@ NTNU

Norwegian University of
Science and Technology

FPGA realization of a public key block
cipher

Stig Fjellskaalnes

Master of Science in Computer Science

Submission date: June 2009
Supervisor: Danilo Gligoroski, ITEM
Co-supervisor:  Mohamed El-Hadedy, ITEM

Norwegian University of Science and Technology
Department of Telematics






Problem Description

Recently, a new public key algorithm have been proposed by Gligoroski, Markovski and Knapskog.
The algorithm belongs to the class of public keys algorithms realized by multivariate quadratic
equations. The authors found out a new class of quasigroups that have special form when
expressed as Boolean functions. The quasigroups are multivariate quadratic.

One important characteristic for this new public key algorithm is that it is very fast. Realized in
software it can produce digital signatures around 300 times faster than RSA (1024 bit public key
length). However, in hardware the algorithm can achieve speeds equivalent to symmetric key
primitives both in signature generation and in its verification. That means the algorithm realized in
hardware can be 1,000 to 10,000 times faster than corresponding public key algorithms (RSA,
Diffie Helman or Elliptic Curve algorithms) realized also in hardware.

The student will have a task to write a VHDL code and to realize the algorithm in FPGA, both
encryption and decryption. The realization will use variable public and private keys stored in RAM,
not fixed keys stored in ROM blocks.

Assignment given: 15. January 2009
Supervisor: Danilo Gligoroski, ITEM






Abstract

This report will cover the physical realization of a public key algorithm based on multivariate
quadratic quasigroups. The intension is that this implementation will use real keys and data.
Efforts are also taken in order to reduce area cost as much as possible. The solution will be
described and analyzed. This will show wether the measures were successfull or not.






Contents

2.1 MQQin generall. . . . . . . . ...

[2.2  Logic optimization through minimization| . . . . . . ... .. ... ... .....
[2.2.1  Minimization with Karnaugh mapg . . . . . . . ... ... ... ... ...
[2.2.2  ESPRESSO-II minimization algorithm|. . . . . . . ... ... ... ....

[3 Hardware implementation of MQQ)|
[3.1 Hardware implementations in general|. . . . . . ... ... ... ... ...
[3.2  The actual implementation| . . . . . .. .. ... o000
3.2.1 Encryption| . . . . . . ...
[3.2.2  Decryption| . . . . . . ...
3.3 Dataand keys|. . . . . . . ..
3.4  Optimizing the stored fixed values| . . . . . .. ... ... ... ... .......

4_Results]

........................................
[4.2  Verification of functionality through simulation| . . . . . . .. .. ... ... ...
4.2.1  Encryption| . . . . . . ...
4.2.2  Decryption| . . . . . . . .. e

[b.1.1 Synthesis| . . . . . . . .
[5.1.2  Design behaviour simulation and verification| . . . . ... ... ... ...

IA.1 Encryption| . . . . . . . . . e e
[A2 Decryption| . . . . . . . . o e

(B Espresso minimization|

[C Synthesis report from Decryption|

11
11
11
13
13

17
17
18
18
23
28
28

31
31
31
31
33

39
39
39
40
40
40
40

41

45
45
53

67

69






List of Figures

2.1  Karnaugh diagram with reduction| . . . . . . .. ... ... ... L. 14
3.1 Encryption top level] . . . . . ..o 18
3.2 Encryption state diagram| . . . . . . .. ..o 19
3.3 Expander internal architecture| . . . . . . .. ... ..o o0 21
[3.4  Expander state diagram| . . . . . . ... ... 21
3.5 Public Matrix internal architecturel . . . . . . . . . .. ..o 22
[3.6  Public Matrix state diagram|. . . . . . . . . ... ... L L 23
3.7 Decryption internal architecture]. . . . . . . . . ..o 24
[3.8  Decryption top level state diagram| . . . . . .. ... ... ... ... .. ..., 24
3.9 Private Matrix internal architecturel . . . . . . . . . ... ... 00000 25
[3.10 Private Matrix state diagram| . . . . . . . . ... Lo Lo 25
[3.11 Dobbertin internal architecturel . . . . . . . . . .. ... o L 27
[3.12 Sequencer internal architecturel . . . . . . . ... ... oL 27
[3.13 Sequencer state diagram| . . . . . . .. ..o 28
[3.14 Master Read Only Memory (ROM)]) internal architecture] . . . . . . . . . .. ... 29
4.1 Encryption counter synchronization|. . . . . . . . ... ... Lo oL 32
4.2 Encryption top module missing state| . . . . . ... ... oL L 32
4.3 Expander behaviour| . . . . . . ... ... 33
M4 Public matrix calculation] . . . . . . .. ... . ... ... 34
4.5  Public matrix bit-by-bit XOR} . . . . . . . ... ... o oo 34
4.6  Simulation of startup|. . . . . . . ... 35
4.7 Stored private key as a tunction|. . . . . . ... oo oo 35
4.8 XOR procedure| . . . . . . .. 35
4.9 Dobbertin calculationl . . . . . . . ... L o 36
[4.10 Sequencer startup| . . . . . . ... Lo e 36
411 Master ROM calculationl . . . . . . . . . ... . o 37






List of Tables

2.1 Key generation algorithm| . . . . . ... ... o oo 12
[2.2  Encryption in Multivariate Quadratic Quasigroups (MQQJ|[ . . . . . . ... ... 12
2.3 IMQQ|public key for 160 bit  MQQ| . . . . . . . . . ... o 12
2.4 Decryption procedure] . . . . . . . . ... 13
2.5 Truth tablel . . . . . .. 14
2.6 ESPRESSO-II minimization algorithm| . . . . . . . ... ... ... ... ..... 15
3.1 Expansion|. . . . . . . . . e 20
3.2 Espresso input file format| . . . . . ... ... 29
4.1 Synthesis results of the [MQQ)|decryption procedure|. . . . . . . . ... ... ... 31
|4.2  Synthesis results of the [MQQ)|encryption procedure|. . . . . . . . ... ... ... 32







Chapter 1

Introduction

This thesis will cover an attempt to realize a fairly new public key algorithm on an Field-
progmable Gate Array (FPGA), the MQQ) algorithm. Previous attempts of implementing this
algorithm has shown that the area consumption of this design is enormous, and must be reduced
in order to implement this algorithm in hardware in a practical manner. There are optimization
techniques that can, in theory, be used to store the information more efficient than storing it
directly, which will be investigated.

In order to compare the results of the optimization, the decryption design from the TTM4530
report [8] written by the same author of this master thesis will be used as a reference.




10



Chapter 2

Theory

In this chapter the theoretical background for the techniques used in the implementation will
be presented.

2.1 MQQ in general

is, compared to Rivest-Shamir-Adleman , Diffie-Hellman and Elliptic curve
cryptography , a new type of public key algorithm. Calculations of encryption and
decryption are done with logic operations such as AN D and XOR between the actual data and
the public and private keys. This is a high contrast to tradidional public key algorithms, where
encryption and decryption is done by using more complex mathematical operation. In [,
encryption of a message is done the following way, ¢ = m® (mod n) , where c is the encrypted
message, m is the original message, (n, e) is the public key. Encryption is done the same way,
m = ¢ (mod n), d being the private key exponent. The public key consists of boolean
values arranged in a nxn matrix generated randomly. The private key is derived from
the output of the public key. It follows the following procedure, given in table

The encryption is performed with an expansion of the input data. Then each term
is anded with the respective term from the private key. The number of bits determines the
number of equations that are to be performed. More bits mean more equations. With 160 bits
input data, there will be 160 equations, and each equations have 12881 terms. The result of this
operation is joined in a resultant vector, which will be the encrypted data, as shown in table
This is more thouroughly described in the implementation of the encryption scheme. '+’ is
here an XOR, and multiplication. Basically, the encryption can be represented as the equation
y=Pz)=y=A-X.

For 160 bit the public key is defined as a matrix of 160 x 12881 elements, in the form
presented in table

Decryption is described in table The decryption is done in seven stages total where
logical operations (AN D, XOR) are done with the input value, and the result is the original
data in cleartext.

2.2 Logic optimization through minimization

As described, the public and private keys in are boolean values stored in matrices with
considerable size. In earlier impelmentations of the the keys have been represented as
fixed numbers. Logic optimization and minimization methods can be used to reduce the storage
needs for these blocks. This report will explore if this is the case with

11



Algorithm for generating Public and private keys for the |MQQ| scheme

Input: Integer n, where n = bk and k > 28

Output: public key P: n multivariate quadratic polynomials P;(x1,...,x,), i =1,....,n

1. Generate a nonsingular n x n boolean matrix T (uniformly at random).

2. Call the procedure of definition for P'(n) : 0,1™ — 0,1™ and from there also obtain
the quasigroups i, ..., *g

3. Compute y = T(P'(T(x))) where = x1, ..., Ty,

4. Output: the public key is y as n multivariate quadratic polynomials P;(x1, ..., 2, ), 1 =
1,...,n and the private key is the tuple T, *1, ..., xg

Table 2.1: Key generation algorithm

|MQQ| encryption

ao™ + (a1 x 1) + (a2™ x z9) + ... + (a12881™D X 150 X T160)
ao(z) + (al(z) X 1)+ (a2(2) X x2) + ... + (a12881(2) X T159 X T160)
ao™® 4+ (a1® x 1) + (0™ x 29) + ... + (a12851®) X 2150 X 2160)

ao(lﬁo) + (a1(160) X x1) + (612(160) X T) + ...+ (042881(160) X T159 X T160)

Table 2.2: Encryption in [MQQ)

160 bit IMQQl public key

ao™ a1 as™ a3M a,D . a19851D
ao(g) a1(2) CL2(2) CL3(2) a4(2) . a12881(2)
ao® a1®) ay® as® a4 . a19881®
ao™® a1™® as® a3® a @ .. ajose1™®
a1 (160) g, (160) . (160) ( (160)  (160) g o o (160)

Table 2.3: public key for 160 bit

12




Algorithm for decryption/signing with the private key (7, *1, ..., *s)
Input: A vector y = (y1, ..., Yn)
Output: A vector x = (x1, ..., zp,) such that P(z) =y

1. Set iy = T~ (y)
2. Set W = (yi’yévyé’y£17yé>yéay/llay167yébyéGayll%lvygéhyﬁll) = DObil(W)
3. Compute Z = (Z1, Zo, Z3, Za, Zs, Zs, Z11, Z165 221, L6, 431, 436, Za1)

4. Set y1 « Z1, yo « Zo, Y3 < Z3, Ya + Za, Y5 < L5, Yo < Lo, Y11 < L7, Y16 — L8,
Yo1 < Zg, Y26 < Z£10, Y31 < Z11, Y36 < Z12, Y41 < Z13

5. Represent y' as ¢y = Y1...Y);, where Y; are vectors of dimension 5

6. By using the left parastrophes \; of the quasigroups *;, i = 1,...,8, obtain
.’L‘/ = Xl...Xk, such that: X1 = Yl, X2 = X1\1Y2, X3 =S XQ\QYE; and X; =
Xi—1\34((i+2) (mod 6)Yi

7. Compute z = S~1(z)

Table 2.4: Decryption procedure

2.2.1 Minimization with Karnaugh maps

Karnaugh maps are widely used when it comes to minimizing and optimizing logical expressions,
and to ease the use of boolean algebra. Given the following truth table this table will
be translated to a karnaugh map [5]. The expression can further be reduced, and the result Y
from the truth table can be expressed as the boolean function Y = aB + bD + Cd (big capitals
= negation).

2.2.2 ESPRESSO-II minimization algorithm

Since the key size of for 160 bit is big, there is another, more efficient method for minimiz-
ing large matrices of boolean values, by using an algorithm called ESPRESSO. The ESPRESSO-
II minimization algorithm has been implemented as a lightweight program. The algorithm is
listed in table 2.2.2]

Here follows a brief presentation of the different procedures in ESPRESSO-II minimization
algorithm [4]. The algorithm starts with an UNWRAP, which is a preprocessor that has to
discover any incoming cube sharing whatever may be present in the incoming data. COM-
PLEMENT computes R or D if F and R are given as the input. EXPAND replaces the cubes
of F by prime implicants and makes sure that coverage is minimal as to single-cube contain-
ment. The consequence will be that EXPAND reduces the number of cubes in F. The routine
ESSENTIAL_PRIMES locates the essential primes which must be present in every cover of F.
When detected, they are added to the don’t-care set D, which prevents the primes from ap-
pearing more than one time. This routine is only executed during the first iteration of LOOPI.
IRREDUDANT_COVER sorts the covers of F into totally redundant, relatively essential and
partially redundant. All cubes that are totally redundant are discarded, and a minimal subset

13



CD

00 01 11 10

0

1

Figure 2.1: Karnaugh diagram with reduction

A B C D|Y

Table 2.5: Truth table

14



Begin

F —UNWRAP(F)

R— COMPLEMENT(F,D)

Pl — p2*F — Pp3* — Pp4* — COST(F)

LOOP1: (¢, F) — EXPAND(F,R)
if (first - pass)
(6, F,D,E) «— ESSENTIAL__PRIMES(F, D)
if (¢ = ¢1*) goto OUT
1" — ¢
(¢, F) — IRREDUDANT_COVER(F,D)
if ¢ = ¢2* goto OUT
62" — ¢

LOOP2: (¢, F) «+— REDUCE(F, D)
if ¢ = ¢3* goto OUT
3" — ¢
goto LOOP1

OUT: if (¢ = ¢4*) goto QUIT
(¢/,F) — LAST_GASP(F, D, R)
if (¢ = ¢’) goto QUIT
goto LOOP2

QUIT: F — FUE

D—D-F

(¢, F) «— MAKE_SPARSE(F, D, R)
return (¢, F)
End

Table 2.6: ESPRESSO-II minimization algorithm

15




of the two other types plus D will be sufficient to cover all minterms for F. REDUCE improves
the result over the local minimums that IRREDUDANT_COVER obtaines. This is done by
taking each cube ¢ € F and then reducing it to the smallest cube ¢. LAST_GASP is reminiscent
of REDUCE, but uses an order independent reduction process. The ESPRESSO-II algorithm
finishes with MAKE_SPARSE. Essential primes are first taken out of the don’t-care set D and
put back in the cover F. Then the procedure considers the number of cubes in the cover as final.
It also attempts to reduce the number of literals by “lowering” the outputs and “raising” the
inputs. MAKE_SPARSE also attempts to make the final cover minimal, in a way that no input
literal, output literal or product term can be removed while retaining coverage of f f.

16



Chapter 3

Hardware implementation of MQQ

Since the assignment is to realize the algorithm in hardware, typically an an
implementation has been made. This chapter will describe, in detail, a hardware implementation
of written in the hardware description language Very-High-Speed Integrated Circuits
Hardware Description Language . Both the encryption and decryption has
been implemented. As mentioned earlier, since the implementation is intended for realization,
optimization and minimization techniques has been tried in order to reduce area cost on the
Xilinx ISE 10.1 (with all updates and service packs installed) has been used as the
Integrated Development Environment for this design. ISE also contains the synthesis
tool Xilinx Synthesis Tool , which is necessary in order to prepare the design for upload
to There exists an earlier hardware implementation of written by Mohamed El-
Hadedy. That implementation was developed with emphasis on speed only, no area reduction
efforts were made. In this design, a real private key has been used. But, the public key is a
randomly generated key with no relation to the private key, because the real public key was not
avaliable. This report has the shortened verson of the VHDI] source code, the complete source
code files are located in the digital attatchment.

3.1 Hardware implementations in general

In order to fully demonstrate the speed of an algorithm, a hardware implementation is needed.
In a software environment a program runs on a microprocessor. There, the speed is dependent
on the Central Processing Unit utilization. This is not the case with hardware imple-
mentations. Since a fixed, physical area is being assigned to the design, the run-time of the
algorithm is about the same every time the algorithm is running with little or no deviation
in run-time. Hardware implementations are useful because the encryption/decryption, and in
many cases, key generation, will use dedicated hardware in its operation. This will increase
speed, decrease delay and use of resources. In systems where hardware implementations of a
cryptographic algorithm is used, the hardware implementations is referred to as a hardware
accelerator. Hardware accelereators are especially useful in embedded systems when processing
resources are limited. The procedure of encryption/decryption does not change, only the keys
and data to be used. Therefore, in an embedded system it will save time, and probably energy
to implement the algorithm in hardware.

17



/ Encryption \

— ]

U ua——
VI = I—
|

—resel—as|

a—U| Ug——

L—— 58—
—
-

—E M-

2N _cUbe, I —en_ouim
i::.; S 1S

[:;fr[puqlm_b Expander 160 |  Public Matrix i outpul

Eﬂa‘ain N.Z i:) s Satadt

160 B 16l

'/_
b

Figure 3.1: Encryption top level

3.2 The actual implementation

As mentioned earlier, the implementation is written in [VHDI] All components, both in en-
cryption and decryption have been implemented as a Mealy type Finite State Machine ,
with clocked (synchronous) output. The reset signal is active high (has value '1’ when active),
and synchronous. This is done because an is convinient in hardware realization, which
will help to keep the data flow in order. The reason for keeping most of the design clocked is
because when a process is clocked, the registers remember the values to the next clock cycle.
In this setting it is important, if the output had been made combinatorial (asynchronous), it
had been necessary to set the value of each register in every state, and the probability for
latches would have been present (a latch is a register with a value that does not change at any
time. “Enable” signals are also used, both en_in and en_out. The en_in signal for each module
determines wether the module is active or not. It is implemented because it makes it possible
to turn off other modules than those that are active. For instance, if the sequencer module is
processing the data, the Dobbertin component is not needed, and en_in for Dobbertin can be
set to '0’. This means that the Dobbertin module is inactive, which will prevent Dobbertin to
send data at the wrong time. And it may also save power. If the Dobbertin module would
not have this feature, the module would have been active constantly while the circuit had been
working. Enable out (en_out) signals for the different sub components are used as hand-shake
signal. When a module signalizes that its data is ready for the next module, that module’s
en_out is set to '1’.

3.2.1 Encryption

As explained in the theory chapter, the encryption of an input data is calculated as given in
table Since there are many equations with many terms, the calculation must be split up in
more than one stage.

Encryption of [MQQ)| is implemented as the figure shows. There are two components,
Expander and Public Matrix. Expander expands the input vector from 160 bits to 12881 bits
as table shows, the Public Matrix does the calculation y = P(z) =y = A - X.

18



en_odt exp="0' | ready =

er_out_exp="1'

PUB_MATR

pady = [

Figure 3.2: Encryption state diagram

Encryption top module

The encryption component is the top level module that controls the data flow, and the state
diagram is listed in figure [3.2] The initial state is IDLE, which starts the encryption process
by activating the EXPAND module. The top module will stay in EXPAND state until the
en_out flag from expander gets the value ’1’, then the state machine moves to PUB_MATR. As
with state EXPAND, the top module will stay in PUB_MATR until the public matrix en_out
flag is set to 1, then the state machine moves back to EXPAND. A commom criteria for both
PUB_MATR and EXPAND is that if the ready flag, controlled by public matrix is set to ’1’,
the state machine moves to state RES, which indicates that the encryption is completed. In
RES, the state machine moves back to IDLE for new data to be encrypted.

