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Abstract

Coupling commodity CPUs and modern GPUs give you heterogeneous systems that
are cheap, high-performance with incredible FLOPS counts. Recent evolution of
GPGPU models and technologies make these systems even more appealing as com-
pute devices for a range of HPC applications including image processing, seismic
processing and other physical modeling, as well as linear programming applications.
In fact, graphics vendor such as NVIDIA and AMD are now targeting HPC with
some of their products. Due to the power and frequency walls, the trend is now
to use multiple GPUs on a given system, much like you will find multiple cores on
CPU-based systems. However, increasing the hierarchy of resource wides the spec-
trum of factors that may impact on the performance of the system.

The lack of good models for GPU-based, heterogeneous systems also makes it
harder to understand which factors impact performance the most. The goal of this
thesis is to analyze such factors by investigating and benchmarking NVIDIA’s multi-
GPU solution, their recent NVIDIA Tesla S1070 Computing System. This system
combines four T10 GPUs making available up to 4 TFLOPS of computational power.
Based on a comparative study of fundamental parallel computing models and on the
specific heterogeneous features exposed by the system, we define a test space for per-
formance analysis. As a case study, we develop a red-black, SOR PDE solver for
Laplace equations with Dirichlet boundaries, well known for requiring constant com-
munication in order to exchange neighboring data. To aid both design and analysis,
we propose a model for multi-GPU systems targeting communication between the
several GPUs.

The main variables exposed by the benchmark application are: domain size and
shape, kind of data partitioning, number of GPUs, width of the borders to exchange,
kernels to use, and kind of synchronization between the GPU contexts. Among other
results, the framework is able to point out the most critical bounds of the S1070
system when dealing with applications like the one in our case study. We show that
the multi-GPU system greatly benefits from using all its four GPUs on very large
data volumes. Our results show the four GPUs almost four times faster than a single
GPU, and twice as fast as two. Our analysis outcomes also allow us to refine our
static communication model, enriching it with regression-based predictions.
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Chapter 1

Introduction

The strong interest of the scientific community in developing computational science
applications that utilize graphics hardware, has favored a new trend in GPU ar-
chitecture development. During the current decade, many of the most important
manufacturers have thus introduced new product lines targeting scientific computa-
tion. In the course of few years, we reached the point where off-the-shelf workstations
can combine multicore CPUs and graphics hardware providing performance results
comparable to those of some supercomputers in the recent past.

It has been shown that the performance obtained by recent GPUs can get very
close to the performance shown by the slowest Top-500 supercomputer only four
years ago and the fastest one around 10 years ago. To be convinced, we may just
take a look at the two graphs in Figure 1.1 and 1.2. The first one shows the per-

Figure 1.1 – GPU performance trend. (With permission from NVIDIA)

formance trend of GPUs during the present decade. The second one performance
trends of the first and last supercomputer in the Top500 list within a larger period.
We notice how the performance obtained by recent GPUs can get very close to the
performance shown by the slowest supercomputer four years ago and the fastest one
around 10 years ago.

Recent evolution of GPGPU models and technologies make these system even
more appealing as compute devices for a range of HPC applications including image

1



2 Chapter 1. Introduction

processing, seismic processing and other physical modeling as well as linear pro-
gramming applications [27].

If providing a computing node with a GPU accelerator can improve performance,
even better results should be achievable using more the one GPU per CPU. Multi-
GPU systems increase resources and computing capabilities per node, offering the
opportunity to leverage even more speed. An example of a recent multi-GPU sys-
tem is the NVIDIA Tesla S1070 Computing System, which combine several GPUs
to make available up to 4 TFLOPS.

However, increasing the hierarchy of resources issues new challenges to the de-
velopers, widening the spectrum of factors that may impact on the performance of
a multi-GPU system.

Figure 1.2 – Performance trends in the top500 list. (With permission from
top500.org)

1.1 Thesis Goal

The absence of specific models for GPU-based, heterogeneous systems makes it
harder to understand what factors are the most in influential in improving or wors-
ening performance. The aim of this work is to investigate such factors in the specific
context of the NVIDIA multi-GPU solution, the Tesla S1070 platform. Aside from
the intrinsic issues caused by graphics technologies, we will also consider some im-
portant models of parallel systems in order to identify some common properties that
can help us in our study. Communication is always a relevant aspect when dealing
with distributed resources. By designing a benchmark framework around the SOR
PDE solver, an applications that constantly requires inter-GPU communication, we
are able to develop better a multi GPU model.
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1.2 Outline

Chapter 2 presents the technological background, introducing the recent GPU
technologies that will support our study. We will focus on NVIDIA’s recent
technologies, describing in particular the Tesla architecture processing model,
the CUDA programming model, and multi-GPU programming.

Chapter 3 discusses parallel models. It analyzes the shared-memory and the message-
passing models considering possible analogies with multi-GPU systems. These
systems are then analyzed in order to point out the main challenges issued by
the GPU programming model.

Chapter 4 contains the mathematical background necessary to understand the dif-
ferential equation solver selected as the benchmark application.

Chapter 5 describes the benchmark test space, which dimensions are related to fac-
tors that may impact on performance. The chapter then presents the bench-
mark application. It highlights the most important decisions at design and
implementation level.

Chapter 6 shows and discusses the results obtained running the benchmark. Re-
sults are collected using different test configurations to analyze how these dif-
ferent configurations impact the performance of the multi-GPU system used
in our experiments.

Chapter 7 summarizes the project conclusions and suggests some future work di-
rections.
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Chapter 2

Multi-GPU Computing

Graphics hardware is now about forty years old. It was initially developed to sup-
port compute-intensive applications such as computer-aided design (CAD) and flight
simulation [4]. The last generation of graphics processing units (GPUs) consists of
highly parallel, multithreaded, manycore processors. Their large number of stream-
ing processors are well suited for fine-grained, data-parallel workloads, consisting of
thousands of independent threads operating concurrently.

Since late 70s, an always larger number of numerical applications are supported
by graphics hardware, showing promising results in different scientific fields, such as
linear algebra, data compression, database management, and financial services [4,
25, 6, 15]. Normally, when referring to such non-graphics employments of the GPU,
it is typical to use the expression general purpose computation on GPUs, or shortly
GPGPU1. However, the concept of general purpose programming applied to a GPU
cannot be confused with the one associated to a normal CPU. Owens et al. [25]
gives a concise description of the characteristics that an application must feature to
successfully map onto a GPU. In particular, it has to be an application with large
computational requirements and highly parallelizable, where the throughput is more
important than latency.

In the following sections we will give an insight into the processing and program-
ming models exposed by these recent technologies.

2.1 The NVIDIA Tesla Computing Architecture

NVIDIA Corporation2 is currently one of the world’s leading manufacturers of graph-
ics technologies. NVIDIA releases GPUs targeting the most computation demanding
fields, such as gaming, professional graphics processing, and high performance com-
puting.

Since November 2006, NVIDIA’s GPUs are based on the Tesla unified graph-
ics and compute architecture, and since February 2007 they are provided with the

1http://www.gpgpu.org
2http://www.nvidia.com

5

http://www.gpgpu.org
http://www.nvidia.com


6 Chapter 2. Multi-GPU Computing

CUDA programming environment to simplify many-core programming. In the offi-
cial programming guide [23] the NVIDIA Tesla architecture is briefly but completely
described in the following way: a set of SIMT multiprocessors with on-chip shared
memory. To understand the Tesla’s processing model, let us deepen the concepts
contained into the previous definition.

2.1.1 Streaming Multiprocessors

The Tesla architecture is built around a scalable array of multithreaded stream-
ing multiprocessors (SMs). A multiprocessor consists of eight scalar processors
(SPs), two special function units for transcendentals, a multithreaded instruction
unit (MIU), and on-chip memory. A SM creates, manages, and executes concurrent
threads in hardware with zero scheduling overhead. This is an important factor to
allow very fine-grained decomposition of problems by assigning, for instance, one
thread to each data element.

2.1.2 GPU Memories

On a GPU we can localize two distinct kinds of memories: on-chip and device
memory. With on-chip memory, we refer to:

• A set of 32-bit registers per SP;

• A parallel scratchpad memory, better known as shared memory, per SM. Ac-
cess times to shared memory are comparable to a L1-cache on a traditional
CPU;

• A read-only constant cache shared by all the SPs used to speed up reads from
the constant area in device memory;

• A read-only texture cache shared by all the SPs used to speed up reads from
the texture region in device memory.

Device memory is a high-speed DRAM memory with higher latency and larger
dimension than on-chip memory (typically hundreds of times slower and million
times larger). Device memory is subdivided in four regions:

• a read-write, non-cached global area;

• a read-write, non-cached local area;

• a read-only, cached constant area;

• a read-only, cached texture area.

A couple of comments concerning the memory terminology. Device and global mem-
ory are, at this point, clearly not synonyms. Global implies the access pattern to
that specific area and it is part of the device memory of the GPU. Similarly, local
and shared memory are not the same concept. Local memory is part of the device
memory (slow) while shared memory is on-chip (fast). Local memory is used by the
compiler to keep anything the developer considers local to a thread but, that for
some reason, does not fit into the registers of the SP where the thread is executed
(e.g. large structures that would consume too many registers).
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2.1.3 The SIMT Paradigm

The single instruction, multiple threads (SIMT) paradigm is a new paradigm intro-
duced to manage properly the big amount of threads executable on a Tesla-based
GPU. A key difference between the SIMT and the SIMD paradigm is in that a SIMT
architecture has no vector width, and a single instruction is issued for and executed
by multiple processing elements, supporting full utilization of the cores every time.
In contrast, SIMD architectures operate at a reduced capacity when the input size
is smaller than the vector dimension.

Threads are grouped in warps and mapped to the SPs. One thread is mapped
to one SP. Warps are created, managed, and scheduled by the MIU. The number of
threads per warp is normally a multiple of the number of SPs. Threads that belong
to the same warp start together at the same program address, maintaining a total
freedom to branch and execute independently.

Every instruction issue time, the MIU selects a warp that is ready to execute
and issues the next instruction to the active threads of the warp. A warp executes
one common instruction at a time, so full efficiency is realized when all threads of a
warp agree on their execution path. However, threads are free to execute differently,
but when this happens, performance risks to be seriously injured. The reason is
that disagreements on the control flow force the threads’ scheduler to serialize their
execution. Once taken all the independent paths, the threads converge back to
the next common step in the execution path. Of course, since warps are executed
independently, serialization is a problem that might occur just for threads of the
same warp. Branch divergences are not the only reason that may lead to threads
serialization. If an instruction executed by a warp, regardless of its atomicity, writes
to the same location in shared memory for more than one thread in the warp, writes
are also serialized. This side effect is called bank conflict. More details about it are
given in Section 3.2.1.

2.2 The CUDA Programming Model

Recent programming models for GPUs are the last stage of the evolution of the
graphics pipeline. GPGPU developers were used to adopt such a model when im-
plementing their solutions. Basically, we can describe the graphics pipeline as a
directed flow of data between its input and its output. The input is provided as a
set of triangles which vertices are processed in the first stage of the pipeline, the ver-
tex processor, applying transformations such as rotations and translations. Then,
the raster converts the results from the vertex processing to a collection of pixel
fragments by sampling the triangles over a specified grid. Such fragments are then
computed by the fragment processor, which major task is to compute the color of
the several fragments related to each pixel. Texturing, when required, is applied at
this point. Finally the framebuffer determines the final color of each pixel in the
final image, usually by keeping the closest fragment to the camera for each pixel
location. At the beginning the pipeline was conceived as a rigid structure, where
the different stages were implemented as fixed functions.
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Very soon, GPU designers realized that allowing flexibility would open the pos-
sibility to develop more complex effects. In this scenario the pipeline assumed a
new connotation, and since the present decade it allows programmability at differ-
ent level of the processing flow. Older GPU programs were often called shaders,
and they were written with shader languages, generally an extension of traditional
programming languages in order to support vertices, fragments and interfaces to
the pipeline stages (e.g. Cg [16]). Figure 2.1 depicts a typical graphics pipeline
with shader programs for vertex and fragment processing. The next step towards a

Figure 2.1 – The graphics pipeline.

modern GPGPU approach was the advent of the unified shader architecture. With
the programmable pipeline described above, developers could take better advantage
of the repartition of the GPU resources, but still with some unpleasant disadvan-
tage, such as load unbalancing. In that context, the slowest stages burden the whole
performance. In a unified shader architecture we find several shader cores able to
operate at every level of the pipeline model. Each unified shader core can execute
any type of shader and forward the result to another shader core (itself included),
until the entire chain of shaders has been executed. The use of unified shader cores
allows to allocate resources in a smarter way depending on the specific application,
better managing load balancing.

The compute unified device architecture (CUDA) environment3 presents a cutting-
edge programming model well-suited for modern GPUs architectures [23]. NVIDIA
developed this programming environment to fit to the processing model of the Tesla
architecture, so to expose the parallel capabilities of GPUs to the developers.

3http://www.nvidia.com/object/cuda_home.html

http://www.nvidia.com/object/cuda_home.html
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2.2.1 A Heterogeneous Programming Model

CUDA maintains a separated view of the two main actors involved in the compu-
tation, namely the host and the device. The host is the one that executes the main
program, while the device is the coprocessor. A typical scenario considers the CPU
as the host and a the GPU as the coprocessor, but in general CUDA abstractions
may be useful for programming other kinds of parallel systems [20].

Normally CUDA programs contain some pieces of code where intensive compu-
tation is required as shown in Figure 2.2. Such code is encapsulated in kernels and
executed by the device. The same kernel is executed in parallel by several threads.
The number of threads that execute a specific kernel is decided by the program-
mer and specified when invoking the kernel in the host program (See Section 2.2.3).
From a memory point of view, CUDA assumes that host and device maintain their

Host

Sequential code

Parallel kernel

Parallel kernel

...

...
..............

...

...
..............

Device

Figure 2.2 – Heterogeneous paradigm of execution.

own DRAM, respectively called host and device memory. The most basic example
of CUDA processing flow is given in Figure 2.3, and it can be summarized in few
elementary steps:

1. Allocate memory on the device;

2. Copy data from the host memory to the device memory;

3. Execute the kernel;

4. Copy data from the device memory back to the host memory;

5. Deallocate memory on the device.

2.2.2 The NVIDIA CUDA Software Stack

Figure 2.4 illustrates the NVIDIA CUDA software stack showing its main layers.
A CUDA application can be built upon three main entities: the NVIDIA CUDA
Driver API, the NVIDIA CUDA Runtime API, and the NVIDIA CUDA libraries.
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Allocate data on device

Copy data to device

Perform computation on GPU

Copy data back to host

Deallocate data on device

9.3

8.2

kernel
exec

Figure 2.3 – Basic CUDA control flow.

Figure 2.4 – The CUDA software stack. (With permission from NVIDIA [23])

The first two layers consist of a low-level Driver API and a higher level Runtime API
implemented on top of the first one. Both the APIs are essential to proper manage
threads, memory, and kernels invocation on the device. The Runtime API provides
a more compact and intuitive interface to the device. On the other hand, even
though the Driver API is harder to program, it offers deeper control and language-
independence. Since these APIs do the same job at a different level, their use is
mutually exclusive.

In the rest of the report every reference to kernel, thread, and memory manage-
ment is intended through the Runtime API. The CUDA libraries contain mathe-
matical routines of common usage written on top of the NVIDIA CUDA Runtime
API, such as FFT and BLAS routines [21, 22].

2.2.3 Threads Organization

Scientific applications often have to cope with real problems, such as weather and
climate forecasting, galaxies evolution, fluid simulation, protein folding, and so on.
Applications such as those just mentioned are typically based on numerical methods
that require to sample their problem domains in order to have a number of discrete
data to elaborate.
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To better match such mathematical models, the NVIDIA CUDA programming
model expresses task and data parallelism through the threads hierarchy. A kernel
is a portion of code executed in parallel by different threads. Threads are organized
in one-, two-, or three-dimensional, equally-shaped threadblocks. This organization
provides a natural way to work with multidimensional structures. Threads within
the same threadblock can share data and synchronize themselves through intrinsic
synchronization functions.

Multiple threadblocks are organized in one- or two-dimensional grids. Since
threadblocks can be executed in any order, in parallel or not, they are required to
execute independently. This independence requirement is the key to write scalable
code, as it allows thread blocks to be scheduled in any order across any number of
cores. While the number of threads per threadblock is limited by physical resources
(Section 2.2.5), the number of threadblocks per grid is normally related to the size
of the data to be processed.

The programmer has to know a priori the number of threads he wants to dedi-
cate to a specific kernel, and he has to declare it in terms of grid and threadblock
dimensions when calling the kernel:

kernel <<< dimGrid, dimBlock >>> (...list of parameters...)

The expression marked by the two triples of less-than and greater-than signs is
called execution environment. Every kernel call is asynchronous, that means that
the control returns to the CPU immediately, and it is normally executed by the
GPU once all previous CUDA calls have completed. It is also possible to organize
kernel executions on different streams, so making kernel calls independent from each
other (see Section 3.2.1).

NVIDIA CUDA provides built-in variables that help identifying a number of
useful information, like the index of a thread (threadblock) in a threadblock (grid)
and the dimension of threadblocks and grids. In this way for instance, a single
thread can compute the value of a specific element within a 3D matrix. The thread
hierarchy together with such a fine control over the threads allows to define different
levels of parallelism [20]. Independent threadblocks of a grid express coarse-grained
data parallelism, while grids express coarse-grained task parallelism. Figure 2.5
enriches the execution model of a CUDA program with the threads organization
just described.

2.2.4 Memory Organization

Every thread has its own local memory. Aside that, threads can use also shared,
global, texture and constant memory. Data allocated in shared memory is visible to
and accessible by all the threads within the same threadblock. Such data has the
same lifetime as the threadblock itself. The global, texture, and constant memory are
persistent across kernel invocations by the same application. Figure 2.6 exemplifies
the concepts.
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Figure 2.5 – Heterogeneous programming with CUDA. (With permission from
NVIDIA [23])

2.2.5 Mapping to the Tesla Architecture

When a kernel is invoked, the several threadblocks that compose the grid are enu-
merated and distributed to SMs with available execution capacity. Every SM can
execute several threadblocks. Threads are grouped in warps to be executed. The
way a threadblock is split into warps is predefined and always the same: each warp
contains threads of consecutive IDs with the first warp containing thread 0. If all
the threads of a warp agree on the same execution path than we can estimate the
number of clock cycles the GPU needs to execute the whole warp as Sw/NSP , where
Sw is the warp size and NSP is the number of SP per SM.

The number of threadblocks a SM can process at once is related to the config-
uration of the specific launched kernel, and in particular to the amount of registers
per thread and shared memory per threadblock requested. This because registers
and shared memory are split among the threadblocks associated to the SM. A crit-
ical point is that to execute a kernel, a GPU requires enough registers and shared
memory per SM to process at least one threadblock, otherwise the kernel invocation
would fail.

From a memory point of view, CUDA shared, global, texture, and constant
memory naturally fit to the respective Tesla memory areas. From the host, through
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Figure 2.6 – The CUDA memory hierarchy. (With permission from NVIDIA [23])

the runtime library, it is possible to allocate memory on the device as linear memory
or CUDA arrays. The first allocation method allows a pointer-based management of
the memory. CUDA arrays are opaque objects designed and optimized for texture
fetching.

2.2.6 Compute Capability

Every NVIDIA GPU that can be used in parallel compute mode, is characterized
by a compute capability number. Compute capability numbers are defined by a
major revision number and a minor revision number. The major revision number
indicates the core architecture, while the minor number corresponds to incremental
improvements of the core architecture with new features.

In Appendix A, the most relevant features of devices of compute capability 1.3
are summarized. The SP’s clock frequency and the total amount of device memory
can vary depending on the specific device and can be queried at runtime. The
complete specification for the all set of available compute capabilities can be found
in [23].

2.2.7 Floating-Point Support

All the GPUs of compute capability 1.3 can operate with both single- and double-
precision floating-point values. However, GPUs belonging to the GeForce GTX
200 family are designed for gaming, where the speed is often more valuable than
precision. Those GPUs present some deviations from the IEEE 754 standard for
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single-precision floating-point values, such as absence of denormalized numbers and
smaller set of rounding modes. On the other hand, GPUs designed for HPC com-
pletely adhere to the IEEE standard, trying to fulfill the precision requirements
typical of scientific applications.

2.3 The NVIDIA Tesla S1070 Computing System

The NVIDIA Tesla S1070 Computing System is a 1U rack-mount system equipped
with four Tesla T10 GPUs. Figure 2.7 shows a schematic representation of the
system. The Tesla T10 has 240 processing cores working either at 1.296 GHz (-400
configuration) or at 1.44 GHz (-500 configuration). The cores are grouped in 30
SMs. Each core is able to issue up to 3 FLOP per cycle in single precision, i.e. a
multiply concurrently to a multiply-add. A theoretical estimation of the processing

Tesla T10

4 GB DRAM
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4 GB DRAM

NVIDIA
Switch

Tesla T10
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Tesla T10

4 GB DRAM
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PCIe 2.0
Connection

PCIe 2.0
Connection

Figure 2.7 – NVIDIA Tesla S1070 Computing System Architecture.

power of the system is

4 GPUs ∗ (FLOP/cycle ∗ Frequency ∗#Cores)-400 conf. =

4 ∗ (3 ∗ 1.296 ∗ 240) GFLOPS = 3.732 TFLOPS in single precision.

4 GPUs ∗ (FLOP/cycle ∗ Frequency ∗#Cores)-500 conf. =

4 ∗ (3 ∗ 1.44 ∗ 240) GFLOPS = 4.147 TFLOPS in single precision.

In double precision, only one core per SM can issue two concurrent operations per
cycle, that leads to a theoretical peak of

4 GPUs ∗ (FLOP/cycle ∗ Frequency ∗#SMs)-400 conf. =

4 ∗ (2 ∗ 1.296 ∗ 30) GFLOPS ≈ 311 GFLOPS in double precision.

4 GPUs ∗ (FLOP/cycle ∗ Frequency ∗#SMs)-500 conf. =

4 ∗ (2 ∗ 1.44 ∗ 30) GFLOPS ≈ 345 GFLOPS in double precision.

From a memory point of view, every GPU is connected to 4 GB high speed DRAM,
with a bandwidth of 102 GB/s. This gives to the system a capacity of 16 GB. The
connection to the host passes through NVIDIA Switches and PCIe Host Intercon-
nection Cards (HIC). A single PCIe 2.0 16x (or 8x) slot on the host is connected to
two GPUs using an NVIDIA Switch and a PCIe HIC. Such a connection is able to
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provide a transfer rate up to 12.8 GB/s between the host node and the computing
system. A configuration that fully exploits the computing system is given in Fig-
ure 2.8. Since power consumption is taking more and more attention today, we can
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NVIDIA
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Host node

PCIe
HIC

PCIe
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PCIe
16x/8x

PCIe
16x/8x

Figure 2.8 – S1070 full computing configuration.

also mention that the system consumes at most 800 W.

2.4 Programming Multiple GPUs

In a multi-GPU context, devices are enumerated progressively. The CUDA Runtime
API gives the programmer the possibility to select the device where to execute the
kernels. By default device 0 is used. The official CUDA guide [23] reports that a
multi-GPU system is guaranteed to work only if the system is composed by the same
type of GPUs, and if the Scalable Link Interface (SLI) mode is turned off. SLI is
an NVIDIA solution for computer graphics. Basically, it allows two or more GPUs
to work together to produce a single graphical output from different input images
processed in parallel.

We could take into account at least two main ways to manage the different
control flows associated to the GPUs, as depicted in Figure 2.9 for a two-GPUs
system. A first way could be to send kernels in a sequential fashion. If the amount
of work required to the first GPU is substantial it can be considered a valid solution.
Otherwise, a second possibility is to exploit the parallelism offered by modern CPUs.

To use multiple CUDA context we can associate them to different threads, one
for each GPU. For optimal performance, the number of CPU cores should not be less
than then the number of GPUs in the system. Managing the threads could be done
using different approaches. The lowest level one could be to implement an ad-hoc
communication layer through system libraries, such as NPTL. Otherwise, existing
libraries could be used, such as message-passing libraries adapted to perform shared
memory communication [17].
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Chapter 3

Parallel Computational Models

In this chapter, we analyze some important parallel computing systems looking for
analogies with multi-GPU systems. The aim is to identify the factors that most
impact on the performance of a multi-GPU system.

As argued in [19], parallel models often lack of connection to the real world,
becoming powerless tools in terms of prediction capabilities. Nontheless, they do
not loose their relevance when analyzing new architectures, because they help in
focusing on the main characteristics exposed by the systems at issue.

