers according to the path types
encountered.

There are at least two ways of doing this. The simplest is to move the dewey point-
ers once for each path type traversed, somewhat like described in Algorithm 11.
This algorithm moves the dewey pointers for each of the path types encountered.

Algorithm 11: Simple scope column traversal.
foreach pathType ∈ SelectedPathTypes() do1

MoveDeweyPointers(pathType.Depth)2

end3

For column wise dewey representations, Algorithm 11 has a running time of O(nk)
where n is the number of path types and k is the average depth of the path types.
This can be improved by aggregating the depths of the path types encountered.
And then move the dewey pointers once instead of for each path type. Algorithm 12
does this.

Line 6− 9 in Algorithm 12 transforms the depth counts array into an array which
contains the number of position to move in each column. The insight is that initially

8http://www.google.com/search?q=loop+optimization

82

http://www.google.com/search?q=loop+optimization

Algorithm 12: Aggregated scope column traversal.
Data: depthCounts array where the path type depth counts are aggregated
total ← 01

foreach pathType ∈ SelectedPathTypes() do2

Increment(total)3

Increment(depthCounts[pathType.Depth])4

end5

depthCounts[0] ← total6

for i ∈ 1...maxDepth do7

depthCounts[i] ← depthCounts[i− 1]− depthCounts[i]8

end9

MoveDeweyPointers(depthCounts)10

position i in the array contains the number of elements ending after i columns. The
algorithm starts with the total number of occurrences at position zero and for each
position it subtracts the number of finished occurrences.

The running time of this algorithm isO(n+k), assuming that the MoveDeweyPointers
is a O(k) operation. By transforming some of the loops within the scope column
implementations a 10% gain in throughput on a test done during development was
measured.

Applying the same principals to the prefix coded scope column is slightly more
complex, one does not only need to keep track of the depth of the deweys, but
also the prefixes of the encountered deweys. However, the principal is the same,
and it will transform the running time from O(nk) to O(n + k). One could note
that the depth of the deweys is probably limited and that k actually is more like
O(1), however, both algorithms have little extra work so the constant factors in
the O(n+ k) are also low, making it preferable even if k is small.

5.6 NETing statistics

The NETing search engine has been created in the specialization project in fall
2009 and finished in this master thesis January - June 2010. Most of the code is
written in C#, with some parts, mainly the compression method PFor and Simple9
implemented in Visual C + +. The statistics for the NETing codebase is shown
in Table 5.3. The C + + code also includes the bit-packing of code generated by
a script. This amounts to approximately 3000 lines of code. The open source
program cloc9.

9Cloc version 1.51 to be exact, http://cloc.sourceforge.net/

83

http://cloc.sourceforge.net/

Lines of code (C#): 16575
Lines of code (C++): 3476

Table 5.3: NETing codebase statistics

If not present on some kind of CDROM bundled with this thesis the source code
for NETing can be obtained by contacting the author10.

10ola.natvig@gmail.com

84

Chapter 6

Design of experiment

The following chapter will describe the experiments which are to be carried out.
The experiments are designed to explore the performance characteristics of a se-
lected subset of the methods proposed in Chapter 4. Tests will be performed by
running regular list intersection queries (AND-queries) and structural containment
queries since these were the two query types selected in the concrete problem state-
ment (Section 2.5).

6.1 Test collection and query trace

The collection to be used in the experiments is a collection of XML encoded
Wikipedia articles. The collection contains 382 thousand articles. The documents
have tags for sentences, paragraphs, titles, persons, companies, locations among
others. The total size of the collection is 1.57 gigabytes. Statistics regarding the
Wikipedia collection are shown in Table 6.1.

Dewey elements have a very skewed value distribution. The lower element values
come in far greater numbers than the larger ones. Even though there exists high
dewey element values as shown in Table 6.1, Figure 6.1 draws a clear picture that
if one place a limit at 100 almost all dewey element values falls below it. More

Distinct number of path types: 238
Max dewey depth: 9
Max dewey element value: 8259

Table 6.1: Wikipedia collection statistics.

85

than 80% of all dewey elements are less than three. One of the reason for this
very skewed distribution is the dewey numbering scheme itself. If there, within one
scope, is to exist a child node with the value 2, there has to be another child with
the value 1 first. This means that there can be no more twos than ones. Since
there are many scopes, there must be many zeros and ones, and as scopes with
high fan-outs are less common, there will be fewer threes and fours and so on.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

P
er

ce
nt

ag
e

Limit

Figure 6.1: Value distribution for the dewey elements in the Wikipedia collection.
The plot show the percentage of dewey values that has a value less
than or equal to limit. The green line show the 100% line.

The basis for the query traces which is to be executes is the 100000 queries in
the TREC 06 efficiency tasks. Since these queries are not designed to match the
Wikipedia collection in any way, some preprocessing has been done. In Section 2.5
two types of queries were selected: intersection queries and structural containment
queries. In the following sections the process of generating the test query traces
from the TREC queries will be described.

6.1.1 Intersection queries

The TREC query trace contains phrases. To generate realistic structural contain-
ment queries from the trace each word in each phrase is treated as a term. A query

86

which intersects all the lists is then constructed and executed once.

If the constructed query has matches in the index it is written to the query trace
for intersection queries. Together with the query, the number of results is recorded.
This way, it is possible when running experiments to only select those queries where
the number of results is within some range.

6.1.2 Structural containment search queries

The same interpretation of the TREC query is used for structural containment
searches. Words are extracted and assigned as terms to a query configured as
a structural containment search. Since some path types are more common than
others, several different path types need to be used.

Four different path types have been selected. paragraph, sentence, title and
company. With paragraph path types, all path types containing a paragraph label
is addressed. Almost all word occurrences in the corpus occur within paragraph
path types and also within sentence path types. It is clear that there are a
significant overlap between paragraph and sentence path types. However, while
they both match almost all occurrences, paragraph and sentence path types are
different in that many structural containment hits on the paragraph level will not
be matches on the sentence level. sentence queries require a deeper matching of
the scopes.

Recall that in Section 5.2.2 the retrieval unit for structural containment queries
was defined as the triplet 〈d, s, (occ+)+〉. For a paragraph query, the (occ+)+ part
of the retrieved unit will contain all the matching occurrences under the paragraph
node. For a sentence query, there will be fewer occurrences. But possible additional
retrieved triplets.

This can be generalized to that a query which specifies constraints on a deeper level
will return results containing fewer occurrences, but possible additional results.

Queries constructed with the title path types will hit fewer occurrences than the
person, paragraph and sentence queries, but more than the rather exotic path
types containing a company label. The occurrence statistics of the different path
types is shown in Table 6.2.

6.2 Experiment methodology

Since the search engine used in this thesis is running on the Microsoft .NET Com-
mon Language Runtime, some extra care need to be taken when executing perfor-
mance tests. Programs written for the CLR is not compiled into machine executable

87

Path label Matching path types Matching occurrences
paragraph 229 150 427 296 (99.92%)
sentence 215 150 427 216 (99.92%)
title 51 3 147 336 (2.09%)
person 39 9 667 327 (6.42%)
company 34 1 424 789 (0.95%)

Table 6.2: Occurrence statistics for the four selected path types.

code, instead they are compiled into an intermediate code which is executed on top
of a virtual machine. The virtual machines supply memory management through
garbage collection, and just-in-time compilation of intermediate code to machine
executable code. The performance implications of both garbage collection and
just-in-time compilation are hard to predict prior to execution.

Experiments done in [Nat09] showed that if one runs one experiment several times
the performance stabilizes very quickly. Therefore one can run the experiments for
instance ten times each and then selects the one execution with the best timing
results. This gives the just-in-time compiler the ability to optimize the code and
generate machine code, as well as disk caches to warm up.

In [Gri07] experiments were performed on software written in Java. Java also uses
just-in-time compilation and garbage collection. Here the experiments were also run
several times, but not a fixed number of iterations. Instead the experiments were
executed until the difference between subsequent runs were under some threshold
(e.g. 2%). It would be equally correct to do the experiments in this thesis this
way, however, a sufficiently large and fixed number of iterations (such as five) were
shown to be effective for the CLR in [Nat09].

6.2.1 Main memory resident index

The focus of this thesis is at compression. Compression has impacts in many ways
for query processing, one of them is disk transfer. However, as memory prices
decline, and 64-bit hardware and operative systems open up for several gigabytes
of main memory on search engine servers. It will be practical to hold indexes in
main memory. Independent from any such trend. When measuring such black-box
characteristics as latency and throughput, the best picture of how the different
compression schemes perform against present it self when the compression scheme
account for most of the work load. Therefore tests should be executed with the
indexes residing in main memory. This is achieved by setting the memory limit of
the buffer manager (Section 5.1.1) high enough to cache the entire index in memory.
The first execution of each experiment will then populate the buffer manager with
the blocks needed throughout the entire experiments. Subsequent experiment will
then be performed with the index in main memory.

88

6.2.2 Multi-threaded tests

Modern computers have the ability to execute several task concurrently. The im-
pact of the different compression schemes when running multi threaded programs
should be examined. There is limited bandwidth between main memory and the
CPU(s), and it could be that some of the methods which produce larger indexes will
be hit harder with this limited bandwidth than the methods with smaller indexes.
Experiments should be executed with different levels of concurrency to assess these
issues.

The parallelization of the code is limited to running multiple queries at the time.
There are no inter-query parallelization implemented.

6.2.3 Different query classes

As stated earlier in Section 6.1 there will be several query traces to execute. How-
ever, those query traces are not homogeneous. There might be queries with for
instance very different number of terms and results. There might be that a query
with very many results has different performance characteristics than queries with
only a few results. Experiments should try to gain some insight into the per-
formance implications of both number of terms in the query, and the number of
results.

6.3 Compression method labeling scheme

Since several different compression schemes are to be tested, and some of them has
very long names a system of labeling the methods need to be made. The labeling
scheme is approximately the same as the one used in [Nat09] and consists of short
labels combined with dots. One example is PTS.PFor with means a path type
sorted PFor compression scheme. The labels are summarized in Table 6.3.

