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Problem Description
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lens.

Dr. Svein-Erik Måsøy has developed and algorithm for estimating and correcting for this
difference in sound velocity. This master's thesis project will focus on how to parallelize his
method for modern multicore processors and/or modern GPUs. It is of particular interest to look
at how applicable the parallelization techniques developed are for today's standard GPU cards.
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Åsmund Herikstad
asmund1@yahoo.com

Department of Computer and Information Science
Norwegian University of Science and Technology, Trondheim

(Norway)

July 2009

Supervisor
Dr. Anne C. Elster

Co-supervisor
Dr. Svein-Erik Måsøy





Abstract

Medical ultrasound imaging is a great diagnostic tool for physicians because
of its noninvasive nature. It is performed by directing ultrasonic sound into
tissue and visualizing the echo signal. Aberration in the reflected signal is
caused by inhomogeneous tissue varying the speed of sound, which results
in a blurring of the image. Dr. Måsøy and Dr. Varslot at NTNU have
developed and algorithm for estimating and correcting ultrasound aberration.
This algorithm adaptively estimates the aberration and adjusts the next
transmitted signal to account for the aberration, resulting in a clearer image.

This master’s thesis focuses on developing a parallelized version of this
algorithm. Since NVIDIA CUDA (Compute Unified Device Architecture) is
an architecture oriented towards general purpose computations on the GPU
(Graphics Processing Unit), it also examines how suitable the parallelization
is for modern GPUs. The goal is using the GPU to off-load the CPU with
an aim of achieving real-time calculations of the correction filter.

The ultrasound image creation is examined, including how the aberrations
come into being. Next, how the algorithm can be implemented efficiently us-
ing the GPU is looked at using both NVIDIA’s FFT (fast Fourier transform)
library as well as developing several computational kernels to run on the
GPU.

Our findings show that the algorithm is highly parallelizable and achieves
a speedup of over 5x when implemented on the GPU. This is, however, not
fast enough for real-time correction, but taking into account suggestions for
overcoming the limitations encountered, the study shows great promise for
future work.
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Chapter 1

Introduction

Medical ultrasound imaging is used to look inside the human body without
having to perform surgical operations. The great advantage of this procedure
is that it is non-invasive and does not cause any side effects. The equipment
needed is also relatively low cost and mobile and therefore widely available
to physicians. Ultrasound is hence a good tool to detect and diagnosis pa-
tient illnesses. The limitation of the technique is that since the sound waves
transmitted by the ultrasonic transducer travel at different speeds in differing
tissue, delays and variations in the signal may develop. These aberrations of
the signal can cause distortions and blurring in the final image.

The ultrasound signal is transmitted by a transducer which is made of
many transducer elements, each transmitting its own signal. An algorithm
developed by Dr. Svein-Erik Måsøy and Dr. Trond Varslot [1] attempts
to correct aberration of ultrasound images caused by the body wall by es-
timating the aberration in the ultrasound signal. The algorithm estimates
the time-delay and the amplitude variations by comparing each transducer
element’s signal to its neighbor’s and thus computing how much each of them
diverge. The result is a correction filter for each transducer element that is
applied to the next transmitted signal to cancel the aberration effects of the
body wall.

Graphics Processing Units (GPUs) are highly parallel devices primarily
developed to process graphical data. However, recent developments in both
software and hardware architectures have made computing more general com-
putational problems on the GPUs possible. The NVIDIA Compute Unified
Device Architecture (CUDA), enables the users to perform non-graphical
computations on the GPU through use of a C language extension. Using the
GPU, one is able to utilize the large amount of parallel processing power to

1



2 CHAPTER 1. INTRODUCTION

solve algorithms that can be adapted to it at greatly improved speeds.

1.1 Outline

This master thesis has the following structure:

Chapter 2 and 3 presents the background for the thesis. Chapter 2 exam-
ines the process of creating ultrasound images and how those images
are distorted by aberration of the ultrasound signal. Chapter 3 will
present the GPU, its history, and how it may be applied to solve par-
allel computational problems.

Chapter 4 shows how Måsøy’s algorithm proposes to counter the problem
of ultrasound aberration and the process taken to estimate and correct
the aberrated signal. It also describes and explains the code of the
program created to perform the algorithm on the GPU.

Chapter 5 introduces the test case used to benchmark the program as well
as the results from the benchmark. The chapter discusses the implica-
tions of the results and looks at possible reasons for their outcome. It
will also look at what can be done to improve the results.

Chapter 6 concludes this thesis and looks at what have been achieved and
how well this meets the goal of the thesis. The chapter also lists some
future directions that the work can be take.



Chapter 2

Ultrasound Imaging

The next two chapters highlights the foundations for this master thesis. This
chapter presents the basics of ultrasound imaging and associated aberration.
The following chapter examines the GPU and its history is examined as well
as general computations on the GPU with CUDA architecture and C for
CUDA programming language extension.

Ultrasound imaging, also known as medical ultrasonography [16][17], is
the process of sending ultrasound waves with a frequency between 2 and 18
MHz, into the human body and measuring the reflected waves, i.e. the echo,
from the organs of the body. The echoes are then transformed into an image
based on the delay from the time the wave was transmitted until the echo is
received. A shorter time period means the echo is from a point closer to the
transmitter than a long period.

2.1 Advantages and Disadvantages

Probably the greatest advantage of using ultrasound is its noninvasiveness.
One can get good images of the internal structure of a body without having
to perform surgery. Ultrasound has no known long-term side effects and
also permits real-time imaging. The equipment needed to create ultrasound
images is much smaller and more flexible than other currently used imaging
techniques.

On the other hand, ultrasound has a distinct disadvantage, the quality
of the images can be degraded in some situations. Also, it is virtually im-
possible to get any image through bones and air cavities. An ultrasound
image through the lungs will make the image opaque. Indeed, even skin,

3



4 CHAPTER 2. ULTRASOUND IMAGING

Figure 2.1: On the left is an unaberrated ultrasound image and one the right is
an image with aberration. Reprinted with permission from Måsøy [1].

fat and muscle have quite an impact on image quality. This is especially
true for obese patients, where the thicker body wall greatly affects the image
achieved. This is clearly evident from Figure 2.1, which shows an ultrasound
image of a test setup with no aberration on the left, and through a silicon
model of the skin and muscles of the abdomen on the right. If the effect
of some of these obstacles could be cancelled out, ultrasound imaging would
become an even greater tool for imaging the human body.

2.2 Image Formation

The setup for performing ultrasound imaging consists of a ultrasonic trans-
ducer, a combined ultrasound transmitter and receiver, and a computer that
prepares the signal to be sent and processes the received echo. As can be
seen in Figure 2.2, the transducer is actually an array of transducers, which
each can transmit and receive a sound wave. This gives the possibility of
focusing the sound waves. The waves are focused at the desired depth us-
ing phased array techniques, that is the sound waves are delayed differently
by different elements of the transducer array. This produces an arc-shaped
sound wave from the face of the transducer array, see Figure 2.3. By changing
the delay applied to each element of the array one can achieve both variable
focus depth and change the direction of the sound wave without moving the
transducer itself.

The resulting echoes are collected by the transducer and the shape of
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Figure 2.2: A ultrasonic transducer. A transducer is an array of transducer ele-
ments with each element transmitting and receiving ultrasound signals for imaging
of the human body.

Figure 2.3: Transducer with focused waves. Using different delays (τ) for the
different elements focuses the wave.
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Figure 2.4: Removing the delays introduced when focusing the wave so that the
waves can be aligned.

the wave is defocused, removing the delays that one purposely introduced to
focus the wave. This aligns all the signals received on each element of the
transducer array so that they can be summed, as seen in Figure 2.4.

By looking at when each echo arrives and the strength of the signal, one
can plot an image of the body. A simple way of explaining the imaging
process is by using a spreadsheet. By placing the transducer at the top of
the sheet one can visualize transmitting the signals along the columns. When
an echo from the body is received, the time delay is measured. A longer delay
means further down the rows. The strength of the echo is translated to a
grayscale color with white as the strongest echo and black for a weak echo.
Coloring the cells of the spreadsheet with the corresponding colors results in
a ultrasound image[16][17].

Figure 2.1 show ultrasound images which are the results of several mea-
surements from the transducer. One image is a compilation of several ultra-
sound beams. Up to 250 beams may be used create one image. Each beam is
one measurement as described above. When the measurement is completed,
the focus and direction of the sound wave is changed and another wave is
fired. This process is repeated until a complete sweep is recorded, and the
final picture can be assembled. The actual sweep is performed electronically,
and takes no more than a tiny fraction of a second. By performing multi-
ple sweeps per second one can attain a live image of the body. Figure 2.5
illustrates how the sweep is done.
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Figure 2.5: Several beams are needed for one ultrasound image.

Figure 2.6: Each element sends a wave and the sum of all the waves is the beam.

Each beam is the result of summing the aligned signals from all the ele-
ments of the transducer array as seen in Equation 2.1.

b(t) =
n∑
k=0

yk(t− τk) (2.1)

τk represents the delay that was introduced in the kth channel to focus the
beam and yk(t) is the signal that is received at time t on the kth channel.
b(t) is the resulting beam. See Figure 2.6 for a graphical representation of
this.

2.3 Ultrasound Image Quality

There are several factors limiting the quality of ultrasound images. One
such limiting factor is absorption where energy from the ultrasound wave
is transformed from waves into heat when the tissue is energized and that
energy is lost. This effect increases with frequency. There is hence an effective
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Figure 2.7: A illustration of the body wall. Reprinted with permission from
Måsøy [1].

limit to how high frequencies can be used. This is also the reason why it is
not possible to simply increase the power of the signal to get stronger echoes,
as this would effectively boil the tissue.

Secondly, there are reverberations when waves are reflected internally in
the tissue back and forth several times, before finally being picked up by the
transducer. Reverberations are evident as a blurred tail in the image.

Finally, there is aberration, also known as phase front aberration [1],
which is the distortion of the ultrasound wave caused by the different tissues
that the ultrasound wave travels through. The theoretical model for focusing
the ultrasound wave assumes that the velocity of the wave is 1540m/s. Any
variations in this speed will cause delays of the wave, defocusing the beam and
blurring the image. Måsøy [1] makes a claim about aberration, ”Aberration
is mainly generated in the human body wall, which is composed of skin,
fat, muscle and connective tissue. Typical velocities for tissue in the human
body wall is 1448 m/s for fat, 1547 m/s for muscle, and 1613 m/s for skin
and connective tissue. These constitute the largest sound speed differences
in the human body“. This is also verified by Hinkelman et al. [19][39].

Aberration is the only focus of investigation and correction in this thesis.

2.4 Aberration

A typical human body wall consists of skin, connective tissue, muscles and
fat. The speed of sound is 1448m/s for fat, 1613m/s for connective tissue
and skin, 1547m/s for muscle. The fat is usually found as small lobules right
beneath the skin, or as larger regions in the muscle layer. These fat lobules
are held together by connective tissue. An illustration of the body wall can
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Figure 2.8: Screens as a model for the body wall aberrating the ultrasound signal.
Each screen adds aberration to the wave.

be seen in Figure 2.7. As the ultrasound wave travels through the fatty
region right beneath the skin, it experiences the largest differences in speed,
in the transition from fat to connective tissue. This region creates the larges
delays in the wave, and thus the most aberration in the image. Hinkelman
et al. [19] examine the different layers of the body wall, and their effect on
ultrasound imaging.

To get a better image, one would like to remove this aberration from
the signal. To do this one first creates a model of the body wall aberration
problem. Figure 2.8 shows a setup where the body wall is modeled by a
number of screens. Each of these screens adds distortion to the wave and thus
act in the same way as the body wall. If one considers this mathematically,
each screen is a function that alters the original wave function, as expressed
in Equation 2.2.

bA1(t) = A1 ∗ y(t− τF ) (2.2)

bA1(t) is the aberrated wave resulting from applying the filter A1 to the
original wave y(t−τF ) (τF is the focusing delay). Combining more screens, or
filters, one can write all these multiplications as a sum of the filters multiplied
with the original wave as stated in Equation 2.3.

bA(t) =
n∑
k=0

Ak ∗ y(t− τF ) = A ∗ y(t− τF ) (2.3)

bA(t) is the resulting wave aberrated by all the filters. If A could be found,
one could simply divide the aberrated signal with the filter and get the un-
aberrated signal y(t− τF ).
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2.5 Estimating and Correcting Aberration

Knowing what kind of structures that the waves propagated through, one
could simply calculate what aberrations this layer would create and apply
the inverse to the signal. However, since there is no way to know the structure
of the body wall except by surgically looking at it, one must estimate the
effect the body wall has on the signal. Måsøy looks at ways of doing this,
and arrives at a method that does several iterations of an estimation which
gives good results[1]. This section will examine this method.

Måsøy considers several filtering methods, and concludes that using a
time-delay and amplitude filter gives adequate results.

A time-delay filter (or phase filter) works by adjusting the delay in arrival
time at the transducer caused by aberration. This is similar to what is
already done when focusing the wave. The beams from each element of the
transducer array are delayed differently to converge on a focus and give a
positive interference, resulting in a strong echo. When they arrive back at
the transducer, they have to be aligned so that the sum of the signals of
each element will create a strong and clear signal. If there is aberration that
causes a phase shift, the wave at each element will arrive more or less delayed
than it should, based on the delay introduced to focus it. This may cause
interference which destroys the final signal. Figure 2.9 shows this effect.

An amplitude filter will remove peaks and troughs in signal strength
caused by aberrations. If aberrated, the beams of different elements of the
transducer array will have different values for the same samples and thus one
of the waves will dominate when all the values are summed. The amplitude
filter brings all the waves into the same range, removing this interference. A
graphical representation of the amplitude problem is shown in Figure 2.10.

The filters look at neighbors of the element that is being filtered, and
adjust their values accordingly. If the value of a sample is much higher or
lower for an element than the average of those around it, the value of that
sample is adjusted to conform with the other elements.

When these filters are faced with strong aberration, the resulting adjust-
ments are incorrect. One possibility to improve these filters is to use their
results in the generation of the next beam [1]. If a ”perfect“ wave is trans-
mitted and returns aberrated, one can estimate how much aberration has
happened and then apply the inverse of this aberration to the next wave.
The next wave will then already be aberrated, but with the purpose of can-
celling the effect of the aberration. When this second wave returns, it will
then have cancelled out some of the aberration, permitting a new estimate of
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Figure 2.9: If affected by aberration waves at the different transducer elements
the signals may have different time-delay and may end up cancelling each other
out when summed.

Figure 2.10: Signals with varying amplitude. If large variations in amplitude are
present, the sum of the signals will be aberrated.



12 CHAPTER 2. ULTRASOUND IMAGING

Figure 2.11: The filter is applied to the incoming signal and then the next wave
is changed to give a better resulting wave. This iteration continues until some
margin of error is reached. (The Gaussian signal is just for illustration and not
the actual goal.)

the aberration to be calculated and applied to the next wave. This process
is repeated until the wave that returns is unaberrated within certain error
margins, improving the results of the filters even for strong aberrations.

The filter works by including information about the aberration from the
previous beam. The aberration for one beam is similar to the previous beam
as the body wall through which each beam is fired is very similar. The filter is
thus able to find an estimate for the aberration for the next beam faster. The
estimation of the aberration is an adaptive process, wherein several beams
are transmitted in the same direction until the aberration for that beam has
been computed to a satisfactory degree. Each step uses the computations
from the previous beam, and the data from the final beam is used as the
result of that direction. Figure 2.11 shows the iterative process of one beam
direction.
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Figure 2.12: Diagram explaining the aberration correction process based on the
algorithm by Måsøy [38]
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Chapter 3

Moderns GPUs and NVIDIA
CUDA

This chapter describes the main features of modern GPUs including the
NVIDIA CUDA architecture and associated programming language exten-
sion.

3.1 GPGPU

GPGPU is an abbreviation for General-Purpose computation on the Graph-
ical Processing Unit (GPU), that is, utilizing the GPU to complete tasks
other than graphical ones. The goal is to increase the speed with which cer-
tain tasks can be completed. This has become a field of research because the
GPU has a more parallel architecture than the CPU, and to take advantage
of this parallel architecture, it is desirable to find new ways of representing
problems in a parallel manner.

3.1.1 GPU

The GPU was originally a special function processor, meant to accelerate
graphical computations. The GPU on a graphics card contains multiple
computation units (cores) in a SIMD architecture [9][23], which performs
parallel computations. This approach was developed to enhance image ren-
dering, and create a better graphics experience for the user. An image shown
on the screen is a matrix of millions of pixels which must be updated several
times a second. Usually, one wants to execute the same calculations on large

15
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Figure 3.1: An example of using a GPU shader to wrap a texture to a 3D object.
Reprinted from [26].

areas of this matrix, and therefore, the GPU is optimized to complete one or
more sets of equivalent calculations in parallel. The result is an architecture
that achieves high throughput, and has high degree of parallelism.

In the 1980s GPUs were mainly used to implement 2D primitives, in the
1990s they also handled 3D modelling. While GPUs improved and became
ever faster, the ability to only use hardcoded instructions, shaders, in the
chip became restricting. In the 1990s 3D games became more prevalent and
it was of interest to calculate the values of each pixel based on the objects in
3D space. As the games became ever more complex the set of shaders that
were available were not enough to express the wanted complexity.

The GPU manufacturers decided to implement programmable shaders,
giving the programmer the ability to change the instructions performed on
the graphics data. As Luebke and Humpfreys [24] explain, the advent of
programmable shaders on the graphics card introduced a new computation
model. Many researches started using the graphics card to do parallel com-
putations, feeding data to the GPU as “images“, and rendering them with
their own custom built shaders. Instead of rendering them to screen, how-
ever, the result was put back into memory and then read as the result of the
calculation.

3.1.2 Parallelism

Recently, there has been a shift towards increased parallelism as most modern
processors have become multicore. This is according to Asanovic et al. [27],
a result of several factors, the main factors being referred to as the brick wall.
The factors that make up the brick wall are:

Power wall: with the continuing increase of how many transistors per chip
is possible, the power needed and the heat produced when turning on
all the transistors is becoming a constraint. Too much heat will wreck
the chip and using more power is also more expensive.
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Memory wall: accessing memory consumes a larger part of a program run-
time than actually executing the computations. When hundreds of
computations can be performed in the time it takes to access mem-
ory, it is difficult to keep the processor occupied making transistors
redundant.

ILP wall: instruction-level parallelism (ILP) is the attempt to extract parts
of programs that can be executed simultaneously. An examples of
this is out-of-order execution of instructions that are not dependent
of each other and branch prediction to compute results of instructions
dependent on a branch speculatively. There is however, a limit to how
many independent instructions can be found and how many branches
on can compute before the number of failed predictions become much
larger than the number of correct predictions.

The turn to parallelism attempts to circumvent the brick wall. With
many small cores one can have a finer-grained control over which transistors
are turned on; this in turn gives less power consumption and less heat. Also,
exposing the parallelism of the processor forces the parallel thinking on the
programmer, resulting in more parallel programs and better utilization of the
processor. Having more instructions that can be executed in parallel, helps
hide the memory latency and the time that the processor is stalled waiting
for memory accesses is decreased.

As the GPU is already highly parallel and represents several of these
features, it is a natural area of interest.

3.1.3 Restrictions

There are several restrictions to the GPU, these are both its strengths and
it weaknesses. The most common and important restrictions are presented.

A limitation of the GPU, as can be seen from Figure 3.2, is a much
smaller amount of hardware set aside for caching and memory management
than the CPU, and thus this is left to the programmer to handle. Efficiently
managing memory can be a large part of writing applications for the GPU,
but also enables great optimization options. The power of the GPU comes
from being able to do many simple computations in parallel, meaning that
more complex computations must be broken up into simpler ones.

The main challenge of the GPU is to harness the large number of cores
available, and by always having enough computations executing to prevent
the GPU from stalling while waiting for memory accesses. When access-
ing global memory, there is a 200-300 cycle latency, this is significant when
compared to executing one instruction. A calculation, for example, takes a
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Figure 3.2: CPU uses much more silicon for Control and Cache than GPU which
means that one have to handle memory management manually. Reprinted with
permission from NVIDIA [10].

maximum of 4 cycles. If the GPU did nothing during these breaks, the effi-
cient use of the GPU would be low. The CPU uses caching and prefetching
to prevent this from happening, but the GPU does not. Instead, it compen-
sates by executing other threads and their instructions in this waiting time.
Therefore, having a large number of threads gives the GPU the possibility of
computating while it waits for a memory load to finish, accomplishing both
loading memory and more computations in the same time. If efficiently used,
the GPU could use less time executing a program than it would take a CPU
to do the same.

As can be seen from Figure 3.3, transfer of data between the host and the
GPU is much slower than on-board memory access. It is therefore important
to minimize copying between the GPU and the host. Some measures can
be taken to optimize memory transfer between host and GPU. For exam-
ple, aligning data increases efficiency by enabling transfer of sequential data
blocks, so that only one memory access is needed per block of data trans-
ferred. Also, placing data in page-locked memory increases the speed since
the bandwidth between host memory and device memory is higher if host
memory is allocated as page-locked [10]. The cudaMallocHost() function is
used to allocate page-locked memory.