In Section 3.1 we describe two fundamental types of parallel computers, i.e. the
shared memory multiprocessor and the message-passing multicomputer. Following,
we mention symmetrical multiprocessor (SMP) clusters, which are cost-effective
computing platforms that mix shared memory and message-passing features. In
Section 3.2, we analyze multi-GPU systems, highlighting their performance factors.
Eventual similarities with more classical parallel models can be used to apply com-
mon solution patterns to the new architecture.

3.1 Parallel Models

There are multiple ways to build a parallel computing system. The two most popular
models of parallel computation are shared memory multiprocessors and message-
passing multicomputers. Based on these two basic models it is possible to build
different kinds of computing systems, combining in different ways their architec-
tural properties. SMP clusters are one such example where the computing platform
combines elements from both the computing models.

3.1.1 Shared Memory Multiprocessor

A shared memory multiprocessor is composed by a set of processing units and a set
of memory modules as represented in Figure 3.1. Processing units can be organized
at different levels, such as chip-level (a.k.a. multicore CPU) or package-level. In
a shared memory system, every single memory location is accessible by any of the
processors. This is done implementing a single address space, which assigns to every
memory location a unique address. In other words, the set of memory modules are

17
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considered as a unique memory volume by the processors. Processors and memory
are connected together through some form of interconnection network.
Which kind of interconnection is more opportune for a specific architecture, always
depends on its features, such as dimension and cost. Typical interconnection net-
works are single buses shared by both processors and memory (for small systems),
crossbar switches, or any other combination of the two. The kind of interconnection
classifies the system depending on the memory access time. When each memory
location is accessible to every processor with the same access time, the system has
uniform memory access (UMA). On the other hand, when some of the processors
require less time to access some memory location, the system has non-uniform access
time (NUMA). To reduce communication in the network, it is possible to augment

Cache
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Interconnection Network

Cache

Proc

Cache

Proc
....

....Mem Mem Mem

Logical volume

Figure 3.1 – A shared memory multiprocessor model.

the system with different level of caches to hold the contents of recently referenced
memory. There are several ways to program a shared memory system. For the
purpose of our work, we just focus on multithreaded programming, where every
processor can execute one or more threads. For a broader treatment of shared mem-
ory programming methods one could refer to Wilkinson and Allen [29].

When programming a shared memory system, there a number of performance
issues to take into consideration. We will now describe three important ones: threads
synchronization, caching, and consistency.

Synchronization

Shared memory systems give the possibility to organize communication among the
processors through memory. Since each memory location is accessible by all the pro-
cessors, it is possible to use the memory to exchange data among them. If different
threads are executed on physically different cores, real parallelism is achieved. Inde-
terministic scheduling of the threads requires the adoption of proper programming
measures.



3.1. PARALLEL MODELS 19

When accessing concurrently the same memory area without an accurate logic,
it is possible to produce unexpected results. To prevent such problems threads must
be coordinated through synchronization. Most relevant synchronization techniques
include thread joins, locks, condition variables, semaphores, and monitors [28]. Con-
sider a group of threads running in parallel some code (see Figure 3.2). If they access
different memory locations, then they can be executed concurrently without risks.
When some of them reference to the same memory space instead, a way to preserve
data coherence is to introduce mutual exclusion on the critical section of the code.
This can be done through one of the synchronization techniques mentioned above.
However, the fact the just one thread can access the data at a time, requires the
execution to be serialized, thus introducing latency in the computation.
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Figure 3.2 – Parallel execution: (a) critical sections accessing different memory lo-
cations, (b) critical sections working on the same data set.

Caching

Caches are intermediate memory storages used to deliver higher performance when
accessing data or instructions. When accessing a variable or executing an instruc-
tion, instead of moving the single requested element, the memory subsystem trans-
fers a block of data that contains it. This block is stored inside the cache, and if the
next time the CPU issues that same element or one in the nearby, it can be served
very quickly, obtaining the element from the cache.

Different levels of caches can be placed in between the main memory and the
processing unit. This levels are characterized essentially by their position and di-
mension. Normally, on-chip storages have capacity in the order of kilobytes (L1
cache) and megabytes (L2/L3 cache). Other levels can be localized off-chip with a
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larger capacity but also a higher latency.

Caches are designed to be invisible to the developer, in the sense that one is
not asked to consider them while developing his software. For this reason, they are
not programmable elements. However, a cache-aware approach is very important
in HPC, since a right use of the cache is able to provide order of magnitude dif-
ferences in performance [12]. CPU vendors typically release information about the
most important features (e.g. cache size, line size, number of ways, etc..) of the
caches installed on their processors. Based on these specifications, developers can
tune their memory access patterns speeding up their applications. Several methods
exists that help optimizing the cache usage [8]. In a parallel environment, there are
several issues that could significantly impact on performance.

A first expedient requires to take advantage of temporal and space locality. This
can be done grouping instructions that are using same elements, and grouping in-
structions that access elements that are likely to be stored in a same memory block.
When grouping instructions then, it is important to consider the access pattern in-
volved. Often, the logical displacement of objects at the programming level does
not reflect the physical displacement at a lower level in memory. For instance, this
happens with arrays. Even though accessing a neighbor of an element in a matrix
only requires to increment or decrement one the indexes, physically, the neighbor
may be found dozens of locations away from the starting element.

When using caches in a shared memory system, another important objective is
to reduce false sharing. The false sharing issue is related to the distributed nature of
the system. Caching data in a parallel systems, introduces coherency requirements
among the nodes’ caches. Writing to memory locations stored in the cache of one
of the nodes, causes all the blocks in the caches of other nodes to be invalidated or
updated if they contain the same values.

Consistency

A distributed systems may be adherent to different models called consistency models,
that express some properties of parallel executions’ final results. One such models is
called sequential consistency [14]. Sequential consistency is a consistency model of-
ten implemented by shared memory systems. According to the model, when running
multiple concurrent programs in their respective orders, the final results has to be
the same independently of the instructions interleaving. Some systems, to improve
performance, slightly modify the concept of sequential. They allow some degree
of out-of-order execution within a program, but always maintaining the sequential
consistency of the final result.

3.1.2 Message-Passing Multicomputers

When the number of processing units in a parallel computing system increases dra-
matically, designing a proper shared memory architecture can be rather difficult
for several reasons, such as processors-memory connection and cache/memory co-
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herency. Alternatively, a parallel computing model could be composed by several
computing elements where each of them is connected to its own memory mod-
ule. Then, always through some kind of interconnection network, all the processor-
memory pairs are connected to each other. Such computing architectures are called
message-passing multiprocessors or multicomputers, since very often the processor-
memory pairs are autonomous computing nodes.

A model of multicomputer is given in Figure 3.3. This kind of architecture
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Figure 3.3 – A multicomputer model.

allows higher scalability and ease of construction, but changes completely the com-
munication pattern. Instead of sharing data through a common memory volume,
in a multicomputer context data must be transfered from a node to another, thus
introducing new performance issues. A simple model for a parallel program is esti-
mated in [29] considering its computation and communication time, which in general
depend on the size of the problem and the number of processors:

Tpar = Tcomp(n, p) + Tcomm(n, p) . (3.1)

On a shared memory multiprocessor, the communication process is mainly composed
by the synchronization overhead. In a message-passing multicomputer instead, we
should model the cost of interprocess communication required to produce the fi-
nal result. What the term tcomm contains depends on the specific communication
flow required by the application. If we consider the whole communication time as
composed by several communication flows among the processors related to different
parts of the program, i.e.

Tcomm(n, p) =
∑
i

T icomm(n, p) , (3.2)

we may describe the time required by the ith communication flow as

T icomm(n, p) = ki(n, p)(tstartup + wi(n, p)tword) . (3.3)

The time tstartup is the message latency, tword is the time required to transfer one
data word, and wi(n, p) is the number of data words to be transfered, which in gen-
eral could depend on the problem and the system size. ki(n, p) is a general factor
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to represent a certain number of communication iterations required by the commu-
nication flow.

In a multicomputer, a very important objective is to improve performance try-
ing to contain the communication complexity. Depending on the problem, different
approaches must be developed to control the communication. However, there is
a general principle which is worth remarking. Data transfer are always orders of
magnitude greater than elementary operations, such as mathematical ones. In order
to not waste time just waiting for data transfers to complete, many communication
routines have their nonblocking counterparts. In this way, it is possible to do useful
work, while at the same time, the message is moving towards its target (See Fig-
ure 3.4). This technique is known as latency hiding.

As for shared memory programming, also message-passing programming can be

send(A,1)
A=f()

send(B,0)

recv(A,0)
B = A + g()

recv(B,0)

Do
useful
work

Node 0 Node 1

Comm. routine signature

r(mesg,dest)

Figure 3.4 – Latency hiding.

done in different ways [29]. One common form, is to use a normal high-level program-
ming language, such as C, together with message-passing libraries. The Message-
Passing Interface (MPI) standard [1, 26] is very likely the most adopted standard
interface for message-passing programming.

3.1.3 SMP Cluster Computing

A cluster of computers is a cost-effective example of multicomputer system. It repre-
sents a satisfying trade off between a single commodity computer and an expensive
supercomputer in terms of costs and performance. Clusters themselves represent a
large family of systems classified by different purposes and implementations.

One of them, called symmetrical multiprocessor (SMP) cluster, is especially in-
teresting for our analysis, insofar as it has a computing model comparable, in our
opinion, to the one of a multi-GPU system. A symmetrical multiprocessor is a
shared memory multiprocessor with a numerical symmetry between the number of
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processors and the number of memory modules. When a number of SMPs are linked
together, it gives birth to a new architecture called SMP cluster and depicted in Fig-
ure 3.5. For the sake of our discussion, The concept of symmetry is not a relevant
feature. What is interesting to us, is the programming model that can be adopted
on such a architecture. The outer set of SMP nodes could be programmed through
message-passing, while multithreading can be used to manage the computation on
every shared memory SMP.

Node n-1

Cache

Proc

Interconnection Network

Cache

Proc

Cache

Proc
....

....Mem Mem Mem

Logical volume

Cache

Proc

Interconnection Network

Cache

Proc

Cache

Proc
....

....Mem Mem Mem

Logical volume

. . . .

Node 0

Interconnection

Figure 3.5 – An SMP cluster model.

3.2 Similarities between SMP Clusters and multi-

GPU Systems

A multi-GPU computing architecture, as described in Chapter 2, has several char-
acteristics that make it similar to the computing model of an SMP cluster. A first
analogy comes from the system implementation. As shown in Figure 3.6, every GPU,
which in turn is a highly multithreaded system, is linked to every other through the
host system. This kind of interconnection, requires communication to setup coop-
eration in solving a common problem. In th previous chapter, we remarked how
GPU systems are today able to compute with theoretical performance in the order
of TFLOPS, transferring data between host and device with a rate in the order of
GB/s. If we compare that with performance and transfer rate of typical cluster node,
we observe that the theoretical instruction densities differ by a constant factor:

PerGPU
BWmulti−GPU

=
TFLOPS

GB/s
≈ k · PerCPU

BWcluster

= k · GFLOPS
MB/s

. (3.4)

In this section, we show how some performance issues analyzed in the previous
section, can still hold for a multi-GPU system. Of course, because of the difference
between a usual processor and a graphics processor, some of the concepts need a
proper contextualization, posing sometimes new problematics to surmount.

3.2.1 Single GPUs as Shared Memory Nodes

A single NVIDIA Tesla computing architecture, contains hundreds of computing
cores, organized in several SMs, connected to different levels of memory. The struc-
ture behind processors and memory, involves some new issues that must be carefully
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Device n-1

. . . .

Device 0

Host

...

...

DRAM

...

...

DRAM

Figure 3.6 – Multi-GPU system as a network of GPUs.

considered. In Section 2.2.1, we introduced a basic CUDA control flow that repre-
sents a common host programming pattern. The next step is to understand how
kernels can be organized, defining a basic programming pattern also for them. Fig-
ure 3.7 shows such a pattern. Every thread loads its own data in shared memory,
so to have faster access to them. After that, it performs the required calculation
on the data set and writes everything back to global memory. As communication
through shared memory might be required by the threads of a same threadblock,
synchronization is used to keep results coherent. At the level of a single GPU, an

SM

1. Load data from device memory to shared memory
2. Threads synchronization
3. Process data in shared memory
4. Threads synchronization
5. Write the results back to device memory

1 5

3

Device Memory

Shared
Memory

SP SP SP SP

SP SP SP SP

Figure 3.7 – Kernel programming pattern.

important step for increasing performance is to tune the algorithm in a way that it
exposes as much data parallelism as possible. After that, the computing resources
have to be allocated, mapping them to the problem using a proper configuration of
the execution environment. Memory usage must be optimized at every level of the
hierarchy, so to maximize the bandwidth. This is a very crucial step that requires
to:

• Minimize the host-device communication. We will focus on this issue in Sec-
tion 3.2.2 as part of the GPU-GPU communication;

• Use the device memory exploiting the different memory areas’ capabilities;
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• Use the right access pattern for each type of memory.

Finally, instructions must also be optimized, selecting the fastest ones. We hereby
set about discussing these issues in more detail.

Execution Configuration

A good execution configuration should ensure an efficient mapping between the
thread hierarchy and the parallelism exposed by the problem to solve. We already
introduced execution configuration in Section 2.2.3. Here, we intend to discuss
how grid structuring can influence performance. To reduce scheduling overhead,
resources are split and allocated to each thread. Since resources are in a finite num-
ber, it is responsibility of the developer to choose wise dimensions for both grids
and threadblocks, so to allocate resources minimizing wastes. If, for instance, at a
certain point there are less active threadblocks than available SMs, the computing
power of those SMs is wasted. In the same way if there are threads per threadblock
that are not multiple of the warp size, a number of SPs would turn out unused. On
the other hand, also oversize threadblocks are dangerous. If the number of registers
required by a threadblock cannot fit to those available in a SM, the kernel invocation
would not succeed.

A typical parameter that can lead to optimize the usage of the GPU is the so
called multiprocessor occupancy. It is defined as the ratio of the number of active
warps per multiprocessor to the maximum number of active warps,

SMocc =
Wactive

DEF(Wmax active)
. (3.5)

The maximum number of active threads per SM, like many other parameters that
depends on the specific hardware device, is normally specified by the compute capa-
bility of the GPU. Example of such parameters are given in Appendix A for devices
of compute capability 1.3. In our notation, we identify the value of a parameter
related to a specific compute capability number with the call to DEF(param).

We can formalize such a ratio starting from those variables which definition
is normally up to the developer: the number of threads per threadblock TB, the
number of registers per thread RT and the requested amount of shared memory per
threadblock ShB req. A first set of parameters we can calculate are the number of
warps, registers, and shared memory per threadblock. Warps and shared memory
per threadblock are directly calculated as

WB =

⌈
TB

DEF(TW )

⌉
, ShB = dShB req,DEF(Shalloc unit)e . (3.6)

We indicate with dn, se the number n rounded up to a multiple of s. When s =
1 we simply use dne. Analogous notation is used for the floor function. Values
indicated with a notation similar to Xalloc unit indicate the allocation unit sizes for
those resources they refer to. So in our case, the number of warps per threadblock
WB is the calculated as the ratio of the number of threads per threadblock to the
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number of threads per warp allowed by the specific GPU. The number of registers
per threadblock can be obtained as

R′B =
Warp

Block
· Thread
Warp

· Reg

Thread
= dWB,DEF(Walloc unit)e · 32 ·RT . (3.7)

The value R′B has to be rounded up to the register allocation unit size:

RB = dR′B,DEF(Ralloc unit)e . (3.8)

Based on resources allocation per threadblock, we can evaluate how these values can
limit the maximum number of active threadblocks per SM. The maximum number
of threadblocks per SM limited by the maximum number of warps per SM is

(BSM)warp limited = MIN

(
DEF(BSM max),

⌊
DEF(WSM max)

WB

⌋)
, (3.9)

where BSM max and WSM max are respectively the maximum number of threadblocks
per SM and of warps per SM. Similarly, the maximum number of threadblocks per
SM limited by registers and shared memory per SM are

(BSM)reg limited =

{⌊
DEF(RSM )

RB

⌋
if RT > 0,

DEF(BSM max) otherwise,
(3.10)

and

(BSM)Sh limited =

{⌊
DEF(ShSM )

ShB

⌋
if ShB req > 0,

DEF(BSM max) otherwise.
(3.11)

At this point, we can calculate the number of active threadblocks per SM as

Bactive = MIN ((BSM)warp limited , (BSM)reg limited , (BSM)Sh limited) . (3.12)

From the latter, it is possible to obtain the number of active threads and warps per
SM:

Tactive = TB ·Bactive , Wactive = WB ·Bactive . (3.13)

Finally, using Wactive and DEF(Wmax active), we can calculate the multiprocessor oc-
cupancy as shown in (3.5).

There is a tool that can help us taking into account all the parameters we de-
scribed, the CUDA Occupancy Calculator1. It is a spreadsheet that automatically
evaluates the multiprocessor occupancy once provided the values for the three vari-
ables TB, RT , and ShB req. Furthermore, it can suggest what would happen if we
would change those values, showing the multiprocessor warp occupancy curve in
three graphs like the ones in Figure 3.8.

1http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.
xls

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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(a) Dependence on the threadblock size (b) Dependence on the number of registers

(c) Dependence on the amount of shared memory

Figure 3.8 – Screenshots of multiprocessor warp occupancy graphs from the NVIDIA
CUDA Occupancy Calculator using a minimal configuration TB = 1, RT = 0, and
ShB req = 0.

Synchronization and Consistency

Synchronization is suggested exclusively at thread level. Threadblocks’ indepen-
dence is an important requirements for granting scalability and speed. Also within
a threadblock, however, the use of synchronization routines must be carefully con-
trolled and not misused. Mutual exclusions within a threadblock, can be imple-
mented on recent hardware2 using a combination of barriers and atomic operations,
but this goes against the requirement of massive data parallelism required by GPUs
to be efficients. Not accidentally, CUDA does not provide any native solution to
this kind of approach.
To prevent shared memory access hazards, such as RAW, WAR, and WAW, threads
within a threadblock can synchronize through the syncthreads() routine. It forces
all the threads to wait for each other. Once all threads have reached the call, exe-
cution resumes normally. Host consistency is natively forced for kernels within the
same stream, or can be imposed using some synchronization functions. This can
be considered a way to force synchronization at threadblock level. A stream is a
sequence of operations that execute in order on the GPU. Operations executed on

2Atomic operations are just implemented on devices of compute capability 1.1 or higher.
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different stream can be interleaved. Stream 0, the default stream, has a special role
and acts differently from all the other streams. In particular, every CUDA call on
stream 0 blocks until previous calls complete, and no CUDA calls can be overlapped
with a stream 0 call. A simple use of streams to overlap a kernel and a memory
copy is given in Figure 3.9. All the CUDA instructions issued to a stream can be

cudaStream t stream1 , stream2 ;
cudaStreamCreate(&stream1 ) ;
cudaStreamCreate(&stream2 ) ;

cudaMemcpyAsync ( dest , s rc , s i z e , cudaMemcpyHostToDevice , stream1 ) ;
ke rne lCa l l<<<gridDim , blockDim , 0 , stream2 >>>(...) ;

Figure 3.9 – Overlapping computation with memory copy using streams.

synchronized through the call to cudaStreamSynchronize(stream). The function cu-
daThreadSynchronize() can be used to block until all previously issued CUDA calls
complete.

Coalesced Access to Non-Cached Memory

Accessing global memory, which is not cached, is an expensive operation. For this
reason, it is important to design the most appropriate access pattern. To ensure
an efficient data transfer, a first requirement is on the data to be moved. In order
to compile an assignment to a single load instruction, the type of the data must
be of size 4, 8, or 16 bytes, and the data itself must have address multiple of that
size (in other words, the data must be aligned to that number of bytes). CUDA
Built-in types [23] are designed to fulfill the requirement. Once data meet type size
and alignment requirements, the focus moves to the protocol adopted by CUDA to
transfer data from device memory. Again, it depends on the device capability. We
focus just on the protocol for devices of compute capability 1.2 or higher. It works
for a half-warp, and it can be summarized in the following steps:

1. Find the memory segment that contains the address requested by the lowest
numbered active thread. Segment size is 32 bytes for 8-bit data, 64 bytes for
16-bit data, 128 bytes for 32-, 64-, and 128-bit data.

2. Find all other active threads requesting data that lies in the same segment.

3. Reduce the transaction size when only the upper or lower half of the segment
is used. This means that the transaction size may shrink to 64 bytes or 32
bytes when initially it was respectively 128 or 64 bytes.

4. Carry out the transaction and mark the serviced threads as inactive.

5. Repeat until all threads in the half-warp are served.

Figure 3.10 shows an example of coalesced access to global memory. When accessing
linear memory with a 2D access pattern, the best way to coalesce memory accesses
for all half-warps is to have rows with a width that is multiple of half the warp size.
Often, it can happen that this requirement is not naturally fulfilled by real data.
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For this reason, CUDA provides the function cudaMallocPitch(), which allocates
global memory padding rows so to satisfy the width constraint. It then returns
the address, like every malloc routine, together with a stride that must be used to
access correctly the array in global memory. A complete description of pitch-based
functions is given in the official reference manual [24].

Also local memory is not cached, and thus accessing it is as expensive as accessing
global memory. However, since local memory contains per-thread data, every access
would automatically result coalesced.

0 4

...
124 128

...
n n+4

...

0 1 2 3 4 5 6 7

9 10 11 12 13 14 158

n+128

...

Active thread

Inactive thread

Adressed segment

Adressed memory

Note: n%128 = 0

128 bytes segment

0 4

...
124 128

...
n n+4

...

0 1 2 3 4 5 6 7

9 10 11 12 13 14 158

n+128

...

Note: n%128 = 0

Coalesced accessNon-coalesced access

Figure 3.10 – Active threads in the same half-warp making coalesced access to 32
bit words in global memory.

Cached Memory Access

In Chapter 2, we described device memory as split in several areas, among which
global and local memory that we have just considered. The other two memory ar-
eas that are allocated on device memory are constant and texture memory. The
common characteristic is that both spaces are cached. Cache can help to speed up
reading instructions. Constant and texture caches are differently implemented, and
each supports a specific access pattern. Constant cache is best exploited when all
the threads of a half-warp read from the same address. Otherwise, the cost of a read
scales linearly with the number of different requested addresses.

Texture memory can be used to take advantage of eventual data locality. Once
linear memory or a CUDA array have been allocated, it is possible to associate them
to a texture reference in order to fetch them through the texture unit. Textures are
cached with a 2D space locality optimization, so they do not require specific access
pattern to exhibit good performance. There is an important caveat against texturing
from linear memory. Potentially, one could texture from linear memory apply some
computation and then write back via global write using the same address pointer
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(see Figure 3.11). However, the value that has been written back, is not guarantied
to be accessed by an ulterior texture fetch within the same kernel call. Kernels can
safely texture from linear memory data written by a previous kernel call or memory
copy.

Device Memory

Streaming MP

Texture Cache
Shared Memory

1

1

2

1

2

Texture fetch

Write to global memory

Figure 3.11 – A possible read-write cycle based on linear memory access.

Bank Conflicts

Synchronization is not the only issue for threads belonging to the same threadblock.
Performance can also be improved organizing a proper access pattern to shared
memory. To allow simultaneous access to shared memory by active threads of a
warp, the memory volume is regularly split into different memory modules, called
banks. The number of banks is normally equal to the number of threads of a half-
warp. A bank conflict can arise when more than one thread in the same half-warp
try to access different addresses in the same memory bank. When this happens, the
issued loads must be serialized. A memory request with a conflict is split in several
conflict-free requests. If a memory request can be served in n conflict-free requests,
that request is said to cause n-way bank conflicts. To prevent bank conflicts is then
necessary to know how to manage data positioning in shared memory. Banks are
organized as shown in Figure 3.12. Successive 32-bit words are stored into successive
memory banks. For 32-bit data with 16 banks, a simple access pattern would be
to use an odd stride between consecutive addresses3. When using data with an
arbitrary size of k bytes, it is important to have strides aligned to 4 bytes to prevent
conflicts. Figure 3.13 gives two simple examples of conflict-free and 2-way bank
conflict shared memory access.

3.2.2 Inter-GPU Communication

Communication between two GPUs, here GPU-0 and GPU-1, can be modeled as a
process composed by at least three phases:

3Note that, with an even number of banks, an even stride would always involve the same set of
banks.
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32-bit consecutive elements

Figure 3.12 – Shared memory structure.