Tag Meaning
VB Regular VByte encoding.
NVB The new VByte encoding introduced in Section 4.2.1.
PFor PFor encoding.
CPFor Column wise PFor encoding as described in Section 4.2.3.
PF Prefix coding as described in Section 4.2.5.
PTS Path type soring as described in Section 4.2.6.
D Dynamic scope column compression as described in Section 4.2.4.

Table 6.3: Labels for compression schemes.

89

6.4 Compression schemes to test

Among the many methods described in Section 3.3 and Chapter 4 a few candidates
need to be selected for testing.

Among the regular index compression schemes the simplest and probably most
popular method VByte (Section 3.3.2) is a relevant choice. VByte is relevant be-
cause the method is widely used, and it has been shown as among fastest of all
the single value methods shown in Table 3.5. Additionally this thesis discusses
modifications to this method which could be interesting to observe the value of (if
any). VByte could be considered a baseline method in these experiments.

Another method which someone might called the “state of the art” method is
the PFOR methods (Section 3.3.1.6) and the NewPFD/OptPFD variants of this
method. Also, previous research has shown it to be extremely fast [ZHNB06,
YDS09b, ZLS08]. PFOR and its variants are the fastest methods in the “chunk of
values” column in Table 3.5[ZLS08].

In addition experiments should be performed on a uncompressed index to see if
compression actually is worthwhile.

From the scope specific methods proposed in Chapter 4.2 both path type sorting
and columnized dewey storage should be tested. However, since VByte is a context-
free method, in that it does not care whether the data compressed follows a tight
value distribution or not; column wise dewey storage will not be tested with VByte.

The dynamic column wise method will also be tested, it should perform similar to
CPFor on long lists, and PFor on short lists, hopefully with a performance that
comes close to max(CPfor, PFor) for different queries.

Even though VByte could benefit path type sorting since it would allow selective
dewey decompression for structural containment queries it will not be prioritized.
Experiments done in [Nat09] showed that the index built using VByte already
is substantially larger than indexes built with PFor methods. Adding path type
sorting to a VByte column would have increased the size of the index even more.
The choice of letting the VByte implementation stay simple has therefore been
made. Also, the experiments performed in [Nat09] showed that VByte methods
were significantly slower than PFor methods.

The different index configurations selected for testing is shown in Figure 6.4.

90

Method Description
Raw No compression.
VB VByte compressed index.
NVB The new VByte implementation proposed in Section 4.2.1.
PFor Simple PFor compressed index.
PTS.PFor Path type sorted PFor index.
CPfor Column wise PFor index.
D.CPfor Dynamic column wise PFor index.
PF.CPfor Prefix coded column wise index.
PTS.CPfor Path type sorted column wise PFor index.

Table 6.4: Index configurations selected for testing.

6.5 Performance measurements

The experiments done will execute several different queries, for each such exper-
iments, the following measurements will be done. The throughput for the given
query log and a given index implementation is defined as the total number of
queries executed divided by the total time of the experiment. The unit of the
throughput measurements is queries per second. Throughput describes the overall
query processing capacity of the system.

Additionally the average latency will be measured. The time to answer each query
will be measured and an average will be calculated. The latency describes how
quickly the system can answer a given query. The unit for latency is seconds or
seconds per query, but the values will hopefully be in the millisecond ranges.

The ratio between throughput and latency will probably not be constant as through-
put increases (or decreases). Factors such as thread-synchronization in some data
structures will probably affect the latency as more threads are used to execute
queries.

Latency will mostly be focused on in the experiments where different number of
threads are used to answer queries. In those cases the development of the measured
latency as throughput (hopefully) increases will show how the threads interfere with
each other and affect overall query latency.

6.6 Concrete experiment plan

In the following sections a concrete plan for the experiments will be enumerated.
The default configuration of experiments are that the experiments will be run
concurrently with four query-threads. The experiments will be run on a computer

91

with a Quad-core processor so this corresponds to one thread for each processor
core. The default structural containment search queries are by default evaluated
by a method which skips on document identifier first, and path types second.

6.6.1 Test regarding the impacts of number of results

By running experiments with queries with different number of results, insight into
the performance implications of the size of the result set can be measured. When
preprocessing the query traces in Section 6.1 the number of results for each query
were recorded. Groups of width 10 is used and five groups for each query trace.
The experiments to be executed are shown in Table 6.5.

Id Queries Description
1 Intersection queries Grouped on #results, group width 10, five groups.
2 Path, sentence Grouped on #results, group width 10, five groups.

Table 6.5: Experiments with number of results as variable.

The experiments in Table 6.5 will be the basis for the general discussion of the
results for the different proposed schemes.

6.6.2 Native code implications

To test if the implementing the PFor compression method in native code boosts
performance experiment 1 and 2 should be executed with the implementation com-
piled both as native and managed code. The performance for each of the PFor
based methods should be compared.

6.6.3 Test impact of concurrency

The test computer has a quad core CPU. When testing with different numbers of
concurrent threads will among others show how memory bandwidth affects perfor-
mance. Therefore, tests with 1, 2, 4 and 8 concurrent threads should be executed.
Since the query processing algorithms should be orthogonal to concurrency levels
these tests could be executed on only one type of queries. Since there are many
more intersection queries those are selected for this tests. The experiments to be
executed in order to assess concurrency issues are shown in Table 6.6.

92

Id Queries Description
3 Intersection queries Single query execution thread.
4 Intersection queries Two query execution threads.
5 Intersection queries Four query execution threads.
6 Intersection queries Eight query execution threads.

Table 6.6: Experiments with different levels of concurrency.

6.6.4 Structural containment queries, skip order

In Section 4.1 combined path type and document identifier skipping were dis-
cussed. The order of which one chooses to skip were introduced as a possible
query-optimization technique. Section 4.1 suggests that for path types with few
matches, it could be effective to skip with path types first. Since a procedure based
on document id skipping could cause a high number of false-positive matches.

The experiments listed in Table 6.7 are selected in order to measure how the two
different skip strategies perform on structural containment queries where the oc-
currence statistics differ.

Id Queries Description
7 Path, sentence Skip to document identifier first.
8 Path, sentence Skip to path types first.
9 Path, title Skip to document identifier first.
10 Path, title Skip to path types first.
11 Path, person Skip to document identifier first.
12 Path, person Skip to path types first.
13 Path, company Skip to document identifier first.
14 Path, company Skip to path types first.

Table 6.7: Experiments with different skip order.

93

94

Chapter 7

Results

In this chapter the results from the experiments described in Chapter 6 will be
presented and commented on. Also a short summary of the results from the pre-
project ([Nat09]) will be provided to describe some of the previous results with
many of the same methods that have been developed and refined in this thesis.
While the main focus for the pre project was indexing and compressed index size.
This thesis has focused on query processing, therefore there will be little infor-
mation on the indexing speed of the different algorithms. However, since most
methods were tested in the pre project, hints on indexing speed could be found
there.

Method Scope column Other Total
Raw 2100750 688247 2788998
VB/NVB 1061903 369353 1431257
PFor 616546 305089 921635
PTS.PFor 613768 305109 918878
CPFor 480474 305012 785486
PF.CPfor 438536 304972 743508
PTS.CPFor 450639 305017 755656
D.CPfor.100 454484 305032 759517
D.CPfor.64 410520 305032 715552
D.CPfor.32 383385 305028 688413
D.CPfor.16 376160 305025 681185
D.CPfor.8 376802 305024 681826

Table 7.1: Compressed index sizes (in KB)

Since the size of the compressed index could be a interesting part of the analysis

95

of the query performance the sizes will be provided in Table 7.1.

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

S
co

pe
 c

ol
um

n
si

ze
 (

K
B

)

Raw
VB\NVB

PFor
PTS.PFor

CPFor
PF.CPFor

PTS.CPFor
D.CPFor.16

Figure 7.1: Scope column size, Wikipedia collection index. Thesis version.

Since all the PFor method share the same implementation for the non-scope columns
one would assume that the values in the other column in Table 7.1 should contain
equal values. However, included in those numbers are meta data stored in the in-
dex, for instance are column offsets within one chunk encoded using VByte. For the
methods which produce smaller files, these pointers are “shorter” and can there-
fore, in some cases be coded in fewer bytes. NETing does not allow a portion of the
chunk headers to span buffer boundaries, therefore some bytes will be lost when
there are not room to start a new posting list at the end of a buffer. This may
also affect the other column in Table 7.1 between methods which do have the same
implementations of the columns, but different size of the scope column.

The size of the scope columns used during the following experiments are shown in
Figure 7.1.

7.1 PFor cuttoff parameter tuning

The literature suggests a cutoff parameter for PFor at 100 elements [ZLS08]. How-
ever, this might not be the optimal case for all data. For instance, by looking

96

at Figure 4.2 one can see that the two first columns of the dewey codes for the
Wikipedia collection have very low entropy. When the dewey values in a specific
column are placed together they may be compressed very efficiently. And while
VByte needs to use at least one byte for each value, PFor can compress the values
is much less than one byte. In the extreme case where all values are equal, PFor
can compress 128 values using only four bytes for the header of the compressed
block. If this is the case, it would be space economical to compress a sequence of
only five values.

It is clear that the fixed cutoff of 100 proposed in the literature may be wasteful
for some sequences. Therefore experiments with the dynamic column wise PFor
method were performed with different cutoff values. These experiments were not
specified in the experimental plan, however, since the difference in compressed index
size from a cutoff of 100 to 16 is as much as 17% measuring the query performance
will be interesting.

The size of the other portion of the index increased as the cutoff parameter was
decreased. A choice to keep the cutoff parameter for the three non-scope columns
fixed at 100 was made. Experiments with variations here could also have been
made, however, the focus of this thesis is on the scope column.

