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Abstract

ăis document is the report for the authors’ joint effort in researching and designing a
query optimizer for fast’s next-generation search platform, known asMARS.ăeworkwas done
during our master’s thesis at the Department of Computer and Information Science at the
Norwegian University of Science and Technology, spring 2009.

MARS does not currently employ any form of query optimizer, but does have a parser and
a runtime system. ăe report therefore focuses on the core query optimizing aspects, like plan
generation and optimizer design. First, we give an introduction to query optimizers and se-
lected problems. ăen, we describe previous and ongoing efforts regarding query optimizers,
before shiĕing focus to our own design and results.

MARS supportsDAG-structured query plans for more efficient execution, whichmeans that
the optimizer must do so too. ăis turned out to be a greater task than what it might seem
like — since we must use algorithms that greatly differ from the optimizers we were familiar
with. ăeoptimizer also needed to be extensible, including the ability to dealwith future query
operators, as well as supporting arbitrary cost models.

During the course of the master’s thesis, we have laid out the design of an optimizer that
satisđes these goals. ăe optimizer is able recognize common subexpressions and construct
DAGs from non-DAG inputs. Extensibility is solved by loose coupling between optimizer
components. Rules are used to model operators, and the cost model is a separate, customizable
component. We have also implemented a prototype that demonstrates that the design actually
works.

ăe optimizer itself is designed as separate component, not tied up toMARS. We have been
able to inject it into theMARS query pipeline and run queries end-to-endwith optimization en-
abled, improving the query evaluation time. For now, the project depends onMARS assemblies,
but reusing it for another engine and algebra is entirely feasible.
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1
Introduction

“Life is what happens while you’re busy making other plans.”
— John Lennon

Databases and search engines are accessed by executing queries. Ever since the introduction
of the automated query optimizer in System R [SAC+79], query optimization has been the
subject of much research. Query optimizers are key to enabling user-friendly declarative query
languages. Users declare what they want from the database — how to do it in an efficient
manner is then leĕ as an exercise for the optimizer component in the database system. With
earlier database systems, such as CODASYL and IMS, users had to program exactly the steps
the database had to perform in order to return the desired results. System R and INGRES
proved that query optimizers could compete with all but the best programmers [SH05b].

Query optimizers are also oĕen referred to as “query planners”Ʋ. ăe term “planner” cap-
tures another important point of declarative query languages: ăe way a query is executed can
be changed by the system at query time, transparent to the user. For example, as time goes,
some tables may be partitioned and/or changed into views. Since the queries are declarative,
such changes will not (necessarily) cause old queries to stop working. ăus, they are not solely
useful for optimization-tasks.

Query optimization is the process of translating an input query to a data structure that is
efficiently executable by the system’s executor — a query evaluation plan. Query evaluation
plans are further described in Section 1.3 and 1.4. In short, a query evaluation plan is a com-
bination of operators that are actually executable by the evaluation system.

For example
σfoo<42∧A.id=B.id (A× B) (1.1)

(σfoo<42 (A)) ◃▹A.id=B.id (σfoo<42 (B)) (1.2)
are semantically equivalent, but as is, Query 1.2 is probably executed more efficiently than
Query 1.1. Query 1.2 can complete in milliseconds, whereas Query 1.1, by making a Carte-
sian product, can be infeasible to execute.

Optimization is a difficult problem to tackle. ăe search space grows exponentially not
only with respect to relations and their join orderings, but also when different aspects such as
recursion, parallelization, distribution, rank-awareness, custom operators, materialized views,
multiple query-optimization, etc. need to be taken into consideration.

Furthermore, many speciđcs related to query optimization are treated as corporate secrets
— the better the optimizer, the better the product would perform on benchmarks compared
to rivaling products.

ăis master’s thesis is the continuation of our specialization project [BN08], as covered in
Section 1.2.

Ʋăroughout this report, we’ll consistently refer to them as “optimizers”.
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1.1 Goals of The Thesis

We đrst describe the goals of the specialization project this master thesis continues, and then
how they relate to the goals of the thesis. Prioritized, the goals for the specialization project
were as follows:

1. Get a broad overview of ongoing efforts within the query optimization research đeld.

2. Analyze the various approaches and techniques and justify their suitability for a future
query optimizer for MARS.

3. Devise a skeleton architecture and design for an optimizer that is clean and extendable,
as well as a foundation to implement the techniques found in the previous point.

4. Implement small parts of the architecture and some simple optimization rules. ăe im-
plementation should lay the foundations for the work in the upcoming master’s thesis,
and not be so simple it needs to be replaced completely.

We met those goals.
Consequently, the goals of themaster’s thesis are to further extendourwork—i.e. create an

optimizer that is able to optimize real queries, and that can exploit some of the unique features
in MARS, such as DAG-structured query evaluation plans. It is not realistic that we will have
a full-Ĕedged optimizer running for MARS within the course of the master’s thesis, though, so
the focus is on the most important concepts and not on completeness.

Prioritized, our goals for this master’s thesis are as follows:

1. Extend the optimizer with new rules to have it support a wider set of MARS’ algebra, at
least lookups, joins, sorting and grouping.

2. Implement native support for DAG-structured query plans and multi-queries. ăe op-
timizer should be able to construct DAG-iđed output plans for tree-structured input
plans, if optimal — and optimize several queries simultaneously to get the global opti-
mum.

3. Implement support for tracking available orderings and groupings in a query plan. ăis
is needed to reason about for instance merge joins and streaming groups.

4. Integrate the optimizer with MARS by injecting it into MARS’ query pipeline, enabling
end-to-end execution of queries with the optimizer.

Implementing support for all the MARS-operators is not important in itself, but taking a
rich algebra and showing that our optimizer can deal with it, is.

ăe reason why hooking intoMARS has been given low priority is due to the many difficul-
ties we have had with the provided binaries. MARS is under continuous development, and we
have met needs (and provided opportunities) that the developers have not originally thought
of. Additionally, we have only been provided with binaries and not source code, so whenever
we could not đnd a workaround for the problems, we have relied on fast to đx them for us.
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1.2 HowWe Have Approached the Problem

ăis section is a brief overview of how we have approached the problem, by describing what
choices and priorities we made and when.

We started the work during our specialization project in 2008. ăus, this master’s thesis
— both the code and this report — is a continuation of that work. We read a large selection
of articles regarding query processing and -optimization. We studied the differences between
static- and rule-based optimizers — and constructional vs. transformational. ăen, we looked
at actual implementations of optimizers, đrst and foremost in theOpen Source RDBMS Post-
greSQL — both to see an implementation and to get an overview of various transformations,
details that are not covered very much in the literature. ăe details are found in Chapter 2.

We also read a lot of articles about various novel optimization techniques, some of which
are brieĔymentioned in Section 1.6. Wewere aware that there was no way we would be able to
implement a fraction of what we were reading, but having an overview of future possibilities
are important when judging the design and architecture.

With quite an overview of what is out there of optimization techniques and convinced
that a rule-based optimizer was the way to go, we still did not know how to solve the problems
DAG-structured queries introduce. ăen, we foundDr.ăomasNeumann’s PhD-thesis about
the optimization and evaluation of DAG-structured query graphs [Neu05]. It convinced us
we could not reuse much of existing optimization frameworks, so we abandoned the imple-
mentation studies and focused our attention solely on the various approaches’ ability to deal
with query-DAGs. We did not đnd a lot of frameworks that could handle DAGs , as detailed
in Section 2.5.2, so we studied Neumann’s framework in depth to đgure if it was sufficient for
MARS’ core qualities, and how we would approach the implementation.

Convinced that Neumann’s framework was the way to go, we analyzed how to best adapt
it to MARS — with respect to available operators, evaluation and architecture. ăen we imple-
mented a basic optimizer based onNeumann’swork. We implemented rules for a fewoperators
(i.e. selects, joins and simple scans), and by Christmas we had a rudimentary query optimizer
up and running. It did not handle many operators, nor did it deal with orderings, groupings
or đnding possibilities for sharing within the queries. However, we had the framework up and
running, and a good idea of how to implement support for the rest during this master’s thesis
— and we met the goals of the project.

During this master’s thesis, we have continued the implementation. ăe focus has been on
the implementation and adaption of a real (and quite rich) algebra that MARS provides — and
not so much on theory, since we covered most ground during the specialization project.

We had some hopes of being able to completely optimize the query shown in Figure 1.2.
However, we eventually realized that the general concepts needed to do all the possible opti-
mizations of that query would requiremore work thanwe had time to, in addition to requiring
some features not present in MARS — as commented in Section 1.6.10. As we detail in Chap-
ter 7 and 8, however, we have overcome the most important hurdles, and we have some clear
ideas of what would have to be done to complete the optimization of that query. We achieved
the most important optimization, i.e. optimizing it into a DAG, as explained thoroughly in
Chapter 7.

1.3 Abstract View of an Optimizer

Figure 1.1 shows a simple overview of how a query moves through various steps during ex-
ecution. ăroughout the report, we will use the term execution for the entire process from
parsing to results are delivered, and evaluation for the step where the query plan is evaluated
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.
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Figure 1.1: Overview of query processing

to produce result sets.
First, the textual query string is parsed into some kind of query graph. Normally, this query

graph is a tree, butDAGs are also applicable query graph structures, as discussed in Section 1.7.
ăen, the query is analyzed for semantic validity— such as checking well-formedness, that

the mentioned relations exist, the user has access, etc.
ăe input to the query optimizer is a query graph that expresses the logical meaning of

the query. ăe query is then rewritten in various ways during the pre-processing phase: Views
and sub-selects are Ĕattened, stored procedures inlined, etc. ăen, the optimizer decides join
orderings and -algorithms, pushes and pulls predicates around, and applies other transforma-
tions to ensure as efficient evaluation as possible. A second rewrite phase may be employed,
now working on the physical algebra generated in the optimize step.

ăeoutput from theđnal optimizationphase is an executable “plan”, which is a query graph
with physical, executable operators. I.e. instead of a logical join operator, a physical operator
such as a hash join is used — and instead of logical scans, an index- or sequential scan is used.

When the optimizer considers different equivalent plans, it uses a cost model . ăe cost
model deđnes what “costs” the optimizer should minimize — such as I/O (sequential vs. ran-
dom), CPU-time, memory, response time and communication costs. To get an idea of what
operators cost, the optimizer consults statistics about relations and their data distributions.
Cost models and statistics are discussed in Chapter 4.

1.4 Runtime System

ăe output of the query optimizer is a query evaluation plan (hence “query plan” or QEP
for brevity), a data Ĕow graph which is executed by the query evaluator. ăis section brieĔy
describes how typical tree-structured query plans are evaluated. In Section 1.7.2 we describe
how DAG-structured queries differ, and how they can be evaluated. ăeir complexity is due
to the fact that the output of an operator can be the input to more than one operator — thus,
the operators cannot simply forget about tuples as soon as they have outputted them, as its
consumers can pull with different rates.

A query evaluation planƳ is a data Ĕow graph where the nodes are physical operators. ăe
nodes typically have an iterator-interface — i.e. evaluation is done by consecutively calling
next() on the root node of the tree. Consequently, the root node calls next() on its input opera-
tors, which in turn calls next() on their input operators recursively until a leaf node is reached.
For example, if the query is SELECT ... FROM a JOIN b ON(a.id = b.id), the QEP that is
evaluated might be a merge join with two clusteredƴ sequential scans as inputs. A next()-call on
the join operator causes it to pull up records from both its inputs until a record that satisđes
the join predicate can be produced, which it then emits to the operator pulling from it.

Ƴăe term“plan”will be used a lot throughout this report. In later chapters, itmay also refer to lightweight data
structures used in the search phase of the optimization — which are not directly executable without translation.
What meaning is referred to should be obvious in their respective contexts.

ƴA relation is “clustered” when the logical ordering of the records equal the on-disk physical ordering
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Data typically originate from the leaf nodes, which are usually some kind of scan-node.
Additionally, some nodes might also have a skip()-function or have next() take an argument that
speciđes the next desired record. ăis is useful for example when a merge join operator is join-
ing two clustered inputs, as ineligible records can be skipped instead of attempted joined.

Some operators can be pipelined. ăat is, they output continuously, without needing to
process the entire input đrst. For example, a join operator need not see the entire input before
passing tuples joined so far to its output node. On the other hand, e.g. sort operators obviously
need to see the entire unsorted input before it can output anything. When operators can be
pipelined, the overhead of materialization is avoided.

Materialization involves buffering in a temporary relation, which may outgrow permit-
ted or available memory usage and thus need to be Ĕushed to disk. Pipelining is typically
preferred, as it decreases needed buffer space and increases alacrity. However, as we will see
in Section 1.7.2, when output of one operator can be the input of multiple other operators,
pipelining becomes difficult.

1.5 Overview of MARS

1.5.1 Introduction

MARS is fast’s next generation search engine. It is a hybrid of a relational database and a search
engine. It is designed for information retrieval usage andnot transactionprocessing, but retains
many RDBMS-concepts and operators, such as JOINs. fast’s existing search engine, ESP®, lacks
the JOIN-operator, so the schemas (describing “documents”) tend to be very denormalized and
can thus be costly tomaintain and alter—and to query, if the amount of data per document is a
lotmore thanneeded by the average queries. InMARS, data is structured into records, contained
in indexes. ăe indexes do not have anymetadata about relations and foreign keys—referential
integrity is not enforced.

ăese indexes can be joined, either viamerge- or hash-joins. Nested loop joins are currently
unavailable. ăusonly equi-joins are available, sowehave focused on those andnot full support
for theta-joins. A fuzzy-equi-join operator is also available, but we have not looked into it or
what it does.

One important goal of MARS is that custom operators should be easy to implement and
reuse. ăus, it is very extensible.

MARS is written in C# 3.0 on the .NET Framework, which means that we have written our
optimizer in C# as well.

However, even though this thesis is mostly about MARS, we frequently use examples from
RDBMS-es and SQL, as reader prođciency with those are assumed.

1.5.2 Key Differences

InMARS, query graphs are expressed as directed acyclic graphs (DAGs), and not simply as trees,
as is prevalent in most implementations and literature about query optimizers. ăis allows the
output of one operator to be the input ofmore than one operator, introducingmany optimiza-
tion opportunities — and -problems. See Section 1.7 for more on optimization of DAGs.

Also,MARS is đrst and foremost a search engine and certainly not a general purposeOLTP-
or OLAP-database. It is designed and optimized for queries that will yield results in a short
amount of time — search engine users usually expect short response times.

Updates to the index are typically done in batches, as updates are expensive because changes
in one object may ripple to other objects, e.g. due to relevancy calculations.
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Oĕen, one search query should return more than one result set, e.g. grouped by different
columns. ăerefore, MARS is designed to support simultaneous execution of multiple queries
— so the query optimizer must support it as well.

1.5.3 Important Operators

ăe amount of operators in MARS number in the hundreds, if all operators for their various
projects are counted. Clearly, opting to implement an optimizer that handles all of those is
infeasible. We have just focused on the most important ones, and brieĔy describe their charac-
teristics. ăey will be covered in more detail, but we mention them here as they are referred to
throughout the report.

Output is always the root of the query. Every child represent a separate result set. If there is
more than one child, the query is a multi-query.

Copy passes the input tomultiple outputs, possibly buffering to disk if the readers read at very
different data rates. It is the only operator we deal with that can have multiple outputs.

Lookup takes an index name and a word and performs a lookup of the word in the index. ăe
output depends on the index’s schema. Typically, indexes are clustered on DocumentId,
so outputs from LookupOperators are oĕen sorted on it. When the index is a full text
index, it is also clustered on the position of every hit for every document.

MergeJoin mergejoins the inputs. ăere must be at least two input relations, but there is no
(practical) upper limit. Inputs needs to be sorted on the preĖx đrst attributes of the
inputs.

HybridHashJoin hash joins the two inputs on the speciđed join keys. Applies some optimiza-
tion if one of the inputs are sorted.

Select đlters the input and only lets through the tuples satisfying the speciđed predicate.

Map is used to performarbitrarymodiđcations of the input đelds, such as renaming, removing
and/or applying custom functions.

Group groups the input on the speciđed group attributes and also performs various aggregates
functions, such as count, sum, avg, and so on. May perform streaming or hash grouping,
depending on the available ordering.

Near and ONear (Ordered Near) đlters the input stream of word occurrences, letting only
the ones with a distance below a certain threshold through. ForONear, the occurrences
have to be in the same order as well, which is used for phrase searches.

ScoreOccurrences applies various scoring functions to the incoming occurrences. Output is
grouped on the document id, with scores added.

Trim reduces the result amount to an upper limit, optionally with an offset.

Sort sorts the input on the speciđed sort đelds, optionally reordering the sorted columns to
be the đrst of the tuple — which is required for e.g. MergeJoin and ScoreOccurrences.
Additionally, it can perform trimming as well.
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OutputOperator 

SortOperator
SortFields={Count descending}

GroupOperator
GroupingFields = {DocumentType}

{Count(args=Null,filter=Null)}

CopyOperator

SortOperator 

TrimHitCount = 10
SortFields = {Score descending}

MapOperator 

{Score,Input0.Score},
{DocumentName,Input1.DocumentName},

{DocumentType,Input2.DocumentType}

MergeJoinOperator 

JoinPrefix = 1

MapOperator 

{DocumentId,DocumentId},
{Score,"(70 * Score + 30 * ProxScore ) / 100"}

ScoreOccurrencesOperator 

GroupPrefix = 1
{Score,SimpleTerms(...)},

{ProxScore,SimpleProximity(...)}

LookupOperator 

IndexName = Occurrence1
Word = MARS

ONearOperator 

MaxDistance = 4

LookupOperator 

IndexName = Occurrence1
Word = example

LookupOperator 

IndexName = Occurrence1
Word = sentence

LookupOperator 

IndexName = Occurrence2
Word = DocumentName

LookupOperator 

IndexName = Occurrence2
Word = DocumentType

Figure 1.2: Example MARS-query
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ăese are the operators we have chosen to focus on. ăe list is by no means exhaustive, but
the operators are sufficient to express a wide range of queries.

Figure 1.2 shows an examplemulti-query that searches for documents containing “MARS”
and the phrase “example sentence” and returns the 10 most “relevant” (as deđned by the calcu-
lations of ScoreOccurrences) results with the name of the documents. Also, the numbers of hits
per document type are returned. We have omitted a lot of operator attributes to make the
graph đt on a page.

1.5.4 Current State of Query Optimization in MARS

Currently, MARS does not employ a query optimizer. ăe queries are input to the runtime sys-
tem as the physical query graph that will be executed. All operators (at least as far as we know)
inMARS today are physical operators. For instance, there are HybridHashJoin- andMergeJoin op-
erators, but no Join operator, which is the logical equivalent. Some of them are both logical
and physical, e.g. Select and Map.

Moreover, MARS does not currently store any statistics usable for query optimization. ăis
poses a problem when the cost model needs to guesstimate the selectivity of various operators.
How we simulated it to work around it is detailed in Section 4.3.2.

1.6 Selected Problems Related to Query Optimization

In this section, we give a brief overview of selected issues related to query optimization. ăe
space of various possibilities of optimizations is so vast, it is infeasible to cover all aspects in a
single optimizer — at least while also keeping it extensible and performant. Also, we have a
fairly limited amount of time and resources, so we need to restrict the scope of our thesis.

However, it is important to be aware of practical ways of getting better query plans. We
want to design an extensible and maintainable query optimization framework that allows new
rules and transformations to be developed later on.

Each issue is not equally important — some are just mentioned, while others are covered
in depth in other chapters.

Except for the issues that are general for most kinds of query optimization, we shortly re-
Ĕect on the problem’s relevancy to MARS.

1.6.1 Plan Enumeration

Query optimization is a combinatorial search problem. Enumerating all “interesting” plans is
expensive— in fact, it isNP-complete [IK84]. ăe search space is vast and infeasible to explore
exhaustively, so we need to constrain it. When doing so, we should prune the bad plans while
keeping the optimal plan(s). However, we are doing so without knowing which one that is,
using a merely approximate cost model. In reality, we oĕen need to settle for a “good” plan,
which is not necessarily optimal, but at least not awful!

Non-exhaustive strategies are either deterministic or probabilistic [LPK+94]. Determin-
istic planners, such as System R’s, use heuristics to limit the search space. For example, it only
considers leě-deep join trees, and not bushy ones— as shown in Figure 1.3. ăe bushy plan can
be the optimal one, but it is not even considered. Probabilistic optimizers, such as Simulated
Annealing and Iterative Improvement, randomly choose a query plan or transform the query
according to some probability.

Leĕ-deep plans are plans where all joins have a base table as its right input, and thereby any
other subjoins as its leĕ. If we only consider plans without cross products, the size of the
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Figure 1.3: ăree query trees

search space for leĕ-deep plans for n relations is 2n−1 [Moe06]. Leĕ-deep plans are also
easily pipelined, as described in Section 1.4

Zig-zag plans are plans where all joins have at least one base table as input (leĕ or right), and
without cross joins, the size of the search space is 22n−3 [Moe06].

Bushy plans have no restrictions on join inputs, and give a search space of size 2n−1C(n− 1),
whereC(n) is theCatalanNumbers, which grow in the order ofΘ

(
4n/n3/2

)
[Moe06].

Bushy plans are more amenable to parallelization. Consider Figure 1.3c. It is clear that
the computation of C ◃▹ D need not wait for the completion of A ◃▹ B.

Which enumeration strategy our optimizer uses can be conđgured per optimization. How-
ever, it is not clever enough to đgure out which strategy to use by itself.

1.6.2 Operator and Predicate Migration

By migrating certain operators and predicates, we can oĕen achieve more efficient plans. For
example, we oĕenwant to push selects through joins, as selects can be cheaper than joins. Con-
sider the query⁴σperson.id=42 (person ◃▹ city), that is selecting a particular person from the join of
all people and all cities. Clearly, σperson.id=42 (person) ◃▹ city, that is selecting a particular person
and then joining with city, is much more efficient.

However, this is not always true. For example, assume we have an index on person.city_id
and consider a query for all people born aĕer 1950-01-01 living in Å⁵:

σperson.birth>1950−01−01 (person ◃▹ σcity.name=Å (city)) (1.3)

If we assume the database holds the population of Norway, the amount of people living in
Å is certainly less than those born aĕer 1950-01-01 anywhere in the country. ăus, doing a
selection on person before the join in this case can be more expensive. Instead, we want to use
the index on the join key, and then apply the person.birth-predicate. Even if we had an index on
person.birth, the predicate would not be selective enough to justify index lookups. To determine
this, the optimizer needs statistics that suggest the distribution of the values. See Section 1.6.4.

Another interesting case is when predicates are user-deđned functions, which can be ex-
pensive to execute. ăese are discussed in Section 1.6.7.

⁴In our examples, we value clarity over design best practices.
⁵A small village in the municipality Moskenes, Lofoten, Norway
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Nested
loop join

Hash Join

Minister

Table Scan

Person

Index: 
person.id

City

Figure 1.4: Example of a physical evaluation plan

1.6.3 Access Path Selection and Join Ordering

Anaccess path is a speciđcway to access the records. It canbe a full table scan (also called sequen-
tial scan, đle scan, clustered index scan in various systems), or one of several available indexes.
In the previous section, a query accessed a person-table which had indexes on its primary key
as well as person.birth. Both these indexes as well as a full table scan could be considered when
performing the query — with different costs. Access path selection is the determination of
which access method is the better one. It also involves considering properties of the returned
results as well, such as ordering.

When joining several tables, there is usually several orders in which they can be joined.
Consider the tables person, city and minister, where the latter holds information about the gov-
ernment. We want to display information about all ministers, including information about
their home city, that is city ◃▹ person ◃▹ minister. In what order should the joins be performed?
Since the number of ministers is a lot less than the entire population, it is clear that joining
city ◃▹ person đrst is suboptimal, because of low selectivity. In fact, city and minister are proba-
bly both so small their sizes are negligible. It is person we need to avoid costly access paths on.
A reasonable join order, then, is joining minister and person đrst: city ◃▹ (person ◃▹ minister).
ăe physical plan could look like Figure 1.4.

1.6.4 Statistics Maintenance and Cost Estimation

When deciding what access paths to use and in which way to order joins, the planner needs to
consider relation- and join cardinalities and the relations’ value distributions. In the previous
example, we reasoned that a certain join ordering was a good one, due to the sizes of the input
relations. ăat is a statistic that the planner needs access to. If this statistic is outdated or
otherwise wrong, it may cause the planner to choose horrible plans.

Typical information stored about relations, is their cardinality, size in pages, etc. ăese
provide information about the cost of a full table scan. However, we oĕen also want statistics
about the value distribution of certain columns. For example, in Section 1.6.2 we reasoned
about the distribution of people based on their age/birth date. By doing so, we can reason
about a predicate’s selectivity. Doing so is important when weighing the cost of different access
paths.

ăese statistics are costly to maintain. It is infeasible to provide accurate statistics about
value distributions, so they are instead sampled. Moreover, storing these statistics in an efficient
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and accurate manner is also a concern.
Another valuable use of statistics is to reason about data correlations. Such knowledge can

be valuable when evaluating access paths and join orderings.
Usage and maintenance of statistics are discussed further in Chapter 4.

1.6.5 Partitioning, Parallelization, Replication and Distribution

When dealing with large data sets, or data sets that are rarely coupled, it is reasonable to par-
tition the data. How the data is partitioned clearly affects how it is queried. For example, if
data is partitioned on several nodes in a round-robin fashion, it is likely that every node must
be queried in order to get all relevant results. However, data can also be partitioned on ranges
and arbitrary (mutually exclusive) constraints, a technique which also makes sense to employ
on single nodes. For example, with a constraint ensuring that only “recent” (for some deđni-
tion of recent) data reside in a partition (and older or archived data residing in any number of
other partitions), a query optimizer can ensure that the excluded partitions are not searched,
which can greatly reduce the evaluation costs. ăis technique is called constraint exclusion.

Query execution can also oĕen be parallelized — both with multiple CPUs and/or with
multiple nodes. With cheaper and more powerful commodity hardware, this is becoming an
increasingly interesting avenue [GHK92].

When done right, this will certainly speed up the query execution, but it also introduces
new problems. Dependencies in execution are clearly important, but communication costs
complicate the cost evaluation: not only do we need to consider lots of different plans, but we
also need to considerwhere sub-plans are executed, what data they have locally, and predict the
costs of transferring results from one node to another.

MARS has support for an Exchange-operator, which is used to handle data exchange when
parallelizing execution, but our fast-representative told us to focus on the basic issues on one
node đrst.

1.6.6 Heterogeneous Environments

Distributing and parallelizing execution on numerous nodes become even harder when the
environment is composed of several different application stacks. If there are multiple ways of
executing the query, it can be difficult to reason about the costs of the partial problems that
can be executed on different nodes. As with parallel execution, mentioned in the previous
subsection, we may also need to consider the communication costs in the cost model.

Although interesting forMARS, for example by integrating with SQL Server, this is an even
harder problem than those of the previous subsection.

1.6.7 User Deöned Functions

An important property of several database systems is their extensibility. Users can develop cus-
tom functions that are executed by the database system.

Such functions can appear both as values, in predicates and as relations:

• SELECT id, frobnicate(value) FROM …

• SELECT … FROM … WHERE … AND coverage(…) < 42

• SELECT … FROM generate_series(0,1000)

Consider the following example of the second case, where we have a user deđned function
as a predicate, due to [HS93]:
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1 /* Find all channel 4 maps from weeks starting in June that show more than 1%
2 snow cover. Information about each week is kept in the weeks table, requiring
3 a join */
4 SELECT maps.NAME
5 FROM maps JOIN weeks ON (maps.week=weeks.number)
6 WHERE weeks.month=’June’ AND maps.channel=4 AND coverage(maps.picture) > 1

In this case, coverage(…) is an expensive user deđned function. If we naïvely push all pred-
icates below joins, we will be calling coverage(…) on a lot more rows than if we pull it up and
apply the restriction aěer the join.

In addition to considering whether the user deđned functions are expensive we also need
to consider whether they are volatile, stable or immutable [Pos08a]:

• Volatile functions can do anything — return different results for each invocation, and
modify the database. An optimizer cannot optimize its usage: it has to be re-evaluated
every time.

• Stable functions cannot modify the database and promise to return the same value for
the same input arguments in a single statement.

• Immutable functions are as stable functions, except they will always return the same
value for the same input arguments.

Only stable and immutable functions can be optimized. But how do we determine their
cost? Eventually, we clearly need to provide some interfaces to allow user deđned functions
to inform the optimizer about their evaluation characteristics. MARS emphasizes that it must
be easy to develop custom operators and functions. Hence, these issues are realistic. We cover
these issues brieĔy in Chapter 4 and Section 8.5.3.

1.6.8 Rank-Aware Optimization

Ranking functions deđne a measure of relevance of an input record. ăey are oĕen used in a
contextwherewewant recordswithin certainboundariesof the scoredeterminedby the ranking
function — or the top-k.

[ISA+04] introduces rank-join-operators, which progressively rank the join result. As
soon as they can be certain the top-k results have been ranked, the operator returns—without
spending more time on records that cannot “win”.

ăeauthors argue that by enabling efficient evaluationof rankingqueries, relational databases
can efficiently answer Information Retrieval queries. Hence, these techniques may be interest-
ing inMARS, which is an attempt to combine the best from relational query engines and search
engines, as discussed in Section 1.5.

MARS does not currently have rank-join-operators, so we have not studied them further.
However, since the architecture must support more than one join operator anyway, we believe
that support for a rank-join-operator can be added as another join-helper-rule. ăese are de-
scribed further in Section 5.3.9.

1.6.9 Multi-query Optimization

We oĕen need to perform multiple queries to get the result page structure we want. For exam-
ple, a product search on an online store can produce results grouped by producer, price range,
customer reviews, availability, and so on. In this case the results of all the queries are the same,
but ordered differently. Clearly, it is not necessary to perform all those queries from scratch
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Figure 1.5: Example query tree which could be optimized in a query-DAG (screen shot from
Microsoĕ SQL Server)

for every ordering needed, but few query optimizers consider these possibilities. For example,
given the query SELECT * FROM (SELECT TOP 50 * FROM test ORDER BY bar ASC) t1 UNION
ALL SELECT * FROM (SELECT TOP 50 * FROM test ORDER BY bar DESC) t2, which takes the 50
đrst and 50 last tuples from test ordered by bar, SQL Server 2008 produces the plan depicted
in Figure 1.5. ăis could have been solved better by using a DAG and not scanning the input
relation more than once. In this case, there is no index on test.bar. ăe “clustered index scan”
is in reality a table scan.

In Section 1.7.1, we show amore thoroughmotivating example regardingmulti-query op-
timization. MARS supports multi-query execution, and they are amenable to being structured
as DAGs and allow sharing of intermediate results. Optimizing multi-queries is an important
goal.

1.6.10 Inferring Function Semantics

ăe goal of semantic query optimization is to use application- and/or domain-speciđc knowl-
edge to optimize queries.

In [CZ98b], Cherniack and Zdonik describe how some rewrite rules are too general to
be expressed with rewrite rules. For example, transforming arbitrary boolean expressions into
conjunctive normal form cannot be expressed with a simple rule. On the contrary, some rules
are too speciĖc to an application context to be a generic optimization rule. For example⁶, con-
sider the following two OQL-queries:

1. SELECT DISTINCT x.reps.capital FROM x IN S

(the capital cities represented by the senators in S)

2. SELECT DISTINCT (SELECT d.mayor FROM d IN x.reps.cities) FROM x IN S)

(the mayors of cities in the states represented by the senators in S)

In these queries, it is possible to skip the duplicate elimination. Because of the semantics of the
relations, the intermediate results are already free of duplicates: a state only has one senator, a
city can just be the capital of one state, and a city only has one mayor. Such semantics are not
limited to foreignkeys between relations. ăeydevelop two languages, “COKO”and “KOLA”,
that express rewrite, transformations and when they are đred. ăe rules are also automatically
veriđable by a theorem prover.

MARS does not currently have any features regarding inferring function semantics — not
even foreign key relationships to suggest how different data relate. We have therefore not stud-
ied this any further. However, it could be interesting to some time in the future allow develop-

⁶Example due to [CZ98b]
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ers to express semantics about their data and relationships, to better aid the optimizer’s decision
process.

Interestingly, the lack of foreign- and primary key information prevents an optimization
opportunity found in the example query in Figure 1.2 (page 7). In that query, it is advisable to
perform the join of DocumentName aěer the SortOperatorwhich also trims the amount of results
to 10. However, to be able to move that join above the trim, the optimizer has to be certain
that in doing so, it does not change the amount of tuples—otherwise it would be changing the
semantics of the query. If the join key had been a primary key (which it is, but the optimizer
cannot tell), it could have inferred that the semantics would have been preserved.

1.6.11 Adaptive Query Optimization and Dynamic Query Plans

An adaptive query processing system is one that considers and monitors the state of its envi-
ronment to determine its behavior [HFC+00].

In large scale database- and search engines, utilizingnumerousnodes, failures are inevitable.
ăus, it is important to be able to devise good plans, also in the presence of node failures and
variable availability, as well as detecting this situation quickly.

To be able to choose good plans, the optimizer needs reliable and accurate statistics, to es-
timate selectivity and cardinality. Changed statistics immediately affect the decisions of the
optimizer, so how do we ensure a high đdelity between the actual data (which is part of the en-
vironment) and the statistics? One suggested method is to use results from performed queries
to maintain statistics [CR94]. ăis enables continuously maintained statistics. ăese issues
are discussed a bit more in Chapter 4.

In [CG94], Cole and Graefe describe how “static” query plans, made with assumptions
about selectivity and resource availability at compile (optimization) time, can be sub-optimal
for their actual (possibly changing) run-time invocations. ăe environment can even change
while the query is running! For example, a node can suddenly disappear, as mentioned in the
previous paragraph.

ăey introduce an operator “choose-plan” that is executed run-time to reevaluate the cur-
rent evaluation plan. For example, if the selectivity estimation of a selection turned out to
be estimated wrongly (detected by the evaluation system), the join orderings can be recon-
sidered. Also, the optimizer can decide certain points in the plan where plan-reconsideration
could make sense — perhaps due to uncertainties with selectivity estimation (detected by the
optimizer).

MARS does not currently even have an optimizer, so the choose-plan-operator is certainly
not available. Being able to alter the plan on the Ĕy is also likely to necessitate considerable
changes to the runtime-system. ăerefore, we have not studied this any further. However, we
imagine this could be added as a post-processing step.

1.6.12 Genetic Query Optimization Algorithms

When dealing with very complex queries, the search space can get too large even with efficient
pruning. For example, thePostgreSQLORDBMSuses a genetic query optimization algorithm
when the number of relations to be joined is≥12 [Pos08a].

A genetic optimization algorithm uses a non-deterministic, random search. Possible plans
are considered a population of individuals. Individuals each have chromosomes and genes. By
simulating evolutionary processes, such as mutation and selection, new generations of individ-
uals with better properties than their ancestors are introduced [Moe06,Pos08a].

Genetic algorithms are not simply random guesses for a solutions. ăe search uses stochas-
tic processes, so it is better than random [Pos08a].
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Since query optimization is exponential in nature, and MARS could possibly have to deal
with queries that are too complex for our optimizer to handle, genetic optimization algorithms
are one possible approach. However, we are not knowledgeable about this subject, and our
fast-representative has told us not to worry too much about the really complex queries.

1.6.13 Proving correctness

Query optimizers repeatedly transform and change the query. ăe goal is always to achieve a
better plan without changing the semantics of the query. However, doing so provably correct
becomes increasingly difficult when the number of rules and transformations increases, as the
number of possible combinations of the rules explode. ăis is especially true for extensible
query optimizers, where rules and transformations are implemented by plugins and are not a
part of the optimizer core. It is easy to test a new rule in isolation, but hard to predict how
it interacts with and inĔuences the existing rules. In [CZ98b], Cherniack and Zdonik argue
that rules are best expressed declaratively and not in code, to be able to verify rule correctness
automatically with theorem provers. However, they acknowledge that the expressive power
of automatically provable rules are not sufficient to express many necessary query transforma-
tions.

Generally, proving correctness approaches the unfeasiblewhen complexity increases. ăus,
pursuing the provable is not practical. To remedy this, the optimizer must be easily testable by
design. Every rule and every component must be testable in isolation — and in combination.
We have a few unit tests that assert the outcome of the optimization, but since we have not
implemented too many rules yet, testing infrastructure and -helpers have not been prioritized.
However, changing various components to use a dependency injection-pattern to ease “mocka-
bility” does not require substantial effort.

1.7 DAG-Structured Query Evaluation Plans

As the concept of DAG-structured query evaluation plans (DQEPs) is so central to our work,
we need to present it early on.

ăemost commonway to represent query graphs is as tree structures. Tree structured query
evaluation plans are easier to optimize and execute than DAG-structured plans, but also less
Ĕexible. With trees, output of one operator can just be input to a single parent operator. Con-
sequently, intermediate results cannot be reused, which is a major limitation.

Aswe elaborate inSection2.6, wehavebasedmost of ourworkonaPhD-thesis byDr.ăomas
Neumann. ăis section explains advantages and difficulties with DAG-queries.

We start with a motivating example. Section 1.7.2 describes some of the challenges with
DQEPs, while Section 3.7 discusses share equivalence — i.e. the property that partial results
can be shared.

1.7.1 Motivation

Using DQEPs introduces many challenges compared to those that are tree-structured, so a
motivating example to see why the extra effort is worth it is warranted.

A multi-query is a composition of multiple queries, where every single query returns its
own result set. Typically, when multiple queries are executed, they are executed in isolation.
Whether they are executed serially or in parallel does not matter, as they are unaware of each
other and the partial results of the other queries. Sharing is largely limited to locality in time
with respect to page caching.
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Figure 1.6: Example of search that results in multiple smaller searches
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Figure 1.7: Imaginary DAG-structured Query Evaluation Plan



1.7. DAG-Structured Query Evaluation Plans 17

Consider for example the query shown in Figure 1.6. It is a search for “wall-e” on Best-
Buy.com, which is backed by fast’s ESP®. Knowing that ESP® does not support DAGs, it is rea-
sonable to believe that in order to present the results shown in the đgure, the query is actually
multiple smaller queries. We do not know exactly how the search is evaluated, but present an
approach that is not unreasonable, and then how it could be performed more efficiently with
DQEPs. In the next two paragraphs, we present two example evaluation strategies, where we
have taken the liberty to deal with some imaginary operators to keep the example simple. ăe
đrst example uses simple queries, and the last example uses DQEPs.

First a query for “wall-e” returns a list of all results that has anything to dowith “wall-e”. ăe
results, which are just item pointers, are used to determine interesting categories (collectively
called “facets” (e.g. “Shop Category”) and “facet values” (e.g. “Music”) in search engine lingo)
to show results from — such as video games and movies. ăen, for each interesting category,
a search is performed to đnd the three most relevant hits for the input query for that cate-
gory. ăis may seem excessive for the “wall-e”-search that only yields 21 results, but searching
for “DVD” yields 100319 results — and iterating over all of them just to put the three most
relevant results into each category is too expensive.

In Figure 1.7, we show an imaginary DQEP which reuses partial results. First, “wall-e” is
looked up in the full text indexes. ăe result is a list of pointers. ăese pointers are then used
by a “facet”-operator which returns a list of facet values and their respective pointers — for
example music=[1,2,3]. ăe result of this operation is then sent to an operator that aggregates
the counts of each facet value, and to an operator that đnds the three most relevant results for
each of them. ăen, the output is joined with the full result data. ăis results in two result sets
— a list of relevant facets values (with counts), and a list of relevant results for each of them.
ăese two result sets can then be combined to present the result page shown in Figure 1.6.

1.7.2 Challenges

DQEPs are inherently more difficult to deal with than their tree-structured counterparts. In
this section, we describe why đnding the costs and evaluating the queries aremore challenging.

Lack of Optimal Substructure and Cost Estimation

Optimizers dealingwith trees typically employdynamicprogramming- andmemoization-techniques.
ăese rely on an optimal substructure to combine optimal solutions of sub-problems to achieve
an optimal solution. While tree-structured QEPs have this property, DAG-structured do not.
For example ⁷, consider the query A ◃▹ B ◃▹ C ◃▹ B ◃▹ C ◃▹ D. Figure 1.8a shows a possible
solution where the optimizer đrst đnds that (A ◃▹ B) ◃▹ C and B ◃▹ (C ◃▹ D) are partial opti-
mal solutions, which are then combined. If the sub-optimal partial solutions A ◃▹ (B ◃▹ C) and
(B ◃▹ C) ◃▹ Dhadbeen considered, the common sub-expression (B ◃▹ C) could have been shared,
resulting in the plan in Figure 1.8b. Consequently, an optimal DAG cannot be constructed by
simply combining optimal partial plans. ăis is also an example of a non-multi-query where
the DAG-structure is beneđcial.

ăe cost of computing intermediate results is only paid once, even though the result is
used by several operators. ăis fact must be captured by the cost model that compares plan
alternatives, so that the cost of (B ◃▹ C) is only counted once even though it is used by two
parent join-operations. Reading it n times is not free either, but at least not n times the cost.
Section 4.4 covers the design of a DAG-aware cost component.

⁷Example adapted from [Neu05]
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Figure 1.8: Two equivalent join graphs

1 SELECT s.CompanyName, c.CategoryName, COUNT(p.ProductID) AS Count FROM Products p
2 JOIN Suppliers s ON p.SupplierID = s.SupplierID
3 JOIN Categories c ON p.CategoryID = c.CategoryID
4 GROUP BY s.CompanyName, c.CategoryName
5 WITH CUBE;

Listing 1.1: Sample query resulting in a shared temporary relation

Runtime System

Evaluating DQEPs is a lot more involved than evaluating tree-QEPs. With trees, the output
is just sent to a single operator, so the output can be forgotten as soon as it has been sent.
However, withDAGs,multiple operators can receive the output—andwith an iteratormodel,
they may not necessarily request the data in an orderly fashion. One operator may even Ėnish
processing the output before another one has started — and the output may not necessarily đt
in memory.

ăis is not really an optimizer issue, and has already been implemented in MARS.
In [Neu05], Neumann identiđes four approaches:

1. Transforming the DAGs to trees. ăis defeats the purpose of having DAGs in the đrst
place.

2. Only share output frommaterializingoperators. ăis addsno extra overhead, but severely
limits the sharing opportunities.

3. Use temporary relations.

4. Push output into operators instead of having them pull.

ăe third alternative can easily be identiđed in current commercial implementations. For
example, the plan generated by SQL Server 2008 for the query in Listing 1.1 is shown in Fig-
ure 1.9. Sharing of the temporary relation is triggered by the WITH CUBE-construct, whichmakes
SQL Server produce several combinations of the groups [Cor08]. ăe đgure has been modi-
đed to make it đt on a page, and to highlight the two operators that share partial results.

ăe fourth alternative, pushing output, is what MARS uses, and what Neumann concludes
is the most fruitful approach. Its details are outside the scope of this thesis.
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Figure 1.9: Screen shot of a plan generated by SQL Server 2008 sharing a temporary relation

1.8 Overview of the Report

ăe rest of the report is structured as follows.
Chapter 2 talks about various approaches to query optimization, especially rule-based ap-

proaches, and gives an introduction to transformative vs. constructive optimization. We also
give a brief description of the System R-optimizer, which is considered a seminal work in the
area of query optimization. Chapter 3 is the bulk of the report, and describes our optimizer
implementation, both design and algorithms. Chapter 4 gives an introduction to costing of
query plans and ends with a description of the cost component in our optimizer.

Chapter 5 presents the rules the optimizer implementation uses. We discuss the rule in-
terface, and describe the implementation of a few rules. Chapter 6 covers the quite involved
process of determining orderings and groupings. Chapter 7 contains a complete walkthrough
of the optimization of an example query — to put all the components into context. Also, sev-
eral small example optimizations are covered, to show what the optimizer is capable of.

Chapter 8 discusses the results of the thesis and the current state of the optimizer, while
Chapter 9 concludes the report and wraps up suggested future work, and how it may be ap-
proached.

Appendix A lists the output of a query execution run with optimization enabled, while
Appendix B includes selected code samples, and Appendix C describes the contents of the
accompanying digital appendix.

Code Samples

ăe report includes quite a few code samples to illustrate how the optimizer implementation
works. Most are given in C#, which is the language we have used for implementation. Com-
mon for all of them is that we have focused on making them easy to read and understand, em-



20 Chapter 1. Introduction

phasizing the important concepts. ăismeans that we have simpliđedmost of them, removing
things not necessary for understanding. Most of the code will therefore not compile as it is.
ăe reader is referenced to the digital appendix for the complete source code.

In our code, we do follow C# coding guidelines, but we have sacriđced them in the report
to save space.



2
Case Studies and Previous Work

“Any fool can make history, but it takes a genius to write it.”

— Oscar Wilde

2.1 Introduction

In this chapter, we describe some systems and articles we have looked into in more detail than
those listed in the “Selected Problems”-section in the Introduction.

We start out with System R, a historically important system, which was successful par-
tially due to its query optimizer. ăen we describe PostgreSQL, an open source database sys-
tem with a solid query optimizer. However, most of the chapter is devoted to rule-based and
transformative- or constructive approaches to query optimization. We describe what model
we settled on for our query optimizer, and — more importantly — why.

As explained in Section 1.2, these studies were conducted during the specialization project
last semester.

2.2 The Early Years: System R

System R pioneered query optimization, proving that declarative, easy-to-use query languages
are a viable means of interfacing database systems. Its design choices have inĔuenced many
current relational query optimizers. We mention it due to its historical importance, and to
have a coherent and succinct description of a working optimizer.

In the seminal article “Access Path Selection in a Relational Database Management Sys-
tem” [SAC+79], Selinger et al. described the techniques used in System R. It is a bottom-up
optimizer which uses a dynamic programming algorithm to đnd the leĕ-deep plan that min-
imizes the cost of the overall plan. ăe cost calculation is explained later. Possible scans are
sequential scans, and clustered and non-clustered index scans. Hash joins were not available
— nested loops- and merge-joins were the two possible join operations. Indexes were imple-
mented as B-trees.

ăe optimizer begins by parsing the query into blocks, which are then optimized one by
one. If queries are nested, the nested sub-queries are treated as subroutines which return tuples
to the predicates they occur in. Queries are not rewritten to ęatten sub-queries, however.

For every block, all available access paths for the accessed relations are considered, paying
attention to cost and interesting orders— that is orders compatible with the block’s ORDER BY-
or GROUP BY-clauses as well as equi-join predicates. ăe cheapest plans are kept for further
consideration.
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What Selectivity S
column=value, with index i 1

ICARD(i)

column=value, without index 1
10

NOT predicate p 1 − S (p)
column1=column2, both indexed 1

max(ICARD(i1),ICARD(i2))

column1=column2, one indexed 1
ICARD(i)

column1=column2, none indexed 1
10

column IN (list l of values) min
(

1
2
, |l| × S (column = value)

)
predicate p1 OR predicate p2 S (p1) + S (p2) − S (p1)S (p2)
predicate p1 AND predicate p2 S (p1)S (p2)

Table 2.1: Selectivity estimates in System R

Situation Page Fetches

Sequential scan TCARD/P
Unique index matching an equal predicate 2Ʋ
Clustered index i matching at least one predicate S (predicates) × (NINDX (i) + TCARD)
Non-clustered index i matching at least one predicate S (predicates) × (NINDX (i) + NCARD)
Same, but small enough to đt in memory S (predicates) × (NINDX (i) + TCARD)
Clustered index i not matching any predicate NINDX (i) + TCARD
Non-clustered index i not matching any predicate NINDX (i) + NCARD
Same, but small enough to đt in memory NINDX (i) + TCARD

Table 2.2: Estimated number of page fetches in System R

To be able to estimate approximate costs for access paths, statistics about the various rela-
tions are fetched from the system catalog. ăe statistics were notmaintained continuously, but
updated periodically with an UPDATE STATISTICS-command. ăe statistics kept are

• NCARD (t) — the cardinality of relation t.

• TCARD (t) — the number of pages in the segment that holds tuples of relation t. ăere
can be tuples of other relations in the same segment, thus …

• P (t) — the fraction of pages in the segment that contains tuples of relation t.

• ICARD (i) — the number of distinct keys in index i.

• NINDX (i) — the number of pages in index i.

Independence between columns is assumed. However, they also implicitly assume a uni-
form distribution of the values — no statistics regarding the data distribution are kept. ăis
leads to rather simple selectivity estimates. We list a few them inTable 2.1. ăe article also lists
selectivity estimate formulae for column > value; column BETWEEN value1 AND value2; and
column IN sub-query. We omit them for brevity.
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ăese selectivity estimates are key to devising the cost estimates listed in Table 2.2. We list
just a few. We set CPU costs = w |RSI calls|, where |RSI calls| is an estimate of the number
of tuple-handling instructions, and w is a factor weighing processing costs and I/O. |RSI calls|
is the product of relation cardinalities and the selectivity factors of the involved predicates.
Generally, the cost C = page fetches + CPU costs.

With these cost estimates for single relation scans, the optimizer can search for a cheap
join ordering, by considering many possible join trees. To limit the size of the search space to
something that is feasible to explore, some heuristics are used: SystemR limits the search space
to leĕ deep join orderings and defers alternatives with Cartesian products as a last resort. It
does so by considering the join-predicates linking the various relations together. For example,
if we have relation A joined with B, and B joined with C, with predicates that are incompatible
— i.e. they do not form a transitive closure — then (A ◃▹ C) ◃▹ B and (C ◃▹ A) ◃▹ B are not
considered. However, (A ◃▹ B) ◃▹ C and (B ◃▹ C) ◃▹ A may have very different costs, so they
both need to be considered.