Another drawback of using the GPU is that branching is very inefficient.
Since the GPU is a SIMD processor, it performs the same computations on
the dataset regardless of how the code branches. Only after executing the
code is the data that the branch would have created selected. For example,
if a GPU was instructed to calculate a value for each element of an array and
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Figure 3.3: The GPU has high speed on-board access to memory, but much
slower to the rest of the host system. Reprinted from [32], updated to reflect
current values [29].

a special value for a certain element in that array, it would first calculate the
values for the whole array and then also calculate the branching value for the
whole array. Finally, it would select the branching value from that result set
and return that for the single element, along with the non-branching values
for the rest of the array. Therefore, branching is discouraged when computing
using a GPU.

Finally, The GPU does not have as much special function hardware as
the CPU, since these are seldom needed for shader programs. Modulo math-
ematics, for example, takes more cycles to complete on the GPU than on the
CPU. The same is true for square root calculations. On the other hand, the
GPU has special function hardware to compute cosine and sine functions, so
this is faster than on the CPU.

3.2 CUDA

While GPGPU gives researchers the ability to use the massive parallelism
of the GPU, writing shaders and expressing one’s algorithms in graphical
terms requires the user to be proficient in both his own discipline, graph-
ics, and also quite a lot of advanced programming. This has limited the
use of the GPU for general processing. Quite a few attempts at simplifying
the process have been invented, such as RapidMind, BrookGPU, and Sh as
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Figure 3.4: The CUDA architecture is divided into several Streaming Multiproces-
sors, each with 8 cores, a set of registers and shared memory available to executing
threads. Reprinted with permission from NVIDIA [10].

well as Microsoft Accelerator [25]. These projects generally remove graphics
terms from the programming by translating code written in C or C++ into
GPU suitable code. However, they are still restricted to the calls that one
can make using the graphics functions and they are therefore in themselves
restricting in what one can achieve [5]. Both major graphics card manufac-
turers, ATI and NVIDIA, started an effort to bring GPGPU to researchers
through their hardware. ATI developed Stream SDK which gives the pro-
grammer direct access to the native instruction set and memory of the GPU.
NVIDIA developed the Compute Unified Device Architecture, CUDA, with
the corresponding C for CUDA extension to the C programming language
which also gives access to the parallel computational elements [15][14].

The architecture that CUDA describes is divided into sections. Figure
3.4 gives an overview of the CUDA GPU architecture. Each device have a
number of Streaming Multiprocessors (SM), for example, the Tesla C1060
card has 30 SMs. The global memory is available to all threads, and is
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currently 4 GB for the Tesla C1060. The global memory has a latency of
200-300 cycles, and therefore, common practice is to load data from global
memory to shared memory, a faster on-chip memory, do computations and
then move it back to global memory [10][22].

The following is a list of the features of a CUDA SM:

• 8 processing units (Stream Processors, SP).
• 16384 registers that are shared between the threads running on the SM.
• 16 KB of shared memory that has approximately the same latency as

the registers.
• 8 KB of constant memory which is cached from the global memory.

There are several restrictions on how one can run programs on the CUDA
architecture. Some are the result of choosing to devote transistors to process-
ing power over memory management. This results in the programmer having
to manually do memory management. There are limits imposed by the ar-
chitecture: one can have a maximum of 1024 simultaneous active threads
contexts per SM, up to 8 thread blocks per SM at one time, and if the total
of 16384 available registers is exceeded, the excess will spill to local mem-
ory which has the same latency as global memory (200-300 cycles). There
are also restrictions on how one may access shared memory. This memory
is divided into blocks, and reads from the same blocks by more than one
thread may cause collisions which result in the reads being serialized, thus
taking more time. This problem has become less evident with newer versions
of CUDA, which allow more combinations of reads by several threads. Be-
cause of these limitations, it is vital to optimize how one utilizes the GPU,
both in memory reads and in kernel size and calculations. Both the CUDA
programming guide [10] and Ryoo et al. [22] cover this more fully.

3.2.1 Memory Management

As can be seen in Figure 3.2, very little silicon is used for control and caching,
and the CUDA architecture does not include transparent caching of all data
that is used. The programmer has to take this into account for each individual
program. There are several levels of memory in the architecture, ranging from
the zero extra clock cycle access time of the registers, to the several hundred
clock cycles access time of the global memory:

• Register - zero clock cycles
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• Constant memory - cached, same access time as registers when cache-
hit, global access time on cache-miss
• Texture memory - cached, especially good at 2D locality (hardware

optimized)
• Shared memory - zero clock cycles when no collisions
• Local memory - part of global memory, 200-300 clock cycles access time
• Global memory - 200-300 clock cycles to access

Since there is such a large variation in speed of the different memory, and
since the placement of data is entirely in the hand of the programmer, there
is large potential for optimization (and inefficiencies). The most common
approach to utilizing the memory of the GPU is to copy data to global
memory from host memory and then let each thread copy a portion of the
global memory into shared memory to be computed on by threads in a SM.
This is usually done by instructing each thread to load a corresponding data
value from global into shared memory, and then synchronize all threads so
that they can all work on the correct dataset in shared memory. Another
approach is to load data into global memory and utilize the texture caching
or with constants like convolution kernels, load them directly into constant
memory. Varying the configurations to achieve optimal behavior is a research
topic in itself, and usually a unique configuration is needed for each program
created.

Shared Memory

Shared memory is divided into banks, making it possible to read from each
separate bank simultaneously. If two or more threads try to read from the
same memory bank, this causes a bank conflict, and the conflicting calls are
processes in serial, greatly reducing the effectiveness of the shared memory.
It is therefore important to access memory in such a manner as to avoid bank
conflicts.

Shared memory banks are organized as 32-bit words, i.e. the size of one
float or an integer. A common approach to accessing the shared memory
from a kernel is by letting each thread read a 32-bit word at a unique mem-
ory position in the data, avoiding bank conflicts. This can be expressed as
array[BaseIndex+ tid], where tid is the thread ID. However, for large data
sets, it is often necessary to have each thread access more than one memory
location. This is often done using array[BaseIndex+ s ∗ tid], where s is the
stride, i.e. the number of elements to the next corresponding location to be
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read by the thread (usually the number of threads). In this case, thread tid
and thread tid+n will access the same bank whenever s*n is a multiple of the
number of blocks. On the current architecture version, this will not happen
if s is odd [10]. Therefore, optimizing shared memory is done by making sure
threads do not cause bank conflicts.

Global Memory

When accessing memory on the graphics device, an important guideline is
to maximize bandwidth usage. This is especially true for global memory,
which has two orders of magnitude greater access time. To utilize the whole
bandwidth available, a technique called coalesced reads and writes is imple-
mented. The idea is to combine many accesses to global memory into one
large access, and thereby utilize the whole bandwidth. An alternative would
be to service each access separately, and achieve only a fraction of the avail-
able bandwidth. However, there are some preconditions which need to be
met before the memory controller will coalesce an access.

Accesses will be coalesced when they fall into the same segment of size
[10]:

32 bytes and if all threads access 8-bit words.
64 bytes and if all threads access 16-bit words.
128 bytes and if all threads access 32-bit or 64-bit words.

3.2.2 Thread Configuration

Even though the GPU has hundreds of computational units, supplying these
with a fast memory accessible from all of them would require a lot of hardware
set aside for connections and read/write collision prevention. This would be
expensive, since one would need both more hardware and more advanced
hardware. Most importantly, it would leave less space for the computational
units [8].

The compromise reached is to limit the amount of fast memory, and make
it accessible to only a portion of the computational units. The idea is to have
a fast memory on the processor chip that the threads running on a streaming
multiprocessor can share, and a slower off-chip global memory accessible for
all threads. Ensuring that all threads that should be sharing memory are
running on the same SM is important. To ascertain this happens, threads
are divided into blocks, which let the GPU group threads together, and assign
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groups to SMs. All threads in a block are guaranteed to run on the same
multiprocessor and can thus communicate and synchronize with each other.
Selecting the size of the blocks is done by the programmer as is described in
the next section.

When executed, threads in a block are actually divided into smaller
groups called warps [8][10]. This is to facilitate swapping of executing threads
on the SM. The SM will switch to a new warp when one warp is stalled, for
example while waiting for a memory load. Thus the SP still has threads to
schedule even though some of the threads in the block are stalled. There are
32 threads in each warp. The computations are scheduled in half-warps, 16
threads. Warps correspond to the efficient memory access, if all threads in
a warp access aligned data from memory, the access will match the require-
ments for coalesced access.

3.2.3 C for CUDA

C for CUDA extends the C programming language by adding function type
qualifiers, function call syntax, some special variables, intrinsic functions, and
special external functions through the SDK [18]. The added coded is handled
by the NVIDIA compiler nvcc, which identifies code meant for the GPU and
compiles this separately from the CPU code. Afterwards, these two binaries
are combined into one executable file. The most important extensions are
explained below. A description of all C for CUDA functionalities used in the
thesis can be found in Appendix C.

Function Type Qualifiers

To specify to the compiler that one wants certain parts of the program to
be run on the GPU, a specifier ( global or device ), is added to the
function declaration, which makes the function callable from the CPU or the
GPU respectively. When calling such functions, one needs to specify a set of
parameters, the number of blocks to execute the computational kernels on
and the number of threads in each block. For example, specifying 500 blocks
and 128 threads each would give a total of 64000 threads to run the given
code. C for CUDA is explained in more depth in The CUDA Programming
Guide [10] and The CUDA Reference Manual [11].
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Variable Type Qualifiers

Similar to function type qualifiers, C for CUDA also introduces qualifiers to
specify variables that reside on the GPU. device specifies that the variable
resides on the device, constant and shared define if the variable is in
constant or shared memory respectively. Constant memory is available to
all threads of a kernel, while shared is only accessible by threads in the
corresponding thread block.

Execution Configuration and Built-in Variables

As explained in Section 3.2.2, one must specify how a kernel is executed. The
<<< nBlocks, nThreads, sharedMemory, stream >>> expression enables
the programmer to specify the number of blocks, the number of threads in
each block, the amount of shared memory that is dynamically allocated per
block, and the handle of the stream on which one wants to execute the kernel.
The directive is placed between the name of the kernel that will be called
and the parenthesized argument list.

The number of blocks (nBlocks) and the number of threads per block
(nThreads) is specified as a dim3, that is a uint3 structure that holds 3
integers x,y, and z. Specifying for example dim3(3, 2, 1) means having 6
blocks total (having y set to anything but 1 is not supported on current
GPUs) and specifying for example dim3(8, 8, 1) as the number of threads
means having a total of 6 × 8 × 8 = 384 threads, 64 per block.

Inside the kernel, one can uniquely identify the current thread by query-
ing the built-in variables that take values from the execution configuration.
These built-in variables match the specification variables in that they are
dim3 as well. gridDim contains the size of the grid, the same as the nBlocks
above, likewise blockDim contains the size of the block the querying thread
is in, the same as nThreads above. blockIdx gives the location of the block
within the grid and threadIdx gives the location of the thread within its
block. Combining these one can get the location of the thread within the
grid and map each of them to do work on a uniquely specified datapoint.

Asynchronicity

The CUDA architecture allows the programmer to run many different kernels
concurrently, so as to utilize all the available cores. This is done by making
asynchronous calls to kernels. The CPU part of the code will call the wanted
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kernels, and continue separately from the GPU until either syncthreads() is
called, or a memory transfer, which will block until the kernels are done, is
initiated.

Example Code

Use of the above extensions may be seen in Listing 3.5. The program loads
data into the GPU memory, increments all the values in the array by one,
and copies it back to system memory. The kernel is preceded by global
to specify that is is a GPU function, and blockIdx, blockDim, threadIdx
are used to access unique data elements per kernel. The values for these
variables are passed in the execution configuration of the kernel call.

3.2.4 CUFFT

When releasing the SDK, NVIDIA also released libraries to do Fourier trans-
forms and linear algebra. The CUFFT [12] Fourier transform library, pro-
vides an interface that is modeled after the ”Fastest Fourier Transform in
the West”, FFTW [12], and therefore is quite simple to utilize. CUFFT is
generally slower than FFTW when computing an FFT for fewer than 8192
elements [21]. However, if one can utilize the batch option which is available
for 1 dimensional CUFFT FFTs, the speedup compared to the FFTW is
significant. The batch option enables scheduling more than one FFT simul-
taneously.

3.2.5 Occupancy Calculator

The occupancy calculator is a spreadsheet provided by NVIDIA [33]. After
entering the number of threads per block, the number of registers used per
thread and the amount of shared memory used per block into the spread-
sheet, it will produce three graphs showing the occupancy of the SMs. The
occupancy shows how many thread warps are available for each multipro-
cessor to schedule to hide memory latency. Higher occupancy will often
mean faster execution of the whole kernel. The graphs show the current
settings and expected gains and losses associated with changing the num-
ber of threads, registers, and shared memory usage. Adding the option
“− − ptxas − options = −v” to the nvcc compiler will print the number
of threads, registers, and shared memory used.



3.2. CUDA 27

1 g l o b a l void incrementArrayOnDevice ( f loat ∗a , int N)
2 {
3 int idx = blockIdx . x∗blockDim . x + threadIdx . x ;
4 i f ( idx<N) a [ idx ] = a [ idx ]+1. f ; // Equ iva l en t o f a s e q u e n t i a l

for−l oop
5 }
6
7 int main ( void )
8 {
9 f loat ∗a h , ∗b h ; // p o i n t e r s to hos t memory

10 f loat ∗a d ; // po in t e r to dev i c e memory
11 int i , N = 10 ;
12 s i z e t s i z e = N∗ s izeof ( f loat ) ;
13
14 // a l l o c a t e arrays on hos t
15 a h = ( f loat ∗) mal loc ( s i z e ) ;
16 b h = ( f loat ∗) mal loc ( s i z e ) ;
17
18 // a l l o c a t e array on dev i c e
19 cudaMalloc ( ( void ∗∗) &a d , s i z e ) ;
20
21 // copy data from hos t to dev i c e
22 cudaMemcpy( a d , a h , s izeof ( f loat ) ∗N, cudaMemcpyHostToDevice ) ;
23
24 // do c a l c u l a t i o n on dev i c e :
25 // Part 1 o f 2 . Compute execu t i on c o n f i g u r a t i o n
26 int b lo ckS i z e = 4 ;
27 int nBlocks = N/ b lo ckS i z e + (N%blockS i z e == 0?0 : 1 ) ;
28
29 // Part 2 o f 2 . Ca l l incrementArrayOnDevice k e r ne l
30 incrementArrayOnDevice <<< nBlocks , b l o ckS i z e >>> ( a d , N) ;
31
32 // Ret r i eve r e s u l t from dev i c e and s t o r e in b h
33 cudaMemcpy( b h , a d , s izeof ( f loat ) ∗N, cudaMemcpyDeviceToHost ) ;
34 }

Figure 3.5: Example CUDA kernel and kernel call, copy data to GPU, do com-
putation, and copy the result back to host.
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Chapter 4

Implementation

This chapter will present the algorithm and how it is meant to solve the
problem of ultrasound aberration. It will also detail the implementation of
the algorithm and the workings of the code of the implementation on the
GPU.

4.1 The Algorithm

Several steps are required to estimate and correct the aberration in ultra-
sound signals. This thesis follows the process described by Måsøy [1], and it
can in general terms be stated as follows:

• Select a subsample of data in the time-domain.

• Extract relevant frequencies from dataset.

• Compute correlation matrix.

• Compute coherence matrix.

• Calculate weight matrix.

• Iteratively apply weight matrix to previous correction filter to get new
correction filter.

The first step is considered to be already performed in this thesis. How-
ever, the second step is relevant, because one has to decide on performing the
algorithm in the frequency domain or in the time domain. Both are possible,

29
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Figure 4.1: Convolution is a filter applied to all elements of an array, weighing all
neighbors of the element and saving the sum for the center element.

but the computation of the algorithm is faster in the frequency domain. Be-
cause one uses a smaller data set, one selects a set of relevant frequencies and
compute an average correction filter per position in the time domain rather
than computing a separate correction filter per position. In this thesis, the
computations are performed in the frequency domain.

The core steps of the algorithm are dependent on each other: computing
the weight matrix uses the coherence matrix together with the correlation
matrix. It may therefore be logical to combine these into one process that
computes all the steps.

The correlation process as it is applied to the matrix is very similar to
image convolution. Convolution is a sliding window that applies a filter to all
neighbors of each element in the image and saves the sum of the computation.
In this case there are only some more operations applied to the final sum,
and the weights being applied are uniform, having the value of the center
element. Convolution is illustrated in Figure 4.1.

Finally, applying the weights to the previous correction filter is a iterative
process, whereby one calculates new weights and combines these with the
previous correction filter. Deciding on the number of iterations to ensure
convergence is often done by computing the error between the new value and
the previous. Alternatively, one can compute a certain number of iterations
that is certain to be enough to converge.
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4.2 Process

The code has been implemented to be part of the Abersim 2.0 simulation
software, and can be executed as a function call or as a choice when executing
the command line version of Abersim. The data to be used in the command
line version is currently read from a file, the name of which is specified on
execution.

4.2.1 Loading data

The data is received as 64-bit double precision floating point values (double),
and converted to 32-bit single precision floating point values (float). Preci-
sion is reduced to fit the data inside the smaller memory area. The reason
for doing so is that the GPU is primarily used for working with single preci-
sion floats, and has only a few computational units available to compute on
doubles [29]. The conversion (cast) to floats is therefore beneficial for later
computations.

The data is read from MATLAB files using MATIO library [34] which
enables reading MATLAB files from C code. The input data is normalized
to the maximum value of the set as described in Equation 4.1, to avoid
overflows when using floats.

u z = u z/max(u z(:)) (4.1)

The matrix is copied to the GPU as doubles, and cast to floats, using the
computational units set aside for double computations.

4.2.2 Discrete Fourier Transform

When estimating and correcting aberration in ultrasound images, the focus is
on the amplitude and phase of the received signal. To attain this information,
one must transform the data to a frequency spectrum. This is done by the
Fourier transform. The Fourier transform is a mathematical transform from
the time domain to the frequency domain. By taking the dataset of the
signal received over a given timeframe, one can find the frequencies that are
prevalent in the signal received.

To perform the discrete Fourier transform a fast Fourier transform [36][35]
is used. The NVIDIA CUDA FFT, CUFFT [12] implementation already
available as a library from NVIDIA is used. This library is similar to The
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Fastest Fourier Transform in the West, FFTW [37] and has similar functions.
The main difference is that CUFFT uses the GPU to perform the FFT, while
FFTW uses the CPU.

The 3-dimensional matrix of floats that was copied to the GPU is passed
to the CUFFT library, which performs Fourier transforms on each of the
data arrays representing data from one transducer element in parallel. The
resulting dataset is a 3-dimensional matrix of complex numbers.

4.2.3 Comparison

The next step in the process is to compare values to their neighbors to find
the correlation between them and thereby deduce how much aberration there
is. This results in a value for each element which describes how divergent
the data from that transducer element is. The goal is to compute a new
correction filter that can be applied to the next transmitted signal and re-
move aberrations estimated from the previous signal. Equation 4.2 is the
calculations that finds the new correction filter, it is explained more fully by
Måsøy [1] and Angelsen et al. [38].

Sk,l =
∑
m

∑
n

|Yk,lY ∗k−m,l−n|2√
|Yk,l|2

√
|Yk−m,l−n|2

Yk,lY
∗
k−m,l−n

1
Sk−m,l−n

(4.2)

Yk,l represents the transducer element being considered, which is the cen-
ter of the neighborhood. Y ∗k−m,l−n is the complex conjugate of a neighboring
transducer element.

The data from the FFT is passed to the comparison kernel, henceforth
called the correlation kernel. This kernel incorporates all sections of the
algorithm, since they are all computed for each transducer element.

The signal is in practice often different from a theoretical result. The
signal contains a lot of noise and other fluctuations, giving a frequency spec-
trum where it can be hard to find the center frequency. Therefore, instead of
extracting one value from the Fourier transform, an average of frequencies in
a band of frequencies around the assumed center frequency is used. Figure
4.2 illustrates selecting the different frequencies for each transducer element.
This removes noise, as well as making sure the relevant signal is used, as
it may have been shifted out of focus. A range of values is loaded for each
transducer element then. The previous correction matrix is also loaded into
shared memory, as it is needed for the computations.



4.2. PROCESS 33

Figure 4.2: Illustration of selecting several values from the 3-dimensional matrix
resulting from the Fourier transform. Computation is done on several frequencies
around the center frequency of each transducer element Yk,l. B is the bandwidth,
the number of frequencies.

Each thread loads the data for each respective transducer element, and
synchronize to ensure that all threads are done loading data. This gives all
threads access to the neighboring data which they need. Subsequently, each
thread performs a double loop for vertical and horizontal elements, where
for each neighbor within the comparison area the comparison algorithm is
performed.

Correlation

Correlation is a measure of similarity of two elements [43]. One wants to look
at how similar an element is to its neighbors. Since the signal received by
neighboring elements has traveled through almost the same tissue, it should
be similar. Measuring to what degree the considered element is similar to its
neighbors one can determine if its value is too high or too low. A value that
is divergent compared to its neighbors is adjusted.