It might be that the smallest index is not the fastest index, after all an index with
a low cutoff value will perform a PFor decode operation meant for 128 values to de-
code as little as 16 values. It might be that this big-block-decode operation takes to
much time to be effective. However, PFor can be fitted to process blocks as small as
32 items which may be more suitable. The experiments described in the subsequent
sections have all been performed with a 128-values PFor implementation.

Further work could investigate how dynamically selecting PFor cutoff values for
different types of data affect compressed index size and query performance. It
clearly has the potential at the compressed index level, and with variable block
size PFor query processing speed could also increase.

The results from all the six different D.CPfor methods will not be presented in full
here, however, the full result data will be available in Appendix A.

7.2 Previous results from pre project

The focus of the pre-project in [Nat09] was on indexing speed and compressed index
size, however, measurements were also done on the decompression speed of the
different index implementations. The implementation done in the pre project has
been used as a starting point for the experiments done in this project, however, most
components have been seriously re-factored and the current code base is much more
optimized for high speed query processing. While in the initial implementation the
ability to create stacked-configurations of the index was more of a focus. In the

97

initial NETing implementation one could add prefix coding to any scope column
by simply changing the configuration. This configurability is nice, but it will in
many cases sacrifice performance.

The configurability of the first NETing version meant that it was easy to perform
many experiments, therefore, [Nat09] ran experiments on more than twelve differ-
ent combinations of column implementations. The variants included prefix coding
(Section 4.2.5), path type sorting (Section 4.2.6) and column wise dewey encoding
(Section 4.2.3) which all also will be tested in this thesis.

In addition a simple method called first-child-tagging where a single bit was used
to encode if the last element in the dewey was a “first child” (.0 or .1 depending
on indexing). Also experiments were done on a dictionary method where parts of
dewey codes were coded from a dictionary.

 0

 1e+008

 2e+008

 3e+008

 4e+008

 5e+008

 6e+008

 7e+008

 8e+008

 9e+008

 1e+009

 100 150 200 250 300 350 400

S
co

pe
 c

ol
um

n
si

ze
 in

 b
yt

es

Collection size (1000 documents)

VB
PFor

CPFor
PTS.CPFor

DC3.PFor
DC3.PC3.PFor
DC3.PTS.PFor

FCT.VB
PC3.VB

PC3.FCT.VB
PC3.FCT.CPFor

PC3.FCT.PTS.CPFor

Figure 7.2: Scope column size, Wikipedia collection. From [Nat09].

When looking at the compressed index size methods with prefix coding, column
wise dewey encoding and path type sorting performed the best. A plot of a selection
of the methods tested is shown in in Figure 7.2. The labels for the different methods
are quite similar to the labeling scheme used in this thesis (Section 6.3), but in
addition the DCx tag means a dictionary encoding which chunks of three dewey
elements. FCT mans first child tagging, and the PCx tag means prefix coding
with x bits allocated to store the prefix length.

98

The results shown in Figure 7.2 resemble the ones presented in Table 7.1. Prefix
coding gives improvements for both the current index and the one in the pre project,
as does the path type sorting method. VByte is also shown as significantly inferior
to the PFor methods, however, in [Nat09] the prefix coded and first child tagged
VByte version came close to the simples PFor method.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

100000 200000 300000

T
im

e
to

 w
rit

e
in

de
x

in
 s

ec
on

ds

Collection size (#documents)

VB
PFor

CPFor
PTS.CPFor

DC3.PFor
DC3.PC3.PFor
DC3.PTS.PFor

FCT.VB
PC3.VB

PC3.FCT.VB
PC3.FCT.CPFor

PC3.FCT.PTS.CPFor

Figure 7.3: Index write time for 100, 200 and 300 000 wikipedia documents. From
[Nat09]

In Figure 7.3 the time to build the index using several of the method tested in
[Nat09] is shown. It shows that the simpler methods (less prefix coding and so on)
allow for the fastest indexing. This could have been due to the perhaps too flexible
implementation in the initial version of NETing, but partly also because of the
added complexity of for instance prefix coding. The fastest method was the simple
column wise PFor, probably both because of the speed of PFor in general, and the
fact that there are less data to be written than for many of the competitors. The
simple VByte method was also quite fast. Path type sorting came at a cost but,
perhaps not a high one as expected, considering that there are both extra meta
data to be written and extra word done during the sorting phase.

The decompression experiments in [Nat09] were quite simplistic. The time to read
all the inverted lists for each entry in the dictionary were recorded. The time
was recorded from within the index system so that it was possible to decide how

99

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

V
B

P
F

or

C
P

F
or

P
T

S
.C

P
F

or

D
C

3.P
F

or

D
C

3.P
T

S
.P

F
or

D
C

3.P
C

3.P
F

or

F
C

T
.V

B

P
C

3.V
B

P
C

3.F
C

T
.V

B

P
C

3.F
C

T
.C

P
for

P
C

3.F
C

T
.P

T
S

.V
B

P
C

3.F
C

T
.P

T
S

.C
P

for

T
im

e
to

 d
ec

od
e

in
de

x
(s

ec
on

ds
)

Method

Non scope columns
Scope column

Figure 7.4: Index decoding time for 382 737 wikipedia documents. From [Nat09].

much time that was spent on the scope column and the other columns. While
simplistic, this method gave insight into the shear decompression capacity of the
methods. However, some of the more composite methods might have suffered from
the unoptimized implementation. However, the results shown in Figure 7.4 show1

that for the non-scope columns PFor is 19% faster than VByte and that column wise
PFor both path type sorted and regular are among the fastest methods. However,
so was VByte.

1even though the scale of the graphs makes it hard to see.

100

7.3 Experiment results

In the following sections the results from the experiments will be displayed and
commented on. The experiments were run on a Dell Optiplex 755 with a Intel R©
CoreTM 2 Quad CPU (Q6700 @ 2.66GHz). The test computer had 8 GB of mem-
ory, and a single 500GB Hitatchi 7200 RPM hard drive with 16 MB Cache. The
operating system was Microsoft Windows Server R© 2008 R2. The installed .NET
runtime was .NET 4.0.

7.3.1 Impact of number of results

The first two experiments were preformed with queries grouped on their number
of results. This experiments were designed to show differences between the imple-
mentations when the result sets size increased. The throughput for intersection
queries at different result set size intervals are shown in Figure 7.5. The number
of queries which were executed for each of the intervals is shown in Table 7.2

1-10 11-20 21-30 31-40 41-50
Queries: 29 666 6 901 3 549 2 255 1 580

Table 7.2: Number of queries used in intersection query experiment.

The results in Figure 7.5 can be grouped in roughly four groups, the uncompressed
index with 500 QPS for the shortest results, and 400 for the longer ones. The two
VByte variants with a little less than 800 QPS for the shortest results and around
600 QPS for the longest. PFor methods with a little more than 900 QPS for short
results and 750 QPS for the longest, and the column wise PFor methods whit a
QPS range for 1050 to approximately 800.

Within the four groups there are variations, most notably the column wise path
type sorted which consistently has lower throughput than the other column wise
methods. The reason for this is probably the more complex implementation, all
in all the path type sorted versions include some additional book keeping during
decoding. Also, since this is intersection queries, none of the features of the path
type sorted index can be utilized to speed up querying. There are for instance
no need for decompressing only the dewey codes for some specific path types, and
there are no path type skipping which may use the path type summary encoded in
chunk header.

The fastest method is one of the dynamic column wise method with a cutoff of 8, 16
or 32 depending on the result set size. This means that one could probably select the
one with 16 as a cutoff value, even though this diverges from the literature standard

101

 0

 200

 400

 600

 800

 1000

 1200

1-10 11-20 21-30 31-40 41-50

Q
P

S

Resultset size

Raw
VB

NVB
PFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.5: Throughput for intersection queries at different result set sizes.

of 100. Again, implementations could try to select the cutoff value dynamically to
achieve both better query performance and smaller files.

The new version of VByte is faster than the one in the literature. However, the
differences are not spectacular. It could be that the gains of the new version
is due to its more effective skipping and not only due to the unrolled decoding
implementation. It should be noted, that for VByte encoded index the scope
column represents 75% of the total index size.

Knowing that there are quite few distinct path types, and that the most common
ones have low path type identifiers, one can assume that almost all path type entries
are the index is encoded in one byte. Furthermore, as shown in Table 6.1 the vast
majority of the individual dewey elements can be coded in one byte using VByte2.
This leads to the conclusion that almost all of the values which account for 75% of
the index size is encoded in one byte.

If one analyses the implementation of both the regular VByte and the final version
that ended up as the one being tested in NETing (Section 5.3.1) both handle single
byte encoded values with one branch. That is, the new version is not as superior in
the single byte version as it would be for multi byte values. However, the fact that

2They have a value 127 or less.

102

the performance is slightly better in these experiments is good news with respect
to the performance when encoding columns with higher values.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1-10 11-20 21-30 31-40 41-50

Q
P

S

Resultset size

Raw
VB

NVB
NPFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.6: Throughput for sentence-scope queries at different result set sizes.

For structural queries the performance characteristics is slightly different, the re-
sults is shown in Figure 7.6. The number of queries used in each of the result set
ranges for this experiment is shown in Table 7.3. As the table shows the number
of queries user here is significantly smaller than for the intersection queries. This
makes sense, since the structural queries impose stricter constraints on the results,
which in turn would lead to smaller result sets, and fewer queries with any results
at all. However, by letting the unit of retrieval be a portion of a document (Sec-
tion 5.2.2) the number of results should increase, but not enough to get very many
queries with larger result sets it seems.

1-10 11-20 21-30 31-40 41-50
Queries: 11 580 1 604 641 327 198

Table 7.3: Number of queries used in sentence query experiment.

Having so few queries for the larger datasets might reduce the reliability of the
results. However, since the same query trace has been tested in a later experiment

103

with both document identifier first skipping and path types first skipping more
confidence will be provided later on.