ăe optimizer uses a dynamic programming algorithm, which relies on the optimal sub-
structure inherent in query tree optimization: the optimal solution to n − 1 joins is needed
to đnd the optimal solution to n joins. First it đnds the cheapest single-relation plans with
various interesting orderings. ăen, every relation is joined as an outer relation with all other
relations, giving all possible two-relation plans. ăis process is repeated n times, where n is
the number of relations. For each pass i, the i-th relation is joined as the outer relation to all
(i − 1)-relation plans. Even though heuristics are employed to prune the search space, the
number of plans checked still increases exponentially, with a complexity ofO (n2n−1).

ăemost important contribution of the SystemR optimizer, besides proving that optimiz-
ers were a viable alternative to “database programming”, is the use of statistics and cost func-
tions, coupled with a dynamic programming algorithm to devise cheap plans.

2.3 PostgreSQL and Other Open Source Query Optimizers

PostgreSQL is the most advanced open source database system. It was started as a research
project by Michael Stonebraker, as “Postgres” at the time — a followup to Ingres [Pos08c].
We consider the source code to be of high quality and that it is easy to read, and several articles
about key design decisions have been published, such as [SRH86,Sto87]. ăus, it was a natural
candidate for studying — a real implementation, with many features and the source readily
available.

We also looked into the optimizers of MySQL, SQLite and MonetDB, but chose to focus
on PostgreSQL — because it is more feature complete, and the code was a lot easier to read
than that of MySQL and MonetDB. SQLite is quite lightweight, with sub-query Ĕattening as
themost interesting feature. We did not prioritize achieving breadth in the study of implemen-
tations.

ăe optimizers in the mentioned products are also static — i.e. they do not have a rule-
based architecture. If any of the alternatives had been rule based, they would have been more
interesting to study.

Studying PostgreSQL gave us some insight of quite a few optimization transformations
that are not typically mentioned in the literature. We list some of them in Section 5.2.3. ăe
study was something we started out with in the initial phase of the specialization project, to
have studied a real implementation and to get an overview. However, as we progressed with
the literature studies, we realized that the algorithms and data structures used by PostgreSQL

ƲAlthough they donot explicitlymention it, it is clear they assume that the internal nodes of theB-tree indexes
reside in memory. ăus, there’s one page access to get the pointer in a leaf node, and one to fetch the actual page.
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would not directly apply when having to deal with DAG-structured query plans — for reasons
detailed in Section 1.7.2. ăus, we abandoned the implementation studies to concentrate on
the important differences between DAG- and tree-based optimizers. None of the other sys-
temsmentioned deal withDAG-structured query plans either—we are unaware of anyOpen
Source DBMS that do, as it is still a novel approach. Hence, it is of little use to go into details
about the results of studying PostgreSQL. It was certainly useful to have looked into a real im-
plementation, seeing how a query is handled as it goes from pre-processing to plan-generation
to post-processing. Also, since the transformations in PostgreSQL are hard-coded, it was (al-
though not bad per se) a contrast to our rule-based approach.

2.4 Rule-based Optimization

ăere are generally two kinds of optimization architectures: Some are hard-wired, and some
are rule based. To avoid confusion — with “rule based”, we do not refer to Oracle’s “rule based
optimizer”, as opposed to their “cost basedoptimizer”. Here, rules as objects is a designdecision,
not the optimizer in its entirety.

Hard-wired optimizers have their transformations and rules hard-coded. ăe optimizer is
then aware of all possible operators and their semantics. Adding new operators and transfor-
mations will likely involve rewriting large parts of the optimizer.

Rule based optimizers are extensible, with amodiĖable set of optimization rules [CZ98a].
ăe architecture allows rules to easily be added, which also enables adding new operators the
optimizer was previously unaware of. Rules can even be speciđed by the user “on the Ĕy”
[PHH92]. ăe optimizer core then knows nothing about actual operators, as it is just orches-
trating rule instances and comparing their outputs using a cost model. One of the earliest uses
of a rule-based optimizer, was Squirel [SC75], a transformation-based optimizer dating back to
1975. However, the most referred articles on the subject are those of Starburst [PHH92] and
the EXODUS-Volcano-Cascades-series of optimizer generators [GD87, GM93, Gra95]. We
describe these further in Section 2.5, where we also describe the model we base our optimizer
on.

ăere are two types of rules: those used to pre- and post-process the query, and those used
in the search phase of the optimization. Pushing NOTs down as far as possible is an example of
a pre-processing rule, and merging selections is an example of post-processing. ăese rules
are fairly simple, and more examples are mentioned in Section 5.2.3. Pre- and post-processing
constitute just a fraction of the total optimization time for queries withmany relations—most
time is spent in the search phase. ăey are usually not cost modeled.

ăe rules of the search phase determine how the search space is explored and is usually cost
modeled. ăus, these obviously need to be treated efficiently. When search rules are developed,
one must be careful not to cause the search space to explode unnecessarily.

2.5 Transformative vs. Constructive Optimizers

When searching for better plans, two approaches can be distinguished: transformative and
constructive.

Transformative optimizers consecutively transform the input query to an equivalent and
hopefully cheaper output plan. ăe input and output are always semantically equivalent. ăis
is a nice property, as it enables aborting the optimizer at any time and returning the best plan
so far — for example due to a time budget or a hard deadline. We describe a few approaches in
Section 2.5.1.
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Constructive optimizers take the logical goal of the query, and then rebuilds the query
from scratch — assembling one block at the time. ăese can also be classiđed into top-down
and bottom-up. We describe two approaches in Section 2.5.3.

Note that this distinction applies to the search phase of the optimization. Even though
constructive optimization is done in the search phase, transformative rules are typically applied
in the pre- and post-processing phases of the optimizer.

2.5.1 Transformative: EXODUS, Volcano and Cascades

EXODUS, Volcano [GM93] and Cascades [Gra95] are three projects by Goetz Graefe et al.,
which are successive ređnements to a rule-based optimizer generator. We describe them in
terms of how the successor improves the predecessor.

With EXODUS, a database implementer deđnes a model description, which contains the
list of operators, what methods should be considered when building and comparing access
plans, transformation rules, and implementation rules, which map logical and physical opera-
tors [GD87]. For example join→ {hash join, inner loops, Cartesian product}. ăemodel is then
used to generate C code, which in turn is compiled and linked with the implementer’s model
to achieve a speciđc optimizer. Rules are generally described declaratively, but can also be sup-
plemented with C code when necessary. Adding new operators and rules involved changing
the model and then generating a new optimizer. ăe most important contributions of EXO-
DUS were proving that an optimizer generator framework could work, based on declarative
rules and transformation on logical and physical algebra [Gra95].

However, the authors identiđed several limitations with EXODUS, and found it difficult
to produce efficient, production-quality optimizers [GM93]. ăis lead to the development of
the Volcano optimizer generator. ăe goals of Volcano was to be usable with existing query
evaluators and as a separate tool. Additionally, it should bemore efficient in terms of optimiza-
tion time and memory consumption during search space exploration — all while remaining
extensible and permitting parallelization, use of heuristics and model semantics to guide the
search and to prune bad paths early. As EXODUS, it used a model to generate code, which in
turnwas linked to the implementer’s database system. It also has a separate logical and physical
algebra. However, in EXODUS, they were treated with a suboptimal data structure, which
resulted in an inability to capture requirements about physical properties (such as ordering),
inefficient memory usage and an overhead in reanalyzing existing plans. For large queries, EX-
ODUS actually spent most of the time reanalyzing existing plans [GM93]. ăis was solved
with a dynamic programming algorithm and memoization in Volcano. Additionally, Volcano
had a more Ĕexible cost model, which delegated the comparisons to functions provided by
the implementor. ăe most important contributions of Volcano was improving EXODUS
shortcomings with more efficient algorithms and data structures, which in turn enabled more
extensibility [Gra95].

Having used the Volcano optimizer generator in two different projects, its authors iden-
tiđed additional design Ĕaws, whose remedies were the goal of the Cascades-project. Cas-
cades is not as well-published as the other architectures. We contacted Goetz Graefe and was
told [Gra95] is the only article published about Cascades, but we also found mentions of Cas-
cades elsewhere ( [Bil], [ONK+95]) which suggested there were more to it. According to its
paper, it is the foundation for the optimizers found inTandem’sNonStop SQL andMicrosoĕ’s
SQLServer. It is no longer an optimizer generator, but a frameworkwhere rules are provided as
objects. Rules are no longer encoded in a formal speciđcationwhich is subsequently converted,
and can even be speciđed and generated at runtime.

[Gra95] lists several of Cascades advantages compared to Volcano. We highlight a few of
them:
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• Rules as objects

• Operators that may be both logical and physical

• Patterns that match an entire sub-tree

• Incremental enumeration of the search space

• Optimization tasks as data structures

A rule object can be created and optionally modiđed (disabled, reconđgured, etc.) at run-
time. Rules have a name, an antecedent deđning a before-pattern, and a consequent deđning the
substitute. ăe pattern and substitutes are expression trees. Exactly how the patterns work is
not discussed, but we imagine they are somewhat similar to the pattern matching described in
Section 3.8. Exploration is done by successively comparing the before-patterns of the available
rules, and applying the transformations of the rules that either match the input, or if a match
can be created by exploration.

ăis way of incrementally applying rules on demand and continuously considering where
to “go next” is in contrast to Volcano’s strategy, which involved two phases: a đrst phase that
applied all transformations to generate all possible logical expressions for a query and its sub-
tree, with a subsequent phase that made physical plans from these and compared them to each
other. ăe exploration is governed by heuristics that avoid repeatedly exploring the same sub-
space. Also, guidance-instances can be created, whose function is solely to limit the search
space. Without any guidance, the size of the search space explored equal that of Volcano. It
is important that such guidance rules do not rule out potentially optimal plans. With sophis-
ticated rules, the current optimization goal — such as cost and required properties — can be
considered. Rules inform the optimizer of how useful they are in the current context, which af-
fects the order in which the space is explored. Hopefully, this leads the exploration to themore
promising subspaces đrst, which in turn can result in pruning large portions of the search space.

2.5.2 Transformative: Optimization of DAG-Structured Query Evaluation Plans

In “Optimization of DAG-Structured Query Evaluation Plans” [Roy98], Prasan Roy presents
a few transformation rules and a transformative optimizer for DAG-structured QEPs based
on the Volcano-optimizer from Section 2.5.1. It uses two steps. First, the operators that may
be shared are identiđed. ăe ones that should be used are then duplicated, with the dupli-
cates reporting their cost as 0, as it is paid the đrst time it is used. ăen, a normal tree-based
optimization is done.

In addition to the drawbacks about Volcano, Neumann identiđes some issues with the ap-
proach [Neu05]:

• Identifying shareable operators must be done before the search phase. ăis is due to
how the search phase is donewith respect to “free” operators. Without care, the planner
would only choose the free (duplicate) operators, and neglect the initial cost.

• ăenotion ofmultiple consumers causing no additional cost is only valid if nested-loop-
joins are not considered. And without nested-loop-joins, dependent joins and theta-joins
cannot be performed — only equi-joins!

ăe second limitation is very discouraging. It severely limits the scope of the optimizer.
Even though MARS does not currently have nested loop joins, future versions might. ăeir
importance cause this to be a severe limitation.

Weareunawareof anyother transformative approach tooptimizingDAG-structuredQEPs.
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2.5.3 Constructive: Starburst and Neumann/Moerkotte

As mentioned, constructive optimizers determine the goal of a query, and then reconstructs
it piece by piece. ăe optimization consists of đnding cheap plans that solve sub-goals, and
progress towards the penultimate goal, while retaining good sub-plans and avoiding spending
too much time on bad ones.

In practice this involves ripping the query apart and reconstructing it in various ways. ăe
disadvantage over transformative optimizers is that it is not easily possible to simply return the
current best plan when e.g. the time budget has been spent. ăis is because the optimizer may
only have reconstructed sub-goals of the query when the available time has been spent. Since
hard optimization dead lines have not been a requirement, we have not looked further into this
issue.

Starburst

We have not studied Starburst extensively, but Neumann’s model is inspired by it, so we men-
tion some important points. Starburst is the predecessor of the optimizer in IBM’s DB2. ăe
algorithm optimizes each operation in the query independently, bottomup. Low-level plan op-
erators (LOLEPOPs), whichoperate on0ormore streamsof tuples andproduce 0 ormorenew
streams, are combined into strategy alternative rules (STARs). STARs have requirements its in-
put plansmustmeet— for example, certain relationsmust be present, or the tuplesmust be in a
speciđc order. If current plans do not meet these requirements, additional “glue”-LOLEPOPs
may be added— such as adding a sort-operator when a certain ordering is required [PHH92].

Neumann andMoerkotte: DAG-structured Query Graphs

In his PhD-thesis “Efficient Generation and Execution of DAG-Structured Query Graphs”
[Neu05], Dr. ăomas Neumann elaborates advantages with DAG-structured query graphs,
identiđes problems and presents his solutions and design of an optimizer. ăe work is contin-
ued in “Single Phase Construction of Optimal DAG-structured QEPs” [NM08], in collabo-
ration with Prof. Dr. Guido Moerkotte. It is this model we have based our optimizer on. We
describe the model in more depth in Chapter 3, where design- and implementation details are
discussed. ăere, we also point out some differences and claim a few improvements to the orig-
inal model. In Chapter 8, we point out some limitations and issues we have not yet had time
to solve.

In short, the optimizer assigns instances of applicable rules to every node in a logical query
graph. A rule has a set of properties it requires from its inputs, and a set of properties that it
produces. ăe query’s goal is also expressed as a set of required properties, and a plan is semanti-
cally equivalent when the produced properties is equal to the goal. ăe constructive approach
has some advantages to transformative approaches when dealing with DAGs — for example,
đnding sub-plans with output that are share equivalent with the required input is easier. Two
expressions are share equivalent if one expression can be computed by using the other expression
and renaming the result [NM08].

Top-Down or Bottom-Up?

ăere are two approaches to constructing queries — either beginning at the top, requesting
sub-goals recursively; or at the bottom, starting with the base relations (such as table- and in-
dex scans) and progressing towards the ultimate goal. In [Neu05], Neumann mentions three
advantages with the top-down approach:
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• Rules aremore intuitivewhenwritten in a top-downmanner, as with a top-downparser.
ăis eases development and maintainability of the rule set.

• ăeplannerquickly learns solutions to sub-problems. ăishelps establishing cost bound-
aries early on in the process, which is an important factor in reducing the search space.
[Neu05]mentions experimental results showing a 10-20% reduction of the search space
size.

• By recursively requesting plans satisfying speciđc properties (the sub-goals), only sub-
plans satisfying sub-goals of the top goal will be considered, as opposed to the bottom-
up approach which tries any combination.

However, the top-down approachwill consider lots of plans that are not actually possible to
execute. A substantial amount of time is spent trying to solve sub-goals which have no solution
— a problem the bottom-up approach does not have. Neumann claims that for chain-queries
with ≥10 relations, >99.9% of the time is spent on unsolvable sub-problems, if this problem
is notmitigated. It is easily remedied by checking if the sub-problem is actually solvable. How-
ever, the check is still O (n) for n operators. Neumann states that ≥90% of the CPU time is
spent on this check. In Figure 8.7 on page 136, a prođling run of our optimizer prototype is
shown. QueryOptimizer.GoalIsUnreachable(goal) is the name of the check in our system, in which
approximately 7%of the time is spent. Aswe explain in Section 3.6, the problem is ameliorated
by caching the answers to GoalIsUnreachable(goal). By disabling the cache, a large query which
took 0.93 seconds to optimize with caching took 2.15 seconds.

Another advantage with the bottom-up approach is avoiding a lot of cache lookups for the
same sub-problems when constructing DAGs.

With the caching of the reachability-check, the differences between bottom-up and top-
down boils down to the overhead of numerous unneeded hash table lookups. We decided time
is better spent on other issues than optimizing the amount of lookups. ąerefore, we settled on
the top-down approach due to clarity.

2.6 Reøections

To summarize, the direction of the work shiĕed drastically when we discovered that the differ-
ences between tree- and DAG-structured query evaluation graphs were more profound than
we initially believed.

Aĕer having surveyed research articles about query optimization and DAGs, as well as
existing implementations, we realized we either had to start from the beginning, or to base our
work on just a few works [Roy98,Neu05,NM08] that have yet to achieve much attention and
peer review from the research community. Dr. ăomas Neumann, author and co-author of
two of them, has this to say:

“I found that it is nearly impossible to publish papers about optimizing DAGs.
ăey are usually rejected with the argument ‘already implemented in commercial
database systems’ :) ăis might explain the lack of research papers.”

In a later email he points out that “already implemented in commercial database systems”
refers to the use of temporary relations as discussed in Section 1.7.2.

In Section 2.5.2, wementioned some severe limitations in [Roy98]’s approach that handles
DAGs, and that basically rules out the only real alternative toNeumann andMoerkotte’s work.
All in all, our impression is that Neumann and Moerkotte’s model in [NM08, Neu05] is a
lot more solid than that of [Roy98]. ăis is not surprising, as [Roy98] is a master’s thesis,
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whereas [Neu05] is a PhD-thesis, with subsequent work in [NM08]. Furthermore, it would
be unreasonable to believe that an attempt to modify and extend e.g. Cascades to support
DAGs would have yielded better results than a PhD devoted to the topic.

ăus, we have chosen to largely base the optimizer model on Neumann and Moerkotte’s
work. Chapter 3 and the rest of the report is devoted to our changes to the model and the
design- and implementation details.
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3
Design and Implementation

“ąere are twoways of constructing a soěware design: Oneway is tomake it so simple
that there are obviously no deĖciencies and the other way is to make it so complicated
that there are no obvious deĖciencies.”
— C.A.R. Hoare, ăe 1980 ACM Turing Award Lecture

3.1 Introduction and Goals

In this chapter, we present the design of our optimizer. We start out by giving a high level
picture of its design, before we delve into inner workings and implementation details for each
step.

If we were to make the readers completely understand the design with one single pass of
this chapter, it would be a remarkable feat. More likely, re-reading this chapter aĕer having
read the complete walkthrough inChapter 7 is a good idea. Furthermore, the cost component,
orderings- and groupings-manager and rule speciđcs are covered in depth in separate chapters.

ăe goals of the optimizer implementation are as follows:

1. Extensibility

(a) Support for arbitrary operators and their optimizations

(b) Support for arbitrary cost models for operators

(c) Support for arbitrary pre- and post-processing.

2. Support multi-queries and shareable sub-plans, i.e. DAG-structured query plans.

3. Clean design and implementation

4. Efficient plan generation

Extensibility is the most important goal of the thesis. ăe optimizer should provide sup-
port for arbitrary operators, meaning that it should be able to add optimization rules for op-
erators added aĕer the optimizer was originally designed — and not impose any restrictions
on what optimizations are possible. To achieve this, the optimizer cannot know anything spe-
ciđc about the operators, but uses rules created by the operator implementer instead. Speciđcs
about operator semantics should be conđned to the rules implementing them, with as few
inter-dependencies as possible, to have a clear separation of concern.

Furthermore, different operators can have very different cost models. ăe operator imple-
menter should be able to specify the cost model (e.g. how costs increase with tuple size), and
have the optimizer adhere to it. Custom rewriting steps should also be supported.
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Support for DAG-structured query plans, and thus the ability to share sub-plans and exe-
cute several queries simultaneously, is a deđning feature of MARS. ăus, creating an optimizer
that handles this is a requirement for the optimizer to be useful for MARS— and to contribute
with something new.

We believe it is more important to come up with a good architecture and a clean design
than to implement asmuch functionality as possible. ăerefore, we have not implemented sup-
port for all of MARS’ operators, but just a few important ones — and focused on the optimizer
core.

Efficiency has not been highly prioritized. Clearly, design decisions that prevent efficient
executionmust be avoided, butwehave not delved deeply into optimizing the implementation.
Not only do such optimizations oĕen result in less maintainable and readable code, but the
code to be optimized should also be subject to real workloads to identify the real bottle-necks
— without which we would just have spent time on premature optimization. We have gone to
some lengths to have efficient algorithms in the inner loops of the search phase, though, as that
is clearly the most performance critical path in the optimizer.

3.1.1 Testing

Testing is an important part of soĕware development and needs to be carried out to make sure
what is being developed works as expected. ăis is certainly true for our optimizer as well.
Important topics include:

Optimization results. Given the constraints of the query and search space (only leĕ-deep
plans, for example), the optimizer should produce the optimal plan.

Time spent optimizing. ăe optimizer should not spend signiđcantly more time than ex-
pected to optimize a given query.

Dependency injection. An important enabling factor to thoroughly unit test, is to have clear
dependency boundaries. Being able to easily mock and stub depended-on components
ease testing.

To make sure that our optimizer works as expected, we have employed automated testing
by using the NUnit test framework [NUn08] and have implemented several automated tests.
ăe tests create a query to be optimized programmatically and then invoke the optimizer. Af-
terwards, they verify that no exceptions occurred and that the resulting query is the optimal
one. ăe tests have also been used to generate the results found in Section 8. Full test coverage
has not been a high priority, but testability has. We have 87 tests of varying quality, ranging
from unit- to smoke tests.

As an example, we have included the code for one of the plan generator tests in SectionB.6.

3.2 The Big Picture

As mentioned in Section 1.3, query optimization consists of several steps, of which each may
consist of several phases. We have focused on the rewrite and planning steps of the process, and
not on the parse, analyze and execution steps. Nor have we focused much on the “housekeep-
ing” procedures involved in query optimization, such as plan caching and cache invalidation.
Such components depend heavily on the run time system, and is outside our scope. As such,
Figure 3.1 shows the parts of the query optimizer that actually optimize the query, where our
focus has been.
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Figure 3.1: Query optimizer overview

ăe optimizer is invoked by a component that is injected into MARS’s query pipeline, di-
rectly before the query is passed on to the evaluation operator. It handles conversion from and
to MARS’s graph structure.

3.2.1 Before Optimization

Before the optimizer is invoked, the query has gone through parsing and semantic validation.
ăe input to our optimizer is a physical query operator graph. It is important to note that the
query language currently available inMARS— MQL, Mars Query Language — is not a declar-
ative language. It expresses query operator graphs. ăe availability of a query optimizer will
likely ease development of a declarative language, as an optimizer can replace logical operators
with suitable physical ones. We actually convert the physical join operators into logical ones
during pre-processing to work around this limitation.

ăe input operator graph is converted to our own graph structure — which is easy to tra-
verse, modify and apply pattern matching to. ăis graph structure is what the pre- and post-
processing steps operate on — and what we convert MARS operator graphs to and from. ăe
rationale for having our own graph types is not only because we did not have access to MARS’s
source code, but we also wanted to emphasize that the optimizer is not necessarily tied toMARS
speciđcs.

3.2.2 Pre-/post-processing vs Plan Generation

ăe unoptimized query enters the optimizer in the upper edge of Figure 3.1, going straight
into the pre-processing step. We have chosen to call the rewrite steps pre- and post-processing
as they happen before and aĕer the main step: Cost-based plan generation, also called the
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search phase. ąe distinction between pre-/post-processing and plan generation is very important.
While pre-/post-processing is transformative and linear and not costmodeled, plan generation
is constructive and combinatorial and cost modeled. In other words, pre-/post-processing ap-
plies matching rules successively, generating a (mostly) linear chain of equivalent query graphs.
It may generate several equivalent, rewritten plans during processing, but the number will be
far less thanwhat plan generation does. Plan generation searches for the cheapest plans by com-
bining operators in many different ways, resulting in possibly many millions of smaller plans
that are retained in memory, all sub-problems of the complete query.

Since the plan generation step is more computationally expensive and memory intensive
than pre/post-processing, this should motivate us to try and do as much as possible in pre-
/post-processing and only do what is strictly necessary in the plan generation step. Adding
unnecessary search rules to the plan generation step will increase the size of the search space
unnecessarily and increases memory usage and query optimization time. However, optimiza-
tion strategies/rules that need to have costs modeled will usually have to be included in the
plan generation step. For most queries, it is expected that the bulk of the time will be spent in
the plan generation step.

3.2.3 Optimization Steps

In the pre-processing step, transformations like view Ĕattening or predicate push-down or
pull-up [LM94] are performed. Rewrites are done by applying transformation rules that are
triggered when the transformation rule’s pattern matches the input query graph.

Aĕer pre-processing, the operator graph is passed on to the plan generationƲ step. Plan
generation is the step that we traditionally perceive as query optimization. It reorders opera-
tors, enumerating many plan alternatives, all the way evaluating and pruning them using the
cost model. Internally, the plan generation step consists of three phases: (1) preparation, (2)
search and (3) reconstruction. ăe preparation phase prepares for constructive plan genera-
tion. It analyzes the operator graph and instantiates applicable constructive rules and conđg-
ures them. ăis includes looking up the possible useful access paths for the query and preparing
the orderings and groupings component.

ăe logical operators in the query are also examined to determine the logical goal of the
query, which is what our construction based optimizer uses as its starting point. If the query is
a multi-query, this is done for each query in the multi-query. ăe goal is expressed as a query
goal property set. Examples of properties in this set include “attribute X available” and “op-
erator Y applied”, but can be modeled to express anything. Each instantiated rule also have
Required and Produced property sets which are also determined during this phase. Property
sets are explained in Section 3.6.1. ăe Required property set describes operator dependen-
cies in addition to what sort of input it requires, while Produced describes what the operator
produces. ăese property sets in combination with their rules are all the optimizer uses. ăe
query graph itself is disposed of and not used during the search phase.

ăe search phase is the heart of the optimizer and is where the actual cost-based planning
is performed. A top-down, recursive strategy is used where the constructive rules control the
direction of the search. Basically, solutions to sub-problems are combined into solutions of
larger problems and đnally the whole query, but in a top-down fashion. Memoization is used
to avoid duplicate work and cost dominated plans are pruned along the way.

Aĕer the search phase has determined the best plan, the reconstruction phase translates
the plan structure back into the node structure used by the post-processing step. ăis is carried

Ʋăe plan generator is the component carrying out the plan generation step, while the query optimizer is the
complete optimizer.
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out recursively by the rules themselves.
As Figure 3.1 illustrates, the cost model is an external component and not internal to the

planner. Both the rules and planner have a well-deđned interface to the cost-model, which
allows for custom and extensible cost model implementations. More on this in Chapter 4. To
keep track of different plans’ useful orders and groupings an ordering and grouping compo-
nent is used. In short the optimizer asks the ordering/grouping-component if an input plan
satisđes a certain ordering/grouping, for instance when inserting a MergeJoin operator. If not,
it can choose to add a sort operator. How this works is quite complicated, so Chapter 6 is
dedicated to it.

ăen, the planned query is post-processed. ăis is similar to pre-processing, but on phys-
ical algebra and typically, other types of rewrites are performed.

Lastly, the optimizer’s graph structure is converted back to a MARS query graph, and the
query continues in MARS’ processing chain, most likely directly to evaluation. ăis is done
outside the optimizer itself, by the MARS-component that invokes the optimizer.

3.3 Node Structure

ăe optimizer needs to work with query graphs in memory, and therefore needs a data struc-
ture to model such graphs. We considered directly operating on the MARS graph of operators
implementing the IOperator interface found in MARS, but abandoned this since we wanted to
be able to extend each node in the graph with custom properties needed in optimization. If
we were to use the classes fromMARS, we would need to extend each of the different operators,
which would be neither extensible nor maintainable. Instead, we implemented our own Node
and OperatorNode classes to model the graph, shown in Listing 3.1. Using a separate class also
makes it easier to test the optimizer separately fromMARS—or to later on use the optimizer in
another product. ăe Node-class is the base for several different graph structures, such as graph
patterns and transformation chains described later on.

When a query is received from MARS, it will be handed to the optimizer as an IOperator
graph. ăe optimizer traverses this graph from the root and translates it into a graph of Op-
eratorNodes. OperatorType is set, parent and children relationships retained and all readable
properties are copied into the Properties dictionary. When the optimization is complete, the
OperatorNode graph is be translated back to a MARS IOperator graph.

3.4 Operator Dependency- and Equivalence Mapping

When optimizing queries, we want asmuch freedom as possible with regard to how andwhere
we can move operators around. However, when doing so, we must be careful not to alter the
semantics of the query. In short, if we model dependencies too stringent, we lose out on op-
timization opportunities — if they are too loose, the size of the search space explodes and/or
semantics can be altered.

Figure 3.2 shows two quite simple query graphs. ăe Trim-operator reduces the number
of tuples to the speciđed amount. In SQL, the query could have been SELECT … FROM a JOIN
b ON (…) JOIN c ON (…) LIMIT 10. To achieve the optimized query, the dependencymapping
is quite involved. First of all, we cannot say that joins depend directly on their input — if we
do, we cannot pull out A and join it aĕer B and C , because the đrst join of the input would
have depended on both A and B as inputs. Furthermore, the trim needs special attention. To
be able tomove the join ofA above the trim, wemust be certain that the join does not alter the
amount of tuples — if it did, the semantics of the query would have been altered, as we could
have yielded more than 10 results. To be able to guarantee that moving the A-join as shown in



36 Chapter 3. Design and Implementation

1 public class Node {
2 public List<Node> Parents { get; private set; }
3 public List<Node> Children { get; private set; }
4 public Dictionary<string, object> Properties { get; set; }
5
6 public object this[string name] {
7 get { return Properties[name]; }
8 set { Properties[name] = value; }
9 }

10
11 public IEnumerable<Node> GetTopologicalOrdering() { ... }
12 public virtual Node CloneNodeAndSubgraph() { ... }
13
14 // And so on. There are many utility methods for various graph operations.
15 }
16
17 public class OperatorNode : Node {
18 public Type OperatorType { get; set; }
19 public List<IRule> Rules { get; set; }
20 public Dictionary<string, NodeAttribute> AttributeOrigin { get; set; }
21 public HashSet<NodeAttribute> Dependencies { get; set; }
22 public IRecordSetTypeDescriptor OutputTypeDescriptor { get; set; }
23
24 public NodeAttribute OriginForAttribute(NodeAttribute attr) { ... }
25
26 // And various other properties and methods.
27 }

Listing 3.1: Node and OperatorNode classes (very simpliđed)
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Figure 3.2: Simple Query Graphs with Advanced Dependencies
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Figure 3.2b does not alter the amount of result, theremust be a foreign key toA on the join key
— so we are guaranteed that there is a 1:1-mapping between the relations. ăis information
about relations is not readily available in MARS today, however, so we are currently unable to
implement this optimization.

Dependencies are also used to constrain movement of outer join operators. Unlike inner
joins, outer joins are not freely reorderable, so we need to “lock” them to be above or below the
conĔicting join. We cover this in Section 8.5.4.

Section5.2.1 explainshow thesemappings are performed in their respectivepre-processors.
However, it is important to note that the mappings are entirely speciđc to the operators— the
optimizer core’s only responsibility is to invoke the mapping in the correct order.

3.5 Pre- and Post-Processing

Pre- and post-processing are mainly about query rewriting, but may also perform other tasks,
like tagging the operator graph with information to be used later. In the pre-processing step,
transformations like view Ĕattening, sub-query merging/Ĕattening, predicate push-down or
pull-up [LM94]ordifferent join transformations (like ([NOT]ANY|EXISTS)→ (SEMI|ANTI)JOIN)
are carried out. Other transformations that are “always smart to perform” are also carried out.
Transformations removing unnecessary nodes can also be useful, as it reduces the running time
of plan generation. Pre-processing operations that tag the nodes with auxiliary information for
other processors and/or rules are also used.

Pre-processing does not necessarily result in a completely linear chain of transformations,
as rewrite rules can generate several semantically equivalent operator graphswhichdiffer greatly
in optimal cost aĕer plan generation. For example, the query SELECT max(age) FROM foo and
SELECT age FROM foo ORDER BY age DESC LIMIT 1 are equivalent — but the pre-processor
cannot tell which one is cheapest. As [Neu05] explains, supporting such rewrite alternatives
poses a challenge. Each alternative could be provided to the plan generator for full plan gen-
eration, but this is inefficient. ăey will probably overlap fairly much, which means that a lot
of double work will be performed. [Neu05] suggests that the best approach is probably to have
the rewrite steps during pre-processing not generate completely new operator expressions, but
annotate parts of the existing expressions with alternatives. We have not had time to study
these possibilities in depth.

Post-processing works on physical algebra. It is the last chance to alter the query graph
before it is passed on for execution. Examples include merging of successive selections, maps,
trim and sort and so on. Optimizations that do not need cost modeling and can be done inde-
pendently from plan generation, should be considered for inclusion in pre- or post-processing
to keep the search space size in plan generation down.

ăe processing is driven by a collection of rules that declares a Pattern it is looking for in the
operator graph. When a pattern match is found, the processor’s Fire()-method is invoked with
the graphmatch(es), close to what was done in Starburst [PHH92]. Fire returns a boolean that
indicates whether changes have been made to the graph. ăis way, non-transformation rules
can be implemented in the same way as transformation rules — they just add information to
the graph instead of altering it in the Fire method.

ăe interface for transformation rules is shown in Listing 3.2. For an explanation of how
to express patterns, and what GraphSearcher is, see Section 3.8 on graph matching.

We recognize the need of someway of controlling the order of the applied transformations
if multiple matches are found. At the same time, we want as few dependencies between the
rules as possible. ăerefore, each rule is allowed to expose a DependsOn property, listing the
rules that should be run before this rule. At start up, all rules are topologically sorted by the
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1 interface ITransformationRule {
2 AbstractNodeMatcher Pattern { get; }
3 bool Fire(GraphSearcher graphSearcher);
4 IEnumerable<Type> DependsOn { get; }
5 bool Iterative { get; }
6 }

Listing 3.2: ITransformationRule interface

1 public void Transform(Node root) {
2 // ... declarations ...
3 do {
4 graphHasChanged = false;
5 foreach (ITransformationRule transformer in TransformationChain) {
6 if (completedTransformationRules.Contains(transformer))
7 continue;
8 GraphSearcher matcher = transformer.Pattern.GetSearcher();
9 if (matcher.Search(root)) {

10 graphHasChanged |= transformer.Fire(matcher);
11 if (! transformer.Iterative)
12 completedTransformationRules.Add(transformer);
13 }
14 }
15 } while (graphHasChanged);
16 }

Listing 3.3: Transform method

optimizer and serves as a foundation for rule invocations. We have not had need for it yet,
but it is also easy to implement having a Precedes-attribute that declares which transformers
should be run aěer. Any cycles in the dependency graph is clearly a development error — in
which case an exception is thrown.

Each rule may be appliedmore than once. For example, a rule merging two adjacent nodes
may be run twice to merge three adjacent nodes. ăe optimizer successively applies rules until
the graph converges to a đnal stable result. If the rule returns true for Iterative, the optimizer
will continue invoking the rule until the graph stabilizes. ăis approach should be avoided,
but is preferred if it greatly simpliđes the rule’s pattern and/or transformations. Care must
also be taken to avoid a “ping-pong” situation where the graph is transformed back and forth.
Listing 3.3 shows how the transformers are successively invoked.

Implementations of a few pre- and post-processors are covered in Section 5.2

3.6 Plan Generation

ăedesign of the plan generation step is based on the work in [Neu05] and [NM08]. Many of
the design principles described in this section are close to what is described in these twoworks.
Instead of repeatedly citing these twoworks, we point out when our design differs signiđcantly
from theirs. However, we claim to have produced a few improvements to the design. ăese are
detailed in Section 3.6.7.

In the plan generation phase, each rule constructs one part of the query. Each rule usually
represents one logical operator, but it does not have to — it can be used to construct more
than one operator (e.g. Join, which can create the different join operator implementations).
Each rule appliance creates a plan that is a solution to a sub-problem of the whole query, and
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1 public OperatorNode Optimize(OperatorNode query) {
2 // Initialize managers.
3 BitSetManager = new BitSetManager();
4 OrderManager = new OrderManager()
5 // Preprocess the graph.
6 Preprocess(query);
7 // Find and instantiate rules.
8 InitializeRules(query);
9 // Prepare bit sets.

10 DeterminePropertySetsAndPrepare();
11 // Determine share equivalence classes.
12 constructShareEquivalenceClasses();
13 // Find out the goals of the sub-plans.
14 DetermineGoals(query);
15 // All requested and produced orders have now been set. Prepare orders.
16 OrderManager.ShareEquivalentMappings = getShareEquivalentOrderings();
17 OrderManager.PrepareOrders();
18 // Instantiate the memoization table, using a rough estimate for entries.
19 plansCache = new Dictionary<BitSet, PlanSet>(BitSetManager.Count * 10000);
20 // Make plans for leaf-nodes, i.e. scans.
21 InitializeBasePlans();
22 // Go plan!
23 GeneratePlans(query);
24 // Convert plans back to nodes.
25 query = MakePhysicalPlan(query);
26 // Do any post processing.
27 Postprocess(query);
28
29 return query;
30 }

Listing 3.4: Query optimizer main method, simpliđed

đnally the complete query. Each plan can have a number of sub-plans, solving a sub-problem
of the plan’s problem — i.e. its input.

Listing 3.4 shows themainmethod of the query optimizer, somewhat simpliđed. It closely
resembleswhatwas described in Section3.2. First, a new BitSetManager andOrderManager is cre-
ated to handle the property sets and orderings for this query. ăen the query is pre-processed,
rules relevant to this query are initialized, property sets prepared, sharing (DAG) opportu-
nities found, goals determined, orderings and groupings prepared and base plans added, all as
part of the preparation phase. Next, the search phase starts with the call to GeneratePlans, before
the đnal plan is reconstructed, post-processed and returned.

To be able to illustrate how the plan generationworks, we now introduce a simple query. It
is a simple join of two relationswith a selection on an attribute of the second relation, expressed
in SQLbelow. Figure 3.3 shows how this querymight be passed to optimizer for optimization.
ăe topmost operator is MARS’ output operator.

1 SELECT * FROM A
2 JOIN B ON A.a1 = B.b1
3 WHERE A.a2 = 8

In this simple query, theonly optimizationpossible is probably topush the selection through
the join, provided that the predicate is not very expensive or the join very selective. Still, it
serves as a good example.
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Figure 3.3: Sample query

Id Type Requires Produces

1 Lookup:A a1,a2
2 Lookup:B b1,b2
3 Join L:a1 R:b1 ◃▹
4 Selection a2 σ

Table 3.1: Rules and produced-/required sets

3.6.1 Property Sets

ăe plan generator produces many plans as solutions to sub-problems. In some way, it needs
a way to annotate these plans with what they actually output — attributes available, order-
ing, operators applied, relations involved and so on. ăis could be solved as a list of operators
applied and attributes available, but this is not very extensible. Instead, we use the model pro-
posed in [Neu05], where it is modeled as a set of general properties. Examples of properties
are “attribute X available” and “operator Y applied” — they can be used to express anything.
ăe plan generator does not know anything about their meaning, it only cares about satisfying
them during plan generation. It is up to the rule implementer to deđne their meanings.

Properties are also key to how the operator uses rules to construct plans. As our optimizer is
constructive, different combinations of rule instances are used to produce plans with different
properties. Each rule declares several property sets: A Produced set and a Required set for each
input. A rule usually produces that itself was applied and requires the attributes it operates on.
ăe required and produced sets for the example query in Figure 3.3 are given in Table 3.1. For
example, the join requires {a1} for its leĕ input and {b1} for its right, since the join predicate
includes these two attributes. It produces {◃▹}, i.e. that itself was applied.

ăe global query goal is the property set the đnal, complete query plan should satisfy. It
serves as the starting point for plan generation. It is computed as the union of the produced
sets of all the logical operators in the query. In the example query the global query goal is
{a1,a2,b1,b2,◃▹,σ}.

Implementation

[Neu05] does not explain how to identify the different properties in a concrete implementa-
tion. We propose to identify them by string constants, as this allows for arbitrary expressive-
ness. For example, properties for attributes and operator applied would translate to ”AT_X_Y”
(attribute Y from operator X) and ”AP_X” (operator X applied).

As such, eachproperty setwill be a set of strings. Eachplan, aswell as all ruleswould include
such sets. As the plan generator will produce potentially millions of plans, it is desirable that
the property set is as compact as possible to consume little memory. A set of strings is certainly
not compact. Also, as we will see, the search phase performs a lot of set operations like union
and intersection on these sets. ăerefore, we should optimize for this.

A key observation is that the universe of possible properties is determined before the search
phase begins. As [Neu05], we therefore assign a bit to each possible property and simply store
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1 public struct BitSet : ICloneable {
2 void Add(string property);
3 bool Contains(string property);
4 void Remove(string property);
5 bool Overlaps(BitSet other);
6 static bool operator ==(BitSet a, BitSet b);
7 static bool operator <=(BitSet a, BitSet b);
8 static BitSet operator |(BitSet a, BitSet b);
9 static BitSet operator &(BitSet a, BitSet b);

10 static BitSet operator -(BitSet a, BitSet b);
11 void Or(BitSet other);
12 IEnumerable<BitSet> Walk();
13 int GetHashCode();
14 bool Equals(Object other);
15 }

Listing 3.5: BitSet struct (simpliđed, interface only)

the property sets as bit masks. ăis allows us to store 8 properties in just 1 byte. See Sec-
tion B.5.1 for details. Further, this allows for very fast set operations, as set intersection is
simply a bit wise AND between two property sets, performed in just a few CPU instructions.
See Listings B.8 and B.9 in Section B.5.1 for code snippets showing how the intersection- and
subset operators are implemented.

ăe BitSet struct is the implementation of a property set (BitSet because of the storage
mechanism). Structs in C# are stored directly on the stack, not on the heap with a pointer
to it, allowing for faster access. Listing 3.5 shows the interface to the BitSet struct. We đnd
most of the usual operations for sets, including operators for set equality/inequality, union,
intersection and subtraction. ăe Or method allows for in-place union.

Worth noting is the Walk method that returns a sequence of BitSets. It returns all permu-
tations of the properties in the current BitSet and is used by the join rule, as we will see later.

To conserve space, each BitSet does not store the mapping string → bit index. ăat is the
responsibility of the BitSetManager class. How the Add-, Contains- and Remove methods use it is
shown in Listing B.6 in Section B.5.1.

BitSets are used as keys in the memoization table, and as such they also implement GetH-
ashCode and Equals.

BitSet Minimization

Another responsibility of the BitSetManager is BitSet Minimization. Oĕen, declared bit prop-
erties turns out to never be produced or never required and are therefore removed. Further-
more, if some properties are always produced together, they are merged into a single property
and represented with a single bit, saving memory and reducing the search space. We have only
implemented the latter, and the code can be found in Section B.5.2.

Proxy Technique

It may not be clear how an instance of a BitSet is acquired, since the BitSetManager will need
to know all the BitSets produced and required before it can minimize them, which again need
to happen before any BitSet instances can be produced. ăerefore, when acquiring a BitSet by
specifying a set of string properties, one does not get a BitSet, but a BitSetProxy as shown below
(simpliđed).
BitSetProxy BitSetManager::GetBitSet(HashSet<string> properties)
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A BitSetProxy is a simple class which serves just one purpose; acting as a proxy for the BitSet
requested. More speciđcally, when requesting a BitSet, the BitSetManagerwill return a BitSetProxy
with Properties set to the requested properties, but with the BitSet property empty. It will also
keep references to all returned proxies. Later, when all rules have requested their BitSets and the
manager hasminimized them, it will iterate over all the proxies and update the BitSet property
with the appropriate BitSet.

ăis is muchmore elegant than having a two-phase approach to BitSet acquisition and does
not affect performance adversely since the number of proxies is quite low — it is the number
of calculated, intermediate BitSets during plan generation that is high.

3.6.2 Other Properties

When dealing with sub-plans, there are other properties that need to be considered than their
produced bit set or raw cost. Costs are just half the story— properties such as ordering, group-
ings, and sharing are examples of others. Keeping plans that allow more sharing even though
they are more expensive, is key to đnding plans that are globally optimal.

When taking this into consideration, there is seldom such a thing as a “best” sub-plan.
One sub-plan may be more expensive than another one, but may offer a more useful ordering.
ăerefore, the plan generator oĕen needs to retain multiple plans satisfying the same proper-
ties. Although orderings, groupings and the like can be expressed as bit properties, we need
more reasoning capabilities than they offer, and the representation we will present is also more
compact. Costs are discussed in Chapter 4, sharing in Section 3.7, while orderings and group-
ings are covered in depth in Chapter 6.

When dealing with ranked queries, ranking properties may also be interesting to track, but
we have not studied this in depth.

3.6.3 Data Structures

Memoization Table

To avoid solving the same sub-problem more than once, the plan generator memoizes solu-
tions to problems solved using a hash table. A set of properties uniquely identify a problem as
previously discussed, so BitSet is used as key in the table. Since multiple plans can satisfy the
same properties (they can have different orderings or not dominate each other in other ways),
each table entry stores a PlanSet, not a Plan. ăis table is the primary memory consumer in the
optimizer, but our testing has discovered that it is in the area of up to 50 MiB for moderately
sized queries (7–8 relations).

ăe memoization table is declared in C# as a Dictionary<BitSet, PlanSet>.

PlanSet

Multiple plans satisfying the same properties are organized in a PlanSet, which contains data
common to the plans. As such, a PlanSet can be viewed as a container for the solutions to a
sub-graph of the entire solution operator graph (the equivalent for trees would be a branch).
For example, a PlanSet containing plans (or actually the single plan in this case) that have only
applied the selection in the example query earlier in this section would have the properties
{b1,b2,σ}.

PlanSet prunes dominated plans whenever they are added. ăereby, the set will never con-
tain any plan dominated by any other plan (e.g. in terms of cost, sharing and ordering), and
hence the optimizer will never store such plans.
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1 public class PlanSet : IEnumerable<Plan> {
2 private List<Plan> plans = new List<Plan>();
3 public BitSet Properties { get; set; }
4 public IPlanSetState State { get; set; }
5
6 public void AddPlan(Plan planToAdd) {
7 // Simplified: Add plan to PlanSet if not dominated by existing
8 // plans in the set, removing any plans it dominates.
9 }

10 internal Plan GetCheapest() { // Simplified: Return cheapest plan. }
11 }

Listing 3.6: PlanSet class (simpliđed)

1 public class Plan {
2 public Plan(params Plan[] children);
3
4 public PlanSet PlanSet { get; set; }
5 public IRule Rule { get; set; }
6 public List<Plan> Children { get; set; }
7 public OrderingState OrderingState { get; set; }
8 public ICost Costs { get; set; }
9 public BitSet Sharing { get; set; }

10 public bool Shared { get; set; }
11
12 public PlanRelation Compare(Plan other);
13 public PlanRelation CompareTotal(Plan other);
14 }

Listing 3.7: Plan class (simpliđed, public interface only)

ăe data structures and methods are shown in Listing 3.6. ăe list plans contains all the
plans currently stored. Properties stores the set of properties satisđed by all the plans in the set.
State stores the logical state common to the plans, as deđned by the costmodel (e.g. cardinality
and tuple size). Finally, theGetCheapestmethod is used by the optimizer to get the cheapest plan
in the set when constructing the đnal plan in the reconstruction phase.

Plan

ăe Plan class represents a concrete plan that satisđes the properties of thePlanSet containing it.
Concrete in the sense that it has physical operators, an actual order of the operators and thereby
an estimated cost. It actually represents the topmost node in the plan, containing references
to its sub-plans. It is as compact as possible, as potentially many millions will be created and
references the creating rule for the details needed when reconstructing it to an operator graph.

ăe PlanSet property contains a reference to the enclosing PlanSet, while Rule contains
the rule that constructed this plan. ăe list Children contains all sub-plans of this plan, listed
from leĕ to right. For example, for a two-way join, this list contains the leĕ and right input
to the join. OrderingState contains the logical ordering and grouping state of the plan and is
explained in Section 6.2.5. Rules/operators affecting the order (like the example above) will
update this property to reĔect it, while rules/operators requiring some order can consult it
to đnd out if it is satisđed. If not, they can explicitly insert a sort operator. Costs stores this
plan’s costs, as explained in Section 4.4.1. Sharing stores sharing opportunities (for DAGs),
while Shared stores if this exact plan is shareable. ăis is covered in Section 3.7. ăe Compare
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1 public interface IPlanSetState { }
2 public class BasicPlanSetState : IPlanSetState {
3 public double Cardinality { get; set; }
4 public double TupleSize { get; set; }
5 public double ResultSetSize { get{ return Cardinality * TupleSize; }}
6 }

Listing 3.8: BasicPlanSetState class (simpliđed)

and CompareTotal methods enable the optimizer to compare plans based on cost, sharing and
ordering.

PlanSetState

To be able to calculate costs, the cost model needs some state information common to all plans
satisfying a set of properties. ăerefore the PlanSet stores an instance of IPlanSetState. It is up to
the cost model to deđne what it wants to store, so the deđnition of IPlanSetState is empty. ăe
optimizer core does not care about it contents.

For our simple cost model, we model the plan set state with the BasicPlanSetState class. For
each set of plans satisfying the same set of properties, we keep track of the expected cardinality
and tuple size. It is logical that all plans producing the same result will have the same cardinality
and tuple size; otherwise the techniques used for estimating these sizes would be broken.

3.6.4 Preparation

ăepreparationphase of the plan generation stephas several responsibilities and this list closely
resembles the code in Listing 3.4.

Instantiate applicable constructive rules. ăe input query operator graph is analyzed, and
any rules found to be relevant will be instantiated.

Conđgure rules. ăe rules instantiated in the previous step are conđgured. ăe Produced and
Required properties are set, and any other properties speciđc to the rules are set. For
example, the selectivities of joins and selection predicates are looked up and set using
statistics. For the example query introduced in Figure 3.3, Table 3.1 shows the instanti-
ated rules and their Produced and Required properties.

Minimize bit properties. As described in Section 3.6.1, bit properties are minimized during
this phase.

Construct share equivalence classes. ăeconstructive rules are comparedwith respect to share
equivalence and all share equivalent rules are gathered in equivalence classes.