Each element is multiplied with the complex conjugate of the neighbor.
The result is a value giving the similarity of the two elements. A zero value
means no correlation while a high positive or negative value means high pos-
itive or negative correlation between elements. Positive correlation meaning
that when one element varies, the other element varies similarly. Negative
correlation means that when one element varies the other element varies in
the opposite direction.
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The process is repeated on each neighbor pair for each frequency, and the
final sum is divided by the number of frequencies as expressed by Equation
4.3.

R(k, l,m, n) = 1
B

b∑
Yk,lY

∗
k−n,l−m(b) (4.3)

Coherence

The coherence calculation is also called the normalized cross-correlation as
seen in Equation 4.6. It is found by dividing the correlation by the magnitude
of each of its parts. In this case, the parts are magnitudes of the current
element and the neighboring element. Equations 4.4 and 4.5 are calculations
of the parts. The returned value is normalized between 0 and 1, which
ensures that the correlation will not add or subtract any energy from the
whole equation.

R(k, l) = 1
B

b∑√
|Yk,l(b)|2 (4.4)

R(k −m, l − n) = 1
B

b∑√
|Y ∗k−m,l−n(b)|2 (4.5)

W (k, l,m, n) = R(k, l,m, n)√
R(k, l)

√
R(k −m, l − n)

(4.6)

Weight

The new weight that is to applied to the correction filter based is calculated
on the comparison of the neighboring elements. It is the magnitude of the
coherence multiplied with the correlation as seen in Equation 4.7.

M(k, l,m, n) = |W (k, l,m, n)|R(k, l,m, n) (4.7)

Correction

The weight is applied to the current correction values of the neighboring
elements as seen in Equation 4.8.

Snew(k, l) =
∑
m,n

M(k, l,m, n) 1
Sq(k, l,m, n) (4.8)
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Reduction

After cross-correlation with the neighbors, the sum of all the correction values
from the neighbors is used to calculate the new correction filter value for the
element being considered. A convergence factor, µ, is used to speed up the
convergence. Equation 4.9 shows the calculation performed.

Sq+1(k, l) = (1− µ)Sq(k, l) + µSnew(k, l) (4.9)

Iteration

The value obtained by this kernel is not a complete solution, and thus, one
must iterate over the solution to get a converging value. Iteration stops when
the change between the newly calculated correction filter and the one from
the previous iteration is below a given threshold as shown by Equation 4.10.

|Sq|/|Sq+1| > ε (4.10)

The final S is the correction filter that can be applied to the next trans-
mitted signal, to remove aberration.

4.2.4 Saving Data

After computation completes, the resulting correction matrix is written out
to file. The matrix is saved as two separate matrices called amplitude and
phase, containing the real data and the imaginary data respectively..

4.3 Code

This section describes the workings of the code in greater detail. It will fol-
lows program execution, and presents code needed to perform the different
steps of the process described in the previous section. Excerpts of the pro-
gram are shown for illustration. Complete code can be found in Appendix
F. Appendix C gives more information about the different CUDA functions
used.



36 CHAPTER 4. IMPLEMENTATION

4.3.1 Using Streams

CUDA enables asynchronous concurrent execution of kernels using streams
[10], meaning that all operations executed on a stream will execute in order,
but not necessarily in order in relation to other streams that may be execut-
ing. This functionality is used because it may improve speed when used on
continuous data such as a real-time ultrasound scan, where data is received
every time a new scan is completed.

The streams may then take advantage of the computation of the algo-
rithm being in different stages; copy to device, cast to float, compute FFT,
compute new correction filter, and copy back to host. Using streams, one
may start another stream copying when the first stream has finished the copy
to device stage and so on. It is possible to run several computational kernels
simultaneously. This will give a higher throughput, by letting more compu-
tations be done simultaneously. Too many streams will, however, not result
in a speedup, as streams will become queued waiting for each other to finish
utilizing the GPU.

Since every stream needs its own separate memory, to take effect of the
multiple streams opportunity, the allocated memory that is needed is much
larger than with a single stream. One needs a full memory area for each
stream. This limits the number of streams admissible, since there is limited
memory on the GPU and the host. However, the number of streams needed
to concurrently execute all the stages of the algorithm is not high enough
that the maximum memory limit should be reached.

4.3.2 Initializing Memory

This step is completed only once, and its timings are therefore not included
in any results. The memory is initialized on both the host and on the CUDA
device. The following code describes part of the allocation process and the
most important calls. The matrices are allocated as 1-dimensional arrays
because CUDA does not support pointer-to-pointers style arrays. Listing 4.3
shows some of the allocations done, see Appendix F for complete code.

By using the cudaMallocHost function, one allocates page-locked mem-
ory on host, enabling cudaMemcpy2DAsync. The allocation itself is slower,
but copying data from this memory to device is much faster [10]. cudaMallocP itch
allocates aligned memory on the device, padded to allow multiples of 16-bit
transfers to be used fully. This is used for 2D arrays as it enables cudaMem-
cpy2D. sP itch gives the size of padded array in bytes. cudaMalloc allocates
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1 f f tw f complex ∗ f s r c ; // f l o a t ve r s i on o f f f t w complex numbers .
2 // A l l o c a t e page−l o c ked memory f o r f a s t e r t r a n s f e r
3 cudaMallocHost ( ( void ∗∗) &f s r c , streams ∗ t o t s i z e
4 ∗ s izeof ( f f tw f complex ) ) ;
5
6 cufftComplex ∗ elementMatrix , ∗ cu f f tResu l tMat r i x ;
7 //Data to CUFFT
8 cudaMalloc ( ( void ∗∗) &elementMatrix ,
9 s izeof ( cufftComplex ) ∗ streams ∗ t o t s i z e ) ;

10 // Resu l t from CUFFT
11 cudaMalloc ( ( void ∗∗) &cuf f tResu l tMatr ix ,
12 s izeof ( cufftComplex ) ∗ streams ∗ t o t s i z e ) ;
13
14 cufftComplex ∗rM h , ∗eM d , ∗sM d , ∗sOM d , ∗rM d ;
15 s i z e t ePitch , sPitch , sOPitch , rP i tch ;
16 cudaMallocPitch ( ( void ∗∗) &sM d , &sPitch ,
17 x s i z e ∗ s izeof ( cufftComplex ) , streams ∗ y s i z e ) ;

Figure 4.3: In the program initialization, all memory used is allocated, both on
the GPU and the host.

unaligned linear memory on the device, used here for the 3D matrix returned
from the FFT.

Almost all memory used is for cufftComplex datasets, with elements con-
taining two floats x and y, one used for real values and one for imaginary
values.

4.3.3 Loading Data

The code described in Listing 4.4 is the code executed to load the double-
precision data matrix from the MATLAB file. The constants, xsize, ysize,
zsize, totsize, and streams are, respectively, the width, height, time dimen-
sion, total size of one 3-dimensional matrix, and number of streams. fnstr
is the filename of the MATLAB file where the matrix is to be found. The
matrix is read from file, and transposed to convert from the column-major
ordering of MATLAB to row-major ordering.

The doubles are copied to the device, and cast to floats. Both casting
on the host and the GPU was tried, and using the GPU was found to be
marginally faster.

As described in Listing 4.5, both cudaSrc and elementMatrix contain
both real and imaginary values, thereby casting these to double and float re-
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1 cudaMallocHost ( ( void ∗∗) &src , t o t s i z e ∗ streams
2 ∗ s izeof ( f f tw complex ) ) ;
3 double ∗u ;
4 u = (double∗) mal loc ( x s i z e ∗ y s i z e ∗ z s i z e ∗ s izeof (double ) ) ;
5
6 long long int r e t ;
7 r e t = r e a d g e n f i l e ( x s i z e , y s i z e , z s i z e , f n s t r , ” u z ” , u ) ;
8 i f ( r e t ) {
9 w r i t e l o g ( l o g s t r , ”Matrix may not be loaded f u l l y ” ) ;

10 }
11
12 for ( x = 0 ; x < n1 ; x++) {
13 for ( y = 0 ; y < n2 ; y++) {
14 for ( z = 0 ; z < n3 ; z++) {
15 s r c [ z + y ∗ n3 + x ∗ n2 ∗ n3 ] [ 0 ] =
16 u [ z ∗ n1 ∗ n2 + y + x ∗ n1 ] ;
17 }
18 }
19 }

Figure 4.4: Data is loaded from the file specified when calling the aberration
estimation and correction function.

spectively enables reading each matrix continuously and not having to extract
the real elements and the imaginary elements separately. This simplifies the
casting kernel. Because the casting process is just reading data from memory
and writing it back again, the maximal number of blocks are used, either the
same amount as there are elements in the matrix, or the CUDA specified
maximum of 512. The same applies to the number of threads. This spawns
many threads, making the huge delay in accessing memory more transparent.
The code of the casting kernel is given in Listing 4.6.

4.3.4 CUFFT

Using the CUDA FFT requires little configuration, one selects the size of
the transform, N, and the type of transform. Since the data is in complex
format already, complex-to-complex is used. Finally, the number of batches
to compute simultaneously is selected. The functions called are shown below
in Listing 4.7.
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1 int b locks = iDivUp ( t o t s i z e ∗2 , 512∗30) ∗ 30 ;
2 i f ( b locks > 512) b locks = 512 ;
3 int threads = 512 ;
4 i f ( t o t s i z e ∗2 < 512) threads = t o t s i z e ∗2 ;
5
6 nBlocks = dim3 ( b locks ) ;
7 b l o ckS i z e = dim3 ( threads ) ;
8
9 double∗ dcudaSrc = (double∗) cudaSrc ;

10 f loat ∗ feM = ( f loat ∗) elementMatrix ;
11 cuda castFromDouble<<<nBlocks , b lockS ize , 0 , stream [ s]>>>(
12 (double∗) ( ( char∗) dcudaSrc + s ∗ s izeof (double ) ∗ t o t s i z e ) ,
13 ( f loat ∗) ( ( char∗) feM + s ∗ s izeof ( f loat ) ∗ t o t s i z e ) ,

t o t s i z e ∗2) ;

Figure 4.5: The data is casted from double to float using a CUDA kernel. The
arrays are cast before calling the calling the kernel to allow continuous access.

1 g l o b a l void cuda castFromDouble (
2 double∗ src , f loat ∗ eM, int s i z e ) {
3
4 int idx = threadIdx . x + blockIdx . x ∗ blockDim . x
5 + blockIdx . y ∗ blockDim . x ∗ gridDim . x ;
6 for ( int i = idx ; i < s i z e ;
7 i += blockDim . x ∗ gridDim . x ∗ gridDim . y ) {
8 eM[ i ] = ( f loat ) s r c [ i ] ;
9 }

Figure 4.6: Each thread loads a part of the 3D matrix and casts elements of it to
float, saving the result in a new array.

4.3.5 Comparison

The comparison kernel is executed on parts of the matrix. Before executing
the kernel, the number of threads is selected. The maximum of threads that
can be run per thread block depends on the amount of shared memory used.
The maximal amount of memory available per thread block is 16384 bytes for
the current GPUs. Using a bandwidth of for example 15 frequencies around
the center frequency, the number of threads one could have would be 121.
121 × 15 × 8 bytes = 14520 bytes, and including the previous correction
filter, 14520 + 121 ∗ 8 bytes = 15488 bytes. The limit of shared memory
that can be used by a block is 16384 bytes, the maximum available to a SM.
Thus, the maximal number of threads possible using 15 frequencies will be
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1 cu f f tP lan1d (&plan , N, CUFFT C2C, BATCH) ;
2 cufftExecC2C ( plan , eM, rM, CUFFTFORWARD) ;

Figure 4.7: CUFFT is set up using cufftPlan*() and executed using cufftExec*()

11 × 11 = 121. Dividing the dataset into areas of this maximum size and
making space for the filter radius, one finds the number of blocks needed to
cover the whole dataset. For example, with a 5× 5 kernel, the radius would
be 4, 2 on each side of the center, resulting in 7 × 7 = 49 blocks needed to
cover a 100 × 100 dataset.

The Kernel

The kernel is the code executed by each of the threads to compute the cor-
rection matrix and also the window of neighbors that is placed over each
element. The former will be called the computational kernel while the latter
is just the kernel. The computational kernel is code in the form of a single
program executed by a single thread, but with use of the built-in variables
described in Section 3.2.3. This varies the values of variables of the kernel
depending on the thread location in the grid and thus accesses different areas
of the memory.

More threads are used to load the shared memory than perform the com-
putation, this is because an apron of values is needed. Since the elements
being computed on the edge of the kernel needs data from the neighboring
values, these need to be loaded, but the correction computation for those
values is done by a different computational kernel. Using more threads just
to load data seems wasteful, but it is often faster than implementing more
branching code for the remaining threads. To disable the redundant loading
threads when computing the correction filter a conditional statement is used
to select only the threads that should do computation. Listing 4.8 shows the
statement disabling the threads.

In addition to speeding up loading, this method removes the need to make
sure that the number of threads fit the matrix perfectly, as all threads that
would have accessed memory outside the matrix are disabled as well. This is
a simplification which wastes threads. However, it is often difficult to specify
the number of threads exactly when setting up the execution configuration
since the number of threads is a product of 3 values. The threads within the
computation area of the kernel are enabled for computation, while the others
are disabled.
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1 bool a c t i v e = f a l s e ; // In s i d e matrix
2 bool wr i t e = f a l s e ; // In s i d e computed r e s u l t
3 i f ( g l oba lx >= 0 && globa ly >= 0
4 && globa lx <= xs i ze −1 && g loba ly <= ys i ze −1) {
5 a c t i v e = true ;
6 i f ( ( x >= KERNEL RADIUS && x <= (( xs−1)−KERNEL RADIUS)
7 && y >= KERNEL RADIUS && y <= (( ys−1)−KERNEL RADIUS) ) ) {
8 wr i t e = true ;
9 }

10 }

Figure 4.8: Threads working inside the kernel are activated, while threads only
loading the apron are disabled for the computations.

Figure 4.9: The kernel is the inner area, but computations needs data from the
whole square which includes the outer area called the apron.

Data that is needed to do the computation but will not be updated itself
is called the apron of the kernel, see Figure 4.9. When allocating memory on
the device, it is not cleared, and may contain arbitrary values. The matrix
on the GPU is padded with a number of elements equal to the width of the
apron, to keep all accesses within the allocated memory area. The apron’s
values are set to zero if they extend outside the unpadded matrix, to prevent
random data from the memory.

The shared memory is shared between all the threads of the thread block,
and is declared outside the kernel. The size of the memory is dynamically
allocated in the execution configuration, and is available as one large memory
area. To subdivide the memory into portions used for different matrices, one
must explicitly create pointers to the memory area, using offsets. Listing
4.10 is the declaration of the shared variable outside of the kernel, followd by
the pointers pointing to locations in shared memory, offset by the portions
used. The computations of the correlation, coherence, weight, and correction
is done as a double for-loop of kernel width in both directions as showing in
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Listing 4.11.

1 extern s h a r e d cufftComplex shared [ ] ;
2
3 cufftComplex ∗data = shared ;
4 cufftComplex ∗ s = &(shared [ xs∗ys ∗( bandwidth+1) ] ) ;

Figure 4.10: Shared memory is allocated as one large memory block, and must
be accessed using offsets.

1 // f o r loop v e r t i c a l k
2 #pragma un r o l l 5
3 for ( int k = −KERNEL RADIUS; k <= KERNEL RADIUS; k++) {
4
5 // f o r loop h o r i z o n t a l l
6 #pragma un r o l l 5
7 for ( int l = −KERNEL RADIUS; l <= KERNEL RADIUS; l++) {

Figure 4.11: The for-loop covering the whole kernel. Only loop configuration is
shown in the figure.

The following sections will follow the same form as Section 4.2.3 and
explain the code used to achieve the goals described there.

Correlation

Computing the correlation one multiplies the considered element with the
complex conjugate of the neighboring elements for all frequencies in the band
as seen in Listing 4.12.

The data is read from shared memory using data[smemPos+i∗B], which
refers to the considered element at the frequency i in the band. The variable
smemPos gives the base address of the considered element in respect to
the thread executing. By adding B, which is the width and height of the
kernel with apron, one accesses the next frequency, as they are loaded into
shared memory as consecutive matrices for each frequency. The k variable is
varied by the for-loop to change the vertical position accessed and the l in
the horizontal direction. To help the compiler unroll the loops, the #pragma
unroll is used to tell how many times the loop should be unrolled.
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1 //R( k , l ,m, n)
2 #pragma un r o l l 15
3 for ( int i = 0 ; i < BANDWIDTH+1; i++) {
4 R klmn . x += data [ smemPos+i ∗B ] . x
5 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x
6 + data [ smemPos+i ∗B ] . y
7 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;
8 R klmn . y += data [ smemPos+i ∗B ] . y
9 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x

10 − data [ smemPos+i ∗B ] . x
11 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;
12 }
13 R klmn . x /= (BANDWIDTH+1) ;
14 R klmn . y /= (BANDWIDTH+1) ;

Figure 4.12: The correlation is computed for all frequencies in the frequency band
around the center frequency.

Coherence

The computation of R(k, l) is only dependent on the value of the element
being considered and can thus be computed before the double for-loop. The
computation of R(k, l) and R(k−m, l− n) is also performed over the whole
frequency band. The imaginary part is cancelled by the computation of the
magnitude. Listing 4.13 shows the computations.

1 R kl += data [ smemPos+i ∗B ] . x
2 ∗ data [ smemPos+i ∗B ] . x
3 + data [ smemPos+i ∗B ] . y
4 ∗ data [ smemPos+i ∗B ] . y ;
5
6 R mn += data [ smemPos + k∗xs + l + i ∗B ] . x
7 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x
8 + data [ smemPos + k∗xs + l + i ∗B ] . y
9 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;

Figure 4.13: Computations of the magnitude of the parts of the correlation.

The coherence is the normalization of the correlation. The smallest
nonzero number representable as a float is added to prevent any divide-
by-zero problems. The code for the coherence computation can be seen in
Listing 4.14.
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1 //W( k , l ,m, n)
2 W klmn . x = R klmn . x / ( R kl ∗ R mn + 1e−5) ;
3 W klmn . y = R klmn . y / ( R kl ∗ R mn + 1e−5) ;

Figure 4.14: Computing the coherence is dividing the correlation with the mag-
nitude of its parts.

Weight

The weight applied to the previous correction matrix is computed by applying
the absolute value of the coherence to the correlation as seen in Listing 4.15.

1 //M( k , l ,m, n)
2 M klmn . x = s q r t f (W klmn . x∗W klmn . x
3 + W klmn . y∗W klmn . y ) ∗ R klmn . x ;
4 M klmn . y = s q r t f (W klmn . x∗W klmn . x
5 + W klmn . y∗W klmn . y ) ∗ R klmn . y ;

Figure 4.15: To find the weight, the absolute value of the coherence is multiplied
with the correlation.

Correction

To compute the updated correction matrix, one applies the weight to the
neighborhood around the considered element in the previous iteration. The
computation is a division of complex numbers and can be seen in Listing
4.16. The epsilon is again added to counter divide-by-zero problems.

Reduction

Finally, the next iteration of new correction matrix is computed using the
previous correction matrix as the guess. The convergence factor is included
to ensure convergence. The code can be seen in Listing 4.17.

Iteration

The computation is an iterative process, performed until the values for the
correction filter converge. The previous version of the correction filter which
will be used when checking if the next iteration has converged is first saved.
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1 // new s
2 sum . x += (M klmn . x ∗ s [ smemPos + k∗xs + l ] . x
3 + M klmn . y ∗ s [ smemPos + k ∗ xs + l ] . y )
4 / ( s [ smemPos + k∗xs + l ] . x
5 ∗ s [ smemPos + k∗xs + l ] . x
6 + s [ smemPos + k∗xs + l ] . y
7 ∗ s [ smemPos + k∗xs + l ] . y + 1e−5) ;
8 sum . y += (M klmn . y ∗ s [ smemPos + k∗xs + l ] . x
9 − M klmn . x ∗ s [ smemPos + k ∗ xs + l ] . y )

10 / ( s [ smemPos + k∗xs + l ] . x
11 ∗ s [ smemPos + k∗xs + l ] . x
12 + s [ smemPos + k∗xs + l ] . y
13 ∗ s [ smemPos + k∗xs + l ] . y + 1e−5) ;

Figure 4.16: The updated correction matrix is computed, it is a complex division
of the weight by the previous correction values of the neighbors.

1 sum . x = (1 . 0 f − mu) ∗ s [ smemPos ] . x + mu ∗ sum . x ;
2 sum . y = (1 . 0 f − mu) ∗ s [ smemPos ] . y + mu ∗ sum . y ;

Figure 4.17: The iterative step, combining the previous correction matrix with
the updated correction matrix to achieve a convergence.

Thereafter, the new correction filter is copied to the host. The difference
between the two matrices is found and the average difference is computed as
shown in Listing 4.18. The minError variable is compared to the epsilon set
as the convergence term, and the iteration ends if it is below the threshold.