One interesting observation here is that contrary to the intersection queries the
row-wise PFor methods perform as well as or even better than the column wise
implementations. The explanation to these improvements is probably due to the
granularity of the methods. When looking at what the different queries retrieve one
see that a structural query will retrieve a subset of the occurrences in a document,
while a intersection query will retrieve all the occurrences within a document. This
means that the number of dewey codes retrieved for each match might significantly
lower than for a intersection query. To retrieve a dewey code in a column wise
storage one needs to decode all the columns for that dewey, while in a row wise
dewey store, one would only need to decode the row that the dewey resides within.
Roughly speaking column wise storage schemes need to decode an area, while the
row wise scheme only need to decode a line. Even though the column wise methods
provide better compression and probably better decompression speed on a per-value
basis, the granularity might damage performance when smaller parts of the index
is accessed.

One would perhaps expect path type queries to be significantly slower than the
intersection queries, however, in the two preceding experiments, this is not the
case. One reason can be the size of the results, as mentioned earlier, the results of
the intersection queries is larger than the ones for the structural queries. Also, the
the intersection queries need to access the scope column, if one only was to return
the matching document identifiers querying would be much faster.

Also, the skip procedure used to find match-candidates for the structural queries
involve not just skipping to the right document identifier, but also to the correct
path type, the distance of such a skip will never be shorter than a skip which
only skips to the document identifier, and often it will be longer, especially when
looking for special path types such as the company scope. Longer skips can be
processed faster than shorter skips by utilizing block-level skip information more
often, additionally longer skips mean fewer skips, which also may cause the queries
to be evaluated faster. However, since these queries were sentence queries which,
will match the path type of more than 99% of all occurrences (Table 6.2) the effects
of these longer skips will be very small.

Another possible reason is the queries them selves, there might be some kind of
bias in the queries which causes the higher throughput. The queries might contain
terms that have shorter posting lists, or some other unknown characteristics which
makes the queries fast. This is however, unlikely, especially for the traces with
1− 10 results where there are more than 11000 queries.

The intersection queries showed significant decline in throughput as the result sizes
increased. This is not the case for the structural queries, in fact, most methods
increase in throughput as the result set size increase. Explaining this is hard,
however, the cause might be related to the rather low number of queries. There

104

can be variations within the different query groups themselves. However, the low
number of queries also suggest that the entire query trace touches a smaller subset of
the index, possibly causing better cache hit ratios and therefore better performance.

7.3.2 The impact of concurrency

Experiments performed with different number of threads gives different results. The
test computer has four cores, so it would be fair to assume that the throughput will
increase as the number of thread increases towards four. The query trace executed
contained 54 267 intersection queries. A plot of the throughput at 1, 2, 4 and 8
threads is shown in Figure 7.7 as is the average latency for the same experiments
in Figure 7.9.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8

Q
P

S

Threads

Raw
VB

NVB
PFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.7: Throughput for intersection queries with different number of threads.

It is clear that the uncompressed index suffers from some kind of memory band-
width problem. As almost all the other methods increase in throughput from two
to four threads, the uncompressed version is almost stationary. Similar effects make
themselves visible for the simple PFor method which is better than both PTS.PFor
and Pf.PFor when running on one thread, while as the number of threads increase
to four, all column wise methods beat the row wise methods. These results suggest

105

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8

Q
P

S
 /

T
hr

ea
ds

Threads

Raw
VB

NVB
PFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.8: Throughput per thread for intersection queries.

that memory bandwidth is an important factor.

The plot in Figure 7.8 shows how the different methods scale with the number of
threads. It is clear that none of the methods comes close to linear scaling, however,
its clear that some scale better than others. With the current system, there are
no need to increase the number of threads above the number of cores. Reasons
to why linear scaling is not achieved is first and foremost memory bandwidth, but
also overhead related to managing several concurrent threads comes into play.

Latency increases as the number of threads increases- This is as expected and
correlates quite well with the throughput per thread results in Figure 7.8. It is
clear that when the system is saturated, adding more threads will only add to the
latency, and not help on throughput at all. The conclusion from the multi threaded
experiments must be that the compressed file size matters, even if there are lots of
free main memory space.

Since all the other experiments were run with four threads, the column wise meth-
ods have better advantage in those experiments than in the single threaded experi-
ment done in this section. One could argue that this is unfair, and that it does not
measure the computational complexity of the different implementation, however,
multi core computers is a reality. If multiple threads get higher performance for

106

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8

La
te

nc
y

(m
ill

is
ec

on
ds

)

Threads

Raw
VB

NVB
PFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.9: Latency for intersection queries with different number of threads.

some method, these methods are better suited on current hardware.

As in the intersection experiments with different result set sizes the CPfor and
D.CPFor variants achieve both the highest throughput and the lowest latency. Sug-
gesting that these methods are the best ones when evaluating intersection queries.
And since the performance is so similar one can select the simples, CPfor, or the
one with the smallest index D.CPfor. In any case, further work should evaluate
more elaborate ways of flexible tuning the cutoff parameters.

107

7.3.3 Different skip orders

Experiments with different skip orders and different path types were executed in
order to asses how these parameters affected performance of the different methods.
If the skip order can impact query performance for a selected subset of the different
queries, a query optimizer can be constructed which tries to select the skip method
dynamically. However, some of the query types has a rather low number of queries,
Table 7.4 shows the different number of queries for each of the path types. It would
for instance be hard to draw any real conclusions from the 16 queries which matches
company scopes. However, the results might suggest that the area can be interesting
to look into in further work. If there are enough person queries to provide sound
results are hard to predict, however, in the experiment with variable scope queries
and result set size in Figure 7.6 677 sentence queries gave results showing trends
close to the experiments with a larger number of queries. Drawing parallels like this
is speculative and the confidence in the results from both the person and company
queries cannot be said to be as high as for the sentence and title queries. Further
work should try to get hold of more queries, and possible more data to run them
on.

Scope: Sentence Title Person Company
Number of queries: 15 046 1 825 677 16

Table 7.4: Number of queries for the different path types.

In Figure 7.10 the results from the different structural queries executed on different
skip-models. What is quite clear from the results that in most cases the skip order
does not matter that much. This is probably because both orderings require will
end up at the same occurrence. However, there are differences in the person and
company query traces. Here there is actually a negative effect of path type first
skipping. It could be that path type skipping is not efficiently enough implemented
to get any speedup. It might be that one would need higher level skip summaries
than the ones currently implemented in order to make the path type first skip order
a viable solution.

Another reason for the failure of the path type first skipping implementation is
that the method actually performs path type skipping both first, and last. After
the document identifier skip, one need to make sure that the search ended up on a
candidate path type, therefore one extra skip is needed. The shear increase of skip
operations might explain some of the loss in performance.

A change of skip order will as mentioned above still make the operation end up
at the same occurrence. Therefore the possible gain in performance is limited to
the speed of the skip operation itself. It could be that implementation effort is
spent better in other areas than the skip order. There is probably much more to
be gained by optimizing the path type skipping procedures themselves. However,

108

if further work produce very fast path skipping operations, new experiments with
the skip order could be performed to revisit this area.

One reason for the extremely similar results between the skip orders for the sentence
path type is the fact that 99.92% off all occurrences has a sentence path type.
Therefore the distance skipped for almost all path type skip operation would be
zero. Making the path type skip operation very insignificant for the query process-
ing time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

sentence.docid

sentence.pathtype

person.docid

person.pathtype

title.docid

title.pathtype

com
pany.docid

com
pany.pathtype

Q
P

S

Raw
VB

NVB
PFor

PTS.PFor
CPFor

Pf.CPFor
PTS.CPFor

D.CPFor.100
D.CPFor.16
D.CPFor.32
D.CPFor.64

D.CPFor.8

Figure 7.10: Throughput for scope queries with different skip order.

Even though the number of queries is low, it seems that the path type sorted
implementations perform very well on the title, person and company queries.
This could be both because of more efficient path type skipping due to the encoded
summaries, and the ability to decompress a lower number of dewey codes. In order
to asses which one of these causes that is the most prominent one, experiments
with one of the features turned off could be executed. Further work could try to
asses the performance of the different optimizations offered by each method.

One could argue that the number of queries is too low to conclude anything from
these results, however, there is a clear trend where the path type sorted methods
improve their performance as the selectivity of the path type increases. Even
though the confidence to the throughput measurements of 3255 QPS (Pts.PFor,
company.pathtype) with sixteen queries should be low. The results are so much

109

better that the other methods it should be fair to conclude that the path type
sorted methods excel when the path types with good selectivity. In fact when
looking at Table 6.2 the results are consistent with the frequency of the different
path types.

As pointed out earlier, a small query trace can have better cache performance since
most of the working-set might reside in cache memory. This might hide some of the
memory bandwidth performance characteristics of the different methods and make
more of the computational cost visible in the results. This is supported by the
high performance of the Raw method in both the person and the company queries.
This also suggests that the path type sorted methods have a lower computational
cost for those queries. Further work could try to execute a a small query trace
many times in order to assess the computation cost of the different methods more
precisely.

While the fastest implementations achieved a throughput of 1050 QPS on intersec-
tion queries in Section 7.3.1 most method achieve more than 1500 QPS on title
queries. One explanation which already has been mentioned, is that the skips in
each of the lists will be longer than for intersection queries. Therefore the number
of skips will be lower as well. This could lead to the higher performance. Also the
shear size of the results will be smaller since there are only a limited number of
word occurrences within each title, person and company scope.

7.3.4 Managed code versus unmanaged

Changing the implementation of the PFor methods from managed to unmanaged
code consists of simply turning off the #pragma unmanaged directive in the Visual
C + +. The results from intersection queries with both managed and unmanaged
code is shown in Figure 7.11. In the following sections D.Pfor refers to the version
with a cutoff at 32 values. Since the performance of the other versions are very
similar those are omitted. Full results are available in Appendix A.