1. Communication between GPU-0 and the host;

2. Communication host-to-host;

3. Communication between the host and GPU-1.

The model is depicted in Figure 3.14. If we suppose that both the GPUs have an
identical physical connection to the host, we can express such a model analytically
as

TGPU−GPU = TGPU−host +Thost−host +Thost−GPU = 2 ·TGPU−host +Thost−host . (3.14)

In Section 3.1.2, we described the communication time in a message-passing mul-
ticomputer context. Similarly to a multicomputer, we suppose to express the host-
GPU communication time as the linear combination of a certain startup time and
the time required to transfer a certain amount of data, leading to the expression

TGPU−GPU(n, g) =
∑
i

(
2ki(n, g)(tstartup + wi(n, g)tword) + T ihost−host(n, g)

)
. (3.15)

Here n and g are respectively the problem and the system size (in terms of GPUs)
The host-to-host communication time Thost−host, summarizes the time required by
all the data movements and synchronization mechanisms part of the communication
flow between two GPUs.
The transfer bandwidth between host and device must always be carefully consid-
ered. Compacting many small transfers into a big one is often more efficient than
performing them separately. Once data are loaded in device memory, it is possi-
ble to create intermediate data structures to carry out the computation. A way to
increase the bandwidth is to use page-locked memory. This would prevent paging
mechanisms from being used on those memory spaces where data have been allo-
cated. Page-locked memory, however, must be used with care. Reducing memory
resources may produce system slowdown side effects. Pinned memory introduces a
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__shared__ s = float[16];
s[threadIdx.x] = 0;

__shared__ s = float[16];
s[2*threadIdx.x] = 0;

Conflict-free access

Access with conflict

Threads with the same color
are executed in parallel.

Figure 3.13 – Shared memory access with and without conflicts. Using an odd stride
grants conflict free access to the memory.
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Figure 3.14 – Inter-GPU communication times.

higher startup time relevant for small transfers [27].

Also the Thost−host term should be minimized. This can be done exploiting the
real parallelism exposed by modern multicore processors. As reported in [17], the use
of MPI to communicate between processes on the same node can result in improv-
able communication overhead. The paper mentions that 2/3 of the communication
is spent in buffered MPI Sendrecv. MPI libraries usually are based on inter-process
communication. Using threads that share the same address space could turn out
more beneficial. Thus, as an alternative to the message-passing approach, multi-
threading with an appropriate synchronization can be used to implement on-node
communication among threads associated to different GPU contexts.



Chapter 4

Case Study: PDEs

Partial differential equations (PDE) are very important models required by many
engineering applications today. Unfortunately, like in many other cases in mathe-
matics, it is not always possible to find an exact solution to a problem, and even if
such a solution solution exists, the way to obtain it could turn out rather unprac-
tical. For this reason, numerical methods implemented on computers are of vital
importance to step up engineering applications.

It is not a rare case that solving problems based on PDEs involves very large
domains. Just as an example, we could mention weather forecasting and macroeco-
nomic simulations. These an many other examples are sources of enormous storage
and computation requirements.

For the sake of our work, we focus on the stencil-based solution of Dirichlet
problems [7] using a red-black, successive overrelaxation (SOR) method. In order to
understand the development of the next chapters, we recall all the essential elements
related to Dirichlet problems and the SOR method. A broader treatment of PDEs
and their numerical solution can be found among others in [13, 5, 11, 9].

4.1 PDE Problems

A PDE is a differential equation with partial derivatives of an unknown function of
more than one independent variable. Some of the most important practical applica-
tions are of second order, where the order is determined by the highest-order partial
derivative in the PDE. A generic second-order linear PDE in two dimensions can be
represented as

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(ux, uy, u, x, y) = 0. (4.1)

Here, u(x, y) is a twice-differentiable unknown function, a, b, and c are general
functions of the independent variables x and y, and d is a linear, (in general) non-
homogeneous function of lower order. As mentioned in [9], PDEs of this form are
classified at a point (x, y) according to the sign of the discriminant ∆ = b2 − 4ac
of their characteristic equations, generating three families whose names derive from
the analogous conic sections:

33
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• Parabolic, when ∆ = 0;

• Elliptic, when ∆ < 0;

• Hyperbolic, when ∆ > 0.

Normally, the three families are associated to general prototype equations listed in
Table 4.1. Any equation of the form (4.1) can be transformed into one of these
prototypes by variable changing. It is not goal of this work to describe in details

Table 4.1 – General prototype PDEs.
PDE Family Prototype Equation

Parabolic Heat equation ut = uxx
Hyperbolic Wave equation utt = uxx
Parabolic Poisson Equation uxx + uxx = f(x, y)

the nature of PDE problems. However, having a clear understanding of the differ-
ence between these families, yields to select the right numerical method to solve
them. A physical interpretation of the classification of a PDE can help in this
sense. Hyperbolic PDEs describe time-dependent, conservative physical processes.
This means that the process has a purely oscillatory solution not evolving toward
a steady state. Parabolic PDEs describe time-dependent, dissipative physical pro-
cesses. In other words, parabolic problems present decaying solutions, evolving
toward a steady state. Finally, elliptic PDEs describe time-independent systems
that already reached their equilibrium.

In order to produce a numerical solution, the mathematical model has to assume
a more concrete appearance. What is continuum and exact, must be discretized and
approximated. They way discretization and approximations are carried out depends
on the specific method. In general, the time-dependency is a relevant characteristic
to take into account when trying to numerically solve a PDE. Conservative and dis-
sipative processes must be evaluated step-by-step, starting from given initial values.
The way time and space are discretized is quite an important matter. A wrong
discretization can lead to inconsistent and unstable results. Heath [9] introduces
to semidiscrete and fully discrete methods for time-dependent PDEs, defining and
reasoning about consistency and stability properties. On the other hand, domains
of steady systems are not limited by time constraints. Each domain’s point depends
on all its boundary values. This allows to compute the approximate solution to
the equilibrium everywhere simultaneously. A possible method to solve such kind
of problems is the finite difference method, which is introduced in the next section
applied to the prototypical case of the Laplace equation.

4.1.1 Elliptic PDEs: the Laplace Equation

A two-dimensional Poisson equation, can be defined as

∇2u(x, y) = uxx + uyy = f(x, y), u, f ∈ R, (x, y) ∈ D ⊂ R2 . (4.2)
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When f(x, y) = 0,∀(x, y) ∈ D, the (4.2) is called Laplace equation. Solutions to
the Laplace equation are often referred as harmonic or potential functions. Elliptic
problems are characterized by boundary conditions that a solution must satisfy.
Three important boundary value problems are:

Dirichlet problem characterized by the so called essential conditions, where u is
prescribed on the boundary curve δD:

u(x, y) = β(x, y), ∀(x, y) ∈ δD . (4.3)

Neumann problem characterized by the so called natural conditions, where the
normal derivative un = δu/δn is prescribed on δD:

un(x, y) = ν(x, y), ∀(x, y) ∈ δD . (4.4)

Mixed problem characterized by the Cauchy boundary conditions, that can be
seen as an imposition of both Dirichlet and Neumann conditions.

In our case, we will take into account the following Dirichlet problem:

uxx + uyy = 0, (x, y) ∈ D = [0, 1]× [0, 1]

u(x, y) = β(x, y), ∀(x, y) ∈ δD, 0 ≤ β(x, y) ≤ Bmax .
(4.5)

How to solve elliptic problems is well described in several engineering books, such as
[13]. Our interest instead, is in finding a numerical solution to the (4.5). In order to
do that, the first step is to define a two-dimensional mesh from the initial domain
D, as in Figure 4.1. Mesh points are defined as xi = yi = ih, i = 0, 1, ..., n, where
the mesh size is h = 1/n. The second step is to approximate the partial derivatives

0 1

1

x

y

{h

{ h

u(x ,y )  i j

(i,j) = 0, 1, ..., n-1

Figure 4.1 – Mesh grid for problem (4.5).

by corresponding difference quotients. An approximation of function u(x, y) can be
obtained by recalling its Taylor formula,

u(x, y) =
∞∑
i=0

{
1

i!

[
(x− x0)

δ

δτ1
+ (y − y0)

δ

δτ2

]i
f(τ1, τ2)

}
τ1=x0,τ2=y0

. (4.6)
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Alternatively, if we call the differences between the two variables with their centers
respectively ∆x = x− x0 and ∆y = y − y0, we can rewrite the (4.6) as

u(x0 + ∆x, y0 + ∆y) =
∞∑
i=0

{
1

i!

[
∆x

δ

δτ1
+ ∆y

δ

δτ2

]i
f(τ1, τ2)

}
τ1=x0,τ2=y0

. (4.7)

Now, if we develop the above formula taking x0 = x,∆x = ±l and y0 = y,∆y = 0,
we obtain

u(x+ l, y) = u(x, y) + lux(x, y) + l2uxx(x, y) + o(l2), (4.8)

u(x− l, y) = u(x, y)− lux(x, y) + l2uxx(x, y) + o(l2) . (4.9)

If we add (4.8) and (4.9) neglecting terms in o(l2), we can derive a central approxi-
mation of uxx(x, y),

uxx(x, y) ≈ 1

l2
[u(x+ l, y)− 2u(x, y) + u(x− l, y)] . (4.10)

A similar result can be calculated for uyy(x, y),

uyy(x, y) ≈ 1

k2
[u(x, y + k)− 2u(x, y) + u(x, y − k)] . (4.11)

At this point, recalling that we decided to use mesh size h for both the spatial
dimensions, we can rewrite the Dirichlet problem (4.5) in a simpler fashion. Using
the notation ui,j to represent the value u(xi, yj), we can write

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = 0, (i, j) ∈ D̄ = [0, 1]× [0, 1] ⊂ N2

ui,j = βi,j, ∀(i, j) ∈ δD̄, 0 ≤ βi,j ≤ Bmax .
(4.12)

This finite difference approach uses an approximation of order O(h2) 1 with a 5-
points coefficient scheme or stencil (Figure 4.2).

4

-1

-1

-1 -1
(i,j)

(i,j+1)

(i,j-1)

(i+1,j)(i-1,j)

Figure 4.2 – 5-points stencil for the Laplace equation.

1 For h → 0, the error committed in replacing ∇2u by its finite difference approximation goes
to zero as rapidly as h2 does.
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4.2 Iterative Methods

If we apply the stencil to every internal point of the mesh D̄, after some reordering
we get the system of linear algebraic equations in m = (n− 2)2 unknowns

Am×mum = bm . (4.13)

When m is reasonably ”small”, many tools exist that can help to solve the system
with an effective time complexity. For example, using the Fourier analysis/cyclic re-
duction (FACR) method, a solution can be found inO(m log logm) = O(n2 log log n)
operations [9]. However, when dealing with large values of m any direct method
would require an enormous amount of space to store the matrix A, that has space
complexity O(n4). As an example, if we decide to use n = 1000 floating domain
samples per spatial direction (very small compared to real applications), we need a
storage capable of containing 1012 values (i.e. 4 TB of data).

At this point, direct methods loose appeal, and different methods should be
adopted. A possible alternative, is to notice that matrices coming from a finite
difference scheme are sparse, and therefore more efficient data structures may be used
to store the values, lowering the space complexity to less than O(n4) [3]. However,
space and work requirements can still be unacceptable for very large matrices. In this
cases, iterative methods come as a valid alternative to direct methods. They produce
an estimation for the solution starting from a feasible initial one u(0) successively
improved. Theoretically, the convergence to the exact solution is reached after an
infinite number of iterations. In practice, one can terminate the computation once
some norm of the residual is as small as desired.
We now describe three important stationary iterative methods: Jacobi method,
Gauss-Seidel method, and successive overrelaxation method. All of them apply the
5-points stencil to the regular mesh of points u(k) so to compute the next step’s
solution u(k+1).

4.2.1 Jacobi Method

The Jacobi method compute the new approximate solution as the average of the
previous solution components at the four neighboring grid points,

u
(k+1)
i,j =

u
(k)
i−1,j + u

(k)
i+1,j + u

(k)
i,j−1 + u

(k)
i,j+1

4
. (4.14)

From a computational perspective, the Jacobi method requires double storage space,
since every point of the mesh requires its neighbor not to be updated. Convergence,
using the 5-points stencil as described, is always guaranteed from every u(0). If
executed in a sequential fashion, the convergence rate is often too slow. Parallel
computers can produce faster results if we consider that every unknown can be
calculated simultaneously.

4.2.2 Gauss-Seidel Method

The convergence of the Jacobi method can be improved relaxing its definition. Let
us suppose to move in the grid from left to right and from top to bottom. Always
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considering the 5-points stencil approximation in (4.12), if we use the most recent
value of every grid point, we obtain

u
(k+1)
i,j =

u
(k+1)
i−1,j + u

(k)
i+1,j + u

(k)
i,j−1 + u

(k+1)
i,j+1

4
, (4.15)

which is known as the Gauss-Seidel relaxation. Again, as for the Jacobi method,
convergence is always guaranteed from every u(0) using the above formulation. from
a parallel point of view however, even though the convergence can be reached more
quickly with the Gauss-Seidel method. it introduces some sort of sequentiality (i.e.
the fact that unknowns must be calculated in a given order) that can impact when
designing a parallel program.

4.2.3 Successive Overrelaxation Method

Even greater speed up can be achieved overrelaxating the Gauss-Seidel method.
The successive overrelaxation (SOR) method adds to the current approximation
u(k), the increment that we would obtain using Gauss-Seidel relaxed by a parameter
ω. Calling the successive approximate solution given by the Gauss-Seidel method
u

(k+1)
GS , we can write

u
(k+1)
i,j = u

(k)
i,j + ω

(
u

(k+1)
GS − u(k)

i,j

)
. (4.16)

The relaxation parameter ω is a fixed parameter used to either accelerate or decel-
erate convergence. Acceleration is obtained over-relaxing by a value ω > 1, whereas
deceleration under-relaxing by a value ω < 1. Using ω = 1 we obtain the very same
Gauss-Seidel formulation. Using the (4.16), SOR is guaranteed to converge for any
u(0) if and only if 0 < ω < 2 [31]. As proved in [11], for a problem like the one in
(4.5) the value of the optimal relaxation parameter can be calculated as

ωopt =
2

1 + sin( π
n+1

)
. (4.17)

A more general attempt to formulate ωopt for the SOR method applied to the Poisson
equation in n-dimensions can be found in [30]. Even though the convergence speed
is quite faster compared to the Jacobi and Gauss-Seidel methods, SOR inherits the
sequential sweeping pattern from The Gauss-Seidel definition.

4.2.4 Red-Black Successive Overrelaxation

Sweeping the grid points from left to right and from the top to the bottom introduces
a strict sequential dependence between the points. Such a computational pattern
can just slowdown a parallel implementation of the fast SOR method. for this
purpose, a better ordering should be adopted, in order to expose a higher degree
of parallelism. A possible approach, as suggested in [18, 29], is red-black ordering.
Using a red-black ordering, grid points are partitioned into red and black points, like
in Figure 4.3. In this way, every red point has four black neighbors and every black
point four red neighbors. If we call red all those points that have even position (i.e.
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0 1

1

Figure 4.3 – Red-black ordering of the grid points of figure 4.1.

uij t.c. (i+ j) mod 2 = 0), and black all the others, we can reduce the problem of
computing one SOR step to the execution of two substeps,

substep 1

In parallel: u
(k+1)
red = u

(k)
red + ω

(
u

(k)
i−1,j + u

(k)
i+1,j + u

(k)
i,j−1 + u

(k)
i,j+1

4
− u(k)

red

)
substep 2

In parallel: u
(k+1)
black = u

(k)
black + ω

(
u

(k+1)
GS − u(k)

black

)
.

(4.18)

The approximation in every substep can be carry out in parallel for every point
belonging to the respective color partition. If we would have a large number of
processors close enough to half of the grid points, then a complete SOR step could be
computed in constant time using red-black ordering. Such a theoretical assumption,
however, is not that far from reality in a multithreaded environment like a GPU.
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Chapter 5

Benchmark Application

In this chapter we report about the design and implementation of a benchmark
application used to investigate performance factors of a multi-GPU system. The
benchmark application will be based on the case study presented in Chapter 4,
and the analysis done in Chapter 3. We first summarize our specific benchmarking
requirements. Following, we describe the most relevant design and implementation
decisions. Details are provided in a top-down fashion, starting from a high-level
perspective down to more specific parts of the application.

5.1 Benchmarking Overall Perspective

The target of our work is to analyze how the factors discussed in Chapter 3 can affect
performance when working with applications that requires to exchange borders in a
multi-GPU system. For this reason, our benchmark application must grant enough
freedom in setting the variables related to such factors.

Undoubtedly, the performance of the class of applications taken into account
depends on the data domain. The size of the data grid impacts on the amount of
work to do and on the amount of data to exchange. Beside that, also the shape of
the grid may assume importance. Consider the two grids in Figure 5.1. They both

(a) (b)

Figure 5.1 – Domains with equivalent area but different shape.

present the same amount of data to process. But they cannot be defined equivalent
in terms of processing time. Assuming that it is divided into two separate subgrids
to be processed in parallel, and that the borders to exchange have height one, the

41
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computation to do on grid 5.1(b) is twice the computation on 5.1(a), whereas the
communication in 5.1(b) is half the communication in 5.1(a). Depending on the
time required by the two macro-operations, the whole processing time may result
different in the two cases.

Another factor is the number of GPUs we want to involve in the calculation. A
higher number of processors can lower the computation down, but at the same time
increase the communication complexity. Computation and communication them-
selves are boxes that one can fill up in many different ways, so influencing the final
results. In the previous chapter, we decided to implement a PDE solver as a testing
application. Of course, the goal of a PDE solver is to actually solve a PDE. Nor-
mally, the way an iterative solver reaches its goal is monitoring the approximation of
the solution. When some convergence criterion is fulfilled the application can stop
its job. This could bestow a further degree of complexity on the parallel application.
In a parallel context, fulfillment of common criterion means adding some sort of ex-
tra synchronization. Every processing element has to communicate its response to
a ”referee” that is in charge of assessing the whole situation. Then eventually, the
referee node imposes the processing termination.

However, our goal is not to implement a parallel PDE solver in itself. It is just
one application among many others that requires border exchange, and , for this
reason, is suited for our benchmark. As a consequence, we do not need to define
a specific convergence criterion. Better would be for our case to be able to specify
how long the calculation has to last. Before describing the benchmark application,
we summarize in Table 5.1 those requirements that must be fulfilled in order to
provide useful and valid results to the analysis stage. A high level perspective of the
benchmark application can be obtained from Figure 5.2. It gets in input the data

Initial
  domain

#GPUs

Processing Element 0

kernel_0

kernel_k

...
sync_0 sync_n...

KernelLib SyncLib

#IterationsBorder_size

#
GPU

s

Figure 5.2 – High-level perspective of the benchmark application.

domain to process, the communication and computation method to use, and all the
variables discussed above: border size, number of GPUs, and number of iterations.

Every GPU is associated to a different processing context that runs the specified
kernel and uses the specified communication method to coordinate and exchange



5.2. EXCHANGING LARGER BORDERS 43

Table 5.1 – Benchmarking requirements.
Requirement Description

Domain shape The application must handle rectangular do-
mains.

Domain size The application must handle large domains do-
mains able to fit into the available device memory.
16 GB is the amount of device memory provided
by the Tesla S1070 when using all the four GPUs.

Stop criterium The iterative method must be executed for a spec-
ified number of iterations rather than being based
on some convergence threshold.

Border size The application must handle variable border sizes.
Number of GPUs The application must work with all the available

GPUs.
Communication fashion The application must allow the adoption of differ-

ent communication methods.
Kernel variety The application must allow the selection of differ-

ent kernels.
Communication/Kernel
combination

The application must indifferently support the
possible communication method/kernel combina-
tions.

Performance vs. scalabil-
ity

Whatever design decision that can allow scalabil-
ity without degrading performance can be taken
into account.

data with the other processing elements. Our application targets Linux-based sys-
tems, and is implemented in C++ and C/CUDA. Synchronization approaches are
coded at low-level using POSIX threads.

5.2 Exchanging Larger Borders

In his thesis work, Holtet [10] presents a study of stencil-based communication in
cluster-like environments. He considered a specific class of applications that requires
domain decomposition with border exchange at each iteration. The basic idea be-
hind the described method is that compacting many communications into a single
one can reduce the time spent by send/receive routines to set up the communication.
However, in order to reduce communication latency, extra-work per node must be
introduced. As shown in Figure 5.3, if the border exchanged has width 1, we have
to refresh the value of the ghosts elements at each iteration to proceed with the
computation. However, if we increase the width of the border up to n elements,
this reduces the communication of a factor of n. Of course, as a consequence of this
border enlargement, the amount of data to transfer and of computation to perform
increase too. After every communication step, the grid of elements can be processed
n times, decreasing the width of the border at each computational step.
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Border
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Figure 5.3 – Border exchange for a 5-point stencil with border size 1 and 2. Values
with the same color are computed at the same timestamp.

The approach is described as more effective for clusters than supercomputers,
showing execution times up to 6X the serial version of the benchmark application. In
the conclusion, it is argued that the main reason for that stands in the slower cluster
interconnection. Optimal border sizes for clusters were generally larger than those
for supercomputers, not showing for the latter any particular performance gain.
Our opinion is that what was experienced with supercomputers is more likely what
could be experienced with GPUs. The reason is simple. Even though bandwidth
is a bottleneck when programming GPUs, the interconnection between host and
GPUs is still way faster than an Ethernet connection. The reason why we added the
requirement on variable border sizes is to assess to what extent they can be used to
handle the bandwidth factor when solving PDEs in a multi-GPU system.

5.3 Data Partitioning

The way data is partitioned can affect communication. Typically, data partition-
ing for synchronous computation can be carried out splitting the data mesh either
in blocks or in strips, generating different communication topologies (Figure 5.4).
Wilkinson and Allen [29] argue that, when programming a multicomputer with a rea-
sonable number of processors, strip partitioning is best for communication routines
with a large startup time, while block partitioning is best for those with a contained
startup time. A reasonable number of processors in their context is p ≥ 9, which is
often satisfied even by small multicomputers. In our case, however, we cannot take
this result for granted. We cannot assume such a large number of GPUs connected
to the host. On the Tesla S1070, we estimated tstartup ≈ 3.3µs and tword ≈ 15.6µs.
Let us suppose to use a squared dataset with n2 elements and the communication
model defined in (3.15) with negligible host-host communication. Using four GPUs,
we could decide to split the domain either in blocks or in strips.

Strips are in our case set of rows, so to collect consecutive elements to share
among neighbor GPUs. As shown in Figure 5.4, splitting the dataset up in strips,
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Figure 5.4 – (a) Strip and (b) block partitioning.

requires the two GPUs in the middle to transfer data four times to carry out a correct
computation, while the two lateral ones must transfer only twice. Considering in
general k layers per border, the transfer times in these two cases are,

T striplat (n, 4) = 2T stripGPU−GPU(n, 4) = 4k(tstartup + ntword) ,

T stripmid (n, 4) = 4T stripGPU−GPU(n, 4) = 8k(tstartup + ntword) .
(5.1)

Since, in general, we are not sure that the device uses the same pitch as the host,
we suppose the worst case where contiguous rows are sent one after the other (and
so the factor k in the formulas above appears outside the parenthesis). When using
block partitioning, every GPU has indistinctly two neighbors. Considering vertical
and horizontal data transfers separately, we obtain

T block(n, 4) = T blockver + T blockhor = 2T block,verGPU−GPU(n, 4) + 2T block,horGPU−GPU(n, 4)

= 4k
(
tstartup +

n

2
tword

)
+ 4

(n
2

+ k
)

(tstartup + ktword) .
(5.2)

The four k×k corners are sent during the horizontal phase, in order to be sure that
every block updated its own corner during the vertical tranfer. To understand when
block partitioning has larger transfer time, we must solve the two inequalities

T block(n, 4) > T striplat (n, 4) , (5.3)

T block(n, 4) > T stripmid (n, 4) . (5.4)

Working out the (5.3), we find that block partitioning performs slower than strip
partitioning when

tstartup >
−2k2

n+ 2k
tword . (5.5)

Noticing that the multiplying factor on the right-hand side is always negative, we
can conclude that strip-based transfers on the two GPUs associated with the two
outer partitions are theoretically always faster than block-based ones. Solving the
(5.4), we obtain

tstartup >
2k(n− k)

n
tword . (5.6)
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If we consider that n can often be considerably larger than k,

tstartup >
2k(n− k)

n
tword

n→∞−−−→ tstartup > 2ktword . (5.7)

Differently from the previous result, where two transfers are always faster than four,
this time we come to the opposite conclusion. Using the empirical values of tstartup
and tword, we should conclude that block partitioning is always better than strip
partitioning.

So, as a summary, we cannot conclude that one method has better theoretical
properties than the other one in our context. Strip partitioning would allow two out
of four GPUs to have shorter transfers, as well as block partitioning would improve
transfer times of half of the GPUs that deal with two neighbors. Furthermore,
we just considered transfer times, while the communication time TGPU−GPU(n, g)
generally involves the time required to synchronize communication between the two
computing units. This parameter may also influence communication. When using
strip partitioning, half of the GPUs not only have half of the data to transfer, but
also half of the synchronization to manage, since they both have a single neighbor.
Based on these considerations, we finally decide to implement a communication
topology based on both strip and block partitioning.