Expander

This component does the AN D expansion of the 160 bit input data into 12881 bits. Since 12881
bits will be too much to send to the public matrix at once, the 12881 bits of data is multiplexed
into 80 vectors of length 160 bit, and the last 81 bits is sent as a single vector. This demands
two output vectors of 160 and 81 bits respectivly, as the figure shows. There are three states
in expander, IDLE, COMB and SEL, as shown in figure 3.4, IDLE is the first state, where
the input vector is imported into the module. The signal en_out is set to '0’, indicating that
data is not ready to be sent to Public Matrix. After this has been done, expander moves to
the COMB state. Here the expansion takes place, from 160 bit to 12881 bits. This is done
by doing AN D operations between the input and a tmp register, which holds the same value
as input. The result is stored in the 12881 bit vector. In theory this should be done within
one clock cycle. When this is done, the module reaches the SEL stage. Here the output is
calculated. An iterator, inc, is used to push 160 bit of data from the 12881 bit vector to be sent
to Public Matrix by writing to output_1. Which 160 bits from the 12881 bit vector to be sent

19



Tn
1Ty
T2T3

x x
X = 1597160
z123
T2T4

158160

T1T159
T2T160
L ziz160

Table 3.1: Expansion

is determined by the counter, and commented in the source code located in the appendix part
of the report . At the same time the last 81 bit of the 12881 bit vector is also written to
the output register output_2. The flag en_out is now set to ’1’, data is ready to be trasmitted.
The state machine now goes back to IDLE, and this process is repeated, until all data has been
sent. When this is complete, the iterator stops.

Public Matrix

The Public matrix is the component where the encryption calculation is taking place. It is
implemented in the way demonstrated in figure [3.5] The state machine is presented in figure
0.0l

Public Matrix has eight states. Idle is the initial state where temporary registers used in
the module is set to '0’. Signals such as en_out, the iterator cnt 2 and done (the ready bit
explained in the top level) is also set to 0 here. IDLE initiates the calculation. MATR_AND is
the state where the data from Expander is AN Ded with the public key. Public Matrix moves
to MATR_XORI160 where the result from MATR_AND is XORed with the previous vector,
or stored for next iteration with AN D. This loop between MATR_AND, MATR_XOR160 and
SYNC_160 (the synchronization state for the XORed vector) will run 80 times since there are 80
vectors of length 160 to be AN Ded and XORed. The last 81 bit is AN Ded with the respective
vectors from the public key one time and are awaiting the bit-by-bit XOR.

When the MATR_AND, MATR_XOR160 and SYNC_160 loop is finished (iterator cnt will
have value 79) the next stage in Public Matrix stars, the bit-by-bit XOR, where the result
vectors (160 bit and 81 bit) will be XORed down to one bit only. This is done in states
MATR_XORI1 with the SYNC_1 as the synchronization state. cnt_2 is the iterator which keeps
track of how many times the iteration has been done. When completed (cnt-2 gets vale 159), the
top module goes to SYNC state, where a last XOR is performed, between the 160 bit vectors
and the 81 bit vector. The result is written to a resultant vector, which will be the encrypted
data. In state SEND, the ready bit is set to '1’ to indicate that the data is now ready, and the
answer is sent on the output port.

20



Expander

160 to 12881 bits
AMND expansion

12831

/

12/091 o} LEgZL XN

I

160

/)

a

en_out

P

21

Figure 3.3: Expander internal architecture

Figure 3.4: Expander state diagram



Bl

(/’ Public Matrix
lk
ROM1E0 1
reset el
; BOx 160 bit Y £ 0| Bit by bit
) 160 7 XOR £
an_in 4 7 e _l
P 160 160 -
60
KOR
ROMET_1
81 bit Bit by bit
8 OR
8]
B1
) £ o)
160 E
= l1gn
ROM160_160
BOx 160 bit T £ £ i i
y h[ Bit by bit
B1 7 *OR | /_‘.l' XOR
) i 160
a1 £1
ROM&1_160 ’_ B HOR
81 it Bit by bit L |
Bi OR

Xe

B1

A6

en_in

Figure 3.5: Public Matrix internal architecture

22



MATR_AND

MATR_XOR160

cit =79

' MATR_XORA1

Figure 3.6: Public Matrix state diagram

cnt< 79

cnt 2= 159

3.2.2 Decryption

Decryption is implemented in four modules, Private Matrix T, Dobbertin ROM, Sequencer and
Private Matrix S, shown in figure [3.7] The component Decryption is the top module that instan-
tiates the four sub-components. It is also in the decryption procedure the logic optimization
and minimization are being used. By that way it is possible to observe wether the area cost for
Decryption can be reduced compared to storing the public key as fixed values, using a program
that is an implementation of the ESPRESSO-II minimization algorithm presented in the theory
chapter. To determine the optimization effect, the design in this assignment will be compared
with the design from [8], made by the same author as this report.

The decryption top module has ten states, hence figure As with encryption top module,
the state machine in decryption controls the sub components within decryption.

Private Matrix

There are two instances of Private Matrix, the T and S matrix. They correspond to the first and
the seventh step in the decryption algorithm of Table shows the architecture.
Private Matrix T and Private Matrix S are identical, but contains different parts of the private
key. One important notice is that the private key now is stored as a function of the global
iterator cnt, rather than fixed values as done before in [8]. Another modification that has been
made is that in the [8] implementation of Public Matrix, there were many 1 bit registers such
as tmp_xxx, Xor_xxx, sync_xor_xxx (where xxx is a number between 1 and 160). These registers
have been replaced with 160 bit registers such as tmp, matr_xor and sync_xor.

Private Matrix has five states, IDLE, ANDOP, XORING, SYNC and PUSH, which figure
[3.10 shows.

In IDLE, values from the [ROM are written to corresponding signals and en_out is set to ’0’
(low). When this is done and the control logic has verified the writing to the signal from _rom,
state ANDOP is initiated.

23



i an_out — an_out
reset | ——— resat .
S e
BN | private_Matrix_t en_in| Dobbertin_ROM
ik : Fa S o &n_out
: ETo 13
reset 13
—_— clk clk
- . en_out resed en_out
—_— rasel —
mputs en_in Sequencer en_in | Private Matrix_s
%::q:mﬁ: t
160 - i T outputs
/ sec_input ﬁmﬂ- ;é ' ,; }
= 3 180 hisl
i 160 .
Decryption
Figure 3.7: Decryption internal architecture
SEND_TC_DOB
Result_ pmt I=faifiers == 'L}
RECY_FROM |

En_ouf~gec="1"

RECY_FROM_SEQ S

Figure 3.8: Decryption top level state diagram

24

DOB



clk [ : wor 1
g and bit-bry-bit By ]
ROM 1 | Fram_rom_1 a
32 x 5hit | 32 x 5hit 5
" 2 en_out
rese
—_ i
NPT i xor_2
% biteby-bit SYNC_Xor 2
en_in ROM_2 o) From_rom_ 1 [ r
32 x 5bit v 32 x 5bit i =
4 4 g
' ! ! ' | i outpuls / >
L] i i i i
s | | | ! |
H | ! : ' #
' | | : ! f
L] i i i i
i i I i | 2
L] 1 ] [} i
H ] | : i
[ ] ] 1] 1
[ 1 ] ] i
gt
;{ﬁfﬁ;i?t — sync_xor 160
ROM_160 From_rom_160
32 x 5hit —_rsﬂ 32  5bil
Figure 3.9: Private Matrix internal architecture
ANDOP TEN 3 Cpl=21

Cnt< 31

Figure 3.10: Private Matrix state diagram

25



In ANDOP, the logical AN D operation is done between the input vector and the corre-
sponding stored vector from the ROM. To illustrate this better, when the counter (cnt) has
value 10, the Private Matrix runs at 11th time. In the previous implementation in [§], the
signal from_rom xxx (xxx is a number between 1 and 160) will have stored the 11th vector from
the ROM] array. When this is done, ANDOP state is finished, and next state will be XORING.
In the current implementation, the signals from_rom_xxx have been removed completely, the
blocks that existed in [8] have now been replaced by signals which hold a function of the
global counter.

The bit-by-bit XOR operation takes place in the state XORING. This state uses an internal
counter, count_xor to keep track of how may times the XOR opeation is done. In [§], a
temporary signal, tmp_xxx was used to store the temporary value corresponding to the position
of the vector and_rom_in_xxx. The 160 tmp_xxx signals have been replaced by a 160 bit vector
tmp. An XOR is then done between the tmp(position between 0 and 159) and and_rom_in_xxx
at position counter+1. When the counter reaches 3, the 5 bit result from anding input and the
stored ROM] vector is bit-by-bit X ORed into a single bit, and the state machine shifts state to
SYNC.

A modification from the original design is that a new step is being introduced, a SYNC
state. This is to keep syncronization, and to complete the X OR step. Here is a description why
this step is needed. When the Private Matrix runs for the first time, the sync_xor_xxx get the
value from the xor_xxx, the result after the bit-by-bit XOR operation. Again, the sync_xor_xxx
and xor_xxx signals have been replaced by 160 bit vectors sync_xor and matr_xor, respectivly.
For the second run and so on, a new XOR operation is initiated between the matr_xor and the
sync_xor, the latter signal has the value of the previous XOR operation. This is necessary to
make sure that the bit-by-bit XOR operation runs as many times as it is supposed to. And
when this operation is done, en_out is set to '1’ (high). That means that the value can be
written to register_x, a synchronization register for the XORed bits.

When the counter reaches value 31, it means that the register x contains the result, and the
Private Matrix is ready to send the data to Dobbertin [ROM] component. This is done in state
PUSH_OUT.

Dobbertin ROM

The Dobbertin component (3.11) is an implementation of step 2, 3 and 4 in the decryption
algorithm (2.1). Also here, the fixed values stored in a structure have been converted to
functions of the 13 bit input vector by using the Espresso application.

Sequencer

The sequencer , that corresponds to the fifth and sixth step of the decryption procedure
is unchanged from [§].

The component sequencer has seven states. Those are IDLE, MUX2_SEL, SYNC, MUX31_SEL,
SEND_TO_MASTER, RECV_MR and PUSH (ref. figure .

In the INIT state, the 160bit input signal from the Dobbertin ROM is split up in an array
consisting of 32 vector with length of 5 bits. When this is done, current state changes to
MUX2_OUT. Here the first element of the array is being sent through the multiplexer since the
selector is set to ’0’,and becomes the first element in a similar array which will be the result
that the secuencer module generates. The first element is written in the output array in state
SYNC. The counters are increased by 1, and the state machine shifts to state MUX31_out.
Selector of MUX_2 is set to '1’ because the values that are supposed to go through that MUX
will not be the first element. Then the output from MUX_31 will be the 5 least significant bits

26



]

8Ny Ssalppy

A

en_out

clk
en_out
—
reset
* /]
en_in dob_rom /data_bus
- B192x13 bit Vi
13
13
Figure 3.11: Dobbertin internal architecture
i - r ra
req in(0) = .fr
5 5 5
i & ra F s
e req_inf1} = / ;’
5 5
i
o : | 7
e g ), = K S
5 5
Fd
[ :f reg in[a_:l .-"‘l :
i = 7
5 s ,
olk ﬁl
=71 | | L/ :
) master_rom
reset | v ¥ = |
[ " [
e
an_in : !
— | N=
| 5
|
|
|
I
I f,’ reg_in(31) ;/
5 g
counter_2
counter_1 sel

Figure 3.12: Sequencer internal architecture

27



MUXZ:? QNC Caupie—d=34 @

\

Counteq 2 < 31

SEND_TO_MASTER MUX31_SEL

Figure 3.13: Sequencer state diagram

in a 10 bit vector, the most sigificant bits are the 5 bit vector from MUX_2. The 10 bit vector
is an address, which is the input to the Master ROM. After Master ROM has done its job, the
result will go through MUX_2 and written on the output register, and also be used as feedback
for the new address to be sent into Master _ROM. This procedure will continue until counter_2
reaches value 31, which means that all 160 bits are processed by the sequencer and are ready
to be written to the output register, and the value is used by Private_Matrix_S as input.

Master ROM

The Master ROM] is a subcomponent to the sequencer. Also here, the fixed values stored in
blocks in the original implementation have been replaced by functions of the 10 bit input
vector. There exists a control which has 25 3bit vectors and its function is to be a
selector that determines which of the 8 functions to be used. Also the control ROM has been
converted to functions of the counter. The control ROM is being controlled by a counter. In
this implementation this counter is located in the sequencer(counter_2), and the value from the
counter is one of the input ports. This is shown in figure [3.14

3.3 Data and keys

Though the assignment indicates that real data and keys are to be used, this is not the case.
The key generation calculation is complex, so it is uncertain wether the key generation process
may practically be implemented in hardware. According to the main supervisor, the keys for
the original implementation were generated in Wolfram Mathematica, and the key generation
calculation took considerably long time to complete on a modern computer.

3.4 Optimizing the stored fixed values

As mentioned several places in this report, efforts have been made to optimize the stored fixed
values, in order to reduce area consumption of the implementation. A program that implements

28



clk
selechor
reset r
Rom_1 it
1 1024x5 bit ———p——
en_in 10 i ——
—|
D F
3 & | Rom 2 | M
dré 2
m [ 29078 bus | (B8, [ Tromptom Z )
Ul 4 e i X
X | | [ data_pbus 3
[ address_bus ) | i !i
10’{ X : : | 1
8 | |
/ s) Control_rom
L7(UJLIFJ[EF. & 323 bit ﬁ
5 addpass bus norr'_ o8 1
I:\j 1024x5 bit f————plos
10 L
.,

Figure 3.14: Master ROM] internal architecture

i3 « indicates three input bits

.02 « indicates two output bits

ilb A B C | < names the variables in input

.obY Z «— names the variables in output

p8 «— number of terms

000 «— input value output value — | 11
001 00
010 10
011 10
100 00
101 01
110 (- means don’t care) — | -1
111 -1
€ « indicator for end of file

Table 3.2: Espresso input file format

the ESPRESSO-II minimization algorithm [6] has been used to accomplish this task.

To minimize a number of values the following must be done. First, one has to know how
many input values to be minimized. For instance, if there are 1024 values to be minimized, each
of length 5 bit, then each value must be represented by a unique value between 0 and 1023,
10 bit length and in binary form. There will be ten input functions and five output functions.
The input file that the espresso application demands must be arranged in the proper format.
An authentic file used in this project is located in the appendix of this report (appendix .
After the program has finished the minimzation, an output file with the reduced expresson is
generated. This file has to be modified into valid [VHDI] syntax. This can easily be done with
an advanced text editor, such as TextPad.

Here follows an explanation on how to arrange the data, in table [3.4]

29



30



Chapter 4

Results

In this chapter the results of the implementation will be presented. There have been attempts
to synthesize both encryption and decryption, which is necessary in order to build a physical
realization of this[MQQ)]implementation in VHDI] Simulation of all the modules have also been
conducted.

4.1 Synthesis

The encryption and decryption procedures have been synthesized against the [FPGA] meant
for the physical realization, the Xilinx Virtex 5 model xc5vIx110t-1-ff1136 (speed grade -1).
Table shows a brief summary of the synthesis report for decryption. Synthesis of the
decryption with fixed values (from [§]) will also be presented, to show if the optimization through
minimization has been successfull or not. Since the synthesis of the encryption procedure failed,
the synthesis results for encryption from [3] will be used due to a lack of synthesis results from
this implementation, located in table This incident will be analyzed and discussed in the
Discussion chapter.

It is important to point out that the earlier encryption implementation from [3] was imple-
mented on four [FPGAE, so the content in table is for one chip out of four.

4.2 Verification of functionality through simulation
Simulation is an important tool to verify that the design acts properly according to the spesifi-

cation made in the source code. The simulation tool used in this assignment is the ModelSim
SE 6.3f by Modeltech.

4.2.1 Encryption

The simulation results from Encryption will be presented in this section.

ESPRESSO-II minimization | Slice Registers | LUTs Frequency
Yes 5,937 | 9,950 | 201.045 MHz
No 5,910 | 7,703 | 214.000 MHz

Table 4.1: Synthesis results of the MQQ)| decryption procedure

31



Slice Registers | LUTs | Frequency
13,137 25,285 | 276.7 MHz

Table 4.2: Synthesis results of the MQQ)] encryption procedure

Encryption top module

Figure shows that the encryption top module makes sure that the global counter cnt and
the local counter inside Expander increases with an equal number of clock cycles.

100101000

Figure 4.1: Encryption counter synchronization

When the public matrix module has completed the encryption, the ready bit is set to high,
which should make the top module change state to RES (the state where the result from
encryption is ready). But figure shows that the RES state is never reached, even when the
ready bit gets value '1’, as pointed out in the figure. The cause for this problem is unclear,
debugging has been conducted in order to locate the problem. However, in the process sync_run,
the controlling process of the Encrypton top module, dataout is to be equal to the result vector
final result, which is the answer from public matrix. By this way, dataout, the output port from
Encrytion which ultimately holds the answer is set to contain the encrypted data at the right
time, which means that by this way, the RES state is not needed, and can be removed from the
source code.

publ_rnatr

1
0

Figure 4.2: Encryption top module missing state

32



Expander

The simulation verifies (figure that the 160 bit input is expanded into 12881 bits in state
COMB, marked in yellow. Also, the 160 bit output from the expanded vector is set in state
SEL (red mark). The value of the 160 output changes in the next iteration (green mark), as
the counter increases by 160. This is the expected behaviour of the expander module.
fencryprionfexpclk

i freset

fen_in

101 00T 00T AS0T0T 101 0010001000101 1010010001000101 1010010001 00010110
_ —_— —

100000001 0000000] [ L J010010001000101 101 00 1ED
1001010000001 000 I: 0010130000001 0000001/10

comb

Figure 4.3: Expander behaviour

Public Matrix

Figure [£.4] shows that when indata_1 gets a new vector from Expander in state IDLE, the AN D
operation takes place in the next state, MATR_AND. One clock cycle later, the 160 bit vector
XOR operations are performed. When the global counter increases value by 1, the next vector
is written from Expander into indata_1, and the same operation cycle repeats until the global
counter reaches 79.

When the last 160 bit vector has been XORed with the previous 79 vectors, the Public
matrix enters the bit-by-bit XOR procedure, in order to finish off the encryption calculation.
Figure shows that this process starts when the requirements for entering this phase are
fulfilled.

4.2.2 Decryption

Here, the verification for Decryption through simulation is being presented.

Decryption top module

First, it is necessary to verify that all signals initially are set to '0’ when reset is active. As the
figure indicates, this is the case. There is also possible to see that the decryption circuit
goes active when en_in is set to 1 .

Private matrix

The output from the stored values depend on the counter cnt. Figure [4.7] shows that it takes
six clock cycles before the value from storage is calculated from the cnt value.

The XOR operations seem to work as intended (figure 4.8). The current value, that is an
AN D between input and the calculated private key value are XORed down to one bit.

33



/pub_rnatr

/pub_ma
ion)pub_mal

on/pub_matr,
tion)'pub_mat
/pub_ma

TN T SO T T T SN N T

Figure 4.4: Public matrix calculation

Figure 4.5: Public matrix bit-by-bit XOR

34



JELERRE | 1o, ., 110010 0101101 1010010101101100101001010110111

send to pm b
Loy

Figure 4.6: Simulation of startup

Jdec ]
Jdecryptionfpm_tlonk
Jdecryptionfpm_tfrom_001 (11010

Figure 4.7: Stored private key as a function

1100001111001110

1011100101101

Figure 4.8: XOR procedure

35



Dobbertin ROM

As described earlier, the Dobbertin component calculates its output based on the input. Figure
[4.9 verifies that that is the case.

Figure 4.9: Dobbertin calculation

Sequencer

When the sequencer goes active (en_in = '1’), the module starts its work. The temporary reg_in

splits the 160 bit input into 32 vectors of length 5 (figure|4.10)). Since the sequencer has not been
subject to any minimization, this implementation is unchanged from the TTM4530 project.

o001l ooool

o001l o001

Figure 4.10: Sequencer startup

Master ROM

The output is calculated from the input. There are eight sets of equations, and ctrl determines
which set to use. Figure shows which value to be sent, and it is marked.