The differences in the results are not enormous, and it seems that the managed
code versions fair better when the number of results are lower. However, as the
number of results increases, unmanaged code improves. It is hard to predict what
the reason for this is, but one possibility is that decoding improves with unmanaged
code, and fine grained skipping is hurt by unmanaged code. There exist no concrete
evidence of this, however, it is fair to assume that decoding is more computational
intensive than skipping, so the cost of making calls to unmanaged functions are
amortized over more computations when decoding than when skipping. If one
assume that the ratio between skipping and decoding increases as the number of
results increase, this could be an explanation. It is, however, purely speculation.

Further work should try to investigate this further, it would for instance be possible

110

 0

 200

 400

 600

 800

 1000

 1200

1-10
11-20

21-30
31-40

41-50
1-10

11-20
21-30

31-40
41-50

1-10
11-20

21-30
31-40

41-50
1-10

11-20
21-30

31-40
41-50

Q
P

S

PFor
M.PFor

PTS.PFor
M.PTS.PFor

CPFor
M.CPFor

Pf.CPFor
M.Pf.CPFor

Figure 7.11: Throughput for intersection queries with managed and unmanaged
code. Managed versions are prefixed with M.

to analyze the concrete cost of such method calls and build some kind of analytical
framework for when it is effective to go-native.

The results with both unmanaged and manged code for the sentence scope queries
are shown in Figure 7.12. For these queries, unmanaged code is always better, and
the differences are quite large (approaching 10%), since decompression is just one
of many parts of the workload during query processing, this indicate quite a large
improvement in shear decompression bandwidth. It also makes it quite clear that
decoding is a more important part of the workload of path type queries. This
matches quite well with the fact that when processing queries, at least the path
type portion of the scope column need to be decoded frequently. Even when it
turns out that the chunk was not part of a match, because of the content of a list
skipped in later. The intersection queries would not decode the scope column in
those cases.

Earlier, various possible reasons for the relatively high speed of the structural
queries have been suggested. The reason for the relatively larger difference between
managed an unmanaged code given in this section would suggest that structural
queries would be slower than intersection queries, since decoding is a larger portion
of the workload. It is clear that more profiling work is needed in order to spread

111

 0

 200

 400

 600

 800

 1000

 1200

 1400

1-10
11-20

21-30
31-40

41-50
1-10

11-20
21-30

31-40
41-50

1-10
11-20

21-30
31-40

41-50
1-10

11-20
21-30

31-40
41-50

Q
P

S

PFor
M.PFor

PTS.PFor
M.PTS.PFor

CPFor
M.CPFor

Pf.CPFor
M.Pf.CPFor

Figure 7.12: Throughput for sentence structural queries with managed and un-
managed code. Managed versions are prefixed with M.

more light on where the execution time of the query processing algorithms is spent.
The one thing that still is true, is that the results from structural queries contain
fewer occurrences, this could in turn be one of the main reasons for a lower total
workload for structural queries.

7.4 Critique

The main critique of the experiments is that the number of queries for some of the
trails, especially the structural searches were too low. It is for instance difficult
to draw any conclusions from only 16 company queries. Also, in [Nat09] some
experiments were performed with different document collections. There were some
differences in the size of the compressed index, between the different methods.
Certainly real search engines need to index different types of documents, or at
least documents with different structure. The real world case will therefore be
more similar to the case where different collections are indexed. In [Nat09] the
path type sorted methods created smaller files than the other methods when a
mixed collection was indexed, it would have been interesting to see if the same
improvements applied to query performance.

112

In Section 4.1.3 path type skipping with summaries was described. The only ver-
sions using such summaries to speed up path type skipping were the path type
sorted methods. This does not give a clear picture of how large the “gain” from
adding such summaries can be. To be able to assess this correctly, a pair of methods
which are similar except to the summary skipping need to be measured.

Another critique which is well founded, is the lack of some of the more space-optimal
compression schemes. For instance Golomb or Huffman codes. In Section 7.3.2 it is
suggested that memory bandwidth is a limiting factor when scaling the execution
of queries over several CPU-cores. By testing some methods which create smaller
files but spends more time decoding could spread more light on this area.

Also, talking about memory bandwidth without doing low level measurements such
as cache hit-ratios include some uncertainty. To support the claims of the query
processing with multiple threads being memory-bound one should run experiments
with better monitoring the performance counters in both the operating system and
hardware.

In order to better understand the performance characteristics of the methods a
small subset of the different queries could be run with individual timing. Then the
results from the different methods could be used to better understand each meth-
ods weaknesses. Such an experiment would probably need to execute each query
multiple times in order to be able to record some kind of average performance for
each method. One issue then would be caching effects, running one query repeat-
edly will (if the data it uses fits in cache) remove some of the memory bandwidth
issues. One should therefore run some other queries as well in order to let caching
effects be more like in some real world.

The explanations of the results obtained suffer from limited insight into where the
time is spent. For instance, the reason for the relatively high speed for struc-
tural queries combined with intersection queries have not been given with high
confidence. It seems that the best explanation is the size of the results returned,
however, instrumented executions with detailed timings could help in the analysis.

113

114

Chapter 8

Conclusion and further work

This thesis has described the problem of compression and query processing in XML
search engines. The focus has been efficient query processing with the compressed
index. Extending the work done in [Nat09] methods for both compression, “random
access” (skipping) and query processing have been developed and tested. Focus has
been on two types of queries, regular intersection queries (AND-search) and struc-
tural containment queries (scope-merging). In addition to simple compression im-
plementations as uncompressed and VByte and PFor five different special-purpose
compression schemes have been created; column wise PFor, prefix coded column
wise PFor, path types sorted Pfor, path type sorted column wise PFor and a dy-
namic PFor method. A possible query-optimization technique which manipulates
the order of which skip operations are ussed during query processing have been
proposed. Additionally implementation details regarding the well known VByte
compression scheme have been described.

The method has been tested in a minimal search engine test-bench called NETing.
NETing includes an indexer to build the compressed indexes and a query processing
framework which handles queries against the compressed indexes. The different
compression implementations have been created as plug-ins to this system.

Experiments have been performed with a 382-thousand documents large collection
with XML-encoded Wikipedia articles. Queries have been created from the TREC
06 performance tasks. The queries have been processed and filtered and to produce
query traces for different experiments. Both throughput and latency have been
measured in order to get a picture of the performance of the different methods on
different types of queries.

The best performing method on intersection queries is the dynamic PFor method
which selects between the row wise and column wise storage scheme for dewey
codes based on the number of occurrences in the list. On the query trace used

115

in the experiments this method achieves a throughput ranging from 1100 to 800
queries per second depending on the number of results to the queries.

Running queries in a different number of threads does not scale. The methods
which create the smallest indexes such as the column wise methods in general, and
the dynamic PFor method especially, scales better than those which produce larger
files. This suggest that the query processing is memory bound and that further
work should try methods which creates even smaller files.

For structural queries with a very common path type, a simple PFor method is the
fastest one, however, the dynamic and column wise methods come close. However,
as the path type becomes less common, path type sorted methods takes the lead.
For path types occurring very seldomly, the path type sorted methods are superior
to all the other methods. Further work should try to find out if the reason for this:
Is it the efficient path type skipping in path type sorted columns, or the ability to
only decompress the “interesting” path types? It is probably both, but the path
type skipping can easily be applied to other methods by adding some more meta
data to the index.

No detectable advantage of executing skips in different order when processing struc-
tural queries were detected. However, more efficient path types skipping could make
it useful. The idea should not be abandoned, but could be evaluated in further
work.

Experiments with the decompression code running both on top of the Microsoft R©
.NET runtime and as native code were performed. The effects of going native
for intersection queries did not present itself as very large. There were a slight
advantage for queries with longer results, however, for other query traces, the
performance of the managed code beats the native code. For structural queries,
the native code performed the best in all experiments, and the differences were
large (10%), since decompression is only a part of the query processing work load,
the improvements in decoding time must be higher as 10%. This suggests that
there in many cases will be quite large gains in going native.

The best choice of compression scheme for the XML-index depends on what kind of
queries that is to be answered. However, the dynamic column wise PFor method
is a very good candidate. It is the best performing method when answering in-
tersection queries, it produces the smallest indexes and it has good performance
in most structural queries. The further work section of this chapter will suggest
activities which probably will improve this method even further. This include a
more dynamic PFor method which supports blocks of different sizes. And more
meta data encoded in the index in order to support faster path type skipping and
therefore more efficient evaluation of structural queries.

When executing queries in multiple threads, memory bandwidth seems to be a
limiting factor for achieving high query throughput. Methods which create smaller
files therefore have an advantage. It could be that methods which spend more

116

computation resources during decoding and achieves smaller files can improve per-
formance even more. This should be addressed in further work.

The proposed new VByte method also performs better than the one most commonly
used in the literature and open source software. Although the improvements are
not spectacular, it is easy to adapt to systems already using the VByte compression
scheme.

8.1 Further work

The experiment results suggest that there are more optimal choices for the cutoff
parameter in PFor than 100. The optimal choice is probably depending on the data
itself. Further work could experiment with this when encoding scopes with PFor
methods. Clearly, when compressing fewer values PFor variants for 32, 64 and 96
items would be more effective than the 128 item variant tested in this thesis. The
implementation used in this thesis encodes meta data in a header for each PFor
block, “selector” info could fit in that header as well and be used by the decoder
to choose compression method.

Also, the results from intersection queries show that the methods which has the
smallest compressed size of the index scales the best as the number of threads
increase. A lot of servers purchased these days have as many as eight cores, so the
memory bandwidth issues might be even more important than the effects seen in
this tests. The compression schemes tested in this thesis is not the best methods
in terms of compression ratio. Methods such as Golomb codes and Huffman codes
can achieve better compression ratios, but have lower decoding speed. By spending
more computational resources to consume memory bandwidth the trade offs can be
examined more closely. One could even try to compress the lists of different terms
with different compression schemes, frequently used terms will for instance have
a higher probability of residing in the CPU cache, where the difference between
processing speed and bandwidth is different than between main memory and the
CPU.