5.3.1 Data Storage

Irrespective of the specific data partitioning technique adopted, the most natural
way to store data in main memory for our case study is to map them to consecutive
memory locations. In this way, threads can interact with each other using shared
memory areas. Borders’ addresses within neighbor areas become function of the
own address space of a thread and few other parameters (e.g. topological position).
As a consequence, the time parameter Thost−host expresses the synchronization delay
required to orchestrate threads’ access to shared memory. Input files are mapped
to memory through memory mapping, so to reduce latency due to page swapping
during the core computation. Due to our large domain size requirement then, we
prefer to exclude the hypothesis of using page-locked memory in our implementation.

5.4 Core Computation

To compute the red-black SOR method as described in Section 4.2.4, we must first
decide how to apply red-black ordering coherently to the overall domain. In this
way, we grant the convergence of the whole calculation. The decision is to assign red
positions starting from element (1, 1). Colors create two disjoint sets of elements.
Elements in one set exclusively depends on elements in the other set and themselves.
We associate the two substeps in (4.18) to two different CUDA kernels that will be
launched one after the other, so to preserve the temporal ordering introduced by
the Gauss-Seidel method. Always in a top-down approach, let us now consider the
outer host computation.
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5.4.1 Host Computation

Every thread is associated with a different GPU and has to elaborate one portion of
the whole domain. In Algorithm 5.5 the main computational steps are listed. Right

Domain D := mmap(” domain . in ”) ;

begin in p a r a l l e l :

s e l e c t d e v i c e ( th read idx ) ;

{Load subdomain on dev i ce with bs l a y e r s per border }
load subdomain (D[ th read idx ] , bs ) ;

for i := 0 to i t e r a t i o n s /bs do
begin

for i := 0 to bs do
begin
{Red/Black SOR reducing border ’ s s i z e at each i t e r a t i o n }
RBSOR(D[ thread idx ] , bs−i ) ;

end

{Exchange border with ne ighbors }
border exchange (D[ th read idx ] , bs ) ;

end
end in p a r a l l e l .

Figure 5.5 – Overall benchmark algorithm.

after having mapped the input file to main memory, a number of threads are spawn,
and different memory areas are assigned to each of them. Different partitioning and
synchronization approaches imply different allocations. Section 5.5 describes this
point more in detail. The SOR parameter, if not explicitly indicated from command
line, is computed using (4.17) in Section 4.2.3.

Every thread is characterized by an index that unambiguously associate it to
its area and the GPU it has to use. First operation for every thread is to select a
GPU according to its index. The solver must run for a certain number of iterations.
After every iteration, to produce a consistent approximation of the solution, borders
must be exchanged. Using the approach described in Section 5.2, a certain number
of iterations may run locally. In this last case, thicker borders must be exchanged
once the computation has consumed all the outer extra layers in the border.

5.4.2 Device Computation

The red and black SOR steps are implemented with two different CUDA kernels. To
run a single red-black SOR iteration, we need to invoke red and black kernels one
after the other. Since both the kernels use the same data and are run on the default
stream 0, calling them in sequence automatically imposes a threads synchronization
point in between the two calls. Such a point excludes every chance to start black
computation in advance. Before describing the most relevant details of the design
and implementation of the kernels, we summarize the most important step in their
computational flow. Every kernel must:
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1. Load data from global memory;

2. Compute the stencil-based operations;

3. Write data back to global memory.

Execution Configuration Setup

In short, setting up the execution configuration means deciding how to map com-
putation to the thread hierarchy and how to split, and eventually share, resources.
Mapping computation to the thread hierarchy comes also very natural thanks to
the streaming processing model of the GPU. Since every red (black) point is inde-
pendent from all the other red (black) elements, assigning the computation of one
domain point to a single thread supports the natural parallelism of the task. So the
2D domain can be mapped to a 2D grid, where several threadblocks carry out the
red/black computation. The number of threads per threadblock and the amount
of resources at their disposal, is strictly related to the goal of taking advantage of
the hardware as much as possible. In Section 3.2.1, we introduced multiprocessor
warp occupancy, SMocc, as a reference parameter to estimate if a certain execution
configuration support or not an efficient repartition of the resources. Maximizing
SMocc requires to increase as much as possible the number of active threadblocks
per SM:

MAX(SMocc) = MAX

(
Wactive

DEF(Wmax active)

)
⇔ MAX(Wactive) = MAX(WB ·Bactive) ,

and

MAX(Bactive)⇔ MAX(MIN ((BSM)warp limited , (BSM)reg limited , (BSM)Sh limited) ) .

The max-min problem shown above presents a large range of feasible solutions.
These are obtained tuning the parameters that can potentially limit the maximum
number of active threadblocks per SM, i.e. the number of threads per threadblock
TB, the number of registers per thread RT , and the requested amount of shared
memory per threadblock ShB req.

We already mentioned the CUDA Occupancy Calculator as a tool to speed up
this tuning phase. An initial combination of these factors come from the problem
requirements. Our kernels must essentially apply the stencil-based operation to a
bunch of points. Stencil-based operations involves neighboring values (four in our
case) that are typically not aligned when data are stored linearly. Furthermore,
the same value can be required more than once. For these reasons, our solution
can really benefit from the use of shared memory in our kernels. The amount of
shared memory, however, depends on the number of threads per threadblock, since
the more the threads the more the neighbors, and the more the neighbors the more
memory must be shared among the threads.

Here is a possible way to tune the parameters based on the assumptions made
so far. First thing to do is to set the right compute capability (i.e. 1.3 in our
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case). Since we want to define the amount of shared memory based on the number
of threads, we start assuming a very low number of threads, say TB = 1. The
calculator automatically calculates and shows the GPU occupancy parameters, as
reported in Figure 5.6. We can see how using a single thread per threadblock would

Figure 5.6 – GPU occupancy parameters using a single thread per threadblock.

drastically reduce the occupancy of the SMs. However, the Calculator also presents
us the three graphs in Figure 3.8. These graphs give us an idea about how the warp
occupancy may change moving the parameters’ values. We notice the presence of
three peaks in the graph in Figure 3.8(a) that would move the occupancy to its
maximum (i.e. Wactive = 32) and so to a 100% occupancy. The difference would be
in the number of active threadblocks per SMs. A larger threadblock would require
more warps to be processed, consequently reducing the possible active threadblocks
per SM (Figure 5.7). Supposing to set a value in between TB = 112 and TB = 128,

(a)

(b)

Figure 5.7 – GPU occupancy parameters with (a) TB = 128 and (b) TB = 256.

the warp occupancy status is shown in Figure 5.8. With this configuration we have
at disposal 2048 KB of shared memory per threadblock and up to 16 registers per
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thread. This allows us to load in shared memory up to 2048/4 = 512 floating points.
At this point, the next goal is to design the internal structure of each kernel based
on this constraints.

(a) Dependence on the threadblock size (b) Dependence on the number of registers

(c) Dependence on the amount of shared memory

Figure 5.8 – Warp occupancy with 112 ≤ TB ≤ 128.

Red SOR Kernel

Based on the previous arguments, we have the possibility to instantiate between 112
and 128 threads per threadblock, loading at most 512 domain elements. Moreover,
would be beneficial to use at most 16 registers per thread. Our solution presents
threadblocks as 1D collections of 112 threads working on an area of 4 × 112 ele-
ments. In this way, it is possible to acquire 1792 KB in exactly 28 coalesced accesses
(Figure 5.9). Since not always the height of an area is divisible by four, a variable
keeps track of whether lines are three or four:

int ok3 = gr idPosBase j+3 < h ;

Of the 2048 KB that could be used without degrading occupancy, 256 bytes are
not directly used. Part of them are used to store the kernel’s actual parameters
together with the execution configuration parameters. Another part, instead, re-
mains completely unused. Adding few values per row, however, would require four
more accesses to global memory to transfer less data than what could be transfered.
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i f ( g r idPosBase i+i < n)
{

s g r i d [ATS( i , 0 ) ] = dgr id [ATD( i , 0 ) ] ;
s g r i d [ATS( i , 1 ) ] = dgr id [ATD( i , 1 ) ] ;
s g r i d [ATS( i , 2 ) ] = dgr id [ATD( i , 2 ) ] ;
i f ( ok3 )

s g r i d [ATS( i , 3 ) ] = dgr id [ATD( i , 3 ) ] ;
}

Figure 5.9 – Code to load four lines of memory from global memory.

In terms of performance, that would be worse than wasting few bytes. The values
excluded are in any case processed by some other thread within some other thread-
block, without introducing irregularities in the way to access global memory. Access
to global and shared memory is done through two macros reported in Figure 5.10.
They are based on the strides of each specific memory region. The portions of do-

#de f i n e ATD(x , y ) ( p i t ch ) ∗( g r idPosBase j+(y ) ) + ( gr idPosBase i+(x ) )
#de f i n e ATS(x , y ) ( l o ca l w ) ∗( y ) + (x )

Figure 5.10 – Indexing macros.

main assigned to contiguous threadblocks overlap on those elements that act as local
borders. Since such portions have borders with unitary width, frames must slide 2
elements vertically and blockDim.x − 2 elements horizontally. So the position of a
threadblock is computed taking this sliding effect into consideration, as shown in
Figure 5.11. Data loaded in shared memory are processed by all the threads but
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int gr idPosBase j = blockIdx . y
∗2 ;

int gr idPosBase i = blockIdx . x∗
( blockDim . x−2) ;

Figure 5.11 – Code to determine the position of a threadblock in its grid.

two. Threads are mapped reflecting the red access pattern, as shown in Figure 5.12.
Every thread in a threadblock is mapped to an element based on the absolute co-
ordinates of the element in the overall domain, as shown in Figure 5.13. Only odd
rows of the overall domain have red elements in locations (1, i). Different GPUs,
however, enumerate blocks relatively to their local portion of domain. Due to the
borders, every second local iteration makes the local domain start with an odd line
of the overall domain, thus having in position (1,1) a black spot. To understand
whether to start from (1,1) or (2,1), one of the parameters to the kernel contains the
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Figure 5.12 – Threadblock mapping to shared memory elements during the first two
phases of the red SOR kernel.

int r1 = ( ab s s t a r t+gr idPosBase j
+1)&1;

int s i gn = r1 + mul24(1−r1 , −1) ;

//Red indexes o f computation
int com i = i +1;
int com j = (2− r1 ) + mul24 ( s ign ,

1& i ) ;

int r1 = ( ab s s t a r t+gr idPosBase j
+1) % 2 ;

//Red indexes o f computation
int com i = i +1;
int com j = 1 ;
i f ( r1 )

com j = 1 − ( i %2) ;
else

com j = 2 + ( i %2) ;

Figure 5.13 – Code to determine the red coordinates in shared memory with analo-
gous branch-based version.

absolute vertical coordinate of the first element of the local domain. In this way,
the kernel is able to understand if point (1,1) in shared memory is red or not, and
set the computing y coordinate (i.e. comj) to the right value.

Code in Figure 5.13 computes indexes using integer arithmetics instead of branch-
ing. This is for preventing warps from being split up and serialized. Even filling up
the device memory of all the GPUs on the Tesla S1070 with a domain of nearly 16
GB, indexes would never need more than 24 bits to be represented. Thus fast 24-bit
integer multiplications are used instead of the slower 32-bit ones (4 cycles per warp
against 16).

Once sure that the thread would not operate outside the local and the global mar-
gins, the computation of the red SOR step is done accessing the two central shared
memory rows (when the last line is valid, otherwise just row one). The kernel ap-
plies the stencil-based operations described in (4.18) using the passed overrelaxation
parameter (Figure 5.14). Access to shared memory is conflict free. We achieve this
storing values in consecutive banks with unitary stride. Since the threadblock size is
multiple of half the warp size, a thread with index i always accesses the same mem-
ory bank when reading from or writing to elements (i,0), (i,1), (i,2), or (i,3) (see
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i f ( ( i<l oca l w −2)&&(gr idPosBase i+i<n−2) )
{

i f ( ok3 )
s g r i d [ATS( com i , com j ) ] +=
omega∗(

( s g r i d [ATS( com i−1, com j ) ] + sg r i d [ATS( com i+1, com j ) ] +
sg r i d [ATS( com i , com j−1) ] + sg r i d [ATS( com i , com j+1) ] ) /4 . f − s g r i d [ATS(

com i , com j ) ]
) ;

else i f ( com j != 2)
s g r i d [ATS( com i , com j ) ] +=
omega∗(

( s g r i d [ATS( com i−1, com j ) ] + sg r i d [ATS( com i+1, com j ) ] +
sg r i d [ATS( com i , com j−1) ] + sg r i d [ATS( com i , com j+1) ] ) /4 . f − s g r i d [ATS(

com i , com j ) ]
) ;

}

Figure 5.14 – Red SOR step application.

Figure 5.15). Finally data are written back to global memory through 7 coalesced
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Figure 5.15 – Threadblock access pattern to shared memory.

writes (Figure 5.16). There are two synchronization points throughout the kernel.
One is right after the data loading phase, so to apply the SOR step using the right
values. The second point is after the computation phase, in order to write all the
updated values back to global memory. The complete kernel is entirely reported

i f ( ( i<l oca l w −2)&&(gr idPosBase i+i<n−2) )
{

i f ( ok3 )
dgr id [ATD( com i , com j ) ] = sg r i d [ATS( com i , com j ) ] ;

else i f ( com j == 1)
dgr id [ATD( com i , 1) ] = s g r i d [ATS( com i , 1) ] ;

}

Figure 5.16 – Code to write data back to global memory.

in Appendix B. The number of registers can be monitored compiling with option
”-ptxas”. It produces a list with all the kernels that have been compiled and the
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main resources required by each of them. As a general property of all the kernels,
registers involved are within the range 9-12.

Black SOR Kernel

The black SOR kernel is basically very similar to the red one. What changes is
substantially the computation of the indexes of the points where to apply black
SOR. Figure 5.17 shows the code used to compute such indexes.

int r1 = ( ab s s t a r t + gr idPosBase j
+1)&1;

int s i gn = (1− r1 ) + mul24 (−1 , r1 ) ;

//Black indexes o f computation
int com i = i +1;
int com j = (1+r1 ) +

mul24 ( s ign ,1& i ) ;

int r1 = ( ab s s t a r t+gr idPosBase j
+1) % 2 ;

//Black indexes o f computation
int com i = i +1;
int com j ;
i f ( r1 )

com j = 2 − ( i %2) ;
else

com j = 1 + ( i %2) ;

Figure 5.17 – Code to determine the black coordinates with analogous branch-based
version.

Texture-based Approach

Our solution makes use of coalesced accesses to global memory to improve the per-
formance of read/write operations. However, in order to investigate how beneficial
can different approaches to the memory turn out, we designed a texture-based ver-
sion of the kernels. Our access pattern indeed, presents a good degree of locality
since memory elements are accessed sequentially.

Every thread is associated to a different texture bound to its own portion of
domain. Textures must be bound at each iteration, since some of the outer layers
contain ghost elements. Borders containing such layers must be shrunk until the
core area is not reached, thus reducing the dimension of the area bound to the
texture. The code used to load data from global memory (Figure 5.9) is modified so
to fetch elements from texture (Figure 5.18). The proper texture is selected by an

i f ( g r idPosBase i+i < n)
{

s g r i d [ATS( i , 0 ) ] = selectTex1D (dev , ATD( i , 0 ) ) ;
s g r i d [ATS( i , 1 ) ] = selectTex1D (dev , ATD( i , 1 ) ) ;
s g r i d [ATS( i , 2 ) ] = selectTex1D (dev , ATD( i , 2 ) ) ;
i f ( ok3 )

s g r i d [ATS( i , 3 ) ] = selectTex1D (dev , ATD( i , 3 ) ) ;
}

Figure 5.18 – Data loaded through texture fetching.

inline, device function based on the specific device number, as shown in Figure 5.19.
Textures are not writable entities. After the computation has been carried out, data
are written back to global memory as described in Figure 5.16.
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f loat device selectTex1D ( int gpu , int pos )
{

switch ( gpu )
{

case 0 :
return tex1Dfetch ( texRef 0 , pos ) ;

case 1 :
return tex1Dfetch ( texRef 1 , pos ) ;

case 2 :
return tex1Dfetch ( texRef 2 , pos ) ;

case 3 :
return tex1Dfetch ( texRef 3 , pos ) ;

}
return 0 . f ;

}

Figure 5.19 – Texture select & fetch function.

Impact of Data Partitioning on Kernels

When the domain is horizontally strip partitioned, every threadblock that starts
loading data in shared memory from an even row (with respect to the entire domain)
is granted to have red cells in position (2i+ 1, 1) and (2i, 2). This because the ideal
frame that contains the data to load in shared memory slides horizontally by an
even number of columns (blockDim.x − 2 = 110). When the domain is divided
in blocks, some local areas might have the opposite color ordering than the whole
domain (i.e. black top-left corner). In this ituation, threadblocks must check a more
general condition than the one in Figure 5.13 to understand whether position (1,1)
in shared memory is red or not. With respect to the absolute coordinates of the
whole domain, red cells lie either in position (2k, 2k) or (2k + 1, 2k + 1). Thus,
the bitwise arithmetic expression to check the color of cell (1,1) in shared memory
becomes like the one in Figure 5.20.

int r1 = ( ( a b s s t a r t i + gr idPosBase i +1)&1)&(( a b s s t a r t j + gr idPosBase j +1)
&1) ;

r1 |= ! ( ( a b s s t a r t i + gr idPosBase i +1)&1) & ! ( ( a b s s t a r t j + gr idPosBase j +1)
&1) ;

Figure 5.20 – Code to determine the red coordinates in shared memory when using
block partitioning.

5.5 Communication and Synchronization

Communication is the second important part of the code executed by every thread
after computing one or more complete SOR iterations on their portion of domain.
Aside the kind of subdivision used to split the domain up, there must be a protocol
that regulates threads’ communication at each border. Let us suppose to look at
the frontier between two regions A and B. After the computation process is over
at iteration i, the device memories of the GPUs associated with And B contain
two updated portions of the starting domain Ai and Bi. To proceed with the next
iteration, they first have to exchange borders between each other. This can be done
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writing and reading just those data that compose the border, and therefore are
necessary to continue the computation. However, threads’ scheduling is completely
unpredictable, and data consistency must be assured. A way to do that is to grant
that the following two conditions are always respected:

• A border cannot be written at iteration i if the other thread has not read it
yet at iteration i− 1;

• A border cannot be read at iteration i if the other thread has not written it
yet at iteration i− 1.

In order to implement such a protocol, we associate two counters to each border of
the two regions A and B. One counter, r, counts how many times a border has been
read, while the other one, w, how many times a border has been updated. If we sup-
pose that they are initialized to zero and that we count iterations starting from zero,
then a thread T0 has read its neighbor T1’s border at iteration i if r(T1) == i+ 1,
and it has written to main memory its own border if w(T0) == i+1. The algorithm
in Figure 5.21 describes the procedure in which a thread updates its border’s copy
in main memory and acquires the border of the neighbor. Before executing the first

procedure borderExchange ( Thread T, Neighbor N,
Region R T , Region R N, DeviceRegion D R, integer i t e r )

begin
{Eventua l l y wait u n t i l N reads T’ s border }
while ( r (T) <> i t e r +1) ;

{Update border in main memory with the most recent from D R}
R T . border = D R. myBorder ;

{T wrote i t s border once more}
w(T) := w(T)+1;

{Eventua l l y wait u n t i l N wr i t e s i t s border }
while (w(N) <> i t e r +1) ;

{Update border in dev i ce memory with the most recent from R N}
D R. NeighborBorder = R N . border ;

{T read N’ s border once more}
r (N) := r (N)+1;

end

Figure 5.21 – Border exchange algorithm.

SOR computation, each thread has to write to shared memory for the first time and
to load data (borders included) in global memory. This increments both the counters
for all the borders. After this startup phase the computation and communication
follows up. At each iteration, when the computation is over, threads run the illus-
trated procedure for each frontier they face. The communication topology imposes
a structure to the communication which will be analyzed later on in this section. At
iteration i, for each of its frontiers, a thread starts waiting for the neighbor to read
its border if it has not done it yet. In that case, it means that the neighbor still has
to run the ith computation. Once it is allowed, the thread updates its shared border
in main memory and increments the writing counter associated with that memory
area. Afterwards, it checks that the neighbor has also updated its border in main
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memory. If it has not the thread put itself in a waiting status, otherwise it loads
the updated neighbor’s border in device memory for the next (i+ 1)th computation
and increments the associated read counter.

A formal and concise description of the possible states during the synchronization
phase can be obtained from the Petri net1 in Figure 5.22. In our discussion so far, we

Thread i Thread k

T0

T1 T2

T3

T4

T6T5

T7

T0, T4

T1, T6

T2, T5

T3, T7

First write&load

Compute

Write own border
in main memory
Load neighbor border
in device memory

Figure 5.22 – Petri net describing the interaction between two neighbor threads.

implicitly assumed that threads were operating atomically on shared elements, i.e.
borders and counters. In reality, such an atomicity property must be programmed.
We associate a mutex and a condition variable to each counter. When a thread
wants to check whether the neighbor has already read or not its border, it has to
lock the mutex associated to that border before accessing the border’s read counter.
If then the counter is not up-to-date, the thread waits on the counter’s condition
variable releasing the mutex. When the counter reaches the expected value, the
neighbor signals the condition variable throwing the waiting thread in again. Then
when the thread has moved its own border to main memory, it acquires again the
mutex on the border so to safely increment the writing counter. Once the counter
has been incremented, it signals the condition variable associated to the counter so
to notify the eventually waiting neighbor. A similar approach is adopted for the
reading part of the exchange border procedure.

5.5.1 Impact of Data Partitioning on Communication

Different data partitioning techniques bring to different communication topologies.
We want to analyze the two methods we took into account in this chapter, i.e. strip
partitioning and block partitioning.

1Carl Adam Petri is a German mathematician and computer scientist. His Petri nets are well
suited for modeling the concurrent behavior of distributed systems.
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Strip Partitioning Communication

We apply strip partitioning vertically, as shown in Figure 5.4(a). In order to mini-
mize the time spent by threads to wait for each other, the communication direction
for each of them is alternated in a chessboard fashion. In this way, those threads
in the middle are provided with a clear policy about which direction to consider
first. If the thread has an odd rank then it starts working in the northern frontier,
otherwise in the the southern one. The process is depicted in Figure 5.23. In prin-

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 1 Thread 2 Thread 3

Figure 5.23 – Chessboard-ordered threads communication.

ciples, we could refine the communication process even further. Considering that
border exchanges across different frontiers are totally independent from each other,
we could split the job of the interior threads in two. Using a boss-worker model and
n GPUs, if an interior thread would assign the task of exchanging data across the
two frontiers to two other worker-threads, we would end up with n − 1 couples of
threads carrying out their jobs in parallel (and so potentially at the same time if
the CPU would have enough cores at its disposal, see Figure 5.24). However, this

Boss
Worker Worker

Worker

Worker

Boss

Worker

Worker

Subdomain 0 Subdomain 1 Subdomain 2 Subdomain 3

Figure 5.24 – Boss-worker threads communication.
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approach is not practicable using the CUDA Runtime API, since it lacks threads’
contexts migration capabilities. After a thread is created, it is associated to a new
device context where it can manage all that is needed to handle a GPU. If at a
certain point that thread would create another new thread, the new one could not
refer to the same context as the father, for instance loosing the possibility to share
memory on the same GPU. To our knowledge, the only way to implement such a
solution is to use the thread migration API, but it is part of the CUDA Driver API,
which use would require to rewrite the entire application from the beginning with
a different approach. To go back to the chessboard approach, Figure 5.25 shows a
sketch of the communication code used when data is strip partitioned.

i f ( rank%2) // i f odd s t a r t from NORTH otherwi se from SOUTH
{

wr i t e gho s t s ( rank , nor th border ) ;
r ead ghos t s ( rank−1) ;
w r i t e gho s t s ( rank , south border ) ;
r ead ghos t s ( rank+1) ;

} else
{

wr i t e gho s t s ( rank , south border ) ;
r ead ghos t s ( rank+1) ;
w r i t e gho s t s ( rank , nor th border ) ;
r ead ghos t s ( rank−1) ;

}

Figure 5.25 – Communication among threads managing a strip partitioned domain.

Block Partitioning Communication

We design our block partitioning supposing that all the GPUs in the Tesla S1070 are
involved in the computation. Using just 2 GPUs would bring to a strip partitioned
domain. Let us consider the case represented in Figure 5.4(b). Communication in
this case must be organized so to correctly transfer those elements that belong to
overlapping areas.

