
Chapter 1

Descriptions of files attached

This appendix provides an overview of the files attached to this report. The
code is proof-of-concepts used to test ideas from the report. It was decided
to only include a short description of each file instead of adding the whole
source code to the report.

All code is written as valid Python 2.5 code.

Note that all the below methods are proof-of-concepts only. Log files con-
taining blank lines, or lines that do not conform to the Syslog format, may
cause the prototypes to fail. Best practice techniques, such as writing to a
temporary file while generating the results, have not been prioritised.

This chapter is a part of the report delivered. In that report, this chapter is
named Appendix C. The main difference between the to versions is that the
one included in the complete report contains references to chapters where
the background for the implementation is discussed.

1.1 List of files and folders

Message sequences :

• regexp.py
• regularity.py
• markov.py

Pattern mining :

� Item occurrence frequencies :

1



• occurrence freq.py
• itemset gen.py
• simple clustring.py
• msg extraction.py

� Subsets :

• subsets.py
• msg extraction.py

� Histograms :

• histograms.py
• msg extraction.py

� Primary sorting :

• primary sorting.py
• itemset gen.py
• msg extraction.py

� Tree structure :

• TreeStructure.py
• TreeStructure.conf
• exceptions
• TreeNode2.py
• unittests TreeNode.py
• tree graph.py
• notugly.xsl
• verify results.py
• msg extraction.py

Statistical analysis :

• statistical analysis.py
• statistical.config

1.2 Message sequences

The ideas implemented here are discussed in the Markov chapter.

1.2.1 regexp.py

regexp.py contains regular expressions used to split log message strings into
parts defined by the Syslog specification. markov.py and regularity.py use
regexp.py.

2



1.2.2 regularity.py

regularity.py is the proof-of-concept for the idea presented in the Markov
analysis chapter. It depends on regexp.py and takes a single log file as input:

python r e g u l a r i t y . py l o g f i l e

It creates two files:

• candidates.txt containing the candidates described by host, process,
message hash, delta, last seen and confidence value.

• msgs.txt containing the actual messages (hash plus text string) for the
candidates.

If the above mentioned files exists, they are used to validate the results from
the logfile and to identify anomalies.

1.2.3 markov.py

markov.py is the proof-of-concept for the idea presented in Section ??. It
takes a single log file as input:

python markov . py l o g f i l e

It creates one file after it has analysed the log file:

• markovstat.txt containing all state transitions and their probability.

If markovstat.txt already exists, it is used to validate the results from the
logfile and to identify anomalies.

1.3 Pattern mining

Every pattern mining prototype described in the following make use of the
msg extraction.py file. msg extraction.py contains regular expressions for
fetching the message part of Syslog-formatted loglines. It also contains logic
for discovering and removing ip addresses, email addresses and other easily

3



recognisable variables. For simplicity the msg extraction.py file has been
added to all folders.

All prototypes require two input arguments. They need the path to the
logfile being subject for analysis, and the path to a directory to which the
results can be written. All prototypes can be run using:

python f i l ename . py − l l o g f i l e −p r e s u l t s d i r e c t o r y

In addition all prototypes have a standard help function that will list all
available optional arguments:

python f i l ename . py −−help

1.3.1 Item occurrence frequencies

The item occurrence prototype consists of three files. The occurrence freq.py
holds the main method, and calls the two other files, itemset gen.py and
simple clustring.py.

occurrence freq.py outputs two files. The first is a set of all n-itemsets found
in the log, and the second is the final patterns. The simple clustring.py uses
the data in the n-itemsets file to generate the final results.

1.3.2 Subsets

The subsets approach consists of one single file, subsets.py. It outputs a file
with all the generated subsets found in the logfile, but does not proceed to
analyse the results, since the method proves to be too slow for practical use.

1.3.3 Histograms

The histogram prototype consists of one file, histograms.py. It requires the
same two arguments as the above mentioned prototypes, and it outputs a
file with generated 1-itemsets, and a file with the final results.

4



1.3.4 Primary sorting

Primary sorting uses wide, or coarse, n-itemsets to group similar loglines.

The primary sorting.py uses itemset gen.py to generate its 1-itemsets. It
takes the usual input arguments as described above, and outputs a single file
containing the final results.

1.3.5 Tree structure

Loglines being inserted into the tree are either inserted as new branches, or
are merged into an already existing branch.

The tree structure prototype consists of totally nine files. The msg extraction.py
is the same file used for all the above prototypes. TreeStructure.py holds
the main method. It takes two mandatory arguments, like the above. The
TreeStructure.py file reads a configuration file called TreeStructure.config, by
default. Additionally, a list of exceptions can be provided. Example excep-
tions are stored in the exceptions file, and the configuration keeps track of
which exception file is in use.

TreeStructure.py make use the methods in TreeNode2.py, while the unittests TreeNode2.py
file provides unit tests for the methods in TreeNode2.py.

If the number of tree nodes created does not exceed a certain threshold,1 pro-
totype outputs a graphical illustration of the tree generated by the prototype.
If the results from all intermediate stages in the algorithm are requested, a
corresponding graphical illustration will follow.

The XML style sheet file notugly.xsl is created by Vidar Hokstad.2 It simply
smartens up the output graphs.

Finally the verify results.py file provides primitive methods to assure that
the resulting patterns are correct. verify results.py requires three input ar-
guments. First the usual path to the logfile, then the path to the resulting
patterns, and finally the path to the exceptions file:

python v e r i f y r e s u l t s . py l o g f i l e pa t t e rn s except i ons

1Drawing above 1000 nodes may take some time.
2Available at http://www.hokstad.com

5

http://www.hokstad.com


The resulting report is simply printed to standard output.

1.4 Statistical analysis

The statistical analysis.py prototype analyses the outputted pattern files,
and reports back about any anomalies found. It could be that an otherwise
frequent pattern is missing, that a pattern has a count much higher, or lower,
than expected, or that a new pattern is found.

Every pattern is stored in a database. The prototype use a configuration
file with information about which database to use. If the database does not
exist, it is created.

statistical analysis.py takes three mandatory arguments. The first is the path
to the patterns to analyse, the second is the path to the directory where the
results should be stored. Lastly, the prototype needs a date to identify the
patterns in the database (preferably the date of the pattern’s originating log
file).

python s t a t i s t i c a l a n a l y s i s . py −p pat t e rn s −r
r e s u l t s d i r e c t o r y −t 2009−06−23

The prototype outputs a single report file, named according to the date
argument, 2009-06-23 report.

6


	Descriptions of files attached
	List of files and folders
	Message sequences
	regexp.py
	regularity.py
	markov.py

	Pattern mining
	Item occurrence frequencies
	Subsets
	Histograms
	Primary sorting
	Tree structure

	Statistical analysis