36



fec...]

Figure 4.11: Master ROM calculation

37



38



Chapter 5

Discussion and conclusion

In this chapter the results will be analyzed and discussed, and a conclusion will be formed on
basis of the discussion section.

5.1 Discussion

5.1.1 Synthesis
Encryption

The was unfortunately unable to synthesize the encryption procedure, due to the com-
plexity of the design. ran for almost 72 hours, eventually the computer crashed. The
computer used for synthesis of encryption had an Intel Core 2 Duo T7300, 2.0 GHz, 4 MB
cache with 4 GB of system Random Access Memory and 4 GB of virtual memory, or
swap. Ubuntu 9.04 “Jaunty Jackalope” 64 bit version (X86_64 architecture) was the chosen
operating system. On the mentioned computer, by synthesizing in a 32 bit operating system
caused memory conflict, because a 32 bit operating system can only address 4 GB of memory
in total. The sum of the physical and virtual memory (swap) exeeded 4 GB. It appeared that
the encryption synthesis occupied all available memory, 6683 MB, causing the computer to run
out of available memory. The fact that virtual memory were used, led to that the performance
of was seriously hampered by this fact. eventually caused the computer to crash
when it tried to synthesize the module Expansion, and the synthesis of encryption failed.
never began to synthesize the Public Matrix It is likely that the encryption design needed more
memory to work on, since all available memory, also swap were used. It is however unclear if
this would have made a difference. [3] inicates that the original implementation also caused
problems when attempts were made to implement the encryption on a single [FPGA

If the results from [4.1]should be reffered to, the encryption procedure takes up an enormous
amount of area. The numbers in the table are referring to one single chip, while the original
implementation of the encryption used a total of four [FPGAE, which means that the
numbers related to number of Look-Up Table s used, and number of slice registers can
be multiplied by four. This means that a realization of encryption cannot be done on a single
[FPGA] not even the one intended for this thesis, which is one of the larger [FPGAE on the
market.

Decryption

As the synthesis results (4.1]) indicate, the implementation which has been subject to ESPRESSO-
IT minimization actually has a higher area usage than the earlier version without the mini-

39



mization of the ROM] blocks. This is a result that was unexpected in relation to minimization
theory. One can also observe that the maximum frequency of the minimized design is lower
than the unmodified version, which means that if realized in hardware, the minimized solution
will run slower than the unminimized version of the Decryption implementation. In theory, the
data should have been compressed, causing the data to use less area in hardware. The stored
values are not the same in the minimized implementation as the old implementation from [§],
but the difference beween the two versions compared in number of used are too significant
to only be related to the different stored values. There are also drawbacks concerning storing
of data as functions rather than raw values. When storing raw data, there is a possibility that
the block RAM of the [FPGA|may be utilized, meaning that number of used [LUTE are reduced.
By storing data as functions of a vector, the possibility to store it in block is significally
lowered, meaning that these functions almost certainely will be stored in[LUTE, hence increasing
total area consumption.

5.1.2 Design behaviour simulation and verification

To fully determine the effect of minimizing the ROM] blocks, the design in this report are quite
similar to the design in [§], written by the same author as this report.

5.2 Conclusion

Tact that the Encryption procedure did not synthesize due to [XST] failure, this can not
be realized in a single[FPGA] which was the desired goal of this assignment. Even if the original
implemtation of had been used for realization, it would have been impossible to realize it
on one [FPGA] Only for encryption, four FPGAk would have been required, which means that
a single chip realization for at this time is not possible.

5.3 Future work

There is a possibility for realization of that could be investigated, a hardware/software
codesign solution. It means that some parts of the design has to be implemented as software
that works with the hardware implemented part. There exists a [CPU] implementation meant
for Xilinx , the MicroBlaze soft processor core [7]. This may allow software code to run
on the soft-core [CPU], which could make it possible to implement on a single [FPGA]
But this solution will not be a pure hardware implementation, which was the intension in this
thesis. But to utilize MicroBlaze, additional software is required, the Embedded Development
Kit , which has to be purchased in addition to ISE.

5.4 Contributors

Mohamed El-Hadedy, PhD student at Q2S, has provided guidance and information which has
been crucial in the design process.

40



Chapter 6

Abbrevations

MQQ Multivariate Quadratic Quasigroups
VHSIC Very-High-Speed Integrated Circuits
VHDL [VHSIC| Hardware Description Language
FPGA Field-progmable Gate Array

IDE Integrated Development Environment
LUT Look-Up Table

ROM Read Only Memory

DH Diffie-Hellman

RAM Random Access Memory

ECC Elliptic curve cryptography

RSA Rivest-Shamir-Adleman

FSM Finite State Machine

XST Xilinx Synthesis Tool

CPU Central Processing Unit

EDK Embedded Development Kit

41



42



Bibliography

[1]

[2]

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems
http://people.csail.mit.edu/rivest/Rsapaper.pdf

A Public Key Block Cipher Based on Multivariate Quadratic Quasigroups
http://arxiv.org/abs/0808.0247

High Performance Implementation of a Public Key Block Cipher - MQQ), for FPGA Plat-
forms
http://eprint.iacr.org/2008/339

Logic Minimization Algorithms for VLSI Synthesis, ISBN 0-89838-164-9, 1984
http://portal.acm.org/citation.cfm?id=577427

Module 4: Logic minimization, Digilent
www.eecs.wsu.edu/~ee214/Fall12008/M4 . pdf

ESPRESSO: Logic Minimization Software
http://diamond.gem.valpo.edu/~dhart/ecel10/espresso/tutorial.html

MicroBlaze
http://en.wikipedia.org/w/index.php?title=MicroBlaze&oldid=295605037

TTM4530 report, FPGA implemetation of a public key block cipher, report located in the
digital attachment

43


http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://arxiv.org/abs/0808.0247
http://eprint.iacr.org/2008/339
http://portal.acm.org/citation.cfm?id=577427
www.eecs.wsu.edu/~ee214/Fall2008/M4.pdf
http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html
http://en.wikipedia.org/w/index.php?title=MicroBlaze&oldid=295605037

44



OO UTHEWN -

Appendix A

VHDL source code

In this chapter shortened versions of the VHDL]|source code is listed. Full versions of the source
code files are located in the digital attachment. This is done because several source code files
have over 10000 lines of code.

A.1 Encryption

Listing A.1: Encryption top module

library IEEE;

use IEEE.STD_LOGIC.1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;

——— Uncomment the following library declaration if instantiating
———— any Xilinz primitives in this code.

——Ilibrary UNISIM;

——wuse UNISIM. VComponents. all ;

entity encryption is

port (
clk : in std_-logic;
reset : in std_logic;
en_in : in std_logic;
datain : in std-logic_-vector (159 downto 0);
dataout : out std-logic_vector (159 downto 0)
)

end encryption;

architecture rtl of encryption is
type states is (IDLE,EXPAND,PUBLMATR,RES) ;

component expander

port (
clk ,reset ,en-in : in std_-logic;
input : in std_logic_vector (159 downto 0);
output_1 : out std_logic_vector (159 downto 0);
output_2 : out std_logic_vector (80 downto 0);
en_out : out std_logic

)5

end component;

component public_matrix

port (
clk ,reset ,en_-in : in std_logic;
input_1 : in std_logic_-vector (159 downto 0);
input_2 : in std_logic_vector (80 downto 0);
cnt : in integer range 0 to 80;
output : out std_logic_-vector (159 downto 0);
en_out : out std_-logic;
done : out std_-logic

)

end component;

signal state ,next_state : states;

45




signal cnt : integer range 0 to 80;
signal en_in_exp ,en_in_pub : std-logic;
signal en_out_exp ,en_out_pub : std_logic;
signal first_data : std_logic_vector (159 downto 0);
signal second_data : std_logic_vector (80 downto 0);
signal final_result : std-logic_-vector (159 downto 0);
signal ready : std_logic;
begin
EXP: expander
port map(
clk => clk,
reset => reset ,
en_in => en-in_exp ,
input => datain,

output_-1 => first_data ,
output_.2 => second_data,
en_out => en_out_exp

)

PUBMATR: public_matrix
port map (

clk => clk,
reset => reset ,
en_in => en-in_pub,

input_-1 => first_data ,
input_-2 => second_data ,

cnt => cnt ,
output => final_result ,
en_out => en.out_pub,
done => ready
)
sync_run: process(clk)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then

state <= IDLE;
dataout <= (others => ’0’);

elsif (en_in = ’1’) then
state <= next_state;
dataout <= final_result;
end if;
end if;
end process;

output_decode: process(clk ,state)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
en_in_exp <= ’0’;

en_in_pub <= ’0’;

elsif (en_in = ’1’) then
case (state) is
when IDLE =
en_in_exp <= ’'07;

en_in_.pub <= ’0’;

when EXPAND =
en_in_exp <= ’17;
en_in_pub <= ’07;

when PUBL.MATR =
en_in_exp <= ’07;
en_in_pub <= ’17;
if (en_out_exp = ’'1’) then

cnt <= cnt + 1;
if (cnt = 79) then
cnt <= cnt + O0;
end if;
end if;
when RES =
—dataout <= final_-result;
when others =>
null;
end case;
end if;
end if;
end process;

next-state_decode: process(state,en_out_exp ,ready)
begin

46




OO UHEEWN -

next_state <= state;
case (state) is
when IDLE =
next_state <= EXPAND;

when EXPAND =
if (en_out_exp <= ’1’) then
next_state <= PUBLMATR;

elsif (ready = ’1’) then
next_state <= RES;
else
next_state <= EXPAND;
end if;
when PUBL.MATR =

if (en_out_pub <= ’'1’) then
next-state <= EXPAND;

elsif (ready = ’'1’) then
next_state <= RES;
else
next_state <= PUBLMATR;
end if;
when RES =
next_state <= IDLE;
when others =
null;

end case;
end process;
end rtl;

Listing A.2: Expander

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED .ALL;

——— Uncomment the following library declaration if instantiating
———— any Xilinz primitives in this code.

——library UNISIM;

——use UNISIM. VComponents. all ;

entity expander is

port (
clk ,reset ,en_in : in std_-logic;
input : in std_-logic_-vector (159 downto 0);
output_1 : out std_logic_vector (159 downto 0);
output-2 : out std-logic-vector (80 downto 0);
en_out : out std-logic

)

end expander;

architecture rtl of expander is

type states is (IDLE,COMB,SEL) ;

signal state ,next_state : states;
signal vector : std_logic_vector (12880 downto 0);
signal tmp : std-logic_vector (159 downto 0);
signal inc : integer range 0 to 12880;
begin
run: process(clk)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
state <= IDLE;
elsif (en_in = ’1’) then
state <= next_state;
end if;
end if;

end process;

output_-decode: process (clk ,state)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then

vector <= (others => '0’);
en_out <= '07;

47




tmp <= (others => '07);

inc <= 0;
output_-1 <= (others =>
output_2 <= (others =>
elsif (en_in = ’1’) then
case (state) is
when IDLE =>
tmp <= input;
en_out <= '07;
when COMB =>
vector (0)
vector (160 downto
vector (319 downto
vector (477 downto
vector (634 downto
vector (790 downto
vector (945 downto
vector (1099 downto
vector (1252 downto
vector (1404 downto
vector (1555 downto
vector (1705 downto
vector (1854 downto
vector (2002 downto
vector (2149 downto
vector (2295 downto
vector (2440 downto
vector (2584 downto
vector (2727 downto
vector (2869 downto
vector (3010 downto
vector (3150 downto
vector (3289 downto
vector (3427 downto
vector (3564 downto
vector (3700 downto
vector (3835 downto
vector (3969 downto
vector (4102 downto
vector (4234 downto
vector (4365 downto
vector (4495 downto
vector (4624 downto
vector (4752 downto
vector (4879 downto
vector (5005 downto
vector (5130 downto
vector (5254 downto
vector (5377 downto
vector (5499 downto
vector (5620 downto
vector (5740 downto
vector (5859 downto
vector (5977 downto
vector (6094 downto
vector (6210 downto
vector (6325 downto
vector (6439 downto
vector (6552 downto
vector (6664 downto
vector (6775 downto
vector (6885 downto
vector (6994 downto
vector (7102 downto
vector (7209 downto
vector (7315 downto
vector (7420 downto
vector (7524 downto
vector (7627 downto
vector (7729 downto
vector (7830 downto
vector (7930 downto
vector (8029 downto
vector (8127 downto
vector (8224 downto
vector (8320 downto
vector (8415 downto
vector (8509 downto
vector (8602 downto
vector (8694 downto
vector (8785 downto
vector (8875 downto
vector (8964 downto
vector (9052 downto

H

1)
161)
320)
478)
635)
791)
946)
1100)
1253)
1405)
1556)
1706)
1855)
2003)
2150)
2296)
2441)
2585)
2728)
2870)
3011)
3151)
3290)
3428)
3565)
3701)
3836)
3970)
4103)
4235)
4366)
4496)
4625)
4753)
4880)
5006)
5131)
5255)
5378)
5500)
5621)
5741)
5860)
5978)
6095)
6211)
6326)
6440)
6553)
6665)
6776)
6886)
6995)
7103)
7210)
7316)
7421)
7525)
7628)
7730)
7831)
7931)
8030)
8128)
8225)
8321)
8416)
8510)
8603)
8695)
8786)
8876)
8965)

<= ’'17;
<= tmp;
<= tmp (158 downto 0) and
<= tmp(157 downto 0) and
<= tmp(156 downto 0) and
<= tmp(155 downto 0) and
<= tmp(154 downto 0) and
<= tmp (153 downto 0) and

<= tmp(152 downto 0) and
<= tmp(151 downto 0) and
<= tmp(150 downto 0) and
<= tmp (149 downto 0) and
<= tmp (148 downto 0) and
<= tmp(147 downto 0) and
<= tmp(146 downto 0) and
<= tmp(145 downto 0) and
<= tmp (144 downto 0) and
<= tmp (143 downto 0) and
<= tmp(142 downto 0) and
<= tmp(141 downto 0) and
<= tmp(140 downto 0) and
<= tmp (139 downto 0) and
<= tmp (138 downto 0) and
<= tmp (137 downto 0) and
<= tmp (136 downto 0) and
<= tmp (135 downto 0) and
<= tmp (134 downto 0) and
<= tmp (133 downto 0) and
<= tmp(132 downto 0) and
<= tmp (131 downto 0) and
<= tmp (130 downto 0) and
<= tmp (129 downto 0) and
<= tmp (128 downto 0) and
<= tmp (127 downto 0) and
<= tmp (126 downto 0) and
<= tmp (125 downto 0) and
<= tmp (124 downto 0) and
<= tmp (123 downto 0) and
<= tmp(122 downto 0) and
<= tmp(121 downto 0) and
<= tmp (120 downto 0) and
<= tmp (119 downto 0) and
<= tmp(118 downto 0) and
<= tmp(117 downto 0) and
<= tmp(116 downto 0) and
<= tmp(115 downto 0) and
<= tmp(114 downto 0) and
<= tmp(113 downto 0) and
<= tmp(112 downto 0) and
<= tmp(111 downto 0) and
<= tmp(110 downto 0) and
<= tmp (109 downto 0) and
<= tmp (108 downto 0) and
<= tmp(107 downto 0) and
<= tmp (106 downto 0) and
<= tmp (105 downto 0) and
<= tmp (104 downto 0) and
<= tmp(103 downto 0) and
<= tmp(102 downto 0) and
<= tmp (101 downto 0) and
<= tmp (100 downto 0) and
<= tmp(99 downto 0) and

<= tmp(98 downto 0) and

<= tmp(97 downto 0) and

<= tmp(96 downto 0) and

<= tmp (95 downto 0) and

<= tmp(94 downto 0) and

<= tmp(93 downto 0) and

<= tmp(92 downto 0) and

<= tmp(91 downto 0) and

<= tmp (90 downto 0) and

<= tmp(89 downto 0) and

<= tmp (88 downto 0) and

<= tmp(87 downto 0) and

48

—— 160
input (159 downto 1); ——159
input (159 downto 2); —158
input (159 downto 3); —— 157
input (159 downto 4); ——156
input (159 downto 5); ——155
input (159 downto 6); ——154
input (159 downto 7); —153
input (159 downto 8); ——152
input (159 downto 9); ——151
input (159 downto 10);——150
input (159 downto 11);——149
input (159 downto 12);——148
input (159 downto 13);——147
input (159 downto 14);——146
input (159 downto 15);——145
input (159 downto 16);——144
input (159 downto 17);—148
input (159 downto 18);——142
input (159 downto 19);——141
input (159 downto 20);——140
input (159 downto 21);——139
input (159 downto 22);——138
input (159 downto 23);——137
input (159 downto 24);——136
input (159 downto 25);——135
input (159 downto 26);——134
input (159 downto 27);——133
input (159 downto 28);——132
input (159 downto 29);——131
input (159 downto 30);—— 130
input (159 downto 31);——129
input (159 downto 32);——128
input (159 downto 33);—127
input (159 downto 34);——126
input (159 downto 35);——125
input (159 downto 36);——124
input (159 downto 37);——123
input (159 downto 38);——122
input (159 downto 39);——121
input (159 downto 40);——120
input (159 downto 41);——119
input (159 downto 42);——118
input (159 downto 43);—117
input (159 downto 44);——116
input (159 downto 45);——115
input (159 downto 46);——114
input (159 downto 47);——113
input (159 downto 48);——112
input (159 downto 49);——111
input (159 downto 50);——110
input (159 downto 51);—109
input (159 downto 52);——108
input (159 downto 53);——107
input (159 downto 54);——106
input (159 downto 55);——105
input (159 downto 56);——104
input (159 downto 57);——103
input (159 downto 58);——102
input (159 downto 59);——101
input (159 downto 60);—— 100
input (159 downto 61);— 99
input (159 downto 62);— 98
input (159 downto 63);— 97
input (159 downto 64);— 96
input (159 downto 65);— 95
input (159 downto 66);— 94
input (159 downto 67);— 93
input (159 downto 68);— 92
input (159 downto 69);— 91
input (159 downto 70);— 90
input (159 downto 71);— 89
input (159 downto 72);— 88




vector (9139

vector (9225

vector (9310

vector (9394

vector (9477

vector (9559

vector (9640

vector (9720

vector (9799

vector (9877

vector (9954

vector (10030
vector (10105
vector (10179
vector (10252
vector (10324
vector (10395
vector (10465
vector (10534
vector (10602
vector (10669
vector (10735
vector (10800
vector (10864
vector (10927
vector (10989
vector (11050
vector (11110
vector (11169
vector (11227
vector (11284
vector (11340
vector (11395
vector (11449
vector (11502
vector (11554
vector (11605
vector (11655
vector (11704
vector (11752
vector (11799
vector (11845
vector (11890
vector (11934
vector (11977
vector (12019
vector (12060
vector (12100
vector (12139
vector (12177
vector (12214
vector (12250
vector (12285
vector (12319
vector (12352
vector (12384
vector (12415
vector (12445
vector (12474
vector (12502
vector (12529
vector (12555
vector (12580
vector (12604
vector (12627
vector (12649
vector (12670
vector (12690
vector (12709
vector (12727
vector (12744
vector (12760
vector (12775
vector (12789
vector (12802
vector (12814
vector (12825
vector (12835
vector (12844
vector (12852
vector (12859
vector (12865
vector (12870
vector (12874