4.3.6 CPU Version

A CPU version of the code was also implemented. This computes the al-
gorithm in the same way as the GPU version, but using only one thread.
The CPU implementation is used to compare the performance of the paral-
lel implementation to a nonparallel implementation. The code for the CPU
version can be found in Appendix F.
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1 // Ca l cu l a t e Error us ing CPU
2 f loat temp = 0 ;
3 for ( j = 0 ; j < y s i z e ; j++) {
4 for ( k = 0 ; k < x s i z e ; k++) {
5 temp += sqr t ( sOLD h [ k+j ∗ x s i z e ] . x ∗ sOLD h [ k+j ∗ x s i z e ] . x
6 + sOLD h [ k+j ∗ x s i z e ] . y∗sOLD h [ k+j ∗ x s i z e ] . y )
7 / sq r t ( s h [ k+j ∗ x s i z e ] . x∗ s h [ k+j ∗ x s i z e ] . x
8 + s h [ k+j ∗ x s i z e ] . y∗ s h [ k+j ∗ x s i z e ] . y ) ;
9 }

10 }
11 temp /= y s i z e ∗ x s i z e ;
12 temp = abs ( temp − 1 .0 f ) ;
13 i f ( temp < minError ) {
14 minError = temp ;
15 }

Figure 4.18: The difference between the new correction matrix and the previous
one is computed to check for convergence.



Chapter 5

Evaluation

This chapter presents the test setup as well as the data used to benchmark
the program. Section 5.1 describes the benchmark setup for both the CPU
and the GPU. Section 5.2 lists the benchmark results. In Section 5.2.2, the
performance of the CPU version of the algorithm and the GPU algorithm
are compared and in Section 5.3 the overall result is discussed and evaluated.

5.1 Test Setup

This section describes the computer setup used for benchmarking, and how
the test dataset was created.

5.1.1 Computer setup

The computer used for the benchmarking of the algorithms was a 2.83GHz
Intel Core 2 Quad CPU with a NVIDIA Tesla C1060 graphics device. The
operating system was Ubuntu 9.04 Linux using NVIDIA graphics drivers
185.19 and CUDA 2.1. Only one of the CPU cores was used for computation
of the CPU portion of the program. The specifications of the GPU can be
found in Table 5.1.

5.1.2 Dataset

The dataset for the benchmark is supplied by Kaupang[31]. The dataset is
the result of a simulation of a signal fired from the transducer with a center

47
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Table 5.1: The specifications of the NVIDIA Tesla C1060.

Global memory 4 GB
Number of streaming multiprocessors
(SM)

30

Number of cores 240
Constant memory 65536 bytes
Shared memory per block 16384 bytes
Registers available per block 16384
Warp size 32
Maximum number of threads per block 512
Maximum sizes of each dimension of a
block

512 x 512 x 64

Maximum sizes of each dimension of a
grid

65535 x 65535 x 1

Clock rate 1.30 GHz
Concurrent copy and execution Yes

frequency 3.5 MHz. The body wall used is 20 mm thick and designed to
match abdominal wall characteristics. The measurements of the echo are
then stored in a 3-dimensional matrix of 100 × 100 × 512 double-precision
floating-point values, representing the 512 element signal received from the
100 × 100 elements of the transducer. The bandwidth is 50 %, given a
sampling frequency of 70.248 MHz and an in place Fourier transform, this
equals 15 elements for each transducer element: 7 on each side of the assumed
center frequency. The simulation setup is described in Figure 5.1.

5.2 Results

The program produces a correction filter, which is a matrix of complex num-
bers. Each element in the matrix represents the estimated weight that should
be applied to the signal produced by the corresponding transducer element
to remove aberration caused by the body wall. From each complex value, an
amplitude and a phase can be computed and these values are applied to the
next signal in accordance with Figure 2.12. The calculations in Equations
5.1, 5.2, and 5.3[42], compute the amplitude and the phase from the complex
numbers.
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Figure 5.1: Simulation with 100 × 100 transducer elements, 20 mm body wall, 60
mm focal depth, 3.5 MHz center frequency producing 512 samples. Reproduced
from [31], edited.

Z = a+ bi (5.1)

A = |Z| =
√
a2 + b2 (5.2)

θ = ∠Z = tan−1 b

a
(5.3)

The resulting amplitude and phase values may then be applied to the
next transmitted signal to counter the aberration.

The resulting correction matrices can be visualized using MATLAB. Fig-
ures 5.2 and 5.3 show the amplitude weights and the time delay that should
be applied to the next transmitted signal respectively. The scale in the am-
plitude image is logarithmic, and the scale in the phase image is linear.

5.2.1 Iteration

The weights are iteratively computed, and applied to the previous correction
filter. Figures 5.4 and 5.5 show the iteration for both the amplitude and
phase values of the correction filter. 21 iterations are needed in the test case
for the filter to converge to a precision of 0.01. For a threshold of 0.05 and
0.1, the number of iterations needed are 8 and 3 respectively.

5.2.2 Speedup

The wall clock time used by the GPU and CPU was measured using a timer
function utilizing the SSE functionality of the CPU. To allow for varia-
tions caused by programs running in the background or other elements, the
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Figure 5.2: The amplitude of the correction filter to be applied to next transmitted
signal, computed using GPU.

Figure 5.3: The phase of the correction filter to be applied to next transmitted
signal, computed using GPU.
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Figure 5.4: The amplitude of the correction filter after 1, 2, 4, 7, 10, 14, 18, and
21 iterations.

Figure 5.5: The phase of the correction filter after 1, 2, 4, 7, 10, 14, 18, and 21
iterations.
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Table 5.2: The timing results for 21 iterations of the algorithm on the GPU.

Copy data to device 13.541 ms
Cast using CUDA 1.66 ms
FFT computation 3.468 ms
Correlation computation 133.6 ms
Copy result to host 0.002 ms
Total, without allocations 152.299 ms

Table 5.3: The timing results for 21 iterations of the algorithm on the CPU.

Copy input data to FFTW
structured array

23.188 ms

FFT computation 67.826 ms
Correlation computation 716.192 ms
Total without allocations 807.075 ms

computations were repeated 101 times. Also to remove any inconsistencies
caused by memory allocations, caching, CPU auto clocking function, or sim-
ilar events, the first measurement was discarded.

Figures 5.2 and 5.2 shows the output of the program when printing all
timings. Each section of the algorithm is timed. There is no timing of the
subparts of the correlation computation, as the kernel does not return any
feedback while executing.

By comparing the time taken to complete the same task on the CPU
versus the time taken to complete the same task on the GPU, one can calcu-
late the speedup. Figure 5.6 shows average execution time using a NVIDIA
Tesla C1060 GPU and an Intel Core 2 Quad CPU running at 2.83 GHz. The
average time taken for the GPU is 152.49 milliseconds while the CPU does
the task in 807.23 milliseconds, giving a total speedup of 807.23 / 152.49 =
5.29. Figure 5.6 is a visual representation of the time difference.

The time to copy data from host to device is much larger than that
of copying from device to host. This is because the whole 100 × 100 ×
512 3D matrix of doubles is copied to the GPU, cast to float, and Fourier
transformed, while only a 100 × 100 matrix representing the correction filter
is copied back. Preliminary steps are difficult to compare, as they are not
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Figure 5.6: Average time for GPU and CPU to compute one iteration of the
algorithm, less is better.

equal between the two architectures.
The Fourier transform takes much less time on the GPU. This can be

accredited to the batch option used to compute several FFTs simultaneously,
in comparison the CPU version computes all FFTs sequentially.

Finally, the most time is used on the computation of the correlation, tak-
ing 133 milliseconds on the GPU and 716 milliseconds on the CPU. This
measurement includes all the steps of the algorithm after the FFT, correla-
tion, coherence, weight, correction filter, and iteration.

5.3 Discussion

This section considers the results and looks their significance. It focuses on
how successful the parallelization of the algorithm has been as well as the
correctness of the result produced, execution time and comparing the use of
GPU against CPU. It looks at the possibility of computing this algorithm in
real time, that is, producing a “live” image with the algorithm. Finally, how
the results achieved for this field relates to other fields and if the GPU is a
good hardware to build problem solving software on.

5.3.1 Parallelization

The algorithm used in the program is well suited for parallelization. Since
computations can be done on individual elements of the matrix, one utilizes
many computational units to perform the computations simultaneously. For
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the Fourier transform, using the batch functionality of CUFFT enables the
completion of the FFT less time than using the sequential version of the
CPU.

The correlation is also parallelizable, it can be compared to performing
a convolution over the dataset using a limited kernel. This is especially
efficient on the GPU as it is a graphical task [41]. It is parallelizable since
only a small set of values around the element being considered is needed,
and the calculations for each point can be computed separately. However,
it is not embarrassingly parallelizable, as computation relies on a larger set
of data when considering the bandwidth around the center frequency. The
technique of separable convolution was attempted, but had to be rejected
because the computations for each frequency in the bandwidth could not
be separated. If one could find a way to separate the computation for each
frequency, one would achieve a better parallelization, and probably a more
efficient program.

The implementation should not have a scaling problem, as the dataset
currently uses about 40 MB and the Tesla C1060 has a global memory of
4 GB. For this one needs 49 thread blocks to correlate, while the maximal
number of thread blocks is 655352.

There is, however, little room for extending the bandwidth, which affects
the number of threads one can have per block. Currently, a 15 frequency
band limits the number of threads to 121 per block. The minimum number
of threads one can have per block is 25, 5 × 5, which is the size of the kernel.
Using the minimum number of threads, one is able to have a bandwidth of 79,
that is, 39 elements on each side of and including the center frequency. This
will slow execution down enormously as each thread needs to execute several
for loops of length 79 in the correlation kernel, giving diverging execution
paths. Limited bandwidth may become a problem with long samples of
data, since this would lead to wider FFT results and thus more elements to
cover the same frequency range.

5.3.2 Correctness

The result of computing the algorithm is compared to doing the computations
using MATLAB. Two methods were used in MATLAB and Figure 5.8 shows
the results of the different methods. The main difference is in the algorithm
used.

The MATLAB results are based on Kaupang[31], which does not use the
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Figure 5.7: Unit circle describing how −π and π are opposite, but still very close
values. Wrapping effect is the small change leading to great difference in value,
but not in phase.

same algorithm to find the amplitude and phase of the correction filter. Kau-
pang also smooths the input value to avoid noise and extreme values. This
produces a larger range of values, and different shapes in the resulting visual-
izations. This is especially true for the phase, which seems to be more similar
to the amplitude results than the phase results produced by the program.
This data was, however, used to compare if results from the program seem
reasonable at an early stage with regards to variations in values, and ex-
treme values. Also, because a different estimation and correction algorithm
are used to compute this data, it was not expected to match the program
output.

The second set of images shows the result of a MATLAB script perform-
ing the algorithm used in this thesis. It was developed to have an exact value
to compare program output with. The script was developed by Ph.D. stu-
dent Thor Andreas Tangen at The Department of Circulation and Medical
Imaging at The Norwegian University of Science and Technology. The script
can be found in Appendix E.

The third set of images shows the program output. As can be seen in
the figure, the output the script produces is a scaled version. The results
of the program has the correct form, but differences may be attributed to
numerical instability or the fact that the result is computed using floats while
MATLAB uses doubles. Another reason that the results are different may be
wrapping effects[46], values that exceed π will “flip” around to the negative
side. There is, as can be seen from Figure 5.7, little difference between −π
and π, but it looks quite different as values in the result image.
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Figure 5.8: Amplitude and Phase of aberration correction filter, top images are
results from [31], the middle images are from the MATLAB script in Appendix E,
and bottom images are the program output.
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5.3.3 Timings

As is clearly evident from Section 5.2.2, using the GPU instead of the CPU
is beneficial for this algorithm, with over 5 times greater speed. Performing
the FFT on the GPU is by itself 20 times faster than on the CPU.

The computations of the correction filter for each beam uses information
from the previous beam the subsequent beams should need fewer than 21
iterations for the calculation to converge. This should result in further sig-
nificant speedups, as the difference between computing 21 and 1 iterations is
133 − 39 = 94 milliseconds.

In current ultrasound imaging equipment, there is a standard of 256 trans-
ducer elements and often only a subgroup of these are used to transmit a
beam. The number of elements in this thesis is 10000, computing the algo-
rithm in an actual environment will probably use significantly less time. In
addition, on the smaller dataset a 5 × 5 kernel would probably be too large,
using a 3 × 3 kernel would give smaller for loops inside the computational
kernel, resulting in fewer branches and faster computation.

Bottlenecks

There are some bottlenecks in the program that work against the GPU,
and contribute substantially to the execution time. The two most evident
bottlenecks are shared memory constraints, and single threaded execution.

The major bottleneck in this program is memory access from the corre-
lation kernel. This kernel needs to hold a large amount of shared memory,
because each of its threads accesses an area of 25 neighbors on 15 planes.
To accommodate this, almost the whole shared memory available per block
of threads is used. The amount of shared memory needed per thread block
limits the number of thread blocks that can be executed on a SM at one time,
and thereby the number of warps that can be scheduled, limiting the use of
the GPU. It may also cause memory collisions where threads try to access the
same shared memory bank and have to be serialized, causing further delay.

It is difficult to measure the impact of the larger memory set on perfor-
mance, since there also more computations with the larger set. The correla-
tion kernel takes 39.73 milliseconds running the application with a bandwidth
of 0, meaning only the center frequency. This is about 29.74 % of the com-
putation using a bandwidth of 14 elements, plus the center frequency. The
number of computations is fewer, but it illustrated that the extra memory
usage has large impact on total performance.



58 CHAPTER 5. EVALUATION

A solution may be to align memory reads, or restructure the shared mem-
ory to avoid bank conflicts. Also, a solution may be to perform less of the
computations for every thread, letting the threads reuse other thread’s com-
putations instead of doing them over again. This would limit the accesses to
shared memory. Solutions are further elaborated in Section 6.2.

As explained in Section 3.1.3, execution time suffers in cases where there
are not enough threads to hide the memory access latency. This is caused
by at least two of the bottlenecks in the program, few or single threaded
execution and the cast.

The correlation suffers from the computations for each element being
computed by a single thread. So even though the matrix is divided into
multiple threads, each compute a long set of sequential instructions. With
49 thread blocks and 30 SMs, the number of warps available for each SM
to use for memory latency hiding is few. This leads to SMs stalling while
waiting for memory accesses and a low efficiency in computing the result.
The performance impact of this is unclear, since one would have to divide the
computations into more threads to calculate the difference. With such a low
SM occupancy and long sequential instructions in the kernel, the speedup
from parallelization in relation to the sequential CPU version is limited.
Splitting up this kernel into smaller kernels would help this. However, this
would use more global memory accesses as kernels are dependent on each
other.

Equally, the cast process suffers from the same problem. All the data in
the input matrix 100 × 100 × 512 = 5120000 is both copied to the device
as double precision floating point values, and then cast to single precision
floating point values. When casting, the only operation carried out by each
thread is to read a value from the double matrix and write it to the float
matrix as a float. There are no computational instructions to run while
waiting for loads to return, the only other tasks that can be scheduled to
run are other memory access instructions. This increases the execution time,
evident from the program output where it takes about 1.09 % of the total
GPU execution time. In a real-time system this may not be relevant as data
from the transducer is received as 16-bit integers, but could be cast to floats
in hardware.

The correlation kernel contains a large amount of for loops and branches
which degrades performance severely, as explained in Section 3.1.3. Remov-
ing the loops by using more threads and more memory might speed up the
process even though one would have more memory accesses.
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5.3.4 Real-time

To achieve a “live” image possibility with all the data being filtered by the
algorithm, the following criteria must be met:

24 images per second Time available to compute image is 1000 / 24 =
41.67ms.

Up to 250 beams per image Available time per beam computation is 41.67
/ 250 = 0.167ms

Algorithm applied to each beam Needs to be applied in less than 0.167ms

As can be seen from the calculations, the limit for applying the algorithm
to every beam in a real-time system is less than 0.2ms. Looking at the
results of the current computation which is completed in approximately 152
milliseconds, this is far off. It is unrealistic to implement this algorithm in
real-time in its current state.

Optimization

There are several possibilities that may be considered to come closer to the
“live” image goal. First, optimization of the code may greatly increase the
speed at which it is executed. Examples, of codes that can be optimized are,
for example, checking when to stop the iteration, using the GPU to do this
work instead of copying data to the host, or running the whole iteration on
the GPU as a kernel without intermediate steps on the host.

Another optimization is to do fewer iterations. Currently, the loop will
stop when the difference between the current iteration and the last is less than
0.01. If this limit is higher, the iteration would finish earlier, at the expense
of accuracy. If one selected fewer elements to measure the difference, this
would also decrease total time taken. There is a 4 millisecond difference
between computing the filter with and without error computation.

Finally, the same correction filter may be used for more than one beam,
or frame. Since the signal is transmitted through very similar tissue for each
beam, using the same correction filter could achieve almost equal quality of
the image.

By utilizing the Occupancy Calculator spreadsheet, one can find possible
changes that can optimize the kernel execution. Small changes can have a
great effect, for example by decreasing the bandwidth, from 14 to 10; one
enables a higher number of threads per block. As can be seen from the first
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Figure 5.9: The graphs show how many thread warps are available per multipro-
cessor to schedule to hide memory access latency.

graph in Figure 5.9, changing from 121 threads per block to 169 threads
gives a higher occupancy. This speeds up the total time from about 152
milliseconds to 113 milliseconds. Bringing it to around 310 threads per block
would be optimal. As can also be seen from the Figure, given the current
settings, there is little else one can do to increase the occupancy without
large changes.

5.3.5 Related work

Implementing the aberration estimation and correction algorithm on the
GPU achieves a speedup. This adds the problem to the group of problems
that when implemented on the GPU give a speedup. Ryoo [22] evaluates
GPU implementations of applications and the speedup gained. All applica-
tions presented by Ryoo [22] have to a smaller or greater degree gained a
speedup from GPU implementation.

The characteristics of this problem is similar to the Lattice-Boltzman
Method application in [22], which gains a 12x speedup, but has two distinct
bottlenecks. These are, synchronization issues at every time step when all
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threads have to be globally synchronized, and constraints on the number of
threads that can be executed because of shared memory capacity. Both these
problems are evident in the aberration estimation and correction problem,
in addition to the smaller speedup because of branching. Similarly, Bryson
[41] achieves large speedups in convolution computation, which is a process
similar to the correlation process of the aberration correction problem.

These problems, including aberration correction, shows a speedup that
can be interpreted as a trend of how GPU increases program speeds, even
with little optimization. As explained in Section 3.1.2, exposing parallelism
in problems and using multicore processing units is an attempt so circumvent
the brick wall. Looking at the results of among others, Ryoo [22], Bryson [41],
and Stone [45], the GPU seems to be a viable options for circumventing the
brick wall speedwise. The availability of a programming language extension
with a similar syntax and behavior to current programming languages equally
enhances the prospect of using the GPU’s multicore architecture for general
purpose problems.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the findings of this thesis, and look at how well
goal was reached. It also looks at directions the work can be extended.

6.1 Conclusion

Ultrasound is a non-invasive imaging procedure that delivers good images
of the human body. However, the human body wall introduces aberration
in the ultrasound signal, resulting in distortions and blurring of the image.
This is especially problematic in obese patients, where the fat in form of glob-
ules in the body wall generally causes the most aberration. Correcting this
aberration would improve image quality and help physicians make accurate
diagnoses.

In this thesis, Måsøy’s algorithm for correcting the aberration by estimat-
ing the time-delay and amplitude fluctuations caused by the body wall was
considered [1]. The estimate was used to create a correction filter that was
applied to the next ultrasound signal, to cancel the effects of the aberration.
This thesis parallelized this algorithm, and investigated how this parallel al-
gorithm could be implemented on off-the-shelf GPUs based on NVIDIA’s
CUDA architecture.

Our results show that the algorithm is highly parallelizable. The trans-
ducer is made up of many elements; computation of the correction filter can
be computed almost separately for each transducer element making it very
suitable to compute in parallel. The limit of the parallelization is that one
cannot easily decompose the problem further, and thus, each thread must
work sequentially for its transducer element. There are usually 256 or more

63
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transducer elements in a transducer. The GPU is a highly parallel SIMD
device, specialized at performing the same computation on several data ele-
ments simultaneously. In fact the NVIDIA Tesla C1060 has 240 cores. This
architecture maps very well to the computation of the correction filter, and
achieves a substantial speedup of over 5x compared to a single CPU. The
problem joins a growing set of problems found to benefit from implementa-
tion on the GPU.

Altough it was shown that using the GPU was a huge improvement over
single CPU computation, but there is still some work needed to reach speeds
high enough to implement in ultrasound equipment. However, with some
configuration variations and additional hardware to speed up memory trans-
actions, it should be possible to achieve this.

6.2 Future Work

There are certainly areas that would be interesting to develop further. Some
ideas to where the result of this thesis could be taken are listed below.

It would also be interesting to use the procedure together with a live
stream of ultrasound signals. The test case was only performed on a single
signal, so attempting to utilize the program with several new datasets would
make it possible to test the streams capability. This could also be combined
with variations in how many and which frames and beams of the ultrasound
imaging that should be used as datasets for the algorithm. Limiting the
number of datasets leaves more time for the computation to complete before
a new set arrives.

Implementing more of the iteration on the GPU would also be interesting,
utilizing a reduction kernel over each correction filter matrix to find the
difference from last iteration, instead of copying the data to the host and
using the CPU to compare the iterations. This may improve computation
time.