To reach this goal, we can require the threads to carry out the communication
first vertically and then horizontally, creating pairs of communication flows. When
exchanging data in the north-south direction, threads must write their entire bor-
ders from device to host, and read just those elements that are exclusively shared
by the couple (i.e. excluding the central elements shared by all the four threads).

During the second phase threads communicate on the east-west axis. Here, they
first write to main memory their updated borders disregarding those elements al-
ready written during the first phase. Afterwards, they read their neighbors’ borders
including the central elements shared by all the threads. The approach is graphically
explained in Figure 5.26. Moving the central points during the last phase grants that
the central values have been correctly updated, since they are written during the
first group of writes in the north-south communication. An implementation draft
for this kind of communication is given in Figure 5.27 for a block with index rank.
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1st Phase 2nd Phase

Border element

Subdomain element

Figure 5.26 – Communication flows among blocks.

wr i t e gho s t s ( rank , v e r t bo rde r ) ;
r ead ghos t s ( v e r t ne i ghbo r ( rank ) ) ;
w r i t e gho s t s ( rank , ho r i z bo rde r ) ;
r ead ghos t s ( ho r i z n e i ghbo r ( rank ) ) ;

Figure 5.27 – Communication among threads managing a block partitioned domain.



Chapter 6

Benchmarks vs. Model Estimates

In this chapter we summarize the results obtained using the benchmark application
described in chapter 5. The chapter starts describing the execution environment in
Section 6.1. The test methodology is presented in Section 6.2, and results are shown
and discussed in Section 6.3.

6.1 Experimental Environment

The experiment was run on a heterogeneous system composed by a multicore CPU
and a multi-GPU system.
The quadcore microprocessor is based on the Nehalem microarchitecture, and the
main features are listed in Table C.1. The multi-GPU system is the NVIDIA Tesla

Table 6.1 – CPU Features.
Architecture Intel 64
Number of cores 4
Clock speed 3.20 GHz
SMT Intel hyperthreading, which enables two

threads per core.
Memory controller Integrated DDR3 memory controller (three

channels, 2 DIMMs/channel).
Connection to the
I/O Hub

Intel QuickPath Interconnection (four 20-bit
channels, 6.4 GT/s).

L1 cache 32 KiB L1 instruction and 32 KiB data cache
per core.

L2 cache 256 KiB L2 cache per core.
L3 cache 8 MiB L3 Intel Smart Cache.

S1070 Computing System described in Section 2.3 (-400 configuration). The main
characteristics are summarized in Table 6.2. The installed operating system is
Ubuntu 9.04 with Linux kernel 2.6.28-11. The CPU application is compiled us-
ing gcc version 4.3.3 with option -O3. The GPU software is developed for CUDA

61
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version 2.1 and compiled with nvcc version 2.21.

6.2 Methodology

Every single execution of the PDE solver is aimed at solving a problem for I = 100
iterations. We organized the entire benchmark execution in three rounds. In the
first round, we ran the solver on squared domains with dimension N × N . In the
second rounds, the solver was run on rectangular domains with dimensions N/2×N
and N × N/2. Finally, in the last round, we ran the solver on squared domains
varying the border size in the range [1-100].

Every single execution was run several times. The number of attempts per
execution was mostly affected by the dimension of the domain (i.e. the larger the
domain, the less the number of attempts). We noticed that, especially in between
different executions, the first attempts produced ill-conditioned time results. For
this reason, to estimate the central tendency of several tries of the same execution,
we use the median, as the arithmetic mean is easily affected by the presence of
outliers. Table 6.3 summarize the number of attempts per execution depending on
the domain size and the benchmark round.

1CUDA 2.2 was released May 7, 2009. Since it does not introduce novelties relevant to our
development, we decided to maintain the context of the previous 2.1 version.

Table 6.2 – NVIDIA Tesla S1070 Features.
Number of GPUs 4 Tesla T10, compute capability 1.3 (See Ap-

pendix A for a detailed list of features).
Number of SPs 960 (240 SP per GPU, 1.30 GHz)
Single precision peak
performance

3.73 TFLOPS

Double precision peak
performance

311 GFLOPS

Standard of precision IEEE 754 for both single and double preci-
sion.

Device memory 16 GB (4 GB dedicated DRAM per GPU)
Memory interface 512-bit
GPU-device memory
bandwidth

up to 408 GB/s.

Connection to the
host

Through 2 PCIe channels pairwise shared.
Two GPUs are connected to an NVIDIA
switch. Every Switch is connected to a PCIe
slot on the host through an NVIDIA Host In-
terconnection Card (HIC).

GPU-host bandwidth up to 12.8 GB/s.
Run-time limit on
kernels

No.
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6.2.1 Collected Output Values

In the following, we indicate with G the number of GPUs, with I the number of
iterations, with BS the border width, and with time(a, i) the time required by the
action a to take place at iteration i. In Section 3.2.2, we proposed a simple model for
the communication between two GPUs. Now, to motivate our output acquisition,
we want to extend the formulation to a multi-GPU system. Taking into account the
description in Section 3.2, a multi-GPU system is the combination of a node and a
set of GPUs. We propose the following formulation as a general model,

Tmulti−GPU = Tnode(m, p) + max
g∈G

(
T gkernel(n, g) + T gGPU−GPU(n, p)

)
, (6.1)

where Tnode is the model of the specific node (e.g. a node of a multicomputer). The
max operator is motivated by the fact that the several GPU contexts are executed
in parallel.
Taking the model in (6.1) as a reference, the values collected from the execution
output are:

Mean Kernel Time (MKT) Average time required to execute a kernel compu-
tation (both red and black kernels). Time in ms. Formally:

max
g∈G


I∑
i=0

(time(RSOR, i) + time(BSOR, i))

I



Mean Synchronization Time (MST) Average time spent in synchronization
during one iteration. Time in ms. Formally:

max
g∈G


I/BS∑
i=0

time(synch, i)

I/BS



Table 6.3 – Number of attempts per execution depending on the domain size and
the benchmark round.

Domain size Round 1 Round 2 Round 3

128 ≤ N < 4000 30 30 3
4000 ≤ N < 8000 20 20 3
8000 ≤ N < 33000 10 10 3
33000 ≤ N ≤ 52000 5 5 3
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Mean Transfer Time (MTT) Average time spent transferring borders during
one iteration. Time in ms. Formally:

max
g∈G


I/BS∑
i=0

time(transfer, i)

I/BS



Mean Communication Time (MCT) Average time spent in communication
during one iteration. Time in ms. Since MCT is an estimation of the time
required by the whole communication code, MKT + MST ≤ MCT. Formally:

max
g∈G


I/BS∑
i=0

time(communication, i)

I/BS



Elapsed Time (ET) Time in seconds required to solve the PDE for I iterations,
with G GPUs, exchanging BS wide borders.

We want to remark that MKT, MST, MTT, and MCT refer to one iteration, that
means that they are all measurements from the solver’s core computation. The data
transfers outside the core computation (i.e. the first and last transfers, responsible of
moving the entire subdomains from and to the GPUs) as well as the time required to
allocate space on the devices are not directly collected. This values are summarized
in ET.

6.2.2 Timing

On the CPU, time was measured on the system-wide realtime clock using the
clock gettime() system call. The system call returns a value of type struct time-
spec, containing seconds and nanoseconds from the Epoch.

On the GPU, instead, time was retrieved using CUDA events. CUDA events
are part of the CUDA API. They are recorded into CUDA call streams, and can be
used to measure elapsed time for CUDA calls on the device with approximately 0.5
µs precision.

6.2.3 Helper Tools

Around the benchmark application, we developed a set of tools to help automating
the creation of the set of domains, and the test phase. They are all described in
Appendix D.
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6.3 Results Discussion

We describe our results from different perspectives, in order to discuss how the
different variables exposed by our application can impact on performance factors.
For the sake of clarity, in this section we report just those charts that we consider
the most significant for our analysis. A wider collection of graphs can be found in
Appendix E.

6.3.1 Domain Size and Data Partitioning

A first consideration comes from the evaluation of the execution time as the domain
size increases. Aside the obvious time increase due to the elaboration of larger and
larger domains, Figure 6.1 shows another relevant particular. In the graphs, the
Kernel Time (KT), Synchronization Time (ST), Transfer Time (TT), and Commu-
nication Time (CT) are all obtained from the respective MKT, MST, MTT, and
MCT measures. For this reason they refer, as we already mentioned, to the core
computation only.
If we would exclusively consider the core computation, we may notice that the ap-
plication is kernel bound. Indeed, while the size of the borders to transfer grows
linearly, the area to process grows quadratically, becoming the most expensive over-
head. However, the blue curve shows the median elapsed time, which takes into
account the first and last transfers between host and GPUs, the device allocation
time, and the first synchronization (that simply consists in signaling the condition
variables related to the transfered memory areas after the first transfers). Allocation
and synchronization represent a very small percentage of MET (Normally not over
10%). From this outer perspective then, the entire application becomes practically
transfer bound, requiring, for large domains, up to three times the kernel time to
transfer the entire subdomain areas.

In terms of data partitioning, the graphs in Figure 6.2 tell us that strip parti-
tioning turns out as the best configuration, always outperforming the alternative
blocked solution. Looking at the time outcomes shown in Figure 6.3, it seems that
the reason is again related to the cost of transferring data outside the core compu-
tation. For large domain sizes, transferring blocks can cost almost four times more
than transferring strips. In Section 5.3 we proposed a simple model of host-device
communication. Such a model, however, appears rather inaccurate. We measured
the time required by the cudaMemcpy2D() call to transfer different kinds of data
block. Results are shown in Table 6.4. As we can notice, our model presents a large
deviation from the real measurement. Transferring a block with dimension n/2× k
using the cudaMemcpy2D() takes much more (almost 50 times in the specific case
of the table) than transferring a block of dimension k × n. Such a result motivate
the notable increase in time required when using block partitioning instead of strip
partitioning.

However, we found a linear relation between the dimension of a block of con-
tiguous elements expressed in gigabytes and the time required to transfer it. We
acquired transfer times for different block dimensions and we calculate a a curve
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(a) Median Elapsed Time (MET)

(b) Median Absolute Deviation

Figure 6.1 – Execution on domains NxN using: four GPUs, global memory based
kernel, strip partitioning, and unitary border width.

Table 6.4 – Comparison between the linear model used in Section 5.3 and the real
time required by the cudaMemcpy2D() function. The matrix involved has dimension
11585× 11585. On the device, memory was allocated with cudaMallocPitch().

K N Measured time [ms] K(tstartup +N ∗ tword) [ms]

1 0 0.003 0.003
1 1 0.015 0.015
5 11585 0.145 3384.557
5 5792 0.049 1692.140

5792 5 7.443 1710.659
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(a) Global memory based kernel.

(b) Texture based kernel.

Figure 6.2 – Block over strip partitioning speedup. Execution on domains NxN using
four GPUs and unitary border width.
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(a) Median Elapsed Time (MET)

(b) Median Absolute Deviation

Figure 6.3 – Execution on domains NxN using: 4 GPUs, global memory based kernel,
block partitioning, and unitary border width.



6.3. RESULTS DISCUSSION 69

that could fit those values using the least squares method. The results are shown
in Figure 6.4. The third curve represents a first attempt to find an approximation

(a) TGPU−host(n) prediction using statistical regressions.

(b) TGPU−host(n) prediction error.

Figure 6.4 – TGPU−host(n) prediction.

using a more general power regression method. Considering that we want to look
for a general approximation of the transfer time, such as

TGPU−host(n) = a · nb, (6.2)

we could think to take a logarithmic scale of the function, obtaining the expression

ln(TGPU−host(n)) = ln(a · nb) = ln a+ b lnn. (6.3)

At this point, it is possible to use linear regression in order to find ln a and b. Using
this approach, we found a quasilinear exponent b = 0.99. This suggested to apply
directly the least squares method to the initial set of data, obtaining the linear curve
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in Figure 6.5(a). The quasilinear curve obtained through power regression, is more
precise for smaller domain sizes, while the linear curve appears more accurate for
larger sizes. We used the curves with a smaller dataset of random dimensions to
test their fitness, and the results are those shown in Figure 6.5. Using the same
approach of linear regression, we similarly tested different Tesla-based GPUs in-
stalled on a different architecture, again obtaining acceptable approximations (see
Appendix E.1.4). Such a result could be taken into account when there is a need
to model the transfer of blocks of contiguous elements. However, it is important to

(a) TGPU−host(n) prediction fitting test.

(b) TGPU−host(n) prediction fitting test error.

Figure 6.5 – TGPU−host(n) prediction fitness test.

consider the nearness of the elements in the block as a strict requirement to make
linear regression an acceptable predicting tool. As we can notice in Table 6.4, us-
ing different position patterns within the block may turn out in extremely different
results. To define a better model for the memory copy function we would need a
deeper knowledge of its implementation, but unfortunately, at the moment, such
details are not available.
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In any case, as our experience and many other recent findings prove [19], dynamic
modeling techniques, based on statistical observations and methods, appears a bet-
ter approach to define predicting models able to adapt to real systems’ conditions
than static models.

6.3.2 Domain Shape

Another variable we took into account is the domain shape. In our context we call
Shape0 the rectangular shape of a domain with dimension N/2 × N , and Shape2
the rectangular shape of a domain with dimension N ×N/2.
Figures 6.6 and 6.7 show the speedups for applications run with four GPUs. Speedups
are calculated as the ratio of the median elapsed time using Shape0 to the median
elapsed time using Shape2.

When using strip partitioned domains (Figure 6.6), there is not great benefit
from using one shape or another. This because, as we noticed in the previous
section analyzing the domain size, the core computation is kernel bound and, as
recalled by Table 6.4, transferring contiguous bytes of memory is rather efficient.
For block-partitioned domains, results are shown in Figure 6.7. In this case it is
clearly visible how the high cost of horizontal transfers can degrade the application
performance when using domain with Shape2.

6.3.3 Global Memory Vs. Texture Based Kernels

We focus now on the usage of different device memory areas. In Section 5.4.2, we
discussed the possibility to load memory from device to shared memory using two
possible approaches: through coalesced access to global memory, and fetching from
texture memory. The first approach does not make use of intermediate cache, while
the second one is supported by a 2D data cache.

We measured the time required by the application using both the mentioned
approaches. Always based on the median elapsed time, Figure 6.8 shows the speedup
as the ratio of the execution of global memory based kernels to the execution of
texture based kernels. The shown results put the two choices practically at the same
level, leading us to the conclusion that, in our context, using coalesced accesses is
as efficient as exploiting space locality.

6.3.4 Number of GPUs

The effect of using more than one GPU is shown in Figure 6.9 just for the tex-
ture based case. The graphs underline that involving the most of the GPUs avail-
able is always an appropriate decision since from small dimensions of the domain
(N × N > 3000 × 3000 ≈ 36 MB). The curves show that using four GPUs can be
up to 3.4X faster than using only one, and 1.8X faster than using two.

After N = 16000 however, the curves start exhibiting a drastic reduction in
performance. We think that this effect can be produced by resource contentions. As
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Figure 6.6 – Speedup of executions using Shape0 (N/2×N) domains over executions
using Shape2 (N ×N/2) domains. Domains are strip-partitioned.

Figure 6.7 – Speedup of executions using Shape0 (N/2×N) domains over executions
using Shape2 (N ×N/2) domains. Domains are block-partitioned.
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described in Section 2.3, GPUs on the S1070 share pairwise the two PCIe channels.
It is possible that, with a relevant traffic (> 2GB), the PCIe contention lowers the
performance of two parallel transfers almost down to the performance of a single
one. As a result, the execution time required by N GPUs gets closer to the time
required by a subset of N .

6.3.5 Border Size

The approach described in Section 5.2 was shown an effective technique to overcome
the bandwidth factor on SMP clusters when solving PDEs numerically. We ran the
solver on some representative domains exchanging different borders with width in
the range [1-100]. In [10] is reported that, for supercomputers with Infiniband in-
terconnection, some minimal performance improvements were found using values of
BS close to one. Since PCIe links are closer in bandwidth to Infiniband intercon-
nections than not to Ethernet cables, we decided to have more test points in the
neighborhood of BS = 1.

In Figures 6.11 we report results from the benchmark tests run using strip-
partitioned, squared domains and texture-based kernels. Analyzing the graphs, we
can deduce that the technique does not boost enough performance. The whole set
of results can hardly approach a 10% of improvement (1.1X) with respect to the
version based on unitary border width. Especially if we consider the tendency of
the median absolute deviation to have a greater magnitude in proximity of BS = 1.

Thus, the empirical results bring us to a similar conclusion as in the supercom-

Figure 6.8 – Speedup of executions using global memory based kernels over execu-
tions using texture based kernels.
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puters’ case reported in [10], confirming our assumption that PCIe interconnections
are fast enough to make the effect of the discussed method vanish.

6.3.6 Threads Synchronization

At design phase, we decided to base our communication on POSIX threads syn-
chronization, in order to assess its impact on communication and compare it with
the alternative option of message-passing libraries. The latter option was recalled
in Section 3.2.2 for being responsible of around 70% of the communication overhead.

(a) Speedups with respect to one GPU.

(b) Speedups with respect to two GPUs.

Figure 6.9 – Speedups varying number of GPUs.
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Figure 6.10 shows the impact of both synchronization and data transferring on
communication per iteration. Contrarily to what expected, the impact of synchro-

Figure 6.10 – Precentage of communication used for synchronization and data trans-
fer.

nization is quite relevant, practically dominating the overall communication. Even
though this impact is almost negligible on large scale (the core computation is ker-
nel bound), such an effect must be analyzed and controlled as it may become more
relevant in the perspective of more powerful hardware and shorter distances between
host and devices. Profiling, it seems that the delay is due to lock contentions on
neighbor domain areas. We plan a deeper investigation in our future work.
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(a) Domain 1024x1024, strip partitioning, texture-based kernels, Median of 3 runs.

(b) Domain 10000x10000, strip partitioning, texture-based kernels, Median of 3 runs.

(c) Domain 44000x44000, strip partitioning, texture-based kernels, Median of 3 runs.

(d) Domain 52000x52000, strip partitioning, texture-based kernels, Median of 3 runs.

Figure 6.11 – Border size influence on performance using four GPUs.
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Conclusions and Future Work

With recent GPUs getting very close to the performance shown by the slowest Top-
500 supercomputer only four years ago and the fastest one around ten years ago,
GPU computing for high performance computing is generation a lot of interest.
In this thesis, we investigated multi-GPU systems’ performance factors, such as
data volume dimensions, data partitioning techniques, number of GPUs, inter-GPU
communication methods, and kernel design. In particular, we focused on NVIDIA’s
multi-GPU solutions, their current S1070, as system that has been and still is be-
ing deployed at HPC centers world wide, including Tokyo Technology University’s
Tsubame supercomputer which was ranked 29th in the world when installed, and
the new multi-GPU system recently ordered by GENCI in France. Our methodol-
ogy and general results should, however, be applicable to most modern multi-GPU
systems.

Modern multi-GPU systems could be likened to a distributed environment with
a centralized interconnection fabric (the host side). Every computing node, i.e. a
single GPU, cannot directly share memory with the other peers. Internally instead,
a GPU is a highly parallel, multi-threaded environment able to schedule thousands
of threads on hundreds of streaming cores. Our testbed was an NVIDIA S1070 with
four GPUs connected to an Intel i7-extreme system with 12GB of memory. Consid-
ering the S1070 has 16 GB of memory, it would have been desirable for the host i7
system equal or more RAM, but this is rarely provided as motherboards servicing
more than 12GB are much more expensive that those up to 12 GB.

The S1070 system was analyzed based on its specific hardware features and on
possible analogies to fundamental parallel models, such as shared memory mul-
tiprocessors and multicomputers. The Poisson problem with Dirichlet boundary
conditions was picked as our model problem since it does boarder exchanges of in-
formation common to a large class of application problems. Our results are hence
most applicable to this class of problems. Based on all these assumptions, we de-
fined a space of variables on which to analyze performance impacts. On top of
this test space we developed a benchmark PDE solver tool. The main variables
exposed by the tool were: domain size and shape, kind of data partitioning, number
of GPUs, width of the borders to exchange, kernels to use, and kind of synchroniza-
tion between the GPU contexts. Based on results obtained running the benchmark
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application varying such variables, we came to the following conclusions.

Application Bounds

Varying the domain’s dimension up to 11 GB we found the application I/O bound.
Transferring the domain from host to device memory took always the largest per-
centage of time, requiring up to three times the kernel time. Excluding the first and
the last necessary data transfers, the core computation was instead kernel bound.
Exchanging only the essential data during the computation, i.e. the subdomains’
border, required no more than 10% of the total elapsed time.

Data Partitioning Impact

Since our test system only consisted of four GPUs, not surprisingly we found parti-
tioning the data in vertical strips rather than blocked subdomains, to be the most
effective. However, simple communication models, normally used in parallel comput-
ing theory, were not found suited for performance prediction on multi-GPU systems.
Indeed, a general model would be very difficult to construct, since it would need to
be based on an incredible number of specific architectural details related to different
hardware, and hardware is always susceptible to changes.

On the other hand, statistical approaches were found to be more stable and
adaptable to slight technological alterations. We found a linear relation between
the size of contiguous data expressed in gigabytes and the time required to transfer
such data between the host and the device. Through statistical regressions we found
a model that was able to match our empirical curves. We tested the approach on
different Tesla-based architectures with different PCIe interconnections, obtaining
results that made, in our opinion, the involved statistical approach a good tool
for communication modeling. Better specifications of the way communication is
effectively organized at the API level would be necessary to develop more specialized
models for GPU systems.

Domain Shape Impact

Different domain shapes had a very contained influence on performance (< 1.2X).
Indeed, the amount of data to process is always the same, so it did not impact on
the kernel time, while from a communication point of view, the borders to exchange
are rarely large enough to make a real difference in transfer time.

Global Vs. Texture Memory-Supported Kernels

Our empirical results showed that, in our context, there was not an appreciable
difference in performance when using cached versus non-cached memory, as long as
the most important performance guidelines for designing access patterns to non-
cached memory were followed.
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Number of GPUs

Using the all the four GPUs available on the Tesla S1070, was always beneficial, per-
forming up to 3.5X and 1.8X speedup with respect to one and two GPUs. However,
performance decreased working with large data volumes possibly due to resource
contention (e.g. with around 8 GB we got 1.2X with respect to two GPUs).

Reducing Communication Through Extra Computation

The technique proposed in [10] as beneficial for cluster-like systems did not produce
any relevant improvement in our context. Varying the border width between 1
and 100 we never got better improvements than 1.1X. The interconnection system
between host and devices did not exhibit a large latency, making our case much
closer to the one documented for supercomputers.

GPU Contexts Synchronization

Synchronization between GPU contexts through Pthread condition variables took a
relatively large percentage of the communication during the core computation. This
is similar to what was previously documented for shared-memory based, message-
passing libraries [17]. Probably due to lock contentions, the measured delay deserves
special attention in a more general context, as described in the future work.

7.1 Future Work

Benchmarking is not an easy task. To reach useful conclusions about a factor is often
necessary to draw a wide angle of it from different points of view. Unfortunately,
not everything we thought to do could properly fit in our limited time frame. For
this reason, we want to illustrate in the present section what we consider possible
development directions for our work.

7.1.1 An Improved Standard Framework for Benchmarking

On December 8, 2008, the consortium Khronos Group1 approved for public release
the first version specification of the Open Computing Languange (OpenCL) [2].
OpenCL is the first attempt of a standard language for heterogeneous systems sus-
tained by a wide list of companies and academics. As more and more vendors will
provide support for OpenCL, providing unified methods and models for comparing
the performance across a multitude of heterogeneous architectural proposals is likely
to become a crucial goal of the GPGPU community.

The tool we developed for our tests can be considered a premature stage of what
could become a framework devoted to platform-independent, multi-GPU bench-
marking. Also considering what is missing to meet the initial requirements, we
would like to point out at least four directions:

1http://www.khronos.org/

http://www.khronos.org/
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• More attention must be paid to decouple the kernel logic from the synchro-
nization logic, so to allow an easier and more independent design and analysis
of both.

• More focus on precision. As described in [27], the use of different precision
standards, can also have a certain impact on performance. In a PDE solver
context, introducing exit conditions based on proper approximations of the
sought solutions can be a possible way to investigate eventual delays introduced
by graphics hardware’s precision.

• 3D modeling. Our framework could be extended to the third dimension, which
is, in a way, naturally supported by graphics hardware. In a 3D context, there
are some aspects that do not figure in the 2D case. For example, the require-
ment of exchanging not only borders but also surfaces introduces asymmetries
in communication that would be important to examine.

• Platform independent. In order to make the framework aim at different plat-
forms, a porting to OpenCL must be planned.