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

9053)
9140)
9226)
9311)
9395)
9478)
9560)
9641)
9721)
9800)
9878)
9955)
10031)
10106)
10180)
10253)
10325)
10396)
10466)
10535)
10603)
10670)
10736)
10801)
10865)
10928)
10990)
11051)
11111)
11170)
11228)
11285)
11341)
11396)
11450)
11503)
11555)
11606)
11656)
11705)
11753)
11800)
11846)
11891)
11935)
11978)
12020)
12061)
12101)
12140)
12178)
12215)
12251)
12286)
12320)
12353)
12385)
12416)
12446)
12475)
12503)
12530)
12556)
12581)
12605)
12628)
12650)
12671)
12691)
12710)
12728)
12745)
12761)
12776)
12790)
12803)
12815)
12826)
12836)
12845)
12853)
12860)
12866)
12871)

= tmp (86

tmp (85
tmp (84
tmp (83
tmp (82
tmp (81
tmp (80
tmp (79
tmp (78

= tmp (77
= tmp (76

tmp (75
tmp (74
tmp (73
tmp (72
tmp (71

= tmp (70

tmp (69
tmp (68
tmp (67
tmp (66
tmp (65
tmp (64
tmp (63
tmp (62
tmp (61
tmp (60
tmp (59
tmp (58
tmp (57
tmp (56
tmp (55
tmp (54
tmp (53
tmp (52
tmp (51
tmp (50
tmp (49

= tmp (48
= tmp (47

tmp (46
tmp (45

= tmp (44
= tmp (43
= tmp (42

tmp (41
tmp (40
tmp (39
tmp (38
tmp (37
tmp (36
tmp (35
tmp (34
tmp (33
tmp (32
tmp (31
tmp (30
tmp (29
tmp (28
tmp (27
tmp (26
tmp (25
tmp (24
tmp (23
tmp (22
tmp (21
tmp (20

= tmp (19
= tmp (18

tmp (17
tmp (16
tmp (15

= tmp (14
= tmp (13

tmp (12
tmp (11
tmp (10
tmp (9
tmp (8
tmp (7
tmp (6
tmp (5
tmp (4

= tmp (3

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

49

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159
input (159

input (159

input (159

input (159

input (159

input (159

input (159

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

73) ;—
74) ;——
75) ;——
76) ;——
7T ——
78) ;——
79) ;—
80) ;—
81) ;—
82) ;——
83) ;——
84);——
85) ;——
86) ;—
87) ;—
88) ;—
89) ;—
90) ;—
91) 5——
92) ;—
93) ;—
94) ;——
95) ;——
96) ;——
97) ;—
98) ;—
99) ;—
100) ;—
101) ;——
102) ;——
103) ;——
104) ;—
105) ;—
106) ;——
107) ;——
108) ;——
109) ;—
110) ;—
111) ;——
112) ;——
113) ;—
114) ;—
115) ;—
116) ;——
117) ;——
118) ;—
119) ;—
120) ;—
121) ;——
122);——
123) ;—
124) ;—
125) ;—
126) ;——
127) ;——
128) ;—
129) ;—
130) ;——
131) ;——
132) ;——
133) ;—
134) ;—
135) ;——
136) ;——
137) ;——
138) ;—
139) ;—
140) 5—
141) 5—
142) ;——
143) ;—
144);—
145) ;—
146) ;—
147) ;—
148) ;—
149) ;—
150); ——
151); ——
152); ——
153); —
154); ——
155); ——
156); —

87

85
84
83
82
81
80
79
78
77
76
75
74
78
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30

27




OO UTHEEWN -

vector (12877 downto 12875) <= tmp(2 downto 0) and input(159 downto 157); — 3
vector (12879 downto 12878) <= tmp(l downto 0) and input(159 downto 158); — 2
vector (12880) <= tmp(0) and input(159); — 1

when SEL =>
—— the output-1 register wvalue is determined by
—— the wvalue of the counter, which increases by 160
—— each time this state is active
output-1 <= vector ((159 + inc) downto (0 + inc));
output_-2 <= vector (12880 downto 12800);
if (inc >= 12640) then
inc <= inc + 0;

else
inc <= inc + 160;
end if;
en_out <= '17;
end case;
end if;

end if;
end process;

next_decode: process(state ,inc)
begin
next_state <= state;
case (state) is
when IDLE =>
next_state <= COMB;
when COMB =>
next-state <= SEL;

when SEL =
next_state <= IDLE;
—end if;

end case;
end process;
end rtl;

Listing A.3: Public Matrix

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

——— Uncomment the following library declaration if instantiating
———— any Xilinz primitives in this code.

——library UNISIM;

——use UNISIM. VComponents. all ;

entity public_matrix is

port (
clk ,reset ,en_in : in std-logic;
input_1 : in std_logic_-vector (159 downto 0);
input_2 : in std_logic_vector (80 downto 0);
cnt : in integer range 0 to 80;
output : out std_logic_-vector (159 downto 0);
en_out : out std_-logic;
done : out std_-logic

)5

end public_matrix;

architecture rtl of public_matrix is
type states is (IDLE,MATRAND, MATR_XOR160, MATR_XOR1,SYNC_160,SYNC.1,SYNC,SEND) ;
type pr_rom is array (79 downto 0) of std_logic_vector (159 downto 0);
type pr2_rom is array (0 downto 0) of std_-logic_-vector (80 downto 0);

constant roml160_.1 : pr_rom = (

101010001110011000111110101010100000000000001111100100110011001110110110101010110000011010001110101
»

)

111101000100001111010101011010101011111100110001101011110111101000101010011111011110101110100000110

)

011000011110001100111111110000001100111100100011000101010110111101110001101101011101010101110000010

)

constant rom81_1 : std_logic_vector (80 downto 0) :=
”7011010011011001110100111110000100011110001100001110101000001011010000000010000110”) ;

constant rom81_.2 : std_logic_vector (80 downto 0) := (

50

110111101110110

000011100011101

001101010101001



”100100100001011011010011111110100010010111010101100110001010011110111001110100011”);

signal and_rom1-160 : std_-logic-vector (159 downto 0);
signal and_rom1_81 : std-logic_vector (80 downto 0);
signal xorl1-160 : std-logic_-vector (159 downto 0);
signal sync_xor1_.160 : std_logic_vector (159 downto 0);
signal indata_1 : std_logic_vector (159 downto 0);
signal indata_2 : std_logic_vector (80 downto 0);
signal result : std-logic_-vector (159 downto 0);
signal xorl_1 : std_-logic;
signal xorl_2 : std-logic;
signal sync_xorl_1 : std-logic;
signal sync_xorl_-2 : std-logic;
—  signal cnt : integer range 0 to 80;
signal cnt-2 : integer range 0 to 160;
signal state ,next_state : states;
begin
sync_proc: process(clk)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
state <= IDLE;
else
state <= next_state;
end if;
end if;

end process;
out_-decode: process(state,clk)
begin
if (clk’event and clk = ’1’) then
if (reset = ’'1’) then
indata_.1 <= (others => ’0);
indata_-2 <= (others => ’0’);

and_rom1_.160 <= (others => ’07);

and_-rom1_.81 <= (others => ’07);

xorl_160 <= (others => ’07);

sync-xorl-160 <= (others => ’0’);

xorl_1 <= ’07;

o1




xorl_-2 <= ’07;

sync.-xorl_1 <= ’07;

sync-xorl_2 <= ’07;

cnt_2 <= 0;

en_out <= ’0’;

done <= ’0’;

output <= (others => ’07);
result <= (others => ’0’);

else
case (state) is

when IDLE =>
indata_1 <= input_1;
indata_2 <= input_2;
en_out <= ’07;
done <= ’0’;

when MATRAND =>
and_rom1_.160 <= rom160_.1(cnt) and indata_1;

if (cnt <= 79) then
and_-rom1_81 <= rom81_1 and indata_-2;

end if;

when MATR_XOR160 =>
if (cnt = 0) then
sync-xorl-160 <= and_-rom1.160;

en_out <= ’17;
else
x0orl1_160 <= and-rom1.160 xor sync_xorl_160;

end if;

when MATR_XOR1 =>
en_out <= '07;
if (cnt_2 = 0) then
sync_xorl_1 <= sync_xorl_160(cnt_2);

sync_xorl_2 <= and_rom1_81(cnt_2);

else
xorl_-1 <= sync_xorl1_160(cnt-2) xor sync_xorl_1;

if (cnt_2 <= 80) then
xorl_2 <= sync_xorl_.2 xor and_roml_81(cnt_2);

end if;
end if;
when SYNC_160 =>
sync_xorl_160 <= xorl_.160;

en_out <= ’17;
when SYNC.1 =>
sync_xorl_1l <= xorl_1;

sync_-xorl_2 <= xorl_2;

52




OO UEWN -

if (cnt.2 = 159) then
cnt_2 <= cnt_2 4+ 0;
else
cnt-2 <= cnt_-2 + 1;
end if;

when SYNC =>
result (0) <= sync_xorl_.1 xor sync_xorl_2;

when SEND =>
output <= result;
done <= ’17;
end case;
end if;
end if;
end process;

next_decode: process(state ,cnt,cnt_2)
begin
next_state <= state;
case (state) is
when IDLE => next_.state <= MATR.AND;

when MATR.AND => next_state <= MATR_XORI160;
when MATRXOR160 => next_state <= SYNC_160;
when MATR XOR1 => next_state <= SYNC_.1;

when SYNC_160 =>
if (cnt = 79) then
next_state <= MATRXORI1;
else
next_state <= IDLE;
end if;

when SYNC_.1 =>
if (cnt_.2 = 159) then
next-state <= SYNC;
else
next_state <=MATRXORI;
end if;
when SYNC => next_state <= SEND;

when SEND =>
next_state <= IDLE;
end case;
end process;
end rtl;

A.2 Decryption

Listing A.4: Decryption top module

—— Company: NTNU
—— Engineer: Stig Fjellskaalnes

—— Create Date: 18:14:48 09/26/2008
—— Design Name:
—— Module Name: decryption — rtl

—— Project Name:
—— Target Devices:
—— Tool wversions:
—— Description :

—— Dependencies :
—— Revision :

— Rewvision 0.01 — File Created
— Additional Comments:

library IEEE;

93




use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;

——— Uncomment the following library declaration if instantiating
———— any Xilinz primitives in this code.

——library UNISIM;

——use UNISIM. VComponents. all ;

entity decryption is

port (
clk : in std-logic;
reset : in std_logic;
en_in : in std_logic;
inputs : in std-logic-vector (159 downto 0);
outputs : out std-logic_-vector (159 downto 0);
en_out : out std_-logic
)

end decryption;
architecture rtl of decryption is
type states is (IDLE,SEND_TO_PM_T,RECV_.FROM_PM_T,SEND_TO_DOB,
RECV_FROM.DOB, SEND_TO-SEQ , RECV_FROM_SEQ,
SEND_TO_PM_S,RECV_FROM_PM._S,SEND) ;

component private_matrix_s

port (
clk : in std-logic;
reset : in std-logic;
en_in : in std_logic;
input : in std_logic_vector (4 downto 0);
cnt : in std_logic_vector (4 downto 0);
output : out std_logic_-vector (159 downto 0);
en_out : out std_logic
)
end component;
component dobbertin_rom —— defining the Dobbertin component
— in the decryption top level
port (
z : in std_logic_vector (12 downto 0);
clk ,reset ,en-in : in std_-logic;
db : out std_logic_-vector (12 downto 0);
en_out : out std-logic
)

end component;

component sequencer

port (
clk : in std_logic;
reset : in std_logic;
en-in : in std-logic;
input-seq : in std-logic_vector (159 downto 0);
en_out : out std_logic;
output_seq : out std_logic_vector (159 downto O0)
)
end component;
signal state ,next_state : states;
——signal dec_input : std_logic_vector (159 downto 0);
signal dec_output : std_logic_vector (159 downto 0);
signal result_pmt : std-logic_-vector (159 downto 0);
signal result_pms : std_-logic_vector (159 downto 0);
signal result_seq : std_-logic_-vector (159 downto 0);
signal seq-in : std_logic_vector (159 downto 0);
signal dob_vector_in : std_logic_vector (12 downto 0);
signal dob_vector_out : std-logic_-vector (12 downto 0);
signal count_t : std-logic-vector (4 downto 0);
signal count_s : std_-logic_-vector (4 downto 0);
signal shift_pmt : std_logic_vector (4 downto 0);
signal shift_pms : std-logic-vector (4 downto 0);
signal en_in_pm_t : std-logic;
signal en_in_pm_s : std_logic;
signal en_in_dob : std_-logic;
signal en_in_seq : std_logic;
signal en_out_seq : std-logic;
signal en_out_pm_t : std-logic;
signal en_out_pm_s : std_logic;
signal en_out_dob : std_logic;
begin
DR: DOBBERTIN_.ROM —— dinitializing the Dobbertin

o4

—— counter private_-matrizc
—— counter private_-matric

t
s




—— ROM component in the decryption

— circutit
port map(
clk => clk,
reset => reset ,
en_in => en-in_-dob,
en_out => en-out_-dob,
Z => dob_vector_in,
db => dob_vector_out
)
PM.T: PRIVATE_MATRIX_S — 4nitializing the Private
—— (T) component in the decryption
— circutit
port map(
clk => clk,
reset = reset ,
en_in => en.in_.pm_t,
input => shift_.pmt ,
cnt => count_t ,
output => result_-pmt ,
en_out => en-out_pm_t
)
SEQ: SEQUENCER —— dinitilizing the sequencer
—— component in the decryption
—— circuit
port map(
clk => clk,
reset = reset ,
en_in => en.in_seq,
input_seq => seq-in,
en_out => en_out_seq ,
output-seq => result_seq
)
PM_S: PRIVATE_MATRIX_S — 4nitializing the Private
—— (T) component in the decryption
— circuit
port map(
clk => clk,
reset => reset ,
en_in => en-in_-pm-.s,
input => shift_pms,
cnt => count_s ,
output = result_pms ,
en_out => en_out_pm_s
)
running: process (clk, en_in)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
state <= IDLE;
elsif (en_in = ’'1’) then
state <= next_state;
end if;
end if;

end process;

output-dec: process (clk,en_in, state)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
dob_vector_in <= (others => ’07);
—dec_input <= (others => ’'0);
dec_output <= (others => ’0’);
result_pmt <= (others => '07);
result_pms <= (others => ’07);
result_-seq <= (others => '07);
outputs <= (others => ’0’);
shift_.pmt <= (others => ’'07);
shift_pms <= (others => '0’);
en_out <= '07;
en_in_dob <= ’07;
en_in_pm_t <= ’07;
en_in_pm_s <= ’07;
en_out_dob <= ’07;
en_out_seq <= '07;
n_-in_seq <= ’0’;
count_t <= (others => ’'0’);

95

Matriz

Matriz




199

201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219

count.s <= (others => ’'0);

seq-in <= (others => ’'0’);

elsif (en_-in = ’1’) then
case (state) is
when IDLE =>

——dec_input <=
71001101101001111001100101100110110011011010011110011001011001101100110110100111100110

en_in_pm_t <= ’0’;

if (count-t <= ”11111”) then
count_-t <= (others => ’07);

end if;

when SEND_TO_PM.T =>

en_in_pm_t <= ’17;

if (count_-t = ”11111” and en_out_-pm_t = ’1’) then
null;

else

shift_pmt <= inputs ((44+(conv_integer (count_t)*5)) downto (0+(conv_integer (count_t)=*5)))

;

if (en_out_pm_t = ’1’) then
count_t <= count_t + 1;
end if;
end if;

when RECV_FROM_PM.T =>

case (result_pmt) is

101100110110011¢(

when (7
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 77 Z 7277777 Z VA Z77F Z Z
") =
null;

when others =>
en_in_dob <= ’17;
end case;

when SEND_TO_DOB =>
en_in_pm_t <= ’0
en_in_dob <= ’17;
dob_vector_in (5 downto 0) <= result_pmt (5 downto 0);
dob_vector-in (6) <= result-pmt (10);
dob_vector_in (7) <= result_pmt (15);
dob_vector_in (8) <= result_pmt (20);
dob_vector_in (9) <= result_pmt (25);
dob_vector_in (10) <= result_pmt (30);
dob_vector-in (11) <= result_-pmt (35);
dob_vector_in (12) <= result_pmt (40);

when RECV_FROM_DOB =>
if (en_out_dob = ’1’) then
seq-in <= result_pmt;
case (dob_vector_out) is
when 7 Z7Z727777777272727" =>
null;

when others =>
seq-in (5 downto 0) <= dob_vector_out (5 downto 0);
seq-in (10) <= dob_vector_out (6);
seq-in (15) <= dob_vector_out (7);
seq-in (20) <= dob_vector_out (8);
seq-in (25) <= dob_vector_out (9);
seq-in (30) <= dob_vector_out (10);
seq-in (35) <= dob_vector_out (11);
seq-in (40) <= dob_vector_out (12);
——en-out_-dob <= ’07;
end case;
end if;

when SEND_TO_SEQ =>
en_in_seq <= ’'17;
en_in_-dob <= ’0’;

when RECV_FROM_SEQ =>
en_in_seq <= ’'0’;

when SEND_TO_PM._S =>

en_in_pm.s <= ’'17;
if (count_.s = ”11111” and en_out_-pm_.s = ’1’) then
null;
else
shift_pms <= result_seq (((4+(conv_integer (count_s)=*5))) downto (0+((conv_integer (count_s
)%5))));

o6

7777



if (en_out_-pm.s = ’1’) then
count_.s <= count_s 4+ 1;
end if;
end if;

when RECV_FROM_PM.S =>
en_in_pm_s <= ’07;
dec_output <= result_pms;

when SEND =>
outputs <= dec-output;
when others =>

null;
end case;
end if;
end if;

end process;
—— calculates mnext state

next_state_dec: process(state,count_t,en_out_pm_t,
en_out_seq ,count_s ,en_out_pm-.s)
begin
next_state <= state;

case (state) is

when IDLE =>
next-state <= SEND_TO_PM.T;

—— receives data from private matriz only when

—— counter reaches 31, when the private matriz is done
—— processing the 160bit data

when SEND_TO_PM.T =>

if (count_-t = 31 and en_out_pm_t = ’1’) then
next_state <= RECV_FROM_PM_T};
else

next-state <= SEND_TO_PM.T;
end if;

—— 4f the data ts mot walid, new data is being imported
—— and the state machine moves back to IDLE.
—— else, send data to dobbertin ROM
when RECV_FROM_PM.T =>
case result_pmt is

when (7

2727777227277 772227272772Z7222727772Z22227772Z2227277Z7Z2227772Z222727 7272222727 7Z2Z22272772Z2Z227277Z72Z22272772Z722227772Z227Z
"y =
next_state <= IDLE;
when others =>
next_-state <= SEND_TO_DOB;
end case;

when SEND_TO_DOB =>
next-state <= RECV_FROMDOB;

when RECV_FROM_DOB =>
next_state <= SEND_TO_SEQ;

when SEND_TOSEQ =>
case (en_out-seq) is
when 0’ =>
next_state <= SEND_TO_SEQ;
when ’1° =>
next_-state <= RECV_FROMSEQ;
when others =>
next_state <= IDLE;
end case;

when RECV_FROM_SEQ =>
next_state <= SEND_TO_PM.S;
when SEND_TO_PM.S =>

if (count_.s = 31 and en_out_-pm.s = ’1’) then
next-state <= RECV_FROM_PM.S;

else
next_state <= SEND_.TO_PM._S;

end if;

when RECV_FROM_PM.S =>
case result_pmt is

when (7
ZZ27277722222727722222 722222227222 2272 7222222722222 2772222722722 222 7222222727222 222 2722222722722 222 7727277

o7

V72777772777 77777

WZ27727777277777777



OO UEWN -

»y) =
next_-state <= IDLE;
when others =>
next_state <= SEND;
end case;

when SEND —>
next_state <= IDLE;

when others =>
next_state <= IDLE;

end case;
end process;

end rtl;