It would be interesting to look at how one could limit the amount of shared
memory used, or at least limit the number of accesses to shared memory. This
would improve performance by removing bank conflicts. One could possibly
restructure the shared data and the kernel code so that reads to the same
memory is not read at the same time by many threads. To do this, one would
have to look at how the memory is accessed.

The data generated by the transducer is 16-bit integers. If the algorithm
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could be implemented for integers instead of floats, one could skip the casting
and achieve a speedup. Computing with integers smaller than 24-bits is
equally fast as using floats on the GPU. However, there may be a problem
representing the values and computing correct results using integers.

Comparing the GPU version to a multicore CPU version of the algorithm
to see how large the improvement using the GPU is would also be interesting.

Since one only needs a subset of the frequencies provided by a Fourier
transform, it might be enough to use other frequency extraction techniques.
One such technique is the spectral estimator described in Angelsen [38]. This
might be much faster than computing the whole transform. As the Fourier
transform is a major part of the computations this could speed it up signifi-
cantly.

Utilizing the texture memory to hold the data from the FFT might speed
up accesses. Texture memory is data placed in global memory, but cached in
the SMs. Each SM has a 16kb cache. Texture memory has a latency of 100+
cycles as opposed to 200-300 cycles of the global memory. Texture memory
capitalizes on 2D locality so accessing neighboring memory locations with 2D
locality should give a performance increase. Texture memory is read-only,
but since the result of FFT is only read it could be placed in texture memory.
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Appendix A

Annotated Bibliography

This appendix presents papers that are especially relevant for this thesis and
that may be useful before reading the thesis or as a deeper study.

A.1 Aberration in Medical Ultrasound

The basis for this thesis can be found in the doctoral thesis Estimation and
correction of aberration in medical ultrasound imaging by Svein-Erik Måsøy
[1], it presents the aberration phenomenon and also gives a complete pre-
sentation of the process of finding the algorithm used in this thesis. There
are also three articles based on this thesis, they are: Correction of ultra-
sonic wave aberration with a time delay and amplitude filter [2], Estimation
of ultrasound wave aberration with signals from random scatterers [3], and
Iteration of transmit-beam aberration correction in medical ultrasound imag-
ing [4] and correspond respectively to chapters 2, 3, and 4 of the doctoral
thesis. These articles are an excellent introduction to the doctoral thesis as
they clearly present the work and results, but do not go to the same depth
as the thesis.

A.2 C for CUDA

To get a general introduction to General-Purpose Computation on GPUs
the Wikipedia article on GPGPU [6] and the book GPU Gems 2 [7] presents
basic concepts.

To understand more of writing programs using C for CUDA (Compute
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Unified Device Architecture) the web page CUDA, Supercomputing for the
Masses by Rob Farber [8] is a very good tutorial for understanding and
writing CUDA code. Also, the CUDA Programming Guide [10] and CUDA
Reference Manual [11] are invaluable when writing C for CUDA code.

Since this thesis focuses on parallelizing the aberration correcting algo-
rithm and programs for the GPU is most effective when they are highly par-
allelized, studying the book Parallel Programming 2nd edition [9] or similar
material should give an understanding of the process taken.
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NOTUR poster

The poster on the following page was presented at the NOTUR conference
in Trondheim on May 19. 2009.
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Medical ultrasound is a great tool because of 
its noninvasiveness. However, the sound waves 
have to travel through different tissues, 
the resulting image can become aberrated.

The process of estimating and correcting 
ultrasound aberration:

1. Perform FFT to get relevant frequency
2. Compute correlation matrix
3. Compute coherence matrix
4. Calculate weight matrix
5. Iteratively apply weight matrix to previous 
    correction filter to get new correction filter

FFT can be done using CUFFT, CUDA Fast 
Fourier transform, transformes are computed in parallel.
This is up to 10x faster than serial implementation.

Step 2-5 can be computed iteratively as a 
convolution using the GPU to apply the filter to 
all elements of the matrix.

Left: Unaberrated image, right: Aberrated Image

A signal is received per transducer element and Fourier 
transformed. The center freqency of each transform is selected.

Sound waves are distored by the body wall, here 
represented by screens which can be estimated.

The aberrated is s sum of several screens, if we can 
find A, we can aquire the unaberrated signal.

grid is 64x64x1500 e lements

Convolution process is 
repeated until adequate 
convergence is obtained.

Above algorithm is applied to 
all elements of the matrix in 
parallel.

Each element is compared to its neighbours and then 
weighted based on how much it deviates.

Transducer

GPU CPU

ms

Preliminary
Results
4-5x speedup
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CUDA Function Description

This chapter describes the CUDA functions and variables used in the program
created in this thesis. For a complete list of all CUDA functions and variables
see [10], [11], and [12].

cudaMalloc() allocates linear memory on the device.

cudaMalloHost() allocates page-locked memory on the host. This enables
a much higher bandwidth for for example cudaMemcpy than pageable
memory since it is directly accessible by the device.

cudaMallocPitch() allocates linear memory on the device, but in addition
may pad the allocation to ensure that the memory is aligned so as to
enable coalesced accesses.

cudaFree() frees allocated memory on the device.

cudaFreeHost() frees page-locked memory on the host allocated with cu-
daMallocHost().

cufftPlan1d() creates a 1D FFT plan configuration of given size, may add
batch to specify how many 1D transforms to configure.

cufftExecC2C() executes a CUFFT complex-to-complex transform plan.
cufftComplex is a float2 struct containing 2 floats x and y. Used to hold

complex numbers for use with CUFFT.
global declares a function that is executed on the device, but callable

only from the host.
device declares a variable that resides on the device or declares a func-

tion that is executed on the device and only callable from the device.
shared declares a variable that resides in shared memory of a thread

block. Is only accessible from the threads within the block.
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cudaThreadSynchronize() blocks to makes the host wait for all threads
to finish computation on the device.

cudaMemcpy() copies data between device and host.
cudaMemcpy2D() copies 2-dimensional matrices between device and host.
cudaMemcpy2DAsync() does the same as cudaMemcpy2D, but is asyn-

chronous, that is the call returns before the copying is complete. Only
works on page-locked host memory.

cudaMemcpyDeviceToDevice is an enum specifying direction of the copy
to cudaMemcpy∗-functions, copy from one memory are to another on
the device.

cudaMemcpyHostToDevice is an enum specifying direction of the copy
to cudaMemcpy∗-functions, copy from host to device.

cudaMemcpyDeviceToHost is an enum specifying direction of the copy
to cudaMemcpy∗-functions, copy from device to host.

dim3 is a uint3 struct containing 3 unsigned integers x, y, and z. Used to
hold number of blocks or number of threads per block for execution
configuration of kernels.

blockIdx is a uint3 struct used inside a kernel to hold the block index in a
grid.

blockDim is a uint3 struct used inside a kernel to hold dimensions of the
block.

gridDim is a uint3 struct used inside a kernel to hold the dimensions of the
grid.

threadIdx is a uint3 struct used inside a kernel to hold the thread index
within the block.

#pragma unroll is a directive that tells the compiler how many times to
unroll a loop. Without it compiler only unrolls small loops.



Appendix D

Program Installation and
Execution

This chapter will list the steps needed to be taken to ”install” the program
as well as how to use its functionality. Instructions are intended for Linux.

D.1 Installation

The following steps should be done to “install” the aberration correction
program:

• Set up the CUDA environment: Install NVIDIA drivers, the CUDA
toolkit, and the CUDA SDK from http://www.nvidia.com/object/
cuda˙get.html.

• Download MATIO, MAT File I/O Library, from http://sourceforge.
net/projects/matio.

– Unpack MATIO.
– Run ./configure with the option−−enable−shared = yes within

the matio folder.
– Add the option −fPIC to line 108 of the Makefile in the matio

folder.
– run make.
– run sudo make install.
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• Download and install FFTW3 from http://www.fftw.org/download.
html.

• Install libcblas.

• Install libatlas.

• Install libm.

• Install libz.

• Install libg2c.

– make a symlink sudo ln -l libg2c.so.0 libg2c.so in /usr/lib.

• Download the stand alone C version of Abersim 2.0 from http://www.
ntnu.no/abersim/download.

• Unpack the Abersim 2.0 files.

• Unpack the source files of the correction program into the abersim2
folder.

• Edit theMakefile.in file to reflect the position of the NVIDIA CUDA SDK
folder.

• In the abersim2 folder run make all.

D.2 Execution

There are two ways to utilize this program. One is the command line option
when calling Abersim 2.0. The other, is calling the functions from within the
Abersim 2.0 application.

Command Line

Here is the directions of use printed by the Abersim 2.0 program with the
program added:

−−−−−−−−−−−−−−−−−−− Abersim 2 .0 Usage −−−−−−−−−−−−−−−−−−−

For abe r ra t i on s imu la t i on inc lude f i l ename conta in ing MATLAB
data .
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. / abersim2 mf i l e

For abe r ra t i on c o r r e c t i o n inc lude f i l ename conta in ing MATLAB
data , as we l l as the cente r f requency index in the FFT, the
bandwidth around the FC in the FFT, the X−, Y− and Z−dimensions .
Opt iona l ly i n c lude number o f streams to use , the number o f
i t e r a t i o n s for the e s t imat ion loop and the dev i c e to use .

. / abersim2 mf i l e 25 14 100 100 512 3 1 1

Basically, one would have to supply the information about the dataset as
well as the MATLAB file containing the data.

Function call

To use the function from another function within the Abersim2.0 application
one would need to include the abersimcorrection.h file and call the functions
with the information needed in the same way as the command line version.
Before calling the abcorrection() function, one needs to select the device on
which to do the computations. If this is not done, the default, device 0, is
used. the indata and result matrices must already be allocated using the
allocate() and the loadData() function is used to load the input data from
file if this is desirable. Finally, when the computation is complete the data
may be saved to file using saveData() function and the matrices deallocated
using deAllocate().

D.3 Troubleshooting

If one get the error: “./abersim2:
error while loading shared libraries: libabersim2.so: cannot open shared

object file: No such file or directory”, the fix seems to be to add the local
directory to the library path. That is, run export LD LIBRARY PATH
= . : $LD LIBRARY PATH.
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Appendix E

MATLAB Script for
Computing Correction Filter

This chapter contains the MATLAB script to compute the aberration cor-
rection filter. It assumes the file “testDataDouble2” contains the input set
uz. The script will generate an avi file with each of the steps computed.
By default the script computes 30 iterations, that is it does not check for
convergence.

1 %%
2 c l e a r a l l ;
3 load testDataDouble2 ;
4 %%
5 c l o s e a l l ;
6 Nf f t = s i z e ( u z , 3 ) ;
7 u z = u z /max( u z ( : ) ) ;
8 U z = f f t ( u z , [ ] , 3 ) ;
9 % indx for f r e qu en c i e s

10 f c i ndx = 27 ;
11 f w in = 7 ;
12 f i x = f c i ndx + (− f w in : f w in ) ;
13
14 % kerne l s i z e
15 ks = 5 ;
16 % ha l f k e rne l s i z e
17 hks = ( ks−1) /2 ;
18
19 % Pad with z e ro s
20 U z2 = ze ro s ( s i z e (U z , 1 )+2∗hks , s i z e (U z , 2 )+2∗hks , s i z e (U z , 3 ) ) ;
21 U z2 ((1+hks ) : ( end−hks ) ,(1+hks ) : ( end−hks ) , : ) = U z ;
22 U z = U z2 ;
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23
24 N = s i z e (U z , 1 ) ;
25 ix = (1+hks ) : (N−hks ) ;
26
27 % Make movie
28 make movie = f a l s e ;
29 i f make movie
30 aviObj = a v i f i l e ( ’ abera t i on . av i ’ , ’ f p s ’ ,10 , ’ Qual i ty ’ ,100 , ’

Colormap ’ , j e t (256) , ’ compress ion ’ , ’None ’ ) ;
31 end
32
33 % Computing c o r r e l a t i o n matr i ce s
34 R = ze ro s ( s i z e (U z , 1 ) , s i z e (U z , 2 ) ) ;
35 for f f = −f w in : f w in
36 R = R + U z ( : , : , f c i ndx+f f ) .∗ conj ( U z ( : , : , f c i ndx+f f ) ) ;
37 end
38 R = R/ length ( f i x ) ;
39
40 M klmn = ze ro s ( l ength ( ix ) , l ength ( ix ) , ks∗ks ) ;
41 cnt = 1 ;
42 for n=−hks : hks
43 for m=−hks : hks
44 R klmn = 0 ;
45 for f f = −f w in : f w in
46 R klmn = R klmn + U z ( ix , ix , f c i ndx+f f ) .∗ conj ( U z ( ix

+n , ix+m, f c i ndx+f f ) ) ;
47 end
48
49 R klmn = R klmn/ length ( f i x ) ;
50 R kl = R( ix , i x ) ;
51 R mn = R( ix+n , ix+m) ;
52 w = R klmn . / ( sq r t ( R kl ) ∗ s q r t (R mn) + 1e−5) ;
53
54 M klmn ( : , : , cnt ) = abs (w) .∗R klmn ;
55 cnt = cnt + 1 ;
56 end
57 end
58
59 % Doing the i t e r a t i o n s
60 S = ones ( s i z e (R) ) ;
61 S new = ze ro s ( s i z e (S) ) ;
62 mju = 0 . 3 ;
63
64 for i t e r = 1 :30
65 S new ( : ) = 0 ;
66 cnt = 1 ;
67 for n=−hks : hks
68 for m=−hks : hks
69 S new ( ix , i x ) = S new ( ix , i x ) + M klmn ( : , : , cnt ) . / ( S( ix
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+n , ix+m) + 1e−5) ;
70 cnt = cnt + 1 ;
71 end
72 end
73
74 S = S + mju∗( S new − S) ;
75
76 amp = abs (S( ix , i x ) ) ;
77 phase = ang le (S( ix , i x ) ) ;
78
79 f i g u r e (1 ) ;
80 subplot (121)
81 imagesc (20∗ l og10 (amp) ) , c o l o rba r ;
82 t i t l e ( s p r i n t f ( ’ Amplitude , i t e r a t i o n %d ’ , i t e r ) )
83 subplot (122)
84 imagesc ( phase ) , c o l o rba r ;
85 t i t l e ( s p r i n t f ( ’ Phase , i t e r a t i o n %d ’ , i t e r ) )
86
87 i f make movie
88 F = getframe ( gc f ) ;
89 aviObj = addframe ( aviObj ,F) ;
90 else
91 pause ( 0 . 1 ) ;
92 end
93 end
94
95 i f make movie
96 aviObj = c l o s e ( aviObj ) ;
97 end
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Appendix F

Program Code

This chapter lists the code of the program. The .h files are not included and
neither are files from Abersim2.0.

F.1 Main Program Code

The main functions on the host. These functions are called through Aber-
sim2.0 and will subsequently call GPU code.

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <s t r i n g . h>
4 #include <time . h>
5 #include <math . h>
6
7 extern ”C” {
8 #include ” . . / g ene ra l / abe r s im gene ra l . h”
9 #include ” . . / g ene ra l / propcont ro l . h”

10 #include ” . . / math/abersim math . h”
11 #include ” . . / i o / abe r s im io . h”
12 #include ” abe r s im co r r e c t i on . h”
13 }
14
15 #include ” convo lut ionS . h”
16 #include ” gpuOperations . h”
17 #include ” cpuCorre la t i on . h”
18 #include ”cpuFFT . h”
19 #include ”gpuFFT . h”
20 #include ”gpuCast . h”
21
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22
23 // /////////////////////////////////////////////////////////
24 // CONFIGURATION
25 // /////////////////////////////////////////////////////////
26 // Number o f t imes to loop convo lu t i on k e r n e l s
27 const int N = 50 ;
28 // Convergence f a c t o r
29 const f loat MU = 0.1 f ;
30 // Error l i m i t , e p s i l o n
31 const f loat EPS = 0.01 f ;
32 // Number o f l oops to run to c o l l e c t t e s t data
33 const f loat T = 1 ; //101
34
35 // Code t h a t g i v e s very accura te t imer .
36 stat ic unsigned long long rdt sc t ime ( )
37 {
38 unsigned int eax , edx ;
39 unsigned long long va l ;
40 asm v o l a t i l e ( ” rd t s c ” : ”=a” ( eax ) , ”=d” ( edx ) ) ;
41 va l = edx ;
42 va l = va l << 32 ;
43 va l += eax ;
44 return va l ;
45 }
46
47 extern ”C” {
48 void abco r r e c t i on ( f f tw complex ∗ src ,
49 cufftComplex ∗rM h ,
50 const int f c ,
51 const int bandwidth ,
52 const int xs i z e ,
53 const int ys i z e ,
54 const int z s i z e ,
55 const int streams ,
56 const int n) {
57
58 // /////////////////////////////////////////////////////////
59 // VARIABLES
60 // /////////////////////////////////////////////////////////
61 int i , j , k , t=0;
62 // Error ho lde r
63 cudaError e r r ;
64 //Timer v a r i a b l e s
65 unsigned long long t imes tar t , t ime f i n i s h , t o t s t a r t ,
66 t o t f i n i s h , l o op s ta r t , l o o p f i n i s h ;
67 //Number o f b l o c k s to execu te f o r k e rne l
68 //and number o f th reads in each b l o c k .
69 dim3 nBlocks , b l o ckS i z e ;
70 // Stores number o f b y t e s used f o r memcpy
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71 s i z e t bytes ;
72 int t o t s i z e ;
73 t o t s i z e = x s i z e ∗ y s i z e ∗ z s i z e ;
74
75
76
77 // /////////////////////////////////////////////////////////
78 //ALLOCATIONS ( These are on ly done once per program run )
79 // /////////////////////////////////////////////////////////
80 t ime s t a r t = rdt sc t ime ( ) ;
81
82 f f tw f complex ∗ f s r c ; // f l o a t ve r s i on o f f f t w complex numbers .
83 f f tw complex ∗ cudaSrc ;
84 cudaMallocHost ( ( void ∗∗) &f s r c ,
85 streams ∗ t o t s i z e ∗ s izeof ( f f tw f complex ) ) ;
86 cudaMalloc ( ( void ∗∗) &cudaSrc ,
87 streams ∗ t o t s i z e ∗ s izeof ( f f tw complex ) ) ;
88
89 // a l l o c a t i o n o f matr ices used f o r FFTW.
90 // elementMatrix and r e s u l t M a t r i x
91 f f tw f complex ∗∗∗cpueM , ∗∗∗cpurM ;
92 cpueM = ( f f tw f complex ∗∗∗) mal loc (
93 s izeof ( f f tw f complex ∗∗) ∗ x s i z e ) ;
94 for ( i = 0 ; i < x s i z e ; i++) {
95 cpueM [ i ] = ( f f tw f complex ∗∗) mal loc (
96 s izeof ( f f tw f complex ∗) ∗ y s i z e ) ;
97 for ( j = 0 ; j < y s i z e ; j++) {
98 cpueM [ i ] [ j ] = ( f f tw f complex ∗) mal loc (
99 s izeof ( f f tw f complex ) ∗ z s i z e ) ;