Determine goals. For each query (the query can be a multi-query), the logical operators in
the query are examined to determine the logical goal of the query. ăis is what our con-
struction based optimizer uses as its starting point.

Prepare orderings. At this step, all rules have determined their produced and required order-
ings, so the order manager is told to generate the đnite state machine to be used during
plan generation.

Initialize memoization table. ăememoization table is initializedwith an estimated number
of entries.
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Look up access paths. ăe possibly useful access paths for the query is looked up using the
system catalog. For example, if a query is found to access relation A, table- and index
scans rules are added for A and their expected tuple sizes and counts are looked up. If the
query includes a selection, it can also choose to combine an index scan and the selection
in one rule.

Add base plans. Base plans are plans produced by IBaseRule rules as described in Section 5.3.1.
Base rules are rules representing table and index scans. ăey produce properties, but
have no requirements. As such, base plans are usually the leaves of the operator graph.
ăey are computed and entered into the memoization table before the search phase be-
gins, as they do not provide search facilities, they only serve as a foundation to the plans
generated.

3.6.5 Search

Introduction

ăe search phase of plan generation is the heart of the optimizer, and is where the actual cost-
based planning is performed. A top-down, recursive strategy is used where the input to each
recursive call is a property set to be satisđed, the local goal. ăe signature of the main method
of the search phase, GeneratePlans, is as follows:
public PlanSet GeneratePlans(BitSet goal, ICost limit);

When called, it will generate the best plans that satisđes the BitSet speciđed for goal, the
local goal. More than one plan can be returned (e.g. due to different orders). limit is used for
cost-based pruning, aborting the search as soon as the cost reaches limit. As such, time is not
spent on constructing plans that is guaranteed to be dominated by another plan. It returns a
PlanSet with the best plans found for the given goal and cost limit. Any dominated plans have
been pruned before the call returns.

Initially, the search is started with a call to GeneratePlanswith the query goal, as determined
during the preparation phase, supplied as the local goal. If the query is a multi-query, Gener-
atePlans is called once for each query in the multi-query. InĖnity is supplied for limit, as we
have no limit yet. ăis could be improved with heuristics — a better initial limit, such as the
cost of the input query.

Currently, we do not actively use the limit pruning as described above, since it was a bit
more complex than we anticipated. It is not as simple as using the cost of the cheapest plan
found so far as a bound, since a plan that is more expensive could offer better ordering or more
sharing. For orderings it is as simple as setting the limit to the cost of the cheapest plan + the
cost of a sort (since a sort can satisfy all orderings and groupings). For sharing it is not so clear,
since it is hard to know beforehand how many times a plan will be reused.

ăe plan generator does not call itself recursively, but leaves this to the search rules. Gen-
eratePlans determines which rules are applicable and tries to use each of them to produce the
requested goal. ăe rules themselves control the direction of search and call back to the plan
generator, requesting solutions to sub-problems (subset of properties) as their input. Basically,
GeneratePlans invokes the search rules, which in turn call GeneratePlans for their inputs. A very
simpliđed version of our simplest search rule, the rule for creating selections, is shown in List-
ing 3.9 (the implementation is actually in UnaryRule, which SelectionRule inherits from).

If GeneratePlans đnds that the SelectionRulemay be used to produce a requested goal, it will
call the Search method, asking the rule to produce plans with this goal, as set in the properties
of plans, passed to the rule. ăe selection rule solves this by again requesting GeneratePlans to
produce plans with the requested properties minus what the selection itself produces. ăen
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1 public override void Search(PlanSet plans, ICost limit) {
2 foreach (Plan input in qo.GeneratePlans(plans.Properties - Produced, limit)) {
3 Plan selectionPlan = new Plan(input) { Rule = this };
4 plans.AddPlan(selectionPlan);
5 }
6 }

Listing 3.9: SelectionRule.Search(), very simpliđed (actually UnaryRule.Search())

it iterates over the received plans, adding itself as the top node of each of them. All of these
plans are added to the supplied PlanSet, thereby returning them to plan generator. Note that
any dominated plans are automatically pruned inside the AddPlanmethod, so no plan found to
be dominated in terms of cost, ordering and sharing will be stored and used later in the search,
effectively decreasing the size of the search space.

ăis effectively tries to add the selection to the top of any produced plan where it can be
(its Required propertiesmust be fulđlled). For example, a selection can not be put in a location
where its đlter attributes are not available. ăis is handled by GeneratePlans—a rule will not be
invoked if it cannot be used.

To speed up the search, the optimizermemoizes solutions to sub-problems (actually partial
query plans) with the property set produced by the plan as the memoization key. ăus, if the
same sub-problem (the same property set) is requested from GeneratePlans twice, it will only be
computed once. ăis reduces the complexity from approximately factorial (n!) to exponential
(an).

Implementation

Listing 3.10 shows the implementation of GeneratePlans. First, on lines 4-5, the memoization
table is consulted. If an entry is found for the speciđed goal, it means we have solved this prob-
lem before, andwe just return the PlanSet stored in the entry. Next, a sanity-check is performed
on lines 8-9 to determine if we can actually reach the requested goal with the rules available
for use. ăis is explained below. If we cannot reach the goal, we store this in the memoization
table as null and return null, as no plans can be generated. Memoizing this result is one of our
proposed improvements to the implementation in [Neu05].

If we have reached this far, we know that we can construct plans, so we create a new PlanSet
with properties set to the current goal on line 11. ăen comes the part where DAGs are being
constructed as described in Section 3.7. On line 14, it is checkedwhether the goal being sought
can be completely rewritten to another, share equivalent goal. If so, a search for this rewritten
goal is invoked on line 15. We use inĖnity as the cost limit as the shared plan is allowed to
be more expensive, since it allows for more sharing. ăis limit can probably be improved for
better pruning, though. Finally, if this search returns any plans, they are added to the current
plan set on line 18.

ăen, in the loop on lines 22-24, we try to apply all search rules, but only if it is relevant
to the goal (have its requirements satisđed and produces a relevant property for the sought
goal). We call ISearchRule.Search, supplying the plan set to which plans are to be added, and the
cost limit. ăe rule will đnd the properties being sought in the plan set. Finally, we store the
generated plans in the memoization table and return them.

ăe full, unsimpliđed version of GeneratePlans can be found in Section B.4.
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1 public PlanSet GeneratePlans(BitSet goal, ICost limit) {
2 PlanSet plans;
3 // If we already have a plan that satisfies the goal, return it.
4 if (plansCache.TryGetValue(goal, out plans))
5 return plans;
6
7 // Check if we can reach this goal with the current rule set.
8 if (GoalIsUnreachable(goal))
9 return plansCache[goal] = null;

10
11 plans = new PlanSet() { Properties = goal };
12 // Rewrite using share equivalent representatives.
13 BitSet shared;
14 if (ShareEquivalentGoal(goal, out shared)) {
15 PlanSet sharingPlans = GeneratePlans(shared, BasicCost.Max);
16 if (sharingPlans != null)
17 foreach (Plan plan in sharingPlans)
18 plans.AddPlan(plan);
19 }
20
21 // Invoke search rules.
22 foreach (ISearchRule searchRule in searchRules)
23 if(searchRule.IsRelevantTo(goal))
24 searchRule.Search(plans, limit);
25 // TODO: Try to *lower* the limit-parameter for GeneratePlans, the problem being sharing.
26 return plansCache[goal] = plans;
27 }

Listing 3.10: QueryOptimizer.GeneratePlans(), simpliđed

1 private bool GoalIsUnreachable(BitSet goal) {
2 BitSet mask = BitSetManager.Empty;
3 foreach (IProducerRule producerRule in rules)
4 if (producerRule.Filter <= goal)
5 mask |= producerRule.Filter;
6 return mask != goal;
7 }

Listing 3.11: GoalIsUnreachable()

Rule Filters

ARule Ėlter is a relevancy check to verify if a rule is relevant to the goal being constructed. Each
IProducerRule offers a property Filter that is usually the union of its Produced and Required
properties. ăe Ėlter must be a subset of the goal being constructed to be relevant. ăis is why: If
its Produced property set is not a subset, the rule is useless. If itsRequired property sets are not
subsets, the rule does not apply (requirements are not satisđed).

ăerefore, before we start constructing a plan, we check if any combination of rules can
construct the goal properties. If we did not do these checks, the time complexity of the search
phasewould bemuch greater, sincewewould be doing lots of unnecessarywork. ăe algorithm
can be seen in Listing 3.11.

Planner Interface for Orderings

ăe above discussed implementation of GeneratePlans does not produce plans with any spe-
ciđc ordering or grouping. Some rules, like MergeJoin, may want to request plans with a cer-
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1 public PlanSet GeneratePlans(BitSet goal, ICost limit, Order order, IRule enforcer) {
2 PlanSet plans = GeneratePlans(goal, limit);
3 if (plans == null)
4 return null;
5 Plan planWithSort = new Plan(plans.GetCheapest());
6 enforcer.UpdatePlan(planWithSort);
7 plans.AddPlan(planWithSort);
8 return plans;
9 }

Listing 3.12: QueryOptimizer.GeneratePlans() with ordering, simpliđed

tain ordering. Also, the Output operator will request a plan with a certain ordering if the query
speciđes an output ordering. ăerefore, the plan generator also includes an overload to Gener-
atePlans which will produce plans with a requested ordering.

Listing 3.12 shows its implementation. In addition to the usual arguments, it also takes
an order that the plan should satisfy and an enforcer rule (which in most cases will be a Sort
rule) the plan generator can apply to produce the requested ordering. It works by calling the
usual GeneratePlans method, but will aĕerwards fetch the cheapest plan from the results and
add the enforcer rule get at least one plan with the requested ordering. Note that currently, the
order parameter is not used since PlanSet will handle the pruning automatically. However, it
is still there for interface completeness.

Sample Search

ăe top two rules in Table 3.1 are the instantiated base rules for our sample query, while the
bottom two are the instantiated search rules. Assuming the selection rule is applied đrst, the
plans shown in Figure 3.4 are generated during the plan generation phase.

ăePlanProperties column lists the properties produced by the plan, while theEnterOrder
and Exit Order shows the order in which the plan generator starts constructing the plan and
when it đnishes. Plans within other plans in the Plan column means that they are sub-plans.
ăe plans are ordered by time of completion.

ăe two top plans are base plans initialized during the preparation phase. First the plan
generator uses the selection rule to produce the goal, {a1,a2,b1,b2,σ,◃▹}, by starting the con-
struction of plan 4. ăis again triggers the construction of plan 3 by using the join rule. ăe
join rule will đnd its inputs (the base plan) in thememoization table as they were added during
preparation. When đnished, plan 3 becomes a sub-plan of plan 4. ăen, it tries to construct
the goal by using the join rule instead of the selection rule, thereby starting the construction
of plan 6, which triggers the construction of plan 5, which when đnished becomes a sub-plan
of plan 6. Both plans 4 and 6 are complete plans, but in this case, plan 6 is chosen because of
lower cost (not shown). Note that the selection put itself on top of two plans — the base plan
and the join plan, effectively producing all possible plans.

Binary Rules

To give a short taste of how a binary operator might be implemented, we have included a very
simpliđed version of our join rule in Listing 3.13. ăe full implementation can be found in
Section 5.3.9. ăe rule works by determining all the properties that either of its children must
satisfy. ăis is wantedProperties = Requested properties - (Produced | RequiredLeft | Re-
quiredRight). ăen these properties are distributed between the leĕ and right sub-plan in all
possible ways, plans requested from the plan generator and added to the plan set.
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Figure 3.4: Plans generated for the query in Figure 3.3. ăe đnal plan is highlighted

1 public override void Search(PlanSet plans, ICost limit) {
2 BitSet wantedProperties = plans.Properties - (Produced | RequiredLeft | RequiredRight);
3
4 foreach (BitSet left in wantedProperties.Walk()) {
5 BitSet right = wantedProperties - left;
6 foreach (Plan leftPlan in qo.GeneratePlans(RequiredLeft | left, limit)
7 foreach (Plan rightPlan in qo.GeneratePlans(RequiredRight | right, limit)
8 plans.Add(new Plan(leftPlan, rightPlan));
9 }

10 }

Listing 3.13: JoinRule.Search(), very simpliđed
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1 public override Node BuildAlgebra(Plan plan) {
2 Node newNode;
3 // Check if we have already constructed this plan
4 if (queryOptimizer.ReconstructionTable.TryGetValue(plan, out newNode))
5 return newNode;
6
7 // Call recursively
8 Node input = plan.OnlyChild.Rule.BuildAlgebra(plan.Children[0]);
9

10 // Create node
11 newNode = new Node() { OperatorType = plan.Rule.Node.OperatorType };
12 newNode.Children.Add(input);
13
14 // Store in reconstruction table
15 queryOptimizer.ReconstructionTable[plan] = newNode;
16 return newNode;
17 }

Listing 3.14: SelectionRule.BuildAlgebra(), simpliđed

3.6.6 Reconstruction

Aĕer the search phase completes, we are leĕwith a hierarchy of plans in thememoization table
that represents the optimal plan. ăe root plan (satisfying the query goal) will reference one or
more sub-plans, which againmay referencemore sub-plans. ăe reconstruction phase rebuilds
the operator graph from this plan hierarchy.

ăe plan generator itself is not involved in this step — it is leĕ up to the rules to enable
them to do whatever they want during this phase. ăis promotes extensibility. IRule, which all
constructive rules implement, offers the BuildAlgebramethod, which is responsible for building
the operator node for itself. Each plan in the plan hierarchy was also tagged with the rule
that produced it during the search phase. ăe plan generator starts the reconstruction phase
by calling BuildAlgebra on the rule that produced the root plan, passing the plan to it. ăis
rule is again responsible for calling BuildAlgebra on the rules producing its input plans. Since
the plan hierarchy may form a DAG, each rule may be asked to construct the same operator
node twice. ăerefore, during reconstruction, a Reconstruction table is used to just return the
previously constructed operator node. Finally, the completed operator node graph is returned
as the planned query.

Listing 3.14 shows the BuildAlgebra method for SelectionRule.

3.6.7 Improvements And Additions to Neumann’s Design

Multi queries. We have extended the design to handle multi-queries, including possible con-
struction of DAG-plans and globally optimal costing for multi-query.

Rewrite steps / Transformation rules. Wehave added transformation rules to enable pre-/post-
processing and query rewriting. ăis takes the solution from a plan generator to a full
optimizer. See Section 3.5.

Adaption of MARS’ algebra. We have adopted a design that was intended for a database to a
search engine with an unusually rich algebra.

Base plan sharing. By using the algorithms described in [Neu05], base plans (the leave nodes,
such as scans and index lookups) will not be shared as they are entered into the memo-
ization table under their own produced properties.
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We have made base plan sharing possible by entering share equivalent representatives
into the memoization table for all their share equivalent rules as well.

Leĕ-deep join enumeration. ăeimplementationof joins in [Neu05] and [NM08]only con-
siders bushy join plans. To show that the design is extensible, we wanted to implement
leĕ-deep plan enumeration. ăis is currently working and (unsurprisingly) performs
better in terms of time spent optimizing, but will result in suboptimal plans. See expla-
nation in Section 5.3.9

Dynamic rule discovery. Wehave added the rule bindermechanism for dynamic rule loading
by the optimizer, as described in Section 5.1.

Caching of unreachable plans. Oĕen, the optimizer is asked toproduce a plan that is not pos-
sible to create. In the referenced works, it is suggested that the Filter property should
always be used to đnd such cases. We propose to cache the result of the đlter check in the
memoization table for better performance. Quick performance tests indicate that for a
query with 9 relations, enumerating bushy plans, this yields a performance improve-
ment from 2.15s to 0.93s. See explanation of Listing 3.10.

Nicer implementation of BitSet (property set). Wehave implemented aproperty set that be-
haves like a set of strings (nicer toworkwith and debug), but still performswell and offer
compact bit mask storage. ăis is described in Section 3.6.1.

Visualization of query plans. We have implemented query plan visualization. ăe result can
be seen in Chapter 7.

Managed implementation in C#. Our implementation is in C# — a managed language, fo-
cusing on an extensible and clear implementation, utilizing features such as attributes
and interfaces.

Refactored interfaces. Some of the rule interfaces have been refactored (e.g. IProducerRule) to
allow for cleaner implementation. See description under Section 5.3.1.

We also have more improvements we have not had time to implement yet, see Section 8.3
and Section 9.1.

3.7 Share Equivalence and DAG Construction

So far, we have only slightly touched how DAG query plans are created. We now explain how
this happens, from concept to implementation.

3.7.1 Sharing and Share Equivalence

As the optimizer in [Neu05], our optimizer constructs physical DAGs. ăis means that it al-
lows operators to produce multiple logical query expressions simultaneously. For instance, for
the query in Figure 1.8a on page 18, the two joins between B and C are different logical ex-
pressions since they have different variable bindings to B and C . However, in Figure 1.8b the
join between B and C is shared and is producing both logical expressions. ăis can be done
since they differ only on variable bindings — they produce exactly the same result.

ăe plan generator must be able to recognize such possibilities for sharing, and must at all
times be on the lookout for plans that represents the same logical expressions and canbe shared.
To be able to recognize logical expressions that are equivalent, the concept share equivalence is
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introduced. Two expressions are share equivalent if one expression can be computed by using the
other expression and renaming the result [Neu05]. Renaming the result here refers to changing
the variable bindings.

Share equivalent expressions can range from entire queries to the smallest of sub-plans, and
can be used to share partial results at all levels. For example, consider the query SELECT * FROM
tree AS node JOIN tree as parent ON (node.parent_id=parent.node_id) — a self-join
of tree. ăis is a trivial example of how the scan of tree — a leaf node in the plan — could be
shared.

Another opportunity for DAG generation, one we have not had time to study, is adding
compensating operators when the input cannot be completely shared, but is close enough that
large parts can be reused. We give an example in the next subsection.

3.7.2 Share Equivalence for MARS’s Operators

Weneed a rule set to decidewhat operator expressions are share equivalent, andwenowquickly
cover what conditions must hold for expressions constructed withMARS’ operators to be share
equivalent, as shown in Table 3.2. δA,B means the renaming function for attributes from A to
B. ⃗G(A) is the grouping đelds of A, and ⃗A(a) is the aggregates.

Lookups provide the foundation as they are share equivalent if they lookup the sameword in
the same index. ăe remaining operators require share equivalent inputs and some additional
requirements: ScoreOccurrences, ONear/Near and Trim require equally set properties. Map and
Select require that the input attributes is mappable, while joins require that the join predicates

Lookup(index1, word1) ≡S Lookup(index2, word2)
iff index1 = index2 ∧ word1 = word2

ScoreOccurrences(A1..An, properties1) ≡S ScoreOccurrences(B1..Bn, properties2)
iff A1..n ≡S B1..n ∧ properties1 = properties2

ONear/Near(A1..An, properties1) ≡S ONear/Near(B1..Bn, properties1)
iff A1..n ≡S B1..n ∧ properties1 = properties2

Map(A, a = f(b)) ≡S Map(B, d = g(c))
iff A ≡S B ∧ δA,B(b) = c ∧ f ≡ g

Selecta=b(A) ≡S Selectc=d(B)
iff A ≡S B ∧ δA,B(a) = c ∧ δA,B(b) = d

Join(A,B, a⃗ = b⃗) ≡S Join(C, D, c⃗ = d⃗)
iff A ≡S C ∧ B ≡S D ∧ δA,B(a1..n) = c1..n ∧ δA,B(b1..n) = d1..n

Group(A, ⃗G(A), ⃗A(a)) ≡S Group(B, ⃗G(B), A⃗(b))
iff A ≡S B ∧ δA,B(G(A)1..n) = G(B)1..n ∧ δA,B(a1..n) = b1..n

Trim(A, offset1, hits1) ≡S Trim(B, offset2, hits2)
iff A ≡S B ∧ offset1 = offset2 ∧ hits1 = hits2

Table 3.2: Share equivalences for MARS’ operators
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1 bool ShareEquivalentRules(IProducerRule r1, IProducerRule r2) {
2 if (!r1 and r2 are structurally identical)
3 return false;
4 if (r1 is IBaseRule && r2 is IBaseRule)
5 return true;
6 reqRules1 = {r | r ∈ rules ∧ r.produced ⊆ r1.required}
7 reqRules2 = {r | r ∈ rules ∧ r.produced ⊆ r2.required}
8 if (!∀ i ∈ reqRules1 ∃ j ∈ reqRules2 : ShareEquivalentRules(i, j) ||
9 !∀ i ∈ reqRules2 ∃ j ∈ reqRules1 : ShareEquivalentRules(i, j))

10 return false;
11 return true;
12 }

Listing 3.15: ShareEquivalentRules, pseudo-code

are mappable. Group requires that the grouping đelds are mappable, the aggregates the same
and that the aggregate input is mappable.

For example, two expressions with a Select on top of a Lookup are share equivalent if the
selection predicates are equal (with attribute renaming taken into account) and the lookups
are share equivalent.

As a trivial example of how compensating operators can help, consider the requirements
for share equivalence between two Trim-operators with otherwise share equivalent inputs. If
one limits the number of hits to 20 and the other limits it to 10, they are not share equivalent
with the requirements of Table 3.2. However, for non-trivial plans, reducing 20 results to 10
is evidently cheaper than evaluating the entire sub-plan twice.

In practice, the plan generator uses the algorithm given in Listing 3.15 to compare two
rules for share equivalency. We have partially reverted to pseudo-code for the algorithms in
this section to save space. Here, being structurally identical means that they have the same
properties, joins the same join keys and so on. Structurally identical base rules are trivially
share equivalent. ăe last part checks whether there exits share equivalent inputs from r1 for
r2 and vice versa.

3.7.3 Equivalence Class Construction

During the preparation phase, aĕer all the rules for the query have been instantiated, the plan
generator analyzes the rule set to đnd share equivalent optimization rules using the previous al-
gorithm. As shown in Listing 3.16, it will iterate through all rules topologically (this is needed
because of the transitive attribute mapping process) and gather share equivalent rules in equiv-
alence classes. One representative is chosen for each class, and the EQClasses dictionary maps
the class representative to the class. It will also call MapShareEquivalentAttributes on each rule
to gather mappings for share equivalent attributes produced by the rules. ăen, equivalence
classes with only one member are removed, as no sharing can happen here.

Finally, a ShareEquivalenceMap is generated, mapping the produced bit properties of all
members in a class to the produced properties of the class representative.

For example, the query in Figure 3.5a has 10 operators, L0, L1, L2, L3, L4, L0 ◃▹5 L1, L3 ◃▹6 L4,
L1 ◃▹7 L2, G8, where Lmeans Lookup, ◃▹ Join and G Group. Intuitively, the lookups in the bottom
are pairwise share equivalent since they lookup the same word, hence L0 ≡S L3 and L1 ≡S L4.
ăe joins ◃▹5 and ◃▹6 have the same join predicate and joins share equivalent inputs, and hence
they are share equivalent: ◃▹5 ≡S ◃▹6. We have three equivalence classes, and we assume from
now on that L0, L1 and ◃▹5 was chosen as representatives.
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1 void ConstructShareEquivalenceClasses() {
2 EQClasses = new Dictionary<IProducerRule, HashSet<IProducerRule>>();
3 EQAttributeMappings = new Dictionary<NodeAttribute, NodeAttribute>();
4 foreach(rule ∈ GetRulesTopologicallySorted()) {
5 if (∃ (a,b) ∈ EQClasses : ShareEquivalentRules(a, rule)) {
6 b.Add(rule)
7 a.MapShareEquivalentAttributes(rule, EQAttributeMappings);
8 } else {
9 EQClasses.Add(rule, new HashSet() { rule });

10 rule.MapShareEquivalentAttributes(rule, EQAttributeMappings);
11 }
12 }
13 foreach ((a, b) ∈ EQClasses : |b| == 1)
14 EQClasses.Remove(a);
15 ShareEquivalenceMap = new Dictionary<BitSet, BitSet>();
16 foreach ((a, b) ∈ EQClasses) {
17 ShareEqRepr |= a.Produced;
18 foreach (rule ∈ b)
19 ShareEquivalenceMap.Add(rule.Produced, a.Produced);
20 }
21 }

Listing 3.16: Equivalence class construction, pseudo-code

3.7.4 Goal Rewrite

During plan generation, every time the plan generator is asked to build a goal, it will try to
rewrite the goal to use equivalence class representatives. We saw this happen as part of Gener-
atePlans in Section 3.6.5. From Figure 3.5a, if it is asked to produce L3 ◃▹6 L4 which is share
equivalent with L0 ◃▹5 L1 (and the latter are the representatives), it will rewrite the goal from
L3, L4, ◃▹6 to L0, L1, ◃▹5. ăis new rewritten goal is then used (in addition to the original goal)
to produce plans.

It is the method ShareEquivalentGoal in Listing 3.17 that performs the rewrite. Basically, it
tries to apply each mapping in the previously constructed ShareEquivalenceMap to the goal. If
the entire Ěom part is present in the goal, Ěom is replaced by to. Lastly, it checks whether it
was able to perform a complete rewrite (with the equivalence class representatives taken out,
since they would be rewritten to themselves), as the plan generator will only search for plans
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1 public bool ShareEquivalentGoal(BitSet goal, out BitSet sharedGoal) {
2 BitSet sharedGoal = goal;
3 foreach ((from, to) ∈ ShareEquivalenceMap)
4 if ((sharedGoal ∩ from) == from)
5 sharedGoal = sharedGoal \ from ∪ to;
6 return sharedGoal ̸= goal ∧ sharedGoal ∩ (goal \ ShareEqRepr) ̸= ∅;
7 }

Listing 3.17: Equivalence class goal rewriting, pseudo-code

1 plan.Sharing = left.Sharing ∪ right.Sharing;
2 if (left.Shared ∧ right.Shared ∧ This rule is eq. class representative) {
3 plan.Sharing ∪ = this;
4 plan.Shared = true;
5 }

Listing 3.18: Setting Sharing and Shared properties for plans, pseudo-code

using this new goal if it is a complete rewrite. If it is not, it means that not the complete sub-
problem is share equivalent, only that a smaller sub-problem is. In that case, a rewrite will be
tried and succeed later, when the plan generator is working on the smaller sub-problem that is
share equivalent. See Section B.3 for the full source code.

To see how this generates DAGs, consider the example with the two joins above which
exist in different parts of the same query. At one point, the plan generator will produce a plan
for L0 ◃▹5 L1 when working on this part of the query. ăe plan will be memoized with the
properties L0, L1, ◃▹5. ăen, when it is later asked to produce a plan for L3, L4, ◃▹6, this goal
will be rewritten to L0, L1, ◃▹5 and searched for. ăis will immediately yield a cache hit in the
memoization table and will return the same plan as for L0 ◃▹5 L1. ăe result is that the plan for
L0 ◃▹5 L1 now has two parent plans as can be seen in Figure 3.5b, and we have an in-memory
DAG which is later reconstructed to a DAG query evaluation plan.

Some care must be shown for base plans, however, since for example a search for L3 will
immediately yield a cachehit andnot trigger the rewrite procedure. Instead, rewrites are carried
out when the base plans are entered into the memoization table during the preparation phase.

3.7.5 Sharing Properties for Plans

We touched this when presenting the data structure for a plan, but we will now explain it more
thoroughly. ăe Sharing bit set for a plan stores how much of the plan is potentially share-
able. More speciđcally, each equivalence class representative will be assigned a bit in this bit
set, which will be set if the representative is shareable.

For example, in the previous example, the plan generator would set the sharing bit L0 for
the plan L0, but not for the plan L3. ăe plan L0 ◃▹5 L1 would have sharing bits for L0, L1 and
◃▹5. However, the plan L0 ◃▹5 (L1 ◃▹7 L2) would only have sharing bits for L0 and L1 as ◃▹5

cannot be shared. ăis is because onlywhole sub-problems can be shared—as the output from
◃▹5 also includes ◃▹7 in this case and cannot replace a share equivalent problem to ◃▹5.

To detect this last case, the Shared property is used. It says whether this exact plan is share-
able. Whenever a plan is constructed, two conditions must be satisđed for it to be shareable:
1) ăe rule constructing it is the equivalence class representative, and 2) all inputs have Shared
set to true. ăis is shown in Listing 3.18.

Storing sharing opportunities with the plans has two purposes. First, it is used when prun-
ing plans, as a plan only dominates another if it is cheaper and offers at least as many sharing
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opportunities and orderings. ăis can be determined by checking if the dominated plan’s Shar-
ing property is a subset of the dominator’s. Second, the cost model needs to know how much
of a plan is shared to correctly estimate the cost of it, as n reads of a plan do not imply n times
the cost if it is shared. It switches to a DAG-aware cost calculation if the Sharing properties of
the input plans for a rule overlaps. Also, if a plan that can be shared n times cost more than n
times another optimal plan, it can be pruned away.

3.8 Graph Pattern Matching

Graph patternmatching is the procedure of đnding a sub-graph in a graph thatmatches a given
pattern — such as “a MergeJoinOperator with at least one MergeJoinOperator child”. We use this
to declare patterns that trigger rules that transform the operator graph. ăe example pattern
(although in natural language) is used tomerge adjacentMergeJoinOperators—aĕer also check-
ing that the join predicate is the same, but this is leĕ out of the pattern to keep it simple. We
also use it in rule binders for constructive rules, which usually look for single operator nodes
to instantiate rules for. Rule binders are used for constructive rule initialization during the
preparation phase of plan generation, and is dealt with in Section 5.3.1. Patterns make it easy
for implementers of rules to declaratively express what they are looking for, instead of having to
code the search themselves. In Section 3.9 (Compound Rules) we elaborate why rule binders
have patterns and not a simple one-to-one-mapping between operator types and rule binders:
Oĕen, there are certain usage patterns of operators which can be grouped together to a single
search rule, which in turn reduces the search space.

Secondly, separating concerns is generally a good practice. Traversing and đnding sub-
graphs are tasks we do in many parts of the optimizer. Subtle bugs are exposed easier if the
same code is exercised in many different ways than if every component matches the graph its
own way.

Lastly, expressing patterns declaratively provides an avenue for future optimization. ăe
authors are no experts with state machines or regular languages, but we believe it is possible to
combine several patterns into a single state machine, which can greatly reduce the amount of
graph traversal currently done. However, we have not focused on these kinds of optimizations,
since it is not part of the search phase of the optimization. For example, [CGK05] describes
an algorithm that runs in polynomial time in directed acyclic graphs, while [Gei08] is a full
solution for graph rewriting — where users deđne before- and aĕer patterns the graph is then
rewritten to. ăe latter has a GPL-license, which makes it problematic to use if fast is ever to
use any of our code, which of course we hope they will do. Instead, we implemented a very
simple matcher. ăere is only a before pattern, which then triggers a callback in the rule which
gets to rewrite the graph. OurNode-class has sufficient functionality tomake altering the graph
easy.

3.8.1 Implementation

We only brieĔy describe how our naïve pattern matcher is implemented, as it is not an integral
part of our thesis.

Patterns are expressed by constructing a graph consisting of AbstractNodeMatchers. Ab-
stractNodeMatcher is an abstract base class for different node matchers, each used to match a
node of some kind. It is also a node — which means we can perform pattern matching on
patterns!

AbstractNodeMatcher has a simple interface. Most important are the HasMatched-property
and the Search(Node node)-method. HasMatched returns whether the matcher is in a matching
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state — i.e. the nodes input so far satisfy the pattern. Search(…) accepts a node and returns
whether it matches — i.e. whether it keeps the matcher in a matching state. ăe statefulness is
needed by matchers where a match is a function of all nodes provided. ăus the need for both
Search and HasMatched.

ăemost interesting part of thematchers, however, are the traversers. We have an Abstract-
Traverser whose subclasses simply return an iterator given an input node — such as ascendants
or descendants in breadth đrst, topological ordering, etc. Given an iterator, the Search(…)-
method uses the RootMatcher-, TakeWhile and StopPattern-sub-patterns. ăe RootMatcher is
a pattern that deđnes where traversal will start. For every node returned by the RootMatcher,
we start traversal. Whether we traverse the roots ascendants or descendants depend on the
speciđc AbstractTraverser-subclass. Traversal continues until the StopPattern (if any) matches
and/or as long as the TakeWhile-pattern (if any) matches.

With these simple primitives, we have implemented the following matchers:

NodeTypeMatcher matches an operator node of a given type, for example SelectOperator or
LookupOperator.

NodeBehaviorMatcher matches an operator node satisfying a speciđed behavior. ăe deđned
behaviors are:

SetPreserving: operator is not allowed to remove or add tuples to the set.

DataPreserving: operator is not allowed to alter the tuple data.

OrderPreserving: operator is not allowed to alter the order of the tuples.

ExpressionMatcher allows for specifying an arbitrary delegate (Node → bool) for matching a
node. LINQ (Language Integrated Query) compiled expressions are used for perfor-
mance.

AnythingMatcher: matches any node — i.e. always returns true. Similarly, NothingMatcher al-
ways returns false.

AllMatcher: takes a sub-pattern and returns true until an input does not match, aĕer which it
always returns false. Similarly, AnyMatcher returns true if any input has matched.

AndMatcher: takes multiple sub-patterns and returns true for nodes that matches all patterns.
Conversely, OrMatcher returns true if any sub-pattern matches.

GroupMatcher: wraps a sub-pattern to name its set of matches, much like groups in regular
expressions.

RangeQuantiöer: returns true when at least min and at most max nodes have matched the
sub-pattern.

ChildTraverser: Takes RootMatcher-, TakeWhile and StopPattern-sub-patterns, and traverses
the childrenof all roots, as long as TakeWhilematches anduntil StopPatternhasmatched.

With some sugar, we can then construct the pattern in Listing 3.19. It matches join op-
erators with at least one join as input. ăe example is from a post-processor which considers
whether adjacentmerge joins should be combined into a single join in amulti-join. ăe equiv-
alent pattern constructed with actual operators is shown in Listing 3.20.

AbstractNodeMatchers are usually not used directly — instead, a GraphSearcher is created
with an input pattern. First it traverses the pattern looking for any MatchGroupers, creating a
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1 Match.NodeOfType(”MergeJoinOperator”).GroupAs(”join”)
2 .WithAllChildren(
3 Match.AtLeast(1, Match.NodeOfType(”MergeJoinOperator”))
4 );

Listing 3.19: Sample Graph Pattern

1
2 new ChildTraverser() {
3 RootMatcher = new MatchGrouper(”join”, new NodeTypeMatcher(”MergeJoinOperator”)),
4 TakeWhile = new AllMatcher(new RangeMatcher(new
5 NodeTypeMatcher(”MergeJoinOperator”, 1, -1)))
6 }

Listing 3.20: Operators of Sample Graph Pattern

dictionarymapping the name of the group to the list of nodesmatched by thewrapped pattern.
ăen, it traverses the input root node top-down (breadth đrst). For every node visited, the
pattern is attempted matched. If found, the node is added to the list of the searcher’s matched
nodes. Also, the list of matches for the various groups are updated. If a match has been found,
the GraphSearcher’s Search(…)-method returns true, and the matches are available in the object.

3.9 Compound Rules

ăe size of the search space grows exponentially with the number of nodes in the query graph.
Oĕentimes, there are certain combinations (patterns) of operators that are not worthwhile to
try and reorder. One such example is an (O)Near-operator above Lookup-operators, as well as
a ScoreOccurrences-operator above one or more Lookup- and/or (O)Near-operators. With the
example query shown in Figure 1.2 (page 7) we can coalesce the sub-graph with ScoreOccur-
rences as the root to a single compound node. ăe impact is a greatly reduced search space:
11 rules are reduced to 7. (Remember that rules are not instantiated for Output-, Copy- and
Sort-operators.) In this case, however, ScoreOccurrences and the sub-graph below it is quite
constrained and will not be attempted moved around too much anyways. However, imagine
the input shown in Figure 3.6, with a single selection above a join whose predicate references
two relations. ăe desired plan is shown in Figure 3.6c. To be able to push down the predi-
cates, we need a pre-processor to split the Select-operator into two—whichwe can do, because
the predicates are AND-ed together. However, by doing so we drastically increase the search
space, as Select-operators are not as “well-behaved” as the sub-graph contained by the ScoreOc-
currences. ăis is because few operators depend on the Selects. In this case, only the omitted
Output-operator would depend on the Selects. ăe consequence is that a lot of permutations of
Select-placements are attempted: for every join combination and for every possible placement
of σA..., every possible placement of σB... is considered. If, however, we can reason that it is
likely that the best placement of the Selects are immediately above the input they depend on,
we can merge the operators into one.

For the join ordering shown in Figure 3.6b, there are 4 + 4 + 3 = 11 possible placements
of the Select-operators for the orderings (A ◃▹ B) ◃▹ C and (B ◃▹ A) ◃▹ C . In addition,
there are four other possible join orderings (two with A last, as shown, and two with B last),
each with 4 + 3 = 7 possibilities. ăis gives us 2 ∗ 11 + 4 ∗ 7 = 50 possible plans. With
compound operators as shown in Figure 3.7b there are just 6 possible plans. ăe savings are of
course of larger magnitudes with more complex queries, especially in combination with other
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operators with loose dependencies.
However, whendealingwith compound rules, onemust be carefulwith respect to shareable

operators in the sub-graphof the compound rule. Since thewhole point of the compound rules
is to reduce the search space, shareability of contained operators will not be considered. ăus,
we must be careful not to mask away important optimization opportunities.

3.10 Integration with MARS

To get MARS to optimize the queries, we have injected a component into the query processing
pipeline. ăis is done by creating the “dynamic component” OptimizerTransformer, which is
then run-time-conđgured to be invoked before query evaluation. Figure 3.8 shows how the
optimizer đts in.

.
.Input .OptimizerTransformer.... .... .QueryPlanExecutor

Figure 3.8: MARS’ evaluation pipeline



60 Chapter 3. Design and Implementation

A lot of infrastructure is needed to have the component created, conđgured and injected
correctly — leading to daunting class names such as OptimizerTransformerOperatorBuilderSource.
However, the most important part is the OptimizerFacade.

OptimizerFacade knows how to convert from the graph structure inMARS to the one used by
our optimizer — and vice versa. In addition to checking if the query conforms to the form we
expect it in, that is all the facade does: Convert, optimize, convert back and replace the query
to be executed.

Conversion Ěom the MARS node involves instantiating an OperatorNode, setting the opera-
tor type, and reĔecting all attributes. Wewalk the graph topologically, to add the relationships
by adding children to the parent.

Conversion to MARS nodes is done by invoking MARS’ operator factory. We had to reĔect
ourway around some visibility issues, and get the factory injected through all the infrastructure
separating the facade from the processing chain. With that done, the conversion is simple.



4
Cost Estimation and Statistics

“If you don’t Ėnd it in the index, look very carefully through the entire catalog.”

— Sears, Roebuck, and Co., Consumers’ Guide, 1897

4.1 Introduction

ăe goal of query optimization is to đnd the best plan (or one that is reasonable close to it),
which is the cheapest by some cost-metric. But how dowe deđne “cheapest”, and how canwe be
reasonably sure the cost estimates are correct? Also, the deđnitionof cheapestmaywary. Oĕen,
the goal is to complete the query in the shortest time possible, but this is not always the case.
Other goalsmay be tominimize the time used to return the đrst records— this is reasonable in
a search engine setting, where oĕen only the đrst few results are interesting. In situationswhere
the system is getting congested, the goal may be to reduce the global average response time, for
example by reducing resource usage per query to increase concurrency. Furthermore, if the
query is being executed on several nodes, communication costs might need to be minimized,
not only due to their latency, but also because the network connections can become congested.
Changing network links and node availability and load are a few examples of environmental
changes that should affect the plan cost calculations.

ăe focus of this master’s thesis has not been to accurately model the costs of MARS’ opera-
tors and keeping up with environmental changes , but rather to create a framework that can be
used to implement such a model later. MARS is closed-source, and we have very limited knowl-
edge of the detailed implementations of the different operators, which is required if we were
to cost model them in detail. To be able to test the framework, we have therefore implemented
a simple cost model that takes things like tuple sizes and cardinality into consideration, using
simple models for the operators we have looked at. By simple, we mean “school book” models
that may not be accurate for MARS, speciđcally, but sophisticated enough to, for instance, pre-
fer merge joins over hash joins and DAG-plans over non-DAG-plans — or vice versa. When
creating the framework, we made sure to get an overview of the most important aspects and
to take informed design decisions that do not rule out necessary functionality to get the cost-
and statistics modeling better later on.

ăe most important part is achieving a loose coupling between the optimizer, the rules
and how the costs are modeled and eventually calculated. However, no matter how crude the
cost modeling is, we must also consider the fact that when dealing with DAG-plans, the local
optima may not necessarily be the global — since a sub-plan could possibly be shared by many
parent operators. Also, it is worth noting that cost modeling is only performed during the plan
generation or search phase of query optimization, not during pre- and post-processing.

In Section 4.2 we describe what inĔuences the costs, and partially why it is important to
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abstract the calculations. Section 4.3 shows some example uses of statistics and how it inĔu-
ences the planning process, with Section 4.3.2 covering the lack of statistics in MARS. ăen,
Section 4.4 describes why a cost component makes sense, and how it works.

4.2 Cost Factors

To calculate a plan’s costs, several factors are considered. Available buffer space, amount of
I/O needed to fetch the necessary pages, the probability of đnding the page in the operating
system’s page cache, sequential vs. random reads, etc. are a few examples of factors that affect
costs.

An operator, given expected input sizes and selectivities of the predicate it applies, can
give a reasonable estimate of the resources and time it needs to do its task. It can estimate the
buffer sizes and the amount ofmemory it needs, expected random and sequential reads and the
expected size of the temporary relations needed if operations spill to disk. However, it does
not make sense to express this as an arbitrary number “cost” from the operator’s viewpoint.
For example, if a conventional disk is replaced with a solid state drive that provides cheaper
random reads, the cost is reduced even though the resource requirement remains the same for
the operator. It is not the operators individual tasks to determine the actual cost of its requested
operations. We leave that to a cost manager, which translates the needs of the operators into a
cost which can be used to compare plans.

To do this properly, we need to know what constitute the costs of an operation:

• I/O contributes with a lot of the cost involved in evaluation of queries. Data need to
be read from somewhere — be it hard drives or page cache — and written somewhere.
Moreover, with conventional hard drives there is also a substantial difference in the time
it takes to perform sequential vs. random reads.

If the data is too large to đt in memory, the intermediate result sets may need to be
Ĕushed to disk and re-read several times during evaluation …

• … asmemory is a limiting factor. In a concurrent environment, memory usage per client
is typically limited to prevent a few users from spending all the memory. If the result set
is just a single tuple more than can be held in the available (or permitted) memory and
the result set is to be sorted or joined, external sorting must be used [Bra03].

• CPU: “A well-tuned database installation is typically not I/O-bound.” [SH05a] When
the right mix of I/O-subsystems and memory is available, I/O latencies are no longer
the bottleneck. Stonebraker et al. points out that in such a system, memory copies are
becoming the dominant bottleneck, due to the gap in performance evolution between
CPU cycles and RAM access speed. However, not all systems have the luxury of having
abundant memory and quality I/O-subsystems.

Furthermore, thememorybudgets candifferwith light andheavy loads. Withnoqueries
in the admittance queue, the optimizer can decide to be generous when handing out
memory. With heavy load, memory constraints might be tightened.

• Communication costs are a limiting factor in distributed environments. For example,
if joins are to be evaluated with data from several nodes, the optimal join ordering can
possibly be the one that minimizes the amount of network traffic needed to transfer the
intermediate results.
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Aswewill see, in our costmodel, we havemodeled the cost as a linear combination of these
factors in two Ĕoating point numbers. In addition to the cost factors given above, ordering and
sharing also inĔuences which plans are dominated by other plans. For a plan to be dominated,
there must exist another plan that is logically equivalent (produces the same properties) that is
equal or better for both costs, ordering and sharing. ăe optimizer compares all logical equiva-
lent plans as soon as they are created and immediately prunes all plans that are dominated. For
costs, lower is better, while for ordering, a more speciđc ordering is better. For instance, a plan
that produces output ordered by (a,b,c) is better than one that produces (a,b), all else being
equal. For sharing, a plan that offers to share more (but does not necessarily do it yet) is better.

4.3 Importance of Statistics

Repeating the example from Section 1.6.2, we have the following query:

σperson.birth>1950−01−01 (person ◃▹ σcity.name=Å (city)) (4.1)

We argued that the amount of people born aĕer 1950-01-01 in Norway is larger than that of
the small village — an important realization when deciding how to join. To be able to guessti-
mate these cardinalities and selectivities and thus the costs, the optimizer must consult statis-
tics about the various relations. Without them, the optimizer cannot reason about the costs,
which would make large parts of the optimization process moot. In Section 2.2, we described
how SystemR estimates cardinalities and selectivities— and the limitations with its approach.
Since then, a lot of effort have gone into determining how todevise anduse statistics to estimate
these — without being too expensive to use or maintain. In most cases, selectivity estimates
directly affect the decision of what the cheapest plan is, so it is important to be as accurate as
possible [CR94].

Some examples of statistics used are:

• Cardinality of the relation—e.g. the number of records in the table/index. For example
that there are 4.8 million records in the person-table.

• ăe on-disk page count of the relation.

• Histograms deđning the number of records within various value ranges. For example
the number of people within different post code ranges.

• Most commonvalues. For example that there aremore people living in some of the post
codes than the histograms can express.

• ăe number of distinct values.

• Average tuple size.

• Correlation logical vs. physical ordering on the disk, which can express the degree of
random reads needed.

Most of these are relevant to MARS, except maybe the last, since oĕen the indexes are clus-
tered (i.e. the on-disk ordering of records equals the logical one) on the most commonly used
join keys anyway.

When estimating the selectivities, it would be preferable to not necessarily assume inde-
pendence of the predicates. For example, while the terms “query” and “optimization” are both
uncommon, the sentence “query optimization” is even less common — except maybe in this
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report. So estimating the selectivity as S = Squery × Soptimization is inaccurate. Another
example is “in” and “the” — two very common words, where the sentence “in the” is quite
common as well. ăirdly, “the” and “who” are quite common, but “ăe Who” is rare. With
collocations available, better estimates can be used. How to devise these is outside the scope
of this thesis, however. See [MS99, Chapter 5] for more information on collocations. While
creating them can be quite laborious, looking them up during optimization is fairly cheap.

In the report of our specialization project [BN08], we included a fairly complete exam-
ple of how lists of the most common values and data range histograms were used to estimate
selectivity. However, since we lowered the priority of accurate cost modelling, we have not
studied it further nor implemented it, so we omit the example in this report. ăe example
also illustrated the computational costs involved with statistics. For every predicate on every
relation, histograms and lists of most common values are involved in estimating selectivities.
By increasing the size of the histograms and list of most common values, the accuracy of the
estimates, the computational effort, space- and maintenance cost increases. ăe challenge is
đnding a sweet spot where the performance advantages do not severely offset the costs.

4.3.1 Statistics Gathering

ăe main problems with statistics are gathering and keeping them up to date. ăese are issues
we have not had time to look deeply into, but we have found one interesting approach we đnd
worth mentioning.

ăe most common technique involves regular random sampling [CMN98] — as reading
the entire relations quickly or keeping them completely up to date become costly. ăis has been
studied extensively and has not got too much to do with query optimization.

However, in [CR94], Chen and Roussopoulos proposes an interesting approach where
“ąe real attribute value distribution is adaptively approximated by a curve-Ėtting function using
a query feedback mechanism.” ăis approach is interesting, because it is less prone to choos-
ing bad random samples, and more likely to converge to fairly accurate estimates on common
queries. Without having studied this in depth, we believe that this would contribute unaccept-
able overhead if done on every query. ăus, it could be the task of an optimizer to schedule
when and where such operators should be added.

4.3.2 Statistics and MARS

MARS does not currently store any statistics usable in an optimization context. As such, we are
in a position where we can suggest what statistics should be made, and how they should be
gathered. However, this has been outside the scope of this thesis — partially because we have
not been provided with realistic data-, index- and query sets. Consequently, it is difficult to
suggest anything else than general purpose approaches. Moreover, we have focused our efforts
on other aspects, as explained earlier.

However, to be able to do any estimation at all, we need some statistics. We had to stub the
system catalog to provide us with two basic statistics for a speciđed index: 1) ăe number of
occurrences per word (whichwe generated by processing the đles we fed to the indexer), and 2)
the average tuple size. ăis is the absolute minimum needed to make any sensible estimates on
operator costs and selectivities andwe suggest thatMARS in the future at least implements these.
Another statistic that would be useful to have is the number of documents per word, which
would allow better estimates for operators succeeding ONear/Near and ScoreOccurrences.
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1 public enum CostRelation {
2 Better, Worse, Equal, Unknown
3 }
4
5 public interface ICost {
6 CostRelation Compare(ICost other);
7 CostRelation CompareTotal(ICost other);
8 }

Listing 4.1: Plan generator’s cost model interface.

4.4 Cost Component

Much in the same way the optimization rules are external to the optimizer, the logic that has
to do with plan costs are located in the cost component which is external to the optimizer. In
that way, we achieve a clean separation between the optimizer core and cost modeling. ăis
is beneđcial if we were to switch out the current simple cost model with a more advanced one
in the future. We would be able to do this without too many changes (ideally none) to the
optimizer core itself.

In the following sections, we look at the cost component from three viewpoints: 1)As seen
from the plan generator (part of the core) — ultimately, all the optimizer core cares about is
if plan A dominates plan B — not why. 2) As seen from the Optimization rules — the rules
need access to some cost primitives when expressing the costs of the plans they produce. ăe
cost model for the individual rules can be found later in this chapter. And đnally, 3) how cost
state information is stored together with the plans, i.e. how the costs of a plan is described.