Listing A.5: Private Matrix

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;

entity private_matrix_s is

port (
clk : in std-logic;
reset : in std_-logic;
en_in : in std_logic;
cnt : in std_logic_vector (4 downto 0);
input : in std_logic_vector (4 downto 0);
output : out std-logic_-vector (159 downto 0);
en_out : out std-logic

)
end private_matrix_s;
architecture rtl of private_matrix_.s is

type priv_state is (IDLE,ANDOP,XORING,SYNC,PUSH.OUT) ;

signal rom_001 : std_logic_-vector (4 downto 0);

signal rom_002 : std_logic_-vector (4 downto 0);

signal and_rom_in_1 : std_logic_vector (4 downto 0);

signal and_rom_in_2 : std_logic_vector (4 downto 0);

signal tmp : std-logic_-vector (159 downto 0);

signal count_xor : integer range 0 to 4 := 0;

signal matr_xor : std-logic_-vector (159 downto 0);

signal sync_xor : std-logic_vector (159 downto 0);

signal enable_out : std_logic;

signal state ,next_state : priv_state;

signal register_x : std-logic_vector (159 downto 0);
begin

sync_run: process(clk ,en_in,enable_out ,register_x)
begin

if (clk’event and clk = ’1’) then
if (reset = ’1’) then
output <= (others => ’0’);
en_out <= '07;

state <= IDLE;

—— ¢nt <= (others => '07);
——count_zor <= 0;

elsif (en_in = ’1’) then
state <= next_state;
en_out <= enable_out;

if (cnt = 711111” and enable_out = ’1’) then
output <= register_x;
end if;
end if;
end if;

end process;

o8




—— output-dec is made synchronous, so that all signals remember their
—— walue at all times when mnot set again
output_dec: process (clk,state,cnt)
begin
if (clk’event and clk = ’1’) then
if (reset = ’'1’) then
—_ output <= (others => ’'07);
enable_out <= ’07;
count_xor <= 0;
tmp <= (others => ’07);
matr_xor <= (others => ’'07);
sync_.xor <= (others => ’07);
register.x <= (others => ’0’)
and_-rom_in_1 <= ”00000”;
rom-001 <= ”00000”;
elsif (en_in = ’1’) then
case (state) is
when IDLE =>
—— makes sure that en_out port is set to 0’
enable_out <= ’07;
—output <= (others => '07);
rom_001(4) <= ( not cnt(2) and cnt (1) and cnt(0)) or (cnt(4) and not cnt(3) and not cnt(2) and cnt
(1)) or (
not cnt(4) and mnot cnt(3) and cnt(l) and cnt(0)) or (cnt(4) and mnot cnt(l) and not cnt(0)) or
(cnt (4)
and cnt (3) and cnt (1) and cnt(0)) or ( not cnt(4) and cnt(3) and cnt (1) and not cnt(0)) or ( not
cnt (2)
and not cnt(l) and mnot cnt(0));

rom_001(3) <= ( not cnt(4) and
cnt (1)
and not cnt(0)) or ( not cnt(4) and
cnt (1) and mnot cnt(0)) or (
cnt (4) and cnt(3) and mnot cnt(1l)) or ( not cnt(3) and cnt(2) and
2)

not c¢cnt(3) and not cnt(2)

and not cnt(1));

rom_001(2) <= (cnt(3) and cnt(2) and

not cnt(3) and cnt(2) and cnt(1)) or (cnt(4) and not cnt(2) and
(3)

and not cnt(2) and cnt(0)) or
cnt (4) and not cnt(3)
and cnt (1)) or ( not cnt(4)

(cnt(4) and mnot cnt(3) and

and cnt(2) and mnot cnt(0));

rom_001(1) <= (cnt(3) and cnt (2)
and cnt (0)) or ( not cnt(4)

cnt (1)

not cnt(0)) or (cnt(4)

(3) and cnt(2)

and cnt (1) and mnot cnt(0)) or

cnt (3) and cnt (2)

not cnt (1)) or ( not

(2) and mnot cnt(1));

and

and cnt(2) and cnt (1) and cnt(0)) or

and and not cnt(3) and not cnt(2) and

( not cnt(3) and mnot cnt(2) and

and cnt (4) and cnt (3) and not

rom_001(0) <= ( not cnt(3) and
and cnt (0)) or (
cnt (4) and mnot cnt(2) and
( not cnt(4)
and cnt(3) and cnt(2)) or

cnt (1) and not cnt(0)) or (

not c¢cnt (1) and cnt(0)) or (cnt(4) and

and not cnt(0)) or ( not cnt(2) and cnt (1) and mnot cnt(0));
when ANDOP =>
—— makes the logical and operation between the input
—— walue and the stored wvalue inside the respective
—— ROM
and_rom_in_1 <= rom_001 and input;

99

not cnt(2) and cnt (1) and cnt(0)) or ( not cnt(2) and

not cnt(0)) or (cnt(4) and cnt(2) and

not cnt(2) and

not cnt (1) and cnt(0)) or (cnt(3) and

cnt (2) and cnt (1)) or (cnt(4) and

not cnt(3) and

and c¢cnt(0)) or ( not cnt(4) and cnt(3) and

not

not cnt (0)) or (cnt(4) and cnt

not cnt (1) and cnt(0)) or

cnt (1) and cnt(0)) or ( not cnt

not cnt (1)) or ( not

not cnt(2) and cnt (1)

(cnt (4) and not cnt(3) and not

not c¢cnt(0)) or (cnt(4) and cnt
not cnt (1)) or

( nmot cnt(4) and

not cnt

not cnt(2) and mnot cnt (1)

not cnt(3) and mnot cnt(l)) or

(cnt (3) and cnt(2) and cnt (1) and cnt(0)) or ( not cnt(4) and cnt (3)




QO =

when XORING =>
—— the actual bit—by—bit zor operation
tmp(0) <= and_rom_in_1(count_xor);
matr_xor (0) <= and-rom-_in_1(count_xor+1) xor tmp(0) ;

if not (count_xor = 3) then
count_-xor <= count_xor + 1;
end if;

when SYNC =>
— sets the zor counter to 0
count_xor <= 0;
—— keep synchronization of the zor’ed bits
if (cnt = 700000”) then
sync_xor <= matr_xor;

enable_out <= ’17;
—— does the last zor step between the previous
—— and the current 5 bit input wvector

else

sync-xor <= matr_Xxor Xor Sync-xor;
enable_out <= ’17;
end if;

when PUSH.OUT =>
—— pushes out the processed wvector on output
enable_out <= ’17;
register_x <= sync_xor;

when others =>

enable_out <= ’07;
rom_001 <= (others => ’0’);

end case;
end if;
end if;
end process;

next_state_dec: process (state ,input,cnt,count_xor)
begin
next_-state <= state;
case (state) is
when IDLE =>
—— makes sure that rom has the correct wvalue
—— as to the running time given by signal cnt
next-state <= ANDOP;
when ANDOP =>
next_state <= XORING;
when XORING =>
if (count_xor < 3) then
next-state <= XORING;

else
next_state <= SYNC;
end if;
when SYNC =>
if (cnt = 7111117) then
next_state <= PUSH.OUT;
else
next_state <= IDLE;
end if;

when PUSH.OUT =>
next_-state <= IDLE;
when others =>
next_state <= IDLE;
end case;
end process;

end rtl;

Listing A.6: Dobbertin ROM

library ieee;

use ieee.std_logic-1164.all;
use ieee.std_-logic_arith.all;
use ieee.std_logic_signed.allj;

60




OO THREWN -

entity Dobbertin . ROM is

port (
z : in std_logic_vector (12 downto 0);
clk ,reset ,en_in : in std_logic;
db : out std_logic_vector (12 downto 0);
en_out : out std-logic

)

end Dobbertin.ROM ;

architecture rtl of Dobbertin.ROM is

begin
process(clk ,reset ,en_in)
begin
if (clk "event and clk = ’1’) then
if (reset = ’1’) then
db <= (others => ’07);
en_out <= '07;
elsif (en_in = ’'1’) then
en_out <= '17;
db(12) <= ( not z(12) and not z(11) and not z(10) and not
z(6) and z(4) and not z(3) and not z(0)) or (
z(7)
and z(6) and z(5) and not z(4) and z(3) and z (1) and z(0));
else
en_out <= ’07;
end if;
end if;
end process;
end rtl;

z(9) and z(8) and

and z(10)

and

not z(9) and

not z(7) and

not

Listing A.7: Sequencer

—— Company: NTNU
— FEngineer: Stig Fjellskaalnes

—— Create Date: 11:26:53 10/22/2008
—— Design Name:
—— Module Name: sequencer — Behavioral

—— Project Name:
—— Target Devices:
—— Tool versions:
—— Description :

—— Dependencies :
— Rewvision:

— Rewvision 0.01 — File Created
— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;

——— Uncomment the following library declaration if instantiating
———— any Xilinz primitives in this code.

——library UNISIM;

——use UNISIM. VComponents. all ;

entity sequencer is

port (

clk : in std_logic;

reset :in std_logic;

en-in : in  std-logic;

input-seq : in std_logic_-vector (159 downto 0);

en_out : out std-logic;

output_seq : out std_-logic_vector (159 downto 0)
)

end sequencer;
architecture Behavioral of sequencer is

component master_rom

port (
clk, reset ,en_in : in std-logic;
z : in std_-logic_-vector (9 downto 0); — address bus

61




counter

db
)

in
out

std-logic_-vector
std_-logic_-vector

(4 downto 0);

(4 downto 0) — data bus

end component;

type reg_input

is array ((2%*%*5)—1 downto 0) of std_logic_-vector

state <=

end

end if

if;

5

end process;

next_state;

output_dec: process(clk ,en_in ,h state)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then

reg_in (0) <= (others => ’0’);
reg_.in (1) <= (others => ’0’);
reg-in (2) <= (others => ’07);
reg_in (3) <= (others => ’0’);
reg.in (4) <= (others => ’07);
reg_in(5) <= (others => ’0’);
reg.in (6) <= (others => ’07);
reg-in (7) <= (others => ’0’);
reg_in (8) <= (others => ’0’);
reg_in (9) <= (others => ’0’);
reg_in (10) <= (others => ’0’);
reg_.in(11) <= (others => ’0’);
reg-in (12) <= (others => ’0’);
reg_in(13) <= (others => ’0’);
reg_in(14) <= (others => ’0’);
reg_in(15) <= (others => ’0’);
reg-in (16) <= (others => ’0’);
reg-in (17) <= (others => ’'0’);
reg_in(18) <= (others => ’0’);
reg_in(19) <= (others => '0’);
reg_in (20) <= (others => ’0’);
reg-in (21) <= (others => ’'0’);
reg-in (22) <= (others => ’'0’);
reg_in (23) <= (others => ’0’);
reg_in (24) <= (others => '0’);
reg_in (25) <= (others => ’0’);
reg-in (26) <= (others => ’0’);
reg-in (27) <= (others => ’'0’);

62

(4 downto 0);

type states is (IDLE,MUX2SEL,SEND_TO-MASTER,RECV_MR, MUX31_SEL,SYNC,PUSH) ;
signal reg_in ,reg_out reg_input;
signal sel : std_logic;
signal counter_1 std-logic-vector (4 downto 0);
signal counter_2 std-logic_vector (4 downto 0);
signal mux31l_out std_logic_-vector (4 downto 0);
signal mux2_out,sync_mr std_logic_vector (4 downto 0);
signal to_master : std_logic_vector (9 downto 0);
signal from_master std-logic_-vector (4 downto 0);
signal en_out_-mux : std_-logic;
signal state ,next_state states;
begin
MAR: master_rom —— 4nitializing the master rom
—— component in the sequencer
— circuit

port map(

clk => clk,

reset = reset ,

counter => counter_2 ,

en_in => en_out_mux,

—_ en-out = en_out_-mar,

z = to_master ,

db => from_master

)
sec_run process (clk, en_in, counter_1, counter_2)
begin
if (clk’event and clk = ’1’) then

if (reset = ’1’) then

state <= IDLE;
elsif (en_-in = ’1’) then




reg-in (28) <= (others => ’'0’);
reg_-in (29) <= (others => ’0’);
reg_in (30) <= (others => ’0’);
reg_in(31) <= (others => ’0’);
to_master <= (others => ’0’);
en_out <= ’07;

sel <= ’07;

en_out_-mux <= ’'0’;

mux3l_out <= (others => ’07);
sync.mr <= (others => ’0’);
mux2_out <= (others => ’07);
——from_master <= (others => ’0’);
output_seq <= (others => '07);
reg_out <= reg._in;

counter-1 <= ”00000”;
counter-2 <= ”00000”;

elsif (en_in = ’1’) then
case (state) is
when IDLE =>

reg_in (0) <= input_seq (4 downto 0);
reg_in (1) <= input_seq (9 downto 5);
reg_in(2) <= input_seq (14 downto 10);
reg.in (3) <= input_seq (19 downto 15);
reg-in(4) <= input_-seq (24 downto 20);
reg_in(5) <= input_seq (29 downto 25);
reg-in (6) <= input_seq (34 downto 30);
reg_in (7) <= input_seq (39 downto 35);
reg.in (8) <= input_seq (44 downto 40);
reg_in (9) <= input_seq (49 downto 45);
reg_in (10) <= input_-seq (54 downto 50);
reg-in(11) <= input_-seq (59 downto 55);
reg_in(12) <= input_-seq (64 downto 60);
reg_in (13) <= input_seq(69 downto 65);
reg-in(14) <= input-seq (74 downto 70);
reg_in(15) <= input_-seq (79 downto 75);
reg-in(16) <= input_seq (84 downto 80);
reg_in(17) <= input_-seq (89 downto 85);
reg-in (18) <= input-seq (94 downto 90);
reg-in(19) <= input-seq (99 downto 95);
reg_in (20) <= input_-seq (104 downto 100);
reg-in(21) <= input_seq (109 downto 105);
reg_in (22) <= input_seq (114 downto 110);
reg-in (23) <= input-seq(119 downto 115);
reg_in (24) <= input-seq (124 downto 120);
reg_in (25) <= input_seq (129 downto 125);
reg-in (26) <= input_seq (134 downto 130);
reg_in (27) <= input_seq (139 downto 135);
reg-in (28) <= input-seq (144 downto 140);
reg_in (29) <= input_seq (149 downto 145);
reg_in (30) <= input_seq (154 downto 150);
reg-in(31) <= input_seq (159 downto 155);
sel <= ’07;
en_out <= ’07;

when MUX2_SEL =>
counter_1 <= counter_1 + 1;
case (sel) is
when ’1’ => mux2_out <= sync_mr;
when ’0’ => mux2_.out <= reg_-in (0);
when others => mux2_out <= (others => 'Z’);
end case;

when SEND_TO-MASTER =>
sel <= '17;
to_master (9 downto 5) <= mux2_out;
to_master (4 downto 0) <= mux3l_out;

when RECV.MR =>
sync_mr <= from_master;

when MUX31_SEL =>

case (counter_1) is

when 7000017 =>
mux31l_out <= reg_in (1);
en_out_mux <= ’'17;

when 7000107 =>
mux3l_out <= reg-in(2);
en_out_-mux <= ’'17;

when 7000117 =>
mux3l_out <= reg_in (3);
en_out-mux <= ’'17;

when ”00100” =>

63




mux3l_out <= reg-in (4);
en_out_-mux <= ’'17;

when 7001017 =>
mux3l_out <= reg_in (5);
en_out_mux <= ’'17;

when 7001107 =>
mux3l_out <= reg-in (6);
en_out_mux <= ’'17;

when 7001117 =>
mux3l_out <= reg-in (7);
en_out-mux <= ’'17;

when ”01000”7 =>
mux31l_out <= reg_in (8);
en_out_mux <= ’'17;

when 7010017 =>
mux3l_out <= reg-in (9);
en_out_-mux <= ’'17;

when 7010107 =>
mux3l_out <= reg._in (10);
en_out-mux <= ’'17;

when 7010117 =>
mux3l_out <= reg_in (11);
en_out_mux <= ’'17;

when 7011007 =>
mux3l_out <= reg-in (12);
en_out_-mux <= ’'17;

when 7011017 =>
mux3l_out <= reg_in (13);
en_out_mux <= ’'17;

when 7011107 =>
mux3l_out <= reg_in (14);
en_out_-mux <= ’'17;

when 7011117 =>
mux3l_out <= reg._in (15);
en_out-mux <= ’'17;

when ”10000” =>
mux3l_out <= reg_in (16);
en_out_mux <= ’'17;

when ”10001” =>
mux3l_out <= reg-in (17);
en_out-mux <= ’17;

when 7100107 =>
mux3l_out <= reg._in (18);
en_out-mux <= ’'17;

when 7100117 =>
mux3l_out <= reg_in (19);
en_out_-mux <= ’'17;

when 7101007 =>
mux3l_out <= reg-in (20);
en_out-mux <= ’17;

when 7101017 =>
mux3l_out <= reg_in (21);
en_out_mux <= ’'17;

when 7101107 =>
mux3l_out <= reg-in (22);
en_out_-mux <= ’'17;

when 7101117 =>
mux3l_out <= reg._in (23);
en_out-mux <= ’'17;

when 7110007 =>
mux3l_out <= reg_-in (24);
en_out_mux <= ’'17;

when 7110017 =>
mux3l_out <= reg-in (25);
en_out_-mux <= ’'17;

when 7110107 =>
mux3l_out <= reg._in (26);
en_out_mux <= ’'17;

when 7110117 =>
mux3l_out <= reg_in (27);
en_out_-mux <= ’'17;

when 7111007 =>
mux3l_out <= reg-in (28);
en_out-mux <= ’'17;

when 7111017 =>
mux31l_out <= reg_in (29);
en_out_mux <= ’'17;

when 7111107 =>
mux3l_out <= reg-in (30);
en_out_-mux <= ’'17;

when 7111117 =>
mux3l_out <= reg._in (31);
en_out-mux <= ’'17;

64




when others =>
en_out_-mux <= ’'07;
mux3l_out <= (others => 'Z7);
end case;

when SYNC =>
reg-out (conv_integer (counter-2)) <= mux2_out;
if (counter_.2 < ”11111”) then
counter_2 <= counter_2 + 1;
end if;

when PUSH =>
output_seq (4 downto 0) <= reg_out (0);
output_seq (9 downto 5) <= reg_out(1);
output-seq (14 downto 10) <= reg-out(2);
output_seq (19 downto 15) <= reg-out(3);
output_seq (24 downto 20) <= reg._out (4);
output_seq (29 downto 25) <= reg_out (5);
output_seq (34 downto 30) <= reg_-out(6);
output-seq (39 downto 35) <= reg-out(7);
output_seq (44 downto 40) <= reg.-out (8);
output-seq (49 downto 45) <= reg_-out (9);
output_seq (54 downto 50) <= reg_out (10);
output_seq (59 downto 55) <= reg_out(11);
output_-seq (64 downto 60) <= reg-out(12);
output_seq (69 downto 65) <= reg-out(13);
output_-seq (74 downto 70) <= reg_out (14);
output_seq (79 downto 75) <= reg_out (15);
output_seq (84 downto 80) <= reg_out(16);
output_-seq (89 downto 85) <= reg-out (17);
output_seq (94 downto 90) <= reg-out (18);
output_-seq (99 downto 95) <= reg_out (19);
output_seq (104 downto 100) <= reg._out (20);
output_seq (109 downto 105) <= reg_out (21);
output_-seq (114 downto 110) <= reg-out (22);
output_seq (119 downto 115) <= reg_out (23);
output_seq (124 downto 120) <= reg_out (24);
output_seq (129 downto 125) <= reg_out (25);
output-seq (134 downto 130) <= reg-out (26);
output_-seq (139 downto 135) <= reg._out (27);
output_seq (144 downto 140) <= reg_out (28);
output_seq (149 downto 145) <= reg_out (29);
output_seq (154 downto 150) <= reg_out (30);
output-seq (159 downto 155) <= reg-out(31);
counter-2 <= 7000007 ;
en_out <= '17;
end case;
end if;
end if;

end process;

next_state_dec: process(state,counter_1l,counter_2)
begin

next_state <= state;

case (state) is

when IDLE =>
case (counter_1) is
when ”00000” =>
next_state <= MUX2_SEL;

when others =>
next_state <= MUX31_SEL;
end case;
when MUX2_SEL =>
next_state <= SYNC;
when SEND_TO_MASTER =>
next_state <= RECV.MR;
when RECV.MR =>
next_-state <= MUX2SEL;
when MUX31_SEL =>
next_state <= SEND_TO_MASTER;

when SYNC =>

if (counter_2 = 711111”) then
next_state <= PUSH;
else
next_state <= MUX31.SEL;
end if;

when PUSH =>
next_state <= IDLE;
end case;
end process;

65




383
384
385

OO WN

end Behavioral;

Listing A.8: Master ROM

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

——— Uncomment the following library declaration if instantiating
——— any Xilinz primitives in this code.