Very many XML query processing studies often work with a single document, often
called a database such as the Michigan Benchmark [Kan] or the DBLP database
[Ley09] to test algorithms answering XPath and XQuery queries. This thesis is dif-
ferent in that it works with documents more like the “single-webpage-documents”
used in web search engines. This makes the document level intersection part of
querying the most time consuming task during query processing. By indexing
larger documents the part of the query processing algorithms which actually pro-
cesses the occurrences within each document might get a higher workload. This
would make optimizations in dewey matching worth implementing. As mentioned
briefly in Section 5.3.4 both prefix coded and column wise methods have interesting
optimization to areas which might be more of a hot-spot when querying an index

117

of larger documents.

The best performing methods in this thesis are the methods which store the dewey
code in a column wise manner. Like in column stores, such a layout can effectively
deliver projections over the dewey column. One could utilize this to for instance
only load some prefix of the dewey codes. Future work could examine if projections
of the dewey values could be useful in XML query processing.

The native versus managed experiments performed in this thesis used compres-
sion code written in Visual C++ and compiled as either managed or unmanaged.
Visual C++ could have slightly different performance characteristics than C# fur-
ther work should try to compare managed code written in both languages to each
other as well. Additionally, more detailed timings of the different types of method
invocations could make a foundation for a analytical framework for choosing when
to use native code.

The thesis proposes a branch free implementation of VByte, VByte is a very popular
compression method and any improvements could see widespread adoption. A
focused study on the implementation details of VByte could be a interesting project.
The implementations proposed here has some problems when the numbers to be
encoded in small, however, different versions might have better performance for
different value distributions.

The experiments in this thesis have only been executed against a single document
collection, in real life, different collections are indexed. And also, large collections
might have clusters of documents that share some common structure. This could
be the case for the Wikipedia collection used here as well, however, future work
should experiment with both larger and several different collections. In [Nat09]
some experiments with multiple collections were done, the results there suggests
that methods such as path type sorting improves compression more in those cases.

The results supports a claim that path type skipping can be an effective method to
answer XML-queries. Therefore, more work is needed on providing efficient path
type skipping. The idea of using path type summaries to speed up skipping were
introduced in Section 4.1.3, however, more experimentation is needed to assess both
the cost in terms of storage, and gains in terms of faster skipping. One could for
instance add different types of path type summaries to the dynamic PFor method
in order to see if it can beat the path type sorted methods on the person or company
queries in Section 7.3.3.

Further more, experiments with a small set of selected queries where the individual
timing characteristics would be collected would make it easier to compare perfor-
mance on a per-query basis. This could aid the development of dynamic methods
as described earlier in this section. In one know which kind of queries each method
is best (and worst) at one can exploit the findings. Especially if one find types
of inverted lists that each method is good at one can dynamically choose to com-
press that list with the best method. One would of course need an implementation

118

agnostic index structure and query processing interface like the one in NETing.

Even though more queries would give the results more confidence, running small
query traces repeatedly will cause the index data to be cached in the CPU cache
and executed without the memory bandwidth problem. This would give more exact
measurements of the computational cost of the different compression schemes.

In Section 4.2.6 the path type sorting technique is introduced. Several different
orderings are suggested, however, only the frequency ordered methods were tested
in this thesis. Further work could try to test different variants of path type sorted
scope columns. Especially the lexicographical ordering could be interesting to test.

Query optimization is a field of research in the database community [JK84]. The
queries executed on the XML index could also be subject to query optimizing. It
should for instance be possible, even with limited statistics to create a optimization
strategy for which skip method to use when processing the structural queries.
Further work could design and evaluate such a optimizer. However, even though
the results in this thesis did not show any advantage of skipping path types first,
improvements in path type skipping could make this worthwhile.

It is also clear that further work should try to evaluate other types of queries,
both in terms of XML-specific queries, but also ranked retrieval tasks utilizing
parts of the indexed data. Further work can extend NETing in both its current
performance-related direction or in the direction of more features.

119

120

Bibliography

[AM04] Vo Ngoc Anh and Alistair Moffat. Index compression using fixed bi-
nary codewords. In ADC ’04: Proceedings of the 15th Australasian
database conference, pages 61–67, Darlinghurst, Australia, Australia,
2004. Australian Computer Society, Inc.

[AM05] Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using
Word-Aligned Binary Codes. Inf. Retr., 8(1):151–166, 2005.

[AM06] Vo Ngoc Anh and Alistair Moffat. Improved Word-Aligned Binary
Compression for Text Indexing. IEEE Trans. on Knowl. and Data
Eng., 18(6):857–861, 2006.

[BC06] Stefan Büttcher and Charles L. A. Clarke. Unaligned Binary Codes for
Index Compression in Schema-Independent Text Retrieval Systems.
Technical report, University of Waterloo, 2006.

[BFNE03] Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro, and María F.
Esteller. (S, C)-Dense Coding: An Optimized Compression Code for
Natural Language Text Databases. In SPIRE, pages 122–136, 2003.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Informa-
tion Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[CCB95a] Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An Algebra
for Structured Text Search and A Framework for its Implementation.
The Computer Journal, 38:43–56, 1995.

[CCB95b] Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski. Schema-
independent retrieval from heterogeneous structured text. In Fourth
Annual Symposium on Document Analysis and Retrieval, Las Vegas,
NV, pages 279–290, 1995.

121

[Cla99] Clark, James (ed) and DeRose, Steve (ed). XML Path Language
(XPath) Version 1.0. http://www.w3.org/TR/xpath/, 1999. Ac-
cessed: 2010-01-29.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. The MIT Press
and McGraw-Hill Book Company, 2001.

[DHYS08] Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. Using graphics
processors for high-performance IR query processing. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web,
pages 1213–1214, New York, NY, USA, 2008. ACM.

[Eli75] Peter Elias. Universal codeword sets and representations of the inte-
gers. Information Theory, IEEE Transactions on, 21(2):194–203, Mar
1975.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[Gol66] S. Golomb. Run-length encodings (corresp.). Information Theory,
IEEE Transactions on, 12(3):399–401, Jul 1966.

[Gri07] Nils Grimsmo. Faster path indexes for search in XML data. In
ADC ’08: Proceedings of the nineteenth conference on Australasian
database, pages 127–135, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc.

[Gus07] Dan Gusfield. Algorithms on strings, trees, and sequences : computer
science and computational biology. Cambridge Univ. Press, 2007.

[HHMW07] Theo Härder, Michael Haustein, Christian Mathis, and Markus Wag-
ner. Node labeling schemes for dynamic XML documents reconsidered.
Data & Knowledge Engineering, 60(1):126 – 149, 2007.

[JK84] Matthias Jarke and Jurgen Koch. Query optimization in database
systems. ACM Comput. Surv., 16(2):111–152, 1984.

[Kan] Kanda Runapongsa and Jignesh M. Patel and H. V. Jagadish and Yun
Chen and Shurug Al-Khalifa. The Michigan Benchmark. http://www.
eecs.umich.edu/db/mbench/description.html. Accessed: 2010-06-
03.

[Knu98] Donald E. Knuth. The art of computer programming, volume 3: (2nd
ed.) sorting and searching. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1998.

[Ley09] Michael Ley. DBLP - Some Lessons Learned. PVLDB, 2(2):1493–1500,
2009.

122

http://www.w3.org/TR/xpath/
http://www.eecs.umich.edu/db/mbench/description.html
http://www.eecs.umich.edu/db/mbench/description.html

[Mic10] Microsoft Corporation. Visual Studio 2010 - Visual C++ - Native
and .NET Interoperability. http://msdn.microsoft.com/en-us/
library/zbz07712(v=VS.100).aspx, 2010. Accessed: 2010-05-26.

[MRS09a] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval (Online Edition), chapter 5,
pages 85–107. Cambridge University Press, 2009. Accessed: 2009-
10-19, http://nlp.stanford.edu/IR-book/pdf/05comp.pdf.

[MRS09b] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval (Online Edition), chapter 6,
pages 109–133. Cambridge University Press, 2009. Accessed: 2010-02-
01, http://nlp.stanford.edu/IR-book/pdf/06vect.pdf.

[MRS09c] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval (Online Edition), chapter 1,
pages 1–18. Cambridge University Press, 2009. Accessed: 2010-02-
01, http://nlp.stanford.edu/IR-book/pdf/01bool.pdf.

[MRS09d] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval (Online Edition), chapter 2,
pages 19–47. Cambridge University Press, 2009. Accessed: 2009-10-19,
http://nlp.stanford.edu/IR-book/pdf/02voc.pdf.

[MS96] A. Moffat and L. Stuiver. Exploiting clustering in inverted file com-
pression. In DCC ’96: Proceedings of the Conference on Data Com-
pression, page 82, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

[MS00] Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for
Effective Index Compression. Inf. Retr., 3(1):25–47, 2000.

[MZ96] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast
text retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[Nat09] Ola Natvig. Compression for XML search engines, Project report
TDT4590 - Complex Computer Systems, Specialization Project. Tech-
nical report, Department of Computer and Information Science, Nor-
wegian University of Science and Technology, December 2009.

[OAP+06] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Li-
oma. Terrier: A High Performance and Scalable Information Retrieval
Platform. In Proceedings of ACM SIGIR’06 Workshop on Open Source
Information Retrieval (OSIR 2006), 2006.

[SAB+05] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and

123

http://msdn.microsoft.com/en-us/library/zbz07712(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/zbz07712(v=VS.100).aspx
http://nlp.stanford.edu/IR-book/pdf/05comp.pdf
http://nlp.stanford.edu/IR-book/pdf/06vect.pdf
http://nlp.stanford.edu/IR-book/pdf/01bool.pdf
http://nlp.stanford.edu/IR-book/pdf/02voc.pdf

Stan Zdonik. C-store: a column-oriented dbms. In VLDB ’05: Pro-
ceedings of the 31st international conference on Very large data bases,
pages 553–564. VLDB Endowment, 2005.