7.1.2 A Fast Communication Framework for GPUs

During our development we would have found beneficial the presence of an efficient
synchronization/interconnection library between the GPUs. For highly parallel sys-
tems, such as supercomputers, the presence of efficient MPI communication routines
is vital to develop efficient software. Likewise, the presence of a library for fast
communication in a multi-GPU or GPU cluster context may improve applications’
performance providing them with efficient implementations of communication prim-
itives. To better support communication modeling, we think that the library should
be based on some existing standard specification.

7.1.3 Large Scale Perspective

A next challenging goal should be the analysis of performance factors at a higher
level of complexity. GPU clusters are heterogeneous systems composed by several
multi-GPU nodes. In such systems, different GPUs are interconnected through a
two-level communication network.

7.1.4 Green Computing

The interest of the international community for environmental friendly systems is a
clear sign that speed is no longer the only requirement in supercomputing. With the
introduction of the Green500 list2, vendors are challenged to optimize the ratio per-
formance/Watt instead of the only speed factor. This call for energy efficiency must
be especially taken into account when dealing with GPU-based systems, since GPUs
may be the largest power consumer components. Benchmarking energy consump-
tion is an interesting endeavor. It would require to to adopt specialized hardware
to monitor power usage, as there is no software support for such an activity.

2http://www.green500.org
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Glossary

API Application Program Interface. A set of calling conven-
tions defining how a service is invoked through a software
package.

BLAS Basic Linear Algebra Subprograms. A standard set of pub-
lic domain mathematical subroutines that perform linear
algebra operations.

CUDA Compute Unified Device Architecture. it is a parallel com-
puting environment developed by NVIDIA for their GPUs.

CPU Central Processing Unit.
FLOPS FLoating point Operations Per Second.
GPU Graphics Processing Unit.
GPGPU General-purpose computing on graphics processing units.
HCI Host Interconnection Card.
HPC High Performance Computing.
IEEE Institute of Electrical and Electronics Engineers. A non-

profit organization, IEEE is the world’s leading professional
association for the advancement of technology.

MIU Multithreaded Instruction Unit. It is a Streaming Multi-
processor’s unit dedicated to create, schedule, and manage
CUDA threads.

MPI Message Passing Interface. It is the de facto standard
message-passing library specification.

NPTL Native POSIX Thread Library. It is an efficient implemen-
tation of the POSIX Threads standard.

NUMA Non-Uniform Memory Access. It is a shared memory ar-
chitecture used in parallel computers. NUMA means that
it will take longer to access some regions of memory than
others.

OpenCL Open Computing Language. It is a framework for execut-
ing programs across heterogeneous platforms.

PDE Partial Differential Equation.
PCIe Peripheral Component Interconnect Express. PCI Express

architecture is an industry standard high-performance,
general-purpose serial I/O interconnect designed for use in
enterprise, desktop, mobile, communications and embed-
ded platforms.
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POSIX Portable Operating System Interface for Unix. is the name
of a family of related standards specified by the IEEE to
define the API, along with shell and utilities interfaces for
software compatible with variants of the Unix operating
system, although the standard can apply to any operating
system.

SIMD Single Instruction Multiple Data. Part of the Flynn’s tax-
onomy of computer architectures. In this form, a large
group of simple processors all perform the same task in
parallel, each with different data.

SIMT Single Instruction Multiple Threads. Meant to refer to
SIMD, it is the computing paradigm of NVIDIA Tesla-
based GPU.

SLI Scalable Link Interface. NVIDIA technology used in graph-
ics mode to allow two or more GPUs to work together to
produce a single graphical output from different input im-
ages processed in parallel.

SM Streaming Multiprocessor. It is a computing unit within an
NVIDIA Tesla-based GPU. It is composed by eight Stream-
ing Processors.

SMP Symmetric Multiprocessor. It is a shared memory multi-
processor with a numerical symmetry between the number
of processors and the number of memory modules.

SOR Successive Overrelaxation. It is an efficient method of solv-
ing a linear system of equations.

SP Streaming Processor. It is a computing unit within a
Streaming Multiprocessor. It executes CUDA threads.

UMA Uniform Memory Access. It is a shared memory architec-
ture used in parallel computers. All the processors in the
UMA model share the physical memory uniformly.



Appendix A

Specifications for Compute
Capability 1.3

The following is a list of features associated to devices with compute capability 1.3:

• The maximum number of threads per block is 512;

• The maximum size of the x-, y-, z-dimension of a thread block are 512, 512,
and 64, respectively;

• The maximum size of each dimension of a grid of thread blocks is 65535;

• The warp size is 32 threads;

• The number of registers per SM is 16384;

• The amount of shared memory available per SM is 16 KB organized into 16
banks;

• The total amount of constant memory is 64 KB;

• The cache size for constant memory is 8 KB per SM;

• The cache size for texture memory varies between 6 and 8 KB per SM;

• The maximum number of active blocks per SM is 8;

• The maximum number of active warps per SM is 32;

• The maximum number of active threads per SM is 1024;

• The limit on kernel size is 2 million PTX assembly code instructions;

• For a texture reference bound to linear memory, the maximum width is 227;

• Support for atomic functions in shared and global memory;

• Support for warp vote functions;

• Support for double-precision floating-point numbers;

• Each SM is composed of eight SP, so that a SM is able to process one warp in
four clock cycles.
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Appendix B

Code Samples

To carry out our analysis, we implemented a benchmark application to solve Dirich-
let problems using a 5-point stencil, red-black SOR, PDE solver. Here we report
relevant piece of code from the benchmark implementation. The PDE solver’s co-
dename is Tetra.

B.1 Benchmark Entry Point

/∗∗
∗ Tetra i s a p a r a l l e l PDE So lver f o r D i r i c h l e t Problems .
∗ The PDE i s so l v ed us ing a multi−GPU supported , 5−po in t s s t e n c i l ,
∗ Red−Black SOR.
∗∗/

#include <c s t d l i b>
#include <sstream>
#include <getopt . h>

#include <t e t r a . h>

//command−l i n e op t ions ( shor t ver s ion )
const char ∗ const s ho r t op t i on s = ”ht :m: n : f : i : b : k : o : s ” ;

//command−l i n e op t ions ( long ver s ion )
const struct opt ion l ong op t i on s [ ] = {
{” help ” , 0 , NULL, ’h ’ } ,
{” threads ” , 1 , NULL, ’ t ’ } ,
{”rows” , 1 , NULL, ’m’ } ,
{”columns” , 1 , NULL, ’n ’ } ,
{” f i l e ” , 1 , NULL, ’ f ’ } ,
{” i t e r a t i o n s ” , 1 , NULL, ’ i ’ } ,
{” b o r d e r s i z e ” , 1 , NULL, ’b ’ } ,
{” ke rne l ” , 1 , NULL, ’ k ’ } ,
{”omega” , 1 , NULL, ’ o ’ } ,
{” save image ” , 0 , NULL, ’ s ’ }

} ;

/∗
∗ MAIN FUNCTION
∗/

int main ( int argc , char ∗ argv [ ] )
{

int threads , m, n , i t e r a t i o n s , bs , kerne l , save img = 0 ;
f loat omega ;
s t r i n g f i l ename ;

int next opt , opt counter = 0 ;
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/∗ Code to e x t r a c t command−l i n e op t ions omit ted ∗/

i f ( bs > i t e r a t i o n s )
{

c e r r << ” Borde r s i z e can ’ t be g r e a t e r than i t e r a t i o n s . Abort . ”
<< endl ;

e x i t (2 ) ;
}

// I n s t i a n c i a t e the s o l v e r
Tetra t ( f i l ename , m, n) ;

// So lve the problem
t . s o l v e ( kerne l , &omega , bs , i t e r a t i o n s , threads ) ;

// Eventua l l y save output image
i f ( save img )
{

t . saveImage ( ” . . . t i t l e . . . ” ) ;
}

e x i t (EXIT SUCCESS) ;
}

B.2 Tetra PDE Solver

B.2.1 Tetra Class

class Tetra {
//Pointer to the domain
f loat ∗data ;
//dim x = columns , dim y = rows
int dim x , dim y ;
//Domain f i l e po in t e r
int fd ;
public :

Tetra ( s t r i n g i f i l ename , int m, int n) ;
˜Tetra ( ) ;
int s o l v e ( int so l ve r , f loat ∗omega , int bo rde r s i z e ,

int i t e r a t i o n s , int threads ) ;
int saveImage ( s t r i n g t i t l e ) ;
void pr intArea ( int x s ta r t , int x end , int y s ta r t , int y end ) ;
void pr intGr id ( ) ;

} ;

B.2.2 PThread-Base Synchronization Header.

Samples from psync.cu

#include <pthread . h>
#include <math . h>
#include <sys / types . h>
#include <time . h>

#include <pde ke rne l s . cu>

struct Params
{

char s o l v e r ;
f loat omega ;
char threads ;
int dev i ce ;
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f loat ∗ g r id ;
int n ;
int h ;
int s t r i d e ;
int bo r d e r s i z e ;
int i t e r a t i o n s ;

} ;

pthread mutex t ∗mutex ;

pthread cond t ∗rCond , ∗wCond ;
int ∗rAcc , ∗wAcc ;

//////////////// CUDA WRAPPER ////////////////////
extern ”C”

int c a l l s o l v e r (
int so l ve r , f loat ∗omega , f loat ∗ gr id , int m, int n ,
int i t e r a t i o n s , int threads , int bo r d e r s i z e

) ;
//////////////////////////////////////////////////

/∗
∗ getTime
∗ Based on the t imespec format . Returns end−s t a r t in seconds .
∗
∗/

double getTime ( t imespec s ta r t , t imespec end )
{

long nsec = end . tv nsec−s t a r t . t v n s e c ;
i f ( nsec < 0)
{

nsec = 1E9 + nsec ;
end . t v s e c −= 1 ;

}
return (double ) ( end . t v s e c − s t a r t . t v s e c ) + (double ) ( nsec ∗ 1E−9) ;

}

/∗
∗ se lectTextureToBind
∗ Se l e c t the r i g h t t e x t u r e re f e r ence depending on the GPU contex t .
∗
∗/

s i z e t se lectTextureToBind ( int device , int step , f loat ∗devPtr , s i z e t s i z e )
{

s i z e t o f f s e t ;
switch ( dev i c e )
{

case 0 :
cudaBindTexture(& o f f s e t , texRef 0 , devPtr , s i z e ) ;
break ;

case 1 :
cudaBindTexture(& o f f s e t , texRef 1 , devPtr , s i z e ) ;
break ;

case 2 :
cudaBindTexture(& o f f s e t , texRef 2 , devPtr , s i z e ) ;
break ;

case 3 :
cudaBindTexture(& o f f s e t , texRef 3 , devPtr , s i z e ) ;
break ;

default :
p r i n t f ( ”Eventual ly you must add t ex tu r e s to bind to . . . \ n” ) ;

}

return o f f s e t ;
}
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B.2.3 Strip Partitioning - Computation and Communica-
tion

Samples from psync strips.cu

/∗
∗ t e t r a t h r e a d
∗ params − conta ins the parameters requ i red to se tup a p a r t i a l s o l v e r ( i . e . the

s o l v e r running on one o f the GPU and s o l v i n g
∗ computing a s p e c i f i c por t ion o f domain ) .
∗/

void ∗ t e t r a th r e ad (void ∗params )
{

//Cast the cook ie po in t e r to the r i g h t type
struct Params ∗p = ( struct Params ∗) params ;

struct t imespec h s ta r t , h end ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

s e l e c tDev i c e (p−>dev i ce ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;

d ev s e l t ime [ p−>dev i ce ] = getTime ( h s ta r t , h end ) ;

cudaEvent t s ta r t , stop ;
cudaEventCreate(& s t a r t ) ;
cudaEventCreate(&stop ) ;

f loat r k e r n e l t ime = 0 , b ke rne l t ime = 0 , temp time ;

//Setup subdomain proces s ing
f loat ∗ dgr id ;
int o f f s e t , he ight ;
s i z e t p i t ch ;

//Total number o f rows count ing borders . GPUs in the middle
// dea l with two s i d e s .
i f ( ( p−>dev i ce == 0) | | (p−>dev i ce == p−>threads − 1) )

he ight = p−>h + (p−>bo r d e r s i z e ) ;
else

he ight = p−>h + (2 ∗ p−>bo r d e r s i z e ) ;

// Of f s e t to the beg inning o f the subdomain
i f (p−>dev i ce == 0)

o f f s e t = 0 ;
else

o f f s e t = p−>bo r d e r s i z e ∗ p−>n ;

// A l l o ca t e memory on the dev i ce
cudaMallocPitch ( ( void ∗∗)&dgrid , &pitch , p−>n ∗ s izeof ( f loat ) , he ight ) ;

//Kernel Execution Conf igurat ion
int gr id x , gr id y , l o c a l w ;

//Number o f threads per t h r eadb l o c k
l o c a l w = 112 ;

//Number o f t h r eadb l o c k s per g r i d . S t r i p pa r t i t i on in g , the
// ho r i z on t a l dimension doesn ’ t change .
//Blocks s h i f t o f ( l oca l w −2) e lements h o r i z o n t a l l y .
g r i d x = p−>n/( l o ca l w − 2) ;
i f ( g r i d x ∗ ( l o ca l w − 2) < p−>n) g r i d x++;

dim3 blockDim ( l o ca l w ) ;

// F i r s t t r an s f e r . Ent ire subdomain+borders .
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cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , p−>g r id − o f f s e t , p−>n ∗ s izeof ( f loat ) ,
p−>n ∗ s izeof ( f loat ) , he ight , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
ext cpy t ime [ p−>dev i ce ] = temp time ;
cpy time [ p−>dev i ce ] = 0 ;
comm time [ p−>dev i ce ] = 0 ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

// Increase read counters .
i f (p−>dev i ce == 0)
{

pthread mutex lock(&mutex [ 1 ] ) ;
rAcc [1]++;

pthread mutex unlock(&mutex [ 1 ] ) ;
p th r ead cond s i gna l (&rCond [ 1 ] ) ;

}
else i f (p−>dev i ce == p−>threads − 1)
{

pthread mutex lock(&mutex [ 2 ∗ p−>dev i ce − 2 ] ) ;
rAcc [ 2 ∗ p−>dev i ce − 2]++;

pthread mutex unlock(&mutex [ 2 ∗ p−>dev i ce − 2 ] ) ;
p th r ead cond s i gna l (&rCond [ 2 ∗ p−>dev i ce − 2 ] ) ;

}
else
{

pthread mutex lock(&mutex [ 2 ∗ p−>dev i ce − 2 ] ) ;
rAcc [ 2 ∗ p−>dev i ce − 2]++;

pthread mutex unlock(&mutex [ 2 ∗ p−>dev i ce − 2 ] ) ;
p th r ead cond s i gna l (&rCond [ 2 ∗ p−>dev i ce − 2 ] ) ;

pthread mutex lock(&mutex [ 2 ∗ p−>dev i ce + 1 ] ) ;
rAcc [ 2 ∗ p−>dev i ce + 1]++;

pthread mutex unlock(&mutex [ 2 ∗ p−>dev i ce + 1 ] ) ;
p th r ead cond s i gna l (&rCond [ 2 ∗ p−>dev i ce + 1 ] ) ;

}
c l o ck ge t t ime (CLOCK REALTIME, &h end ) ;
ex t sync t ime [ p−>dev i ce ] = getTime ( h s ta r t , h end ) ;
sync t ime [ p−>dev i ce ] = 0 ;

// CORE COMPUTATION − Begin //////////////////////////

//So to be ab l e to i t e r a t e with b o r d e r s i z e == 0
int b = p−>bo r d e r s i z e > 0 ? p−>bo r d e r s i z e : 1 ;

for ( int i = 0 ; i < p−>i t e r a t i o n s /b ; i++)
{

int border = b ;
//k i s an o f f s e t used to po in t to the beg inning o f the area to process
int k = 0 ;
while ( border > 0)
{

//Compute the v e r t i c a l dimension o f the g r i d .
//Blocks s h i f t wi th window s i z e 2 .
g r i d y = (2 ∗ he ight − 4) / s izeof ( f loat ) + ( he ight ) % 2 ;
dim3 gridDim ( gr id x , g r i d y ) ;

switch (p−>s o l v e r )
{

case 0 :
{

/∗ app ly R/B SOR, us ing g l o b a l mem for f e t c h i n g data . ∗/
cudaEventRecord ( s ta r t , 0) ;

//Red ke rne l
rsor gm <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (
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dgr id + k ∗ ( p i t ch / s izeof ( f loat ) ) , p−>n , height , p−>omega ,
p i t ch / s izeof ( f loat ) , (p−>h ∗ p−>dev i ce ) − (p−>dev i ce > 0) ∗ border ,
p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
r k e r n e l t ime += temp time ;

cudaEventRecord ( s ta r t , 0) ;

//Black ke rne l
bsor gm <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (

dgr id + k ∗ ( p i t ch / s izeof ( f loat ) ) , p−>n , height , p−>omega ,
p i t ch / s izeof ( f loat ) , (p−>h ∗ p−>dev i ce )−(p−>dev i ce > 0) ∗ border ,
p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
b ke rne l t ime += temp time ;

break ;
}
case 1 :
{

/∗ app ly R/B SOR, us ing a t e x t u r e to f e t c h data ∗/
s i z e t t e x o f f s e t = selectTextureToBind (p−>device , i , dgr id + k ∗ ( p i t ch /

s izeof ( f loat ) ) ,
he ight ∗ p i t ch ) ;

cudaEventRecord ( s ta r t , 0) ;

//Red ke rne l
r s o r l i n t e x <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (

dgr id + k ∗ ( p i t ch / s izeof ( f loat ) ) , p−>n , height , p−>omega ,
p i t ch / s izeof ( f loat ) , (p−>h ∗ p−>dev i ce ) − (p−>dev i ce > 0) ∗ border ,
t e x o f f s e t / s izeof ( f loat ) , p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
r k e r n e l t ime += temp time ;

cudaEventRecord ( s ta r t , 0) ;

//Black ke rne l
b s o r l i n t e x <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>>(

dgr id + k ∗ ( p i t ch / s izeof ( f loat ) ) , p−>n , height , p−>omega ,
p i t ch / s izeof ( f loat ) , (p−>h ∗ p−>dev i ce ) − (p−>dev i ce > 0) ∗ border ,
t e x o f f s e t / s izeof ( f loat ) , p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
b ke rne l t ime += temp time ;

break ;
}

}

border−−;
// increase k everywhere but on dev i ce 0
k += (p−>dev i ce > 0) ;
//Decrease on outer dev i c e s and sub t r a c t 2 i n s i d e
he ight −= 1 + ( ( p−>dev i ce > 0) && (p−>dev i ce < p−>threads − 1) ) ;

} //End border consuming wh i l e

//Restore he i gh t
he ight += b ∗ (1 + ( ( p−>dev i ce ) && (p−>dev i ce < p−>threads − 1) ) ) ;
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//∗∗∗∗∗ Communication ∗∗∗∗∗
c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

i f (p−>threads == 1)
{

//when using one dev i ce j u s t cont inue
wAcc [ p−>dev i ce ]++;

c l o ck ge t t ime (CLOCK REALTIME, &h end ) ;
comm time [ p−>dev i ce ] += getTime ( h s ta r t , h end ) ;

continue ;
}

//Transfer us ing chessboard order ing .
//0<−>1 2<−>3 . . (n−2)<−>(n−1) −−−−−> 1<−>2 . . . (n−3)<−>(n−2)
i f ( ( p−>dev i ce == 0) | | (p−>dev i ce == p−>threads − 1) )
{

switch (p−>dev i ce )
{

case 0 :
{

wr i t e gho s t s (0 , 0 , 1 , i , p−>g r id + (p−>h − p−>bo r d e r s i z e ) ∗ p−>n ,
p−>n ∗ s izeof ( f loat ) ,
dgr id + (p−>h − p−>bo r d e r s i z e ) ∗ ( p i t ch / s izeof ( f loat ) ) ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

r ead ghos t s (0 , 0 , 1 , i , p−>g r id + (p−>h ∗ p−>n) , p−>n ∗ s izeof ( f loat ) ,
dgr id + p−>h ∗ ( p i t ch / s izeof ( f loat ) ) , p itch , p−>n ∗ s izeof ( f loat ) ,
p−>bo r d e r s i z e ) ;

break ;
}
default :
{

wr i t e gho s t s (p−>device , 2 ∗ p−>dev i ce − 1 , 2 ∗ p−>dev i ce − 2 , i ,
p−>gr id , p−>n ∗ s izeof ( f loat ) ,
dgr id + (p−>bo r d e r s i z e ) ∗ ( p i t ch / s izeof ( f loat ) ) ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

r ead ghos t s (p−>device , 2 ∗ p−>dev i ce − 1 , 2 ∗ p−>dev i ce − 2 , i ,
p−>g r id − o f f s e t , p−>n ∗ s izeof ( f loat ) , dgrid , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

}
}

} else
{

// i f odd s t a r t from north o therwi se from south
i f (p−>dev i ce & 1)
{

wr i t e gho s t s (p−>device , p−>dev i ce ∗ 2 − 1 , 2 ∗ (p−>dev i ce − 1) , i ,
p−>gr id , p−>n ∗ s izeof ( f loat ) ,
dgr id + (p−>bo r d e r s i z e ) ∗ ( p i t ch / s izeof ( f loat ) ) , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

r ead ghos t s (p−>device , p−>dev i ce ∗ 2 − 1 , 2 ∗ (p−>dev i ce − 1) , i ,
p−>g r id − (p−>bo r d e r s i z e ∗ p−>n) , p−>n ∗ s izeof ( f loat ) , dgrid ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

w r i t e gho s t s (p−>device , p−>dev i ce ∗ 2 , p−>dev i ce ∗ 2 + 1 , i ,
p−>g r id + (p−>h − p−>bo r d e r s i z e ) ∗ p−>n , p−>n ∗ s izeof ( f loat ) ,
dgr id + p−>h ∗ ( p i t ch / s izeof ( f loat ) ) , p itch , p−>n ∗ s izeof ( f loat ) ,
p−>bo r d e r s i z e ) ;

r ead ghos t s (p−>device , p−>dev i ce ∗ 2 , p−>dev i ce ∗ 2 + 1 , i ,
p−>g r id + (p−>h ∗ p−>n) , p−>n ∗ s izeof ( f loat ) ,
dgr id + (p−>h + p−>bo r d e r s i z e ) ∗ ( p i t ch / s izeof ( f loat ) ) , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

} else
{
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wr i t e gho s t s (p−>device , p−>dev i ce ∗ 2 , p−>dev i ce ∗ 2 + 1 , i ,
p−>g r id + (p−>h − p−>bo r d e r s i z e ) ∗ p−>n , p−>n ∗ s izeof ( f loat ) ,
dgr id + p−>h ∗ ( p i t ch / s izeof ( f loat ) ) , p itch , p−>n ∗ s izeof ( f loat ) ,
p−>bo r d e r s i z e ) ;

r ead ghos t s (p−>device , p−>dev i ce ∗ 2 , p−>dev i ce ∗ 2 + 1 , i ,
p−>g r id + (p−>h ∗ p−>n) , p−>n ∗ s izeof ( f loat ) ,
dgr id + (p−>h + p−>bo r d e r s i z e ) ∗ ( p i t ch / s izeof ( f loat ) ) , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

w r i t e gho s t s (p−>device , p−>dev i ce ∗ 2 − 1 , 2 ∗ (p−>dev i ce − 1) , i ,
p−>gr id , p−>n ∗ s izeof ( f loat ) ,
dgr id + p−>bo r d e r s i z e ∗ ( p i t ch / s izeof ( f loat ) ) , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

r ead ghos t s (p−>device , p−>dev i ce ∗ 2 − 1 , 2 ∗ (p−>dev i ce − 1) , i ,
p−>g r id − (p−>bo r d e r s i z e ∗ p−>n) , p−>n ∗ s izeof ( f loat ) , dgrid ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

}
}

c l o ck ge t t ime (CLOCK REALTIME, &h end ) ;
comm time [ p−>dev i ce ] += getTime ( h s ta r t , h end ) ;

//∗∗∗∗∗ End Communication ∗∗∗∗∗
}

// CORE COMPUTATION − End //////////////////////////

//Last t r an s f e r . Just subdomain
i f (p−>dev i ce == 0)
{

cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D(p−>gr id , p−>n ∗ s izeof ( f loat ) , dgrid , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>h , cudaMemcpyDeviceToHost ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
ext cpy t ime [ p−>dev i ce ] += temp time ;

} else
{

cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D(p−>gr id , p−>n ∗ s izeof ( f loat ) ,
dgr id + p−>bo r d e r s i z e ∗ ( p i t ch / s izeof ( f loat ) ) , p itch , p−>n ∗ s izeof ( f loat ) ,
p−>h , cudaMemcpyDeviceToHost ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
ext cpy t ime [ p−>dev i ce ] += temp time ;