——library UNISIM;

——use UNISIM. VComponents. all ;

entity master_rom is

port (
clk, reset ,en_in : in std_logic;
z : in std-logic-vector (9 downto 0); — address bus
counter : in std-logic_vector (4 downto 0);
db : out std_logic_vector (4 downto 0) —— data bus
)i

end master_rom;

architecture rtl of master_rom is
signal cnt : std_logic_vector (4 downto 0);
signal ctrl : std_logic_-vector (2 downto 0);
begin
sel_-rom: process (clk,ctrl)
begin
if (clk’event and clk = ’1’) then
if (reset = ’'1’) then
db <= (others => ’0’);
elsif (en_in = ’1’) then
case (ctrl) is

when 7000”7 =>

db(4) <= ( not z(8) and not z(7) and not z(5) and not z(4) and not z(2) and not z(1l) and not z

(0)) or (z(8) and z(7) and not z(5)

and not z(4) and not z(2) and not z(1l) and not z(0)) or (z(8) and not z(7) and z(5) and

not z(4) and not z(2) and not z(1l) and not z(0)) or
(3) and z(2) and z (1) and z(0));

when others =>
db <= (others => ’'Z’);
end case;
end if;
end if;
end process;

control: process(clk)
begin
if (clk’event and clk = ’1’) then
if (reset = ’1’) then
ctrl <= (others => ’0’);
cnt <= (others => ’0’);
elsif (counter < ”11111”7) then
——cnt <= cnt + 1;
ctrl (2) <= ( not counter(l) and not counter(0)) or ( not counter(2) and

and not z(5) and z(4) and z

not counter (1))

or ( not counter(3) and not counter(l)) or ( not counter(4) and mnot counter(1));

ctrl (1) <= ( not counter(2));

ctrl (0) <= (counter(4) and counter(3) and counter(2) and counter (1) and not counter(0)) or

( not counter(2) and counter (0)) or ( not counter(3) and counter (0))
(4) and counter (0));
else
cnt <= (others => ’0’);
end if;
end if;
end process;
end rtl;

or (not counter

66




OO WN -

NOOUURWN -

Appendix B

Espresso minimization

Here is an example of an input file for minimization through the espresso application.

Listing B.1: Control ROM espresso minimization input file

# ROM_Control

i 5

.o 3

.ilb  z(4) z(3) z(2) z(1) z(0)
.ob  Ctrl(2) Ctrl(1l) Ctrl(0)

.p 31

00000 110
00001 111
00010 010
00011 011
00100 100
00101 101
00110 000
00111 001
01000 110
01001 111
01010 010
01011 011
01100 100
01101 101
01110 000
01111 001
10000 110
10001 111
10010 010
10011 011
10100 100
10101 101
10110 000
10111 001
11000 110
11001 111
11010 010
11011 011
11100 100
11101 000
11110 001

.e

Listing B.2: Control ROM espresso minimization result file

# ROM_Control
Ctrl(2) = (1z(1)&!'z(0)) | ('z(2)&'z(1)) | ('z(3)&!'z(1)) | ('z(4)&!z(1));

Ctrl (1) = ('z(2));

Ctrl(0) = (2z(4)&z(3)&z(2)&z(1)&!2(0)) | (12(2)&z(0)) | (12(3)&z(0)) | (
1z (4)&z(0));

67




68



OO UHEWN -

Appendix C

Synthesis report from Decryption

Here is the complete synthesis report of Decryption.

Listing C.1: Decryption synthesis report

Release 10.1 — xst K.39 (lin)
Copyright (c¢) 1995—-2008 Xilinx, Inc. All rights reserved.
-—>

Parameter TMPDIR set to /home/stig/Documents/ttm4900/mqgq-final/xst/projnav.tmp

Total REAL time to Xst completion:
Total CPU time to Xst completion:

0.00
0.06

secs
secs

—>

Parameter xsthdpdir set to /home/stig/Documents/ttm4900/mqq-final/xst

Total REAL time to Xst completion:
Total CPU time to Xst completion:

0.00
0.06

secs
secs

—>
Reading design: decryption.prj
TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) Design Hierarchy Analysis
4) HDL Analysis
5) HDL Synthesis
5.1) HDL Synthesis Report
6) Advanced HDL Synthesis
6.1) Advanced HDL Synthesis
7) Low Level Synthesis
8) Partition Report
9) Final Report
9.1) Device summary
9.2) Partition Resource Summary
9.3) TIMING REPORT

Report

utilization

* Synthesis Options Summary *

Source Parameters

Input File Name ”decryption.prj”

Input Format : mixed

Ignore Synthesis Constraint File : NO

——— Target Parameters

Output File Name ”decryption”
Output Format NGC

Target Device xcbvlx110t —1—-ff1136

——— Source Options

Top Module Name decryption
Automatic FSM Extraction YES

FSM Encoding Algorithm Auto

Safe Implementation No

FSM Style lut

RAM Extraction Yes

RAM Style Auto

69




ROM Extraction Yes

Mux Style Auto
Decoder Extraction YES
Priority Encoder Extraction YES
Shift Register Extraction YES
Logical Shifter Extraction YES
XOR Collapsing YES

ROM Style Auto
Mux Extraction YES
Resource Sharing YES
Asynchronous To Synchronous NO

Use DSP Block auto
Automatic Register Balancing No

——— Target Options

LUT Combining off
Reduce Control Sets off

Add IO Buffers YES
Global Maximum Fanout 100000
Add Generic Clock Buffer (BUFG) 32
Register Duplication YES
Slice Packing YES
Optimize Instantiated Primitives NO

Use Clock Enable Auto
Use Synchronous Set Auto
Use Synchronous Reset Auto
Pack IO Registers into IOBs auto
Equivalent register Removal YES
——— General Options

Optimization Goal Speed
Optimization Effort 1

Power Reduction NO
Library Search Order decryption.lso
Keep Hierarchy NO
Netlist Hierarchy as_optimized
RTL Output Yes
Global Optimization AllClockNets
Read Cores YES
Write Timing Constraints NO
Cross Clock Analysis NO
Hierarchy Separator /

Bus Delimiter <>

Case Specifier maintain
Slice Utilization Ratio 100
BRAM Utilization Ratio 100
DSP48 Utilization Ratio 100
Verilog 2001 YES
Auto BRAM Packing NO

Slice Utilization Ratio Delta 5

* HDL Compilation *

Compiling vhdl file

Entity <master_-rom> compiled.

” /home/stig /Documents/ttm4900/ mqq_final /VHDL/ master_-rom .vhd” in

Library work.

Entity <master_.rom>
Compiling vhdl file
Architecture rtl of
Compiling vhdl file
Architecture rtl of
Compiling vhdl file

Architecture behavioral

Compiling vhdl file
Architecture rtl of

(Architecture <rtl >) compiled.

” /home/stig /Documents/ttm4900/ mqq-final /VHDL/dobbertin_rom .vhd”
Entity dobbertin_.rom is up to date.

” /home/stig /Documents/ttm4900/ mqq_final /VHDL/ private_matrix_t.vhd”

in Library work.
in Library work

Entity private_-matrix_.s is up to date.

” /home/stig /Documents/ttm4900/ mqq-final /VHDL/sequencer .vhd”
of Entity sequencer is up to date.

” /home/stig /Documents/ttm4900/ mqq-final /VHDL/decryption .vhd”
Entity decryption is up to date.

in Library work.

in Library work.

Design Hierarchy Analysis *

Analyzing hierarchy

Analyzing hierarchy
Analyzing hierarchy
Analyzing hierarchy

Analyzing hierarchy

for entity <decryption> in library <work> (architecture <rtl >).

for entity <dobbertin_.rom> in library <work> (architecture <rtl >).

for entity <private_matrix_s> in library <work> (architecture <rtl>).

for entity <sequencer> in library <work> (architecture <behavioral>).

for entity <master_rom> in library <work> (architecture <rtl >).

70




* HDL Analysis *

Analyzing Entity <decryption> in library <work> (Architecture <rtl>).
INFO:Xst:1561 — ” /home/stig/Documents/ttm4900/ mqq_final /VHDL/decryption.vhd” line 332: Mux is complete
default of case is discarded
INFO:Xst:2679 — Register <en_out> in unit <decryption> has a constant value of 0 during circuit
operation. The register is replaced by logic.
Entity <decryption> analyzed. Unit <decryption> generated.

Analyzing Entity <dobbertin_.rom> in library <work> (Architecture <rtl>).
Entity <dobbertin_rom> analyzed. Unit <dobbertin.rom> generated.

Analyzing Entity <private_matrix_s> in library <work> (Architecture <rtl>).
Entity <private_matrix_s> analyzed. Unit <private_matrix_s> generated.

Analyzing Entity <sequencer> in library <work> (Architecture <behavioral >).

INFO:Xst:1561 — ” /home/stig/Documents/ttm4900/ mqq-final /VHDL/sequencer .vhd” line 190: Mux is complete
default of case is discarded

Entity <sequencer> analyzed. Unit <sequencer> generated.

Analyzing Entity <master_-rom> in library <work> (Architecture <rtl>).

INFO:Xst:1561 — ” /home/stig/Documents/ttm4900/ mqq-final /VHDL/ master_-rom.vhd” line 3099: Mux is
complete : default of case is discarded

INFO:Xst:2679 — Register <cnt> in unit <master_.rom> has a constant value of 00000 during circuit
operation. The register is replaced by logic.

Entity <master_-rom> analyzed. Unit <master_-rom> generated.

* HDL Synthesis *

Performing bidirectional port resolution ...

Synthesizing Unit <dobbertin_.rom >.
Related source file is ”/home/stig/Documents/ttm4900/ mqq-final /VHDL/dobbertin_rom .vhd” .
Found 13—bit register for signal <db>.
Found 1—bit register for signal <en_out >.
Summary :
inferred 14 D-type flip—flop(s).
Unit <dobbertin_.rom> synthesized.

Synthesizing Unit <private_matrix_s >.
Related source file is ”/home/stig/Documents/ttm4900/ mqq-final /VHDL/private_-matrix_t.vhd”.
Found finite state machine <FSM.0> for signal <state >.

States 5
Transitions 7
Inputs 2
Outputs 9
Clock clk (rising_-edge)

| \
| \
| \
| \
| \
| Clock enable | en_in (positive)
| Reset | reset (positive)
| \
| :
| \
| \

Reset type synchronous
Reset State idle

Power Up State idle
Encoding automatic
Implementation LuUT

Found 1—-bit register for signal <en_out >.

Found 160—bit register for signal <output>.
Found 5—bit register for signal <and_rom_in_1>.
Found 5—bit register for signal <and-rom_in_-10 >.
Found 5—bit register for signal <and_-rom_-in_-100 >.
Found 5—bit register for signal <and_-rom_in_101 >.
Found 5—bit register for signal <and_rom_in_102>.
Found 5—bit register for signal <and_rom_in_103 >.
Found 5—bit register for signal <and-rom-in_-104 >.
Found 5—bit register for signal <and_-rom_in_-105 >.
Found 5—bit register for signal <and_-rom_in_106 >.
Found 5—bit register for signal <and_-rom_in_107 >.
Found 5—bit register for signal <and_rom_in_108 >.
Found 5—bit register for signal <and-rom-in_-109 >.
Found 5—bit register for signal <and_-rom_in_-11>.
Found 5—bit register for signal <and_-rom_in_110 >.
Found 5—bit register for signal <and_-rom_in_111>.
Found 5—bit register for signal <and_rom_in_112>.
Found 5—bit register for signal <and-rom-in_113>.
Found 5—bit register for signal <and_-rom_in_114 >.
Found 5—bit register for signal <and_-rom_in_115>.
Found 5—bit register for signal <and_-rom_in_116 >.
Found 5—bit register for signal <and_rom_in_117 >.
Found 5—bit register for signal <and_-rom_in_-118 >.

71




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit

register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

<and_-rom_in_119 >.
<and_rom_in_12 >.
<and_rom_in_120 >.
<and_rom_in_121 >.
<and_rom_in_122 >.
<and_-rom_in_123 >.
<and_rom_in_124 >.
<and_rom_in_125 >.
<and_rom_in_126 >.
<and-rom_-in_127 >.
<and_-rom_in_128 >.
<and_-rom_in_129 >.
<and_rom_in_13 >.
<and_rom_in_130 >.
<and_-rom-_-in_-131>.
<and_-rom_in_132 >.
<and_rom_in_133 >.
<and_rom_in_134 >.
<and_rom_in_135>.
<and-rom_in_136 >.
<and_-rom_in_137 >.
<and_rom_in_138 >.
<and_rom_in_139 >.
<and_rom_in_14 >.
<and_-rom_in_140 >.
<and_-rom_in_141 >.
<and_rom_in_142 >.
<and_rom_in_143 >.
<and_rom_in_144 >.
<and_-rom_in_145 >.
<and_-rom_in_146 >.
<and_rom_in_147 >.
<and_rom_in_148 >.
<and_rom_in_149 >.
<and_-rom_in_15 >.
<and_-rom_in_150 >.
<and_rom_in_151 >.
<and_rom_in_152 >.
<and-rom_-in_-153 >.
<and_-rom_in_154 >.
<and_rom_in_155 >.
<and_rom_in_156 >.
<and_rom_in_157 >.
<and-rom_-in_-158 >.
<and_-rom_in_159 >.
<and_rom_in_16 >.
<and_rom_in_160 >.
<and_rom_in_17 >.
<and-rom_in_18 >.
<and_-rom_in_19 >.
<and_rom_in_2 >.

<and_rom_in_20 >.
<and_rom_in_21 >.
<and-rom_in_22 >.
<and_-rom_in_23 >.
<and_rom_in_24 >.
<and_rom_in_25 >.
<and_rom_in_26 >.
<and-rom_in_27 >.
<and_-rom_in_28 >.
<and_rom_in_29 >.
<and_-rom_in_3 >.

<and_rom_in_30 >.
<and_-rom_in_31 >.
<and_-rom_in_32 >.
<and_rom_in_33 >.
<and_rom_in_34 >.
<and_rom_in_35 >.
<and_-rom_in_36 >.
<and_rom_in_37 >.
<and_rom_in_38 >.
<and_rom_in_39 >.
<and-rom_.in_4 >.

<and_-rom_in_40 >.
<and_rom_in_41 >.
<and_rom_in_42 >.
<and_rom_in_43 >.
<and-rom_in_44 >.
<and_-rom_in_45 >.
<and_rom_in_46 >.
<and_rom_in_47 >.
<and_rom_in_48 >.
<and-rom_in_49 >.
<and_-rom_in_5 >.

72




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

for

5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
5—bit register
3—bit register
3—bit adder
1-bit register
160—bit

1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for
1-bit xor2 for

for signal <and_rom_in_50>.
for signal <and_-rom_in_51 >.
for signal <and_rom_in_52 >.
for signal <and_rom_in_53 >.
for signal <and_rom_in_54>.
for signal <and_rom_in_55>.
for signal <and_rom_in_56 >.
for signal <and_rom_in_57 >.
for signal <and_rom_in_58 >.
for signal <and_-rom_in_59 >.
for signal <and_rom_in_6 >.
for signal <and_-rom_in_60 >.
for signal <and_rom_in_61>.
for signal <and_rom_in_62>.
for signal <and_-rom_in_63 >.
for signal <and_rom_in_64 >.
for signal <and_-rom_in_65 >.
for signal <and_rom_in_66 >.
for signal <and_rom_in_67 >.
for signal <and_-rom_in_68 >.
for signal <and_rom_in_69 >.
for signal <and_-rom_in_7 >.
for signal <and_rom_in_70 >.
for signal <and_rom_in_71>.
for signal <and_rom._in_72>.
for signal <and_rom_in_73>.
for signal <and_-rom_in_74 >.
for signal <and_rom_in_75>.
for signal <and_rom_in_76 >.
for signal <and_rom_in_77 >.
for signal <and_rom_in_78 >.
for signal <and_rom_in_79 >.
for signal <and_rom_in_8 >.
for signal <and_rom_in_80 >.
for signal <and_rom_in_81>.
for signal <and_-rom_in_82 >.
for signal <and_rom_in_83 >.
for signal <and_rom_in_84 >.
for signal <and_-rom._in_85>.
for signal <and_rom_in_86 >.
for signal <and_-rom_in_87 >.
for signal <and_rom_in_88 >.
for signal <and_rom_in_89 >.
for signal <and_-rom_in_9 >.
for signal <and_rom_in_90 >.
for signal <and_-rom_in_91 >.
for signal <and_rom_in_92 >.
for signal <and_rom_in_93 >.
for signal <and_-rom._in_-94 >.
for signal <and_rom_in_95>.
for signal <and_-rom_in_96 >.
for signal <and_rom_in_97 >.
for signal <and_rom_in_98 >.
for signal <and_-rom._in_99 >.
for signal <count_xor >.

signal <count_xor$addsub0000> created at

for signal <enable_out >.

register for signal <matr_xor >.
signal <matr_xor_-0$xor0000> created at
signal <matr_xor_1$xor0000> created at
signal <matr_xor-10$xor0000> created at

signal <matr_xor_100$x0r0000>
signal <matr_xor_101$x0r0000>
signal <matr_xor_-102$x0r0000>
signal <matr_xor-103$x0r0000>
signal <matr_xor_-104$xo0r0000>
signal <matr_xor_105%$x0r0000>
signal <matr_xor_106$x0r0000>
signal <matr_xor_107$x0r0000>
signal <matr_xor_108$x0r0000>
signal <matr_xor_-109$x0r0000>

created
created
created
created
created
created
created
created
created
created

signal <matr_xor_11$x0or0000> created

signal <matr_xor_-110$x0r0000>
signal <matr_xor_111$x0r0000>
signal <matr_xor-112$x0r0000>
signal <matr_xor_-113$x0r0000>
signal <matr_xor_114$x0r0000>
signal <matr_xor_-115$x0r0000>
signal <matr_xor_116$x0r0000>
signal <matr_xor_-117$x0r0000>
signal <matr_xor_-118$x0r0000>
signal <matr_xor_119$x0r0000>

signal <matr_xor_-12$x0or0000> created at

created
created
created
created
created
created
created
created
created
created

line 5237.
line 4916.
line 4918.