4.4.1 Plan Generator Interface

During optimization, the plan generator will generate possibly millions of plans, of which
many perform the same logical operations, but have different costs, orderings and sharing op-
portunities. As Section 3.6.3 explains, the PlanSet structure is responsible for removing dom-
inated plans. To do this, it needs to be able to compare plans by costs. It does not care why a
plan is cheaper than another, just if it is. ăis makes the rules simpler, and the cost estimation
more Ĕexible. For example, it can be aware of environmental changes, as mentioned in the in-
troduction. Listing 4.1 shows the interface the optimizer expects a plan’s costs to implement.
It allows the plan generator to compare two arbitrary plans by costs without knowing the de-
tails involved. Practically, to switch to another cost model, what would need to be done is to
change the rules to use the new model and make it implement the same ICost interface.

CostRelation’s Unknown-member and ICost’s CompareTotal warrant an explanation. When the
cost component cannot decide if a plan is always better than another, for example because it
uses less CPU but more I/O, it returns unknown. ăis means that it may not exist a total or-
dering between the plans with regards to costs. ăe decision is then leĕ to the planner whether
or not to keep the plan. In most cases, the planner will keep both plans and decide between
them at a later stage during plan generation.

When theplanner callsCompareTotal, however, the cost component cannot returnunknown.
ăis is requested at the end of the planning phase, when the planner has a small amount of
plans it needs to choose one from. For example, in the search phase, Compare may return Un-
known because the one plan is cheaper in some regards, but uses more memory than the other.
CompareTotal, when having to pick one of the two plans, can decide that since the memory is
available, the đrst plan is chosen — or vice versa. If no such decision can be made, a heuristic
can be employed.
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Constant Value

PAGE_SIZE 8 192 bytes
PAGE_READ 1.7 ms
PAGE_WRITE 1.8 ms
SEEK 9.5 ms
CPU_FACTOR 0.00005 ms

Table 4.1: Cost model constants

4.4.2 Rule Interface

Above, we presented the cost component interface for the plan generator. However, the rules
representing the different physical operators also need some kind of interface to the cost com-
ponent to be able to model the costs by inputting the costs of the operators constructed. ăis
interface is not as formal as the former, since the cost model and rules are much more interde-
pendent. While the optimizer only cares about comparing two plans, the rules must provide a
reasonable model for the costs of its operators, and the cost model must support the modeling
needs of the rules.

It does so by providing a set of cost primitives (as seen in Listing 4.2) the rules use to express
the costs associated with applying the physical operator(s) expressed by the rules. Costs are
stored as Ĕoating point number, a linear combination of CPU, I/O, communication costs and
so on, which approximates the cost as time in 1/10 milliseconds. ăe different primitives like
ReadSequential,WriteSequential all return the costs of the operation in question as a scaled Ĕoating
point number which is this linear combination. As such, the implementation of CpuCosts is
responsible for scaling the value returned by multiplying with a low factor, since executing a
few CPU instructions is far, far faster/cheaper than reading from disk. By encapsulating the
cost factors in each such primitive, it is easy to make changes without affecting the rules itself.
For instance, switching from conventional disk drives to solid state drives wouldmake random
I/O-operations signiđcantly faster. All that would be required is to alter the cost factor used
inside the ReadRandom and WriteRandom primitives — which would be run-time conđgurable
and not hard-coded.

ăe constants we use in our implementation is listed in Table 4.1 and are based on speciđ-
cations for average hardware components. Also note how they are used in Listing 4.2.

For instance, a rule can express that the operator is expected to read X pages sequentially
and execute Y CPU instructions for all n tuples. It can then get the costs for each such oper-
ation, add them to the costs of the input plan and annotate the resulting plan with the sum of
the costs.

ăe InputCosts function allows a rule to express its costs as a function of how many times it
reads its inputs. For instance, a nested loops join will probably read its leĕ input once and its
right input as many times as there are records in the leĕ input. ăe leĕ and right input plans
and howmany times they are read are passed to the function, and the costs are returned. As we
will see later, this is not as simple as left.Cost × leftReads + right.Cost × rightReads
due to how costs propagate in DAGs.

4.5 Cost Models for MARS’ Operators

We now continue by presenting how we have modeled the costs and effect on plan set state for
the MARS operators we support. As previously mentioned, these are not particularly accurate,
but good enough to demonstrate the concepts of the optimizer and produce decent plans.



4.5. Cost Models for MARS’ Operators 67

1 public class BasicCost {
2 ...
3 public static double PageAccesses(double bytes) { Ceiling(bytes / PAGE_SIZE) };
4 public static double ReadSequential(double pages) { SEEK + pages * READ_PAGE };
5 public static double WriteSequential(double pages) { SEEK + pages * WRITE_PAGE };
6 public static double ReadRandom(double pages) { pages * (SEEK + READ_PAGE) };
7 public static double WriteRandom(double pages) { pages * (SEEK + WRITE_PAGE) };
8 public static double CpuCosts(double cardinality, double instructions)
9 { cardinality * instructions * CPU_FACTOR };

10 public static BasicCost InputCosts(Plan left, int leftReads, Plan right,
11 int rightReads)
12 }

Listing 4.2: Rule’s cost model interface, simpliđed

We have not implemented a memory manager that distributes and sets memory limits for
operators, so the MAX_MEMORY variables referred to below are currently static.

Lookup

cardinality, tupleSize = Ěom index stats
cost = ReadSequential(PageAccesses(ResultSetSize))

Internally, Lookup uses B-tree lookups, but since we do not have access to its implementation,
we have assumed a very simple cost model where data is read sequentially.

Sort

CPU_INSTR = 30
cardinality, tupleSize = same as input
cost = CpuCosts(Cardinality× log2(Cardinality), CPU_INSTR)
if ResultSetSize > MAX_MEMORY then

cost += WriteSequential(PageAccesses(ResultSetSize))
cost += ReadSequential(PageAccesses(ResultSetSize))

end if

ăecost of the sort operator is theCPUcost of sorting,O (n logn) (times aCPUconstant). If
the result set is larger than the maximum memory allocated to sorting, we assume it is enough
to spill to disk once, and we add cost for writing and reading all the data once.

Selection

PRED_COST = 5
cardinality = input.Cardinality× Selectivity
tupleSize = input.TupleSize
cost = CpuCosts(cardinality, |Predicates| × PRED_COST);

We simply assume a static predicate cost for any kind of predicate and multiply it by the cardi-
nality.

Group

STREAM_INSTR = 20, HASH_INSTR = 50, FIELD_WIDTH = 20
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cardinality = input.Cardinality× Selectivity
tupleSize = (|GroupFields| + |Aggregators|)× FIELD_WIDTH
if input’s grouping satisđes GroupFields then

cost=CpuCosts(input.Cardinality, (|GroupFields|+ |Aggregators|)×STREAM_INSTR);
else

cost=CpuCosts(input.Cardinality, (|GroupFields|+ |Aggregators|)×HASH_INSTR);

if ResultSetSize > MAX_MEMORY then
cost += WriteRandom(PageAccesses(input.ResultSetSize))
cost += ReadSequential(PageAccesses(input.ResultSetSize))
cost+=CpuCosts(input.Cardinality, (|GroupFields|+ |Aggregators|)×HASH_INSTR));

end if
end if

ăe costs for the group operator depend on whether the input stream is already grouped by
the required attributes. ăe rule asks the orderings- and groupings component if it is and cal-
culates cost accordingly. If it is grouped already, we only need to stream the tuples through
and accumulate values in the aggregates, and we use a low constant for CPU cycles per tuple.
If not, we need to hash the tuples, using a higher CPU constant. We may also need to spill to
disk if the result set is too large. For output tuple size, we simply assume a static đeld width.

Map

EXPR_WIDTH = 20, EXPR_COST = 5
cardinality = input.cardinality
tupleSize = input.TupleSize + |Expressions| × EXPR_WIDTH
cost = CpuCosts(cardinality, |Expressions| × EXPR_COST);

Since the map operator is one which can call user deđned functions, the cost of those must be
handled in someway. Today, we simply assume a static predicate cost for any kindof expression.
For output tuple size, we simply assume a static đeld width.

HybridHashJoin

HASH_INSTR = 35
cardinality = leĕ.Cardinality× right.Cardinality× Selectivity
tupleSize = leĕ.TupleSize + right.TupleSize
cost = CpuCosts(cardinality, HASH_INSTR)
if leĕ.ResultSetSize>MAX_MEMORY∧ right.ResultSetSize>MAX_MEMORY then

cost += WriteRandom(PageAccesses(leĕ.ResultSetSize + right.ResultSetSize))
cost += ReadSequential(PageAccesses(leĕ.ResultSetSize + right.ResultSetSize))
cost += CpuCosts(leĕ.Cardinality + right.Cardinality, HASH_INSTR);

end if

For a hybrid hash-join, the base cost is the output cardinality times a constant. If both inputs
are larger than the available memory, we need to spill to disk, and this adds additional write,
read and CPU costs for rehashing the data.

Cost for MergeJoin

MERGE_INSTR = 20
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1 public struct BasicCost : ICost {
2 public BasicCost(double firstRead, double furtherReads) { ... }
3 ...
4 public double FirstRead { get; set; }
5 public double FurtherReads { get; set; }
6 public int Passes { get; set; }
7 }

Listing 4.3: Cost model state.

cardinality = leĕ.Cardinality× right.Cardinality× Selectivity
tupleSize = leĕ.TupleSize + right.TupleSize
cost = CpuCosts(cardinality, MERGE_INSTR);

For a merge-join, the cost is the output cardinality times a smaller constant than for hash join.
ăis is not very accurate, however. Since MARS supports operators propagating skipping to its
input nodes, the true cost is a lot less when merging a small and a large input where large parts
of the large input is skipped.

ScoreOccurrences

CPU_INSTR = 30
cardinality = Σ children.Cardinality
tupleSize = đrstChild.tupleSize
cost = CpuCosts(cardinality, CPU_INSTR);

ăe cost is simply CPU costs proportional to the cardinality.

4.6 Cost Model Implementation

So far, we have seen how the plan generator and rules use the cost model. We now shiĕ the
focus to how it is implemented internally, and how the costs for a plan is represented.

4.6.1 Cost State

To be able to reason about costs, the optimizer needs a basic unit of cost. ăe plan generator
does not care about what this unit is, only that it implements the ICost interface as explained
in Section 4.4.1. Whenever a plan is created, it is annotated with its cost using the ICost imple-
mentation.

In our simple cost model implementation, this basic unit of cost is the struct BasicCost as
shown in Listing 4.3.

ăe two data members FirstRead and FurtherReads store the plan costs as the afore-
mentioned linear combination of the different cost categories. ăe reason for using two num-
bers, and not one, is that sometimes it is cheaper to execute a plan (read its output) more times
when already done once. A good example is an operator that materializes its output, such as
a hash group. Multiple reads typically happen when using nested loop joins — although not
currently supported by MARS, the cost model supports it. FirstRead is the cost of the đrst
read, while FurtherReads is the cost for each additional read. Passes is used when calcu-
lating costs for DAGs — this is described later in this section. FurtherReads is present to
facilitate future support formore đne-grained costmodelling, but currently all rules simply set
this to FirstRead, since the implemented operator cost models are quite simple.
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1 public CostRelation Compare(ICost other) {
2 if (FirstRead < other.FirstRead && FurtherReads <= other.FurtherReads)
3 return CostRelation.Better;
4 if (FirstRead > other.FirstRead && FurtherReads >= other.FurtherReads)
5 return CostRelation.Worse;
6 if (FirstRead == other.FirstRead) {
7 if (FurtherReads < other.FurtherReads)
8 return CostRelation.Better;
9 if (FurtherReads > otherCost.FurtherReads)

10 return CostRelation.Worse;
11 return CostRelation.Equal;
12 }
13 return CostRelation.Unknown;
14 }
15
16 public CostRelation CompareTotal(ICost other) {
17 CostRelation result = Compare(other);
18 if (result == CostRelation.Unknown) {
19 if (FirstRead < ((BasicCost)other).FirstRead)
20 return CostRelation.Better;
21 else
22 return CostRelation.Worse;
23 }
24 return result;
25 }

Listing 4.4: BasicCost’s ICost implementation.

If we were to implement a more detailed cost model, we would probably go for a vector
model in which the different classes of cost (CPU, IO, memory network, etc.) are separated.
However, this complicates the decision of which plan is cheapest (a plan could be cheaper in
I/O, but use more CPU), so we chose to stick with our simpler model.

4.6.2 Cost Comparison

Listing 4.4 shows BasicCost’s implementation of the ICost members, namely Compare and Com-
pareTotal as previously described.

ăe implementationof Compare is straightforward. If bothFirstRead andFurtherReads
are lower or equal, the plan is better (except if both are equal where the plans are equal), oth-
erwise it is worse. ăe only exception is if FirstRead is lower and FurtherRead higher or
vice versa — then the result is unknown since none of the plans are “cheaper”.

CompareTotal utilizes the implementation of Compare and checks for the special case of Un-
known. In that case, it uses a simple heuristic: It is assumed that the plan will only be executed
once and then compares FirstRead for the two plans.

4.6.3 Cost Calculations

During plan generation, rules combine operator costs with costs of sub-plans to form a new
BasicCost instance. Tomake this neat, we have overloaded the+ and ∗ operators for BasicCost as
shown in Listing 4.5. Summarizing costs is straightforward;FirstRead andFurtherReads
are summarized independently. ăe ∗ operator is used when reading a plan multiple times, i.e.
newCosts = A.costs ∗ n, and is more complex since it must take into account that the
đrst read might be more expensive than further reads. ăe resulting value for FirstRead is
therefore the cost of reading the input plan once, plus the number of additional times (which
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1 public static BasicCost operator +(BasicCost a, BasicCost b) {
2 return new BasicCost(a.FirstRead + b.FirstRead,
3 a.FurtherReads + b.FurtherReads);
4 }
5 public static BasicCost operator *(BasicCost input, double times) {
6 return new BasicCost(input.FirstRead + (times - 1) * input.FurtherReads,
7 times * input.FurtherReads);
8 }

Listing 4.5: Overloaded operators for BasicCost

1 public class AbstractRule {
2 public virtual void UpdatePlan(Plan plan) {
3 BasicCost cost = Cost(plan);
4 if (plan.Children.Count == 1)
5 cost += plan.OnlyChild.Costs;
6 else if (plan.Children.Count > 1)
7 cost += BasicCost.InputCosts(plan.Children, null);
8 plan.Costs = cost;
9 }

10
11 protected abstract BasicCost Cost(Plan plan);
12 ...
13 }

Listing 4.6: Default implementation of UpdatePlan

is times − 1) it is to be read, multiplied by the input plan’s FurtherReads. ăe resulting
value for FurtherReads is just times multiplied by the input plan’s FurtherReads, since
we have already read the input plan at least once already.

Whenever a new plan is constructed by a rule, its costs need to be set. ăis happens in the
UpdatePlan method, which the abstract base class AbstractRule provides a default implementa-
tion of. It also deđnes an abstract function Cost which the rules needs to implement to return
the cost of the operator they represent. If the rule has no sub-plans, the resulting cost is only
the cost of the operator itself. If it has one sub-plan, the cost is the sum of the costs of the
sub-plan and the operator. If the rule has more than one sub-plan, we have the possibility of
DAGs and we need to use the InputCosts function as described in the next section.

4.6.4 Cost Calculation for Trees vs DAGs

Calculating the cost for the resulting plan when adding a unary operator (one input) on top
of an existing plan is simple enough: Take the costs of the input plan (the sub plan with the
new operator now being added on the top), add (sum) the costs of the new operator, and get

.
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Figure 4.1: ăree cases, with the nodes being costed are red
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1 public static BasicCost InputCosts(Plan left, int leftReads, Plan right, int rightReads) {
2 if (!left.Sharing.Overlaps(right.Sharing))
3 return left.Costs * leftReads + right.Costs * rightReads;
4 else
5 return InputCostsDag(left, leftReads, right, rightReads);
6 }

Listing 4.7: InputCosts function

the resulting cost of the new plan. For rules with more than one input, it also seems simple
enough: Summarize the costs of the input plans and add the costs of the new operator. ăis
approach works well if the input plans are disjoint (the resulting plan forms a tree) as shown in
Figure 4.1a, but if the resulting plan forms a DAG with a shared sub-graph, as in Figure 4.1c,
it will not work.

ăis is due to the fact that the cost of the shared sub-plan (B in the đgure) will be counted
twice in this situation, while it should only be counted once, since this plan is only executed
once even if it is read twice. Onemight think that if sharing is present, this should already have
been reĔected by having lower costs on the sub-plan, but the trick to understand this is that the
sharing appears now. Even if two plans share some common sub-plan, they are just two loose
plans (Figure 4.1b). ăe actual sharing, i.e. the reuse of the sub-plan output, does not occur
before these two plans together form a larger plan. ăis can also happen for multi-queries, as a
multi-query can be viewed as one large query with the output operator on top.

ăis means that whenever a plan is formed that has more than one sub-plan, we must be
careful about how we calculate its costs. If all the sub-plans are completely disjoint, i.e. we are
now forming a tree, we can calculate the costs normally, as no sharing is possible. If, however,
some of the sub-plans overlap, i.e. we are now forming a DAG, it means that sub-plans are
shared and we need to employ a different strategy for cost calculation to recognize sharing and
reduce plan costs accordingly.

ăis brings us to the InputCosts function in Listing 4.7, which handles the logic described
above. ăeparameters are the leĕ input plan, howmany times it is read/executed, and the same
for the right plan. We have simpliđed its signature to make it easier for the reader to follow,
so it does not match the signature shown in Listing 4.6 completely, but the point remains the
same. It examines the Sharing-properties of both plans to detect if they overlap. If they do
not, costs are calculated the obvious way, utilizing the overload of the ∗ operator as previously
described. If they do overlap, however, it will delegate the work to the InputCostsDag function,
which is described in the next section.

Cost Calculation for DAGs

Wenowmove on to themissing piece; how costs are calculated forDAGs. Whenever costs are
calculated for an n-input operator (with n > 1) with overlap between its inputs, a recursive
traversal is performed of the plan graph top-down, starting at the operator being calculated
costs for. ăis traversal is done by the rules themselves in the DagCosts function they all need
to implement. Its signature is shown below. It returns the cost of reading/executing plan –
reads number of times. In most cases, reads will be 1, except if we are dealing with nested
loops joins.
ICost DagCosts(Plan plan, int reads);

Let us use Figure 4.1c as a starting point. When calculating the costs for the topmost op-
erator, DagCosts will be called recursively down the leĕ and right input. ăe key here is that
DagCostswill be called twice for the B plan, once from the leĕ output and once from the right.
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1 private static BasicCost InputCostsDag(Plan left, int leftReads, Plan right, int rightReads) {
2 BasicCost result = left.Rule.DagCosts(left, leftReads) + right.rule.DagCosts(right,

rightReads);
3 resetPasses(left);
4 resetPasses(right);
5 return result;
6 }
7
8 private static void resetPasses(Plan plan) {
9 if (plan.Costs.Passes != 0) {

10 plan.Costs.Passes = 0;
11 foreach (Plan subPlan in plan.Children)
12 resetPasses(subPlan);
13 }
14 }

Listing 4.8: Implementation of InputCostsDag

It is here the Passes variable in the cost state for a plan (shown in Listing 4.3) is necessary —
it is used by DagCosts to keep track of the number of times this plan has been executed already.
ăe đrst call will calculate and return costs normally and at the same time set the Passes vari-
able. ăenext time it is called, it can checkPasses to see if additional executions are required.
If it is not, it is essentially (almost) free to read the results a second time and the cost returned
to the right output would be zero. Of course, the true cost is that of the Copy-operator, but
since it is cheaper than re-executing anyway, we need not dwell on better estimation.

Note that this requires the Passes variable to be reset aĕer each cost calculation to not
affect future calculations for operators closer to the root in the same query. ăis is handled by
the InputCostsDag function, which đrst starts the recursive traversal for the leĕ and right plan.
Aĕerwards, it calls resetPasses to reset the Passes variable. Note that Passes is initially set to
0. resetPasses contains a little optimization: No plan with Passes = 0 can have a plan with
Passes ̸= 0 below it.

Let us now look at some actual implementations of DagCosts. We start out with the de-
fault implementation from AbstractRule in Listing 4.9 which works for all operators that do
not spool their results to disk. ăe Cost abstract function returns the costs of executing the
current operator once, as before.

First, DagCosts checks if reads is larger than Passes. If it is not, it means that we have
already executed this plan enough times. ăis happens if one of the other operators receiving
data from this plan have requested Passes executions. In that case, it is cheap to read the re-
sults reads times, so zero costs is returned. If, however reads is larger thanPasses (this could
happen if this is the đrst call and Passes is still 0, for instance), we calculate the additional
number of passes required. If not dealing with nested loops join, the most common case is
Passes = 0, reads = 1, so additional = 1. Passes is then set to reads for later calls to
DagCosts. ăen, costs for executing this operator additional number of times is calculated, fol-
lowed by adding the costs of executing each of the input plans reads times (this is the recursive
call). Finally, the result is returned.

For operators spooling their output to disk, it is implemented a bit differently. It will only
calculate its own costs, and the costs of its sub-plan for the đrst call to DagCosts (Passes =
0). For all subsequent calls, only the costs to read the already produced results from disk is
considered.

ăis approach to DAG-costing performs well in most cases, but can have exponential run-
time in the special case of a nested loops join chain. However, we will not hit this case with the
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1 public class AbstractRule {
2 protected abstract BasicCost Cost(Plan plan);
3 ...
4 public virtual ICost DagCosts(Plan plan, int reads) {
5 if (reads > plan.Costs.Passes) {
6 int additional = reads - plan.Costs.Passes;
7 plan.Costs.Passes = reads;
8
9 BasicCost result = Cost(plan) * additional;

10 foreach (Plan subPlan in plan.Children)
11 result += subPlan.Rule.DagCosts(subPlan, reads);
12 return result;
13 }
14 return BasicCost.Zero;
15 }
16 }

Listing 4.9: Default implementation of DagCosts

current set of operators supported byMARS, so we have chosen this approach due to its simplic-
ity. For a more detailed discussion of this and other approaches to DAG costing, see [Neu05].

4.7 Example Cost Calculation

To illustrate how the cost calculations work, we will now perform the cost calculations for two
versions of a simple query; onewithout (Figure 4.2a) and onewith sharing (Figure 4.2b). Note
that formula parts in upper case are constants.

We start with the one without sharing. First, the base plans (square corners) are created,
costed and entered into the memoization table. ăeir cost depend only on the index statistics
fetched from the system catalog. Since there is no buffering inMARS, đrst and further reads cost
the same. Lookupswith large result sets aremore expensive, and the two equivalent lookups on
olstad cost the same. By using Table 4.1, Listing 4.2 and the cost model for Lookup previously
given, we đnd that the cost for a lookup is

SEEK +

⌈
Cardinality × TupleSize

PageSize

⌉
× READ_SEQUENTIAL

so the cost for the lookups on olstad becomes

95 +
⌈
500 × 100

8192

⌉
× 17 = 214

ăe calculations for the other lookups are done in the same way. ăen the plan with the
leĕ join on top is constructed. Since there is no overlap between the input plans, its costs are
simply the sum of the costs of the two lookups, plus the cost of the join itself:

LeftInput+RightInput+(OutputCard×MERGE_INSTRUCTIONS×CPU_FACTOR)

= 214 + 690 + (500 × 20 × 0.0005) = 909

Merge joins are quite cheap, so the costs of the lookups (I/O) dominate. First and further
reads have the same cost. ăe tuple size is the sumof the input tuple sizes. We assume that there
exists a foreign key relationship from Occurrence1 (leĕ lookup) to Occurrence2 (right lookup)
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although MARS has no such information, so the cardinality is the same as the leĕ input. ăe
right join plan is constructed the same way.

ăis is a multi-query, and the cost of the entire query is the cost of the output operator.
Since its two input plans do not overlap, its cost is simply the sum of the costs of the input
plans, i.e. 909 + 484 = 1393.

We now move on to the query with sharing and highlight the differences. ăe base plans
are constructed and costed in the same way. When we move on to the joins, everything is the
same as for the tree case. Even though the lookup in olstad is shared between the input plans,
the join plans are separate plans and the leĕ and right inputs to each of the joins do not overlap.
Hence, the costs of the input plans are just summarized and we get the same cost for the join
plans as in the tree case.

However, when we move on to the costing of the output operator, things change. When
the rule for the output operator invokes InputCosts to đnd the globally cheapest plan (which in
many cases isnot is the combination of the cheapest of each sub plan), InputCostswill nowdetect
that the leĕ plan and right plan overlap (i.e. olstad is shared between them) — and conclude
that we have a DAG query with sharing. Instead of just summarizing the costs, it will instead
invoke DagCosts for the leĕ and right input plan (the leĕ and right join) — i.e. the cost of the
entire query now becomes DagCosts(leftJoin, 1) + DagCosts(rightJoin, 1).

DagCosts on the leĕ join will in turn call DagCosts on the two lookups below it, which will
return the same costs as can be seen in the đgure. DagCosts on the leĕ join will sum these two
and add its own costs, and return the cost seen in the đgure. But, at the same time the Passes
variable have been set to 1 for the leĕ join and the two lookups below it.

Next, DagCosts is called for the right join, which in turn callsDagCosts on the shared lookup.
DagCosts for this lookup will now realize (by examining Passes) that no further work is re-
quired and return zero costs. ăis is summed with the costs of the right lookup and the join
itself and returned. ăereby, the costs of the shared lookup is only counted once, not twice.
We assume that the copy operator is free, although this is not completely true. However, even
if we added its cost, it would still be cheaper than performing the lookup twice — and it is the
relative numbers that matter, not the absolute. ăis may not be true if the copy operator has
to spool to disk if the output consumes data at a very different pace, but we have chosen to
look away from this problem for now. ăe đnal cost of the query is therefore Left sub tree +
Document type lookup + Right join = 909 + 265 + 5 = 1179. As expected, this is equal to
the cost of the tree query minus the cost of the shared lookup (since it is only executed once):
1393 − 214 = 1179.

By using the algorithms and techniques described in this chapter, the plan generator can
get an estimate for the cost of the plans it generates. We know move on to what drives the
search and creates the plans to be calculated costs for – namely the rules.
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Output 

Cost(First: 1393.0, Further: 1393.0)

MergeJoin
Cost(First: 909.0, Further: 909.0)
State(Card: 500, TupleSize: 135)

Lookup 

Word = olstad, Index = Occ1
Cost(First: 214.0, Further: 214.0)
State(Card: 500, TupleSize: 100)

Lookup 

Word = DocName, Index = Occ2
Cost(First: 690.0, Further: 690.0)
State(Card: 8000, TupleSize: 35)

MergeJoin 

Cost(First: 484.0, Further: 484.0)
State(Card: 500, TupleSize: 110)

Lookup 

Word = olstad, Index = Occ1
Cost(First: 214.0 Further: 214.0)
State(Card: 500, TupleSize: 100)

Lookup 

Word = DocType, Index = Occ2
Cost(First: 265.0, Further: 265.0)
State(Card: 8000, TupleSize: 10)

(a) Tree, no sharing

After Optimization

Output 

Cost(First: 1179.0, Further: 1179.0)

MergeJoin
Cost(First: 909.0, Further: 909.0)
State(Card: 500, TupleSize: 135)

Copy 

MergeJoin 

Cost(First: 484.0, Further: 484.0)
State(Card: 500, TupleSize: 110)

Lookup 

Word = olstad, Index = Occ1
Cost(First: 214.0, Further: 214.0)
State(Card: 500, TupleSize: 100)

Lookup 

Word = DocName, Index = Occ2
Cost(First: 690.0, Further: 690.0)
State(Card: 8000, TupleSize: 35)

Lookup 

Word = DocType, Index = Occ2
Cost(First: 265.0, Further: 265.0)
State(Card: 8000, TupleSize: 10)

(b) DAG, sharing

Figure 4.2: Example cost calculation for tree vs DAG for the same query



5
Rules: Search Space and Pre-/Post Processing

“Any problem in computer science can be solved with another level of indirection.”

– David Wheeler

5.1 Introduction

As introduced in Section 2.4, rule-based optimization is much more extensible than static,
hard-coded optimizers. ăis chapter introduces the rules used in our optimizer and equally
important: how they are integrated with the optimizer.

Rules provide extensibility andmodiđability in the sense that the optimizer does not know
the individual rules speciđcally. It only knows the rule population and applies the rules appli-
cable at any given moment. To be able to do this, the optimizer must have a common interface
to all rules. For example, all transformation rules implement ITransformationRule, whereas rules
used during the search phase implement either the IBaseRule- or ISearchRule interfaces.

Another importantmatter is how the optimizer ismade aware of the rules. It clearly cannot
behard-coded in the optimizer itself, since thiswouldundermine extensibility. ăismeans that
the optimizer cannot know the rules at compile time. Instead, the optimizer uses reęection,
which is a feature in .NET for reasoning about programmetadata. At optimizer start up, using
reĔection, all types (classes) in all known assemblies (DLLs, .NET equivalent of Java JARs) are
enumerated. ăose identiđed as rules are loaded into the optimizer and prepared for optimizer
use. ReĔection used like this is somewhat expensive, but since this only happens once at system
start-up, it is not a problem. See Section B.2 for the implementation of this step.

To be taken into consideration for optimizing, all the rules have to do is to declare them-
selves as rules. To do this, we use custom .NET attributes, which is a way to annotate classes
(and any other programming construct) with metadata. For transformation rules, this hap-
pens by appending e.g. [Preprocessor] before the class declaration. Constructive rules use a rule
binder concept as explained in Section 5.3.1. ăereby, the optimizer does not have dependen-
cies on the rules, and minimal effort is needed to add new rules — it just needs to be tagged,
compiled and made available to the optimizer.

We đrst present the transformation rules used during pre- and post-processing, then the
constructive rules used during plan generation. Whereas transformation rules transform a
complete operator graph from one valid state to another, constructive rules build the graph
from scratch.
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5.2 Transformation Rules

ăis section brieĔy explains how some pre- and post-processors are implemented, since some
vital steps of the optimization are implemented as -processors. ăey are transformation rules
that comply to the interfaces and semantics described in Section 3.5.

5.2.1 Pre-Processors

Annotators

First, we describe some “Annotators”. Annotators do not (by convention) change the graph
structure. ăey are intended to incrementally supply thenodeswithmore information. Instead
of doing everything in one pass of the graph, we split them into separate components, that are
more readable and maintainable.

Behaviour-, Produces-, Dependency- and EquivalenceAnnotator are four pre-processors that
walk the query graph in topological ordering, dispatching calls to rule-binders that have de-
clared being a mapper of the visited node. ăis is because the optimizer is oblivious to the
semantics of the operators. We want any operator speciđc behaviour to be deđned in their
corresponding rules and/or rule binders.

BehaviourAnnotator sets the operator’s “behaviour” — that is whether the operator changes
the record structure, the amount of tuples, its ordering/grouping, etc. For example, a selection
operator changes the tuple amount, but not the ordering. A map operator can change the
record structure, but not the amount or ordering. A group operator potentially changes both
tuple amount, ordering, grouping and record structure.

ăis information is necessary because some transformations need to reason about the be-
haviour. For example, joins that only changes the record structure and not the result set can be
reordered more freely.

ProducesAnnotatormaps the origins of attributes used in operators. ăe purpose is to always
know where an attribute originates, to be able to correctly map operator dependencies. Also,
attributes in expressions (such as in Map and Select) are altered to unambiguously refer to the
attribute of a certain node using NodeAttribute instances instead of names. A NodeAttribute is
basically a (Node, Attribute) tuple.

Problems that canoccur ifwedonot dealwith this rigorously are not onlyname clashes, but
also wrongly named attributes, as some operators inMARS (speciđcally joins) alter the attribute
names in different ways depending on their order.

DependencyAnnotator sets the operator’s dependencies. Operators trivially depend on the
other operators that produce the attributes they require. However, dependencies are also used
to force placement of e.g. outer joins, trims, and so on — as explained in Section 3.4. Depen-
dencyAnnotator depends on ProducesAnnotator being run.

EquivalenceAnnotatormarks which attributes are deemed equivalent. For example, an equi-
join of two attributes will induce that the two are equivalent. ăe equivalence classes this an-
notator returns are needed to be able to split up join pairs and freely reorder them. Wedescribe
this further in Section 8.5.5.

CopyRemover

To keep rules and processors simple, we convert input query DAGs into trees. Common sub-
expressions are recognized during the search phase regardlessly, so no optimization opportu-
nities are lost.

ăus, there is no Copy-operator or -rule-binder. See Section 5.2.2 for the opposite — a
post-processor that inserts Copy-operators for operators with multiple outputs.
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Figure 5.1: Query Graph Before and Aĕer CopyRemover

Figure 5.1 illustrates how this works.

OrderingExtractor and SortRemover

Our optimizer treats orderings as a desired property of the input stream to an operator — and
not as an operator. ăis is explained in depth in Chapter 6.

OrderingExtractor analyzes whether the output of a query (or queries, in a multi-query)
should have a speciđc ordering— i.e. that the ordering of the output of a Sort-operator is guar-
anteed to be preserved until it reaches the Output-operator. ăis is the case for e.g. a query with
a Sort-operator with only “order preserving” operators between the Sort and Output. For exam-
ple, a Select over a Sort does not alter the order of the tuples. However, a logical Join over a Sort
might, as a HybridHashJoin might be chosen.

When an ordering for a result set is desired, the relevant Output-inputs (i.e. queries) are
marked as such. In addition to the Output operator, Trim also needs to have any guaranteed
input orderings preserved.

SortRemover iterates over all SortOperators aĕerOrderingExtractor has run—either removing
the operator or replacing itwith a TrimOperator, whenever the SortOperator also trims the output.

LogicalJoinTransformer

LogicalJoinTransformer iterates over all HybridHashJoin- and MergeJoin-operators, replacing them
with a logical Join-operator. MARS does not have a logical join operator, and it is possible that
the join-implementation speciđed in the input query is not the optimal one.

ăe full implementation can be found in Section B.8.

MultiJoinSplitter

ăe MergeJoinOperator in MARS supports joining more than two input relations. To keep rules
and patterns simple, the MultiJoinSplitter-pre-processor splits an n-way MergeJoin into n − 1
binary leĕ-deep logical joins.

ăis pre-processor was written before we decided on the approach for equivalence class
joins described in Section 8.5.5. It is currently disabled due to reasons explained there. We
have not studied that particular problem thoroughly enough to decide whether keeping the
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Figure 5.2: Query Graph Before and Aĕer CopyInserter

processor is a good approach — it could possibly make rules and patterns simpler. Currently,
we only optimize binary joins, but consider support for n-way merge joins throughout the
report, to avoid decisions that prevent future support for it.

5.2.2 Post-Processors

CopyInserter

MARS’ Copy-operator is the only operator that can have multiple outputs.
CopyInserter is a post-processor that inserts Copy-operators over operators with multiple

outputs. ăe Copy-operator is set as the only output, and the inputs of the parent nodes are
replaced with input from the inserted Copy-operator. Figure 5.2 shows an example transfor-
mation.

FieldMapper

To avoid problems with attribute name clashes, all references to attributes are tuples with a
reference to the node producing the attribute, and the name of the attribute. However, before
returning to MARS, we need to set the names of the attributes the various operators produce.
ăis is done by dispatching SetFields()-calls to the rule binders. ăe rule binders then generate
a unique attribute name and map their (node, attribute)-tuples to the unique attribute names.

Finally, to ensure that the user gets the same attribute names and attribute order as in the
input query, Map-operators are added that rename the unique aliases to the expected names in
the correct order. ăis is necessary not only because of name clashes that could occur when
the graph is altered, but also because certain MARS operators alter the attribute names. For
example, the join operators pređx the non-key attributes with “Input0” and “Input1”. ăus, a
join-ordering that differs from the one in the input query will have different attribute names,
which consequently need renaming.

Merge Trim and Sort

Observing that a sort operator with a trim just above it is semantically equivalent to setting the
trim options on the sort operator and removing the trim operator, we have developed a rule to
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rewrite this particular situation in the operator graph.
Actually, the trim operator does not even have to be just above the sort operator. It is

semantically correct to merge them as long as none of the following types of operators are be-
tween them:

Operators altering the tuple set. Operators altering the tuple set by removing or adding tu-
ples will change the tuples produced by the trim operator, causing behavior that cannot
be predicted.

Operators altering the tuple order. Obviously, altering the order of the tuples will alter the
output of the trim operator as well.

Double output operators. If the output from the sort operator is used by other branches in
the graph, it cannot be modiđed.

A special case arises when the trim properties are already set on the sort operator. ăey
need to be combined with the properties on the trim operator. We have omitted the details for
brevity.

5.2.3 Additional Transformations

During our research, we have identiđed various transformations usually done by query opti-
mizers like [Pos08b]. In the following, we describe some of them. Although we have not im-
plemented them, and some are speciđc to SQL,we include them as inspiration for futurework.

Replace plans that produce no output with a no-op. If a plan is guaranteed to produce no
output (like a SELECT TOP 0), it can be replaced with a dummy operator that produces
no output.

Evaluate constant expressions. ăis step involves evaluating any expressions that turns out to
be constant — i.e. expressions that are only built up from constant sub expressions.

Transform ANY and EXISTS in WHERE and JOIN/ON clauses to joins, if possible.

Reducing outer and semi join to inner joins can be beneđcial where possible. See [HR] for
an example.

Constraint exclusion enables the optimizer to use constraints to optimize the query. ăis
is particularly useful when relations are partitioned. For instance, there is no point in
searching for events that happened in 2008 in a partition containing only events for
2007.

Except Conditions. Push conditions from the đrst operand of EXCEPT into the second
operand as well (we will not need the extra results anyway). ăe same goes for INTER-
SECT.

TransformMIN/MAX aggregate functions. Sometimes it is beneđcial to replaceMIN/MAX
aggregate functions by sub-queries of the form SELECT col FROM tab WHERE ... ORDER
BY col ASC/DESC LIMIT 1.

Split selection predicates. Selection predicates in conjunctive normal form can be split to be
able to move them separately around the operator graph. If not in CNF, they can pos-
sibly be transformed.
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Push NOTs down as far as possible. Apply DeMorgan’s laws if applicable.

Distinct push down vs. pull up vs. elimination. Push down: Allow early elimination of du-
plicates. Pull up/elimination: Due to implicit distinctiveness from joins, etc.

Transitive closure of predicates. For instance, given that we have T1.C1 = T2.C2, T2.C2 =
T3.C3, T1.C1 > 5, we can also add T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5 to
increase selectivity.

Merging sub-queries. In somecases,multiple sub-queries canbemerged to a single sub-query.
For example, if multiple sub-queries fetch data from the same table, a merge may be
possible.

Inline functions. It may be beneđcial to inline functions, i.e. make sub-queries of them.

For more transformations and rewrite rules and techniques, see [Moe06], part III.

5.3 Constructive Rules

Constructive rules are used during the plan generation step, and are each responsible for con-
structing a part of the query graph. ăey declare what part of the query they can be responsible
for, enabling the plan generator to determine which rules to utilize.

It is important to realize that addingmultiple alternative rules for the same query parts will
increase the size of the search space accordingly. However, this is oĕen necessary, for example
when there are multiple access paths.

ăe rules decide themselves in which direction they want to take the plan search and how
they would like to build the query graph. ăey are not transformative, and are not used during
pre/post-processing. ăe rules come in different types, depending on their role in the plan
generation.

We start out by formalizing the types of rules and their interface to the plan generator.
ăen, we explain the different rules we have implemented.

Figure 5.3: Class diagram for the constructive rule interface hierarchy.
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1 public interface IRule {
2 void UpdatePlan(Plan plan);
3 OperatorNode BuildAlgebra(Plan plan);
4 ICost DagCosts(Plan plan, int reads);
5 }
6 public interface IProducerRule : IRule {
7 BitSetProxy Produced { get; set; }
8 BitSet Filter { get; }
9 int Id { get; set; }

10 IList<OperatorNode> Nodes { get; set; }
11 bool StructurallyIdentical(IProducerRule other);
12 void MapShareEquivalentAttributes(IProducerRule from, Dictionary<NodeAttribute, NodeAttribute

> attributeMappings);
13 }
14 public interface IBaseRule : IProducerRule {
15 void Initialize(PlanSet plans);
16 }
17 public interface ISearchRule : IProducerRule {
18 bool IsRelevantTo(BitSet goal);
19 void Search(PlanSet planSet, ICost limit);
20 IList<BitSetProxy> Required { get; }
21 }
22 public interface IHelperRule : IRule {
23 }
24 public interface IRuleBinder {
25 AbstractNodeMatcher Pattern { get; }
26 IEnumerable<IProducerRule> GetRules(QueryOptimization queryOptimization, IEnumerable<

OperatorNode> matches);
27 }

Listing 5.1: Rule interfaces

5.3.1 Rule Interfaces and Rule Binders

ăe borderline between the plan generator and the different search rules includes multiple
interfaces in a hierarchy, as shown in Figure 5.3. ăeir deđnitions are shown in Listing 5.1. A
typical constructive rule will implement either IHelperRule, IBaseRule or ISearchRule, depending
on the type of rule. IRule is a base interface for the rest, while IProducerRule is a base interface
for all rules producing bit properties. Rule binders are used to instantiate rules. Below follows
a description of each interface.

IRule, is the base interface for all constructive rules. ăe UpdatePlan method is used during
plan generation and updates a given plan’s cost, ordering, sharing and rule instance. BuildAlgebra
is used during the reconstruction phasewhen each rule recursively constructs the đnal operator
graph. DagCosts is invoked when the cost model has đgured the plan is a DAG, as explained in
Section 4.6.4.

Helper rules, which implement IHelperRule, are rules the optimizer does not directly know.
Helper rules are typically used by other search rules. For instance, the Join rule uses the Hybrid-
HashJoinRule and theMergeJoinRule. Helper rules do not have anymembers in addition to IRule,
so the interface declaration is empty and is just used as a marker.

Producer rules are used actively by the query optimizer during the search phase of the
plan generation. As the name suggests, they produce bit properties, but do not necessarily
require any properties. ăe Produced property gives which properties this rule can be used to
achieve. Filter is used by the query optimizer to đlter out inapplicable rules and unreachable
plans, as described in Section 3.6.5. Each producer rule is given an Id to identify it to the
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Figure 5.4: Class diagram for the implemented constructive rules

optimizer, and the Nodes property points to the original nodes in the input operator graph it
was instantiated from. ăe twomethods StructurallyIdentical andMapShareEquivalentAttributes are
used to determine share equivalence, as explained in Section 3.7.

Base rules are rules producing, but not requiring bit properties. ăey are used to model
the leaves of the operator graph, typically table-, index- or đle scans. An example is the Lookup
rule. ăe Initialize method is called when the rule is initialized during the preparation phase of
plan generation.

Search rules can both produce and require bit properties. ăey model the internal nodes
in the operator graph. Examples include Selection and Join. More importantly, they control the
direction in which the optimizer searches for plans. ăe IsRelevantTo method determines if the
rule instance is relevant to the goal speciđed, that is, if the rule can be useful in this context. ăe
Searchmethod is the heart of search rules. Whenever the optimizer đnds that the rule instance
is applicable in a certain context, it will call Search with a PlanSet. ăe rule should answer
by generating plans satisfying the properties of the PlanSet (a BitSet). Normally, this will be
done by applying some logic and calling back to the optimizer. A cost limit is included, and
the search should be aborted whenever this limit is exceeded. Finally, the Required property
returns a list of the required input properties for each child, from leĕ to right.

An overview of the implemented constructive rules is shown in Figure 5.4. AbstactRule,
AbstractBaseRule, AbstractSearchRule, UnaryRule and BinaryRule are abstract rules implementing
common functionality. We spend the rest of this chapter explaining the details for the different
rules. In the following, wehave removed accessmodiđers, property getters and setters andmost
method implementations for brevity. We only list themost important class members. We have
also leĕ out the Produced property for base rules and the Produced and Required properties for
search rules, as this is something all constructive rules implement.

Finally, rule binders provide the optimizer with a way to instantiate relevant rules for the
query to be optimized. Classes that implement IRuleBinder, and are tagged with the [RuleBinder]
attribute will be loaded by the optimizer upon start up.

ăe basic functionality of a rule binder is to declare a Pattern that matches nodes in the
input operator graph and instantiate and return rules. ăe optimizer invokes the rule binder
with a reference to itself and with a list of all the matches of the pattern. It is the entire respon-
sibility of the rule binders to correctly conđgure the rules so they correspond to the operators
in the query graph.



5.3. Constructive Rules 85

1 public class LookupRule : AbstractBaseRule {
2 BasicPlanSetState Stats;
3 string Index;
4 string Word;
5 OrderProxy Order;
6 void Initialize(PlanSet plans);
7 void UpdatePlan(Plan plan);
8 }

Listing 5.2: LookupRule, simpliđed

5.3.2 Lookup Rule

LookupRule is the only base rule we have implemented and represents the only leaf operator (i.e.
access path) we support. Lookup looks up the speciđed word in a given index, and returns the
records. In short, it provides the following as shown in Listing 5.2:

Stats stores the cardinality, i.e. an estimate of the number of records that will be returned,
and tuple size. ăis is important not only to determine the cost of the lookup, but also
for all the consumers. A stubbed system catalog provides this information, as described
in Section 4.3.2. It is fetched and set by the rule binder.

Index andWord being looked up, to be able to reconstruct the physical algebra.

Order is the physical ordering, which in turn is used to determine all logical orderings. In-
dexes in MARS are typically clustered on DocumentId.

Initialize will initialize the BasicPlanSetState for the speciđed PlanSet, while

UpdatePlan updates the cost, ordering and sharing of the speciđed plan.

ăe complete lookup rule is given in Section B.9.

5.3.3 Sort Rule

ăe sort rule is shown in Listing 5.3 and does very little, since it is only a helper rule. Its only
purpose is to store the Order description of the sort it performs and to calculate the cost of itself
inside UpdatePlan. Sharing is the same as its input.

It can be invoked by other rules whenever a sorted input is required, but not met by the
input. Currently, it can be invoked in two situations:

1. By the Join rule, which requires the correct ordering to be able to build aMergeJoin plan.

2. By the optimizer itself which has to make sure that the optimized query satisđes the
requested output ordering for the query.

As such, this is the only exception to the principle of the optimizer not knowing about the
rules. As sorting is a so fundamental operator, this is not a problem.

ăis rule canbemore intelligent about considering thedegree of ordering alreadypresent in
the input. For example, if the input is sorted on (a, b), but an ordering for (a, b, c) iswarranted,
the cost is likely to be a lot less than if the input had no ordering at all.
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1 public class SortRule : AbstractRule, IHelperRule {
2 OrderProxy Order;
3 void UpdatePlan(Plan plan);
4 }

Listing 5.3: SortRule, simpliđed

1 public abstract class UnaryRule : AbstractSearchRule {
2 public override void Search(PlanSet plans, ICost limit) {
3 PlanSet input = qo.GeneratePlans((plans.Properties-Produced.BitSet) | Required[0],limit);
4 if (input == null)
5 return; // No plans
6
7 if (plans.Count == 0)
8 plans.State = CalcPlanSetState(input.State);
9

10 foreach (Plan inputPlan in input) {
11 Plan newPlan = new Plan(inputPlan);
12 UpdatePlan(newPlan);
13 plans.AddPlan(newPlan);
14 }
15 }
16 protected virtual BasicPlanSetState CalcPlanSetState(BasicPlanSetState input) {
17 return input.Filter(Selectivity);
18 }
19 void UpdatePlan(Plan plan);
20 }

Listing 5.4: UnaryRule, simpliđed

5.3.4 Unary Rule

Unary rules are rules with only one child, and most of them can be implemented quite easily.
ăeUnaryRuleprovides this implementation. It implements a basic search strategy of construct-
ing all plans where the rule itself is the topmost one, thereby producing plans with the rule in
all possible locations. However, leaving the default implementation in place for all unary rules
will make the search space too big (it increases exponentially with the number of rules), so care
should be used.

Listing 5.4 shows the implementation of UnaryRule. ăe Search method basically asks the
plan generator to produce all plans with the requested properties minus what the rule itself
producespluswhat it requires, effectively placing itself on the top. If no plans can be generated,
nothing is done. Otherwise, if this is the đrst plan being produced for these properties, it sets
some PlanSetState and then creates new plans with itself on the top.

5.3.5 Selection Rule

SelectionRule is shown in Listing 5.5 and constructs selections in the query. It is a unary rule
and therefore inherits from UnaryRule. We have not optimized its implementation and just leĕ
the standard unary search method in place.

An important task for the rule binder is to determine the selection’s Selectivity. ăis
greatly inĔuences not only the cost of the select operator, but also to any consumers above it.
ăe cost of the select operator is also affected by its PredicateCost.

A problemwith today’s implementation is that we have very little to base the selectivity es-
timates on. ăerefore, the selectivity of a SelectionRule is simply hard-coded to 0.1 now. How-
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1 public class SelectionRule : UnaryRule {
2 double PredicateCost, Selectivity;
3 HashSet<Dependency> InducedDependencies;
4 ExpressionProperty SelectionFilter;
5 void UpdatePlan(Plan plan);
6 }

Listing 5.5: SelectionRule, simpliđed

1 public class GroupOperatorRule : UnaryRule {
2 GroupingProxy Grouping;
3 IList<NodeAttribute> GroupingFields;
4 IDictionary<string, Aggregator> Aggregators;
5 void UpdatePlan(Plan plan);
6 }

Listing 5.6: GroupOperatorRule, simpliđed

ever, we override the values in various tests to ensure that the selects are properly moved.
Another important task is to determine what functional dependencies (stored in Induced-

Dependencies) are introduced by the selection, as this affects the available logical orderings as
explained in Chapter 6. To do this, we utilize MARS’ parser for predicate expressions, which
parses it to a LINQ (Language Integrated Query, a .NET feature) expression tree. We then
traverse the tree, looking for attribute references (which induces a dependency on the operator
that produces it), as well as expressions like attribute = CONST or attribute1 = attribute2
which introduce functional dependencies. We do not perform any predicate rewriting like
DeMorgan or the like.