}

//Format and d i s p l a y output
i f (p−>threads == 1)

b = p−>i t e r a t i o n s ;
p r i n t f ( ” t%d avarage RSOR kerne l time per i t e r a t i o n : %f ms .\n” ,

p−>device , r k e r n e l t ime /p−>i t e r a t i o n s ) ;
p r i n t f ( ” t%d avarage BSOR kerne l time per i t e r a t i o n : %f ms .\n” ,

p−>device , b ke rne l t ime /p−>i t e r a t i o n s ) ;
p r i n t f ( ” t%d t o t a l k e rne l time : %f ms .\n” ,

p−>device , r k e r n e l t ime + b ke rne l t ime ) ;
p r i n t f ( ” t%d MKT: %f ms .\n” ,

p−>device , ( r k e r n e l t ime + b ke rne l t ime ) / p−>i t e r a t i o n s ) ;

p r i n t f ( ” t%d t o t a l t r a n s f e r time : %f ms [ i t e r : %f + ext : %f ] . \ n” ,
p−>device , cpy time [ p−>dev i ce ] + ext cpy t ime [ p−>dev i ce ] ,
cpy time [ p−>dev i ce ] , ex t cpy t ime [ p−>dev i ce ] ) ;

p r i n t f ( ” t%d MTT: %f ms .\n” ,
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p−>device , cpy time [ p−>dev i ce ] / (p−>i t e r a t i o n s /b) ) ;
p r i n t f ( ” t%d t o t a l synchron i za t i on time : %f ms [ i t e r : %f + ext : %f ] . \ n” ,

p−>device , ( sync t ime [ p−>dev i ce ] + ext sync t ime [ p−>dev i ce ] ) ∗ 1E3 ,
sync t ime [ p−>dev i ce ] ∗ 1E3 , ex t sync t ime [ p−>dev i ce ] ∗ 1E3) ;

p r i n t f ( ” t%d MST: %f ms .\n” ,
p−>device , ( sync t ime [ p−>dev i ce ] ∗ 1E3) / (p−>i t e r a t i o n s /b) ) ;

p r i n t f ( ” t%d t o t a l communication time : %f ms [ i t e r : %f + ext : %f ] . \ n” ,
p−>device ,
comm time [ p−>dev i ce ] ∗ 1E3

+ ext sync t ime [ p−>dev i ce ] ∗ 1E3 + ext cpy t ime [ p−>dev i ce ] ,
comm time [ p−>dev i ce ] ∗ 1E3 ,
ex t sync t ime [ p−>dev i ce ] ∗ 1E3 + ext cpy t ime [ p−>dev i ce ] ) ;

p r i n t f ( ” t%d MCT: %f ms .\n” ,
p−>device , ( comm time [ p−>dev i ce ] ∗ 1E3) / (p−>i t e r a t i o n s /b) ) ;

cudaEventDestroy ( s t a r t ) ;
cudaEventDestroy ( stop ) ;

cudaFree ( dgr id ) ;

return NULL;
}

/∗
∗ c a l l s o l v e r
∗ s o l v e r − the index o f the s o l v e r to use .
∗ g r i d − po in t e r to the PDE domain .
∗ n − width / he i gh t o f the domain in terms of number o f e lements per row/column .
∗ i t e r a t i o n s − the number o f t imes the s o l v e r shou ld i t e r a t e .
∗ threads − i n d i c a t e s how many threads , and f i n a l l y dev ices , shou ld cooperate

in s o l v i n g the PDE.
∗
∗ I n s t a n t i a t e s the r i g h t number o f threads and manages t h e i r cooperat ion to s o l v e

the PDE.
∗/

int c a l l s o l v e r (
int so l ve r , f loat ∗omega , f loat ∗ gr id , int m, int n ,
int i t e r a t i o n s , int threads , int bo r d e r s i z e
)

{
pthread t ∗ t i d = new pthread t [ threads ] ;

struct Params ∗ t p = new struct Params [ threads ] ;

struct t imespec s ta r t , end ;

mutex = new pthread mutex t [ 2 ∗ ( threads − 1) ] ;
rCond = new pthread cond t [ 2 ∗ ( threads − 1) ] ;
wCond = new pthread cond t [ 2 ∗ ( threads − 1) ] ;
rAcc = new int [ 2 ∗ ( threads − 1) ] ;
wAcc = new int [ 2 ∗ ( threads − 1) ] ;

ext cpy t ime = new double [ threads ] ;
ex t sync t ime = new double [ threads ] ;
cpy time = new double [ threads ] ;
sync t ime = new double [ threads ] ;
comm time = new double [ threads ] ;
d ev s e l t ime = new double [ threads ] ;

i f (∗omega == 0)
{

f loat pi = 4 . f ∗atan ( 1 . f ) ;
p r i n t f ( ” p i : %.15 f \n” , p i ) ;
f loat i n t e r v a l = 1 . f / (n + 1) ;
∗omega = 2 . f / ( 1 . f + s i n ( p i ∗ i n t e r v a l ) ) ;
i f (∗omega > 1 . 9 ) ∗omega = 1 . 9 ;

}

for ( int i = 0 ; i < 2 ∗ ( threads − 1) ; i++)
{
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pthread mutex in i t (&mutex [ i ] , NULL) ;
p th r ead cond in i t (&rCond [ i ] , NULL) ;
p th r ead cond in i t (&wCond [ i ] , NULL) ;
rAcc [ i ] = 0 ;
wAcc [ i ] = 0 ;

}

for ( int i = 0 ; i < threads ; i++)
{

t p [ i ] . s o l v e r = s o l v e r ;
t p [ i ] . omega = ∗omega ;
t p [ i ] . n = n ;
t p [ i ] . h = m/ threads ; // supposes threads%2 = 0
t p [ i ] . b o r d e r s i z e = bo r d e r s i z e ∗ ( threads > 1) ;
t p [ i ] . i t e r a t i o n s = i t e r a t i o n s ;
t p [ i ] . g r i d = gr id + i ∗ t p [ i ] . h ∗ n ;
t p [ i ] . dev i c e = i ;
t p [ i ] . threads = threads ;

}

i f ( t p [ 0 ] . h ∗ threads < m)
t p [ threads − 1 ] . h += m − ( t p [ 0 ] . h ∗ threads ) ;

c l o ck g e t t ime (CLOCK REALTIME, &s t a r t ) ;

for ( int i =0; i<threads ; i++)
pth r ead c r ea t e (& t i d [ i ] , NULL, &te t ra th r ead , &t p [ i ] ) ;

for ( int i =0; i<threads ; i++)
{

pth r ead j o i n ( t i d [ i ] , NULL) ;
}

c l o ck ge t t ime (CLOCK REALTIME, &end ) ;

double max dev se l = getMaxDeviceSelectionTime ( threads ) ;
p r i n t f ( ”Elapsed time : %.9 f s \n” , getTime ( s ta r t , end ) − max dev se l ) ;

for ( int i = 0 ; i < 2 ∗ ( threads − 1) ; i++)
{

pthread mutex destroy(&mutex [ i ] ) ;
p thread cond des t roy (&rCond [ i ] ) ;
p thread cond des t roy (&wCond [ i ] ) ;

}

delete [ ] mutex ;
delete [ ] rCond ;
delete [ ] wCond ;
delete [ ] rAcc ;
delete [ ] wAcc ;

delete [ ] t i d ;
delete [ ] t p ;

delete [ ] ex t cpy t ime ;
delete [ ] ex t sync t ime ;
delete [ ] comm time ;
delete [ ] sync t ime ;
delete [ ] cpy time ;
delete [ ] d e v s e l t ime ;

return 0 ;
}
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B.2.4 Block Partitioning - Computation and Communica-
tion

Samples from psync blocks.cu

/∗
∗ t e t r a t h r e a d
∗ params − conta ins the parameters requ i red to se tup a p a r t i a l s o l v e r ( i . e . the

s o l v e r running on one o f the GPU and s o l v i n g
∗ computing a s p e c i f i c por t ion o f domain ) .
∗/

void ∗ t e t r a th r e ad (void ∗params )
{

//Cast the cook ie po in t e r to the r i g h t type
struct Params ∗p = ( struct Params ∗) params ;

// Ver t i c a l and ho r i z on t a l ne ighbors
int vn , hn ;

i f (p−>dev i ce % 2)
hn = p−>dev i ce − 1 ;

else
hn = p−>dev i ce + 1 ;

i f (p−>dev i ce <= 1)
vn = p−>dev i ce + 2 ;

else
vn = p−>dev i ce − 2 ;

struct t imespec h s ta r t , h end ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

s e l e c tDev i c e (p−>dev i ce ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
d ev s e l t ime [ p−>dev i ce ] = getTime ( h s ta r t , h end ) ;

cudaEvent t s ta r t , stop ;
cudaEventCreate(& s t a r t ) ;
cudaEventCreate(&stop ) ;

f loat r k e r n e l t ime = 0 , b ke rne l t ime = 0 , temp time ;

//Setup subdomain proces s ing
f loat ∗ dgr id ;
int o f f s e t , he ight ;
s i z e t p i t ch ;

//Total number o f rows count ing borders . GPUs in the middle
// dea l with two s i d e s .
he ight = p−>h + (p−>bo r d e r s i z e ) ;

// Of f s e t to the beg inning o f the subdomain
switch (p−>dev i ce )
{

case 0 :
o f f s e t = 0 ;
break ;

case 1 :
o f f s e t = p−>bo r d e r s i z e ;
break ;

case 2 :
o f f s e t = p−>bo r d e r s i z e ∗ p−>s t r i d e ;
break ;

case 3 :
o f f s e t = p−>bo r d e r s i z e ∗ p−>s t r i d e + p−>bo r d e r s i z e ;

}
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// A l l o ca t e memory on the dev i ce
cudaMallocPitch ( ( void ∗∗)&dgrid , &pitch ,

(p−>n + p−>bo r d e r s i z e ) ∗ s izeof ( f loat ) , he ight ) ;

//Kernel Execution Conf igurat ion
int gr id x , gr id y , l o c a l w ;

//Number o f threads per t h r eadb l o c k
l o c a l w = 112 ;

dim3 blockDim ( l o ca l w ) ;

// F i r s t t r an s f e r . Ent ire subdomain+borders .
comm time [ p−>dev i ce ] = ext cpy t ime [ p−>dev i ce ] = cpy time [ p−>dev i ce ] = 0 ;

cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , p−>g r id − o f f s e t , p−>s t r i d e ∗ s izeof ( f loat ) ,
(p−>n + p−>bo r d e r s i z e ) ∗ s izeof ( f loat ) , he ight , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
ext cpy t ime [ p−>dev i ce ] += temp time ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

// Increase read counters .
pthread mutex lock(&mutex [ vn ] ) ;

rAcc [ vn]++;
pthread mutex unlock(&mutex [ vn ] ) ;
p th r ead cond s i gna l (&rCond [ vn ] ) ;

// Hor i zonta l mutexes are in po s i t i on i > 3
pthread mutex lock(&mutex [ hn + 4 ] ) ;

rAcc [ hn + 4]++;
pthread mutex unlock(&mutex [ hn + 4 ] ) ;
p th r ead cond s i gna l (&rCond [ hn + 4 ] ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
ex t sync t ime [ p−>dev i ce ] = getTime ( h s ta r t , h end ) ;
sync t ime [ p−>dev i ce ] = 0 ;
comm time [ p−>dev i ce ] += sync t ime [ p−>dev i ce ] ;

// CORE COMPUTATION − Begin //////////////////////////

//So to be ab l e to i t e r a t e with b o r d e r s i z e == 0
int b = p−>bo r d e r s i z e > 0 ? p−>bo r d e r s i z e : 1 ;

for ( int i = 0 ; i < p−>i t e r a t i o n s /b ; i++)
{

int border = b ;
// k ∗ are o f f s e t s used to po in t to the beg inning o f the area to process
int k v = 0 , k h = 0 ;
while ( border > 0)
{

//Compute g r i d dimensions .
// Hor i zon ta l l y , b l o c k s s h i f t wi th window s i z e loca l w −2.
// Ver t i c a l l y , b l o c k s s h i f t wi th window s i z e 2 .
g r i d x = (p−>n + border ) / ( l o ca l w − 2) ;
i f ( g r i d x ∗ ( l o ca l w − 2) < p−>n + border ) g r i d x++;

g r i d y = (2 ∗ he ight − 4) / s izeof ( f loat ) + ( he ight % 2) ;

dim3 gridDim ( gr id x , g r i d y ) ;

switch (p−>s o l v e r )
{

case 0 :
{
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/∗ app ly R/B SOR, us ing g l o b a l mem for f e t c h i n g data . ∗/
cudaEventRecord ( s ta r t , 0) ;

r so r gm block <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (
dgr id + k v ∗ ( p i t ch / s izeof ( f loat ) ) + k h , p−>n + border , height ,
p−>omega , p i t ch / s izeof ( f loat ) ,
(p−>dev i ce % 2) ∗ ( ( p−>s t r i d e − p−>n) − border ) ,
(p−>device >1) ∗ (p−>h−border ) , p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
r k e r n e l t ime += temp time ;

cudaEventRecord ( s ta r t , 0) ;

bsor gm block <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (
dgr id + k v ∗ ( p i t ch / s izeof ( f loat ) ) + k h , p−>n + border , height ,
p−>omega , p i t ch / s izeof ( f loat ) ,
(p−>dev i ce % 2) ∗ ( ( p−>s t r i d e − p−>n) − border ) ,
(p−>device >1) ∗ (p−>h − border ) , p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;

cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
b ke rne l t ime += temp time ;

break ;
}
case 1 :
{

/∗ app ly R/B SOR, us ing a t e x t u r e to f e t c h data ∗/
s i z e t t e x o f f s e t = selectTextureToBind (p−>device , i ,

dgr id + k v ∗ ( p i t ch / s izeof ( f loat ) ) + k h , he ight ∗ p i t ch ) ;

cudaEventRecord ( s ta r t , 0) ;

r s o r l i n t e x b l o c k <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (
dgr id + k v ∗ ( p i t ch / s izeof ( f loat ) ) + k h , p−>n + border , height ,
p−>omega , p i t ch / s izeof ( f loat ) , (p−>dev i ce % 2) ∗ (p−>n − border ) ,
(p−>dev i ce > 1) ∗ (p−>h − border ) , t e x o f f s e t / s izeof ( f loat ) ,
p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;

cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
r k e r n e l t ime += temp time ;

cudaEventRecord ( s ta r t , 0) ;

b s o r l i n t e x b l o c k <<<gridDim , blockDim , 4 ∗ l o c a l w ∗ s izeof ( f loat )>>> (
dgr id + k v ∗ ( p i t ch / s izeof ( f loat ) ) + k h , p−>n + border , height ,
p−>omega , p i t ch / s izeof ( f loat ) ,
(p−>dev i ce % 2) ∗ (p−>n − border ) , (p−>dev i ce > 1) ∗ (p−>h − border ) ,
t e x o f f s e t / s izeof ( f loat ) , p−>dev i ce ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
b ke rne l t ime += temp time ;

break ;
}

}

// Eventua l l y increase o f f s e t s
border−−; he ight−−;
k v += (p−>dev i ce > 1) ; k h += (p−>dev i ce % 2) ;



100 Appendix B. Code Samples

} //End border consuming wh i l e

//Restore he i gh t
he ight += b ;

//∗∗∗∗∗ Communication ∗∗∗∗∗
#ifdef TIMER

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;
#endif

switch (p−>dev i ce )
{

case 0 :
moveBlockToHost (0 , 2 , i , 0/∗ v e r t i c a l ∗/ ,

p−>g r id + (p−>h − p−>bo r d e r s i z e ) ∗ p−>s t r i d e ,
p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + (p−>h − p−>bo r d e r s i z e ) ∗ p i t ch / s izeof ( f loat ) , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToDevice (0 , 2 , i , 0/∗ v e r t i c a l ∗/ , p−>g r id + p−>h ∗ p−>s t r i d e ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + (p−>h) ∗ p i t ch / s izeof ( f loat ) ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToHost (0 , 1 , i , 4/∗ ho r i z on t a l ∗/ , p−>g r id + (p−>n − p−>bo r d e r s i z e )
,

p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + (p−>n − p−>bo r d e r s i z e ) ,
p itch , p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h − p−>bo r d e r s i z e ) ;

moveBlockToDevice (0 , 1 , i , 4/∗ ho r i z on t a l ∗/ , p−>g r id + p−>n ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgr id+(p−>n) , pitch ,
p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h + p−>bo r d e r s i z e ) ;

break ;
case 1 :

moveBlockToHost (1 , 3 , i , 0/∗ v e r t i c a l ∗/ ,
p−>g r id + (p−>h − p−>bo r d e r s i z e ) ∗ p−>s t r i d e , p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + (p−>h − p−>bo r d e r s i z e ) ∗ p i t ch / s izeof ( f loat ) + p−>bo rde r s i z e ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToDevice (1 , 3 , i , 0/∗ v e r t i c a l ∗/ , p−>g r id + p−>h ∗ p−>s t r i d e ,
p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + (p−>h) ∗ p i t ch / s izeof ( f loat ) + p−>bo rde r s i z e ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToHost (1 , 0 , i , 4/∗ ho r i z on t a l ∗/ , p−>gr id ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + p−>bo rde r s i z e ,
p itch , p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h − p−>bo r d e r s i z e ) ;

moveBlockToDevice (1 , 0 , i , 4/∗ ho r i z on t a l ∗/ , p−>g r id − p−>bo rde r s i z e ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgrid , p itch ,
p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h + p−>bo r d e r s i z e ) ;

break ;
case 2 :

moveBlockToHost (2 , 0 , i , 0/∗ v e r t i c a l ∗/ , p−>gr id ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + p−>bo r d e r s i z e ∗ p i t ch / s izeof ( f loat ) ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToDevice (2 , 0 , i , 0/∗ v e r t i c a l ∗/ , p−>gr id−p−>bo r d e r s i z e ∗p−>s t r i d e ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgrid ,

p itch , p−>n∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToHost (2 , 3 , i , 4/∗ ho r i z on t a l ∗/ ,
p−>g r id + p−>bo r d e r s i z e ∗ p−>s t r i d e + p−>n − p−>bo rde r s i z e ,
p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + (2 ∗ p−>bo r d e r s i z e ) ∗ p i t ch / s izeof ( f loat ) + p−>n − p−>

bo rde r s i z e ,
p itch , p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h − p−>bo r d e r s i z e ) ;

moveBlockToDevice (2 , 3 , i , 4/∗ ho r i z on t a l ∗/ ,
p−>g r id − (p−>bo r d e r s i z e ∗ p−>s t r i d e ) + p−>n ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + p−>n , pitch ,
p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h + p−>bo r d e r s i z e ) ;

break ;
case 3 :

moveBlockToHost (3 , 1 , i , 0/∗ v e r t i c a l ∗/ , p−>gr id ,
p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + p−>bo r d e r s i z e ∗ p i t ch / s izeof ( f loat ) + p−>bo rde r s i z e ,
p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToDevice (3 , 1 , i , 0/∗ v e r t i c a l ∗/ ,
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p−>g r id − p−>bo r d e r s i z e ∗ p−>s t r i d e , p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + p−>bo rde r s i z e , p itch , p−>n ∗ s izeof ( f loat ) , p−>bo r d e r s i z e ) ;

moveBlockToHost (3 , 2 , i , 4/∗ ho r i z on t a l ∗/ ,
p−>g r id + p−>bo r d e r s i z e ∗ p−>s t r i d e , p−>s t r i d e ∗ s izeof ( f loat ) ,
dgr id + (2 ∗ p−>bo r d e r s i z e ) ∗ p i t ch / s izeof ( f loat ) + p−>bo rde r s i z e ,
p itch , p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h − p−>bo r d e r s i z e ) ;

moveBlockToDevice (3 , 2 , i , 4/∗ ho r i z on t a l ∗/ ,
p−>g r id − (p−>bo r d e r s i z e ∗ p−>s t r i d e ) − p−>bo rde r s i z e ,
p−>s t r i d e ∗ s izeof ( f loat ) , dgrid , p itch ,
p−>bo r d e r s i z e ∗ s izeof ( f loat ) , p−>h + p−>bo r d e r s i z e ) ;

break ;
}

c l o ck ge t t ime (CLOCK REALTIME, &h end ) ;
comm time [ p−>dev i ce ] += getTime ( h s ta r t , h end ) ;

//∗∗∗∗∗ End Communication ∗∗∗∗∗
}

// CORE COMPUTATION − End //////////////////////////

//Last t r an s f e r . Just subdomain
switch (p−>dev i ce )
{

case 0 :
o f f s e t = 0 ;
break ;

case 1 :
o f f s e t = p−>bo r d e r s i z e ;
break ;

case 2 :
o f f s e t = p−>bo r d e r s i z e ∗ p i t ch / s izeof ( f loat ) ;
break ;

case 3 :
o f f s e t = p−>bo r d e r s i z e ∗ p i t ch / s izeof ( f loat )+p−>bo r d e r s i z e ;
break ;

}

cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D(p−>gr id , p−>s t r i d e ∗ s izeof ( f loat ) , dgr id + o f f s e t , p itch ,
p−>n ∗ s izeof ( f loat ) , p−>h , cudaMemcpyDeviceToHost ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
ext cpy t ime [ p−>dev i ce ] += temp time ;

//Format and d i s p l a y output
p r i n t f ( ” t%d avarage RSOR kerne l time : %f ms .\n” ,

p−>device , r k e r n e l t ime / p−>i t e r a t i o n s ) ;
p r i n t f ( ” t%d avarage BSOR kerne l time : %f ms .\n” ,

p−>device , b ke rne l t ime / p−>i t e r a t i o n s ) ;
p r i n t f ( ” t%d t o t a l k e rne l time : %f ms .\n” ,

p−>device , r k e r n e l t ime + b ke rne l t ime ) ;
p r i n t f ( ” t%d MKT: %f ms .\n” ,

p−>device , ( r k e r n e l t ime + b ke rne l t ime ) / p−>i t e r a t i o n s ) ;

p r i n t f ( ” t%d t o t a l t r a n s f e r time : %f ms [ i t e r : %f + ext : %f ] . \ n” ,
p−>device , cpy time [ p−>dev i ce ] + ext cpy t ime [ p−>dev i ce ] ,
cpy time [ p−>dev i ce ] , ex t cpy t ime [ p−>dev i ce ] ) ;

p r i n t f ( ” t%d MTT: %f ms .\n” ,
p−>device , cpy time [ p−>dev i ce ] / (p−>i t e r a t i o n s /b) ) ;

p r i n t f ( ” t%d t o t a l synchron i za t i on time : %f ms [ i t e r : %f + ext : %f ] . \ n” ,
p−>device , ( sync t ime [ p−>dev i ce ] + ext sync t ime [ p−>dev i ce ] ) ∗ 1E3 ,
sync t ime [ p−>dev i ce ] ∗ 1E3 , ex t sync t ime [ p−>dev i ce ] ∗ 1E3) ;

p r i n t f ( ” t%d MST: %f ms .\n” ,
p−>device , ( sync t ime [ p−>dev i ce ] ∗ 1E3) / (p−>i t e r a t i o n s /b) ) ;

p r i n t f ( ” t%d t o t a l communication time : %f ms [ i t e r : %f + ext : %f ] . \ n” , p−>device ,
comm time [ p−>dev i ce ] ∗ 1E3
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+ ext sync t ime [ p−>dev i ce ] ∗ 1E3 + ext cpy t ime [ p−>dev i ce ] ,
comm time [ p−>dev i ce ] ∗ 1E3 ,
ex t sync t ime [ p−>dev i ce ] ∗ 1E3 + ext cpy t ime [ p−>dev i ce ] ) ;

p r i n t f ( ” t%d MCT: %f ms .\n” ,
p−>device , ( comm time [ p−>dev i ce ] ∗ 1E3) / (p−>i t e r a t i o n s /b) ) ;

cudaEventDestroy ( s t a r t ) ;
cudaEventDestroy ( stop ) ;

cudaFree ( dgr id ) ;

return NULL;
}

/∗
∗ c a l l s o l v e r
∗ s o l v e r − the index o f the s o l v e r to use .
∗ g r i d − po in t e r to the PDE domain .
∗ n − width / he i gh t o f the domain in terms of number o f e lements per row/column .
∗ i t e r a t i o n s − the number o f t imes the s o l v e r shou ld i t e r a t e .
∗ threads − i n d i c a t e s how many threads , and f i n a l l y dev ices , shou ld cooperate

in s o l v i n g the PDE.
∗
∗ I n s t a n t i a t e s the r i g h t number o f threads and manages t h e i r cooperat ion to s o l v e

the PDE.
∗/

int c a l l s o l v e r (
int so l ve r , f loat ∗omega , f loat ∗ gr id , int m, int n ,
int i t e r a t i o n s , int threads , int bo r d e r s i z e
)