line 4936.
at line 5116.
at line 5118.
at line 5120.
at line 5122.
at line 5124.
at line 5126.
at line 5128.
at line 5130.
at line 5132.
at line 5134.

at line 4938.
at line 5136.
at line 5138.
at line 5140.
at line 5142.
at line 5144.
at line 5146.
at line 5148.
at line 5150.
at line 5152.
at line 5154.
line 4940.
line 5156.

signal <matr_xor_120$x0r0000> created at

73




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit

xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2
xor2

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

<matr_xor-121$x0r0000> created
<matr_xor_-1228$x0or0000> created
<matr_xor-123$xor0000> created
<matr_xor_-124$x0r0000> created
<matr_xor_1258$x0r0000> created
<matr_xor-126$x0r0000> created
<matr_xor_127$xo0r0000> created
<matr_xor_-1288%xor0000> created
<matr_xor_-129$x0r0000> created
<matr-xor-13$x0or0000> created

<matr_xor-1308$x0r0000> created
<matr_xor_131$xo0r0000> created
<matr_xor-132$xor0000> created
<matr_xor_-1338$x0r0000> created
<matr_-xor-1348x0r0000> created
<matr_xor_-1358$x0r0000> created
<matr_xor-136$xor0000> created
<matr_xor_137$x0or0000> created
<matr_xor_1383%x0r0000> created
<matr_-xor-1398x0r0000> created
<matr_xor-148$x0or0000> created

<matr_xor_1408$xo0r0000> created
<matr_xor_-141$x0r0000> created
<matr_xor_1428$x0or0000> created
<matr_xor-1438$x0or0000> created
<matr_xor_-144$x0or0000> created
<matr_xor-1458$xor0000> created
<matr_xor_146$x0r0000> created
<matr_xor_147$xor0000> created
<matr_xor-1488x0r0000> created
<matr_xor_-1498$x0or0000> created
<matr_xor_158x0or0000> created

<matr_xor_-1508x0r0000> created
<matr_xor_1518$x0r0000> created
<matr_xor-1528x0r0000> created
<matr_xor_153%$xo0r0000> created
<matr_xor_-154$xor0000> created
<matr_xor_1558$x0r0000> created
<matr_-xor-1568x0r0000> created
<matr_xor_-1578$x0r0000> created
<matr_xor_158%x0r0000> created
<matr_xor-159$xor0000> created
<matr_xor_16$x0or0000> created

<matr_-xor-17$xor0000> created

<matr_xor-188$x0or0000> created

<matr_xor_198xor0000> created

<matr_xor_2$xor0000> created at

<matr_xor_20$x0or0000> created
<matr_-xor-218$x0or0000> created
<matr_xor-228x0or0000> created
<matr_xor_23%x0or0000> created
<matr_xor_-24$xor0000> created
<matr_xor_258x0r0000> created
<matr_-xor-26$xor0000> created
<matr_xor_-278$xor0000> created
<matr_xor_288$xor0000> created
<matr_xor_-29$xor0000> created

<matr_xor_3$xor0000> created at

<matr_-xor-308x0or0000> created
<matr_xor_-318$x0or0000> created
<matr_xor_328xor0000> created
<matr_xor_338x0or0000> created
<matr_xor_34%$x0or0000> created
<matr_-xor-358x0or0000> created
<matr_xor_-368$x0or0000> created
<matr_xor_378$xor0000> created
<matr_xor_388x0or0000> created
<matr_xor_398$xor0000> created

<matr_xor-4$xor0000> created at

<matr_xor_-408xor0000> created
<matr_xor_418xor0000> created
<matr_xor_428$x0or0000> created
<matr-xor-43$xor0000> created
<matr_xor-448$xor0000> created
<matr_xor_45%8xo0r0000> created
<matr_xor_-46$xor0000> created
<matr_xor_47$xor0000> created
<matr_-xor-48%$xor0000> created
<matr_xor-498$xor0000> created

<matr_xor_-58xor0000> created at

<matr_xor_508x0or0000> created
<matr_xor_51$x0or0000> created
<matr_-xor-528$x0or0000> created
<matr_xor_-538$x0or0000> created

74

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at

at
at
at
at

line

line

line

line

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

line
line
line
line
line
line
line
line
line
line

line
line
line
line
line
line
line
line
line
line

line
line
line
line
line
line
line
line
line
line

line
line
line
line

5158.
5160.
5162.
5164.
5166.
5168.
5170.
5172.
5174.
4942.
5176.
5178.
5180.
5182.
5184.
5186.
5188.
5190.
5192.
5194.
4944.
5196.
5198.
5200.
5202.
5204.
5206.
5208.
5210.
5212.
5214.
4946.
5216.
5218.
5220.
5222.
5224.
5226.
5228.
5230.
5232.
5234.
4948.
4950.
4952.
4954.

4920.

4956.
4958.
4960.
4962.
4964.
4966.
4968.
4970.
4972.
4974.

4922.

4976.
4978.
4980.
4982.
4984.
4986.
4988.
4990.
4992.
4994.

4924.

4996.
4998.
5000.
5002.
5004.
5006.
5008.
5010.
5012.
5014.

4926.

5016.
5018.
5020.
5022.




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

register

register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register

1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
1-bit xor2
160—bit
5—Dbit
5—Dbit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—Dbit
5—Dbit
5—bit
5—bit
5—bit
5—Dbit
5—Dbit
5—bit
5—bit

register

signal <matr_xor_-548$xor0000>
signal <matr_xor_-558$xo0r0000>
signal <matr_xor_56$xor0000>
signal <matr_xor_57$xor0000>
signal <matr_xor_58$x0r0000>
signal <matr_xor_-598$xor0000>

created
created
created
created
created
created

signal <matr_xor_63xor0000> created

signal <matr_xor_60$xor0000>
signal <matr_xor_61$xor0000>
signal <matr_xor-62$xor0000>
signal <matr_xor_63$xor0000>
signal <matr_xor_-64$xor0000>
signal <matr_xor_65$xor0000>
signal <matr_xor_66$xor0000>
signal <matr_xor_-67$xor0000>
signal <matr_xor_68$xor0000>
signal <matr_xor_-69$xor0000>

created
created
created
created
created
created
created
created
created
created

signal <matr_xor_7$xor0000> created

signal <matr_xor_70$xor0000>
signal <matr_xor_-71$xor0000>
signal <matr_xor_-728$xor0000>
signal <matr_xor_-73$xor0000>
signal <matr_xor_74$xor0000>
signal <matr_xor_75$xor0000>
signal <matr_xor_-76$xor0000>
signal <matr_xor_77$xor0000>
signal <matr_xor_788%xor0000>
signal <matr_xor_79$xor0000>

created
created
created
created
created
created
created
created
created
created

signal <matr_xor_8$xor0000> created

signal <matr_xor_-808$xor0000>
signal <matr_xor-81$xor0000>
signal <matr_xor_-82$xor0000>
signal <matr_xor_83$xor0000>
signal <matr_xor_84$xor0000>
signal <matr_xor_-85$xor0000>
signal <matr_xor_86$xor0000>
signal <matr_xor_87$xor0000>
signal <matr_xor_88$xor0000>
signal <matr_xor-89$xor0000>

created
created
created
created
created
created
created
created
created
created

signal <matr_xor_-9$xor0000> created

signal <matr_xor_90$xor0000>
signal <matr_xor_-91$xor0000>
signal <matr_xor_-92$xor0000>
signal <matr_xor-93$xor0000>
signal <matr_xor_-94$xor0000>
signal <matr_xor-958$xor0000>
signal <matr_xor_-96$xor0000>
signal <matr_xor_97$xor0000>
signal <matr_xor-98$xor0000>
signal <matr_xor_-99$xor0000>
<register_x >.
<rom_001>.
<rom_002>.
<rom-003>.
<rom-004 >.
<rom_005>.
<rom_006 >.
<rom_007 >.
<rom-008 >.
<rom-009 >.
<rom_010>.
<rom_011>.
<rom_012>.
<rom-013>.
<rom._014>.
<rom_015>.
<rom_016 >.
<rom_017>.
<rom-018 >.
<rom-019 >.
<rom_020>.
<rom_021>.
<rom-022>.
<rom-023>.
<rom-_-024 >.
<rom_025>.
<rom_026 >.
<rom-027>.
<rom-028 >.
<rom-_-029 >.
<rom_030>.
<rom_031>.
<rom-032>.
<rom-033>.

for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal

for signal

75

created
created
created
created
created
created
created
created
created
created

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

5024.
5026.
5028.
5030.
5032.
5034.
4928.
5036.
5038.
5040.
5042.
5044.
5046.
5048.
5050.
5052.
5054.
4930.
5056.
5058.
5060.
5062.
5064.
5066.
5068.
5070.
5072.
5074.
4932.
5076.
5078.
5080.
5082.
5084.
5086.
5088.
5090.
5092.
5094.
4934.
5096.
5098.
5100.
5102.
5104.
5106.
5108.
5110.
5112.
5114.




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit

register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

<rom-034>.
<rom-_035>.
<rom_036 >.
<rom_037>.
<rom_038 >.
<rom-039 >.
<rom-_-040 >.
<rom_041>.
<rom_042>.
<rom-043>.
<rom._-044>.
<rom-_045 >.
<rom_046 >.
<rom_047 >.
<rom-048 >.
<rom._049 >.
<rom_050 >.
<rom._051>.
<rom_052>.
<rom-053>.
<rom._-054>.
<rom_055>.
<rom_056 >.
<rom_057 >.
<rom-058 >.
<rom-059 >.
<rom_060 >.
<rom_061>.
<rom_062>.
<rom-063>.
<rom._064>.
<rom_065>.
<rom_066 >.
<rom_067 >.
<rom-068 >.
<rom-_069 >.
<rom_070>.
<rom_071>.
<rom-072>.
<rom-073>.
<rom._074>.
<rom_075>.
<rom_076 >.
<rom-077>.
<rom-078>.
<rom_079 >.
<rom_080 >.
<rom_081>.
<rom-082>.
<rom._083>.
<rom._084>.
<rom_085>.
<rom_086 >.
<rom-087 >.
<rom-_088 >.
<rom_089 >.
<rom_090 >.
<rom_091>.
<rom-092>.
<rom-093>.
<rom_094 >.
<rom_095>.
<rom_096 >.
<rom-097 >.
<rom-_098 >.
<rom_099 >.
<rom-100>.
<rom_101>.
<rom-_102>.
<rom-103 >.
<rom_104>.
<rom-_105>.
<rom-106 >.
<rom-107>.
<rom-_-108 >.
<rom_109 >.
<rom-_110>.
<rom-111>.
<rom-_112>.
<rom-_-113>.
<rom_114>.
<rom_115>.
<rom-116>.
<rom-_117>.

76




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
5—Dbit
5—bit
5—bit
5—bit
5—bit
3—bit

160—bit

160—bit

1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit

register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register
register

comparator
register
160—bit xor2 for
register

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

less for

5—to—1 multiplexer
5—to—1 multiplexer
5—to—1 multiplexer
5—to—1 multiplexer
5—to—1 multiplexer

t
t
t
t
t
t
t

5
5—
5—
5—
5—
5—
5—
5—
5—t
5—
5—
5—
5—
5—
5—
5—
5—
5—
5—

o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—
o—

t
t
t
t
t
t
t
t
t
t

—to—1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer
1 multiplexer

<rom-118>.
<rom-_119 >.
<rom_120>.
<rom_121>.
<rom_122>.
<rom-_123>.
<rom-124 >.
<rom_125>.
<rom-_126 >.
<rom-127>.
<rom-128>.
<rom-_129 >.
<rom_130>.
<rom_131>.
<rom-132>.
<rom-_133>.
<rom-_134>.
<rom_135>.
<rom-_136 >.
<rom-137>.
<rom-_138 >.
<rom_139 >.
<rom_140>.
<rom_141>.
<rom-_142>.
<rom-143>.
<rom._144>.
<rom_145>.
<rom_146>.
<rom-_147>.
<rom-_148 >.
<rom._149>.
<rom-_150>.
<rom_151>.
<rom-152>.
<rom-153 >.
<rom_154>.
<rom-_155>.
<rom-156 >.
<rom-_157>.
<rom-_-158 >.
<rom_159 >.
<rom-_160>.
signal <state$cmp-1t0000> created at
for signal <sync_xor >.

signal <sync_xor$xor0000> created at
for signal <tmp>.

for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal
for signal

<tmp_-0$mux0000> created at
<tmp-1$mux0000> created at

line 5252.

<tmp-10$mux0000> created at

<tmp-100$mux0000>
<tmp-101$mux0000>
<tmp-102$mux0000>
<tmp-103$mux0000>
<tmp-104$mux0000>
<tmp-105$mux0000>
<tmp-106$mux0000>
<tmp-107$mux0000>
<tmp-108$mux0000>
<tmp-109$mux0000>

created
created
created
created
created
created
created
created
created
created

<tmp-11$mux0000> created

<tmp-110$mux0000>
<tmp-111$mux0000>
<tmp-112$mux0000>
<tmp-113$mux0000>
<tmp-114$mux0000>
<tmp-115$mux0000>
<tmp-116$mux0000>
<tmp-117$mux0000>
<tmp-1188$mux0000>
<tmp-119$mux0000>

created
created
created
created
created
created
created
created
created
created

<tmp_-128mux0000> created

<tmp-120$mux0000>
<tmp-121$mux0000>
<tmp-1228mux0000>
<tmp-123$mux0000>
<tmp-124$mux0000>
<tmp-1258$mux0000>
<tmp-126$mux0000>
<tmp-127$mux0000>
<tmp-128$mux0000>
<tmp-129$mux0000>

created
created
created
created
created
created
created
created
created
created

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

<tmp-13$mux0000> created at
<tmp-130$mux0000> created at

77

line

line
line

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

5441.

4915.
4917.
4935.

5115.
5117.
5119.
5121.
5123.
5125.
5127.
5129.
5131.
5133.

4937.

5135.
5137.
5139.
5141.
5143.
5145.
5147.
5149.
5151.
5153.

4939.

5155.
5157.
5159.
5161.
5163.
5165.
5167.
5169.
5171.
5173.

4941.

5175.




Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found
Found

1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1—-bit
1—-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit
1-bit

multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer
multiplexer

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

<tmp-131$mux0000> created
<tmp-1328mux0000> created
<tmp-133$mux0000> created
<tmp-134$mux0000> created
<tmp-135$mux0000> created
<tmp-136$mux0000> created
<tmp-137$mux0000> created
<tmp-138$mux0000> created
<tmp-139$mux0000> created
<tmp-148mux0000> created

<tmp-140$mux0000> created
<tmp-141$mux0000> created
<tmp-142$mux0000> created
<tmp-143$mux0000> created
<tmp-144$mux0000> created
<tmp-1458$mux0000> created
<tmp-146$mux0000> created
<tmp-147$mux0000> created
<tmp-148$mux0000> created
<tmp-149$mux0000> created
<tmp-15$mux0000> created

<tmp-1508mux0000> created
<tmp-151$mux0000> created
<tmp-152$mux0000> created
<tmp-153$mux0000> created
<tmp-154$mux0000> created
<tmp-1558$mux0000> created
<tmp-156$mux0000> created
<tmp_-157$mux0000> created
<tmp-1588$mux0000> created
<tmp-1598mux0000> created
<tmp-16$mux0000> created

<tmp_-17$mux0000> created

<tmp_18$mux0000> created

<tmp-198mux0000> created

<tmp-2$mux0000> created at

<tmp-20$mux0000> created
<tmp-21$mux0000> created
<tmp-228mux0000> created
<tmp-23$mux0000> created
<tmp-24$mux0000> created
<tmp-25$mux0000> created
<tmp_-268mux0000> created
<tmp-278mux0000> created
<tmp-28$mux0000> created
<tmp-29$mux0000> created

<tmp-3$mux0000> created at

<tmp_-30$mux0000> created
<tmp-318mux0000> created
<tmp-328mux0000> created
<tmp-33$mux0000> created
<tmp-34$mux0000> created
<tmp_-358mux0000> created
<tmp-368mux0000> created
<tmp-37$mux0000> created
<tmp-38$mux0000> created
<tmp-39$mux0000> created

<tmp_-43mux0000> created at

<tmp-408mux0000> created
<tmp-41$mux0000> created
<tmp-428mux0000> created
<tmp_-43$mux0000> created
<tmp_-448$mux0000> created
<tmp-458mux0000> created
<tmp-46$mux0000> created
<tmp_-47$mux0000> created
<tmp_-483mux0000> created
<tmp_-498$mux0000> created

<tmp-5$mux0000> created at

<tmp-50$mux0000> created
<tmp-51$mux0000> created
<tmp_528mux0000> created
<tmp-53$mux0000> created
<tmp-54$mux0000> created
<tmp-558mux0000> created
<tmp_-56$mux0000> created
<tmp_578$mux0000> created
<tmp-588mux0000> created
<tmp-59$mux0000> created

<tmp_-63mux0000> created at

<tmp_-60$mux0000> created
<tmp_618$mux0000> created
<tmp-628mux0000> created
<tmp-63$mux0000> created

78

at line 5177.
at line 5179.
at line 5181.
at line 5183.
at line 5185.
at line 5187.
at line 5189.
at line 5191.
at line 5193.
at line 4943.
at line 5195.
at line 5197.
at line 5199.
at line 5201.
at line 5203.
at line 5205.
at line 5207.
at line 52009.
at line 5211.
at line 5213.
at line 4945.
at line 5215.
at line 5217.
at line 5219.
at line 5221.
at line 5223.
at line 5225.
at line 5227.
at line 5229.
at line 5231.
at line 5233.
at line 4947.
at line 4949.
at line 4951.
at line 4953.
line 4919.
at line 4955.
at line 4957.
at line 4959.
at line 4961.
at line 4963.
at line 4965.
at line 4967.
at line 4969.
at line 4971.
at line 4973.
line 4921.
at line 4975.
at line 4977.
at line 4979.
at line 4981.
at line 4983.
at line 4985.
at line 4987.
at line 4989.
at line 4991.
at line 4993.
line 4923.
at line 4995.
at line 4997.
at line 4999.
at line 5001.
at line 5003.
at line 5005.
at line 5007.
at line 5009.
at line 5011.
at line 5013.
line 4925.
at line 5015.
at line 5017.
at line 5019.
at line 5021.
at line 5023.
at line 5025.
at line 5027.
at line 5029.
at line 5031.
at line 5033.
line 4927.
at line 5035.
at line 5037.
at line 5039.
at line 5041.




Found 1—bit 5—to—1 multiplexer for signal <tmp_-64$mux0000> created at line 5043.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-658$mux0000> created at line 5045.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-66$mux0000> created at line 5047.
Found 1—bit 5—to—1 multiplexer for signal <tmp_67$mux0000> created at line 5049.
Found 1—-bit 5—to—1 multiplexer for signal <tmp_68$mux0000> created at line 5051.
Found 1—bit 5—to—1 multiplexer for signal <tmp-69$mux0000> created at line 5053.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-7$mux0000> created at line 4929.

Found 1—bit 5—to—1 multiplexer for signal <tmp_-70$mux0000> created at line 5055.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-71$mux0000> created at line 5057.