100 }
101 }
102 cpurM = ( f f tw f complex ∗∗∗) mal loc (
103 s izeof ( f f tw f complex ∗∗) ∗ x s i z e ) ;
104 for ( i = 0 ; i < x s i z e ; i++) {
105 cpurM [ i ] = ( f f tw f complex ∗∗) mal loc (
106 s izeof ( f f tw f complex ∗) ∗ y s i z e ) ;
107 for ( j = 0 ; j < y s i z e ; j++) {
108 cpurM [ i ] [ j ] = ( f f tw f complex ∗) mal loc (
109 s izeof ( f f tw f complex ) ∗ z s i z e ) ;
110 }
111 }
112 f i l lRandom (cpueM , xs i z e , y s i z e , z s i z e ) ;
113 f i l lRandom (cpurM , xs i z e , y s i z e , z s i z e ) ;
114 setupFFT( z s i z e , x s i z e , y s i z e , z s i z e ,
115 cpueM [ 0 ] [ 0 ] , cpurM [ 0 ] [ 0 ] ) ;
116
117 // A l l o c a t i o n o f matr ices used f o r CPU ke rne l .
118 cufftComplex ∗∗ elementMatrix h , ∗∗ co r r e l a t i onMat r i x h ;
119 createMatr ix (&elementMatrix h , x s i z e , y s i z e ) ;
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120 createMatr ix (&cor r e l a t i onMat r i x h , x s i z e , y s i z e ) ;
121
122 //GPU matr ices
123 cufftComplex ∗ elementMatrix ,
124 ∗ cu f f tResu l tMatr ix , ∗ tempMatrix h ;
125 //Data to CUFFT
126 cudaMalloc ( ( void ∗∗) &elementMatrix ,
127 s izeof ( cufftComplex ) ∗ streams ∗ t o t s i z e ) ;
128 // Resu l t from CUFFT
129 cudaMalloc ( ( void ∗∗) &cuf f tResu l tMatr ix ,
130 s izeof ( cufftComplex ) ∗ streams ∗ t o t s i z e ) ;
131 cuda setupFFT ( z s i z e , x s i z e ∗ y s i z e ) ;
132
133 cufftComplex ∗ s h , ∗sOLD h ;
134 cudaMallocHost ( ( void ∗∗) &s h , s izeof ( cufftComplex )
135 ∗ streams ∗ x s i z e ∗ y s i z e ) ;
136 cudaMallocHost ( ( void ∗∗) &sOLD h , s izeof ( cufftComplex )
137 ∗ streams ∗ x s i z e ∗ y s i z e ) ;
138
139 cufftComplex ∗eM d , ∗sM d , ∗sOM d , ∗rM d ;
140
141 // sPi t ch g i v e s s i z e o f padded array in b y t e s .
142 // sPi t ch /8 g i v e s number o f e lements in
143 // padded array ( o f cuf f tComplex o f doub l e s ) .
144 s i z e t ePitch ;
145 s i z e t sPi tch ;
146 s i z e t sOPitch ;
147 s i z e t rP i tch ;
148
149 // cudaMallocHost a l l o c a t e s page−l o c ked memory on
150 // hos t ( enab l e s cudaMemcpy2DAsync and other f u n c t i o n a l i t y ) .
151 // A l l o c a t e s t r i d e d memory t h a t i s a l i gned , speeds
152 //up memory t r a n s f e r s and acces s .
153 //Data f o r c o r r e l a t i o n
154 cudaMallocPitch ( ( void ∗∗) &eM d , &ePitch , x s i z e
155 ∗ s izeof ( cufftComplex ) , streams ∗ y s i z e ) ;
156 // C o r r e c t i o n f a c t o r s t h a t change ever i t e r a t i o n o f c o r r e l a t i o n
157 cudaMallocPitch ( ( void ∗∗) &sM d , &sPitch , x s i z e
158 ∗ s izeof ( cufftComplex ) , streams ∗ y s i z e ) ;
159 // Or i g ina l c o r r e c t i o n f a c t o r s
160 cudaMallocPitch ( ( void ∗∗) &sOM d , &sOPitch , x s i z e
161 ∗ s izeof ( cufftComplex ) , streams ∗ y s i z e ) ;
162 // Resu l t from c o r r e l a t i o n
163 cudaMallocPitch ( ( void ∗∗) &rM d , &rPitch , x s i z e
164 ∗ s izeof ( cufftComplex ) , streams ∗ y s i z e ) ;
165
166 // Create streams to i n t e r l e a v e proce s s ing
167 cudaStream t stream [ streams ] ;
168 for ( i = 0 ; i < streams ; i++) {
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169 cudaStreamCreate(&stream [ i ] ) ;
170 }
171
172 t ime f i n i s h = rdtsc t ime ( ) ;
173 p r i n t f ( ”\nALLOCATE: Time to a l l o c a t e ( in seconds ) ( on hpc6 ) :
174 %f \n” , ( ( double ) ( t ime f i n i s h−t ime s t a r t ) /2830000000) ) ;
175
176
177 // /////////////////////////////////////////////////////////
178 // LOOP FOR EACH STREAM
179 // /////////////////////////////////////////////////////////
180 l o op s t a r t = rdt sc t ime ( ) ;
181 for ( t = 0 ; t < T; t++) {
182
183 // r e s e t t i n g v a r i a b l e s
184 i = j = k = 0 ;
185 int blocks , threads ;
186 f i l lRandom ( elementMatrix h , x s i z e , y s i z e ) ;
187 nBlocks = dim3 ( streams ∗ ys i z e , x s i z e ) ;
188 cuda setStar tVa lues<<<nBlocks ,1>>>(sM d , sPi tch ) ;
189 //Stream to run curren t loop on .
190 int s = t % streams ;
191
192 t o t s t a r t = rdt sc t ime ( ) ;
193 // /////////////////////////////////////////////////////////
194 // COPY DATA TO DEVICE
195 // /////////////////////////////////////////////////////////
196 p r i n t f ( ”\n” ) ;
197 t ime s t a r t = rdt sc t ime ( ) ;
198 //Assuming non−page−l o c ked memory from connected
199 // code so we cannot use Async mode
200 bytes = s izeof ( f f tw complex ) ∗ t o t s i z e ;
201 cudaMemcpy( (char∗) cudaSrc +
202 s ∗ t o t s i z e ∗ s izeof ( f f tw complex ) ,
203 (char∗) src ,
204 bytes ,
205 cudaMemcpyHostToDevice ) ;
206 //Need to synchron i ze to ge t c o r r e c t time count .
207 cudaThreadSynchronize ( ) ;
208 t ime f i n i s h = rdtsc t ime ( ) ;
209 p r i n t f ( ”COPY: Time to copy data to dev i ce ( in seconds )
210 ( on hpc6 ) : %f \n” , ( ( double )
211 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
212 e r r = cudaGetLastError ( ) ;
213 i f ( e r r != cudaSuccess ) p r i n t f ( ”ERROR: %s
214 :ERROR\n” , cudaGetErrorStr ing ( e r r ) ) ;
215
216
217
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218 // /////////////////////////////////////////////////////////
219 // CASTING USING CUDA
220 // /////////////////////////////////////////////////////////
221 // Cast ing from a complex doub le to a complex f l o a t .
222 t ime s t a r t = rdt sc t ime ( ) ;
223 p r i n t f ( ” Cast ing us ing CUDA. . . \ n” ) ;
224 b locks = iDivUp ( t o t s i z e ∗2 , 512∗30) ∗ 30 ;
225 i f ( b locks > 512) b locks = 512 ;
226 threads = 512 ;
227 i f ( t o t s i z e ∗2 < 512) threads = t o t s i z e ∗2 ;
228
229 nBlocks = dim3 ( b locks ) ;
230 b l o ckS i z e = dim3 ( threads ) ;
231
232 double∗ dcudaSrc = (double∗) cudaSrc ;
233 f loat ∗ feM = ( f loat ∗) elementMatrix ;
234 cuda castFromDouble<<<nBlocks , b lockS ize , 0 , stream [ s]>>>(
235 (double∗) ( ( char∗) dcudaSrc + s ∗ s izeof (double ) ∗ t o t s i z e ) ,
236 ( f loat ∗) ( ( char∗) feM + s ∗ s izeof ( f loat ) ∗ t o t s i z e ) ,
237 t o t s i z e ∗2) ;
238 //Need to synchron i ze to ge t c o r r e c t time count .
239 cudaThreadSynchronize ( ) ;
240 t ime f i n i s h = rdtsc t ime ( ) ;
241 p r i n t f ( ”CAST: Time to ca s t us ing CUDA ( in seconds )
242 ( on hpc6 ) : %f \n” , ( ( double )
243 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
244 e r r = cudaGetLastError ( ) ;
245 i f ( e r r != cudaSuccess ) p r i n t f ( ”ERROR: %s
246 :ERROR\n” , cudaGetErrorStr ing ( e r r ) ) ;
247
248
249
250 // /////////////////////////////////////////////////////////
251 // Compute FFT using CUFFT
252 // /////////////////////////////////////////////////////////
253 p r i n t f ( ”\n” ) ;
254 t ime s t a r t = rdt sc t ime ( ) ;
255 p r i n t f ( ”Computing FFT us ing CUFFT. . . \ n” ) ;
256 cuda doFFT( ( cufftComplex ∗) ( ( char∗) elementMatrix
257 + s ∗ s izeof ( cufftComplex ) ∗ t o t s i z e ) ,
258 ( cufftComplex ∗) ( ( char∗) cu f f tResu l tMat r i x
259 + s ∗ s izeof ( cufftComplex ) ∗ t o t s i z e ) ) ;
260 //Need to synchron i ze to ge t c o r r e c t time count .
261 cudaThreadSynchronize ( ) ;
262 t ime f i n i s h = rdtsc t ime ( ) ;
263 p r i n t f ( ”CUFFT: Time f o r CUFFT to compute ( in seconds )
264 ( on hpc6 ) : %f \n” , ( ( double )
265 ( t ime f i n i s h−t ime s t a r t ) /2830000000) ) ;
266 e r r = cudaGetLastError ( ) ;
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267 i f ( e r r != cudaSuccess ) p r i n t f ( ”ERROR: %s
268 :ERROR\n” , cudaGetErrorStr ing ( e r r ) ) ;
269
270
271
272 // /////////////////////////////////////////////////////////
273 //GPU CONVOLUTION
274 // /////////////////////////////////////////////////////////
275 p r i n t f ( ”\n” ) ;
276 t ime s t a r t = rdt sc t ime ( ) ;
277
278 f loat minError ;
279 minError = 100000000000.0 f ;
280
281 cudaThreadSynchronize ( ) ;
282 cudaMemcpy2DAsync( s h , x s i z e ∗ s izeof ( cufftComplex ) ,
283 sM d , sPitch ,
284 x s i z e ∗ s izeof ( cufftComplex ) , y s i z e ,
285 cudaMemcpyDeviceToHost , stream [ s ] ) ;
286 cudaThreadSynchronize ( ) ;
287
288 threads = f l o o r ( sq r t (16384 / ( ( bandwidth+1) ∗ 8 + 8) ) ) ;
289 i f ( threads−KERNEL W < 1) {
290 p r i n t f ( ”FATAL ERROR: Bandwidth to wide .\n” ) ;
291 e x i t (1 ) ;
292 }
293 else i f ( threads ∗ threads ∗50 > 16199) {
294 //Uses maximum r e g i s t e r s a v a i l a b l e per SM.
295 threads = 17 ;
296 }
297 i f ( ( threads ∗ threads ∗ ( bandwidth + 1)
298 + threads ∗ threads ) ∗ 8 > 16383) {
299 //Uses maximum shared memory a v a i l a b l e per b l o c k .
300 threads = 15 ;
301 }
302
303 //7 i s maximum of threads 11 − KERNEL RADIUS∗2
304 nBlocks = dim3 ( iDivUp ( x s i z e+KERNEL W, threads−KERNEL W) ,
305 iDivUp ( y s i z e+KERNEL W, threads−KERNEL W) ) ;
306 b l o ckS i z e = dim3 ( threads , threads ) ; // (11 ,11)
307
308 p r i n t f ( ”Computing new co r r e c t i o n matrix . . . \ n” ) ;
309 i = 0 ;
310 do {
311 convolut ionS<<<nBlocks , b lockS ize , ( threads ∗ threads ∗
312 ( bandwidth+1)+threads ∗ threads ) ∗8 , stream [ s]>>>(
313 ( cufftComplex ∗) ( ( char∗) cu f f tResu l tMat r i x
314 + s ∗ s izeof ( cufftComplex ) ∗ t o t s i z e ) ,
315 ( cufftComplex ∗) ( ( char∗) rM d + s ∗ rP i tch ∗ y s i z e ) ,
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316 ( cufftComplex ∗) ( ( char∗) sM d + s ∗ sPi tch ∗ y s i z e ) ,
317 MU,
318 xs i z e ,
319 ys i z e ,
320 z s i z e ,
321 sPitch ,
322 bandwidth ,
323 f c ) ;
324
325 //Copy curren t S to o ld S f o r error c a l c u l a t i o n
326 for ( j = 0 ; j < y s i z e ; j++) {
327 for ( k = 0 ; k < x s i z e ; k++) {
328 sOLD h [ k+j ∗ x s i z e ] . x = s h [ k+j ∗ x s i z e ] . x ;
329 sOLD h [ k+j ∗ x s i z e ] . y = s h [ k+j ∗ x s i z e ] . y ;
330 }
331 }
332
333 cudaThreadSynchronize ( ) ;
334 //Copy new S to curren t S f o r error c a l c u l a t i o n
335 cudaMemcpy2DAsync( s h , x s i z e ∗ s izeof ( cufftComplex ) ,
336 rM d , rPitch ,
337 x s i z e ∗ s izeof ( cufftComplex ) , y s i z e ,
338 cudaMemcpyDeviceToHost , stream [ s ] ) ;
339 cudaThreadSynchronize ( ) ;
340
341 // Ca l cu l a t e Error us ing CPU
342 f loat temp = 0 ;
343 for ( j = 0 ; j < y s i z e ; j++) {
344 for ( k = 0 ; k < x s i z e ; k++) {
345 temp += sqr t ( sOLD h [ k+j ∗ x s i z e ] . x∗sOLD h [ k+j ∗ x s i z e ] . x
346 + sOLD h [ k+j ∗ x s i z e ] . y∗sOLD h [ k+j ∗ x s i z e ] . y )
347 / sq r t ( s h [ k+j ∗ x s i z e ] . x∗ s h [ k+j ∗ x s i z e ] . x
348 + s h [ k+j ∗ x s i z e ] . y∗ s h [ k+j ∗ x s i z e ] . y ) ;
349 }
350 }
351 temp /= y s i z e ∗ x s i z e ;
352 temp = abs ( temp − 1 .0 f ) ;
353 i f ( temp < minError ) {
354 minError = temp ;
355 }
356
357 cudaThreadSynchronize ( ) ;
358 //Copy new S to curren t S f o r next i t e r a t i o n .
359 cudaMemcpy2DAsync(
360 ( cufftComplex ∗) ( ( char∗) sM d
361 + s ∗ sPi tch ∗ y s i z e ) , sPitch ,
362 ( cufftComplex ∗) ( ( char∗) rM d
363 + s ∗ rP i tch ∗ y s i z e ) , rPitch ,
364 x s i z e ∗ s izeof ( cufftComplex ) , y s i z e ,
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365 cudaMemcpyDeviceToDevice , stream [ s ] ) ;
366 cudaThreadSynchronize ( ) ;
367
368 i++;
369 } while ( i < N && minError > EPS) ;
370 p r i n t f ( ” I t e r a t i o n s used : %d\n” , i +1) ;
371
372
373 t ime f i n i s h = rdtsc t ime ( ) ;
374 p r i n t f ( ”GPU: Time f o r GPU to compute convo lut ion ( in seconds )
375 ( on hpc6 ) : %f \n” , ( ( double )
376 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
377 e r r = cudaGetLastError ( ) ;
378 i f ( e r r != cudaSuccess ) p r i n t f ( ”ERROR: %s
379 :ERROR\n” , cudaGetErrorStr ing ( e r r ) ) ;
380
381
382
383 p r i n t f ( ”\n” ) ;
384 // /////////////////////////////////////////////////////////
385 // COPY RESULT BACK TO HOST
386 // /////////////////////////////////////////////////////////
387 t ime s t a r t = rdt sc t ime ( ) ;
388 cudaMemcpy2DAsync( rM h , x s i z e ∗ s izeof ( cufftComplex ) ,
389 sM d , sPitch ,
390 x s i z e ∗ s izeof ( cufftComplex ) , y s i z e ,
391 cudaMemcpyDeviceToHost , stream [ s ] ) ;
392 t ime f i n i s h = rdtsc t ime ( ) ;
393 p r i n t f ( ”COPY: Time to copy r e s u l t to host ( in seconds )
394 ( on hpc6 ) : %f \n” , ( ( double )
395 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
396 e r r = cudaGetLastError ( ) ;
397 i f ( e r r != cudaSuccess ) p r i n t f ( ”ERROR: %s
398 :ERROR\n” , cudaGetErrorStr ing ( e r r ) ) ;
399
400
401
402 t o t f i n i s h = rdtsc t ime ( ) ;
403 p r i n t f ( ”\nTOTAL: t o t a l time f o r GPU opera t i on s without
404 a l l o c a t i o n s ( on hpc6 ) : %fms\n” ,
405 1000∗((double ) ( t o t f i n i s h−t o t s t a r t ) /2830000000) ) ;
406
407
408
409
410
411
412
413
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414 t o t s t a r t = rdt sc t ime ( ) ;
415 // /////////////////////////////////////////////////////////
416 //Compute FFT using FFTW
417 // /////////////////////////////////////////////////////////
418 p r i n t f ( ”\n” ) ;
419 t ime s t a r t = rdt sc t ime ( ) ;
420 p r i n t f ( ”Copying in−data to f f tw matrix s t ru tu red
421 array ( f o r FFTW) . . . \ n” ) ;
422 for ( i = 0 ; i < x s i z e ; i++) {
423 for ( j = 0 ; j < y s i z e ; j++) {
424 for ( k = 0 ; k < z s i z e ; k++) {
425 cpueM [ i ] [ j ] [ k ] [ 0 ] = s r c [ k+j ∗ z s i z e+i ∗ z s i z e ∗ y s i z e ] [ 0 ] ;
426 cpueM [ i ] [ j ] [ k ] [ 1 ] = s r c [ k+j ∗ z s i z e+i ∗ z s i z e ∗ y s i z e ] [ 1 ] ;
427 }
428 }
429 }
430 t ime f i n i s h = rdtsc t ime ( ) ;
431 p r i n t f ( ”FFTW: Time to copy in−data to f f tw matrix
432 s t ru tu r ed array ( in seconds ) ( on hpc6 ) : %f \n” ,
433 ( ( double ) ( t ime f i n i s h−t ime s t a r t ) /2830000000) ) ;
434 t ime s t a r t = rdt sc t ime ( ) ;
435 p r i n t f ( ” Performing FFT us ing FFTW. . . \ n” ) ;
436 for ( i = 0 ; i < x s i z e ; i++) {
437 for ( j = 0 ; j < y s i z e ; j++) {
438 doFFT(cpueM [ i ] [ j ] , cpurM [ i ] [ j ] ) ;
439 }
440 }
441 t ime f i n i s h = rdtsc t ime ( ) ;
442 p r i n t f ( ”FFTW: Time f o r FFTW to compute ( in seconds )
443 ( on hpc6 ) : %f \n” , ( ( double )
444 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
445
446
447
448 // /////////////////////////////////////////////////////////
449 //CPU ”CONVOLUTION”
450 // /////////////////////////////////////////////////////////
451 t ime s t a r t = rdt sc t ime ( ) ;
452 p r i n t f ( ”Computing c o r r e l a t i o n us ing CPU. . . \ n” ) ;
453
454 minError = 100000000000.0 f ;
455 cufftComplex ∗∗ e r rorMatr ix h ;
456 createMatr ix (&errorMatr ix h , x s i z e , y s i z e ) ;
457 for ( j = 0 ; j < x s i z e ; j++) {
458 for ( k = 0 ; k < y s i z e ; k++) {
459 er rorMatr ix h [ j ] [ k ] . x = elementMatrix h [ j ] [ k ] . x ;
460 er rorMatr ix h [ j ] [ k ] . y = elementMatrix h [ j ] [ k ] . y ;
461 }
462 }
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463
464 i = 0 ;
465 do {
466 cor re la teReduce ( cpurM ,
467 elementMatrix h ,
468 co r r e l a t i onMat r i x h ,
469 xs i z e , y s i z e ,
470 KERNEL RADIUS, KERNEL WF, MU, bandwidth , f c ) ;
471
472 //Copy curren t S to o ld S f o r error c a l c u l a t i o n .
473 for ( j = 0 ; j < x s i z e ; j++) {
474 for ( k = 0 ; k < y s i z e ; k++) {
475 er rorMatr ix h [ j ] [ k ] . x = elementMatrix h [ j ] [ k ] . x ;
476 er rorMatr ix h [ j ] [ k ] . y = elementMatrix h [ j ] [ k ] . y ;
477 }
478 }
479
480 //Copy new S to curren t S f o r next i t e r a t i o n .
481 for ( j = 0 ; j < x s i z e ; j++) {
482 for ( k = 0 ; k < y s i z e ; k++) {
483 elementMatrix h [ j ] [ k ] . x = co r r e l a t i onMat r i x h [ j ] [ k ] . x ;
484 elementMatrix h [ j ] [ k ] . y = co r r e l a t i onMat r i x h [ j ] [ k ] . y ;
485 }
486 }
487
488 // Error c a l c u l a t i o n
489 f loat temp = 0 ;
490 for ( j = 0 ; j < x s i z e ; j++) {
491 for ( k = 0 ; k < y s i z e ; k++) {
492 temp += sqr t ( e r rorMatr ix h [ j ] [ k ] . x
493 ∗ e r rorMatr ix h [ j ] [ k ] . x
494 + errorMatr ix h [ j ] [ k ] . y
495 ∗ e r rorMatr ix h [ j ] [ k ] . y )
496 /
497 sq r t ( e lementMatrix h [ j ] [ k ] . x
498 ∗ elementMatrix h [ j ] [ k ] . x
499 + elementMatrix h [ j ] [ k ] . y
500 ∗ elementMatrix h [ j ] [ k ] . y ) ;
501 }
502 }
503 temp /= y s i z e ∗ x s i z e ;
504 temp = abs ( temp − 1 .0 f ) ;
505 i f ( temp < minError ) {
506 minError = temp ;
507 }
508
509 i++;
510 } while ( i < N && minError > EPS) ;
511 p r i n t f ( ” I t e r a t i o n s used : %d\n” , i +1) ;
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512
513 t ime f i n i s h = rdtsc t ime ( ) ;
514 p r i n t f ( ”CPU1: Time f o r CPU to compute ( in seconds )
515 ( on hpc6 ) : %f \n” , ( ( double )
516 ( t ime f i n i sh−t ime s t a r t ) /2830000000) ) ;
517
518 t o t f i n i s h = rdtsc t ime ( ) ;
519 p r i n t f ( ”\nTOTAL: t o t a l time f o r CPU computations
520 ( on hpc6 ) : %fms\n” , 1000∗((double )
521 ( t o t f i n i s h−t o t s t a r t ) /2830000000) ) ;
522
523 } //end f o r t e s t i n g for−l oop
524 l o o p f i n i s h = rdtsc t ime ( ) ;
525 p r i n t f ( ”\nTOTAL: t o t a l time f o r loop in c l ud ing ca s t
526 to f l o a t ( on hpc6 ) : %fms\n” , 1000∗((double )
527 ( l o op f i n i s h−l o o p s t a r t ) /2830000000) ) ;
528 p r i n t f ( ”\n” ) ;
529
530
531
532 // /////////////////////////////////////////////////////////
533 //DEALLOCATION ( Only done once per program run )
534 // /////////////////////////////////////////////////////////
535
536 for ( i = 0 ; i < x s i z e ; i++) {
537 for ( j = 0 ; j < y s i z e ; j++) {
538 f r e e (cpueM [ i ] [ j ] ) ;
539 }
540 f r e e (cpueM [ i ] ) ;
541 }
542 f r e e (cpueM) ;
543 for ( i = 0 ; i < x s i z e ; i++) {
544 for ( j = 0 ; j < y s i z e ; j++) {
545 f r e e ( cpurM [ i ] [ j ] ) ;
546 }
547 f r e e ( cpurM [ i ] ) ;
548 }
549 f r e e ( cpurM) ;
550 cudaFreeHost ( s h ) ;
551 cudaFreeHost ( sOLD h) ;
552 destroyMatr ix (&elementMatrix h , y s i z e ) ;
553 destroyMatr ix (&cor r e l a t i onMat r i x h , y s i z e ) ;
554 cudaFree ( elementMatrix ) ;
555 cudaFree ( cu f f tResu l tMat r i x ) ;
556 cudaFree ( eM d) ;
557 cudaFree ( sM d) ;
558 cudaFree (sOM d) ;
559 cudaFree ( rM d) ;
560 cuda cleanupFFT ( ) ;
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561 cleanupFFT ( ) ;
562 for ( i = 0 ; i < streams ; i++) {
563 cudaStreamDestroy ( stream [ i ] ) ;
564 }
565 }
566 } // ex te rn ”C”
567
568
569
570 // /////////////////////////////////////////////////////////
571 // READ DATA FROM FILE
572 // /////////////////////////////////////////////////////////
573 void loadData ( f f tw complex ∗ src ,
574 char ∗ f n s t r ,
575 char ∗ l o g s t r ,
576 const int xs i z e ,
577 const int ys i z e ,
578 const int z s i z e ,
579 char ∗matrixName ) {
580
581 double ∗u ;
582 long long int r e t ;
583 int n1 , n2 , n3 , x , y , z ;
584 n1 = x s i z e ;
585 n2 = y s i z e ;
586 n3 = z s i z e ;
587
588 u = (double∗) mal loc ( n1∗n2∗n3 ∗ s izeof (double ) ) ;
589 for ( y = 0 ; y < n1∗n2∗n3 ; y++) {
590 u [ y ] = 0 . 0 ;
591 }
592
593 //Read indata matrix from f i l e .
594 r e t = r e a d g e n f i l e ( n1 , n2 , n3 , f n s t r , matrixName , u) ;
595 i f ( r e t ) {
596 w r i t e l o g ( l o g s t r , ”Matrix may not be loaded f u l l y ” ) ;
597 }
598
599 //Change from Row major o f MATLAB to column major .
600 for ( x = 0 ; x < n1 ; x++) {
601 for ( y = 0 ; y < n2 ; y++) {
602 for ( z = 0 ; z < n3 ; z++) {
603 s r c [ z+y∗n3+x∗n2∗n3 ] [ 0 ] = u [ z∗n1∗n2+y+x∗n1 ] ;
604 }
605 }
606 }
607 f r e e (u) ;
608 w r i t e l o g ( l o g s t r , ” S i gna l loaded ” ) ;
609 }
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610
611 // /////////////////////////////////////////////////////////
612 // WRITE RESULT TO FILE
613 // /////////////////////////////////////////////////////////
614 void saveData ( cufftComplex ∗ r e su l t ,
615 char ∗ f n s t r ,
616 char ∗ l o g s t r ,
617 const int xs i z e ,
618 const int ys i z e ,
619 const int z s i z e ,
620 int harmonic ,
621 char ∗realName ,
622 char ∗imagName) {
623
624 int nh , n1 , n2 , x , y ;
625 nh = harmonic ;
626 n1 = x s i z e ;
627 n2 = y s i z e ;
628
629 long long int r e t ;
630 double ∗ r ea l , ∗ imag ;
631 r e a l = (double∗) mal loc ( n1∗n2∗ s izeof (double ) ) ;
632 imag = (double∗) mal loc ( n1∗n2∗ s izeof (double ) ) ;
633
634 // Extrac t data from cuf f tComplex matrix
635 // in t o two sepe ra t e matr ices
636 for ( y = 0 ; y < n2 ; y++) {
637 for ( x = 0 ; x < n1 ; x++) {
638 r e a l [ x∗n1+y ] = r e s u l t [ x+y∗n1 ] . x ;
639 imag [ x∗n1+y ] = r e s u l t [ x+y∗n1 ] . y ;
640 }
641 }
642
643 //Write r e a l data to f i l e
644 r e t = w r i t e g e n f i l e (nh , n1 , n2 , f n s t r , realName , r e a l ) ;
645 i f ( r e t ) {
646 w r i t e l o g ( l o g s t r , ”Real matrix sav ing f a i l e d . ” ) ;
647 }
648 //Write imaginary data to f i l e
649 r e t = w r i t e g e n f i l e (nh , n1 , n2 , f n s t r , imagName , imag ) ;
650 i f ( r e t ) {
651 w r i t e l o g ( l o g s t r , ” Imaginary matrix sav ing f a i l e d . ” ) ;
652 }
653
654 f r e e ( r e a l ) ;
655 f r e e ( imag ) ;
656
657 w r i t e l o g ( l o g s t r , ” Matr ices s to r ed ” ) ;
658 }