[SC07] Trevor Strohman and W. Bruce Croft. Efficient document retrieval in
main memory. In SIGIR ’07: Proceedings of the 30th annual interna-
tional ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 175–182, New York, NY, USA, 2007. ACM.

[SCCS09] Haw Su-Cheng and Lee Chien-Sing. Node Labeling Schemes in XML
Query Optimization: A Survey and Trends. IETE Technical Review,
26:88 – 11, 2009.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell system
technical journal, 27, 1948.

[Tro03] Andrew Trotman. Compressing inverted files. Inf. Retr., 6(1):5–19,
2003.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasun-
daram, Eugene J. Shekita, and Chun Zhang. Storing and querying
ordered XML using a relational database system. In SIGMOD Con-
ference, pages 204–215, 2002.

[Vig09] Vigna, Sebastiano. MG4J: The Manual. http://mg4j.dsi.unimi.
it/man/manual.pdf, 2009. Accessed: 2009-09-29.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gi-
gabytes (2nd ed.): compressing and indexing documents and images.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[WZ99] Hugh E. Williams and Justin Zobel. Compressing Integers for Fast
File Access. The Computer Journal, 42:193–201, 1999.

[YDS09a] Hao Yan, Shuai Ding, and Torsten Suel. Compressing term positions
in web indexes. In SIGIR ’09: Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, pages 147–154, New York, NY, USA, 2009. ACM.

[YDS09b] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression
and query processing with optimized document ordering. In WWW
’09: Proceedings of the 18th international conference on World wide
web, pages 401–410, New York, NY, USA, 2009. ACM.

[ZHNB06] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-
Scalar RAM-CPU Cache Compression. In ICDE ’06: Proceedings
of the 22nd International Conference on Data Engineering, page 59,
Washington, DC, USA, 2006. IEEE Computer Society.

124

http://mg4j.dsi.unimi.it/man/manual.pdf
http://mg4j.dsi.unimi.it/man/manual.pdf

[ZLS08] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of
compressed inverted list caching in search engines. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web,
pages 387–396, New York, NY, USA, 2008. ACM.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2):6, 2006.

125

126

Appendix A

All query results

127

1-10
11-20

21-30
31-40

41-50
T

L
T

L
T

L
T

L
T

L
R
aw

501
.492

7
.972

399
.698

9.995
402.510

9.900
384

.583
10
.328

382
.530

10
.420

V
B

768
.510

5
.198

605
.011

6.602
605.932

6.570
569

.924
6
.947

553
.156

7.200
N
V
B

773
.837

5
.166

608
.900

6.557
610.631

6.512
570

.360
6
.945

558
.280

7.136
P
For

932
.876

4
.285

734
.001

5.439
735.421

5.413
694

.343
5
.718

681
.482

5.855
M
.P
For

942
.490

4
.242

735
.654

5.429
730.303

5.457
687

.209
5
.773

668
.263

5.949
P
ts.P

For
933

.827
4
.279

732
.939

5.447
726.372

5.487
684

.318
5
.800

667
.317

5.971
M
.P
ts.P

For
938

.358
4
.260

729
.910

5.470
720.651

5.522
670

.186
5
.912

648
.541

6.136
C
P
For

1060
.123

3
.771

831
.523

4.799
826.383

4.823
777

.068
5
.119

756
.823

5.252
M
.C

P
For

1070
.967

3
.733

836
.648

4.772
821.871

4.852
763

.799
5
.199

730
.415

5.453
P
f.C

P
For

1049
.309

3
.809

825
.670

4.838
812.637

4.902
764

.258
5
.198

735
.809

5.406
M
.P
f.C

P
For

1051
.486

3
.802

821
.295

4.861
805.460

4.942
745

.957
5
.327

710
.426

5.605
P
ts.C

P
For

1026
.553

3
.893

803
.338

4.972
786.915

5.059
739

.897
5
.372

705
.845

5.635
M
.P
ts.C

P
For

1023
.693

3
.905

792
.653

5.035
771.759

5.158
707

.639
5
.598

668
.730

5.929
D
.P
For.100

1057
.603

3
.780

835
.284

4.780
825.598

4.821
775

.105
5
.124

750
.509

5.284
M
.D

.P
For.100

1078
.251

3
.707

840
.968

4.745
827.652

4.812
766

.801
5
.175

735
.962

5.402
D
.P
For.64

1065
.779

3
.751

835
.340

4.782
830.836

4.795
777

.291
5
.116

754
.016

5.274
M
.D

.P
For.64

1076
.861

3
.708

838
.590

4.761
824.104

4.830
763

.716
5
.199

732
.869

5.437
D
.P
For.32

1070
.505

3
.733

845
.030

4.726
835.465

4.765
784

.842
5
.070

761
.421

5.228
M
.D

.P
For.32

1080
.526

3
.700

843
.899

4.734
828.829

4.812
767

.735
5
.177

738
.377

5.406
D
.P
For.16

1073
.329

3
.725

842
.787

4.739
842.445

4.734
786

.651
5
.019

760
.331

5.222
M
.D

.P
For.16

1082
.338

3
.693

841
.163

4.746
825.458

4.832
769

.769
5
.155

735
.561

5.396
D
.P
For.8

1073
.416

3
.724

845
.361

4.724
839.212

4.742
785

.338
5
.058

760
.798

5.221
M
.D

.P
For.8

1079
.993

3
.701

845
.784

4.721
829.288

4.804
765

.922
5
.183

732
.789

5.428

T
able

A
.1:

Fullresults
for

intersection
queries

w
ith

a
variable

num
ber

ofresults.

128

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

T
L

T
L

T
L

T
L

T
L

R
aw

65
9.

38
1

6.
06

2
72

7.
35

3
5.

33
6

80
2.

00
8

4.
88

6
82

2.
80

2
4.

74
9

72
3.

04
6

5.
20

8
V
B

75
6.

51
9

5.
28

0
70

2.
45

9
5.

51
0

73
8.

19
5

5.
23

1
80

1.
96

3
4.

86
6

59
6.

57
4

6.
11

5
N
V
B

80
2.

91
4

4.
97

4
76

0.
06

6
5.

06
3

80
2.

05
9

4.
85

1
87

4.
94

1
4.

50
0

64
9.

93
4

5.
56

2
P
Fo

r
11

00
.7

42
3.

62
8

11
52
.2

30
3.

36
4

11
64
.3

53
3.

34
8

13
08
.2

11
3.

00
7

11
94
.3

92
3.

30
0

M
.P
Fo

r
10

18
.4

15
3.

91
9

10
42
.7

52
3.

73
4

10
29
.1

46
3.

75
3

11
62
.0

35
3.

36
7

10
40
.9

73
3.

78
7

P
ts
.P
Fo

r
10

01
.6

23
3.

99
0

98
5.

46
6

3.
95

7
10

14
.7

72
3.

82
5

94
5.

57
6

4.
14

9
76

5.
68

1
5.

10
8

M
.P
ts
.P
Fo

r
91

1.
33

1
4.

38
2

89
5.

74
4

4.
34

6
88

6.
18

7
4.

33
3

85
5.

50
2

4.
57

9
69

2.
22

4
5.

54
7

C
P
Fo

r
10

97
.5

78
3.

63
9

11
17
.3

03
3.

49
6

11
03
.8

32
3.

51
7

10
35
.3

77
3.

75
6

85
3.

34
5

4.
64

4
M
.C

P
Fo

r
97

4.
65

5
4.

09
5

96
6.

29
5

4.
03

8
93

1.
17

3
4.

23
0

90
8.

18
7

4.
26

3
73

1.
11

9
5.

32
2

P
f.C

P
Fo

r
10

24
.6

07
3.

89
6

10
31
.5

91
3.

77
0

97
2.

59
4

4.
00

7
11

47
.8

53
3.

35
2

10
23
.9

10
3.

84
4

M
.P
f.C

P
Fo

r
92

5.
29

4
4.

31
6

90
5.

47
6

4.
30

6
89

4.
12

6
4.

37
7

10
03
.4

47
3.

82
1

87
6.

38
7

4.
47

2
P
ts
.C

P
Fo

r
97

5.
74

2
4.

09
0

97
0.

18
0

4.
01

4
97

1.
41

1
4.

02
2

92
9.

17
7

4.
16

5
93

4.
99

3
4.

14
6

M
.P
ts
.C

P
Fo

r
85

8.
85

6
4.

65
0

82
8.

30
3

4.
71

1
81

4.
51

8
4.

77
4

78
3.

88
5

4.
93

6
63

2.
14

7
6.

10
5

D
.P
Fo

r.
10
0

10
88
.2

05
3.

66
9

11
06
.2

88
3.

52
6

10
92
.6

44
3.

58
4

10
31
.7

05
3.

78
4

84
1.

05
6

4.
69

3
M
.D

.P
Fo

r.
10
0

97
4.

41
8

4.
09

9
95

9.
41

0
4.

06
2

94
5.

04
2

4.
14

1
90

3.
49

0
4.

24
7

73
1.

87
2

5.
33

8
D
.P
Fo

r.
64

10
98
.8

60
3.

63
2

11
27
.4

71
3.

46
3

11
17
.1

05
3.

48
6

10
35
.1

69
3.

76
0

85
2.

28
2

4.
64

6
M
.D

.P
Fo

r.
64

96
7.

68
5

4.
12

6
95

6.
89

7
4.

07
1

92
7.

60
0

4.
23

1
90

0.
46

4
4.

26
0

72
8.

47
1

5.
38

4
D
.P
Fo

r.
32

11
07
.4

46
3.

60
5

11
35
.1

52
3.

43
3

11
18
.2

75
3.

47
1

10
49
.9

02
3.

71
7

85
5.

26
2

4.
61

7
M
.D

.P
Fo

r.
32

96
6.

02
4

4.
13

8
95

6.
78

8
4.

08
0

92
2.

84
5

4.
26

8
89

8.
45

8
4.

28
7

72
6.

77
0

5.
40

9
D
.P
Fo

r.
16

11
05
.5

85
3.

61
2

11
26
.9

67
3.