5
Found 1—bit 5—to—1 multiplexer for signal <tmp-72$mux0000> created at line 5059.
Found 1—bit 5—to—1 multiplexer for signal <tmp-73$mux0000> created at line 5061.
Found 1—bit 5—to—1 multiplexer for signal <tmp-74$mux0000> created at line 5063.
Found 1—bit 5—to—1 multiplexer for signal <tmp_758$mux0000> created at line 5065.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-76$mux0000> created at line 5067.
Found 1—bit 5—to—1 multiplexer for signal <tmp-77$mux0000> created at line 5069.
Found 1—bit 5—to—1 multiplexer for signal <tmp-788mux0000> created at line 5071.
Found 1—bit 5—to—1 multiplexer for signal <tmp-798$mux0000> created at line 5073.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-83mux0000> created at line 4931.
Found 1—-bit 5—to—1 multiplexer for signal <tmp_-80$mux0000> created at line 5075.
Found 1—bit 5—to—1 multiplexer for signal <tmp-81$mux0000> created at line 5077.
Found 1—bit 5—to—1 multiplexer for signal <tmp-828mux0000> created at line 5079.
Found 1—bit 5—to—1 multiplexer for signal <tmp-83%$mux0000> created at line 5081.
Found 1—bit 5—to—1 multiplexer for signal <tmp_84$mux0000> created at line 5083.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-85$mux0000> created at line 5085.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-86$mux0000> created at line 5087.
Found 1—bit 5—to—1 multiplexer for signal <tmp-878$mux0000> created at line 5089.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-88%$mux0000> created at line 5091.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-898$mux0000> created at line 5093.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-9$mux0000> created at line 4933.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-90$mux0000> created at line 5095.
Found 1—bit 5—to—1 multiplexer for signal <tmp-91$mux0000> created at line 5097.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-928$mux0000> created at line 5099.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-93$mux0000> created at line 5101.
Found 1—-bit 5—to—1 multiplexer for signal <tmp_-94$mux0000> created at line 5103.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-95$mux0000> created at line 5105.
Found 1—bit 5—to—1 multiplexer for signal <tmp-968$mux0000> created at line 5107.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-97$mux0000> created at line 5109.
Found 1—bit 5—to—1 multiplexer for signal <tmp_-98$mux0000> created at line 5111.
Found 1—-bit 5—to—1 multiplexer for signal <tmp-99$mux0000> created at line 5113.
Summary :

inferred 1 Finite State Machine(s).

inferred 2405 D-type flip—flop(s).
inferred 1 Adder/Subtractor(s).
inferred 1 Comparator(s).
inferred 160 Multiplexer(s).

Unit <private_matrix_s> synthesized.

Synthesizing Unit <master_rom >.
Related source file is ”/home/stig/Documents/ttm4900/ mqq-final/VHDL/master_rom.vhd” .
WARNING: Xst:646 — Signal <cnt> is assigned but never used. This unconnected signal will
during the optimization process.
Found 5—bit register for signal <db>.
Found 3—bit register for signal <ctrl >.
Found 5—bit comparator less for signal <ctrl-0$3cmp-1t0000> created at line 3239.
Found 1—bit 8—to—1 multiplexer for signal <db_0$mux0001> created at line 49.
Found 1—bit 8-to—1 multiplexer for signal <db_1$mux0001> created at line 49.
Found 1—bit 8—to—1 multiplexer for signal <db_-28$mux0001> created at line 49.
Found 1—bit 8—to—1 multiplexer for signal <db_3$mux0001> created at line 49.
Found 1—bit 8—to—1 multiplexer for signal <db_-4$mux0001> created at line 49.

Summary :
inferred 8 D-type flip—flop(s).
inferred 1 Comparator(s).
inferred 5 Multiplexer(s).

Unit <master_.rom> synthesized .

Synthesizing Unit <sequencer >.
Related source file is ”/home/stig/Documents/ttm4900/ mqq-final /VHDL/sequencer.vhd”.
Found finite state machine <FSM.1> for signal <state >.

| States |7 |
| Transitions |9 |
| Inputs | 2 |
| Outputs | 14 |
| Clock | clk (rising_edge) |
| Clock enable | en_in (positive) |
| Reset | reset (positive) |
| Reset type | synchronous |
| Reset State | idle |
| Power Up State | idle |
| Encoding | automatic |
| Implementation | LUT |

79

be trimmed




Found 32x1—bit ROM for signal <en_out-mux3mux0000> created at line 204.
Found 1—bit register for signal <en_out >.
Found 160—bit register for signal <output_seq >.
Found 5—bit up counter for signal <counter_1>.
Found 5—bit register for signal <counter_2 >.
Found 5—bit adder for signal <counter-28addsub0000> created at line 307.
Found 5—bit comparator less for signal <counter_-28cmp-1t0000> created at line
Found 1—-bit register for signal <en_out_mux >.
Found 5—bit register for signal <Mtridata.mux3l_out> created at line 139.
Found 1—bit register for signal <Mtrien.mux3l_out> created at line 139.
Found 5—bit register for signal <mux2_out>.
Found 5—bit tristate buffer for signal <mux3l_out>.
Found 160—bit register for signal <reg_in >.
Found 160—bit register for signal <reg_out >.
Found 1—bit register for signal <sel >.
Found 5—bit register for signal <sync_mr>.
Found 10—bit register for signal <to_master >.
Summary :
inferred 1 Finite State Machine(s).
inferred 1 ROM(s) .
inferred 1 Counter(s).
inferred 514 D-type flip—flop(s).
inferred 1 Adder/Subtractor(s).
inferred 1 Comparator(s).

inferred 5 Tristate(s).

Unit <sequencer> synthesized .

Synthesizing Unit <decryption >.
Related file is
Found finite state machine <FSM_.2> for signal <state >.

source

| States | 10

| Transitions | 15

| Inputs | 5

| Outputs | 14

| Clock | clk (rising_edge)
| Clock enable | en_in (positive)
| Reset | reset (positive)
| Reset type | synchronous

| Reset State | idle

| Power Up State | idle

| Encoding | automatic

| Implementation | LUT

Found 160—bit register for signal <outputs >.
Found 5—bit up counter for signal <count._s >.
Found 5—bit register for signal <count_t >.
Found 5—bit adder for signal <count_-t$addsub0000> created at line 212.
Found 160—bit register for signal <dec_output >.
Found 13—bit register for signal <dob_vector_in >.
Found 1—bit register for signal <en_in_dob >.
Found 1—bit register for signal <en_in_pm_s >.
Found 1—bit register for signal <en_in_pm-_t >.
Found 1—bit register for signal <en_in_seq >.
Found 160—bit register for signal <seq-in >.
Found 5—bit register for signal <shift_pms >.
Found 5x3—bit multiplier for signal <shift_pms$mult0000> created at line 267.
Found 5—bit register for signal <shift_pmt >.
Found 5x3—bit multiplier for signal <shift.pmt$mult0000> created at line 210.
Summary :
inferred 1 Finite State Machine(s).
inferred 1 Counter(s).
inferred 512 D-type flip—flop(s).
inferred 1 Adder/Subtractor(s).

inferred 2 Multiplier(s).
Unit <decryption> synthesized.

HDL Synthesis Report
Macro Statistics

# ROMs

32x1—bit ROM

# Multipliers
5x3—bit multiplier
# Adders/Subtractors
3—bit adder

5—bit adder

# Counters

5—bit up counter

# Registers

1-bit register

NN N B NN ==

w N
o
—_
oo

2617

80

306.

” /home/stig /Documents/ttm4900/ mqq-final /VHDL/decryption.vhd” .




160—bit register : 8
3—bit register : 2
5—bit register 0 391
# Comparators 4
3—bit comparator less : 2
5—bit comparator less : 2
# Multiplexers : 325
1-bit 5—to—1 multiplexer : 320
1-bit 8-to—1 multiplexer : 5
# Tristates HE
5—bit tristate buffer 1
# Xors 322
1-bit xor2 : 320
160—bit xor2 : 2
* Advanced HDL Synthesis *

Analyzing FSM <FSM_2> for best encoding.
Optimizing FSM <state /FSM> on signal <state[l:4] > with sequential encoding.

State | Encoding
idle 0000
send_to_pm_t 0001
recv_from_pm_t 0010
send_to_-dob 0011

\
\
\
\
recv_from_-dob | 0100
\
\
\
\
\

send_to_seq 0101
recv_from_seq 0110
send_to_pm_s 0111
recv_-from_pm_s 1000
send 1001

Analyzing FSM <FSM_1> for best encoding.
Optimizing FSM <SEQ/state /FSM> on signal <state[l1:3] > with gray encoding.

State | Encoding
idle | 000
mux2_sel | o001
send_to_master | 111
recv_mr | 110
mux31_sel | 011
sync | 010
push | 101

Analyzing FSM <FSM_0> for best encoding.
Optimizing FSM <PM.T/state /FSM> on signal <state[1:3] > with gray encoding.
Optimizing FSM <PM_S/state /FSM> on signal <state[1:3] > with gray encoding.

State | Encoding
idle | 000
andop | 001
xoring | 011
sync | 010
push_out | 110

Loading device for application Rf_Device from file ’5vlx110t.nph’ in environment /opt/Xilinx/10.1/ISE.

Synthesizing (advanced) Unit <decryption >.
Found pipelined multiplier on signal <shift_pmt_mult0000 >:

— 1 pipeline level(s) found in a register on signal <count_t>.
Pushing register(s) into the multiplier macro.

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance of the multiplier
Mmult_shift_pms_mult0000 by adding 2 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance of the multiplier
Mmult_shift_pmt_-mult0000 by adding 2 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance of the multiplier
Mmult_shift_.pms_mult0000 by adding 2 register level(s).

Unit <decryption> synthesized (advanced).

Synthesizing (advanced) Unit <sequencer >.

INFO: Xst — In order to maximize performance and save block RAM resources, the small ROM <
Mrom_en_out-mux-mux0000> will be implemented on LUT. If you want to force its implementation on
block, use option/constraint rom-_style.

Unit <sequencer> synthesized (advanced).

Advanced HDL Synthesis Report

81




Macro Statistics

# ROMs 1

32x1—bit ROM 1

# Multipliers 2

5x3—bit multiplier 1

5x3—bit registered multiplier 1

# Adders/Subtractors 4

3—bit adder 2

5—bit adder 2

# Counters 2

5—bit up counter 2

# Registers 5871

Flip—Flops 5871

# Comparators 4

3—bit comparator less 2

5—bit comparator less 2

# Multiplexers 325

1-bit 5—to—1 multiplexer 320

1-bit 8-to—1 multiplexer : 5

# Xors 322

1-bit xor2 ;320

160—bit xor2 2

* Low Level Synthesis *

INFO:Xst:2261 — The FF/Latch <count_-t_-3> in Unit <decryption> is equivalent to the
which will be removed <Mmult_shift . pmt_mult0000_-1>

INFO:Xst:2261 — The FF/Latch <count-t-4> in Unit <decryption> is equivalent to the
which will be removed <Mmult_shift_.pmt-mult0000-0>

INFO:Xst:2261 — The FF/Latch <count_-t_-0> in Unit <decryption> is equivalent to the
which will be removed <Mmult_shift_.pmt_-mult0000-4>

INFO: Xst:2261 — The FF/Latch <count_-t-1> in Unit <decryption> is equivalent to the
which will be removed <Mmult_shift_.pmt_-mult0000-3>

INFO:Xst:2261 — The FF/Latch <count_-t_-2> in Unit <decryption> is equivalent to the
which will be removed <Mmult_shift_.pmt_-mult0000-2>

WARNING: Xst:2042 — Unit sequencer: 5 internal tristates are replaced by logic

<0>, mux3l_out<1l>, mux3l_out<2>, mux3l_out<3>,
Optimizing unit <decryption>
Optimizing unit <dobbertin_.rom>

Optimizing unit <private_matrix_s>

WARNING: Xst:1293 — FF/Latch <count_xor_-2> has a constant value of 0

FF/Latch will be trimmed during the optimization process.

mux31l_out <4>.

following
following
following
following

following

(pull—up yes):

FF/Latch ,
FF/Latch ,
FF/Latch ,
FF/Latch ,
FF/Latch ,

mux31l_out

in block <private_matrix_s >. This

WARNING: Xst:1293 — FF/Latch <count_xor_2> has a constant value of 0 in block <private_matrix_s >. This

FF/Latch will be trimmed during the optimization process.

Optimizing unit <master_rom>
Optimizing unit <sequencer>

Mapping all equations ...
Building and optimizing final netlist .
ratio of 100 (+ 5) on block decryption ,

Found area constraint

actual ratio is 18.

FlipFlop dob_vector-in_-12 has been replicated 1 time(s)
FlipFlop dob_vector_in_3 has been replicated 1 time(s)
FlipFlop dob_vector_in_4 has been replicated 10 time(s)
FlipFlop dob_vector_in_5 has been replicated 12 time(s)
FlipFlop dob_vector_in_6 has been replicated 9 time(s)
FlipFlop dob_vector_-in_7 has been replicated 10 time(s)
FlipFlop dob_vector_-in_8 has been replicated 9 time(s)
FlipFlop dob_vector_in_-9 has been replicated 6 time(s)

Final Macro Processing

Final Register Report

Macro Statistics

# Registers 5937
Flip—Flops 5937
* Partition Report

Partition Implementation Status

82




No Partitions were found in this design.

* Final Report

Final Results

RTL Top Level Output File Name : decryption.ngr
Top Level Output File Name : decryption
Output Format : NGC
Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics
# 10s . 324

Cell Usage

# BELS : 10493
# GND sl

# INV ;3

# LUT1 .4

# LUT2 ;1848
# LUT3 : 501
# LUT4 : 412
# LUT5 . 1443
# LUT6 : 5739
# MUXCY : 10
# MUXF7 : 518
# MUXFS .3

# vCC 1

# XORCY : 10
# FlipFlops/Latches : 5937
# FDE 161
# FDR sl

# FDRE . 5775
# Clock Buffers 2

# BUFG sl

# BUFGP sl

# IO Buffers ;323
# IBUF . 162
# OBUF ¢ 161

Device utilization summary:

Selected Device : 5vlx110tff1136 —1

Slice Logic Utilization:

Number of Slice Registers: 5937 out of 69120
Number of Slice LUTs: 9950 out of 69120
Number used as Logic: 9950 out of 69120

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 11463

Number with an unused Flip Flop: 5526 out of 11463
Number with an unused LUT: 1513 out of 11463
Number of fully used LUT-FF pairs: 4424 out of 11463
Number of unique control sets: 64

IO Utilization:
Number of IOs: 324
Number of bonded IOBs: 324 out of 640

Specific Feature Utilization:
Number of BUFG/BUFGCTRLs: 2 out of 32

Partition Resource Summary:

No Partitions were found in this design.

8%
14%
14%

48%

13%

38%

50%

6%

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT

GENERATED AFTER PLACE-and-ROUTE.

83




Clock Information:

1 4 +
Clock Signal | Clock buffer (FF name) | Load |
" y
1
clk | BUFGP | 5937 |
1 f +
Asynchronous Control Signals Information:
No asynchronous control signals found in this design
Timing Summary :
Speed Grade: —1
Minimum period: 4.974ns (Maximum Frequency: 201.045MHz)
Minimum input arrival time before clock: 4.204ns
Maximum output required time after clock: 3.259ns
Maximum combinational path delay: No path found
Timing Detail:
All values displayed in nanoseconds (ns)
Timing constraint: Default period analysis for Clock ’clk’

Clock period: 4.974ns (frequency:

201.045MHz)

Total number of paths / destination ports: 102627 / 11860
Delay : 4.974ns (Levels of Logic = 6)
Source: dob_vector_in_8_5 (FF)

Destination:
Source Clock:
Destination Clock:

DR/db_2 (FF)
clk rising
clk rising

Data Path: dob_vector_in_8_5 to DR/db_2
Gate Net
Cell:in—>out fanout Delay Delay Logical Name (Net Name)
FDRE: C—>Q 12 0.471 1.033 dob_vector_.in_8_.5 (dob_vector_in_8_.5)
LUT5:10—>0 2 0.094 0.581 DR/db_2_0r0000891 (DR/db_-2_0r0000-bdd170)
LUT5:13—>0 1 0.094 0.789 DR/db-2_.0r0000113148 (DR/db-2_0r0000113148)
LUT5:11—>0 1 0.094 0.480 DR/db-2_.0r0000113328 (DR/db-2_0r0000113328)
LUT6: 15 —>0 1 0.094 0.480 DR/db_-2_.0r0000113389 (DR/db_-2_0r0000113389)
LUT6: 15 —>0 1 0.094 0.576 DR/db_-2_0r0000113402 (DR/db_-2_0r0000113402)
LUT6:14—>0 1 0.094 0.000 DR/db_2_.0r0000126880 (DR/db_2_0r0000)
FDRE:D —0.018 DR/db_2
Total 4.974ns (1.035ns logic, 3.939ns route)
(20.8% logic, 79.2% route)
Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 1062 / 907
Offset: 4.204ns (Levels of Logic = 5)
Source: inputs <100> (PAD)
Destination : shift_.pmt_0 (FF)
Destination Clock: clk rising
Data Path: inputs<100> to shift_pmt_0
Gate Net
Cell :in—>out fanout Delay Delay Logical Name (Net Name)
IBUF:I—>0 1 0.818 0.576 inputs_.100_.IBUF (inputs_.100_.IBUF)
LUT2:10—>0 1 0.094 1.069 shift_pmt_mux0001 <0>1414_SW1 (N1367)
LUT6:10—>0 1 0.094 0.789 shift_pmt_mux0001 <0>1414 (shift_pmt_-mux0001 <0>1414)
LUT6: 12—>0 1 0.094 0.576 shift_pmt_mux0001 <0>1620 (shift_pmt_-mux0001 <0>1620)
LUT6: 14 —>0 1 0.094 0.000 shift_pmt_mux0001 <0>11355 (shift_pmt_mux0001<0>)
FDRE:D —0.018 shift_pmt_0
Total 4.204ns (1.194ns logic, 3.010ns route)
(28.4% logic, 71.6% route)
Timing constraint: Default OFFSET OUT AFTER for Clock ’clk’
Total number of paths / destination ports: 160 / 160
Offset : 3.259ns (Levels of Logic = 1)
Source: outputs_159 (FF)

Destination :
Source Clock:

outputs <159> (PAD)
clk rising

84




Data Path: outputs-159 to outputs<159>
Gate Net
Cell :in—>out fanout Delay Delay Logical Name (Net Name)
FDRE: C—>Q 1 0.471 0.336 outputs_-159 (outputs-159)
OBUF: I—>0 2.452 outputs_.159_OBUF (outputs <159>)
Total 3.259ns (2.923ns logic, 0.336ns route)
(89.7% logic, 10.3% route)
Total REAL time to Xst completion: 19145.00 secs
Total CPU time to Xst completion: 19061.31 secs

—

Total memory usage
Number of errors
Number of warnings

Number of infos

is 1005084 kilobytes

0 (
4 (
14 (

0 filtered)
0 filtered)
0 filtered)

85




	Title Page
	Problem Description
	Introduction
	Theory
	MQQ in general
	Logic optimization through minimization
	Minimization with Karnaugh maps
	ESPRESSO-II minimization algorithm


	Hardware implementation of MQQ
	Hardware implementations in general
	The actual implementation
	Encryption
	Decryption

	Data and keys
	Optimizing the stored fixed values

	Results
	Synthesis
	Verification of functionality through simulation
	Encryption
	Decryption


	Discussion and conclusion
	Discussion
	Synthesis
	Design behaviour simulation and verification

	Conclusion
	Future work
	Contributors

	Abbrevations
	VHDL source code
	Encryption
	Decryption

	Espresso minimization
	Synthesis report from Decryption