F.1. MAIN PROGRAM CODE 101

659
660
661 // /////////////////////////////////////////////////////////
662 // CUDA DEVICE INFORMATION
663 // /////////////////////////////////////////////////////////
664 void i n i t i a l i z eCuda ( int dev i c e ) {
665 // S e l e c t CUDA dev i c e to use .
666 cudaDeviceProp deviceProp ;
667 cudaGetDevicePropert ies (&deviceProp , dev i c e ) ;
668 p r i n t f ( ”Using Device %d : %s \n” , device , deviceProp . name) ;
669 cudaSetDevice ( dev i c e ) ;
670 }
671
672 // /////////////////////////////////////////////////////////
673 // ALLOCATE MATRICES
674 // /////////////////////////////////////////////////////////
675 void a l l o c a t e ( f f tw complex ∗∗ src ,
676 cufftComplex ∗∗rM h ,
677 const int xs i z e ,
678 const int ys i z e ,
679 const int z s i z e ,
680 const int streams ) {
681
682 int t o t s i z e = x s i z e ∗ y s i z e ∗ z s i z e ;
683 // A l l o c a t e page−l o c ked memory f o r f a s t e r acces s .
684 cudaMallocHost ( ( void ∗∗) src , t o t s i z e ∗
685 streams ∗ s izeof ( f f tw complex ) ) ;
686 f i l lRandom ( s r c [ 0 ] , t o t s i z e ∗ streams ) ;
687
688 // Resu l t from c o r r e l a t i o n copied to hos t //XSIZE∗YSIZE
689 cudaMallocHost ( ( void ∗∗) rM h , x s i z e ∗ y s i z e
690 ∗ streams ∗ s izeof ( cufftComplex ) ) ;
691 }
692
693 // /////////////////////////////////////////////////////////
694 // DEALLOCATE MATRICES
695 // /////////////////////////////////////////////////////////
696 void deAl loca te ( f f tw complex ∗ src ,
697 cufftComplex ∗rM h) {
698
699 cudaFreeHost ( s r c ) ;
700 cudaFreeHost ( rM h) ;
701 }
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F.2 GPU Correlation Kernel Code

The following is the comparison GPU kernel used in the iterations.

1 #define a3d (a , x , y , z , xs , ys , z s ) a [ x∗ys∗ zs + y∗ zs + z ]
2
3 g l o b a l void convo lut ionS ( cufftComplex ∗ d Data ,
4 cufftComplex ∗ d Result ,
5 cufftComplex ∗ d S ,
6 const f loat mu,
7 const int XSIZE ,
8 const int YSIZE ,
9 const int ZSIZE ,

10 const s i z e t p i t ch ) {
11
12 const int bandwidthStart = FC − BANDWIDTH / 2 ;
13
14 const int x = threadIdx . x ;
15 const int y = threadIdx . y ;
16
17 const int xs = blockDim . x ;
18 const int ys = blockDim . y ;
19
20 const int b lockStar tx = blockIdx . x ;
21 const int b lockStar ty = blockIdx . y ;
22
23 const int g loba lx = x − KERNEL RADIUS
24 + blockStar tx ∗xs − b lockStar tx ∗2∗

KERNEL RADIUS;
25 const int g loba ly = y − KERNEL RADIUS
26 + blockStar ty ∗ys − b lockStar ty ∗2∗

KERNEL RADIUS;
27
28 const int smemPos = x + y∗xs ;
29 const int B = xs∗ys ;
30
31 // Set shared memory i n c l u d i n g aprons :
32 s h a r e d cufftComplex data [11∗11∗ (BANDWIDTH+1) ] ;
33 s h a r e d cufftComplex s [ 1 1 ∗ 1 1 ] ;
34
35 // Optimizat ion , uses l e s s r e g i s t e r s
36 bool a c t i v e = f a l s e ; // In s i d e matrix
37 bool wr i t e = f a l s e ; // Ins i d e computed r e s u l t
38 i f ( g l oba lx >= 0 && globa ly >= 0
39 && g loba lx <= XSIZE−1 && g loba ly <= YSIZE−1) {
40 a c t i v e = true ;
41 i f ( ( x >= KERNEL RADIUS && x <= (( xs−1)−KERNEL RADIUS)
42 && y >= KERNEL RADIUS && y <= (( ys−1)−KERNEL RADIUS) ) ) {
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43 wr i t e = true ;
44 }
45 }
46
47 // I f thread i n s i d e matrix
48 i f ( a c t i v e ) {
49 //Load S matrix :
50 // load data
51 cufftComplex ∗ element = ( cufftComplex ∗) ( ( char∗) d S
52 + g loba ly ∗ p i t ch ) + g loba lx ;
53 s [ smemPos ] . x = element−>x ;
54 s [ smemPos ] . y = element−>y ;
55
56 //Load 3D data :
57 // f o r loop a l l p l anes
58 #pragma un r o l l 15
59 for ( int i = 0 ; i < (BANDWIDTH+1) ; i++) {
60 // load data
61 data [ smemPos + i ∗B ] . x = a3d ( d Data , g loba lx , g loba ly ,
62 bandwidthStart+i , XSIZE ,
63 YSIZE , ZSIZE) . x ;
64 data [ smemPos + i ∗B ] . y = a3d ( d Data , g loba lx , g loba ly ,
65 bandwidthStart+i , XSIZE ,
66 YSIZE , ZSIZE) . y ;
67 }
68 }
69 // e l s e
70 else {
71 // s e t to zero
72 s [ smemPos ] . x = 0 .0 f ;
73 s [ smemPos ] . y = 0 .0 f ;
74 // f o r loop a l l p l anes
75 #pragma un r o l l 15
76 for ( int i = 0 ; i < (BANDWIDTH+1) ; i++) {
77 // s e t to zero
78 data [ smemPos + i ∗B ] . x = 0 .0 f ;
79 data [ smemPos + i ∗B ] . y = 0 .0 f ;
80 }
81 }
82
83 // synchron i ze a l l t h reads .
84 sync th r ead s ( ) ;
85
86
87 //Compute :
88 cufftComplex sum ;
89 sum . x = 0 .0 f ;
90 sum . y = 0 .0 f ;
91 // i f thread i n s i d e matrix == i f pos−kerne l w > o u t s i d e lower
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b l o c k
92 //and pos+kerne l w < o u t s i d e upper b l o c k
93 i f ( wr i t e ) {
94 cufftComplex R klmn , W klmn , M klmn ;
95 f loat R kl , R mn ;
96
97 //R( k , l )
98 R kl = 0 .0 f ;
99 #pragma un r o l l 15

100 for ( int i = 0 ; i < BANDWIDTH+1; i++) {
101 R kl += data [ smemPos+i ∗B ] . x
102 ∗ data [ smemPos+i ∗B ] . x
103 + data [ smemPos+i ∗B ] . y
104 ∗ data [ smemPos+i ∗B ] . y ;
105 }
106 R kl /= (BANDWIDTH+1) ;
107 R kl = s q r t f ( R kl ) ;
108
109 // f o r loop v e r t i c a l k
110 #pragma un r o l l 5
111 for ( int k = −KERNEL RADIUS; k <= KERNEL RADIUS; k++) {
112
113 // f o r loop h o r i z o n t a l l
114 #pragma un r o l l 5
115 for ( int l = −KERNEL RADIUS; l <= KERNEL RADIUS; l++) {
116 //compute new S
117
118 R mn = 0.0 f ;
119 R klmn . x = 0 .0 f ;
120 R klmn . y = 0 .0 f ;
121 W klmn . x = 0 .0 f ;
122 W klmn . y = 0 .0 f ;
123 M klmn . x = 0 .0 f ;
124 M klmn . y = 0 .0 f ;
125
126 //R( k , l ,m, n)
127 #pragma un r o l l 15
128 for ( int i = 0 ; i < BANDWIDTH+1; i++) {
129 R klmn . x += data [ smemPos+i ∗B ] . x
130 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x
131 + data [ smemPos+i ∗B ] . y
132 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;
133 R klmn . y += data [ smemPos+i ∗B ] . y
134 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x
135 − data [ smemPos+i ∗B ] . x
136 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;
137 }
138 R klmn . x /= (BANDWIDTH+1) ;
139 R klmn . y /= (BANDWIDTH+1) ;
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140
141 //R( k−m, l−n)
142 #pragma un r o l l 15
143 for ( int i = 0 ; i < BANDWIDTH+1; i++) {
144 R mn += data [ smemPos + k∗xs + l + i ∗B ] . x
145 ∗ data [ smemPos + k∗xs + l + i ∗B ] . x
146 + data [ smemPos + k∗xs + l + i ∗B ] . y
147 ∗ data [ smemPos + k∗xs + l + i ∗B ] . y ;
148 }
149 R mn /= (BANDWIDTH+1) ;
150 R mn = s q r t f (R mn) ;
151
152 //W( k , l ,m, n)
153 W klmn . x = R klmn . x / ( R kl ∗ R mn + 1e−5) ;
154 W klmn . y = R klmn . y / ( R kl ∗ R mn + 1e−5) ;
155
156 //M( k , l ,m, n)
157 M klmn . x = s q r t f (W klmn . x∗W klmn . x
158 + W klmn . y∗W klmn . y ) ∗ R klmn . x ;
159 M klmn . y = s q r t f (W klmn . x∗W klmn . x
160 + W klmn . y∗W klmn . y ) ∗ R klmn . y ;
161
162 // new s
163 sum . x += (M klmn . x ∗ s [ smemPos + k∗xs + l ] . x
164 + M klmn . y ∗ s [ smemPos + k ∗ xs + l ] . y )
165 / ( s [ smemPos + k∗xs + l ] . x
166 ∗ s [ smemPos + k∗xs + l ] . x
167 + s [ smemPos + k∗xs + l ] . y
168 ∗ s [ smemPos + k∗xs + l ] . y + 1e−5) ;
169 sum . y += (M klmn . y ∗ s [ smemPos + k∗xs + l ] . x
170 − M klmn . x ∗ s [ smemPos + k ∗ xs + l ] . y )
171 / ( s [ smemPos + k∗xs + l ] . x
172 ∗ s [ smemPos + k∗xs + l ] . x
173 + s [ smemPos + k∗xs + l ] . y
174 ∗ s [ smemPos + k∗xs + l ] . y + 1e−5) ;
175 }
176 }
177 // c a l c u l a t e new S element
178 sum . x = (1 . 0 f − mu) ∗ s [ smemPos ] . x + mu ∗ sum . x ;
179 sum . y = (1 . 0 f − mu) ∗ s [ smemPos ] . y + mu ∗ sum . y ;
180
181 // wr i t e s to memory
182 cufftComplex ∗ element = ( cufftComplex ∗) ( ( char∗) d Resu l t
183 + g loba ly ∗ p i t ch ) + g loba lx ;
184 element−>x = sum . x/(KERNEL W∗KERNEL W) ;
185 element−>y = sum . y/(KERNEL W∗KERNEL W) ;
186 }
187 }
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F.3 CPU Correlation Code

The CPU version of the code used to compute the correction filter. Very
similar to the GPU version.

1 void cor re la teReduce ( f f tw f complex ∗∗∗ fftM ,
2 cufftComplex ∗∗sM,
3 cufftComplex ∗∗corrM ,
4 int xs i z e ,
5 int ys i z e ,
6 int ke rne l r ad iu s ,
7 int kerne l wf ,
8 f loat mu,
9 int bandwidth ,

10 int f c ) {
11
12 //Compute :
13 cufftComplex sum , R klmn , W klmn ,
14 M klmn , data , dataNeighbor , s ;
15 int bwS = f c − bandwidth / 2 ; // bandwid thStar t
16 f loat R kl , R mn, bandwidthf ;
17 bandwidthf = bandwidth ∗ 1 .0 f ;
18 // f o r loop x−d i r e c t i o n
19 for ( int x = 0 ; x < x s i z e ; x++) {
20 // f o r loop y−d i r e c t i o n
21 for ( int y = 0 ; y < y s i z e ; y++) {
22 sum . x = 0 .0 f ;
23 sum . y = 0 .0 f ;
24
25 //R( k , l )
26 R kl = 0 .0 f ;
27 for ( int i = 0 ; i < bandwidth+1; i++) {
28 data . x = fftM [ x ] [ y ] [ bwS+i ] [ 0 ] ;
29 data . y = fftM [ x ] [ y ] [ bwS+i ] [ 1 ] ;
30 R kl += data . x ∗ data . x
31 + data . y ∗ data . y ;
32 }
33 R kl /= ( bandwidthf+1.0 f ) ;
34 R kl = s q r t f ( R kl ) ;
35
36 // f o r loop v e r t i c a l k
37 for ( int k = −k e r n e l r a d i u s ; k <= ke rn e l r a d i u s ; k++) {
38 // f o r loop h o r i z o n t a l l
39 for ( int l = −k e r n e l r a d i u s ; l <= ke rn e l r a d i u s ; l++) {
40 //compute new S
41 R mn = 0.0 f ;
42 R klmn . x = 0 .0 f ;
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43 R klmn . y = 0 .0 f ;
44 W klmn . x = 0 .0 f ;
45 W klmn . y = 0 .0 f ;
46 M klmn . x = 0 .0 f ;
47 M klmn . y = 0 .0 f ;
48 //R( k , l ,m, n)
49 for ( int i = 0 ; i < bandwidth+1; i++) {
50 data . x = fftM [ x ] [ y ] [ bwS+i ] [ 0 ] ;
51 data . y = fftM [ x ] [ y ] [ bwS+i ] [ 1 ] ;
52 i f ( x+l >= 0 && x+l < x s i z e &&
53 y+k >= 0 && y+k < y s i z e ) {
54 dataNeighbor . x = fftM [ x+l ] [ y+k ] [ bwS+i ] [ 0 ] ;
55 dataNeighbor . y = fftM [ x+l ] [ y+k ] [ bwS+i ] [ 1 ] ;
56 }
57 else {
58 dataNeighbor . x = 0 .0 f ;
59 dataNeighbor . y = 0 .0 f ;
60 }
61 R klmn . x += data . x ∗ dataNeighbor . x
62 + data . y ∗ dataNeighbor . y ;
63 R klmn . y += data . y ∗ dataNeighbor . x
64 − data . x ∗ dataNeighbor . y ;
65 }
66 R klmn . x /= ( bandwidthf+1.0 f ) ;
67 R klmn . y /= ( bandwidthf+1.0 f ) ;
68
69 //R( k−m, l−n)
70 for ( int i = 0 ; i < bandwidth+1; i++) {
71 i f ( x+l >= 0 && x+l < x s i z e &&
72 y+k >= 0 && y+k < y s i z e ) {
73 dataNeighbor . x = fftM [ x+l ] [ y+k ] [ bwS+i ] [ 0 ] ;
74 dataNeighbor . y = fftM [ x+l ] [ y+k ] [ bwS+i ] [ 1 ] ;
75 }
76 else {
77 dataNeighbor . x = 0 .0 f ;
78 dataNeighbor . y = 0 .0 f ;
79 }
80 R mn += dataNeighbor . x ∗ dataNeighbor . x
81 + dataNeighbor . y ∗ dataNeighbor . y ;
82 }
83 R mn /= ( bandwidthf+1.0 f ) ;
84 R mn = s q r t f (R mn) ;
85
86 //W( k , l ,m, n)
87 W klmn . x = R klmn . x / ( R kl ∗ R mn + 1e−5) ;
88 W klmn . y = R klmn . y / ( R kl ∗ R mn + 1e−5) ;
89
90 //M( k , l ,m, n)
91 M klmn . x = s q r t f (W klmn . x∗W klmn . x
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92 + W klmn . y∗W klmn . y ) ∗ R klmn . x ;
93 M klmn . y = s q r t f (W klmn . x∗W klmn . x
94 + W klmn . y∗W klmn . y ) ∗ R klmn . y ;
95
96 // new s
97 i f ( x+l >= 0 && x+l < x s i z e &&
98 y+k >= 0 && y+k < y s i z e ) {
99 s . x = sM[ x+l ] [ y+k ] . x ;

100 s . y = sM[ x+l ] [ y+k ] . y ;
101 }
102 else {
103 s . x = 0 .0 f ;
104 s . y = 0 .0 f ;
105 }
106 sum . x += (M klmn . x ∗ s . x + M klmn . y ∗ s . y )
107 / ( s . x∗ s . x + s . y∗ s . y + 1e−5) ;
108 sum . y += (M klmn . y ∗ s . x − M klmn . x ∗ s . y )
109 / ( s . x∗ s . x + s . y∗ s . y + 1e−5) ;
110 }
111 }
112
113 sum . x = (1 . 0 f − mu) ∗ sM[ x ] [ y ] . x + mu ∗ sum . x ;
114 sum . y = (1 . 0 f − mu) ∗ sM[ x ] [ y ] . y + mu ∗ sum . y ;
115
116 //Write new c o r r e c t i o n matrix to memory :
117 corrM [ x ] [ y ] . x = sum . x ;
118 corrM [ x ] [ y ] . y = sum . y ;
119 }
120 }
121 }

F.4 Other Kernels

Other computational kernels used in the program.