ăe complete selection rule is given in Section B.10.

5.3.6 Group Rule

GroupRule, shown in Listing 5.6, constructs group by-operators in the query. As selection, it is
a unary rule and therefore inherits from UnaryRule. A group operator only lets through the at-
tributes it groups on, GroupingFields, in addition to adding attributes for the aggregate func-
tions, Aggregators. Dependencies are set to every operator below it and the above will be
forced to stay there. ăis is more limiting than necessary — but we have not studied exactly
when it would be interesting to move operators above a group operator.

It represents both streamandhash group as one rule (as opposed to the join rule, whichuses
helper rules for merge and hash joins), and Grouping stores the grouping of the tuple stream
it desires. ăis is because MARS also handles them as one operator, automatically switching
between the two based on ordering of the input. Interestingly, MARS prevents us from doing
an optimization by doing this, as described in Section 6.2.2.

As the various MARS aggregate classes do not override Equals we could not easily imple-
ment StructurallyIdentical. However, none of our example queries reuse the output from a Group-
operator, so it has not been a big deal.

5.3.7 Map Rule

Map operators are represented by the MapRule (Listing 5.7) and performs only attribute re-
moval, rename or computation of new attributes, not duplicate removal, distinct, on the tuple
stream. ExpressionCost stores the cost of the expressions (currently static), ParameterMap the
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1 public class MapRule : UnaryRule {
2 double ExpressionCost;
3 Dictionary<IdentifierProperty, ExpressionProperty> ParameterMap;
4 HashSet<Dependency> InducedDependencies;
5 void UpdatePlan(Plan plan);
6 }

Listing 5.7: MapRule, simpliđed

expressions with output alias, while InducedDependencies stores the functional dependencies
induced for orderings. UpdatePlan updates cost, ordering and sharing.

Maps are handled a bit differently from other operators. To reduce the search space, a
pre-processing step removes all map operators that only rename or remove attributes from the
query. Attribute renames are handled transparently by the (node, attribute)-tuple way of ref-
erencing attributes previously described. Attribute removals are also handled transparently, as
the optimizer (actually, the rule for the Output operator) will insert a map operator as the top-
most operator in the query if there are too many attributes, wrong names or wrong order of
the attributes. Maps that produce new attributes are leĕ as they are, but are locked in place just
beneath the đrst operator that requires those attributes.

Inmany cases, it is preferable to insert amap operator before potentially disk-spilling oper-
ators like Sort and HashJoin, but we do not currently do this. More on suggested improvements
for Map can be found in Section 8.5.2.

An important task of the map rule binder is to identify the attributes referred in the var-
ious expressions. At the moment, this is done by simple sub-string matching using regular
expressions — for every input attribute, if the attribute name is a sub-string of an expression
(with word boundary checks, so “Score” does not match “ProxScore”), a dependency on that
attribute is added. Ideally, this would use the same parser as MARS does, to instead reason on
the AST of the expressions.

Another important task is to register attribute renames with the optimizer, so that the op-
timizer can correctly identify the origin for an attribute that passes through a map operator.

5.3.8 Binary Rule

As for unary rules, we also have an abstract base class for binary rules (rules with two children).
Currently, it only includes some convenience properties and propagation of sharing properties.

5.3.9 Join Rule

ăe JoinRule constructs joins in the query graph and is thereby responsible for one of the core
problems of query optimization; join ordering. It is also the only binary rule we have imple-
mented, apart from ScoreOccurrenceswhich does not come even close in complexity. ăe most
important code is shown in Listings 5.8 and 5.9. Please note that these code samples have
been simpliđedmore heavily than usual to đt here. We have removed function parameters and
unimportant variables for brevity.

[Neu05] gives the implementation for bushy join enumeration only, but we have imple-
mented leĕ-deep enumeration as well. Which to use is controlled by the JoinEnumeration
property on the join rule. Line 10 in Listing 5.8 shows the distinction between bushy and
leĕ-deep. Let us consider bushy joins đrst, as this is the simplest case.

ăe basic idea is that the rule is requested to produce a set of properties. Some of them it
produces itself, and some must be requested from the input plans. ăe difference from unary
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rules is that it can get them from either input plan. Its ReqLeft/ReqRight properties must be
requested from the leĕ or right input (for example, the attributes the join predicate references),
but the rest can be freely chosen. ăerefore, we determine all the properties that either of
its children must satisfy (the freely chosen). ăis is wantedProps = Requested properties
- (Produced | ReqLeft | ReqRight), which happens on line 9. ăen InternalSearch is called to
produce plans. It takes four parameters: 1) the PlanSet to add results to, 2) the freely chosen
properties, 3) properties that must be on the leĕ side, and 4) properties that must be on the
right side.

For leĕ-deep enumeration, the difference is how the freely chosen properties are deter-
mined. When the join rules are initialized, a property OtherJoins is set, containing the pro-
duced and required properties of all the other join rules. For leĕ-deep plans, the right input
should be a relation, so all other remaining joins should be in the leĕ input. ăerefore, Other-
Joins is removed from the freely chosen properties on line 14. remainingJoins is computed as
the joins remaining below this rule. ăe ones performed including and above this rule, closer
to the root, are removed by intersecting OtherJoinswith the requested properties and remov-
ing the produced properties for this rule. Also, ReqLeft/ReqRight are removed as these are
requested explicitly for the leĕ or right input.

All remaining joins are explicitly forced to the leĕ input by specifying ReqLeft | remain-
ingJoins as the leĕ parameter to InternalSearch. InternalSearch needs to be called a second
time with ReqLeft/ReqRight swapped (but with remainingJoins still on the leĕ side) to en-
able join ordering at all — otherwise it would just force one possible order. We can do this
since A ◃▹ B is equivalent to B ◃▹ A. Note that this also requires swapping OrderLeft/Right
and SortLeft/Right in InternalSearch, but we have omitted this for brevity.

ăe logical join rule should never build any algebras or calculate cost (this is leĕ up to the
helper rules), so BuildAlgebra and Cost just throws an exception.

1 public class JoinRule : BinaryLogicalRule {
2 HybridHashJoinRule HybridHashJoin; MergeJoinRule MergeJoin;
3 OrderProxy OrderLeft, OrderRight; IRule SortLeft, SortRight;
4 BitSet OtherJoins;
5 JoinEnumeration JoinEnumeration;
6 IList<NodeAttribute> JoinKey;
7
8 public override void Search(PlanSet plans) {
9 BitSet wantedProps = planSet.Props - (Produced | ReqLeft | ReqRight);

10 if (JoinEnumeration == Bushy) {
11 InternalSearch(plans, wantedProps, ReqLeft, ReqRight);
12 }
13 else if (JoinEnumeration == LeftDeep) {
14 wantedProps -= OtherJoins;
15 remainingJoins = (OtherJoins & plans.Props) - (Produced | ReqLeft | ReqRight);
16 InternalSearch(plans, wantedProps, ReqLeft | remainingJoins, ReqRight);
17 InternalSearch(plans, wantedProps, ReqRight | remainingJoins, ReqLeft);
18 }
19 // And so on for RightDeep and zig-zag.
20 }
21 public override OperatorNode BuildAlgebra(Plan plan) {
22 throw new OptimizerException(”Delegated␣to␣helper␣rules.”);
23 }
24 protected override BasicCost Cost(Plan plan) {
25 throw new OptimizerException(”Delegated␣to␣helper␣rules.”);
26 }
27 }

Listing 5.8: JoinRule, heavily simpliđed
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1 void InternalSearch(PlanSet plans, BitSet wantedProps, BitSet left, BitSet right) {
2 foreach (BitSet leftProps in wantedProps.Walk()) {
3 PlanSet leftPlans = GeneratePlans(left | leftProps, OrderLeft, SortLeft);
4 if (leftPlans == null)
5 continue;
6
7 BitSet rightProps = wantedProps - leftProps;
8 PlanSet rightPlans = GeneratePlans(right | rightProps, OrderRight, SortRight);
9 if (rightPlans == null)

10 continue;
11
12 if (plans.Count == 0)
13 plans.State = CalculateState(leftPlans, rightPlans, Selectivity);
14
15 foreach (Plan leftPlan in leftPlans) {
16 foreach (Plan rightPlan in rightPlans) {
17 // Merge join
18 if (leftPlan.Order >= OrderLeft && rightPlan.Order >= OrderRight) {
19 Plan mergePlan = new Plan(leftPlan, rightPlan);
20 MergeJoin.UpdatePlan(mergePlan);
21 plans.AddPlan(mergePlan);
22 }
23
24 // Hybrid Hash join
25 Plan hashPlan = new Plan(leftPlan, rightPlan);
26 HybridHashJoin.UpdatePlan(hashPlan);
27 plans.AddPlan(hashPlan);
28 }
29 }
30 }
31 }

Listing 5.9: InternalSearch of JoinRule, heavily simpliđed

We now look at the implementation of InternalSearch in Listing 5.9. First, the freely cho-
sen properties are distributed between the leĕ and right sub plan in all possible ways, asking
the plan generator to produce plans for each possible combination. ăis is done using the Bit-
Set.Walk method on line 2 which produces all permutations of wantedProps. First, the rule
asks for the leĕ input plans. If there are none, we continue to the next leĕ/right distribution.
We then calculate the rightProps on line 7 as the remaining properties in wantedProps not
in leftProps and generate the right input plans. If there are none, we continue to the next
leĕ/right distribution. If the PlanSet is empty, we then initialize its PlanSetState on line 13.

ăe loops on lines 15-29 iterate over all possible join plan combinations of the input plans.
ăe JoinRule itself only represents the logical join — the different physical join algorithms are
represented by helper rules. One plan is actually added for each join algorithm. First, if the
input plans are ordered on the join keys, a plan for merge join is created and then a plan for
hash join is always created. ăis is done by calling UpdatePlan on the corresponding helper rule,
giving it the newly created plan as parameter. Dominated plans are pruned automatically by
PlanSet.

HybridHashJoin- and MergeJoin Rules

ăe HybridHashJoinRule and MergeJoinRule are helper rules. ăey are not directly used by the
optimizer, but consultedby the JoinRule. ăerefore, they donot implement the Searchmethod,
but only UpdatePlan and BuildAlgebra. UpdatePlan is responsible for updating the costs.
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1 public class ScoreOccurrencesRule : AbstractSearchRule {
2 // Various operator parameters.
3
4 override void Search(PlanSet planSet, ICost limit); {
5 if (planSet.Properties != Produced ∪

∪
Required)

6 return;
7
8 foreach (BitSet required in Required)
9 PlanSet plans = qo.GeneratePlans(required, limit);

10 // ... Find best combination of input plans and create a new plan.
11 }
12 void UpdatePlan(Plan plan);
13 }

Listing 5.10: ScoreOccurrencesRule, simpliđed

5.3.10 ScoreOccurrences Rule

ScoreOccurrences takes its inputs from one or more Lookups or ONear/Nears. Based on the num-
ber of occurrences, how close they are to each other, etc. the operator assigns one or more
score-attributes to the document.

It does not make much sense to attempt to move this operator around, so SetDependencies
locks the operator in place. ăis can also be seen in the Search method in Listing 5.10. If it is
tried used to construct something different that exactly itself and what it requires, that search
branch is aborted. Also, the sub-plans searched for are exactly the properties required. Wehave
omitted the rest of Search() for brevity. UpdatePlans updates cost, order and sharing.

As with Group, We could not properly implement StructurallyIdentical without resorting to
ugly hacks, as the various “Scorers” in MARS do not override Equals et al.



92 Chapter 5. Rules: Search Space and Pre-/Post Processing



6
Orderings and Groupings

“Anything that happens, happens. Anything that, in happening, causes something
else to happen causes something else to happen. Anything that, in happening, causes
itself to happen happens again. All of this, however, doesn’t necessarily happen in
chronological order.”

— Douglas Adams (Mostly Harmless)

6.1 Introduction

Some of the important operators found in MARS, for example Join and Group, include at least
two physical implementations — one that operates on sorted or grouped input and one that
does not. For Join,MergeJoin directly merges two sorted inputs, while HybridHashJoin has to be
used if the inputs are not sorted on the join key. Actually, HybridHashJoin can take some ad-
vantage of a sorted leĕ input, but this is up to the cost model to recognize. For Group, Stream-
ingGroup groups and aggregates a sorted (or grouped, as we will explain) input with minimal
buffering, while HashGroup accepts any input ordering/grouping, but at the cost of signiđcant
more memory consumption and CPU usage. (Streaming- and HashGroup is actually realized
as the same operator in MARS.)

ăepoint is that the variantworkingwith sorted or grouped input allows formuch cheaper
evaluation, usually both in terms of CPU-, memory- and IO-cost. It is therefore preferable to
have the optimizer schedule for instance MergeJoin or StreamingGroup whenever beneđcial. Of
course, one can always use these operators by inserting a sort operator right before it, but the
result is possibly an even more expensive plan than using the non-ordered operator in the đrst
place. One middle case is a join with one of the inputs already sorted on the join key. ăe
key point is therefore that the optimizer should be able to recognize data already ordered in
the required way and schedule the cheaper operator variants. ăe cost model also needs to
recognize the case where HybridHashJoin is slightly cheaper if given a sorted leĕ input. Since
the plan generator possibly considers millions of plans, this recognition needs to be very fast.

In addition to different physical operators requiring ordered input, the query may also
specify that the output result set should be sorted. ăis can always be solved by inserting a
sort operator just before the output operator, but doing so if the query happens to already pro-
vide the data in the requested ordering is redundant work.

To support all this, the optimizer needs to be able to reason about available orderings and
groupings when combining smaller sub plans into larger plans using operators with different
order and grouping requirements, and ultimately the complete query. Different orderings or
groupings can originate from clustered (ordered) index scans, sorts or group operators.

Of course, none of this is speciđc to our optimizer— all query optimizers have to deal with
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this. It is particularly interesting for MARS, since most full-text indexes are clustered (ordered)
by document id and word position. ăis can be exploited using merge joins, resulting in great
improvements in query evaluation time.

We have looked at two different ordering frameworks to add this feature to the optimizer,
[SSM96] and [NM04], and found that both would đt our needs. However, the latter one
seemed to be more promising since it in addition to orderings also could handle groupings,
while claiming to be signiđcantly faster than the former. Our implementation is therefore
largely based on the description in [NM04], mostly using the algorithms described there. In
this chapter we therefore give an introduction to the framework, but refer the reader to the
source for a deeper understanding and detailed description of the algorithms involved.

6.2 Overview

ăe logic the optimizer needs to reason about orderings and groupings is separated into its own
component, the Order Manager. It encapsulates the algorithms and data structures used and
provides a clean API to the optimizer. More speciđcally, the order manager needs to provide
the following services:

1. Keep track of the available orderings and groupings for a plan at all times without much
overhead.

2. Offer an API to check if a plan satisđes a speciđc ordering or grouping. ăis is utilized
by the plan generator when reasoning about what physical operators to schedule.

3. Initialize a plan with a certain ordering or grouping, for instance from a clustered index
scan, sort or group operator.

4. Offer an API for operators/rules to declare how they affect orderings/groupings. For
example, applying the selection a = 50 will cause the data to be ordered by a.

ăere is more to orderings and groupings for a tuple stream than one might expect and we
now continue by introducing some important concepts.

6.2.1 Orderings

ăe overall goal of keeping track of orderings is to avoid inserting redundant sort operators.
ăe plan generator will actually always try to construct a plan with for instance merge joins,
but the cost model will reject those plans if the cost of sorting đrst becomes greater than using
a hash join. It therefore needs to keep track of the relevant orderings for query optimization,
the interesting orderings [SAC+79]:

1. All orderings required by a physical operator that may be used in the query, including
the requested ordering(s) of the query result set.

2. All orderings produced by a physical operator that may be used in the query, including
index scans and sort operators.

ăese orderings are logical orderings in that they describe logical orderings the tuple stream
must satisfy, as opposed to physical orderings which is the actual ordering of the tuples. A tu-
ple stream will only have one physical ordering, but can satisfy several logical orderings. For
example, given the schema (a, b), the tuple stream ((1, 1), (3, 3)) has one physical ordering, the
actual stream, while is satisđes the logical orderings a, b, ab and ba.
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Operators like Sort and Lookup affect the physical ordering since they produce or alter an
actual order of the tuples. Sort[a] will make the tuple stream satisfy the logical ordering a by
rearranging the tuples. Other operators, like Select and Map/Projection affect the logical order-
ing. Given the schema (a, b), applying Select[b=50] to a tuple stream satisfying the ordering
(a), will make it satisfy the orderings a, b, ab and ba. Functional dependencies (FDs) are used to
express such deductions. Note that a tuple stream satisđes all pređxes that can be constructed
from the orderings it satisđes. A tuple stream satisfying ab will always satisfy a.

Given a functional dependency b → c, and a logical ordering containing b, the FD can be
used to deduce new logical orderings by inserting c at any position aĕer the position of b. To see
this, consider that the FD says that “for equal values of b, c will be equal as well”. ăerefore, if a
tuple stream is ordered by b, we can be sure that it is ordered by bc, since for each distinct value
of b, c will have the some constant value. For a functional dependency on the form ab → c,
both a and b need to be present and c can be inserted aĕer the position of whichever is last. For
a dependency → c (which means that c is constant), c can be inserted at all locations. ăis is
exactly what happened in the select[b=50] example. For equalities, b = c, b can be replaced
by c and vice versa, in addition to being inserted as described above.

6.2.2 Groupings

In addition tokeeping trackof available logical orderings, if thequery contains groupoperators,
it may be beneđcial to keep track of available groupings as well. For example, when applying a
group operator to a tuple stream that is already grouped, one can use a streaming group instead
of a hash-based group, saving memory and CPU cycles.

Just as for orderings, we have a set of interesting groupings:

1. All groupings required by a physical operator that may be used in the query.

2. All groupings produced by a physical operator that may be used in the query.

ăe reason for keeping track of groupings separately from orderings is that a grouping does
not imply an ordering. For instance, given the schema (a, b), the tuple stream ((2, 3), (1, 2),
(2, 4)) is grouped by {a, b} but not ordered by anything. However, an ordering always implies
the corresponding grouping, i.e a tuple stream ordered by (a, b) satisđes the groupings {a} and
{a, b}. Note that while an ordering is given as a sequence of attributes, a grouping is given as a
set. ăerefore the pređx property that holds for orderings does not hold for groupings. A tuple
streamed grouped by {a, b} need not be grouped by {a}, and this is also true for the example
tuple stream above.

Given a functional dependency b → c, and a logical grouping containing b, the FD can
be used to deduce a new logical grouping by adding c to the set of attributes. For a functional
dependency on the form ab → c, both a and b need to be present in the grouping, while for
→ c, c can just be added to the set. For equalities, b = c, b can be replaced by c and vice versa,
in addition to being added to the set.

Currently, we do not actually need the groupings functionality, as this is more than MARS
can currently make use of. More speciđcally, the group operator in MARS is designed to auto-
matically choose between streaming group and hash group based on the nature of the input
stream. Currently, it only checks if grouping attributes is a pređx of the ordering of the in-
put tuple stream. ăis always guarantees correct results, but is misses the case where the tuple
stream is only grouped, not sorted. However, it should be easy for fast to extend their group
operator with the functionality to recognize that a tuple stream is grouped, not sorted, for
instance by being told so by our optimizer. ăerefore we still implemented this functionality.
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6.2.3 Functional Dependencies

As previously mentioned, functional dependencies (FDs) are the way rules/operators express
deductions for orderings and groupings. More speciđcally, how an operator inĔuences the
logical orderings and groupings is expressed as a set of FDs it applies to the tuple stream when
it is performed. ăese FDs are thenused by the ordering component to deduce a new andwider
set of logical orderings and groupings. Note that a Sort operator does not apply FDs, instead it
resets the ordering state with the new physical ordering it produces. Any applied FDs will still
hold and will need to be reapplied aĕer the sort.

We now list the major sources of functional dependencies and give examples.

Key constraints FDs typically arise from primary keys. For a document relation, one will typ-
ically have the FD DocumentId → DocumentName, DocumentType. For example, this
means that if the tuple stream is ordered on DocumentId, it will be ordered on Docu-
mentId, DocumentName, DocumentType as well.

Join predicates typically lead to FDs on the form a = b (for equality joins).

Filter predicates on the form a = b gives the same FD as above. A đlter predicate on the
form a = constant will give the FD→ a.

Map/projection expressions. Aprojection d = f(a, b, c), for example d = a+b×c, results
in the FD abc → d, since for speciđc values of abc, d will always have the same value.

6.2.4 Orderings and Groupings for MARS’ Operators

Wenow specify the orderings and groupings produced and required by the different operators
in MARS, as well as the functional dependencies they induce. ăey are shown in Table 6.1.

Lookup requires no order, but produces an order depending on the index schema. For in-
stance, a full-text lookup will be ordered by DocumentId, Position. For most lookups, Docu-
mentId is the primary key. ăis gives the FDs DocumentId→ rest.

For ScoreOccurrences and ONear/Near, a⃗ contains the document grouping đeld for the in-
puts, most commonly DocumentId. b⃗ contains the word position đeld for the inputs, most
commonly Position. ăey both require all inputs to be ordered by the grouping and posi-
tion đeld and will let this ordering through, in addition to inducing an equivalence between
all grouping attributes, much like a join would do.

Map and Select only induce dependencies, they do not alter them.
MergeJoin (equi-join) can join an unlimited number of tuple streams, where a⃗, b⃗ and so on

represent the join keys. It requires ordering on the join keys for all inputs and will not destroy
this ordering. It will, just as HybridHashJoin, induce equivalence between the join keys, but
HybridHashJoin does not require or produce any ordering.

A Group on a1, .., an does not require any grouping (although it will run more efficiently
if the input is already grouped on a1, .., an), and produces a grouping on a1, .., an.

A Sortona1, .., an alters thephysical ordering and it thereforeproduces theorderinga1, .., an.
Trim does not affect ordering at all.

Finally, for the output operator o1 and so on represents the requested output orderings for
the (multi) query. It therefore requires these orderings.

6.2.5 Plan Generator Interface

ăe ordering component offers an abstract data type (class) OrderingState, which represents a
set of all the logical orderings and groupings available as well as the set of FDs applied. ăe
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Operator Required Produced Induced FDs

Lookup(I) - O(I) Keys
ScoreOccurrences(S1..Sn, a⃗, b⃗) {a1, b1} ∈ O(S1)

.. , {an, bn} ∈
O(Sn)

O(S1) a1 = .. = an

ONear/Near(S1..Sn, a⃗, b⃗) {a1, b1} ∈ O(S1)
.. {an, bn} ∈
O(Sn)

O(S1) a1 = .. = an

Map(S, a = f(b, c)) - - bc → a
Select(S, a = b) - - a = b
MergeJoin(S1..Sn, a⃗ = .. = z⃗) a⃗ ∈ O(S1) ∧ .. ∧

z⃗ ∈ O(Sn)
O(S1) a⃗ = .. = z⃗

HybridHashJoin(S1, S2, a⃗ = b⃗) - - a⃗ = b⃗
Group(S, a1..an) - {a1, .., an} -
Sort(S, a1..an) - (a1, .., an) -
Trim(S) - - -
Output(S1..Sn, o1..on) o1 ∈ O(S1)..on ∈

O(Sn)
- -

O(S) ăe logical orderings available for tuple stream S.
(a1, ...an) ăe logical or physical ordering a1..an.
{a1, ..., an} ăe logical grouping a1, .., an.

Table 6.1: Required and produced orderings and induced functional dependencies

plan generator annotates all plans generated with this data type, so operators like MergeJoin
can easily check whether a plan satisđes its orderings requirements or not. Since the number
of available orderings increases very rapidly when applying functional dependencies, storing
these naïvely is not an option. Orderings and groupings are stored by wrapping the Order class,
while FDs are stored as a bit mask (more on this later).

ăe ordering components offers the following API functions for OrderingState to the plan
generator:

• OrderingStateOrderManager::GetOrdering(OrderDescription) /GetGrouping(GroupingDescription):
When aplan is constructed fromanoperator that produces a physical ordering or group-
ing, such as a Sort, Group or Lookup (index scan), the plan generator needs to initialize
the ordering state to this ordering.

• OrderingState OrderingState::Apply(Set<FD>>): Whenever a operator is added to an existing
plan, the plan generator needs to apply the FDs it induces to deduce the new order and
grouping state.

• OrderingState OrderingState::Apply(OrderingState): If an operator with more than one input
is applied, the plan generator must merge the ordering states and the set of applied FDs
from the two inputs.

• bool OrderingState::Satisöes(Order)/Satisöes(Grouping): Used by the optimizer to check if a
plan satisđes the ordering or grouping requirement for an operator, for instance aMerge-
Join. If it does, the plan generator will consider the new plan with, for instance, Merge-
Join.
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6.3 State Machine Model and Implementation

6.3.1 Example Query

Westart by introducing a query thatwill illustrate how the plan generator uses the ordering and
grouping component, as well as how the component works internally. ăe query is shown in
Figure 6.1. Itmay seem somewhat artiđcial, butwehave constructed it to be able to illustrate all
the concepts. Note that all đgures in this chapter have been somewhat simpliđed to emphasize
the important concepts.

ăe Lookups produces the attributes DocTypeId, Extension, DocId, and DocName. It is an
imagined materialization of a join between documents and their types, where DocTypeId is
the id of the document type, while Extension is the đle extension for the type, for instance
.doc. It is clustered (ordered) by DocTypeId ascending. To avoid name clashes, we have pređxed
DocTypeId with 0_ and 1_ for the different branches.

In the leĕ branch, the Group operator groups the documents by DocTypeId, aggregating
the count of each type. ăen, a Map uses an imagined TypeDescription function to look up the
description for a document type, for instance “MS Word Document”. Next, another group is
applied (no point, just for the sake of illustrating a concept), before the result set is trimmed
to the đrst 10 tuples, ordered by (SecondCount DESC, DocTypeId). Finally, another sort is ap-
plied to get the đnal output order of (SecondCount DESC, DocTypeId, DocTypeDesc). We have
also included a query branch that only reads the Lookup results sorted to illustrate how share
equivalence is handled later.

ăenext thing that happens (in the context of orderings) is that the query is fed through the
OrderingExtractor and SortRemover pre-processors. ăis would result in the Sort operators being
removed and the Output and Trim operators being annotated with the orderings they require,
as extracted from the sort operators. ăis is shown in Figure 6.2.

We can now start looking at the set of interesting orders and groupings and functional
dependencies for the query:

Interesting orderings

(0_DocTypeId) Produced by the right Lookup and required
by the Output operator.

(1_DocTypeId) Produced by the leĕ Lookup.
(SecondCount, 1_DocTypeId) Required by the Trim operator.
(SecondCount, 1_DocTypeId, DocTypeDesc) Required by the Output operator.

Interesting groupings

{1_DocTypeId} Required by the lower Group operator.
{DocTypeDesc, 1_DocTypeId} Required by the upper Group operator.

Functional dependencies

DocId → DocTypeId, Extension, Doc-
Name

DocId is the primary key of the lookup relation.

1_DocTypeId→DocTypeDesc Induced by the Map operator.



6.3. State Machine Model and Implementation 99

Output 

Sort 

Order = (SecondCount DESC, 1_DocTypeId, DocTypeDesc)

Trim 

Hits = 10

Sort 

Order = (SecondCount DESC, 1_DocTypeId)

Group (DocTypeDesc, 1_DocTypeId) 
SecondCount = Sum(FirstCount)

Map 

DocTypeDesc = TypeDescription(1_DocTypeId)

Group (1_DocTypeId) 
FirstCount = Count()

Sort 

Order = (0_DocTypeId)

0_Lookup (DocType) 
Fields = (0_DocTypeId, Extension, DocId, DocName) 

Order = (0_DocTypeId ↓)

1_Lookup (DocType) 
Fields = (1_DocTypeId, Extension, DocId, DocName) 

Order = (1_DocTypeId ↓)

Figure 6.1: Input sample query for orderings and groupings

Output 

RequiredOrder = (SecondCount DESC, 1_DocTypeId, DocTypeDesc), (0_DocTypeId)

Trim 

Hits = 10
RequiredOrder = (SecondCount DESC, 1_DocTypeId)

Group (DocTypeDesc, 1_DocTypeId) 
SecondCount = Sum(FirstCount)

Map 

DocTypeDesc = TypeDescription(1_DocTypeId)

Group (1_DocTypeId) 
FirstCount = Count

0_Lookup (DocType) 
Fields = (0_DocTypeId, Extension, DocId, DocName) 

Order = (0_DocTypeId ↓)

1_Lookup (DocType) 
Fields = (1_DocTypeId, Extension, DocId, DocName) 

Order = (1_DocTypeId ↓)

Figure 6.2: Aĕer OrderingExtractor run
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Root

{1_DocTypeId}

{1_DocTypeId}

(1_DocTypeId ↓)

(1_DocTypeId ↓)

(0_DocTypeId ↓)

(0_DocTypeId ↓)

(SecondCount ↑,
1_DocTypeId ↓)

(SecondCount ↑,1_DocTypeId ↓)

{1_DocTypeId,
DocTypeDesc}

{1_DocTypeId,
DocTypeDesc}

1_DocTypeId →
 DocTypeDesc

ε 

ε 
(1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

(SecondCount ↑,
1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

ε ε 

ε ε 

ε 

Figure 6.3: Finished NFSM for the sample query

6.3.2 Overview

As previously mentioned, having the Order class explicitly maintain the set of logical orderings
and groupings is prohibitively expensive. However, the key observation is that it does not need
to offer access to this set, but rather anAPI to test if a certain ordering or grouping is amember
of the set. ăis allows for optimizations. ăe idea from [NM04] is to represent logical order-
ings and groupings as states in a Ėnite state machine (FSM).ăe edges (transitions) in the FSM
are labeled by functional dependencies. As such, with the FSM in a state representing a set of
logical orderings and groupings, applying a functional dependency brings the FSM to another
state, representing the new (and larger) set of available orderings and groupings deduced using
this dependency. ăe exceptions are the edges from the root node, which is used to initialize
the FSM with a physical ordering or grouping (aĕer a Sort-operator, for instance). ăerefore,
the set of available orderings and groupings for all states can be pre-computed, allowing for fast
lookup and efficient storage in bit masks.

Before we get as far as described above, we need to go trough several steps. We present
the idea in this overview section and then go into the detailed construction in the next sec-
tions. First, the sets of interesting orderings, groupings and functional dependencies are used
to construct a non-deterministic Ėnite state machine (NFSM), which can be seen in Figure 6.3.

On this NFSM, each state (except the root) represent one logical ordering or grouping.
Note that orderings are annotatedwith (...) and rounded nodes, groupingswith {...} and square
nodes and functional dependencies ... → .... For example, by following the (1_DocTypeId)
edge from the root, we end up with logical ordering (1_DocTypeId). ăe right ϵ edge means
that the node which represents the grouping {1_DocTypeId} is directly available, since an or-
dering implies a grouping on the same attributes. If we follow the edge labeled 1_DocTypeId
→ DocTypeDesc (represents applying this FD), we arrive at the logical ordering (1_DocTypeId,
DocTypeDesc). ăis node has ϵ edges back where we came from (since an ordering on ab is also
an ordering on a), and to the available groupings.

Note that the FD DocId→ DocTypeId, Extension, DocName has been đltered away since
no interesting ordering on DocId, Extension or DocName exists.

When the FSM has been constructed, each state can be mapped to the state of the Order
ADT. Applying functional dependencies induced by operators is performed by following the
corresponding edge, and the set of available orderings and groupings can be deduced by fol-
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Root

0 {1_DocTypeId}

{1_DocTypeId}

1 {1_DocTypeId,DocTypeDesc}

{1_DocTypeId,DocTypeDesc}

2 (SecondCount ↑,1_DocTypeId ↓)

(SecondCount ↑,1_DocTypeId ↓)

3 (0_DocTypeId ↓),
(1_DocTypeId ↓),
{1_DocTypeId}

(1_DocTypeId ↓)

4 (0_DocTypeId ↓)

(0_DocTypeId ↓)

5 {1_DocTypeId},
{1_DocTypeId,DocTypeDesc}

1_DocTypeId → DocTypeDesc

6 (SecondCount ↑,1_DocTypeId ↓,DocTypeDesc ↓),
(SecondCount ↑,1_DocTypeId ↓)

1_DocTypeId → DocTypeDesc

7 (0_DocTypeId ↓),
(1_DocTypeId ↓),
{1_DocTypeId},

(1_DocTypeId ↓,DocTypeDesc ↓),
{1_DocTypeId,DocTypeDesc}

1_DocTypeId → DocTypeDesc

Figure 6.4: Finished DFSM for the sample query

lowing the ϵ edges. However, the non-determinism is a problem when applying functional de-
pendencies, so we will need to convert the FSM to a deterministic Ėnite state machine (DFSM).

ăe resulting DFSM is shown in Figure 6.4. ăe ϵ edges have been removed and the states
now represent sets of logical orderings and groupings. ăe example from the NFSM is found
again as thenext rightmost branch. By following the (1_DocTypeId) edge fromthe root, we end
up with logical ordering (1_DocTypeId) (and (0_DocTypeId), as we will see later) and group-
ing {1_DocTypeId}, and by following 1_DocTypeId → DocTypeDesc, we get to the additional
orderings and groupings reachable by ϵ edges in the NFSM.

ăis DFSM is directly usable during query optimization since it is deterministic and pre-
computed. By pre-computing the FSM, checking availability for an ordering or grouping is
O (1), while applying an FD is at worstO (n), but this is not a huge problem since iterative
reapplying rarely happens.

We now present the optimized version (Figure 6.5) of the query given in Figure 6.1 and
explain how the DFSM is used.

First, the plan generator realizes that the Lookup produces an ordering and annotates its
base plan with DFSM state 3 by following the edge from the root. Next, the rule for the Group
operator will ask the OrderingState annotated for the Lookup plan if it has the logical grouping
{1_DocTypeId}, which it has, so a Streaming Group (as opposed to a Hash Group) will be used.
No FDs or physical reordering happens, so the ordering state remains the same. ăen, theMap
operator is applied and the ordering state of its plan will be set by applying 1_DocTypeId →
DocTypeDesc to its child’s ordering state. ăis brings us to DFSM state 7. As with the đrst
Group, the second Group’s grouping requirement is also satisđed, so a Streaming Group is used.

However, when it is time to insert the Trim operator from Figure 6.2, its ordering require-
ment is not satisđed, so a Sort operator, which is later merged with the Trim operator to a Sort-
Trim. ăe DFSM is re-initialized to state 2 and the FD already applied is reapplied, bringing it
to DFSM state 6. ăis state also contains the logical ordering required by the Output operator,
so another Sort is not required.

ăe right query branch, is a direct read of the Lookup with required ordering (0_Doc-
TypeId). Even though the Lookup produces the ordering (1_DocTypeId), no Sort is needed,
because 0_DocTypeId is share equivalent to 1_DocTypeId.
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Output 

RequiredOrder = (SecondCount DESC, 1_DocTypeId, DocTypeDesc), (0_DocTypeId)

SortTrim 

Hits = 10
Order = (SecondCount DESC, 1_DocTypeId)

StreamingGroup (DocTypeDesc, 1_DocTypeId) 

SecondCount = Sum(FirstCount)

Map 

DocTypeDesc = TypeDescription(1_DocTypeId)

StreamingGroup (1_DocTypeId) 
FirstCount = Count

Copy

1_Lookup (DocType) 
Fields = (1_DocTypeId, Extension, DocId, DocName) 

Order = (1_DocTypeId ↓)

Figure 6.5: Optimized sample query

6.3.3 FSM Construction

ăe FSM construction consists of several steps, which we shortly introduce. ăe code orches-
trating it can be found in Section B.11.

1. Determining Input

Before constructing the FSM, all interesting orderings, groupings and functional dependencies
need to be determined. ăeOrderManager therefore provides anAPIwhere the rules can ask for
a speciđc ordering or grouping which they want to use, for instance for checking their ordering
requirements later. In much the same way as BitSets are created, they cannot get the ordering
or grouping itself, since it has yet to be constructed by the order manager. Instead they will get
an OrderProxy or GroupingProxy which the order manager keeps a reference to. Later, when the
FSM has been constructed and orders and groupings mapped to an FSM state, it will đll the
proxies.

2. Add States to the NFSM

By using the input gathered in step 1, the states in theNFSMare now constructed, one state for
each logical or physical ordering or grouping. ăis includes the root statewith the initialization
edges between it and the states representing the physical orderings or groupings produced in
the query. Figure 6.6 shows the NFSM aĕer this step.

As can be seen on the đgure, this step also includes adding ϵ edges for ordering pređxes.
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Root 

(0_DocTypeId ↓)

(0_DocTypeId ↓)

(1_DocTypeId ↓)

(1_DocTypeId ↓)

(SecondCount ↑,
DocTypeId ↓)

(SecondCount ↑,DocTypeId ↓)

{DocTypeId,DocTypeDesc}

{DocTypeId,DocTypeDesc}

{DocTypeId}

{DocTypeId}

(SecondCount ↑)

ε

Figure 6.6: NFSM aĕer inserting states for interesting orders and groupings

Root

{1_DocTypeId}

{1_DocTypeId}

(1_DocTypeId ↓)

(1_DocTypeId ↓)

(0_DocTypeId ↓)

(0_DocTypeId ↓)

(SecondCount ↑,
1_DocTypeId ↓)

(SecondCount ↑,1_DocTypeId ↓)

{1_DocTypeId,
DocTypeDesc}

{1_DocTypeId,
DocTypeDesc}

1_DocTypeId →
 DocTypeDesc

(1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

(SecondCount ↑,
1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

(SecondCount ↑)

ε ε ε 

Figure 6.7: NFSM aĕer inserting transition edges

3. Add Transition Edges to the NFSM

According to the principles described in Section 6.2, functional dependencies are now used
to deduce new orderings and groupings. We will not thoroughly describe how this is done,
since it is quite involved, but in short it works as follows: Each state in the NFSM is used as
a starting point. ăen, each functional dependency is applied to this ordering or grouping to
deduce new, possibly interesting, orderings and groupings. If the new ordering or grouping
is interesting (or may become interesting by applying further FDs), it is added as a new state,
with an edge labeled with the FD considered leading to it from the current considered state.
ăis is done in an iterative fashion, as new states being added also should have the different
FDs considered for application. Edges from orderings to the corresponding groupings are also
added.

ăe result can be seen in Figure 6.7.

4. Add Share Equivalency Edges to the NFSM

When rules/operators are determined to be share-equivalent, their attributes are also share-
equivalent. ăis has importance when the equivalence class representative is used in a plan
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Root

{1_DocTypeId}

{1_DocTypeId}

(1_DocTypeId ↓)

(1_DocTypeId ↓)

(0_DocTypeId ↓)

(0_DocTypeId ↓)
(SecondCount ↑,
1_DocTypeId ↓)

(SecondCount ↑,1_DocTypeId ↓)

{1_DocTypeId,
DocTypeDesc}

{1_DocTypeId,
DocTypeDesc}

1_DocTypeId →
 DocTypeDesc

ε 

(1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

(SecondCount ↑,
1_DocTypeId ↓,
DocTypeDesc ↓)

1_DocTypeId →
 DocTypeDesc

(SecondCount ↑)

ε ε ε 

Figure 6.8: NFSM aĕer adding share equivalency edges

instead of what is represents. For example, if Lookup A is share equivalent to another Lookup
B, the ordering manager needs to recognize that an ordering on A.a is also an ordering on
B.a.

First, a share equivalency map is constructed by the plan generator that maps share equiv-
alent attributes to their representative. ăis map is then used by the order manager to add ϵ
edges between share equivalent orderings and groupings. In short, for each state in theNFSM,
each attribute in the ordering or grouping for that state is sent through the equivalency map,
constructing a new temporary ordering or grouping using only share equivalency representa-
tives. If this new ordering or grouping is found as a state in the NFSM, an ϵ edge is added
Ěom this state to the state being considered. ăis is because it is the share equivalent attribute
representatives that is used in place of their share equivalent counterparts in plan generation,
not the opposite. ăe result can be seen in Figure 6.8, where an ϵ edge has been added from
(1_DocTypeId) to (0_DocTypeId) since 1_Lookup is the representative.

5. Add ϵ Edges and Optimize the NFSM

ăen, ϵ edges are addedbetweenorderings and their corresponding groupings. For instance, an
ϵ edge is added from the ordering (a) to the grouping {a}, as every ordering is also a grouping.
ăis step also involves adding transitive edges, i.e. if a → b, b → c, then add a → c. [NM04]
also describes several techniques for reducing the size of the NFSM before constructing the
DFSM. Summarized:

1. Artiđcial nodes that behaves exactly the same are merged.

2. Transitive ϵ transitions are optimized.

3. ăe length of the interesting orderings and groupings are taken into account.

We have implemented most of these optimizations, but refer the reader to [NM04] for
details. ăe result of these two steps can be seen in Figure 6.3.

6. Convert the NFSM to a DFSM

ăis is carried out using the standard power set construction algorithm for converting anNFA
into a DFA [LP97]. It preserves the root state and its edges. ăe completed DFSM is shown
in Figure 6.4.
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7. Pre-compute Values

ăeđnal step is tomakeuse of theDFSMcreatedby creatingdata structures for efficient storage
and lookup. A transition matrix is created to represent the transitions (edges) between the
states in the DFSM. Given a current state, applying a FD or an initial ordering/grouping will
yield a resulting state or (-) if there is no such transition. It is implemented as a zero-index array
of pointers stored in each state and allows forO (1) lookup. It is shown for our example query
in Table 6.2.

State Root 0 1 2 3 4 5 6 7

(0_DocTypeId) 4 - - - - - - - -
(1_DocTypeId) 3 - - - - - - - -
(SecondCount, 1_DocTypeId) 2 - - - - - - - -
{1_DocTypeId} 0 - - - - - - - -
{1_DocTypeId, DocTypeDesc} 1 - - - - - - - -
1_DocTypeId → DocTypeDesc - 5 - 6 7 - - - -

Table 6.2: Transition matrix for the DFSM

Acompatibilitymatrix storeswhichDFSMstates are compatible (i.e. contains)withwhich
logical orderings or groupings. It is implemented as a bit vector stored in each state and allows
forO (1) lookup. It is shown for our example query in Table 6.3.

State 0 1 2 3 4 5 6 7

(0_DocTypeId) 0 0 0 1 1 0 0 1
(1_DocTypeId) 0 0 0 1 0 0 0 1
(1_DocTypeId,DocTypeDesc) 0 0 0 0 0 0 0 1
(SecondCount, 1_DocTypeId) 0 0 1 0 0 0 1 0
(SecondCount, 1_DocTypeId, DocTypeDesc) 0 0 0 0 0 0 1 0
{1_DocTypeId} 1 0 0 1 0 1 0 1
{1_DocTypeId, DocTypeDesc} 0 1 0 0 0 1 0 1

Table 6.3: Compatibility matrix for the DFSM

Each state in the DFSM is represented by an Order object which stores the matrices de-
scribed above for each state and additionally has an API for comparing orders and applying
FDs. It is shown in Listing 6.1. ăe Compatibility member stores the compatibility matrix
as a bit vector, while the Transitionsmember stores the transitions matrix. PossibleTransi-
tions stores the possible transitions from this node as a bit mask.

ăe <=operator allows for checking compatibility betweenorderings (for example to check
if a plan satisđes the ordering requirements of a merge join). It does a lookup in the compat-
ibility matrix. ăe Apply method is used to apply an FD and does a lookup in the transitions
matrix.

6.3.4 Plan Generator Use—OrderingState

[NM04] describes using an abstract data type OrderingGrouping to store the set of available
logical orderings and groupings for a plan. ăey do not, however, specify how to store the set
of applied functional dependencies. ăis is needed when, for instance, merging two ordering
states for an operator with more than one input. One way to do this would be to tag the DFA
state, but this would give 2n states, which is prohibitive.
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1 public class Order {
2 public BitArray Compatibility { get; set; }
3 public Order[] Transitions { get; set; }
4 public int PossibleTransitions { get; set; }
5 public int Id { get; set; }
6
7 public static bool operator <=(Order a, Order b) {
8 return b.Compatibility[a.Id];
9 }

10 public Order Apply(Dependency dependency) {
11 return Transitions[dependency.Id];
12 }
13 }

Listing 6.1: Order class (simpliđed)

1 public class OrderingState {
2 private int appliedDependencies; // FD bit mask, limited to 32 dependencies for now.
3 private Order order;
4 private Proxy proxy;
5 public Order Order { get { return order ?? proxy.Order; } }
6
7 public OrderingState Apply(Dependency dependency) { ... }
8 public OrderingState Apply(OrderingState other) { ... }
9 }

Listing 6.2: OrderingState implementation (simpliđed).

We have created a class OrderingState which wraps Order (our equivalent to OrderingGroup-
ing) and stores the set of applied FDs very efficiently as a bit mask, where the nth bit represents
if the FD with id n has been applied. It also handles the API logic described in Section 6.2.5.
Its implementation is shown in Listing 6.2.

Currently, the FD bit mask is stored as an int, which means it is limited to 32 FDs. ăis
can easily be overcome by using an array as has been done for BitSet. However, for all the queries
we will encounter, 32 is more than enough. ăe Order property will automatically return the
wrapped Order, either if set directly (for a plan, for instance), or from the proxy (for a rule, for
instance)Ʋ. ăe Apply methods allows for applying FDs or merging two ordering states.

6.3.5 Improvements Made From [NM04]

During the implementation we found some issues with the framework from [NM04] which
we worked our way around. We also claim some improvements and new features.

Share Equivalent Attributes

ăis is not handled at all by [NM04] or [Neu05]. Our solution is described in step 4. in
Section 6.3.3.

Ordering State for a Plan

Keeping track of applied functional dependencies and ordering statemerging are not described
in [NM04] or [Neu05]. Our solution is described in Section 6.3.4.

Ʋa ?? b will return b if a is null.
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1 public OrderingState Apply(Dependency dependency) {
2 int newAppliedDependencies = appliedDependencies | 1 << (dependency.Id - 1);
3
4 Order newOrder = IterativelyApplyOrder(Order, newAppliedDependencies);
5 return new OrderingState(orderManager, newAppliedDependencies, newOrder);
6 }

Listing 6.3: Applying a functional dependency.

1 private Order IterativelyApplyOrder(Order input, int dependencies) {
2 Order oldOrder = null;
3 while (oldOrder != input) {
4 oldOrder = input;
5 int applicableDependencies = dependencies & input.PossibleTransitions;
6 int dependencyToApplyMask = applicableDependencies & -applicableDependencies;
7
8 if (dependencyToApplyMask > 0)
9 input = input.Apply(LOG2MAP[dependencyToApplyMask]);

10 }
11 return input;
12 }

Listing 6.4: Iterative appliance of FDs

Transitive Functional Dependencies

We encountered a problem if functional dependencies is to be exploited transitively. For ex-
ample, given FD1: a = b and FD2: b → c, this transitively yields a → c. However, to our
understanding, this is not recognized by the algorithms described in [NM04], and will yield a
DFSM where FD1 has to be applied twice to arrive at all orderings and groupings deducible
from a → c. While the best solution would be to keep track of such transitivities during
NFSM generation, this would be quite complex, according to Dr. Neumann himself. As an
alternative, we have implemented an iterative appliance algorithm for FDs which also solves it,
at the cost of being slightly more expensive during plan generation.

Optimized, Iterative Appliance of FDs

We include the iterative algorithm described above as we believe it has some clever parts. Or-
deringState keeps track of the FDs applied andwhenever ordering states aremerged or an FD is
applied, it considers each applied FD (up to this point, not only the one(s) being applied now)
to see if it yields a DFSM state change, using the transitionmatrix previously described. ăis is
shown in Listing 6.3. Here, we see that a new FD bit mask is calculated as the union between
the existing FD mask and 1 bit-shiĕed to represent the Id of the new FD. Calculation of the
new order DFSM state is delegated to an external method, and đnally a new OrderingState is
returned.

IterativelyApplyOrder considers each FD for appliance. At đrst, this was implemented by
looping over every bit, but since this is in a performance critical path, we wanted to make sure
it runs as efficiently as possible. We therefore reduced the problem to the bit twiddling shown
in Listing 6.4.

ăe input parameters are the currentDFSM state and the FDs to be considered. ăe outer
while loop continues the process until no further transitions are possible. Note that there can
be no cycles in the DFSM, since we always transition to a “richer” ordering state, so we do
not need to check for this. ăen the intersection between the FDs to be considered and the
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possible transitions from the current DFSM state is calculated to receive a bit mask with 1 set
for all applied FDs that have an outgoing edge as well. By intersecting with its negation, we get
the value of the lowest bit that is set. If there is such a bit set, we use LOG2MAP, which is a map
from 2n → (n + 1), to lookup the Id of the lowest FD, which is then used to transition to the
next DFSM state.

Visualization of NFSM and DFSM

ăeđnite automata generated by the orderingmanager quickly become large and complex and
hard to read in a textual format. We have therefore, both to aid ourselves during development
and for the future optimization rule developers, added functionality to visualize the automata
in a graphical format. ăe automata are exported in the dot format, and we use Graphviz [AT
08] to turn them into graphs. ăe đgures used in this chapter are all auto-generated.



7
Example Optimizations

“Science is what we understand well enough to explain to a computer. Art is every-
thing else we do.”
— Donald Knuth

To get a better understanding of how all the pieces of the optimizer work together, we đrst
provide a fairly complete walkthrough of how a realistic query Ĕows through the optimizer.
ăen, we provide a few sample queries that demonstrate the optimizer’s abilities.