45
8

11
16
.4

42
3.

50
6

10
37
.6

37
3.

74
8

85
5.

84
3

4.
62

8
M
.D

.P
Fo

r.
16

95
8.

69
9

4.
16

1
94

8.
14

6
4.

10
9

93
1.

98
8

4.
19

3
89

1.
43

9
4.

31
6

72
2.

09
5

5.
45

6
D
.P
Fo

r.
8

11
05
.2

27
3.

61
1

11
24
.6

04
3.

46
0

11
11
.4

24
3.

49
8

10
47
.2

32
3.

71
7

85
1.

88
1

4.
61

4
M
.D

.P
Fo

r.
8

95
8.

85
7

4.
16

3
95

1.
51

6
4.

09
6

93
6.

72
0

4.
19

0
89

2.
84

7
4.

31
9

72
2.

23
8

5.
46

6

T
ab

le
A
.2
:
Fu

ll
re
su
lts

fo
r

se
nt

en
ce

qu
er
ie
s
w
ith

a
va
ria

bl
e
nu

m
be

r
of

re
su
lts

.

129

Number of query threads
1 2 4 8

T L T L T L T L
Raw 256.587 3.897 406.310 4.920 432.120 9.251 431.927 12.844
VB 234.240 4.269 425.592 4.697 614.873 6.500 613.947 8.999
NVB 254.466 3.929 454.996 4.394 633.101 6.312 633.584 8.730
PFor 324.227 3.084 573.247 3.487 773.243 5.169 771.266 7.162
Pts.PFor 288.913 3.461 523.766 3.817 753.073 5.307 751.456 10.620
CPFor 343.507 2.911 613.574 3.258 859.229 4.652 848.843 7.672
Pf.CPFor 291.196 3.433 542.537 3.685 832.171 4.803 827.685 6.662
Pts.CPFor 265.685 3.763 502.380 3.979 789.050 5.065 785.562 7.029
D.PFor.100 336.528 2.971 594.302 3.364 849.843 4.703 852.036 9.380
D.PFor.64 339.373 2.946 600.463 3.329 858.436 4.656 857.331 6.444
D.PFor.32 339.133 2.948 603.671 3.311 863.517 4.629 860.180 7.567
D.PFor.16 339.732 2.943 601.774 3.322 864.142 4.625 860.337 6.452
D.PFor.8 338.846 2.951 601.876 3.321 864.680 4.622 860.860 9.258

Table A.3: Full experiment results, intersection queries, variable number of
threads

130

se
nt
en

ce
do

cI
d

se
nt
en

ce
pa

th
pe

rs
on

do
cI
d

pe
rs
on

pa
th

T
L

T
L

T
L

T
L

R
aw

71
2.

60
5

5.
59

7
70

8.
53

1
5.

63
4

12
18
.8

25
2.

75
2

12
53
.9

88
2.

66
6

V
B

78
1.

58
8

5.
10

4
77

2.
45

9
5.

16
2

91
7.

24
9

3.
38

9
89

9.
84

2
3.

49
1

N
V
B

83
1.

47
9

4.
79

6
82

6.
74

2
4.

82
5

10
18
.6

98
3.

07
0

10
17
.4

00
3.

09
2

P
Fo

r
11

77
.5

29
3.

39
2

11
62
.3

37
3.

43
7

17
23
.8

98
1.

94
3

17
03
.8

03
1.

98
5

P
ts
.P
Fo

r
10

61
.6

87
3.

76
1

10
42
.4

03
3.

82
9

25
08
.0

64
1.

51
7

22
65
.6

28
1.

69
3

C
P
Fo

r
11

60
.0

97
3.

44
0

11
40
.4

45
3.

50
0

17
54
.8

23
2.

01
8

15
41
.5

24
2.

27
4

P
f.C

P
Fo

r
10

66
.8

78
3.

74
4

10
55
.4

55
3.

78
4

77
0.

58
8

3.
89

6
76

3.
51

9
3.

94
7

P
ts
.C

P
Fo

r
10

09
.4

09
3.

95
5

99
5.

88
4

4.
00

8
21

61
.7

26
1.

68
1

20
72
.0

18
1.

89
1

D
.P
Fo

r.
10
0

11
54
.7

18
3.

45
7

11
39
.0

25
3.

50
4

17
56
.1

35
1.

99
2

15
03
.8

07
2.

37
1

D
.P
Fo

r.
64

11
79
.9

69
3.

38
5

11
62
.1

48
3.

43
7

17
88
.2

42
1.

96
0

15
34
.3

75
2.

33
8

D
.P
Fo

r.
32

11
81
.4

05
3.

38
1

11
60
.2

51
3.

44
2

17
90
.2

08
1.

94
7

15
27
.7

70
2.

33
0

D
.P
Fo

r.
16

11
81
.3

65
3.

38
2

11
60
.6

46
3.

44
0

17
96
.9

41
1.

93
9

15
25
.8

63
2.

33
2

D
.P
Fo

r.
8

11
79
.4

46
3.

38
7

11
62
.2

00
3.

43
4

17
87
.0

50
1.

94
3

15
25
.5

85
2.

34
9

ti
tl
e
do

cI
d

ti
tl
e
pa

th
co
m
pa

ny
do

cI
d

co
m
pa

ny
pa

th
T

L
T

L
T

L
T

L
R
aw

93
5.

23
6

4.
24

9
92

6.
93

2
4.

29
3

14
78
.5

36
1.

92
8

13
89
.9

78
2.

01
3

V
B

11
99
.1

51
3.

30
1

11
91
.5

43
3.

32
8

10
12
.9

19
2.

69
7

92
2.

37
5

2.
91

0
N
V
B

12
50
.5

56
3.

16
9

12
39
.4

14
3.

19
1

10
97
.4

92
2.

44
9

10
26
.5

79
2.

61
1

P
Fo

r
16

13
.6

75
2.

46
4

15
99
.5

30
2.

48
9

17
13
.8

72
1.

63
6

15
23
.5

19
1.

78
3

P
ts
.P
Fo

r
16

71
.9

66
2.

37
2

16
62
.0

23
2.

39
0

31
38
.4

97
0.

98
4

32
55
.7

67
0.

97
3

C
P
Fo

r
17

12
.3

30
2.

31
6

17
27
.6

51
2.

29
9

17
62
.1

95
1.

62
0

16
18
.5

02
1.

74
1

P
f.C

P
Fo

r
13

51
.9

04
2.

94
8

13
50
.1

25
2.

93
7

69
8.

42
2

3.
90

1
62

6.
95

1
4.

24
4

P
ts
.C

P
Fo

r
17

84
.1

89
2.

20
8

17
97
.6

36
2.

21
3

32
96
.0

44
0.

99
6

29
47
.1

12
1.

03
6

D
.P
Fo

r.
10
0

17
34
.4

23
2.

28
1

17
32
.7

61
2.

29
8

16
71
.9

55
1.

67
0

15
87
.7

12
1.

74
6

D
.P
Fo

r.
64

17
52
.0

46
2.

26
0

17
54
.5

88
2.

26
7

16
65
.1

89
1.

67
0

16
07
.5

47
1.

73
9

D
.P
Fo

r.
32

17
56
.0

34
2.

26
1

17
61
.4

10
2.

26
1

17
36
.3

55
1.

63
1

15
23
.7

42
1.

77
8

D
.P
Fo

r.
16

17
12
.2

96
2.

32
0

17
69
.7

71
2.

25
2

17
23
.9

67
1.

63
7

16
05
.3

11
1.

74
1

D
.P
Fo

r.
8

17
59
.6

08
2.

25
0

17
01
.2

83
2.

32
7

17
18
.6

92
1.

64
9

15
81
.7

30
1.

75
7

T
ab

le
A
.4
:
Fu

ll
re
su
lts

fo
r
st
ru
ct
ur
al

qu
er
ie
s
w
ith

di
ffe

re
t
sk
ip

or
de

r.

131

	Title Page
	Problem Description
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Compressed inverted indexes
	High throughput and lightweight compression
	Managed programming languages

	Index structure
	Prior work
	Readers guide

	Problem definition
	Path selection
	Path selection in search engines
	Structural containment search
	Important features in the XML index
	Concrete problem statement

	Theoretical background
	Shannon's information theory
	Huffman coding
	Compression of inverted indexes
	Bit oriented methods
	Variable byte length coding (vByte)
	Word aligned codes
	A taxonomy of inverted list compression techniques

	Compression of dewey codes
	Node labeling schemes for dynamic XML documents

	Skipping

	Overall solution proposals
	Skipping
	Skipping index columns
	Document identifier skipping
	Path type skipping
	Combined document identifier and path type skipping

	Inverted index compression
	Modified VByte algorithm
	Fine grained skipping
	Column wise dewey encoding
	Dynamic column wise dewey storage
	Prefix coding for columnwise dewey encoding
	Path type sorting

	Implementation
	Index structures
	Buffer manager
	Posting file concepts

	Query processing algorithms
	Intersection queries
	Structual containment search
	Generic skip support

	Compressed column implementations
	A note regarding VByte
	Non scope columns
	Scope column
	A note regarding SkipToScope implementations

	Unmanaged code
	Coding details
	Object reuse to avoid high garbage collection costs
	Buffer invalidation by sequence number
	Loop optimizations

	NETing statistics

	Design of experiment
	Test collection and query trace
	Intersection queries
	Structural containment search queries

	Experiment methodology
	Main memory resident index
	Multi-threaded tests
	Different query classes

	Compression method labeling scheme
	Compression schemes to test
	Performance measurements
	Concrete experiment plan
	Test regarding the impacts of number of results
	Native code implications
	Test impact of concurrency
	Structural containment queries, skip order

	Results
	PFor cuttoff parameter tuning
	Previous results from pre project
	Experiment results
	Impact of number of results
	The impact of concurrency
	Different skip orders
	Managed code versus unmanaged

	Critique

	Conclusion and further work
	Further work

	Bibliography
	All query results