1 /∗
2 ∗ Se t s d e f a u l t s t a r t v a l u e s f o r the c o r r e c t i o n f a c t o r matrix
3 ∗/
4 g l o b a l void cuda se tSta r tVa lue s (
5 cufftComplex ∗matrix , s i z e t p i t ch ) {
6 cufftComplex ∗ element = ( cufftComplex ∗)
7 ( ( char∗) matrix + blockIdx . y∗ p i t ch ) + blockIdx . x ;
8 element−>x = 1 .0 f ;
9 element−>y = 0 .0 f ;

10 }
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1 extern s h a r e d f loat sharedCast [ ] ;
2 /∗
3 ∗ Casts from doub le to f l o a t on the CUDA dev i c e .
4 ∗/
5 g l o b a l void cuda castFromDouble (
6 double∗ src , f loat ∗ eM, int s i z e ) {
7
8 int idx = threadIdx . x + blockIdx . x∗blockDim .
9 x + blockIdx . y∗blockDim . x∗gridDim . x ;

10 for ( int i = idx ; i < s i z e ; i+=blockDim . x∗gridDim . x∗gridDim . y )
11 {
12 eM[ i ] = ( f loat ) s r c [ i ] ;
13 }
14 }

F.5 Other CPU functions

Other functions used by the program.

1 cu f f tHand le plan ;
2 /∗
3 ∗ Se t s up the CUFFT: c r e a t i n g a plan and a s s i g n i n g
4 ∗ the matr ices t h a t are to be computed .
5 ∗/
6 void cuda setupFFT ( const int N, const int BATCH) {
7 cu f f tP lan1d (&plan , N, CUFFT C2C, BATCH) ;
8 }
9

10 /∗
11 ∗ Run the FFT c a l c u l a t i o n .
12 ∗/
13 cu f f tR e su l t cuda doFFT( cufftComplex ∗eM, cufftComplex ∗rM) {
14 return cufftExecC2C ( plan , eM, rM, CUFFTFORWARD) ;
15 }
16
17 /∗
18 ∗ Cleanup : De le te the p lan .
19 ∗/
20 void cuda cleanupFFT ( ) {
21 cu f f tDe s t r oy ( plan ) ;
22 }

1 f f tw f p l a n p ;
2
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3 void setupFFT( const int N, int xs i z e , int ys i z e , int z s i z e ,
4 f f tw f complex ∗matrix , f f tw f complex ∗ r e s u l t ) {
5 p = f f tw f p l a n d f t 1 d (N, matrix , r e su l t ,
6 FFTWFORWARD, FFTW ESTIMATE) ;
7 }
8
9 void doFFT( f f tw f complex ∗matrix , f f tw f complex ∗ r e s u l t ) {

10 f f tw f e x e c u t e d f t (p , matrix , r e s u l t ) ;
11 }
12
13 void cleanupFFT ( ) {
14 f f tw f d e s t r o y p l a n (p) ;
15 }

1 /∗
2 ∗ ” Constructor ” f o r matr ices .
3 ∗/
4 void createMatr ix ( cufftComplex ∗∗matrix , int xs i z e , int ys i z e ,
5 s i z e t &p i t ch ) {
6 i f ( x s i z e == y s i z e ) {
7 // cudaMal locPitch i n s e r t s c o r r e c t padding f o r CUDA
8 cudaMallocPitch ( ( void ∗∗) matrix , &pitch ,
9 x s i z e ∗ s izeof ( cufftComplex ) , y s i z e ) ;

10 }
11 else {
12 // A l l o c a t e a 1D array
13 cudaMalloc ( ( void ∗∗) matrix ,
14 s izeof ( cufftComplex ) ∗ x s i z e ∗ y s i z e ) ;
15 }
16 }
17
18 /∗
19 ∗ ” Des t ruc tor ” f o r matr ices .
20 ∗/
21 void destroyMatr ix ( cufftComplex ∗∗matrix ) {
22 cudaFree ( matrix ) ;
23 }

1 //Round a / b to neare s t h i ghe r i n t e g e r va lue
2 #define IDIVUP(a , b) ( ( a % b != 0) ? ( a / b + 1) : ( a / b) )
3 //Round a / b to neare s t lower i n t e g e r va lue
4 #define IDIVDOWN(a , b) ( a / b )
5 // Align a to neares t h i ghe r m u l t i p l e o f b
6 #define IALIGNUP(a , b) ( ( a % b != 0) ? ( a − a % b + b) : a )
7 // Align a to neares t lower m u l t i p l e o f b
8 #define IALIGNDOWN(a , b) ( a − a % b )

1 /∗
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2 ∗ F i l l s a hos t f f t w matrix wi th ze roe s
3 ∗/
4 void f i l lRandom ( f f tw complex ∗∗matrix , int s i z e ) {
5 int i ;
6 for ( i = 0 ; i < s i z e ; i++) {
7 matrix [ 0 ] [ i ] [ 0 ] = 0 . 0 ;
8 matrix [ 0 ] [ i ] [ 1 ] = 0 . 0 ;
9 }

10 }

1 /∗
2 ∗ F i l l s a hos t f f t w f matrix wi th random numbers
3 ∗/
4 void f i l lRandom ( f f tw f complex ∗∗∗matrix , int xs i z e ,
5 int ys i z e , int z s i z e ) {
6 int i , j , k ;
7 for ( i = 0 ; i < y s i z e ; i++) {
8 for ( j = 0 ; j < x s i z e ; j++) {
9 for ( k = 0 ; k < z s i z e ; k++) {

10 matrix [ j ] [ i ] [ k ] [ 0 ] = 0 .0 f ;
11 matrix [ j ] [ i ] [ k ] [ 1 ] = 0 .0 f ;
12 }
13 }
14 }
15 }

F.6 Makefile

The following is the Makefile used.

1 #
2 # Makef i l e for Abersim 2 .0
3 #
4
5 CC = gcc
6 CFLAGS = −c −O2
7 NVCC = nvcc
8
9 INSTPATH = .

10 LIB = dynl ib
11
12 dynl ib : LIBFLAGS = −fPIC
13 dynl ib : LD = gcc
14 dynl ib : LDFLAGS = −shared
15 dynl ib : LIB = dynl ib
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16
17 s t a t l i b : LIBFLAGS = −stat ic
18 s t a t l i b : LD = ar
19 s t a t l i b : LDFLAGS = rc s
20 s t a t l i b : LIB = s t a t l i b
21
22 inc lude . / Make f i l e . in
23
24 main : LIBFLAGS =
25 main : LD = gcc
26 main : MLDINCLS = $ (LDINCLS) −L$(INSTPATH)
27 main : MINCLS = $ (INCLS) −I$ (INSTPATH)
28 main : MLIBINC = −l abers im2 $ (LIBINC)
29
30 HEADERS = gene ra l / abe r s im gene ra l . h \
31 i o / abe r s im io . h \
32 math/abersim math . h \
33 mate r i a l / abe r s im mate r i a l . h \
34 propagat ion / abers im propagat ion . h \
35 s im s c r i p t s / abe r s im s imsc r i p t s . h \
36 abe r ra t i on / abe r s im abe r ra t i on . h \
37 gene ra l / propcont ro l . h \
38 mate r i a l / mate r i a l . h \
39 abe r ra t i on /phantom . h \
40 debug/debug . h \
41 l o c b l a s / l o c b l a s . h \
42 abersim2 . h \
43 c o r r e c t i o n / abe r s im co r r e c t i on . h \
44 c o r r e c t i o n / gpuOperations . h \
45 c o r r e c t i o n / cpuCorre la t i on . h \
46 c o r r e c t i o n /cpuFFT . h \
47 c o r r e c t i o n /gpuFFT . h \
48 c o r r e c t i o n /gpuCast . h \
49 c o r r e c t i o n / convo lut ionS . h \
50
51 GENOBJS = gene ra l / i n i t l o g . o \
52 gene ra l / s t a r t l o g . o \
53 gene ra l / update log . o \
54 gene ra l / c l o s e l o g . o \
55 gene ra l / w r i t e l o g . o \
56 gene ra l / g e t l i n s p a c e . o \
57 gene ra l / perext . o \
58 gene ra l /get window . o \
59 gene ra l / g e t r a i s e d c o s . o \
60 gene ra l / ge t xchanne l s . o \
61 gene ra l /apply window . o \
62
63 IOOBJS = io / expor t beampro f i l e . o \
64 i o / propio . o \
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65 i o / pu l s e i o . o \
66 i o / p r o f i l e i o . o \
67 i o / a b f i l e i o . o \
68 i o /matlabio . o \
69 i o / gen io . o \
70 i o / g e t s t r p o s . o \
71
72 MATHOBJS = math/minmax . o \
73 math/ s t a t s . o \
74 math/ f f tw2d . o \
75 math/ inte rp1d . o \
76 math/bandpass . o \
77 math/ h i l b e r t . o \
78
79 MATOBJS = mate r i a l / check mate r i a l . o \
80 mate r i a l / i s r e g u l a r . o \
81 mate r i a l / s e t ma t e r i a l . o \
82 mate r i a l /get matparam . o \
83 mate r i a l / get wavespeed . o \
84 mate r i a l / ge t massdens i ty . o \
85 mate r i a l / get betan . o \
86 mate r i a l / g e t a t t c on s t . o \
87 mate r i a l / ge t a t t exp . o \
88 mate r i a l / g e t a t t enua t i on . o \
89 mate r i a l / g e t c omp r e s s i b i l i t y . o \
90 mate r i a l / ge t epsn . o \
91 mate r i a l / ge t ep sa . o \
92 mate r i a l / ge t epsb . o \
93 mate r i a l /water . o \
94 mate r i a l /muscle . o \
95 mate r i a l / f a t . o \
96 mate r i a l / l i v e r . o \
97 mate r i a l / bra in . o \
98 mate r i a l /bone . o \
99 mate r i a l / brea s t . o \

100 mate r i a l / blood . o \
101 mate r i a l /phantom . o \
102 mate r i a l / seawater . o \
103
104 PRPOBJS = propagat ion / cpropagate . o \
105 propagat ion / d i f f r a c t . o \
106 propagat ion / d i f f r a c t f o u r i e r . o \
107 propagat ion / d i f f r a c t f d t d . o \
108 propagat ion / bu r a t t s p l i t . o \
109 propagat ion / burso lve . o \
110 propagat ion / a t t s o l v e . o \
111 propagat ion / get permutat ion . o \
112 propagat ion /get wavenumbers . o \
113 propagat ion /assemble wavenumbers . o \



114 APPENDIX F. PROGRAM CODE

114 propagat ion / ge t kvec s . o \
115 propagat ion / g e t a t t c o e f f s . o \
116 propagat ion / a d j u s t a t t c o e f f s . o \
117 propagat ion / g e t d i f fma t r i x . o \
118 propagat ion / g e t d i f f s t e n c i l . o \
119 propagat ion / ge t shock l eng th . o \
120 propagat ion / eqresample . o \
121
122 SIMOBJS = s ims c r i p t s / p l an s imu la t i on . o \
123 s im s c r i p t s /beamsim . o \
124 s im s c r i p t s /bodywall . o \
125
126 ABOBJS = abe r ra t i on / p r epa r e abe r r a t i on . o \
127 abe r ra t i on / p r epa r e de l ay s c r e en . o \
128 abe r ra t i on / app ly abe r ra t i on . o \
129 abe r ra t i on / s h i f t a r r a y . o \
130
131 DBOBJS = debug/chkpt . o \
132 debug/ p r i n t a r r ay . o \
133 debug/ pr in t suba r ray . o \
134
135 BLASOBJS = l o c b l a s / l o c c c b l a s 1 . o \
136 l o c b l a s / l o c cdb l a s 1 . o\
137 l o c b l a s / l o c c s b l a s 1 . o\
138 l o c b l a s / l o c c z b l a s 1 . o\
139 l o c b l a s / l o c c c b l a s 2 . o\
140 l o c b l a s / l o c cdb l a s 2 . o\
141 l o c b l a s / l o c c s b l a s 2 . o\
142 l o c b l a s / l o c c z b l a s 2 . o\
143 l o c b l a s / l o c c c b l a s 3 . o\
144 l o c b l a s / l o c cdb l a s 3 . o\
145 l o c b l a s / l o c c s b l a s 3 . o\
146 l o c b l a s / l o c c z b l a s 3 . o\
147
148 CORROBJS = co r r e c t i o n / c o r r e l a t i o n . o \
149 c o r r e c t i o n / gpuOperations . o \
150 c o r r e c t i o n / cpuCorre la t i on . o \
151 c o r r e c t i o n /cpuFFT . o \
152 c o r r e c t i o n /gpuFFT . o \
153 c o r r e c t i o n /gpuCast . o \
154 c o r r e c t i o n / convo lut ionS . o \
155
156
157 PROG = abersim2
158 MAINOBJ = $ (PROG) . o \
159
160 OBJS = $ (GENOBJS) $ (IOOBJS) $ (MATHOBJS) $ (MATOBJS) \
161 $ (PRPOBJS) $ (SIMOBJS) $ (ABOBJS) $ (DBOBJS) $ (BLASOBJS) $ (

CORROBJS)
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162
163 DYNLIB = l ibabe r s im2 . so
164 STATLIB = l ibabe r s im2 . a
165
166 SUBDIRS = gene ra l \
167 i o \
168
169 dynl ib : $ (OBJS)
170 $ (LD) $ (LDFLAGS) $ (OBJS) −o $ (DYNLIB) $ (LDINCLS) $ (

CUDA LDINCLS) $ (LIBINC) $ (CUDA LIBINC)
171
172 s t a t l i b : $ (OBJS)
173 $ (LD) $ (LDFLAGS) $ (STATLIB) $ (OBJS)
174 make oc l ean
175
176 main : $ (MAINOBJ)
177 $ (LD) $ (LDFLAGS) $ (MAINOBJ) −o $ (PROG) $ (MLDINCLS) $ (

CUDA LDINCLS) $ (MLIBINC) $ (CUDA LIBINC)
178
179 a l l :
180 make s t a t l i b
181 make dynl ib
182 make oc l ean
183 make main
184
185 $ (MAINOBJ) : $ (PROG) . c $ (HEADERS)
186 $ (CC) $ (LIBFLAGS) $ (CFLAGS) $ (DBFLAGS) $ (PLATFLAGS) $ (MINCLS)

$ (CUDA INCLS) $<
187
188 %.o : %.c $ (HEADERS)
189 $ (CC) $ (LIBFLAGS) $ (CFLAGS) $ (DBFLAGS) $ (PLATFLAGS) $ (INCLS) $

(CUDA INCLS) $< −o $@
190
191 #−−compiler−opt ions == −Xcompiler
192 %.o : %.cu $ (HEADERS)
193 $ (NVCC) −Xcompiler $ (LIBFLAGS) $ (NVCCFLAGS) $ (DBFLAGS) $ (

PLATFLAGS) $ (INCLS) $ (CUDA INCLS) $< −o $@
194
195
196 c l ean :
197 make oc l ean
198 make l i b c l e a n
199 make progc l ean
200
201 oc l ean :
202 $ (RM) $ (RMFLAGS) $ (OBJS) $ (MAINOBJ)
203
204 l i b c l e a n :
205 $ (RM) $ (RMFLAGS) $ (DYNLIB) $ (STATLIB)
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206
207 progc l ean :
208 $ (RM) $ (RMFLAGS) $ (PROG)
209
210 i n s t a l l :
211 cp $ (HEADERS) $ (INSTPATH) inc lude / .
212 cp $ (DYNLIB) $ (INSTPATH) l i b / .
213 cp $ (STATLIB) $ (INSTPATH) l i b / .
214 make main
215 cp $ (PROG) $ (INSTPATH) bin / .

The following is the Makefile.in.

1 #
2 # Makef i l e . hpc06
3 #
4
5 DB0 = −DSILENT
6 DB1 = $ (DB0) −DQUIET
7 DB2 = $ (DB1) −DNOISY
8 DB3 = $ (DB2) −DLOUD
9

10 DBFLAGS = $ (DB1)
11
12 #nvcc debugf lag
13 #NVCCFLAGS = −g
14
15 NVCCFLAGS = −c −O3 −use fa s t math −−ptxas−opt ions=−v −−gpu−

a r c h i t e c t u r e sm 13 −g
16
17 CUDA INCLS = −I / usr / l o c a l /cuda/ inc lude −I . . / . . / NVIDIA CUDA SDK/

common/ inc
18
19 CUDA LDINCLS = −L/usr / l o c a l /cuda/ l i b −L . . / . . / NVIDIA CUDA SDK/

common/ l i b / l i nux −L . . / . . / NVIDIA CUDA SDK/ l i b
20
21 CUDA LIBINC = −l cuda −l cuda r t − l c u t i l − l c u f f t
22
23
24 PLATFLAGS =
25
26 INCLS = −I . −I / usr / l o c a l / in c lude −I / usr / in c lude
27
28 LDINCLS = −L/usr / l i b −L/usr / l o c a l / l i b −L . −L/usr / l i b / a t l a s
29
30 LIBINC = − l l a p a c k a t l a s − l c b l a s − l a t l a s −lmat io −lm − l z −l g 2 c −

l f f t w 3 f − l f f tw 3
31
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32 INSTPATH = ./ s im s c r i p t s
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Appendix G

Results

The timing results from the 101 runs of the algorithm. Values are in mil-
liseconds.

0 210.68 814.47
1 152.56 806.79
2 152.46 807.61
3 152.48 807.02
4 152.59 808.26
5 152.46 808.41
6 152.41 807.31
7 152.54 808.61
8 152.21 812.85
9 152.63 807.81
10 152.53 807.16

11 152.27 807.72
12 152.44 807.41
13 152.34 808.07
14 152.54 807.54
15 152.59 807.16
16 152.36 807.1
17 152.5 807.24
18 152.62 807.64
19 152.4 807.83
20 152.46 808.22

119
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21 152.38 807.69
22 152.2 807.35
23 152.36 807.23
24 152.48 807.61
25 152.31 806.96
26 152.22 807.01
27 152.51 807.71
28 152.35 807.02
29 152.5 807.7
30 152.65 807.51

31 152.46 806.94
32 152.54 807.15
33 152.44 807.39
34 152.26 807.18
35 152.42 809.42
36 152.3 807.21
37 152.47 807.44
38 152.36 807.45
39 152.57 807.37
40 152.69 808.12

41 152.42 807.39
42 152.53 807.32
43 152.44 807.87
44 152.57 807.6
45 152.41 807.73
46 152.35 808.1
47 152.37 810.37
48 152.35 806.8
49 152.53 806.46
50 152.3 806.75
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51 152.56 806.32
52 152.63 806.73
53 152.52 806.95
54 152.53 806.48
55 152.44 806.6
56 152.36 806.52
57 152.52 806.23
58 152.31 807.39
59 152.53 806.59
60 152.61 806.89

61 152.49 806.88
62 152.52 806.66
63 152.47 806.95
64 152.72 806.55
65 152.43 806.69
66 152.43 806.94
67 152.57 806.75
68 152.42 806.57
69 152.75 806.62
70 152.57 806.17

71 152.48 806.27
72 152.49 806.16
73 152.73 806.61
74 152.55 806.18
75 152.51 806.43
76 152.46 811.3
77 152.48 806.77
78 152.58 806.43
79 152.44 806.81
80 152.72 807.18
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81 152.46 807.46
82 152.64 806.91
83 152.62 806.88
84 152.52 806.67
85 152.53 806.63
86 152.57 806.73
87 152.56 806.68
88 152.5 806.47
89 152.55 807.57
90 152.45 806.48

91 152.61 806.4
92 152.55 806.44
93 152.59 806.12
94 152.56 806.56
95 152.65 806.36
96 152.41 806.56
97 152.38 807.2
98 152.52 807.57
99 152.71 806.82
100 152.47 807.17
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