In this chapterwewill not distinguish between “query” and “multi-query”—“query” refers
to a MARS query graph which might have multiple outputs.

7.1 Walkthrough Query

Figure 7.1 shows an example of a realistic input query. It searches for documents containing
the terms “microsoě” and “soěware”. Results are returned ordered by relevancy, as deđned by
the calculations of ScoreOccurrences, with the name of the documents. Also, the numbers of
hits per document type are returned. We have removed the operator details to have it đt on
one page.

ăis is the query we consider for the most of this chapter. Other queries are optimized
in the last section. As described in Appendix C, we have included the debug output of the
optimization of this query in the digital appendix. However, do not expect everything to be
identical, as rule Ids and attribute names vary somewhat from run to run.

7.2 Optimization Steps

7.2.1 Optimization Hook

As described in Section 3.10, the optimizer is invoked through an OptimizerFacade, which han-
dles converting to- and from our and MARS’s graph structures. It đrst does some sanity checks,
checking if the structure of the query is what we expect.

ăe query is well-deđned and valid, so then, the query optimizer is invoked. ăe result of
the optimization is converted back to a MARS operator graph before yielding processing to the
next component in the chain.

7.2.2 Optimizer Initialization

Before optimization can be performed, the optimizermust be initialized. It is đrst instantiated
by the facade. First, all rule binders in available assemblies are found, initialized and mapped.
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Output(12) 

Sort 

SortFields = {Count DESC}

Group(9) 

GroupingFields = {DocType}
Aggregators = {Count,Count()}

Map 

MergeJoin(6) 
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Map(5) 
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 30 * ProxScore ) / 100"

ScoreOccs(4) 
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Lookup(12) 
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Lookup(11) 

Index = Occ2
Word = DocType

Figure 7.1: Example Query
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ăen, pre- and post-processors are found and conđgured. Since the processors can depend on
each other, a topologically ordered processing chain is created. Note that reĔecting for classes
through available assemblies only happens on the đrst startup — not for every query.

7.2.3 Pre-processing

How the processors work are described in Section 3.5. Here we describe how they are applied
to the example query.

At this point, the processing chain has the processors in the following ordering:

1. BehaviourMapperAnnotater annotates each operator whether it changes the result set, the
record structure or the ordering.

2. CopyRemover does nothing in this case, but if a Copy-operator had been present, the
query-DAG would have been converted into an equivalent tree.

3. LogicalJoinTransformer changes theMergeJoin-operators into logical Join-operators, to open
for the opportunity that other join implementations are better.

4. ProducesAnnotatormaps what attributes the operators produce, and if an operator passes
an attribute through, which operator it originates from. Consider the Score-attribute.
One attribute named Score is produced by the ScoreOccurrences-operator, and another
one is produced by the MapOperator above it. ăe Score-attribute referenced by the
SortOperator is that of the MapOperator.

5. OrderingExtractor notes that the Output-operator requires its đrst child to be ordered on
Count, which comes from the Group-operator, and that the other childmust be ordered
on Score. We need to map this, because Sort-operators are subsequently removed —
they are treated as properties and not operators in the search phase. Only orderings that
are guaranteed tomake it to the output operator are kept. In this case, one of the outputs
must be sorted on Count and the other on Score. An example of an ordering that would
not have been conserved is a sort below a merge join. It is possible that a hash-join is
optimal, so that ordering is just necessary to satisfy the requirements of the merge join
operator.

6. SortRemover then removes the two Sort-operators. With the ordering requirements set
on the other operators, the sort operators are no longer needed.

7. EquivalenceTransformernotes that theDocumentId-attributes of the Lookups are all equiv-
alent, because they are equi-joined and/or scored. ăere are two equivalence classes, one
for each branch.ăe information it produces is not of much use currently, but it is im-
portant to get the functionality explained in Section 8.5.5, about equivalence class joins.

8. DependencyAnnotator assigns operator dependencies transitively. For the sub-graph be-
low theMapOperatordeđning Score, the operators dependdirectly on their inputs. How-
ever, consider the GroupOperator that groups on DocType. It depends on neither the join
or the map above the join. It does, however, depend on the upper Lookup, since that is
the operator which produces the attribute (and thereby also the join, since the join is the
only way to add the Lookup to the rest). Disregarding renames, nothing but the Output-
Operator actually depend on DocumentName. Noting this is important to be able to get
to the goal shown in Figure 7.6.
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


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



























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


























 
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










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


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
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
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
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







































































 


























   
























 
























































Figure 7.2: Illustration of the amount of information of node relations (not intended to be
readable)

ăe output of the pre-processing phase is an operator graph that has the necessary proper-
ties and information for the rule binders to instantiate rules. Figure 7.2 shows an overview of
the relations for the Group-operator and its descendants. We included it to show the degree of
the relations between the operators, and obviously not because it is informative. ăe edges are
information about dependencies and attribute origins.

7.2.4 Plan Generation: Preparation Phase

ăe preparation phase takes the input from the pre-processing phase and prepares for plan
generation. First out is rule instantiation and conđguration.

For every rule binder theoptimizerhas found, the rule binder’s patterns arematched against
the query graph. ăe rules instantiated by the binders are listed in Table 7.1. ăe Lookup rules
are base rules— i.e. leaf nodes, which have no requirements. ăe numbers in the requirement
column indicates other rules which the operator depends on. For instance, rule #5, a map rule,
depends on rules 2, 3, 4, 6 and 7. ăere is no point in even attempting to move the map below
2, 3 and 4, since it will not lead to a valid plan. 6 and 7 is there to lock it in place below the
group, which requires the map’s Score attribute.

At this point, the produces- and requires attributes are represented with (fairly) descrip-
tive strings. Only a number, like 14, means “operator applied”, while 14_DocumentId means
attribute (column) DocumentId from operator 14.

ăen, bit sets are minimized, For example, properties that are always produced together
are merged into one bit property. For example, the properties 0, 0_DocumentId and 0_Doc-
umentType are merged into one property “0”. ăis reduces the number of properties from 43
to 17. Aĕerwards, the attributes are converted into a more compact bit-set-representation, on
which operations are executed more efficiently.

Next, share equivalence classes are constructed using the previously described algorithms.
Table 7.2 lists the 8 equivalence classes constructed for the query. Since the two lower parts of
this query performs exactly the same operations twice, we get equivalence classes for operators
in these parts, where each class has one member from each part.

At this point, the interesting orderings and groupings are known, so the OrderManager is
told to construct its state machine. It is too complex to explain, but we include it in Figure 7.3
for completeness and to illustrate the complexity.
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# Rule Produces

0 Lookup(Occurrence2/DocumentType) 0, 0_DocumentId, 0_DocumentType
1 Lookup(Occurrence2/DocumentName) 1, 1_DocumentId, 1_DocumentName
2 Lookup(Occurrence1/soĕware) 2, 2_DocumentId, 2_Position, 2_Scope
3 Lookup(Occurrence1/microsoĕ) 3, 3_DocumentId, 3_Position, 3_Scope
11 Lookup(Occurrence2/DocumentType) 11, 11_DocumentId, 11_DocumentType
12 Lookup(Occurrence2/DocumentName) 12, 12_DocumentId, 12_DocumentName
13 Lookup(Occurrence1/soĕware) 13, 13_DocumentId, 13_Position, 13_Scope
14 Lookup(Occurrence1/microsoĕ) 14, 14_DocumentId, 14_Position, 14_Scope

(a) Base Rules

# Rule Produces Requires

4 ScoreOccurrences 4, 4_Score, 4_ProxScore 2, 3
5 Map 5, 5_Score 4_Score, 4_ProxScore, 2, 3, 4, 6, 7
6 Join 6 Leĕ: 3_Document_id, Right: 1_DocumentId
7 Join 7 Leĕ: 3_Document_id, Right: 0_DocumentId
9 GroupOperator 9 0_DocumentType, 0, 1, 2, 3, 4, 5, 6, 7
15 ScoreOccurrences 15, 15_Score, 15_ProxScore 13, 14
16 Map 16, 16_Score 15_Score, 15_ProxScore, 13, 14, 15, 17, 18
17 Join 17 Leĕ: 14_Document_id, Right: 12_DocumentId
18 Join 18 Leĕ: 14_Document_id, Right: 11_DocumentId

(b) Search Rules

Table 7.1: Instantiated rules, their produced- and required attributes

Representative Members

0 Lookup(Occurrence2/DocumentType) 0 Lookup(Occurrence2/DocumentType)
11 Lookup(Occurrence2/DocumentType)

1 Lookup(Occurrence2/DocumentName) 1 Lookup(Occurrence2/DocumentName)
12 Lookup(Occurrence2/DocumentName)

2 Lookup(Occurrence1/soĕware) 2 Lookup(Occurrence1/soĕware)
13 Lookup(Occurrence1/soĕware)

3 Lookup(Occurrence1/microsoĕ) 3 Lookup(Occurrence1/microsoĕ)
14 Lookup(Occurrence1/microsoĕ)

4 ScoreOccurrences 4 ScoreOccurrences
15 ScoreOccurrences

5 Map 5 Map
16 Map

6 Join 6 Join
17 Join

7 Join 7 Join
18 Join

Table 7.2: Share equivalence classes
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0 {[]}

11 {{14_DocumentType}}

{14_DocumentType}

10 {[19_Count ↑]}

[19_Count ↑]

9 {[3_Score ↑]}

[3_Score ↑]

8 {[11_DocumentId ↓],
[1_DocumentId ↓]}

[11_DocumentId ↓]

7 {[10_DocumentId ↓],
[0_DocumentId ↓]}

[10_DocumentId ↓]

6 {[1_DocumentId ↓]}

[1_DocumentId ↓]

5 {[0_DocumentId ↓]}

[0_DocumentId ↓]

4 {[14_DocumentId ↓],
[4_DocumentId ↓]}

[14_DocumentId ↓]

3 {[16_DocumentId ↓],
[6_DocumentId ↓]}

[16_DocumentId ↓]

2 {[4_DocumentId ↓]}

[4_DocumentId ↓]

1 {[6_DocumentId ↓]}

[6_DocumentId ↓]

14 {[10_DocumentId ↓],
[0_DocumentId ↓],
[16_DocumentId ↓],
[6_DocumentId ↓],

[16_DocumentId ↓,10_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,16_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓]}

D(Id:5 {10_DocumentId} = {16_DocumentId})

15 {[10_DocumentId ↓],
[0_DocumentId ↓],
[14_DocumentId ↓],
[4_DocumentId ↓],

[14_DocumentId ↓,10_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,14_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓]}

D(Id:6 {10_DocumentId} = {14_DocumentId})

13 {[10_DocumentId ↓],
[0_DocumentId ↓],
[4_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓]}

D(Id:4 {0_DocumentId} = {4_DocumentId})

12 {[10_DocumentId ↓],
[0_DocumentId ↓],
[6_DocumentId ↓],

[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓]}

D(Id:3 {0_DocumentId} = {6_DocumentId})

16 {[0_DocumentId ↓],
[6_DocumentId ↓],

[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓]}

D(Id:3 {0_DocumentId} = {6_DocumentId})

17 {[0_DocumentId ↓],
[4_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓]}

D(Id:4 {0_DocumentId} = {4_DocumentId})

D(Id:6 {14_DocumentId} = {10_DocumentId})

18 {[14_DocumentId ↓],
[4_DocumentId ↓],
[0_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓]}

D(Id:4 {4_DocumentId} = {0_DocumentId})

D(Id:5 {16_DocumentId} = {10_DocumentId})

19 {[16_DocumentId ↓],
[6_DocumentId ↓],
[0_DocumentId ↓],

[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓]}

D(Id:3 {6_DocumentId} = {0_DocumentId}) D(Id:4 {4_DocumentId} = {0_DocumentId})D(Id:3 {6_DocumentId} = {0_DocumentId})

22 {[0_DocumentId ↓],
[4_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[6_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓]}

D(Id:4 {0_DocumentId} = {4_DocumentId}) D(Id:3 {0_DocumentId} = {6_DocumentId})

24 {[10_DocumentId ↓],
[0_DocumentId ↓],
[14_DocumentId ↓],
[4_DocumentId ↓],

[14_DocumentId ↓,10_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,14_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[16_DocumentId ↓],
[6_DocumentId ↓],

[16_DocumentId ↓,10_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,16_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],

[14_DocumentId ↓,16_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓],

[16_DocumentId ↓,14_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓]}

D(Id:6 {10_DocumentId} = {14_DocumentId})

25 {[10_DocumentId ↓],
[0_DocumentId ↓],
[16_DocumentId ↓],
[6_DocumentId ↓],

[16_DocumentId ↓,10_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,16_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],

[4_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓]}

D(Id:4 {0_DocumentId} = {4_DocumentId})

D(Id:5 {16_DocumentId} = {10_DocumentId})

20 {[16_DocumentId ↓],
[6_DocumentId ↓],
[0_DocumentId ↓],

[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],

[4_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓]}

D(Id:4 {0_DocumentId} = {4_DocumentId})

D(Id:5 {10_DocumentId} = {16_DocumentId})

23 {[10_DocumentId ↓],
[0_DocumentId ↓],
[14_DocumentId ↓],
[4_DocumentId ↓],

[14_DocumentId ↓,10_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,14_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[6_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓]}

D(Id:3 {0_DocumentId} = {6_DocumentId})

D(Id:6 {14_DocumentId} = {10_DocumentId})

21 {[14_DocumentId ↓],
[4_DocumentId ↓],
[0_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[6_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓]}

D(Id:3 {0_DocumentId} = {6_DocumentId}) D(Id:6 {10_DocumentId} = {14_DocumentId})

26 {[10_DocumentId ↓],
[0_DocumentId ↓],
[4_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[6_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],
[4_DocumentId ↓,6_DocumentId ↓],
[6_DocumentId ↓,4_DocumentId ↓]}

D(Id:3 {0_DocumentId} = {6_DocumentId})

27 {[10_DocumentId ↓],
[0_DocumentId ↓],
[4_DocumentId ↓],

[4_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓],

[16_DocumentId ↓],
[6_DocumentId ↓],

[16_DocumentId ↓,10_DocumentId ↓],
[6_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,16_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓]}

D(Id:5 {10_DocumentId} = {16_DocumentId})D(Id:5 {10_DocumentId} = {16_DocumentId})

28 {[10_DocumentId ↓],
[0_DocumentId ↓],
[6_DocumentId ↓],

[6_DocumentId ↓,0_DocumentId ↓],
[0_DocumentId ↓,6_DocumentId ↓],

[14_DocumentId ↓],
[4_DocumentId ↓],

[14_DocumentId ↓,10_DocumentId ↓],
[4_DocumentId ↓,0_DocumentId ↓],

[10_DocumentId ↓,14_DocumentId ↓],
[0_DocumentId ↓,4_DocumentId ↓]}

D(Id:6 {10_DocumentId} = {14_DocumentId})D(Id:4 {0_DocumentId} = {4_DocumentId})

D(Id:5 {10_DocumentId} = {16_DocumentId})

D(Id:4 {0_DocumentId} = {4_DocumentId}) D(Id:3 {0_DocumentId} = {6_DocumentId})D(Id:5 {10_DocumentId} = {16_DocumentId}) D(Id:6 {10_DocumentId} = {14_DocumentId})

D(Id:6 {10_DocumentId} = {14_DocumentId})

D(Id:4 {0_DocumentId} = {4_DocumentId}) D(Id:3 {0_DocumentId} = {6_DocumentId})

D(Id:6 {10_DocumentId} = {14_DocumentId}) D(Id:5 {10_DocumentId} = {16_DocumentId})

D(Id:6 {14_DocumentId} = {10_DocumentId})D(Id:5 {16_DocumentId} = {10_DocumentId})

Figure 7.3: Orderings and groupings DFSM for the example query (not intended to be read-
able)

Query Goal Order

0 0, 0_DocumentId, 0_DocumentType, 1, 1_DocumentId,
1_DocumentName, 2, 2_DocumentId, 2_Position, 2_Scope, 3,
3_DocumentId, 3_Position, 3_Scope, 4, 4_Score, 4_ProxScore,
5, 5_Score, 6, 7, 9

[9_Count DESC]

1 11, 11_DocumentId, 11_DocumentType, 12, 12_Documen-
tId, 12_DocumentName, 13, 13_DocumentId, 13_Position,
13_Scope, 14, 14_DocumentId, 14_Position, 14_Scope, 15,
15_Score, 15_ProxScore, 16, 16_Score, 17, 18

[16_Score DESC]

Table 7.3: Query goals

ăe goals of the query are now determined as the union of the produced properties of all
logical operators (which happens to be all of them in this case). Since this is a multi-query, we
have two goals as shown in Table 7.3

Finally, before the search is started the memoization table is initialized and the base plans
entered into the table. For each base rule, one base plan is inserted with the rule’s produced bit
set as key. To enable base plan sharing, the base plans for equivalence class representatives are
inserted for both its own properties and for all the plans they represent as shown in Table 7.4
(we have only included four of the rules for brevity).

7.2.5 Plan Generation: Search Phase

For the given query, 41 rule appliances are used to generate 37 plans for 23 different goals (the
actual number is much higher, since pruned, dominated plans are not counted), resulting in a
debug output of 224 KiB. Explaining the whole search process here is therefore unfeasible.

Instead, we have chosen one example which illustrates how the plan generator and cost

Memoization Key (properties) Plans

0, 0_DocumentId, 0_DocumentType 0 Lookup(Occurrence2/DocumentType)
1, 1_DocumentId, 1_DocumentName 1 Lookup(Occurrence2/DocumentName)
11, 11_DocumentId, 11_DocumentType 0 Lookup(Occurrence2/DocumentType)

11 Lookup(Occurrence2/DocumentType)
12, 12_DocumentId, 12_DocumentType 1 Lookup(Occurrence2/DocumentName)

12 Lookup(Occurrence2/DocumentName)
...

Table 7.4: Base plans
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model works together. Use Figure 7.1 (page 110) to follow this example. Below, we have in-
cluded an excerpt from the debug output where join rule 18 is searching for its leĕ input goal,
namely [12, 13, 14, 15, 17], by asking the plan generator to produce plans for satisfying it. ăe
plan generator answers by đrst rewriting it to [1, 2, 3, 4, 6] using equivalence class representa-
tives. ăis yields a cache hit, as this plan has been produced before. ăe result is a PLAN-ADD
for plan-11 in the PlanSet (11 is just a plan counter, not related to the goals), as this is the đrst
plan found. It is actually MergeJoin(6) from the other part of the query, offering to share the
entire sub-plan, including itself (6 is in the sharing bitset, and shared is true).

Next, join rule 17 is invoked to produce plans by the plan generator. It answers by asking
the plan generator for [13, 14, 15] on its leĕ input, which yields a cache hit. ăen it asks the
plan generator for [12] for its right input, which also yields a cache hit (this is a base plan and
will always be in cache).

Join rule 17 has now both its inputs satisđed and proceeds by constructing two physical
plan alternatives for the same logical goal: MergeJoin(17) andHybridHash(17), which it adds
to the PlanSet. Since the inputs are ordered in this case, we can see that themerge join is cheap-
est. On the last two lines we can se that the PlanSet actually rejects both plans, effectively prun-
ing them away immediately. ăey are both dominated by Plan-11 which has lower or equal
cost and offers more sharing (we have leĕ out ordering in the excerpt for brevity). ăis is be-
cause Plan-11 was constructed with the class representative Join(6), and the others were not.
Note that Plan-61 has the same cost as Plan-11. ăis is because it is the same plan, but with
Join(17) on the top instead of Join(6). Join(18) has now got one plan for its leĕ input and the
search proceeds by considering other rules than Join(17) for application.

JoinRule producing [18] searching for [12, 13, 14, 15, 17] LEFT.
Rewrote [12, 13, 14, 15, 17] to [1, 2, 3, 4, 6], firing off share equivalent search.

CACHE return: [1, 2, 3, 4, 6]
ADD: Plan-11(MergeJoin(6), Cost: 3925, Sharing: [1, 2, 3, 4, 6], Shared: True)

JoinRule producing [17] searching for [13, 14, 15] LEFT.
CACHE return: [13, 14, 15]

JoinRule producing [17] searching for [12] RIGHT.
CACHE return: [12]

JoinRule producing [17] adding plans...
NO-ADD: Plan-61(MergeJoin(17), Cost:3925, Sharing:[1,2,3,4], Shared:False)<<Plan-

11
NO-ADD: Plan-62(HybridHash(17), Cost:4000, Sharing:[1,2,3,4], Shared:False)<<Plan-

11

7.2.6 Plan Generation: Reconstruction Phase

When the optimizer is done generating plans, the đnal plan is represented as a Plan, which is a
light weight structure. Before post-processing can proceed, wemust convert the plan structure
into an OperatorNode-graph.

ăis is done by recursively calling BuildAlgebra on the rules. ăe rule binders have made
sure that sufficient information to reconstruct the operator node is stored in the rule, so the
information from the Plan-structure is just what its inputs plans are.
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Output(21) 

Orders = {[9_Count DESC], [16_Score DESC]}

Sort(32) 

(Cardinality: 5, TupleSize: 175)
SortFields = {9_Count DESC}

Group(9) 

(Cardinality: 5, TupleSize: 175)
GroupingFields = {<Node(Lookup)<0>,DocumentType>}

Aggregators = {Count,Count(args=Null,filter=Null)}
Type = Hash

Map(5) 

(Cardinality: 500, TupleSize: 155)
ParameterMap = {Score,"(70 * 4_Score + 30 * 4_ProxScore ) / 100"}

RetainInput = True

Sort(23) 

(Cardinality: 500, TupleSize: 155)
SortFields = {16_Score DESC}

MergeJoin(7) 

(Cardinality: 500, TupleSize: 125)
JoinKey = {<Node(Lookup)<3>,DocumentId>,

<Node(Lookup)<0>,DocumentId>}

MergeJoin(6) 

(Cardinality: 500, TupleSize: 135)
JoinKey = {<Node(Lookup)<3>,DocumentId>,

<Node(Lookup)<1>,DocumentId>}

ScoreOccurrences(4) 

(Cardinality: 500, TupleSize: 100)
Scorers = 

{Score,SimpleTerms(stdPos=20,PosScore=0.2,NormFreq=2)},
{ProxScore,SimpleProximity(Pos=3,Weight=0.7,order=[0,1])}

Combiner = Average(weights=Null)
GroupPrefix = 1

Lookup(3) 

(Cardinality: 500, TupleSize: 100)
IndexName = Occurrence1

Word = microsoft

Lookup(2) 

(Cardinality: 500, TupleSize: 100)
IndexName = Occurrence1

Word = software

Lookup(1) 

(Cardinality: 8000, TupleSize: 35)
IndexName = Occurrence2

Word = DocumentName

Lookup(0) 

(Cardinality: 8000, TupleSize: 10)
IndexName = Occurrence2

Word = DocumentType

Figure 7.4: Reconstructed query, due for post-processing
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7.2.7 Post-processing

Figure 7.4 shows the output of the reconstruction phase — a query graph with physical oper-
ators. A lot of information has been omitted to make it đt on one page.

Before thequery canbe executed,weneed toupdate attribute labels and add aCopy-operator
above any operator with multiple outputs. ăis amounts to adding a Copy-operator above the
Map-operator with two outputs, and adding a Map-operator above each child of the Output-
operator. ăe Map-operators added ensure that the attribute names in the đnal query equal
those of the input query, and that any removed attributes do not appear. ăis is necessary since
search rules are not instantiated forMap-operators that only remove and/or rename attributes,
and because we need to do our own (node, attribute)-mapping of attributes when constructing
entirely different graphs from the input.

ăe result of the post-processing, and consequently the entire optimization, is shown in
Figure 7.5.

7.2.8 Returning to MARS

As mentioned brieĔy in Section 7.2.1, we must convert our query graph structure to the one
MARS uses. ăis is done by the optimizer facade, and not by the optimizer itself. ăe optimizer
is oblivious to any other graph structures but its own.

When the graph is converted, the OptimizerTransformer-component added to MARS’ query
pipeline replaces the query to be executed with the optimized one.

7.3 The Effect of the Optimization

Nowwewant to focus on how the optimizer actually improves query evaluation time and show
how useful and efficient DAG-structured query plans really are.

To benchmark this, we use largely the same query, but we limit the amount of document
results to 10 and vary the lookup terms. ăe trim to 10 results is not visible before Figure 7.6
since we wanted to keep the previous example simpler. To recap, the query does the following:

Sub query 1 Search for all documents containing word1 and word2, scoring each document
and returning the top 10 documents with the best score.

Sub query 2 Search for all documents containing word1 and word2, grouping them by docu-
ment type and returning the number of documents of each type.

7.3.1 Query versions

We now continue by benchmarking the query evaluation time for three logically equivalent,
but physically different versions of this query: 1) Completely unoptimized, tree-structured
query, 2) suboptimal DAG-iđed query and 3) optimal DAG-iđed query.

Figure 7.1 shows the query as it is input to the optimizer. Large portions of the graph
perform exactly the same work. ăey are share equivalent and can be merged, so here we have
good opportunities to perform better.

Figure 7.5 shows the same query, but now with the share equivalent parts of the query
shared using the copy operator. In addition, the optimizer has considered hash joins and hash
group, but those are clearly less efficient since the lookup operators provide sorted data.

Figure 7.6 shows one further optimization that canbe performed to the query inFigure 7.5,
i.e. moving the join with the DocumentName lookup up and above the sort operator which
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Output(21) 

Map(35) 

ParameterMap = {DocumentType,"Input1.DocumentType"},
{Count,"Count"}

Sort(32) 

SortFields = {Count DESC}

Group(9) 

GroupingFields = {Input1.DocumentType}
Aggregators = {Count,Count(args=Null,filter=Null)}

Copy(36) 

Sort(23) 

SortFields = {5_Score DESC}

Map(5) 

ParameterMap = {5_Score,"(70 * Input0.Input0.Score + 30 * Input0.Input0.ProxScore ) / 100"}

MergeJoin(7) 

JoinKey = {DocumentId,DocumentId}

MergeJoin(6) 

JoinKey = {DocumentId,DocumentId}

ScoreOccurrences(4) 

Scorers = {Score,...},
{ProxScore,...}

Combiner = Average(weights=Null)
GroupPrefix = 1

Lookup(3) 

IndexName = Occurrence1
Word = microsoft

Lookup(2) 

IndexName = Occurrence1
Word = software

Lookup(1) 

IndexName = Occurrence2
Word = DocumentName

Lookup(0) 

IndexName = Occurrence2
Word = DocumentType

Map(34) 

ParameterMap = {Score,"5_Score"},
{DocumentName,"Input0.Input1.DocumentName"},

{DocumentType,"Input1.DocumentType"}

Figure 7.5: Final query graph, due for execution
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Output(21) 

Map(35) 

ParameterMap = {DocumentType,"Input1.DocumentType"},
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Sort(32) 

SortFields = {Count DESC}

Group(9) 

GroupingFields = {Input1.DocumentType}
Aggregators = {Count,Count(args=Null,filter=Null)}

Copy(36) 

Sort(23) 

TrimHitCount = 10
SortFields = {5_Score DESC}

Map(5) 

ParameterMap = {5_Score,"(70 * Input0.Input0.Score + 30 * Input0.Input0.ProxScore ) / 100"}

MergeJoin(7) 

JoinKey = {DocumentId,DocumentId}

MergeJoin(6) 

JoinKey = {DocumentId,DocumentId}

Sort(25) 

SortFields = {5_Score DESC}

ScoreOccurrences(4) 

Scorers = {Score,...},
{ProxScore,...}

Combiner = Average(weights=Null)
GroupPrefix = 1

Lookup(3) 

IndexName = Occurrence1
Word = microsoft

Lookup(2) 

IndexName = Occurrence1
Word = software

Lookup(1) 

IndexName = Occurrence2
Word = DocumentName

Lookup(0) 

IndexName = Occurrence2
Word = DocumentType

Map(34) 

ParameterMap = {Score,"5_Score"},
{DocumentName,"Input0.Input1.DocumentName"},

{DocumentType,"Input1.DocumentType"}

Sort(24) 

SortFields = {DocumentId}

Figure 7.6: Optimal DAG-iđed query
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also happens to trim the record set to only 10 tuples. ăis means that the join will be less
expensive, since it is now only working on 10 tuples instead of possibly several thousand.

However, we consider this to be an advanced optimization, since performing it requires
knowledge about foreign key relationships. ăe optimizer has to be sure that the join with
DocumentName does not alter the number of tuples, since it would otherwise yield different
outputs for the query if it is moved through the logical trim operator that is embedded in the
sort operator. We include benchmarks of it for completeness, though. How we envision it
implemented is described in Section 8.5.6.

7.3.2 Benchmark setup

All queries were run against the same full-text index. To get realistic results, we have indexed
a subset of the articles found in Wikipedia [Wik09]. ăe articles have been pre-processed be-
fore indexing to extract meta information from the article text, like identifying person names,
places, and so on. ăe resulting information is stored as XML đles on disk before being read
by the indexer. An example is shown in listing 7.1

1 <?xml version=”1.0” encoding=”utf-8”?>
2 <documents xmlns:ann=”http://annotations” ann:mode=”InlineWithOverlaps”>
3 <document>
4 <documentId>doc038652.xml</documentId>
5 <documentType>sa</documentType>
6 <title><paragraph><sentence>Pelee</sentence></paragraph></title>
7 <body>
8 <paragraph><sentence>Pelee</sentence></paragraph>
9 <paragraph><sentence><![CDATA[Originalwikipedia article => ”Pelee”]]></sentence></paragraph

>
10 <paragraph>
11 <sentence>A volcano located in West Indies.</sentence>
12 <sentence>It is famous for its 1902 eruption which took lives of 29,000 people.</sentence>
13 </paragraph>
14 <paragraph><sentence>See Mt.Pele</sentence></paragraph>
15 </body>
16 </document>
17 </documents>

Listing 7.1: Pre-processed Wikipedia article.

ăe index contains approximately 250,000 documents, which has a raw XML size on disk
of 1.57 GiB. ăe reverse index on word occurrences totals 1.19 GiB, while the size of the doc-
ument type and document name indexes are 29 MiB.

ăe test system is a Intel Core Duo T2500 (2×2.00 GHz) with 3 GiB DDR2 memory, of
which approximately 1 GiB was allocated to MARS when running the benchmarks. ăe data
was stored on an 80 GiB Intel X25-M Solid State Drive.

ăe reverse index lookups themselves (theLookupoperators at the bottom) are fairly cheap
due to the index structure as long as the number of results (i.e. the number of hits in each
document summarized) is fairly small. ăe same is true for the evaluation of the query graph
— as long as the number of tuples Ĕowing through it is relatively small, the query evaluation
costs are fairly small. To get results that are reliable and not adversely affected by setup time
and variance, we therefore need to query for search terms that return a larger amount of hits.

However, if the number of hits is too great, wemayhit thememory limits on the test system
and have the operators spool data to disk (especially the Copy operator), creating results that
are hard to analyze. We therefore decided to plot query evaluation time against the expected
number of hits for the search terms used.
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Query No Word 1 Word 2 Est. hits

1 gaza 1978 9 600
2 1978 today 19 212
3 today charles 38 425
4 charles about 77 025
5 about their 156 925
6 their have 312 212
7 have by 673 512
8 by is 1 550 112

Table 7.5: Benchmarking queries
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Figure 7.7: Benchmark results

We approached this by counting the word frequencies in a subset of 20,000 documents,
thereby estimating the number of hits for each word to be 250, 000 × f

20,000
. ăe estimated

number of index word hits (not output result count) for a query for word1 AND word2 then
becomes 250, 000 × ( f1

20,000
+ f2

20,000
). We then selected a random word at or near word fre-

quencies of 2n hits (up to the maximum word frequency) and ran each of the three physical
queries for these two words, averaging the evaluation time over several runs. We measured
standard deviations and found them to be insigniđcant

We realize that assuming independence of the terms is sub-optimal, as explained in Sec-
tion 4.3. However, we had to settle on something simple. Table 7.5 lists the different queries
run and their expected hit counts.

7.3.3 Results

An overview of the results from the benchmark can be seen in Figure 7.7. We have excluded
very small expected hit counts from the plot, as they are very sensitive to noise. ăemain point
that can be seen from the plot is that theQuery A - Tree is more expensive thanQuery B -DAG,
which again is slightly more expensive than Query C - Optimal DAG. ăis is approximately
what we would expect and conđrms that DAGs are worth pursuing. If we look closer, we can
actually see that query A is overall around twice as expensive as the other two queries, which
makes sense, since queryAperforms themost expensive part of the query twice instead of once.

We have also included the costs predicted by our costmodel (dashed lines) forA -Tree and
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Timings in milliseconds Estimated costs in ms %Off

Query Tree DAG Optimal DAG Tree DAG Tree DAG

1 257 124 165 1 640 820 538 561
2 5 378 2 786 2 758 2 924 1 462 -46 -48
3 7 959 3 687 3 380 5 489 2 744 -31 -26
4 9 149 4 853 4 230 10 642 5 321 16 10
5 41 051 24 322 17 678 21 310 10 655 -48 -56
6 60 675 35 489 23 715 42 042 21 021 -31 -41
7 101 951 55 596 35 945 90 280 45 140 -11 -19
8 181 140 97 824 64 234 207 317 103 658 14 6

Table 7.6: Detailed results

B -DAG.We have no estimates forC -Optimal DAG, as we have not implemented support for
this optimization yet. We can see that the predicted costs follow a more predictable path than
the actual timings, but they are not too far off. However, it is not the absolute numbers that
is most interesting in this context, it is rather the relationships between the costs of different
plans. ăe optimizer does not care about the absolute costs, it only cares about which plan is
cheapest. We do not say absolute values are irrelevant — the more accurate, the better — but
there are other things that are more important than entirely accurate guesstimates.

With this in mind, by looking at the dashed lines, we can conclude that the optimizer has
successfully identiđed the B - DAG plan to be approximately half the cost of the A - Tree plan,
which conforms well to the reality.

Table 7.6 shows the detailed timings along with the costs our cost model predicts for each
of the queries for the different hit counts. ăe last column shows the deviation of actual to
estimated timings in per cent of the actual timings. We can see that the deviation is not too
great and mostly within +/- 50%. ăe exception is the đrst query, but here the time is so short
(well below half a second), so it is very prone to noise and any buffering the operating system
may have done.

7.4 Additional Optimizations

To display the variety of optimizations the optimizer can do, we include a few more examples.
Note that the example queries are selected by their value as examples, not necessarily because
they are realistic real-word queries. Real-word queries rarely demonstrate as many concepts at
once, and usually require more context to understand.

7.4.1 To Sort Or Not To Sort

Figures 7.8–7.10 show a few queries where existing orderings or orderings induced by func-
tional dependencies affect whether a sort is performed and what join algorithm is used.

ConsiderFigure 7.8. In this query, the indexes are clusteredon their “DocumentId”-attributes.
By replacing the hash joinwith amerge join, this order is kept also through the join, so the Sort-
operator can be removed entirely, in addition to the join itself being cheaper.

Figure 7.9 shows a query where only index “Mock1” is clustered. ăe lookup on “Mock0”
has no physical ordering. ăe optimizer đnds that sorting the unsorted input to the join and
switching to a merge join is the cheapest. Note also how the select operator has been pushed
down.
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Output 

Select 

Filter = "DocumentId0 < 50"

Sort 

SortFields = {DocumentId0}

HybridHashJoin 

JoinKeys = {{DocumentId0,DocumentId1}}

Lookup 

Word = word
IndexName = Mock0

Orders = {[DocumentId0 ASC]}

Lookup 

Word = word
IndexName = Mock1

Orders = {[DocumentId1 ASC]}

(a) Unoptimized

Output 

Orders = {[0_DocumentId0 ASC]}

MergeJoin 

JoinKeys = {{DocumentId0,DocumentId1}}

Select 

Filter = "DocumentId0 < 50"

Lookup 

Word = word
IndexName = Mock0

Orders = {[DocumentId0 ASC]}

Lookup 

Word = word
IndexName = Mock1

Orders = {[DocumentId1 ASC]}

(b) Optimized

Figure 7.8: Query where the sort is removed because of the existing orderings

In the last case, there are no existing orderings, but it is inferred by the predicate on the
select (DocumentId1 = 50, leading to → DocumentId1) and the join predicate (DocumentId0 =
DocumentId1, leading to→ DocumentId0 as well), so the Sort-operator can be removed.

We did some quick performance testing with regards to removing redundant sort oper-
ators by executing a query on the word is. ăe before-query was SORT(”Position ASC”;-
SELECT(”Position=30”; LOOKUP())), while the aĕerquery SELECT(”Position=30”; LOOKUP())
since the sort was really redundant. ăis yielded a performance improvement from 4.90s to
1.99s, even though the selection was placed before the sort in the đrst query.

7.4.2 Join Ordering

One of the most important aspects of the optimizer is the capability of ordering joins to get
the cheapest plan possible. In this example, we showhowour optimizer đgures out the optimal
join order for a simple querywith three joins. ăe querywould roughly correspond to the SQL
query SELECT * FROM R0 JOIN R1 ON R0.Id0 = R1.Id1 JOIN R2 ON R1.Id1 = R2.Id2 JOIN
R3 ON R2.Id2 = R3.Id3 . See Section B.6 for the automated optimizer test that was used to
generate the following đgures.

ăe output cardinality for a join A ◃▹ B is given by |A| × |B| × S (A, B), where S (A, B) is
the selectivity of the join. ăe cost C (A ◃▹ B) for a join is given by C (A) + C (B) + α|A ◃▹ B|,
that is, the sum of the children costs plus the cost of the join, where α is a factor that weighs
the cost of the join itself.

As input to the optimizer, we give it theworst case plan, ((R1 ◃▹ R2) ◃▹ R0) ◃▹ R3, as shown
in Figure 7.11. First, we tell the optimizer to only consider leĕ-deep plans. ăe result can
be seen in Figure 7.12. ăe optimizer has chosen to switch the order of the joins R0 ◃▹ R1
and R1 ◃▹ R2, as R0 ◃▹ R1 has much higher selectivity and thereby limits the cardinality of the
temporary result in between them, keeping the cost down. ăe cardinality of the joins in the input
query were 20000 at its largest, whereas it in the optimized query is reduced to 2000.

One may wonder why the other very selective join was not moved down. ăe reason is
that this is a chain query where the result from the bottommost join is R0, R1. Neither R0 nor
R1 can be joined directly with R3 (R3 must be joined with R2 đrst), so putting this join as the



124 Chapter 7. Example Optimizations

Output 

Select 

Filter = "DocumentId0 < 50"

Sort 

SortFields = {DocumentId0}

HybridHashJoin 

JoinKeys = {{DocumentId0,DocumentId1}}

Lookup 

Word = word
IndexName = Mock0

Lookup 

Word = word
IndexName = Mock1

Orders = {[DocumentId1]}

(a) Unoptimized

Output 

MergeJoin 

JoinKey = {DocumentId0,DocumentId1}

Sort 

SortFields = {DocumentId0}

Select 

Filter = "DocumentId0 < 50"

Lookup 

Word = word
IndexName = Mock0

Lookup 

Word = word
IndexName = Mock1

Orders = {[DocumentId1]}

(b) Optimized

Figure 7.9: Sort is kept because there is no existing ordering
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Figure 7.10: Ordering derived from functional dependencies
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Output(16) 

HybridHashJoin(15) 
JoinKeys = {{Input0.DocumentId2,DocumentId3}}

Selectivity = 0,0001
Card = 200

HybridHashJoin(14) 
JoinKeys = {{DocumentId1,DocumentId0}}

Selectivity = 0,0001
Card = 2000

HybridHashJoin(13) 
JoinKeys = {{DocumentId1,DocumentId2}}

Selectivity = 0,005
Card = 20000

Lookup(10) 

Word = word
IndexName = Mock1
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Lookup(11) 

Word = word
IndexName = Mock2
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Lookup(9) 
Word = word

IndexName = Mock0
State(Card: 1000, TupleSize: 100)

Lookup(12) 

Word = word
IndexName = Mock3

State(Card: 1000, TupleSize: 100)

Figure 7.11: Query before join ordering optimization

second join from the bottom would give us a cross product. ăis is certainly not a good idea,
as cardinality and thereby cost would increase.

Now, we tell the optimizer to search for any plan, including bushy plans. ăis dramatically
increases the search space (see Section 1.6.1 for details), but it is not a problem for this small
query. ăis time, the optimizer can dowhat it could not the last time. It now selects to do both
of the selective joins đrst, then joining the result together to get the đnal result. ăis turns out
to be even better. ăe largest cardinality for a join is now reduced to 200, as seen in Figure 7.13

As we can see, the expected output cardinality for the query is the same in all cases.

7.4.3 Multi-Query Optimization

As mentioned, optimizing multi-queries has been a high priority. ăis is a deđning feature of
MARS, and most design decisions were taken with regard to supporting it — already last year
when we implemented a bare-bones optimizer.

Figure 7.14 shows the input to the optimizer. It is a combination of the two previous ex-
amples — i.e. the same join graphs with different orderings and a selection. ăere is also a
select operator with low selectivity present.

Figure 7.15 shows the optimized version. Note how the select operator is now above the
Copy-operator. By keeping a partial plan that is more expensive, but allows more sharing, we
get the globally optimal query. Ifwehadonly kept the cheapest planswithout regard to sharing,
we would not have been able to devise this plan.
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Output(42) 

Cost = BasicCost(FirstRead: 1717,117)
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Figure 7.12: Query aĕer optimization, only considering leĕ-deep plans.



7.4. Additional Optimizations 127

Output(16) 

Cost = Cost(FirstRead: 1699,117)

Map(25) 

ParameterMap = {Input0.DocumentId2,"DocumentId2"}, 
{DocumentId3,"Input1.DocumentId3"},{Input0.DocumentId1,"DocumentI

MergeJoin(13) 

Cost(FirstRead: 1699,117)
State(Card: 200, TupleSize: 400)

JoinKeys = {{DocumentId1,DocumentId2}}
Selectivity = 0,005

MergeJoin(14) 

Cost(FirstRead: 848,559)
State(Card: 200, TupleSize: 400)

JoinKeys = {{DocumentId1,DocumentId0}}
Selectivity = 0,0001

Lookup(10) 

Cost(FirstRead: 527,039)
State(Card: 2000, TupleSize: 100)

Word = word
IndexName = Mock1

Lookup(9) 
Cost(FirstRead: 319,520)

State(Card: 1000, TupleSize: 100)
Word = word

IndexName = Mock0

MergeJoin(15) 

Cost(FirstRead: 848,559)
State(Card: 200, TupleSize: 200)

JoinKeys = {{Input0.DocumentId2,DocumentId3}}
Selectivity = 0,0001

Lookup(11) 

Cost(FirstRead: 527,039)
State(Card: 2000, TupleSize: 100)

Word = word
IndexName = Mock2

Lookup(12) 

Cost(FirstRead: 319,520)
State(Card: 1000, TupleSize: 100)

Word = word
IndexName = Mock3

Figure 7.13: Query aĕer optimization, also considering bushy plans
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Figure 7.14: Input multi-query
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Figure 7.15: Optimized multi-query
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Figure 7.16: Map merging

7.4.4 MapMerging

It is perfectly valid, but not very efficient to havemultiple consecutiveMap operators in a query,
as these operators can be merged quite easily. Our optimizer is currently able to merge simple
map operators which only limit (project) or rename attributes. Actually, this is not performed
explicitly, it comes as a bonus from the way we handle attribute references. Remember that
during pre-processing, all attribute references by name are replaced by NodeAttribute references,
which refers to the attribute as <Source node, name>. ăe algorithms handling this replace-
ment also handle attribute renames in map operators, even transitive ones (where an attribute
is renamedmultiple times). Other operators between themap operators do not disturb this al-
gorithm. During plan generation, all simplemap operators are removed and only the necessary
ones are reinserted.

Figure 7.16a shows an input query with two consecutive map operators. ăe lower one
renames the Position đeld, while the upper renames the DocumentId đeld, renames Position
again, as well as projecting away all other attributes. In the optimized query in Figure 7.16b,
the two map operators have been merged into one.
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8
Current State

“It takes an awful long time to not write a book.”
— Douglas Adams

In this chapter, we present the current state of our optimizer implementation. We start out
by summarizing what we have achieved, before talking about the issues we have identiđed and
proposed solutions to them.

8.1 Results

In short, we have implemented a proof-of-concept optimizer which deals with multi-queries
and DAG-structured queries, cleverly handles orderings and groupings, and performs various
join-orderings. It is also based on an architecture which addresses the design goals introduced
in Section 3.1. It is extensible and the rule architecture enables support for arbitrary operators
and pre- and post-processors, while the cost model is external to the optimizer itself. Its per-
formance is acceptable, although not the best in its class, since this has not been the primary
focus.

We have identiđed a few issues and have proposed solutions to them, as explained in Sec-
tion 8.3. Performance is a challenge to all query optimizers because the general problem is
exponential in nature.

8.2 Performance

Since the time spent on query optimization is included in the query response time, and thereby
the đnal response time to the user of the application, it is important that the query optimizer
is performing well. ăe problem can be remedied somewhat by caching query plans, but still,
whenever a new query is to be run, itmust be optimized. Response time is especially important
in our case with MARS, as search engine users generally expect short response times.

At the same time, the problem of query optimization (including join enumeration) has ex-
ponential complexity with respect to the number of relations. ăerefore, the optimizer needs
to be aware of its own expected run time and be able to switch to alternative strategies which
run more quickly, but may yield potentially suboptimal plans. Examples of such strategies are
to only consider leĕ-deep plans, or switch to non-exhaustive heuristicswhen the expected com-
plexity is too great.

To get an overview of the performance of the optimizer, we have done some simple bench-
marking. We construct a query to optimize by adding more and more relations to be joined.
Star queries are queries where all relations 1..n are joined to relation 0, while in chain queries,



132 Chapter 8. Current State

1 

10 

100 

1000 

10000 

0 2 4 6 8 10 12 14 

D
ur

at
io

n 
[m

s]
 

Number of relations 

Bushy-chain 
Leftdeep-chain 
Bushy-star 
Leftdeep-star 

Figure 8.1: Plan generation for chain and star queries, bushy and leĕ-deep, average of 100 runs.
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Figure 8.2: Same as Figure 8.1, without reachability caching.

relations are joined in a chain, i.e. 0-1, 1-2, 2-3 and so on. When not considering cross prod-
ucts, the former takes longer to optimize, since the number of valid orderings is greater than
for chain joins. ăe queries optimized only include joins. A real world query is likely to include
selections, grouping and orderings, which will increase the size of the search space and thereby
the time spent optimizing.

Since these are simple non-comparative timings, we only present the average of 100 runs.
We measured standard deviations and found them to be insigniđcant. ăe benchmarks were
run on an Intel Core Duo T2500 (2×2.00 GHz) with 3 GiB DDR2 memory. ăe optimizer
is single-threaded, so only one core was utilized.

ăeplots clearly show that bushy plans have higher complexity and take longer to optimize
than leĕ-deep plans. Furthermore, it also shows that star queries are more complex than chain
queries, as expected. We consider anything much above one second to be too long, which sug-
gests that, at its current state, enumerating bushy plans should be abandoned for >8 relations.
Enumerating leĕ-deep plans is feasible up to around 11-12 relations, which also happens to
be the default number at which PostgreSQL switches to a genetic algorithm [Pos08a]. ăis is
also the limit mentioned for non-parallel optimizers in [HKL+08], so we are not too far from
what is regarded as accepted performance. Queries with > 12 joins are typically OLAP-esque
reporting queries where “immediate” response is not expected. MARS’ Information Retrieval
queries that should respond quickly enough to appear “immediate” to a human user typically
have few enough relations to be within the 100 ms range.

Figure 8.2 shows the same timings, but now with reachability caching (as explained in the
list in Section 3.6) disabled. We can see that this results in worse run times for bushy enumer-
ation, especially for more than 7 relations. Performance for leĕ-deep plans only marginally
decreases (by 50-100ms). ăis is because leĕ-deep enumeration does not generate as many
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Figure 8.3: Performance of last year’s optimizer, without support for sharing and orderings.

unreachable plans as bushy enumeration does, so the check is not invoked that oĕen anyway.
For completeness, we include the plot from last year’s report [BN08]Ʋ in Figure 8.3. ăen,

the optimizer supported neither sharing nor orderings and groupings. Compared to Figure 8.1
we see that adding support for these has not gravely deteriorated the performance. ăe leĕ-
deep star joins have beenmost affected. It is the preparation time of the orderingmanager that
makes up for most of the increase. ăis is because the star joins enable a lot more potential or-
derings than the leĕ-deep do, so the statemachines become vastly bigger . ăe runs doing bushy
join spend enough time enumerating plans for planning time to dwarf the ordering manager’s
preparation time, so the increase is not as noticeable there.

Since our design is based on [Neu05], it is interesting to compare our performance to what
was reported there. He does not explicitly state it in the context of the graph, but later in his
report he mentions experiments run on “a 2.2 GHz Athlon64 system running Windows XP”.
Neumann has only looked at bushy plans, and his results can be seen in Figure 8.4. He reports
around 1 ms run time for 7 relations, increasing exponentially to around 40 ms for 9 relations.
His graph shows a straight line on a logarithmic scale, while ours looks exponential even on
a logarithmic scale. We see around 40 ms for 7 relations, increasing (more) exponentially to
730 ms for 9 relations. In other words, we see exponential increase in both graphs, but ours
come two relations “earlier” and increases faster. Also note that bottom up-plan generation is
reported to be faster for a large number relations. ăis is why we suggest investigating this in
Section 9.1.6.

ăis does not look too good on our part, but we believe there are multiple reasons. First,
Neumann’s implementation is probably more optimized and ređned than ours. He may also
do some logical optimizations (as opposed to just code optimizations) we do not. We have not
spent much time optimizing our solution, as we wanted to get the design principles right đrst.
For code optimizations, we believe we have potential for improvement in the order compo-
nent, as it is currently written with functionality and not performance as the primary focus.
For logical optimizations, we believe we have potential for improvement in minimizing un-
reachable plans as explained later in this chapter.

Second, we only do very basic cost-based pruning, and can probably improve our solution
here. Neumann describes several techniques in this area (and is likely to have implemented
some of them), but we have not had the time for this. ăis would enable the optimizer to abort
searches that is obviously going to return more expensive plans earlier.

ăird, we donot knowwhat kind of implementation thatwas benchmarked in [Neu05], so
we do not really know what we are comparing with. It could be anything from a full optimizer

ƲLast year’s benchmark was run on the same hardware, but with Vista instead of Windows 7. We do not
believe this to have any signiđcant impact.
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Figure 8.4: Plan generation performance as reported in [Neu05].
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Figure 8.5: Cumulative time consumption, 6 relations

as in our case to only a skeleton.

We have not measured memory usage accurately, but by inspecting the memory use of the
optimizer process while running, we see approximately 50 MiB for the largest queries (9-15
relations), less for the smaller.

We also include a visualization of where time is spent during optimization. Figure 8.5
shows cumulative time consumption for the different stages during optimization for 6 rela-
tions, bushy chain joins, while Figure 8.6 for 8 relations. As can be seen, the time spent on plan
generation increases rapidly for increasing number of relations. ăis is expected, as this step
has exponential time complexity. We also observe that preparing orders is taking a signiđcant
amount of time. We probably have a lot of potential for improvement here, as we have spent
very little time optimizing this component. Apart from that, the other steps execute fairly
quickly.
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Figure 8.6: Cumulative time consumption, 8 relations

Proöling

To get an overview of where in the code the bulk of the time is spent, as well as to identify any
performance bottlenecks, we have done a few prođler runs of the optimizer in action. ăis is
important to be able to optimize existing code, but also helps writing performant code in the
future.

Figure 8.7 shows a sample run using the ANTS Prođler [Red08] when performing join
ordering of 9 relations. ăe đgure lists the methods where the most time was spent during
execution, along with their hit counts. ăe đrst three lines are the entry path into the opti-
mizer, and is not that interesting. On lines 4-6 we can see that most of the time was spent in
QueryOptimizer.GeneratePlans and JoinRule.(Internal)Search. ăis is expected, as it is between these
two methods the plan enumeration occurs. We can also identify that GeneratePlans and BitSet
operations are among the most frequently called methods in the system.

As an example, early prođler runs showed that a signiđcant amount if time was spent in
our BitSet implementation. By making BitSet operate on whole ints (32 bits) instead of single
bits, we were able to almost double the performance.

8.3 Identiöed Issues and Suggested Solutions

8.3.1 Exhaustive Enumeration

Currently, our optimizer is close to exhaustive within the limitations set on the search space,
and it only employs very limited cost-based pruning. Currently we can control whether bushy
or only leĕ-deep plans are considered, but this choice is currently hard-coded in the source
code. At its current performance, the optimizer becomes to slow for ≥8 relations for bushy
plans and≥11 for leĕ-deep plans (where too slow is≥1s).

According to our fast-representative, more than eleven relations are not too common in
MARS queries. Nevertheless, we want to look into ways of addressing this problem.
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Figure 8.7: Prođler run of a 9 relation bushy star join

Suggested Solution: Heuristics and Cost-based Pruning

One obvious idea is tomake the choice between bushy and leĕ-deep plans at runtime based on
the query complexity, but this can lead to suboptimal plans. It is probably a better idea to try
and increase the performance of bushy enumeration.

We see cost-based pruning as a good way to do this. ăe idea is to do incremental costing
during plan generation, all thewaymaintaining a upper cost bound equal to the best plan found
so far for a given sub-problem. Whenever a new exploration task exceeds this bound, it can
not possible yield a better plan and is aborted. Currently, cost-based pruning only happens in
PlanSet—atwhichpoint the plans are already constructed. ăe idea is to continuously decrease
the limit to prevent exploring more expensive plans. ăis is non-trivial when also considering
sharing opportunities, which is why we have not implemented it.

For basic cost-based pruning, inĖnity is used as the initial bound. A better strategy is to
try and achieve a tighter cost bound to start with. ăe simplest way is to use the cost of the
canonical plan (the query directly translated into a operator graph). A better way is to employ
various heuristics to quickly construct a much better plan than the canonical plan and use the
cost of this plan as the initial cost bound.

8.3.2 Unreachable Plans

Consider the query in Figure 7.11, which joins four relations. Following the process described
in 3.6.4, the global goal of this query will be determined to be
Goal = {Id0, Id1, Id2, Id3, ◃▹0,1, ◃▹1,2, ◃▹2,3}. We have ignored theNameX properties. ăe
topmost join has the predicate [Id2] = [Id3], and therefore Produced = {◃▹2,3}, Re-
quiredLeft = {Id2}, RequiredRight = {Id3}.

Following the algorithm for the join rule, described in 5.3.9, the rule will try to satisfy Goal
by exhaustively splitting wantedProperties = Goal− (Produced∪ RequiredLeft∪ RequiredRight)
= {Id0, Id1, ◃▹0,1, ◃▹1,2} between the leĕ and right input. It will therefore, for instance, at
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one moment try to get {Id2, ◃▹0,1, ◃▹1,2} as its leĕ input and {Id0,Id1,Id3} as its right. Obvi-
ously, this is not possible since ◃▹0,1 and ◃▹1,2 requires Id0 and Id1 and the plan generator will
immediately returnwith no plans. Still, it takes a signiđcant amount of time to try it, especially
when the number of operators and properties become large.

Suggested Solution

To prevent this from happening, we could pre-compute transitive closures on the required
properties of all rules instantiated during the preparation phase. ăis could be implemented
as an array with length equal to the number of bit properties, where element i contains the
minimum set of bit properties required to produce property i.

For instance, for the example above, the array entry for ◃▹0,1 would be {Id0,Id1}. ăis
array would be used by the different rules to ensure that they never ask for something that is
guaranteed to be impossible, thereby saving time. For instance, the join rule would consult this
array before iterating over all the different ways of splitting the wantedProps bitset.

8.4 Extensibility

As an example of how extensible our optimizer design is, we include an amusing example from
whenwe đrst managed to integrate our optimizer withMARS and optimize a query on the Ĕy.
MARS does not provide any interface to see the operator graph of the query that is run, so we
only had our own debug output indicating that it was the optimized query that was being run.
Furthermore, the data set was too small to notice any difference in execution time at the time,
so we really did not know if MARS actually executed the optimized query and not the input
query. We came up with the idea of having the optimizer deliberately leave traces within the
optimized query. We quickly implemented a post-processing rule that inserts a map operator
in the query, adding an extra column to the output, named “OptimizerWasHere”. ăe output
from a sample query is:

| DocumentId | DocumentName | OptimizerWasHere |
------------------------------------------------------------------
| 0 | /data/docfeeder/newdocs/0020_c | Oh yes, I was! |
| | 2976_drugsafety_wp.pdf.xml | |

To illustrate how easy it was to implement this post-processing rule, we have included the
full source code in Listing 8.1. No conđguration changes or changes to the optimizer were
necessary — it automatically picks up new rules.

8.5 Important Missing Features and Implementation Ideas

Even though there are a lot of thingswe have not had time to study in depth and/or implement,
some unimplemented features are so important we describe the feasibility of implementing
them — as well as brieĔy sketching how we envision them implemented.

8.5.1 Compound Rules

ăebeneđts and caveats with compound rules are described in Section 3.9. Most of the infras-
tructure for implementing this is already in place. In particular, rule binders are invoked via
graph patterns, and not via a one-to-one mapping of operator types.
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1 [Postprocessor]
2 public class OptimizerWasHere : AbstractTransformationRule {
3 public override AbstractNodeMatcher Pattern {
4 get { return Match.NodeOfType(”OutputOperator”).GroupAs(”output”); }
5 }
6
7 public override bool Fire(GraphSearcher graphSearcher) {
8 OperatorNode outputOperator = (OperatorNode)graphSearcher.Groups[”output”].Single();
9

10 //We change outputOperator.Children with InsertParent, so copy the list
11 foreach (OperatorNode query in new List<Node>(outputOperator.Children)){
12 OperatorNode mapNode = new OperatorNode(typeof(MapOperator));
13 mapNode[”RetainInput”] = true;
14
15 mapNode[”ParameterMap”] = new Dictionary<IdentifierProperty, ExpressionProperty>()
16 { { new IdentifierProperty(”OptimizerWasHere”), new ExpressionProperty(”\”Oh␣yes,␣I

␣was!\””) } };
17 query.InsertParent(mapNode);
18 }
19 return true;
20 }
21 }

Listing 8.1: Example Transformation Rule

As opposed to the rules we have developed so far, which are inherently oblivious of the
semantics of other rules, compound rule binders have to know about the semantics of all the
rules they encompass. To keep a sensible separation of concern, this suggests that they should
be completely separate rules with their own rule binders — i.e. the join rule should not know
about all the possible ways to compound. Instead, there should be something like a Select-
CompoundRuleBinder, which knows when it makes sense to lock a Select in place — be it over a
Lookup or a Join.

Compound rules can possibly come in many forms. In Section 3.9 we had a simple exam-
ple of a Select over a Lookup. ăat rule is a leaf node, and it has only one output. However,
compound rules might just as well be internal nodes with multiple inputs with differing re-
quirements, such as when the bottom node of the compounded sub-graph is a join.

Compound rules might also contain other compound rules, which in turn might contain
others. ăis is not as far-fetched as it may đrst sound. For example, a compound can be made
with aMapover the compoundof a Selectover a Lookup. Since patternmatching is done breadth
đrst, this should not be too hard to implement. However, it requires some changes to how
rule binders are invoked. When the pattern of a compound rule binder matches a sub-graph,
further matching on that sub-graph should be directed by the rule binder.

We list a few examples of compound rules that are desired. Note, however, that in addition
to the patterns declared by the rule binders, some logicmust also be applied to đndoutwhether
the rule should be applied at all. Furthermore, itmight be beneđcial to have some auxiliary pre-
processors that properly reorder some operators, to keep patterns and rule binders simple —
such as moving a Selection-operator below a Map

• A Selection over a scan such as a Lookup, if its placement there can be ascertained even
before costing.

• (O)Near over Lookups.

• ScoreOccurrences over one or more (O)Near- and Lookup-operators.
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• A Selection or a Map over a Join, when the predicate is expensive. See next section

As explained in Section 8.5.4, however, resorting to compound rules is not necessary to
simply restrict movement of a single operator.

8.5.2 Projections

Projecting away attributes is handled by MARS’ Map-operator, as is the evaluation of new and
aliasing of existing attributes.

With the exceptionofmapoperatorswith expensive expressions, e.g. expensiveuser-deđned
functions, a greedy strategy will yield a good result for map operator placement in most cases.
Map is therefore a good candidate to be taken out of the plan generation step and into post-
processing to reduce search space size. We therefore completely ignore maps during the search
phase, and apply removal and/or renaming of the attributes as a post-processing step as the
topmost operator in the query. Only Map-operators that evaluate new attributes (e.g. Score =
70 Score + 30 ProxScore) are kept, but locked as much in place as possible.

Unfortunately, we have not had the time to implement the greedy strategy and the opti-
mizer therefore only inserts projectingmaps as the topmost operator. It still handles all queries
correctly, but it can lead to sub-optimal plans when the attributes that can be projected away
earlier make up a substantial amount of memory — especially if temporary relations must be
Ĕushed to disk during sorts or hash-joins.

Anyway, we outline the greedy strategy here:

1. (already implemented) All map operators that do not produce attributes are removed
during pre-processing.

2. (already implemented)Map operators that do produce attributes are locked in place just
before the đrst operator that needs them in the search phase. Compound rules could
also be used for this purpose.

3. (not implemented) During post-processing, all pipeline-breaking operators (operators
that break the data pipeline andmaterialize data, e.g. hash join and sort) and their inputs
are examined. If there are attributes in the tuple stream that are not needed past this
point, the size of the data that can be projected away is estimated. If this amount is over
a certain threshold (the map is not free, either), a map operator is inserted to project
away the attributes before the pipeline breaker.

4. (not implemented)During post-processing, successivemap operators with none or only
non-pipeline-breaking operators between them are merged. For example, if a rename
operator can be merged with a projecting or attribute producing Map, this is preferable
— the fewer operators, the better.

5. (already implemented) During post-processing, if needed, a đnal map operator is in-
serted as the topmost operator of the query to reorder, remove or rename attributes to
make the query output schema correct.

8.5.3 Expensive Predicates and User Deöned Functions

As brieĔy described in Section 1.6.7, user deđned functions used either by Map-operators to
evaluate new attributes or in predicates in Select-operators might be expensive. In the case of
the Select, where the predicate is expensive, we will want to evaluate the expensive predicate
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aěer other operators or predicates have reduced the result set as much as possible. An example
was given in Section 1.6.7.

ăe same is true for Map-operators with expensive evaluations. Additionally, if no oper-
ators reduce the result set, we want to evaluate the expensive expression before any result set
increase — to avoid computing the same expression multiple times. ăis problem can be mit-
igated with memoization in the operator, though.

However, to know how a join affects the record set, we need the functionality described in
Section 8.5.6.

To implement this, more work on the dependency resolving must be done. Speciđcally,
we want to add a dependency from the expensive selection to other set-reducing operators
— and from the set-increasing operators to the expensive map operators. Exactly how these
dependencies are devised have not been studied, however.

8.5.4 Dependency Mapping of Outer- , Anti- and Semi-Joins

Outer-, anti- and semi-joins require special attention because they are not freely reorderable
— i.e. they are not always associative with each other. Consider for exampleƳ R
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is a leĕ outer join. With the input relations shown in Table 8.1a–
8.1c we get the outputs shown in Table 8.1d and 8.1e, illustrating the semantic difference. ăe
corresponding join graphs are shown in Figure 8.8. Similar examples can easily be devised for
anti- and semi-joins, but we omit them for brevity.

To constrain the movement of the joins correctly, we need to add enough dependencies to
the operators. For example, if R
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R to ◃▹S,T to “lock” the ordering. Of course, in this simple example query, this leaves no other
possibilities.

Exactly how to devise the correct dependencies have not been studied in depth. However,
we did đnd an algorithm described in “Using EELs, a Practical Approach to Outerjoin and
Antijoin Reordering”, written by J. Bruce et. al [BGPS01]. We believe the algorithm can be
implemented as a pre-processor without too much hassle. ăe gist of the algorithm is to iter-
ate through the operator graph in topological ordering, to build “Extended Eligibility Lists”
or “EELs”. EELs contain a list of tables referenced by the join predicate — from which depen-
dencies can be derived.

ăe algorithm is clever enough to also consider predicates’ “NULL-tolerance”when build-
ing the lists. A NULL-intolerant predicate is one which never evaluates to true when a refer-
enced attribute is NULL. With this, we can possibly rewrite outer joins to inner joins, and con-
sequently relax the dependencies.

To summarize, dependencies will be used to prevent erroneous movement of these kinds
of joins, but we have not had time to đnd out exactly how the dependencies are devised.

8.5.5 Equivalence Class Joins

Figure 8.9 shows two possible join-trees for the star-join query A ◃▹ B ◃▹ C ◃▹ D. We assume
all relations are joined on the same key id. When the rule binder for joins instantiates rules it
encounters a problem with regard to what rules should be instantiated, and what their depen-
dencies should be. For example, if we only instantiate one rule for the four-way join, we will be
unable to move any of the joins around. What should the pairs be — i.e. which two relations
should be the input to the “bottom rule”? In Figure 8.9a, the limitations are clear if we say that

Ƴexample adapted from [BGPS01]
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Table 8.1: R, S and T — and two different outer join orderings
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Figure 8.8: Join graphs corresponding with Table 8.1
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Figure 8.10: Rule instances

the ◃▹D-rule has to depend on its leĕ input — we would then be unable to reorder it into e.g.
(D ◃▹ A) ◃▹ B ◃▹ C.

ăis limitation is present in the current join rule binder, and this section describes how we
imagine a proper implementation. It is not a problem speciđc to our design, but something all
implementations of join orderings have to deal with. Without loss of generality, we limit the
discussion to leĕ-deep joins.

In Section 5.2.1 we described how equivalent attributes are mapped. ăese maps are avail-
able by the time of rule instantiation. ăus, the join rule binder can identify that the join keys
of A…D are all equivalent — i.e. that it does not really matter which relation any of them are
directly joined with, as all are valid.

To remedy this, we imagine that instead of having n − 1 rules where the “bottom rule” is
instantiated with two relations as required inputs, we have n join-rules where the required leĕ
input for all of them is the equivalence class representative ⋆ — as shown in Figure 8.10a. We
also need to add a base-relation for the representative. Figure 8.10b shows an example of how
the rules can be combined to represent the join-ordering ((⋆ ◃▹ D) ◃▹ A) ◃▹ B ◃▹ C. ăe join
rule then treats (⋆ ◃▹ D) as a special case bothwhen costing andwhen reconstructing the query
graph — it is equal to D, so the resulting graph has three join operators.

Since we have not had time to implement this, we have not yet decided whether there
should be a MultiJoinSplitter-pre-processor that splits multi-joins into multiple operators — as
described in Section 5.2.1 — or if it should be the task of the join rule binder to instantiate
multiple rules for multi-joins.

8.5.6 Reasoning on Relation Semantics

Key properties and -relations in a database are used to enforce constraints. However, they can
also be used to reason whether joining a relation on a speciđc key will increase, decrease or
preserve the number of records. For example, if we have foreign key from person.city_id to
city.city_idwe can be certain that joining in citywill preserve the number of records. However,
if city is the relation we join person to, we cannot know whether the record set is preserved,
increased or decreased — as there could possibly (albeit unlikely) be exactly one person per
city, (more likely) multiple people per city, or none.

With outer joins, however, we can be sure that the number of results either remains the
same or increases— the latter can possibly be reasoned asmore likely with 1-to-many ormany-
to-many relationships.
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Reasoning that a join reduces the amount of records, however, is not possible to deduce
from foreign key relationships alone. It is possible that augmenting the catalogswith additional
information about relationships, as suggested by the paper brieĔy covered in Section 1.6.10, is
a good approach, but we have not studied this further.

However, as inferring that the record setwill remain the same is possible and opens awealth
of new optimization opportunities, it is desirable to implement it. A motivating example is
given in Section 3.4. With foreign key relationships available in the system catalog, the join
rule binder only needs to have its SetBehaviour-method check that the join key is a foreign key
pointing to the relation being joined.
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9
Further Work and Conclusion

“Debugging is twice as hard as writing the code in the Ėrst place. ąerefore, if you
write the code as cleverly as possible, you are, by deĖnition, not smart enough to debug
it.”
—Brian Kernighan

9.1 Further Work

In the last section of the previous chapter, we wrapped up with ideas of features we have a
reasonable idea of how to implement.

However, there are many areas we have not investigated at all, with ripe opportunities for
future improvements.

In this section, we summarize further work for this thesis. Some of it, especially the đrst
four sections, is work that needs to be done before the query optimizer is production-ready.
ăe last đve sections include possibilities it would be interesting to pursue, but is not critical.

9.1.1 Tighter Integration with MARS

Although we have successfully integrated our optimizer with MARS, there are still several tasks
in this area that need to be addressed. We list some of them here.

Logical operators. Currently,MARSonlyhas physical operators (i.e. HybridHashJoin andMerge-
Join, not Join). ăis does not allow for a truly declarative query language. Currently, we
transform HybridHashJoin and MergeJoin to a logical join internally in the optimizer, but
ideally MARS would support a Join-operator.

System catalog. A system catalog is needed to look up information on relations and indexes
and create, store and look up statistics. Currently, MARS has very limited support for
this, so work needs to be done in this area. Some improvements are suggested in Sec-
tion 4.3.2.

Plan caching in a search engine is arguably different to that of an RDBMS. First, the con-
tents of the indexes change very rarely, comparatively. ăus, if the exact same query is
performed in locality of time, layers above the evaluation engine will likely cache the
entire result of the query — which is not prohibitively expensive when only caching e.g.
the 100 đrst results. Secondly, parametrized plans are less likely to be reasonably close
to the optimum. ăe selectivities of the terms in a full-text query can vary widely — as
opposed to OLTP-esque lookups on primary keys.
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One avenue of pursuit is perhaps to research whether the memoization table can be
reused for subsequent or parallel optimizations. For example, if a sub-plan is memoized
with parameters that have selectivities within certain limits of the current query, then
that sub-plan could be considered reused — saving planning time. However, not only
would this require drastic changes to the optimizer, but without knowledge of realistic
workloads, it is a solution looking for a problem.

Another approach is to have a data structure that given a parametrized plan returns a list
of plans for various input selectivities. ăen, the existing plans can be examined to đnd
out how close the assumed selectivities are to the input parameters. If they are within a
certain range, the plan can be reused.

9.1.2 Operators

Support for more operators needs to be implemented to enable the optimizer to handle more
advanced queries. ăis includes operators such as And,Or, and Trim. We also need to implement
predicate splitting as described in 3.9 to enable more advanced selection optimizations.

Ultimately, a clear API and comprehensive documentation should enable developers of fu-
ture operators to implement the necessary rules and their binders without detailed knowledge
of the optimizer’s inner workings.

9.1.3 Support the Exchange Operator

ăeexchange operator is important with regard to parallelizing execution overmultiple nodes.
Since we were told by our fast-representative to not focus on it, and we have been unable to
execute and test such queries anyway, we have not studied its implications in depth. How-
ever, we have had it in mind — such as when we mention communication costs in the chapter
describing the cost model.

9.1.4 Better Cost Model

ăe currently implemented cost model is relatively generic and is not accurately adapted to
MARS. Nor does it model memory usage, network I/O cost, parallelization opportunities and
so on. It works as it is, but to achieve good results, quite a bit of time must be invested in
accurately cost modeling MARS’ operators.

ăis also includes the use of histograms to determine the selectivities and expected tuple
counts for queries and index lookups, as well as using system catalogs do determine tuple sizes.

9.1.5 Optimizing the Optimizer

Except in the innermost loops of the search phase, we have not focused deeply on optimized
code and data structures. As shown in Section 7.3, the optimizer is fast enough to be usable,
but there is still room for lots of improvements.

9.1.6 Investigate Bottom-up

As explained in Section 2.5.3, we have settled for a top-down approach. [Neu05] says that
bottom-up may be beneđcial for larger queries, see đgure 8.4. It might be wise to spend some
time investigating the possible performance gains a bottom-up approach would give, as con-
verting the rules to bottom-up is not too hard. A sketch for the selection rule bottom-up is
given below.
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1 public override void SearchBottomUp(PlanSet plans, BitSet current) {
2 foreach (Plan inputPlan in plans) {
3 Plan selectionPlan = new Plan(inputPlan) { Rule = this };
4 plansCache[current | Produced].AddPlan(selectionPlan);
5 }
6 }

Listing 9.1: Imaginary SelectionRule.SearchBottomUp(), very simpliđed

9.1.7 Opportunities for Planner Parallelism

Currently, we cannot do much over 11–12 relations within a feasible amount of time on one
thread without limiting the search space. ăis can lead to suboptimal plans.

ăe current trend in processor development, is to add more cores, and to use more proces-
sors. ăe raw clock speed no longer increases substantially. Because of this, it can be smart to
look at parallelism. ăe most prominent problems with parallelization are data dependencies
and distributing work items between threads. [HKL+08] has achieved close to linear speedup
for dynamic programming of join ordering and has managed to increase the number of rela-
tions for bushy up to approximately 16 within the second.

Our algorithm is top-down, so the method used in [HKL+08] is not directly applicable,
butwe still have some ideas onhowtodo it. Insteadofwaiting for theplan generator toproduce
each plan, sub-plan requests can be queued to a thread pool and the requester notiđed when
it is ready. Pre-/post processing steps are harder to parallelize because of the linear nature, but
they are not the greatest contributions to optimization time anyway. Also, it is not too complex
to convert our optimizer to a bottom up one, which shouldmake it easier to apply the method
used in the above paper.

9.1.8 Parallel Execution and Costing

It is not only the optimization of query plans that can be parallelized — the execution of them
can as well. For example, sorting can be parallelized, or different parts of the query graph can
be run on different threads. Parallelism does not only constrain itself to a single processing
node. It is quite common to employparallelized executionbetweennodes in a cluster for search
engines. MARS also supports this.

To create parallel plans, the optimizer must both know which operations can be paral-
lelized, and the cost model must honor such plans. However, the cost model may change if the
system is under heavy load, and there is no gain in parallelizing the query, since all nodes are
swamped anyway.

9.1.9 Compensating Operators

By utilizing compensating operators when sub-problems cannot be completely shared, but is
close enough so that large parts can be reused, DAGs can be created when share equivalence is
a too strict requirement. We brieĔy mentioned this in Section 3.7 and gave an example.

Such a featureneeds a reasoning framework that extends and encompasses the current share
equivalence model to keep track of what compensations are possible at what cost. However,
we have not had the time to study this in depth and leave this as an open possibility.



148 Chapter 9. Further Work and Conclusion

9.2 Evaluation and Conclusion

In the introduction, we statedmultiple goals. ăeđrst onewas to extend the optimizer with new
rules to have it support a wider set of MARS’ algebra— at least lookup, joins, sorting and grouping.
Wehave spentmost of the spring on implementation, and the optimizer now supports lookup,
the score occurrences operator, selection, projection (map), merge and hash joins, sort opera-
tors, and streaming- and hash group. ăis is enough to express the most common queries, and
the optimizer can now optimize such queries.

ăe next goal was to implement native support for DAG-structured query plans and multi-
queries. We did not have time for this in the specialization project, but since the design was
prepared for it, we were able to implement this without too much difficulty. ăe optimizer
is able to analyze the input query for sharing possibilities, and create a query DAG where the
costmodel deems it beneđcial. It can do this regardless of the form of the input query—DAG
or non-DAG. We have also seen that DAG-structured query evaluation plans can reduce the
evaluation costs signiđcantly, especially for the multi-queries common to MARS.

We also aimed to implement support for tracking available orderings and groupings in a query
plan. ăis was needed to reason about merge joins and streaming groups, and we considered
this to be a requirement for having a usable optimizer. We solved this by implementing an
orderings- and groupings component that handles this logic. ăis component is actually capa-
ble of more đne-grained reasoning (about groupings) thanMARS can utilize at the moment, so
we exceeded our goal here. It is also very efficient during plan generation, but the initialization
procedure leaves a lot to be desired efficiency-wise.

Finally, we wanted to integrate the optimizer with MARS by injecting it into MARS’ query
pipeline, enabling end-to-end execution of queries with the optimizer. ăis was not a priority
due to the current development status of MARS, but we were able to achieve this goal as well.
Although we received help from fast, some of the work we had to do here resembled detective
work at a high level, since we did not have access toMARS’ source code. ăe result is that we are
able to intercept and optimize queries between the parsing and evaluation stages. Since MARS
does not have the required system catalogs in place, such catalogs were stubbed.

We can therefore conclude the master’s thesis with a system where we can run queries end-to-
end with optimization enabled — which was the ultimate goal of the specialization project and
master’s thesis.

We now summarize why we believe our work is of great use to fast and MARS.

MARS has no optimizer. Currently, MARS does not employ an optimizer. Queries must be op-
timized by hand, directly using physical operators. By implementing an optimizer, we
can do this automatically and hopefully better. Furthermore, the users can focus on
writing readable and maintainable queries, instead of optimized ones.

Declarative queries. An optimizer enables the user to write queries that are truly declarative
in any language, for example SparQL, not only MQL (MARS’ physical query language).

Integration withMARS. Wehave been able to integrate the optimizer withMARS, proving that
it plays well with the implementation of MARS and its algebra. Both the optimizer and
MARS are implemented in C# on .NET.

DAG support. MARS supports DAGs, and our optimizer will construct DAG plans where
beneđcial. Since this is a deđning featurenot commonly found elsewhere, it shouldmake
this work even more interesting. We also support optimizing multi-queries, which can
drastically reduce the evaluation costs.
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Extensibility. fast wanted an optimizer that is extensible, to support future operators. Our
optimizer is extensible in terms of both operator rules and the cost model.

Separate component. ăe optimizer is not tied closely to MARS and can without too much
work be adopted to another system fast may develop in the future.

Summarized, wewould saywehave reached the goals stated and are satisđedwith the result.
Not only do we have a running optimizer integrated into MARS, but we have also documented
the important parts of its inner workings. It is still far from production-ready, but should pro-
vide a very good foundation for fast’s further work with an optimizer for MARS. Since we have
worked with this optimizer for almost a year now, we have some very good ideas about what
should be the next steps and outlined them in the previous sections. ăeoptimizer is, of course,
far from perfect.

During the development of our optimizer we have several times thought “Why did it do
that, it cannot possibly be right!?” — especially for complex queries with complex functional
dependencies. Sometimes the reason was bugs in the optimizer, but we have more than once
concluded with “Aha, that is why!” when discovering an optimization we missed but the op-
timizer found. We believe that is a good thing.

9.3 Contributions

We hope we have been able to sufficiently and humbly communicate that we have based our
work on that of Dr. T. Neumann and G. Moerkotte, as pointed out in Section 2.6. Without
their work, we doubt we would have got as far as we have.

However, as pointed out in Sections 3.6.7 and 6.3.5, we have made several improvements
here and there, and throughout the thesis we put the architecture in many contexts not de-
scribed in their works — such as optimizing multi-queries.

At any rate, we believe themost signiđcant contribution from ourmaster’s thesis is proving
that the architecture not only works well — it can also be implemented well enough to be of
considerable interest for fast’s future query optimization needs in MARS, and possibly other
projects.
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A
Runtime Output

“No matter how slick the demo is in rehearsal, when you do it in Ěont of a live audi-
ence, the probability of a ęawless presentation is inversely proportional to the number
of people watching, raised to the power of the amount of money involved.”
—Mark Gibbs

To give the reader an introduction to the look and feel of MARS and our optimizer, we have
included an example of what is looks like when executing a query against MARS with our opti-
mizer enabled. ăe only interface against MARS that is available to us is a console interface, so
in the following example, we show the interaction with MARS through the console. We have
edited to output somewhat to make it đt inside the report.

We start by booting the MARS node:

Microsoft Windows [Version 6.1.7100]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Mars.Net>NodeRunner.exe --shell
DefaultNode>

Next, we enter theQueryFeeder component to execute queries.

DefaultNode> i QueryFeeder1
*** Welcome to MARS Query Feeder ***

Query>

MARS is now ready for our query. We input a simple query searching for “fredrikstad”,
grouping the hits by document type and listing the hits by name.

Query>Output(;\
> Group(sorted=False,groupFields=[”Input1.DocumentType”],\
> aggs=”Count”=Count(args=Null,filter=Null);\
> MergeJoin(joinPrefix=1;\
> Lookup(word=”fredrikstad”,index=”Occurrence1”),\
> Lookup(word=”DocumentType”,index=”Occurrence2”)\
> )\
> ),\
> MergeJoin(joinPrefix=1;\
> MergeJoin(joinPrefix=1;\
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> Lookup(word=”fredrikstad”,index=”Occurrence1”),\
> Lookup(word=”DocumentType”,index=”Occurrence2”)\
> ),\
> Lookup(word=”DocumentName”, index=”Occurrence2”)\
> )\
> )

ăis yields the following output. First, some timing statistics from the optimizer is printed,
followed by the query results. As can be seen, the ”OptimizerWasHere” rule mentioned in
Section 8.4 is enabled. Note that the timings below are wall-clock timings and include just-in-
time compilation overhead and the like.

Optimizing...
Time spent preprocessing: 00:00:00.0009095
5 base rules and 4 search rules loaded.
Time spent loading rules: 00:00:00.0027660
Time spent minimizing bit sets: 00:00:00.0015886
Time spent validating rules: 00:00:00.0000077
Time spent constructing share equivalence classes: 00:00:00.0003762
Time spent determining goals: 00:00:00.0000144
Time spent preparing orders: 00:00:00.0246010
Time spent initializing base plans: 00:00:00.0024380
Time spent generating plans: 00:00:00.0044331
Time spent making physical plans: 00:00:00.0001144
Time spent postprocessing: 00:00:00.0025216
Total time spent optimizing: 00:00:00.0543951
Total memoization entries: 18. Actual plan sets: 10, actual plans 10.
Plans generated: 7, Unreachable plans: 6, plans returned from

memoization table: 12, rule appliances: 7
...

Record set name: Primary

--------------------------------------------------
| Input1.DocumentType | Count | OptimizerWasHere |
--------------------------------------------------
| va | 2 | Oh yes, I was! |
--------------------------------------------------
| na | 2 | Oh yes, I was! |
--------------------------------------------------
| ea | 2 | Oh yes, I was! |
--------------------------------------------------
| ua | 4 | Oh yes, I was! |
--------------------------------------------------
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Record set name: Output0

----------------------------------------------------------------------------------
| DocumentId | Input0 | Input0.Input0.Scope | Input0.I | Input1.Docu | Opti |
| | .Input | | nput1.Do | mentName | mize |
| | 0.Posi | | cumentTy | | rWas |
| | tion | | pe | | Here |
----------------------------------------------------------------------------------
| 229770 | 52 | /documents[1]/document[3 | ea | /data/docfe | Oh y |
| | | ]/body[4]/paragraph[7]/s | | eder/newdoc | es, |
| | | entence[1]/location[1]/b | | s/doc234901 | I wa |
| | | ase[1]:14 Attribute | | .xml | s! |
----------------------------------------------------------------------------------
| 229770 | 53 | /documents[1]/document[3 | ea | /data/docfe | Oh y |
| | | ]/body[4]/paragraph[7]/s | | eder/newdoc | es, |
| | | entence[1]/location[1]:1 | | s/doc234901 | I wa |
| | | 5 Text | | .xml | s! |
----------------------------------------------------------------------------------
| 239320 | 1099 | /documents[1]/document[3 | ua | /data/docfe | Oh y |
| | | ]/body[4]/paragraph[133] | | eder/newdoc | es, |
| | | /sentence[1]/location[3] | | s/doc305151 | I wa |
| | | /base[1]:14 Attribute | | .xml | s! |
----------------------------------------------------------------------------------
...
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B
Code Samples

“Measuring programming progress by lines of code is like measuring aircraě building
progress by weight.”

—Bill Gates

We do not include the full optimizer code base in the report, as it counts approximately 15,000
lines of code. We refer to the accompanying digital appendix for the full code base. See Ap-
pendix C for a description of the contents.

ăe rest of this appendix includes selected code samples that were too long to include in
the main part of the report.

B.1 dot Language Sample

Listing B.1 shows the GraphViz [AT 08] dot language used to visualize the operator graph in
Figure B.1. ăis example includes some TEX-code which is then processed by dot2tex. How-
ever, most graphs in this thesis are TEX-less and generated with GraphViz. Its declarative lan-
guage makes it easy to auto-generate graphs. ăese have been of immense value when analyz-
ing various graph structures throughout our work. We have had to post-process most graphs
to make them đt on an A4-page, though.

B.2 Rule Binder Initialization

As explained in 5.1, the optimizer does not know the rules at compile time, meaning that new
rules can be added without changing the optimizer core at all. To be able to do this, is uses
reĔection, which is a feature in .NET for reasoning about program metadata.

To be taken into consideration for optimizing, all the rules have to do is to have a rule
binder that declares the [RuleBinder] attribute and implements the IRuleBinder interface. ăen
they have to be placed in an assembly (DLL, .NET equivalent of Java JARs) that is visible to
the optimizer.

At optimizer startup, InitRuleBinders is called, and all classes in all known assemblies are enu-
merated. If the class declares the [RuleBinder] attribute, it will be saved in a list for later use.
ReĔection used like this is somewhat expensive, but since this only happens once at system
startup, it is not a problem.

ăen, during the preparation phase of each query, all the previously found rule binders are
instantiated and used for instantiating rules. Note that the optimizer never cares about where
or how the rule was implemented.
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1 digraph G {
2 rankdir=BT;
3 edge [style=”line␣width=1pt”];
4 ranksep=0.2;
5 ordering=in;
6 J1 [texlbl=”$\join$”];
7 J2 [texlbl=”$\join$”];
8 J3 [texlbl=”$\join$”];
9

10 B -> J1;
11 A -> J1;
12
13 C -> J2;
14
15 J2 -> J3;
16 D -> J3;
17
18 J1 -> J2;
19 }

Listing B.1: dot đle used to create
Figure B.1

.
.A

.C

.B

.D

.◃▹

.◃▹

.◃▹

Figure B.1: Example Dot Figure

1 /// <summary>Reflect, find and instantiate rule binders.</summary>
2 private static void InitRuleBinders() {
3 RuleBinders = new List<IRuleBinder>();
4 // Add all rulebinders marked with [RuleBinder].
5 foreach (Type type in ReflectionPluginHelper.GetTypesWithAttribute(typeof (

RuleBinderAttribute)))
6 AddRuleBinder(type);
7 }
8
9 /// <summary>Instantiate and add the rule binder with the given type.</summary>

10 /// <param name=”type”>Type of the rule binder to add</param>
11 private static void AddRuleBinder(Type type) {
12 RuleBinders.Add((IRuleBinder) Activator.CreateInstance(type));
13 }
14
15 /// <summary>Gets all types in the accessible assemblies tagged with the specified attribute.</

summary>
16 /// <param name=”attributeType”>Type of the attribute to look for.</param>
17 /// <returns>A enumerable of the found types.</returns>
18 public static IEnumerable<Type> GetTypesWithAttribute(Type attributeType) {
19 foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies()) {
20 // The attribute need to be tagged with the OptimizerPluginsAttribute.
21 if (Attribute.GetCustomAttribute(assembly, typeof (OptimizerPluginsAttribute)) == null)
22 continue;
23
24 foreach (Type type in assembly.GetTypes()) {
25 if (Attribute.GetCustomAttribute(type, attributeType, true) != null)
26 yield return type;
27 }
28 }
29 }

Listing B.2: Rule binder initialization.
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1 // Rewrite the goal using share equivalent class representatives
2 public BitSet ShareEquivalentGoal(BitSet goal) {
3 // Copy the goal to get a working copy
4 BitSet sharedGoal = (BitSet)goal.Clone();
5 // shareEquivalenceMap contains all mappings BitSet -> Share Equivalent Representative BitSet
6 foreach (Pair<BitSet, BitSet> mapper in shareEquivalenceMap)
7 // If all of entire mapper.First is in sharedGoal...
8 if ((sharedGoal & mapper.First) == mapper.First)
9 // Then remove the ”from” bits and add in the ”to” bits, i.e. the share equivalent

representatives
10 sharedGoal.Subtract(mapper.First).Or(mapper.Second);
11 return sharedGoal;
12 }
13
14 // Try to rewrite the goal using share equivalent class representatives and return true
15 // and the rewritten goal if successful, otherwise false.
16 public bool ShareEquivalentGoal(BitSet goal, out BitSet sharedGoal) {
17 sharedGoal = ShareEquivalentGoal(goal);
18
19 // If the new goal is different from the old and does not overlap the old except for any

already
20 // existing representatives in it, we have a successful rewrite.
21 return sharedGoal != goal && !sharedGoal.Overlaps(goal - shareEquivalenceRepresentatives);
22 }

Listing B.3: Share Equivalence Rewrite algorithm.

B.3 Share Equivalence Rewrite

We wanted to include the full algorithm for rewriting a goal to a share equivalent goal. ăis is
performed using shareEquivalenceMap, which maps share equivalent properties to their rep-
resentatives. ShareEquivalentGoal(BitSet goal) rewrites a goal, while ShareEquivalentGoal(BitSet goal,
out BitSet sharedGoal) rewrites and veriđes that the new goal is a complete rewrite.

B.4 Complete, Unsimpliöed GeneratePlans

In Section 3.6.5 we introduced a simpliđed version of GeneratePlans. We also wanted to include
the full, unsimpliđed version of it to show that the removed code is mostly debug output and
housekeeping. ăe calls to DiagPrinter output the progress of a goal search, to be able to debug
it. Lines like rulesInvoked++; update statistics variables.

1 /// <summary>
2 /// Generates plans satisfying the given goal. Multiple plans can be returned
3 /// if they are not comparable in cost or have different orderings.
4 /// </summary>
5 /// <param name=”goal”>The goal to fulfill.</param>
6 /// <param name=”limit”>Current cost limit for pruning (abort search if passing this).</param>
7 /// <returns>A PlanSet containing the best plans found.</returns>
8 public PlanSet GeneratePlans(BitSet goal, ICost limit) {
9 DiagPrinter.Instance.DiagIndent(”search”);

10 PlanSet plans;
11 // If we already have a plan that satisfies the goal, return it.
12 if (plansCache.TryGetValue(goal, out plans)) {
13 plansFromCache++;
14 if (plans == null)
15 DiagPrinter.Instance.DiagWriteLine(”search”, ”UNREACHABLE␣from␣cache:␣{0}”, goal);
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16 else
17 DiagPrinter.Instance.DiagWriteLine(”search”, ”CACHE␣return:␣{0}”, goal);
18
19 DiagPrinter.Instance.DiagUnindent(”search”);
20 return plans;
21 }
22
23 // Check if we can reach this goal with the current rule set.
24 if (GoalIsUnreachable(goal)) {
25 DiagPrinter.Instance.DiagWriteLine(”search”, ”UNREACHABLE:␣{0}”, goal);
26 DiagPrinter.Instance.DiagUnindent(”search”);
27
28 // Memoize the fact that it is unreachable, to avoid unnecessary
29 // GoalIsUnreachable()-calls that are O(n) for n rules
30 plansCache[goal] = null;
31 unreachablePlans++;
32 return null;
33 }
34
35 // We have a plan we have not made before, and we are able to create it!
36 plans = new PlanSet() {Properties = goal};
37
38 // If we’ve got a disjunct goal, try to get plans for this one also.
39 BitSet shared;
40 if (EnableDAG && ShareEquivalentGoal(goal, out shared)) {
41 DiagPrinter.Instance.DiagWriteLine(”search”, ”Rewrote␣{0}␣to␣{1},␣firing␣off␣share␣

equivalent␣search.”,
42 goal, shared);
43
44 PlanSet sharingPlans = GeneratePlans(shared, BasicCost.Max);
45 if (sharingPlans != null) {
46 // Consider the plans where we share sub-plans.
47 plans.State = sharingPlans.State;
48 foreach (Plan plan in sharingPlans)
49 plans.AddPlan(plan);
50 }
51 }
52
53 // Use the search rule to search for plans.
54 foreach (ISearchRule searchRule in searchRules) {
55 if (! searchRule.IsRelevantTo(goal))
56 // The rule cannot satisfy the goal.
57 continue;
58
59 rulesInvoked++;
60 searchRule.Search(plans, limit);
61 }
62
63 if (plans.Count == 0)
64 plans = null;
65
66 plansCache[goal] = plans;
67 plansGenerated++;
68 DiagPrinter.Instance.DiagUnindent(”search”);
69 return plans;
70 }

Listing B.4: Complete, Unsimpliđed GeneratePlans.
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B.5 BitSet

BitSet is the implementation of property sets using bit masks as storage. ăis allows for very
compact storage and set operation like union and intersection becomes very fast since they can
operate on the whole bit mask as a unit. We therefore include some selected code snippets to
show how it is implemented.

B.5.1 BitSet Implementation

Listing B.5 shows how the data is stored inside the BitSet. ăe bit masks are stored as an array
of ints, data, each element having room for 32 properties (ints are 4 bytes = 32 bits). A separate
member length stores the number of bits in the bit mask that are in use.

1 /// <summary>The bits are internally stored as ints. 1 int up to 32, 2 up to 64 etc.</summary>
2 private int[] data;
3 /// <summary>Current number of bits stored.</summary>
4 private int length;

Listing B.5: BitSet private data.

Listing B.6 shows the interface to add and remove properties from the set. It closely resem-
bles any other set implementation. Adding an element X will look up X’s index in the central
BitSetManager class and the set the corresponding bit to true.

1 public void Add(string property) {
2 this[manager[property]] = true;
3 }
4 public void Remove(string property) {
5 this[manager[property]] = false;
6 }
7 public bool Contains(string property) {
8 return this[manager[property]];
9 }

Listing B.6: BitSet single property interface.

ListingB.7 shows how the [] operator used in the previous listing is implemented. First, the
correct array index is found by computing index / 32 (each entry has room for 32 properties).
ăe offset within the item is found as index mod 32. If reading the value, the binary value 1
is bit shiĕed offset positions to the leĕ and bitwise intersection (AND) is computed with the
stored bit mask. If the result is different from 0, the property is set. ăe procedure is similar
for setting properties, but now the bit shiĕed value is intersected or unioned into the stored bit
mask.

1 private bool this[int index] {
2 get {
3 // Get the correct array item, AND with 1 bitshifted
4 // to the correct position and return if it is not 0.
5 return ((this.data[index / 32] & (((int)1) << (index % 32))) != 0);
6 }
7 set {
8 if (value)
9 // OR with 1 bitshifted to the correct position.

10 this.data[index / 32] |= ((int)1) << (index % 32);
11 else
12 // AND with NOT (1 bitshifted to the correct position).
13 this.data[index / 32] &= ~(((int)1) << (index % 32));
14 }
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15 }

Listing B.7: BitSet internal property implementation.

To show how efficient whole set operations on BitSets are, we include two of the available
set operators that have been overloaded. ăe đrst one is set intersection between two BitSets.
Intersection is performed by computing bitwise AND between the stored bit masks in both
BitSets, returning a new BitSet with the result. Note that the number of AND operations
carried out is property count / 32.

1 public static BitSet operator &(BitSet a, BitSet b) {
2 // Intersect all the data items (&) and construct a new BitSet.
3 int length = (a.length + 31) / 32;
4 int[] data = new int[length];
5 for (int i = 0; i < length; i++)
6 data[i] = a.data[i] & b.data[i];
7
8 return new BitSet(a.manager, data, a.length);
9 }

Listing B.8: BitSet set intersection operator.

ăe second set operator we include is subset, that is, if BitSet a is a subset of BitSet b. ăe
subset operatorA ⊆ B can be expressed as

(
A ∩ B

)
= ∅. ăis is implemented by computing

a AND !b for the stored bit masks in both sets and returning false if any of the results are
non-zero.

1 public static bool operator <=(BitSet a, BitSet b) {
2 // Subset (A <= B) is implemented as (A & !B) == EMPTY.
3 int length = (a.length + 31) / 32;
4 for (int i = 0; i < length; i++)
5 if ((a.data[i] & ~b.data[i]) > 0)
6 return false;
7
8 return true;
9 }

Listing B.9: BitSet IsSubSet operator.

B.5.2 BitSet Minimization

ăe following code shows the BitSet minimization algorithm. It merges all properties that are
always produced together. For example, if all properties known in the systemare{a1, a2, b1, c1}
and a1, a2 is always produced together, the result will be {{a1, a2} , b1, c1}.

ăis can also be extended to prune properties that are never required or never produced.
1 /// <summary>Prepares the BitSetManager for use. This must be called before any bitsets can be

used.
2 /// It will minimize the bit set properties and register all the mappings.</summary>
3 public void Prepare() {
4 ValidatePrepared(false);
5 prepared = true;
6 Dictionary<string, string> mappings = MinimizeProperties();
7 RegisterMappings(mappings);
8 }
9

10 /// <summary>Minimize the properties. Currently, this includes merging all properties
11 /// that are always produced together.</summary>
12 /// <returns>A dictionary that maps property name -> property name.
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13 /// If for instance A and B are always produced together, it will contain {A->A, B->A}.</returns
>

14 private Dictionary<string, string> MinimizeProperties() {
15 Dictionary<string, string> mappings = new Dictionary<string, string>();
16 // Register all direct mappings in all produced sets by default.
17 foreach (NestableHashSet<string> producedSet in produced)
18 foreach (string property in producedSet)
19 mappings[property] = property;
20
21 HashSet<string> allProducedProperties = new HashSet<string>();
22 // Get all the produced properties unioned together.
23 foreach (NestableHashSet<string> producedSet in produced)
24 allProducedProperties.UnionWith(producedSet);
25
26 // Now, foreach over all properties, visiting each combination {propA, propB} once,
27 // where propA < propB.
28 foreach (string propA in allProducedProperties) {
29 foreach (string propB in allProducedProperties) {
30 if (propA.CompareTo(propB) < 0) {
31 // Foreach over all produced sets. If a set contains propA or propB, add it
32 // to our set of sets.
33 HashSet<NestableHashSet<string>> setsContainingA = new HashSet<NestableHashSet<

string>>();
34 HashSet<NestableHashSet<string>> setsContainingB = new HashSet<NestableHashSet<

string>>();
35 foreach (NestableHashSet<string> p in produced) {
36 if (p.Contains(propA))
37 setsContainingA.Add(p);
38 if (p.Contains(propB))
39 setsContainingB.Add(p);
40 }
41 // Now setsContainingA contains all sets containing A and setsContainingB
42 // contains all sets containing B.
43 // If these two sets are set equals (contain the same elements), it means
44 // that propA and propB are always produced together.
45 if (setsContainingA.SetEquals(setsContainingB)) {
46 // If so, merge the properties by making propB map to whatever propA
47 // maps to. The reason we’re mapping propB to mappings[propA] and
48 // not to propA, is that propA could have been remapped earlier itself.
49 mappings[propB] = mappings[propA];
50 }
51 }
52 }
53 }
54 return mappings;
55 }
56
57 /// <summary>Registers the minimized mappings. This means adding entries
58 /// to the nameToIndex and indexToName dictionaries.</summary>
59 /// <param name=”mappings”>The mappings to register.</param>
60 private void RegisterMappings(Dictionary<string, string> mappings) {
61 // mappings.Values contains all possible bit property variations.
62 // Register a physical property for all these.
63 foreach (string property in mappings.Values) {
64 // Only add each possible variation once.
65 if (!nameToIndex.ContainsKey(property)) {
66 nameToIndex[property] = indexToName.Count;
67 indexToName.Add(new HashSet<string>() { property });
68 }
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69 }
70
71 // Then, add all the remappings (i.e. {B->A}).
72 foreach (KeyValuePair<string, string> pair in mappings) {
73 // Get the target index
74 int index = nameToIndex[pair.Value];
75 // Make the from-property point to the correct index
76 nameToIndex[pair.Key] = index;
77 // Add the from-property to the reverse lookup table
78 indexToName[index].Add(pair.Key);
79 }
80 }

Listing B.10: BitSet Minimization

B.6 Optimizer Tests

To verify that the optimizer implementation is working as expected, we have implemented
several automated tests. ăe tests create a query to be optimized programmatically and then
invoke the optimizer. Aĕerwards, they verify that something bad did not happen (e.g. Excep-
tion) or that the resulting query is the optimal one.

ăe test shown inListingB.11 constructs the query in [Moe06, p. 38] and is the oneused to
generate the đgures in Section 7.4.2. It feeds the optimizer the worst possible plan and asks the
optimizer to optimize it using bushy enumeration. Aĕerwards it veriđes that the resulting plan
has the expected cost, and that it contains the correct nodes in the correct locations. Finally
it asks the optimizer to optimize the same query using leĕ-deep enumeration, and veriđes that
this plan has a worse cost estimate and is correctly laid out.

1 [Test]
2 public void SimpleJoins() {
3 double[] cardinalities = new double[] {1000, 2000, 2000, 1000};
4 double[] selectivities = new[] {0.005, 0.0001, 0.0001};
5 InitializeIndexStats(cardinalities);
6
7 // Now test bushy enumeration. This should yield the plan (0 X 1) X (2 X 3)
8 // with cost 1678.
9 TestNode[] expectedLookups = new[] {

10 GetLookup(”word”, ”Mock0”),
11 GetLookup(”word”, ”Mock1”),
12 GetLookup(”word”, ”Mock2”),
13 GetLookup(”word”, ”Mock3”)
14 };
15 TestNode[] expectedJoins = new TestNode[3];
16 expectedJoins[0] = GetMergeJoin(null, null, expectedLookups[1], expectedLookups[0]);
17 expectedJoins[1] = GetMergeJoin(null, null, expectedLookups[2], expectedLookups[3]);
18 expectedJoins[2] = GetMergeJoin(null, null, expectedJoins[0], expectedJoins[1]);
19 TestNode expected = GetMap(false, null, null, expectedJoins[2]);
20 expected.Properties = null;
21 expected = GetOutput(expected);
22 expectedJoins[2].CustomValidator = (n => Assert.AreEqual(new BasicCost(1678), n.Plan.Costs));
23
24 queryOptimization.JoinEnumeration = JoinEnumeration.Bushy;
25 OperatorNode result = queryOptimization.Optimize(GetSimpleJoinsInput(cardinalities,

selectivities));
26 expected.AreEqualRecursively(result);
27
28 // Now test left-deep enumeration. This should yield the plan ((0 X 1) X 2) X 3
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29 // with cost 1696.
30 expectedLookups = new[] {
31 GetLookup(”word”, ”Mock0”),
32 GetLookup(”word”, ”Mock1”),
33 GetLookup(”word”, ”Mock2”),
34 GetLookup(”word”, ”Mock3”)
35 };
36 expectedJoins[0] = GetMergeJoin(null, null, expectedLookups[1], expectedLookups[0]);
37 expectedJoins[1] = GetMergeJoin(null, null, expectedJoins[0], expectedLookups[2]);
38 expectedJoins[2] = GetMergeJoin(null, null, expectedJoins[1], expectedLookups[3]);
39 expected = GetMap(false, null, null, expectedJoins[2]);
40 expected.Properties = null;
41 expected = GetOutput(expected);
42 expectedJoins[2].CustomValidator = (n => Assert.AreEqual(new BasicCost(1696), n.Plan.Costs));
43
44 queryOptimization.JoinEnumeration = JoinEnumeration.LeftDeep;
45 result = queryOptimization.Optimize(GetSimpleJoinsInput(cardinalities, selectivities));
46 expected.AreEqualRecursively(result);
47 }

Listing B.11: SimpleJoins automated test.

B.7 AbstractTraverser

AbstractTraverser is the graphpatternmatcher “workhorse”, asmost of the timewe are interested
in evaluating a node with respect to other nodes in the graph — which are not necessarily
directly adjacent.

It uses up to three sub-patterns, but is usablewith less. A rootmatcher decideswhere traver-
sal will begin. For every node matched by the root matcher, the concrete implementation’s It-
eratorFor() is invoked to start iterating. For example, DescendantTraverser returns an enumerator
for all the descendants of the node, whereas ChildMatcher only returns the immediate children.
ăe root matcher is optional — if it is not speciđed, the Node given as input to the traverser’s
Search()-method is used as the only root.

If a StopPattern is speciđed, matching stops as soon as a match is found. If no match can
be found, the traverser will declare that is has not matched.

If a TakeWhile-pattern is speciđed, matching will continue as long as that pattern matches.
If no stop pattern has been speciđed, the traverser returns whether its TakeWhile matches. If
both are speciđed, both will need to match for the traverser to declare that it has matched.

ăe following pattern, used in theOrderingExtracter-pre-processor illustrates both concepts:
1 Match.NodeWithBehaviour(OperatorBehaviour.OrderPreserving)
2 .WithDescendant(Match.NodeWithBehaviour(OperatorBehaviour.OrderPreserving),
3 Match.NodeOfType(”SortOperator”).GroupAs(”sort”));

Itmatches any operator that preserves order, whichhas a Sort-operator as a descendantwith
only order preserving operators in between.

1 /// <summary>
2 /// Invoked for every root found. Steers the direction of the traversal.
3 /// </summary>
4 public abstract IEnumerable<Node> IteratorFor(Node node);
5
6 public override bool Search(Node node) {
7 Debug.Assert(!(TakeWhile == null && StopPattern == null), ”TakeWhile␣and␣StopPattern␣cannot␣

both␣be␣null”);
8
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9 // First, determine roots we’ll find iterators for.
10 HashSet<Node> roots;
11 if (RootMatcher != null) {
12 if (!RootMatcher.Search(node))
13 return false;
14 roots = new HashSet<Node>(RootMatcher.MatchedNodes);
15 }
16 else
17 {
18 roots = new HashSet<Node>() {node};
19 }
20
21 // Iterate every root.
22 foreach (Node root in roots) {
23 foreach (Node descendant in IteratorFor(root)) {
24 // If we have a stop pattern and it matches, we’re done.
25 if (StopPattern != null && StopPattern.Search(descendant)) {
26 return HasMatched = true;
27 }
28 // If not, continue if we can.
29 if (! (TakeWhile == null || TakeWhile.Search(descendant)))
30 break;
31 }
32 }
33
34 return HasMatched = (StopPattern == null || StopPattern.HasMatched) && (TakeWhile == null ||

TakeWhile.HasMatched);
35 }

Listing B.12: Important parts of AbstractTraverser.

B.8 LogicalJoinTransformer

ăis is the full implementation of the LogicalJoinTransformer. See Section 5.2.1 for an explana-
tion.

1 [Preprocessor]
2 public class LogicalJoinTransformer : AbstractTransformationRule {
3 public override bool Iterative {
4 get { return false; }
5 }
6
7 public override IEnumerable<Type> DependsOn {
8 get { yield break; }
9 }

10
11 public override AbstractNodeMatcher Pattern {
12 get {
13 // Match HybridHashJoins and MergeJoins.
14 return (Match.NodeOfType(”HybridHashJoinOperator”) | Match.NodeOfType(”

MergeJoinOperator”)).GroupAs(”join”);
15 }
16 }
17
18 public override bool Fire(GraphSearcher graphSearcher) {
19 List<Node> joins = graphSearcher.Groups[”join”];
20 foreach (OperatorNode join in joins) {
21 IList<string> joinKey = new List<string>();
22
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23 // To convert into a logical join, we need to determine the proper join keys.
24 // For simplicity, we’ve currently limited ourself to having non-composite keys.
25 if (join.OperatorType == typeof (HybridHashJoinOperator)) {
26 // Keys are a list of list of attributes.
27 IList<IList<string>> joinKeys = (IList<IList<string>>) join[”JoinKeys”];
28 if (joinKeys.Count != 1)
29 throw new OptimizerException(”Only␣single␣join␣keys␣are␣accepted␣in␣the␣

prototype.”);
30 joinKey = joinKeys.Single();
31 }
32 else if (join.OperatorType == typeof (MergeJoinOperator)) {
33 // Keys are determined by the #joinPrefix first attributes.
34 int joinPrefix = (int) join[”JoinPrefix”];
35 if (joinPrefix != 1)
36 throw new OptimizerException(”Only␣single␣join␣keys␣are␣accepted␣in␣the␣

prototype.”);
37
38 for (int i = 0; i < join.Children.Count; i++)
39 joinKey.Add(((OperatorNode) join.Children[i]).OutputTypeDescriptor.RecordType[0].

Name);
40 }
41
42 // Keys properly determined, set them and change the operator type.
43 join[”JoinKeys”] = joinKey;
44 join.OperatorType = typeof (JoinOperator);
45 }
46 return true;
47 }
48 }

Listing B.13: LogicalJoinTransformer implementation.

B.9 Lookup Rule

To show how a rule is actually implemented in full, we have chosen to include the full imple-
mentation of two rules, one base rule and one search rule, the đrst being LookupRule as this is
the simplest rule.

LookupRule is a base rule (no inputs), and therefore inherits AbstractBaseRule, which only
implements a few properties from IBaseRule.

We have also included its rule binder, LookupRuleBinder, which is responsible for instanti-
ating the rule. It inherits from AbstractRuleBinder, which implements functionality needed for
most rule binders.

We have included all the base classes for completeness. We have removed some API docu-
mentation to save space.

1 /// <summary>Base rule representing MARS’ Lookup operator.</summary>
2 public class LookupRule : AbstractBaseRule{
3 public LookupRule(QueryOptimization queryOptimization)
4 : base(queryOptimization)
5 { }
6
7 /// <summary>Statistics for this index lookup.</summary>
8 public BasicPlanSetState Stats { get; set; }
9 /// <summary>Name of the index to look up into.</summary>

10 public string Index { get; set; }
11 /// <summary>Word to look up.</summary>
12 public string Word { get; set; }
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13 /// <summary>The order produced by this lookup (if it us clustered).</summary>
14 public OrderProxy Order { get; set; }
15
16 /// <summary>
17 /// Initialize a plan set with properties from the rule, like tuple size, cardinality etc.
18 /// </summary>
19 /// <param name=”plans”>The plan set to initialize.</param>
20 public override void Initialize(PlanSet plans) {
21 plans.State = Stats;
22 }
23
24 /// <summary>
25 /// Updates the given plan with information from this rule, like
26 /// costs, order and so on.
27 /// </summary>
28 /// <param name=”plan”>The plan (constructed by this rule).</param>
29 public override void UpdatePlan(Plan plan) {
30 base.UpdatePlan(plan);
31
32 // Initialize to the ordering provided by the index.
33 plan.OrderingState = new OrderingState(queryOptimization.OrderManager, Order.Order);
34
35 // Set sharing for the plan if this rule is the equivalence class representative.
36 plan.Sharing = queryOptimization.BitSetManager.Empty;
37 if (queryOptimization.ShareEquivalenceClasses.ContainsKey(this)) {
38 plan.Sharing.Or(
39 queryOptimization.BitSetManager.GetWithValues(new NodeAttribute(Nodes.Single(), null

).PropertyName));
40 plan.Shared = true;
41 }
42 }
43
44 /// <summary>Builds the physical algebra node for the given plan.</summary>
45 /// <param name=”plan”></param>
46 /// <returns>The physical algebra node</returns>
47 public override OperatorNode BuildAlgebra(Plan plan) {
48 OperatorNode node;
49 if (GetOrCreatePhysicalNode(plan, typeof (LookupOperator), out node)) {
50 node.Properties = Nodes.Single().Properties;
51 node.Rules = Nodes.Single().Rules;
52 }
53 return node;
54 }
55
56 /// <summary>
57 /// Determines if this and the other rule is structurally identical, i.e. if they have
58 /// the same configured properties, the same join keys etc.
59 /// </summary>
60 /// <param name=”other”>Rule to compare with.</param>
61 /// <returns>If the rules are structurally identical.</returns>
62 public override bool StructurallyIdentical(IProducerRule other) {
63 // Lookups are structurally identical if they look up the same word in the same index.
64 LookupRule otherLookup = other as LookupRule;
65 return otherLookup != null && Index.Equals(otherLookup.Index) && Word.Equals(otherLookup.

Word);
66 }
67
68 /// <summary>
69 /// This method will be called if this rule is determined to be share equivalent with another
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rule.
70 /// It should map any attributes the other rule produces to be share equivalent to the

corresponding attributes
71 /// produced by this rule.
72 /// </summary>
73 /// <param name=”from”>The rule to map attributes from.</param>
74 /// <param name=”equivalenceClassAttributeMappings”>The dictionary the mappings should be

added to.</param>
75 public override void MapShareEquivalentAttributes(IProducerRule from,
76 Dictionary<NodeAttribute, NodeAttribute>
77 equivalenceClassAttributeMappings) {
78 // Map all output attributes.
79 foreach (Field field in Nodes.Single().RecordDescriptor)
80 equivalenceClassAttributeMappings.Add(from.Nodes.Single().RecordDescriptor[field.Name].

NodeAttribute,
81 field.NodeAttribute);
82 }
83
84 public override string ToString() {
85 return string.Format(”LookupRule(Index:{0},␣Word:{1},␣Produces:␣{2}”, Index, Word,

Produced.BitSet);
86 }
87
88 /// <summary>
89 /// The cost for only the operator represented by this rule, applied
90 /// on the top of the given plan.
91 /// </summary>
92 /// <param name=”plan”>Plan with this rule on the top.</param>
93 /// <returns>The cost of this exact rule.</returns>
94 protected override BasicCost Cost(Plan plan) {
95 double cost = BasicCost.ReadSequential(BasicCost.PageAccesses(Stats.ResultSetSize));
96 return new BasicCost(cost, cost);
97 }
98 }

Listing B.14: LookupRule implementation.

1 /// <summary>Rule binder for Lookup operators.</summary>
2 [RuleBinder] public class LookupRuleBinder :
3 AbstractLeafRuleBinder<LookupRule>, IProducesMapper, IFieldMapper {
4 /// <summary>The pattern in the input query this rule binder will instantiate rules for.</

summary>
5 public override AbstractNodeMatcher Pattern {
6 get { return Match.NodeOfType(”LookupOperator”); }
7 }
8
9 /// <summary>The types of operators the implementer is a mapper for.</summary>

10 public override Type MapperForType {
11 get { return typeof (LookupOperator); }
12 }
13
14 #region IFieldMapper Members
15
16 // Returns all the output fields for the given lookup node.
17 private IEnumerable<Field> FieldsFor(QueryOptimization queryOptimization, OperatorNode node)

{
18 return queryOptimization.SystemMetadata.GetIndexSchema((string) node[”IndexName”], (string

) node[”Word”]);
19 }
20
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21 /// <summary>
22 /// This method is called on the corresponding mapper for all nodes in the query in
23 /// topological order and should set field names for all NodeAttributes in the nodes
24 /// output using OperatorNode’s RecordDescriptor property. It should also convert
25 /// all NodeAttribute references to field names.
26 /// </summary>
27 /// <param name=”queryOptimization”>The current instance of QueryOptimization.</param>
28 /// <param name=”node”>The node to set field names for.</param>
29 public void SetFields(QueryOptimization queryOptimization, OperatorNode node) {
30 //Add all output attributes.
31 foreach (Field field in FieldsFor(queryOptimization, node))
32 node.RecordDescriptor.AddFieldForAttr(
33 new Field(new NodeAttribute(node, field.NodeAttribute.AttributeName), field.Name,

field.Type));
34 }
35
36 #endregion
37
38 #region IProducesMapper Members
39
40 /// <summary>
41 /// This method is called on the corresponding mapper for all nodes in the query in
42 /// topological order and should set the produced attributes
43 /// using OperatorNode’s RecordDescriptor property. It should also convert
44 /// all field name references to NodeAttribute.
45 /// </summary>
46 /// <param name=”queryOptimization”>The current instance of QueryOptimization.</param>
47 /// <param name=”node”>The node to set produced attributes for.</param>
48 public virtual void SetProduces(QueryOptimization queryOptimization, OperatorNode node) {
49 //Add all output attributes.
50 foreach (Field field in FieldsFor(queryOptimization, node))
51 node.RecordDescriptor.AddFieldForName(
52 new Field(new NodeAttribute(node, field.NodeAttribute.AttributeName), field.Name,

field.Type));
53 }
54
55 #endregion
56
57 /// <summary>
58 /// This method is called by the optimizer to get the rules this rule binder produces.
59 /// </summary>
60 /// <param name=”queryOptimization”>The currrent QueryOptimization instance.</param>
61 /// <param name=”matches”>IEnumerable of matches to the pattern declared by the rule binder

.</param>
62 /// <returns>IEnumerable of rules that should be added to the search by the optimizer.</

returns>
63 public override IEnumerable<IProducerRule> GetRules(QueryOptimization queryOptimization,
64 IEnumerable<OperatorNode> nodes) {
65 List<IProducerRule> rules = new List<IProducerRule>();
66
67 // For each node, instantiate a rule and set properties.
68 foreach (OperatorNode node in nodes) {
69 // Instantiate rule
70 LookupRule rule = CreateRule(queryOptimization, node);
71 rules.Add(rule);
72
73 // Index and lookup term.
74 rule.Index = (string) rule.Nodes.Single()[”IndexName”];
75 rule.Word = (string) rule.Nodes.Single()[”Word”];
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76
77 // Produced attributes.
78 NestableHashSet<string> produced = new NestableHashSet<string>
79 {new NodeAttribute(rule.Nodes.Single(), null).

PropertyName};
80 foreach (Field field in node.RecordDescriptor)
81 produced.Add(field.NodeAttribute.PropertyName);
82 rule.Produced = queryOptimization.BitSetManager.GetBitSet(PropertyUsage.Produced,

produced);
83
84 // Orderings.
85 OrderDescription orderDesc = new OrderDescription(
86 queryOptimization.SystemMetadata.GetIndexOrder(rule.Index)
87 .Select(
88 item =>
89 new OrderDescriptionItem(new NodeAttribute(node, item.Property).PropertyName,

item.Ascending)));
90 rule.Order = queryOptimization.OrderManager.GetOrder(orderDesc, true);
91 rule.Stats = queryOptimization.SystemMetadata.GetIndexStats(rule.Index, rule.Word);
92 }
93 return rules;
94 }
95 }

Listing B.15: LookupRuleBinder implementation.

1 /// <summary>Base class for base rules.</summary>
2 public abstract class AbstractBaseRule : AbstractRule, IBaseRule {
3 public AbstractBaseRule(QueryOptimization queryOptimization)
4 : base(queryOptimization)
5 { }
6
7 #region IBaseRule Members
8
9 /// <summary>Produced properties for this rule.</summary>

10 public BitSetProxy Produced { get; set; }
11
12 /// <summary>Filter for this rule, equal to produced properties.</summary>
13 public BitSet Filter {
14 get { return Produced.BitSet; }
15 }
16
17 /// <summary>Id of this rule.</summary>
18 public int Id { get; set; }
19
20 public abstract bool StructurallyIdentical(IProducerRule other);
21
22 public abstract void MapShareEquivalentAttributes(IProducerRule from,
23 Dictionary<NodeAttribute, NodeAttribute>
24 EquivalenceClassAttributeMappings);
25 public abstract void Initialize(PlanSet plans);
26
27 #endregion
28 }

Listing B.16: AbstractBaseRule implementation.

1 /// <summary>Abstract base class for all rules.</summary>
2 public abstract class AbstractRule : IRule {
3 protected QueryOptimization queryOptimization;
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4
5 public AbstractRule(QueryOptimization queryOptimization) {
6 this.queryOptimization = queryOptimization;
7 }
8
9 /// <summary>Nodes this rule was instantiated from.</summary>

10 public IList<OperatorNode> Nodes { get; set; }
11
12 // IRule
13
14 #region IRule Members
15
16 /// <summary>
17 /// Updates the properties of the plan (costs, ordering, sharing).
18 /// Will calculate costs for both DAGs and trees.
19 /// </summary>
20 /// <param name=”plan”>The plan to update.</param>
21 public virtual void UpdatePlan(Plan plan) {
22 plan.Rule = this;
23 UpdateCosts(plan);
24 }
25
26 /// <summary>
27 /// Updates the costs for the given plan, automatically choosing between DAG and tree

calculation
28 /// algorithms.
29 /// </summary>
30 /// <param name=”plan”>The plan to calculate costs for.</param>
31 public virtual void UpdateCosts(Plan plan) {
32 // Get the cost for this operator.
33 BasicCost cost = Cost(plan);
34 // If only one child, just sum them.
35 if (plan.Children.Count == 1)
36 cost += (BasicCost) plan.OnlyChild.Costs;
37 // If more than one child, we may need to do DAG costing.
38 else if (plan.Children.Count > 1)
39 cost += BasicCost.InputCosts(plan.Children, null);
40 plan.Costs = cost;
41 }
42
43 public abstract OperatorNode BuildAlgebra(Plan plan);
44
45 /// <summary>
46 /// Return the cost for the subtree with this rule on the top,
47 /// using the cost algorithms for DAGs.
48 /// </summary>
49 /// <param name=”plan”>The plan (constructed by this rule).</param>
50 /// <param name=”reads”>How many reads of the plan.</param>
51 /// <returns>The costs for the subtree.</returns>
52 public virtual ICost DagCosts(Plan plan, int reads) {
53 BasicCost planCosts = (BasicCost) plan.Costs;
54 // If we’ve already been executed this many times, the reads are free.
55 if (reads < planCosts.Passes)
56 return BasicCost.Zero;
57
58 // Our cost:
59 int additional = reads - planCosts.Passes;
60 planCosts.Passes = reads;
61 plan.Costs = planCosts; // BasicCost is a struct, so set the entire thing.
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62 BasicCost result = Cost(plan)*additional;
63
64 // Cost of inputs:
65 foreach (Plan subPlan in plan.Children)
66 result += (BasicCost) subPlan.Rule.DagCosts(subPlan, reads);
67
68 return result;
69 }
70
71 #endregion
72
73 /// <summary>
74 /// Sets the node out-parameter to the operator root-node for the plan.
75 /// Returns true if the node was created and false if it was found in the reconstruction

table.
76 /// </summary>
77 protected bool GetOrCreatePhysicalNode(Plan plan, Type operatorType, out OperatorNode node) {
78 if (queryOptimization.ReconstructionTable.TryGetValue(plan, out node))
79 return false;
80
81 node = createPhysicalNode(plan, operatorType);
82 return true;
83 }
84
85 // Creates the physical operator node for the given plan and operator type.
86 private OperatorNode createPhysicalNode(Plan plan, Type operatorType) {
87 // Root node for the plan:
88 OperatorNode node = new OperatorNode(operatorType);
89 node.ByRule = GetType();
90 if (Nodes != null && Nodes.Count > 0)
91 node.Id = Nodes.First().Id;
92 node.Plan = plan;
93
94 // Also create children.
95 foreach (Plan subPlan in plan.Children)
96 node.AddChild(subPlan.Rule.BuildAlgebra(subPlan));
97
98 // Memoize it so new requests for the same plan gets the same node,
99 // important for creating DAGs.

100 queryOptimization.ReconstructionTable[plan] = node;
101
102 return node;
103 }
104
105 protected abstract BasicCost Cost(Plan plan);
106 }

Listing B.17: AbstractRule implementation.

1 /// <summary>Base class for rule binders, offering common functionality.</summary>
2 /// <typeparam name=”RuleType”>The type of rule to bind.</typeparam>
3 public abstract class AbstractRuleBinder<RuleType> : IRuleBinder where RuleType
4 : IProducerRule {
5 #region IRuleBinder Members
6
7 /// <summary>Node pattern to match in the operator graph during initialization.</summary>
8 public abstract AbstractNodeMatcher Pattern { get; }
9

10 /// <summary>
11 /// This method is called by the optimizer to get the rules this rule binder produces.
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12 /// The default implementation instantiates a rule for each pattern match
13 /// and sets its produced properties to RULE_APPLIED.
14 /// </summary>
15 public virtual IEnumerable<IProducerRule> GetRules(QueryOptimization queryOptimization,
16 IEnumerable<OperatorNode> nodes) {
17 List<IProducerRule> rules = new List<IProducerRule>();
18 // For each match, instantiate a rule and set properties.
19 foreach (OperatorNode node in nodes) {
20 RuleType rule = CreateRule(queryOptimization, node);
21 rule.Produced = queryOptimization.BitSetManager.GetBitSet(PropertyUsage.Produced,
22 new NodeAttribute(rule.Nodes.Single(), null

).
23 PropertyName);
24 rules.Add(rule);
25 }
26 return rules;
27 }
28
29 #endregion
30
31 /// <summary>
32 /// Creates a rule instance and sets common properties.
33 /// </summary>
34 /// <param name=”queryOptimization”>The query optimization instance.</param>
35 /// <param name=”node”>Node to get commoin properties from.</param>
36 /// <returns>The created rule instance.</returns>
37 protected RuleType CreateRule(QueryOptimization queryOptimization, OperatorNode node) {
38 RuleType rule = (RuleType) Activator.CreateInstance(typeof (RuleType), queryOptimization);
39 rule.Id = node.Id;
40 rule.Nodes = new List<OperatorNode> {node};
41 node.Rules = new List<IRule> {rule};
42 return rule;
43 }
44 }

Listing B.18: AbstractRuleBinder implementation.

B.10 Selection Rule

To show how a search rule is actually implemented, we have chosen to include most of the
implementation of the simplest one, SelectionRule. ăis rule constructs selection operators.

SelectionRule is a unary rule (only one input), and therefore inherits UnaryRule. ăe latter
implements the basic search strategy for unary rules: construct all plans where the rule itself
is the topmost one. UnaryRule inherits from AbstractSearchRule which implements basic func-
tionality required for all search rules.

We have also included its rule binder, SelectionRuleBinder.
1 /// <summary>This rule is reponsible for constructing selection operators in query plans.</

summary>
2 public class SelectionRule : UnaryRule {
3 public SelectionRule(QueryOptimization queryOptimization)
4 : base(queryOptimization)
5 {}
6
7 /// <summary>Cost of evaluating the predicates for each record.</summary>
8 public double PredicateCost { get; set; }
9 /// <summary>Set of FDs induced by the selection.</summary>

10 public HashSet<Dependency> InducedDependencies { get; set; }
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11 /// <summary>The selection predicate.</summary>
12 public ExpressionProperty SelectionFilter { get; set; }
13
14 /// <summary>
15 /// Updates the given plan with ordering, leaves the rest to UnaryRule.
16 /// </summary>
17 public override void UpdatePlan(Plan plan) {
18 base.UpdatePlan(plan);
19 plan.OrderingState = plan.OnlyChild.OrderingState.Apply(InducedDependencies);
20 }
21
22 public override OperatorNode BuildAlgebra(Plan plan) {
23 OperatorNode node;
24 if (GetOrCreatePhysicalNode(plan, typeof (SelectOperator), out node)) {
25 node.Properties = Nodes.First().Properties;
26 node.Rules = Nodes.First().Rules;
27 }
28 return node;
29 }
30
31 /// <summary>
32 /// The cost for the selection, which is predicate cost times cardinality.
33 /// </summary>
34 protected override BasicCost Cost(Plan plan) {
35 BasicPlanSetState childState = (BasicPlanSetState) plan.OnlyChild.PlanSet.State;
36 double cost = BasicCost.CpuCosts(childState.Cardinality, PredicateCost);
37 return new BasicCost(cost, cost);
38 }
39
40 /// <summary>
41 /// Determines if this and the other rule is structurally identical,
42 /// Selections are structurally identical if the filter predicates are equal.
43 /// </summary>
44 public override bool StructurallyIdentical(IProducerRule other) {
45 SelectionRule otherSelection = other as SelectionRule;
46 return otherSelection != null && SelectionFilter.Equals(otherSelection.SelectionFilter);
47 }
48 }

Listing B.19: SelectionRule implementation.

1 /// <summary>Rule binder for SelectionRule.</summary>
2 [RuleBinder] public class SelectionRuleBinder :
3 AbstractFilterRuleBinder<SelectionRule>, IDependencyMapper, IProducesMapper{
4 /// <summary>Node pattern to match in the operator graph during initialization, matching

SelectOperator.</summary>
5 public override AbstractNodeMatcher Pattern {
6 get { return Match.NodeOfType(”SelectOperator”); }
7 }
8
9 #region IDependencyMapper Members

10
11 /// <summary>The types of operator the implementes is a mapper for: SelectOperator.</summary>
12 public override IEnumerable<Type> MapperFor {
13 get { return new List<Type> {typeof (SelectOperator)}; }
14 }
15
16 /// <summary>Selection depends on all attributes accessed by the predicate.</summary>
17 public void SetDependencies(OperatorNode selectNode) {
18 // To properly set the dependencies, we’ll invoke MARS’ parser of the expression.
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19
20 // Prepare some stuff needed for parsing.
21 IRecordTypeDescriptor inputFieldTypes = selectNode.RecordDescriptor.AsRecordTypeDescriptor

();
22 string expression = ((ExpressionProperty) selectNode[”Filter”]).Expression;
23 Dictionary<string, object> symbolsMap = MakeSymbolsMap(expression, inputFieldTypes);
24
25 // Parse the expression, which gives us an easily traversable AST.
26 Expression linqExpression = ParseExpression(expression, symbolsMap);
27
28 // Visit the expression. The visitor keeps references to depended-on attributes.
29 FilterVisitor visitor = new FilterVisitor();
30 visitor.Initialize();
31 visitor.Visit(linqExpression);
32
33 // Get the dependencies from the visitor.
34 selectNode.Dependencies.Add(new HashSet<NodeAttribute>());
35 foreach (int visitedIndex in visitor.ReferencedIndexes)
36 selectNode.Dependencies[0].Add(selectNode.OnlyInput.RecordDescriptor[visitedIndex].

NodeAttribute);
37 }
38
39 #endregion
40
41 #region IProducesMapper Members
42
43 /// <summary>
44 /// Pass through the input attributes and replace references in the predicate with

NodeAttributes.
45 /// </summary>
46 public override void SetProduces(QueryOptimization queryOptimization, OperatorNode node) {
47 base.SetProduces(queryOptimization, node);
48
49 string expression = ((ExpressionProperty) node[”Filter”]).Expression;
50 foreach (Field field in node.OnlyInput.RecordDescriptor) {
51 System.Text.RegularExpressions.Regex r =
52 new System.Text.RegularExpressions.Regex(”\\b” +
53 System.Text.RegularExpressions.Regex.Escape(
54 field.NodeAttribute.AttributeName) + ”\\b”);
55 expression = r.Replace(expression, field.NodeAttribute.PropertyName);
56 }
57 node[”Filter”] = new ExpressionProperty(expression);
58 }
59
60 #endregion
61
62 public override IEnumerable<IProducerRule> GetRules(QueryOptimization queryOptimization,
63 IEnumerable<OperatorNode> nodes) {
64 IEnumerable<IProducerRule> rules = base.GetRules(queryOptimization, nodes);
65 foreach (SelectionRule rule in rules) {
66 setSelectivity(rule);
67
68 // This is to be able to set selectivity and predicate cost in tests.
69 if (rule.Nodes.Single()[”Selectivity”] != null)
70 rule.Selectivity = (double)rule.Nodes.Single()[”Selectivity”];
71 if (rule.Nodes.Single()[”PredicateCost”] != null)
72 rule.PredicateCost = (double)rule.Nodes.Single()[”PredicateCost”];
73
74 setRuleDependencies(queryOptimization, rule);
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75 }
76 return rules;
77 }
78
79 // Sets the selectivity for the rule.
80 private static void setSelectivity(SelectionRule rule) {
81 // We don’t have anything to guesstimate selectivities from yet.
82 rule.Selectivity = 0.1;
83 }
84
85 // Sets dependecies for the selection rule by parsing the predicate expression.
86 private static void setRuleDependencies(QueryOptimization queryOptimization, SelectionRule

rule) {
87 // Get the LINQ Expression for this selection
88 RecordDescriptor inputDescriptor = rule.Nodes.Single().RecordDescriptor;
89 rule.SelectionFilter = (ExpressionProperty) rule.Nodes.Single()[”Filter”];
90 string expression = rule.SelectionFilter.Expression;
91 Dictionary<string, object> symbolsMap = MakeSymbolsMap(expression,
92 inputDescriptor.AsRecordTypeDescriptor());
93 Expression linqExpression = ParseExpression(expression, symbolsMap);
94
95 // Visit the expression
96 FilterVisitor visitor = new FilterVisitor();
97 visitor.Initialize();
98 visitor.Visit(linqExpression);
99

100 // Add required properties found by the visitor
101 NestableHashSet<string> required = new NestableHashSet<string>();
102 foreach (int index in visitor.ReferencedIndexes)
103 required.Add(rule.Nodes.Single().RecordDescriptor[index].NodeAttribute.PropertyName);
104
105 rule.Required = new List<BitSetProxy>
106 {queryOptimization.BitSetManager.GetBitSet(PropertyUsage.Required, required

)};
107
108 // Determine dependencies
109 rule.InducedDependencies = new HashSet<Dependency>();
110 foreach (Pair<object, object> equivalence in visitor.Equivalences) {
111 Dependency dependency = null;
112
113 // Both sides of the equivalence are columns in the data stream, add COL=COL dependency
114 if (equivalence.First is FieldIndex && equivalence.Second is FieldIndex)
115 dependency = queryOptimization.OrderManager.GetDependency(
116 inputDescriptor[((FieldIndex) equivalence.First).Index].NodeAttribute.

PropertyName,
117 inputDescriptor[((FieldIndex) equivalence.Second).Index].NodeAttribute.

PropertyName, true);
118
119 // The left operand is a constant, right one is a column. Add -->COL dependency
120 if (equivalence.First is Constant && equivalence.Second is FieldIndex)
121 dependency = queryOptimization.OrderManager.GetDependency(
122 null,
123 inputDescriptor[((FieldIndex) equivalence.Second).Index].NodeAttribute.

PropertyName, false);
124
125 // The right operand is a constant, left one is a column. Add -->COL dependency
126 if (equivalence.First is FieldIndex && equivalence.Second is Constant)
127 dependency = queryOptimization.OrderManager.GetDependency(
128 null,
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129 inputDescriptor[((FieldIndex) equivalence.First).Index].NodeAttribute.
PropertyName, false);

130
131 if (dependency != null)
132 rule.InducedDependencies.Add(dependency);
133 }
134 }
135
136 /// <summary>
137 /// Passes through input field names and convert NodeAttribute refs back to field names.
138 /// </summary>
139 public override void SetFields(QueryOptimization queryOptimization, OperatorNode node) {
140 base.SetFields(queryOptimization, node);
141 string expression = ((ExpressionProperty) node[”Filter”]).Expression;
142 foreach (Field field in node.OnlyInput.RecordDescriptor.GetFieldsWithMappings(

queryOptimization)) {
143 Regex.Regex r =
144 new Regex.Regex(”\\b” + Regex.Regex.Escape(field.NodeAttribute.PropertyName) + ”\\b”

);
145 expression = r.Replace(expression, field.Name);
146 }
147 node[”Filter”] = new ExpressionProperty(expression);
148 }
149 ...
150 }

Listing B.20: SelectionRuleBinder implementation.

1 /// <summary>General base class for all unary rules (one input), offering
2 /// basic search functionality.</summary>
3 public abstract class UnaryRule : AbstractSearchRule {
4 public UnaryRule(QueryOptimization queryOptimization)
5 : base(queryOptimization)
6 { }
7
8 /// <summary>
9 /// The rquired bitset for the only input.

10 /// </summary>
11 public BitSet OnlyRequired {
12 get { return Required[0].BitSet; }
13 }
14
15 /// <summary>
16 /// Guides the search for this rule instance. Offers the basic search functionality
17 /// for unary rules: generating all possible plans with this rule on the top.
18 /// </summary>
19 /// <param name=”plans”>PlanSet to add plans to (also defines goal properties).</param>
20 /// <param name=”limit”>Abort the search if passing this cost limit (pruning).</param>
21 public override void Search(PlanSet plans, ICost limit) {
22 DiagPrinter.Instance.DiagWriteLine(”search”, ”UnaryRule␣producing␣{0}␣searching␣for␣{1}.”

, Produced.BitSet,
23 (plans.Properties - Produced.BitSet) | Required[0].BitSet);
24 // Get the possible input plans, i.e. plans with needed properties,
25 // except the ones we produce ourselves.
26 PlanSet input = queryOptimization.GeneratePlans((plans.Properties - Produced.BitSet) |

Required[0].BitSet,
27 limit);
28 if (input == null) {
29 DiagPrinter.Instance.DiagWriteLine(”search”, ”0␣plans.”);
30 return; // No plans
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31 }
32 DiagPrinter.Instance.DiagWriteLine(”search”, ”{0}␣plans.”, input.Count);
33
34 if (plans.Count == 0)
35 // First plan, so set some state.
36 plans.State = CalcPlanSetState((BasicPlanSetState) input.State);
37
38 // Add each input plan to the PlanSet, updating their properties.
39 foreach (Plan plan in input) {
40 Plan newPlan = new Plan {Children = new List<Plan> {plan}};
41 UpdatePlan(newPlan);
42 plans.AddPlan(newPlan);
43 }
44 }
45
46 /// <summary>
47 /// Calculates the PlansSetState for the output based on the input.
48 /// </summary>
49 /// <param name=”input”>Input PlanSetState.</param>
50 /// <returns>Output PlanSetState.</returns>
51 protected virtual BasicPlanSetState CalcPlanSetState(BasicPlanSetState input) {
52 return input.Filter(Selectivity);
53 }
54
55 public override void UpdatePlan(Plan plan) {
56 base.UpdatePlan(plan);
57
58 // Sharing is at least the sharing of the sub plan
59 plan.Sharing = (BitSet) plan.OnlyChild.Sharing.Clone();
60
61 // If this is not a representative or the child is not shared, no more sharing is possible

.
62 if (!queryOptimization.ShareEquivalenceClasses.ContainsKey(this) || !plan.OnlyChild.Shared

)
63 return;
64
65 // Add this rule to the sharing bitset and set this plan as shareable.
66 plan.Sharing.Or(
67 queryOptimization.BitSetManager.GetWithValues(new NodeAttribute(Nodes.Single(), null).

PropertyName));
68 plan.Shared = true;
69 }
70 }

Listing B.21: UnaryRule implementation.

1 /// <summary>Base class for search rules, implementing required members and Filter caching.</
summary>

2 public abstract class AbstractSearchRule : AbstractRule, ISearchRule {
3 // We’re using a bool on the side instead of BitSet? (nullable bitset) becase it is actually

less overhead.
4 private bool cached = false;
5 private BitSet cachedFilter;
6
7 public AbstractSearchRule(QueryOptimization queryOptimization)
8 : base(queryOptimization) {
9 // Default selectivity as this may also be a non-limiting rule.

10 Selectivity = 1;
11 }
12
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13 /// <summary>Selectivity for this rule. 1 for non-limiting rules.</summary>
14 public double Selectivity { get; set; }
15
16 #region ISearchRule Members
17
18 /// <summary>Properties produced by this rule.</summary>
19 public BitSetProxy Produced { get; set; }
20
21 /// <summary>List of properties required for this rule.</summary>
22 public IList<BitSetProxy> Required { get; set; }
23
24 /// <summary>
25 /// Automatically generates and caches the Filter property based
26 /// on the Produced and Required properties.
27 /// </summary>
28 public virtual BitSet Filter {
29 get {
30 if (cached)
31 return cachedFilter;
32
33 cached = true;
34 cachedFilter = (BitSet)Produced.BitSet.Clone();
35 foreach (BitSetProxy bitsetProxy in Required)
36 cachedFilter.Or(bitsetProxy.BitSet);
37
38 return cachedFilter;
39 }
40 }
41
42 /// <summary>
43 /// Determine if this rule is relevant to reach the given goal.
44 /// </summary>
45 public bool IsRelevantTo(BitSet goal) {
46 return Filter <= goal;
47 }
48
49 /// <summary>Guides the search for this rule instance.</summary>
50 /// <param name=”plans”>PlanSet to add plans to (also defines goal properties).</param>
51 /// <param name=”limit”>Abort the search if passing this cost limit (pruning).</param>
52 public abstract void Search(PlanSet planSet, ICost limit);
53
54 /// <summary>Id for this rule as given by the optimizer.</summary>
55 public int Id { get; set; }
56
57 public abstract bool StructurallyIdentical(IProducerRule other);
58
59 /// <summary>
60 /// The default implementaion is empty as many rules do not produce attributes.
61 /// </summary>
62 public virtual void MapShareEquivalentAttributes(IProducerRule from,
63 Dictionary<NodeAttribute, NodeAttribute>
64 equivalenceClassAttributeMappings)
65 { }
66 #endregion
67 }

Listing B.22: AbstractSearchRule implementation.
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B.11 OrderManager’s PrepareOrders

To illustrate how the ordering and grouping đnite statemachines are created, we have included
the main method of the OrderManager below.

1 /// <summary>
2 /// Creates the finite automation and fills orderings and grouping proxies.
3 /// Call this after all interesting orders and groupings have been established
4 /// and before using any of them.
5 /// </summary>
6 public void PrepareOrders() {
7 OrderingState dummy = NullOrderingState;
8
9 // Find all mentioned properties

10 determinePropertyDomain();
11 // Filter unused FDs.
12 filterDependencies();
13
14 // Set ids of order and grouping proxies.
15 int orderCount = 0;
16 foreach (OrderProxy orderProxy in orderProxies.Values)
17 if (orderProxy.Description.Size > 0)
18 orderProxy.Id = ++orderCount;
19 foreach (GroupingProxy groupingProxy in groupingProxies.Values)
20 groupingProxy.Id = ++orderCount;
21
22 // Construct the NFA
23 NFA nfa = new NFA();
24 NFANode nfaRoot = nfa.GetOrCreateNode(new OrderDescription());
25 // Add a node with and edge from the root for each interesting order.
26 foreach (OrderProxy orderProxy in orderProxies.Values) {
27 if (orderProxy.Description.Size > 0) {
28 NFANode current = nfa.GetOrCreateNode(orderProxy.Description);
29 current.Id = orderProxy.Id;
30 nfaRoot.AddEdge(new Edge<NFANode>(current, dependencyCount + current.Id,
31 orderProxy.Description.ToString()));
32 }
33 }
34 // Add a node with and edge from the root for each interesting grouping.
35 foreach (GroupingProxy groupingProxy in groupingProxies.Values) {
36 NFANode current = nfa.GetOrCreateNode(groupingProxy.Description);
37 current.Id = groupingProxy.Id;
38 nfaRoot.AddEdge(new Edge<NFANode>(current, dependencyCount + current.Id,
39 groupingProxy.Description.ToString()));
40 }
41
42 // Graph nfa1
43 GraphCurrentState(nfa);
44 // Create equivalence classes for attributes.
45 mapEquivalentProperties();
46 // Create equivalence classes for orderings and groupings
47 mapEquivalentOrderings();
48 mapEquivalentGroupings();
49 calculateGroupingInfo();
50
51 // Add FD transitions for orderings
52 nfa.ForAllNodes(considerTransitions, null);
53 // Add FD transitions for groupings
54 nfa.ForAllNodes(considerGroupingTransitions, null);
55 // Graph nfa2
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56 GraphCurrentState(nfa);
57
58 // Add share equivalent edges and graph nfa3.
59 if (ShareEquivalentMappings != null)
60 nfa.AddShareEquivalencyEdges(ShareEquivalentMappings);
61 GraphCurrentState(nfa);
62
63 // Add transitive and grouping epsilon edges to the NFA and graph nfa4.
64 nfa.AddEpsilonEdges();
65 GraphCurrentState(nfa);
66
67 // Optimize the NFA and graph nfa5.
68 nfaRoot.Id = orderCount + 1; // Just to make sure it is not removed by the next step
69 nfa.PruneArtificialNodes();
70 nfaRoot.Id = 0;
71 GraphCurrentState(nfa);
72
73 // Convert to a DFA and visualize
74 DFA dfa = new DFA();
75 DFANode dfaRoot = dfa.Convert(nfa, nfaRoot);
76 if (Visualizer.Visualize)
77 Visualizer.GenerateGraph(dfa.GetDot(), ”dfa1”);
78
79 // Fill proxies
80 dfaRoot.Order = new Order(0, new HashSet<OrderDescription> {new OrderDescription()});
81 NullOrder = dfaRoot.Order;
82 foreach (OrderProxy orderProxy in orderProxies.Values) {
83 if (orderProxy.Id == 0) {
84 orderProxy.Order = NullOrder;
85 }
86 else {
87 // Fill by using the edge from the root.
88 foreach (Edge<DFANode> edge in dfaRoot.Edges) {
89 if (edge.Label == (dependencyCount + orderProxy.Id)) {
90 edge.Target.Order = new Order(orderProxy.Id,
91 new HashSet<OrderDescription> {orderProxy.Description});
92 orderProxy.Order = edge.Target.Order;
93 }
94 }
95 }
96 }
97
98 // Fill grouping proxies using the edges from the root.
99 NullOrder = dfaRoot.Order;

100 foreach (GroupingProxy groupingProxy in groupingProxies.Values) {
101 foreach (Edge<DFANode> edge in dfaRoot.Edges) {
102 if (edge.Label == (dependencyCount + groupingProxy.Id)) {
103 edge.Target.Order = new Order(groupingProxy.Id,
104 new HashSet<NestableHashSet<string>> {groupingProxy.

Description});
105 groupingProxy.Order = edge.Target.Order;
106 }
107 }
108 }
109
110 // Create orders
111 foreach (DFANode node in dfa)
112 if (node.Order == null)
113 node.Order = new Order(++orderCount,
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114 new HashSet<OrderDescription>(
115 node.Description.Select(nfanode => nfanode.OrderDescription)));
116 // Create compatibility matrices
117 foreach (DFANode dfaNode in dfa) {
118 dfaNode.Order.Compatibility = new BitArray(orderCount + 1, false);
119 foreach (NFANode nfaNode in dfaNode.Description)
120 dfaNode.Order.Compatibility[nfaNode.Id] = true;
121 dfaNode.Order.Compatibility[dfaNode.Order.Id] = true;
122 dfaNode.Order.Compatibility[NullOrder.Id] = true;
123 }
124
125 // Compare artificial orderings for subsets to increase compatibility.
126 foreach (DFANode dfaNode1 in dfa)
127 foreach (DFANode dfaNode2 in dfa)
128 if (dfaNode2.IsSubsetOf(dfaNode1))
129 dfaNode1.Order.Compatibility[dfaNode2.Order.Id] = true;
130
131 // Create transition functions
132 foreach (DFANode node in dfa) {
133 node.Order.Transitions = new Order[dependencyCount];
134 foreach (Dependency dependency in dependencies.Values) {
135 foreach (Edge<DFANode> edge in node.Edges) {
136 if (dependency.Id == edge.Label) {
137 node.Order.Transitions[dependency.Id] = edge.Target.Order;
138 node.Order.PossibleTransitions |= (1 << dependency.Id - 1);
139 }
140 }
141 }
142 }
143 // Finally visualize.
144 if (Visualizer != null)
145 Visualizer.GenerateGraph(dfa.GetDot(), ”dfa2”);
146 }

Listing B.23: OrderManager.PrepareOrders.
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C
Digital Appendix

“Any code of your own that you haven’t looked at for six ormoremonthsmight as well
have been written by someone else.”
— Eagleson’s Law

ăe accompanying digital appendix includes this report, as well as the complete source code
for our implementation. It is structured as follows:

/Report ăis report as PDF.

/Source Source code for the optimizer.

/bin Dependent binaries, such as NUnit, Graphviz and so on.

/Optimizer Source code for the optimizer.

/OptimizerProđling Console application used as an entry point to the optimizer for
prođling.

/OptimizerTests Unit and system tests of the optimizer.

/OptimizerTransformer MARS query pipeline operator. ăis component is injected
into the MARS query pipeline, invoking the optimizer when a query hits it.

/DebugOutput Debug output from the optimization of the largest example query in Chap-
ter 7.

stats.txt Timing statistics for the optimization.

plans.txt All plans generated during plan generation.

rules.txt Instantiated constructive rules.

search.txt Search debug output from plan generation, showing how the search pro-
gresses.

shareequivalence.txt Share equivalence classes.

before.dot/.pdf Query before optimization.

preproc.dot/.pdf Query aĕer pre-processing, before plan generation.

planning.dot/.pdf Query aĕer plan generation, before post-processing.

aĕer.dot/.pdf Query aĕer optimization, aĕer post-processing.

nfa/dfa*.dot/.pdf Graphs generated by the order manager during preparation, num-
bered stepwise.
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Wewould recommend startingwith Optimizer/Engine/QueryOptimization.cs if looking
into the code.

Unfortunately, the source code as supplied will not build, as it depends on assemblies from
fast, which we were not allowed to distribute. For the same reason, we are not able to provide
running binaries of the optimizer.

To be able to test the optimizer, please contact any of the authors or Øystein Torbjørnsen
at Microsoĕ (Oystein.Torbjornsen@microsoft.com).
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