{
pthread t ∗ t i d = new pthread t [ threads ] ;

struct Params ∗ t p = new struct Params [ threads ] ;

struct t imespec s ta r t , end ;

mutex = new pthread mutex t [ 2 ∗ threads ] ;
rCond = new pthread cond t [ 2 ∗ threads ] ;
wCond = new pthread cond t [ 2 ∗ threads ] ;
rAcc = new int [ 2 ∗ threads ] ;
wAcc = new int [ 2 ∗ threads ] ;

ext cpy t ime = new double [ threads ] ;
ex t sync t ime = new double [ threads ] ;
cpy time = new double [ threads ] ;
sync t ime = new double [ threads ] ;
comm time = new double [ threads ] ;
d ev s e l t ime = new double [ threads ] ;

i f (∗omega == 0)
{

f loat pi = 4 . f ∗ atan ( 1 . f ) ;
f loat i n t e r v a l = 1 . f / (n + 1) ;
∗omega = 2 . f / ( 1 . f + s i n ( p i ∗ i n t e r v a l ) ) ;
i f (∗omega > 1 . 9 ) ∗omega = 1 . 9 ;

}

for ( int i = 0 ; i< 2 ∗ threads ; i++)
{

pthread mutex in i t (&mutex [ i ] , NULL) ;
p th r ead cond in i t (&rCond [ i ] , NULL) ;
p th r ead cond in i t (&wCond [ i ] , NULL) ;
rAcc [ i ] = 0 ;
wAcc [ i ] = 0 ;

}

for ( int i = 0 ; i < threads ; i++)
{

t p [ i ] . s o l v e r = s o l v e r ;
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t p [ i ] . omega = ∗omega ;
t p [ i ] . s t r i d e = n ;
t p [ i ] . n = n/2 ;
t p [ i ] . h = m/2 ;
t p [ i ] . b o r d e r s i z e = bo r d e r s i z e ;
t p [ i ] . i t e r a t i o n s = i t e r a t i o n s ;
t p [ i ] . g r i d = gr id + t p [ i ] . h ∗ n ∗ ( i >1) + t p [ i ] . n ∗ ( i % 2 != 0) ;
t p [ i ] . dev i c e = i ;
t p [ i ] . threads = threads ;

}

i f ( t p [ 0 ] . h ∗ threads < m)
t p [ 2 ] . h = ( t p [ 3 ] . h += m − ( t p [ 0 ] . h ∗ threads ) ) ;

i f ( t p [ 0 ] . n ∗ threads < n)
t p [ 0 ] . n = ( t p [ 1 ] . n += n − ( t p [ 0 ] . n ∗ threads ) ) ;

c l o ck g e t t ime (CLOCK REALTIME, &s t a r t ) ;

for ( int i =0; i<threads ; i++)
pth r ead c r ea t e (& t i d [ i ] , NULL, &te t ra th r ead , &t p [ i ] ) ;

for ( int i =0; i<threads ; i++)
{

pth r ead j o i n ( t i d [ i ] , NULL) ;
}

c l o ck ge t t ime (CLOCK REALTIME, &end ) ;

double max dev se l = getMaxDeviceSelectionTime ( threads ) ;
p r i n t f ( ”Elapsed time : %.9 f s \n” , getTime ( s ta r t , end )−max dev se l ) ;

for ( int i = 0 ; i < 2 ∗ threads ; i++)
{

pthread mutex destroy(&mutex [ i ] ) ;
p thread cond des t roy (&rCond [ i ] ) ;
p thread cond des t roy (&wCond [ i ] ) ;

}

delete [ ] mutex ;
delete [ ] rCond ;
delete [ ] wCond ;
delete [ ] rAcc ;
delete [ ] wAcc ;

delete [ ] t i d ;
delete [ ] t p ;

delete [ ] ex t cpy t ime ;
delete [ ] ex t sync t ime ;
delete [ ] cpy time ;
delete [ ] sync t ime ;
delete [ ] comm time ;
delete [ ] d e v s e l t ime ;

return 0 ;
}

B.2.5 Borders Exchange

Samples from psync strips.cu

/∗
∗ wr i t e g h o s t s
∗ Copies a shared area from dev i ce to hos t .
∗/

void wr i t e gho s t s (
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int device , int block , int neighbor , int step , f loat ∗host addr ,
s i z e t hos t p i t ch , f loat ∗dev addr , s i z e t dev pitch , int width byte , int he ight
)

{

cudaEvent t s ta r t , stop ;
cudaEventCreate(& s t a r t ) ;
cudaEventCreate(&stop ) ;

f loat temp time ;
t imespec h s ta r t , h end ;
c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

//Lock mutex to check cond i t i on v a r i a b l e . Proceed j u s t i f the neighbor
// read the border during the prev ious i t e r a t i o n
pthread mutex lock(&mutex [ b lock ] ) ;

while ( rAcc [ b lock ] != step + 1)
{

pthread cond wait (&rCond [ b lock ] , &mutex [ b lock ] ) ;
}

pthread mutex unlock(&mutex [ b lock ] ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
sync t ime [ dev i ce ] += getTime ( h s ta r t , h end ) ;
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( host addr , ho s t p i t ch , dev addr , dev pitch , width byte ,
height , cudaMemcpyDeviceToHost ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ; //Block u n t i l the event i s a c t u a l l y recorded

cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
cpy time [ dev i ce ] += temp time ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

//Lock mutex to increase the wr i t e counter .
pthread mutex lock(&mutex [ b lock ] ) ;

wAcc [ b lock ]++;
pthread mutex unlock(&mutex [ b lock ] ) ;
p th r ead cond s i gna l (&wCond [ b lock ] ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
sync t ime [ dev i ce ] += getTime ( h s ta r t , h end ) ;

cudaEventDestroy ( s t a r t ) ;
cudaEventDestroy ( stop ) ;

}

/∗
∗ r ead ghos t s
∗ Copies a shared area from hos t to dev i ce .
∗/

void r ead ghos t s (
int device , int block , int neighbor , int step , f loat ∗host addr ,
s i z e t hos t p i t ch , f loat ∗dev addr , s i z e t dev pitch , int width byte , int he ight
)

{
cudaEvent t s ta r t , stop ;
cudaEventCreate(& s t a r t ) ;
cudaEventCreate(&stop ) ;

f loat temp time ;
t imespec h s ta r t , h end ;
c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

//Lock mutex to check cond i t i on v a r i a b l e . Proceed j u s t i f the neighbor
//wrote the border during the prev ious i t e r a t i o n
pthread mutex lock(&mutex [ ne ighbor ] ) ;
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while (wAcc [ ne ighbor ] != step+1)
{

pthread cond wait (&wCond [ ne ighbor ] , &mutex [ ne ighbor ] ) ;
}

pthread mutex unlock(&mutex [ ne ighbor ] ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
sync t ime [ dev i ce ] += getTime ( h s ta r t , h end ) ;
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dev addr , dev pitch , host addr , ho s t p i t ch , width byte ,
height , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;

cudaEventElapsedTime(&temp time , s ta r t , stop ) ;
cpy time [ dev i ce ] += temp time ;

c l o ck ge t t ime (CLOCK REALTIME, &h s t a r t ) ;

//Lock mutex to increase the read counter .
pthread mutex lock(&mutex [ ne ighbor ] ) ;

rAcc [ ne ighbor ]++;
pthread mutex unlock(&mutex [ ne ighbor ] ) ;
p th r ead cond s i gna l (&rCond [ ne ighbor ] ) ;

c l o ck g e t t ime (CLOCK REALTIME, &h end ) ;
sync t ime [ dev i ce ] += getTime ( h s ta r t , h end ) ;

cudaEventDestroy ( s t a r t ) ;
cudaEventDestroy ( stop ) ;

}

B.2.6 Strip Partitioning - Texture-based Red Kernel

Samples from pde kernels.cu

#define ATD(x , y ) ( p i t ch ) ∗( g r idPosBase j+(y ) ) + ( gr idPosBase i+(x ) )
#define ATS(x , y ) ( l o ca l w ) ∗( y ) + (x )

texture<f loat , 1 , cudaReadModeElementType> texRef 0 ;
texture<f loat , 1 , cudaReadModeElementType> texRef 1 ;
texture<f loat , 1 , cudaReadModeElementType> texRef 2 ;
texture<f loat , 1 , cudaReadModeElementType> texRef 3 ;

f loat device selectTex1D ( int gpu , int pos )
{

switch ( gpu )
{

case 0 :
return tex1Dfetch ( texRef 0 , pos ) ;

case 1 :
return tex1Dfetch ( texRef 1 , pos ) ;

case 2 :
return tex1Dfetch ( texRef 2 , pos ) ;

case 3 :
return tex1Dfetch ( texRef 3 , pos ) ;

}

return 0 . f ;
}

/∗
∗ Red SOR through l i n e a r t e x t u r i n g .
∗/

global void r s o r l i n t e x (
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f loat ∗dgrid , int n , int h , f loat omega , int pitch , int ab s s t a r t ,
s i z e t o f f s e t , int dev
)

{
// v e r t i c a l window s i z e = 2
int gr idPosBase j = blockIdx . y ∗ 2 ;
// ho r i z on t a l window s i z e = blockDim . x − 2
int gr idPosBase i = blockIdx . x ∗ ( blockDim . x − 2) ;

int i = threadIdx . x ;
int l o c a l w = blockDim . x ;

extern shared f loat s g r i d [ ] ;

// I f b l o c k can ’ t use more than 3 rows
int ok3 = gr idPosBase j + 3 < h ;
//Red f i r s t
int r1 = ( ab s s t a r t + gr idPosBase j + 1) & 1 ;
//Traversing s i gn
int s i gn = r1 + mul24 (1 − r1 , −1) ;
//Computation indexes
int com i = i + 1 ;
int com j = (2 − r1 ) + mul24 ( s ign , 1 & i ) ;

i f ( g r idPosBase i+i < n)
{

s g r i d [ATS( i , 0 ) ] = selectTex1D (dev , ATD( i , 0 ) + o f f s e t ) ;
s g r i d [ATS( i , 1 ) ] = selectTex1D (dev , ATD( i , 1 ) + o f f s e t ) ;
s g r i d [ATS( i , 2 ) ] = selectTex1D (dev , ATD( i , 2 ) + o f f s e t ) ;
i f ( ok3 )

s g r i d [ATS( i , 3 ) ] = selectTex1D (dev , ATD( i , 3 ) + o f f s e t ) ;
}

sync th r ead s ( ) ;

i f ( ( i<l oca l w −2)&&(gr idPosBase i+i<n−2) )
{

i f ( ok3 )
s g r i d [ATS( com i , com j ) ] +=

omega ∗ (
( s g r i d [ATS( com i − 1 , com j ) ] + sg r i d [ATS( com i + 1 , com j ) ]

+ s g r i d [ATS( com i , com j − 1) ] + sg r i d [ATS( com i , com j + 1) ] ) / 4 . f
− s g r i d [ATS( com i , com j ) ]

) ;
else i f ( com j != 2)

s g r i d [ATS( com i , com j ) ] +=
omega ∗ (
( s g r i d [ATS( com i − 1 , com j ) ] + sg r i d [ATS( com i + 1 , com j ) ]

+ s g r i d [ATS( com i , com j − 1) ] + sg r i d [ATS( com i , com j + 1) ] ) / 4 . f
− s g r i d [ATS( com i , com j ) ]

) ;
}

sync th r ead s ( ) ;

i f ( ( i < l o c a l w − 2) && ( gr idPosBase i + i < n − 2) )
{

i f ( ok3 )
dgr id [ATD( com i , com j ) ] = sg r i d [ATS( com i , com j ) ] ;

else i f ( com j == 1)
dgr id [ATD( com i , 1) ] = s g r i d [ATS( com i , 1) ] ;

}

}

/∗
∗ Black SOR through l i n e a r t e x t u r i n g .
∗/

global void b s o r l i n t e x (
f loat ∗dgrid , int n , int h , f loat omega , int pitch , int ab s s t a r t , int dev
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)
{

// v e r t i c a l window s i z e = 2
int gr idPosBase j = blockIdx . y ∗ 2 ;
// ho r i z on t a l window s i z e = blockDim . x − 2
int gr idPosBase i = blockIdx . x ∗ ( blockDim . x − 2) ;

int i = threadIdx . x ;
int l o c a l w = blockDim . x ;

extern shared f loat s g r i d [ ] ;

int ok3 = gr idPosBase j + 3 < h ;
//Red f i r s t
int r1 = ( ab s s t a r t + gr idPosBase j + 1) & 1 ;
//Traversing s i gn
int s i gn = mul24 (−1 , r1 ) + (1 − r1 ) ;
//Computation indexes
int com i = i + 1 ;
int com j = (1 + r1 ) + mul24 ( s ign , 1 & i ) ;

i f ( g r idPosBase i + i < n)
{

s g r i d [ATS( i , 0 ) ] = selectTex1D (dev , ATD( i , 0 ) ) ;
s g r i d [ATS( i , 1 ) ] = selectTex1D (dev , ATD( i , 1 ) ) ;
s g r i d [ATS( i , 2 ) ] = selectTex1D (dev , ATD( i , 2 ) ) ;
i f ( ok3 )

s g r i d [ATS( i , 3 ) ] = selectTex1D (dev , ATD( i , 3 ) ) ;
}

sync th r ead s ( ) ;

i f ( ( i < l o c a l w − 2) && ( gr idPosBase i + i < n − 2) )
{

i f ( ok3 )
s g r i d [ATS( com i , com j ) ] +=

omega ∗ (
( s g r i d [ATS( com i − 1 , com j ) ] + sg r i d [ATS( com i + 1 , com j ) ]

+ s g r i d [ATS( com i , com j − 1) ] + sg r i d [ATS( com i , com j + 1) ] ) / 4 . f
− s g r i d [ATS( com i , com j ) ]

) ;
else i f ( com j != 2)

s g r i d [ATS( com i , com j ) ] +=
omega ∗ (
( s g r i d [ATS( com i − 1 , com j ) ] + sg r i d [ATS( com i + 1 , com j ) ]

+ s g r i d [ATS( com i , com j − 1) ] + sg r i d [ATS( com i , com j + 1) ] ) / 4 . f
− s g r i d [ATS( com i , com j ) ]

) ;
}

sync th r ead s ( ) ;

i f ( ( i < l o c a l w − 2) && ( gr idPosBase i + i < n − 2) )
{

i f ( ok3 )
dgr id [ATD( com i , com j ) ] = sg r i d [ATS( com i , com j ) ] ;

else i f ( com j == 1)
dgr id [ATD( com i , 1 ) ] = s g r i d [ATS( com i , 1 ) ] ;

}

}
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Appendix C

Benchmark Software
Installation

The benchmark sources are collected in two folders src and include. The folder bin
contains all the scripts and is the default destination folder for all the executables
created using the the supplied Makefile. The Makefile presents the options shown
in Table ??.

Table C.1 – Makefile options.
psync strips Generates a PDE solver based on strip parti-

tioning called run tetra psync strips.
psync blocks Generates a PDE solver based on block par-

titioning called run tetra psync blocks.
grid gen Generates the timer used for regression anal-

ysis described in Appendix D.2.
timer reg Generates the timer used for regression anal-

ysis described in Appendix D.2.
all Generates all the aboves.
psync strips emu Generates a PDE solver based on strip par-

titioning in CUDA emulation mode. The ap-
plication is called psync strips emu.

psync blocks emu Generates a PDE solver based on block par-
titioning in CUDA emulation mode. The ap-
plication is called psync blocks emu.

ptxas Shows the number of registers required by the
kernels as well as local, shared, and constant
memory usage.

ptx Generates an assemply source file for the pde
kernels.

clean Removes all the generated files within the bin
folder.
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Appendix D

Helper Tools

In this appendix we show the code of some tools that we implemented to support
us automating the most repetitive and long phases of the benchmarking activity.

D.1 Domain Generator

D.1.1 Usage

The tool takes in input three parameters:

M The number of rows of the domain;

N The number of columns of the domain;

Filename The domain’s output file.

So the command

$> . / g r i d gen −m 1024 −n 1024 −f mib . in

creates a domain of dimensions 1024× 1024 in mib.in with border’s elements set to
MAX TEMP.

D.1.2 Code: grid gen.c

#define GNU SOURCE

#include <s t d i o . h>
#include <s t d l i b . h>
#include <getopt . h>

#include < f c n t l . h>
#include <un i s td . h>
#include <sys / s t a t . h>

#include <sys / time . h>
#include <sys / r e s ou r c e . h>

#include <errno . h>

#define MAXTEMP 100
#define K 1GiB 1024∗1024∗1024. l

//command−l i n e op t ions ( shor t ver s ion )
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const char ∗ const s ho r t op t i on s = ”ht :m: n : f : ” ;

//command−l i n e op t ions ( long ver s ion )
const struct opt ion l ong op t i on s [ ] = {
{” help ” , 0 , NULL, ’h ’ } ,
{”rows” , 1 , NULL, ’m’ } ,
{”columns” , 1 , NULL, ’n ’ } ,
{” f i l e ” , 1 , NULL, ’ f ’ }

} ;

/∗
∗ Print usage informat ion to <stream> and e x i t wi th <ex i t code >.
∗/

void pr i n t u sage (FILE∗ stream , int e x i t c od e )
{

f p r i n t f ( stream , ”Usage : g r i d gen −m <rows> −n <columns> −f < f i l e > [−h ]\n” ) ;

e x i t ( e x i t c od e ) ;
}

/∗
∗ MAIN FUNCTION
∗/

int main ( int argc , char ∗∗ argv )
{

s i z e t m, n ;
const char∗ o u t f i l e = NULL;
int next opt , opt counter = 0 ;

do{
next opt = ge top t l ong ( argc , argv , sho r t op t i on s , l ong opt i ons , NULL) ;

switch ( next opt )
{

case ’ h ’ :
p r i n t u sage ( stdout , 0) ;

case ’m’ :
m = ato i ( optarg ) ;
opt counter++;
break ;

case ’ n ’ :
n = a t o i ( optarg ) ;
opt counter++;
break ;

case ’ f ’ :
o u t f i l e = optarg ;
opt counter++;
break ;

case ’ ? ’ :
f p r i n t f ( s tde r r , ”Unexpected opt ion .\n” ) ;
p r i n t u sage ( s tde r r , 1) ;

case −1:
//Done with op t ions
break ;

default :
e x i t (−1) ;

}
} while ( next opt != −1) ;

i f ( opt counter != 3)
{

f p r i n t f ( s tde r r , ”Miss ing mandatory opt ions .\n” ) ;
p r i n t u sage ( s tde r r , 1) ;

}

s i z e t s i z e = m∗n ;
s i z e t i t e r = ( s i z e ∗ s izeof ( f loat ) ) /(K 1GiB) ;
s i z e t r e s t = s i z e ∗ s izeof ( f loat )− i t e r ∗(K 1GiB) ;

int fd ;



D.1. DOMAIN GENERATOR 113

i f ( ( fd = open ( o u t f i l e ,
O CREAT | ORDWR | O TRUNC, S IRUSR | S IWUSR | S IRGRP) ) == −1)

{
f p r i n t f ( s tde r r , ”Error opening f i l e .\n” ) ;
return EXIT FAILURE;

}

f loat ∗ g r id ;

g r i d = ( f loat ∗) c a l l o c ( s i z e , s izeof ( f loat ) ) ;

for ( s i z e t j =0; j<m; j++)
{

g r id [ j ∗n ] = MAXTEMP;
g r id [ j ∗n+n−1] = MAXTEMP;

}
for ( s i z e t i =0; i<n ; i++)
{

g r id [ i ] = MAXTEMP;
g r id [ (m−1)∗n+i ] = MAXTEMP;

}

s s i z e t r ;
s i z e t t o t a l = 0 ;
for ( s i z e t i = 0 ; i < i t e r ; i++)
{

i f ( ( r=pwrite ( fd , gr id , K 1GiB , i ∗K 1GiB) ) != K 1GiB)
{

f p r i n t f ( s tde r r , ”At i t e r a t i o n %ld pwri te r e tu rn s %ld .\n” , i , r ) ;
p e r ro r (NULL) ;
e x i t e (EXIT FAILURE) ;

}
t o t a l += r ;

}

i f ( ( r=pwrite ( fd , gr id , r e s t , t o t a l ) ) != r e s t )
{

f p r i n t f ( s tde r r , ”Writing r e s t pwr i te r e tu rn s %ld .\n” , r ) ;
pe r ro r (NULL) ;
e x i t e (EXIT FAILURE) ;

}
t o t a l += r ;

struct s t a t f s ;

f s t a t ( fd , &f s ) ;

i f ( f s . s t s i z e != s i z e ∗ s izeof ( f loat ) )
{

p r i n t f ( ”Error : s i z e d i f f e r s from what expected .
Expected : %ld , S i z e : %ld , # a l l o c a t e d b locks : %ld \n” ,

s i z e ∗ s izeof ( f loat ) , f s . s t s i z e , f s . s t b l o c k s ) ;
e x i t (EXIT FAILURE) ;

}

p r i n t f ( ”done . S i z e : %ld , # a l l o c a t e d b locks : %ld \n” ,
f s . s t s i z e , f s . s t b l o c k s ) ;

p r i n t f ( ” f l o a t s i z e : %ld .\n” , s izeof ( f loat ) ) ;

c l o s e ( fd ) ;
f r e e ( g r id ) ;

e x i t (EXIT SUCCESS) ;
}



114 Appendix D. Helper Tools

D.2 Timer

D.2.1 Usage

The tool takes in input an integer parameter N and performs some basic timing
experiments based on a N × N matrix of floats (e.g. retrieving cudaMemcpy2D()
startup time). It was used during the regression analysis in Section 6.3.

D.2.2 Code: timer reg.cu

#include <s t d i o . h>

int main ( int argc , char ∗∗ argv )
{

cudaEvent t s ta r t , stop ;
f loat time ;

cudaEventCreate(& s t a r t ) ;
cudaEventCreate(&stop ) ;

int n = a to i ( argv [ 1 ] ) ;

s i z e t p i t ch ;

f loat ∗ dgr id ;
f loat ∗ hgr id = ( f loat ∗) mal loc (n ∗ n ∗ s izeof ( f loat ) ) ;
cudaMallocPitch ( ( void ∗∗)&dgrid , &pitch , n ∗ s izeof ( f loat ) , n ) ;

//Compute the time requ i red to send 0Byte ( Star tup )
f loat s ta r tup ;
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , hgrid , n ∗ s izeof ( f loat ) ,
0 , 0 , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&startup , s t a r t , stop ) ;
p r i n t f ( ”CudaMemcpy2D star tup : %fms\n” , s ta r tup ) ;

//Compute the time requ i red to send 1Byte
f loat mean = 0 . f ;
for ( int i =0; i <1000; i++)
{

cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , hgrid , n ∗ s izeof ( f loat ) ,
1 , 1 , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&time , s t a r t , stop ) ;
mean += time ;

}
f loat tword = mean/1000− s ta r tup ;
p r i n t f ( ”CudaMemcpy2D 1 Byte : %fms\n” , tword ) ;

//Time requ i red to t r an s f e r n/2∗n elements
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , hgrid , n ∗ s izeof ( f loat ) , n ∗ s izeof ( f loat ) ,
n/2 , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&time , s t a r t , stop ) ;
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p r i n t f ( ”CudaMemcpy2D to send %d x %d/2 : %fms\n” , n , n , time ) ;

//Time requ i red to t r an s f e r n∗n/2 elements
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , hgr id + n ∗ n/2 , n ∗ s izeof ( f loat ) ,
n ∗ s izeof ( f loat ) /2 , n , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&time , s t a r t , stop ) ;
p r i n t f ( ”CudaMemcpy2D to send %d x %d/2 : %fms\n” , n , n , time ) ;

//Time requ i red to t r an s f e r n e lements
cudaEventRecord ( s ta r t , 0) ;

cudaMemcpy2D( dgrid , p itch , hgrid , n ∗ s izeof ( f loat ) , n ∗ s izeof ( f loat ) ,
n , cudaMemcpyHostToDevice ) ;

cudaEventRecord ( stop , 0) ;
cudaEventSynchronize ( stop ) ;
cudaEventElapsedTime(&time , s t a r t , stop ) ;
p r i n t f ( ”CudaMemcpy2D to send %d x %d : %fms\n” , n , n , time ) ;

cudaFree ( dgr id ) ;
cudaEventDestroy ( s t a r t ) ;
cudaEventDestroy ( stop ) ;

f r e e ( hgr id ) ;

return 0 ;
}

D.3 Domains Populator

D.3.1 Usage

The tool is a script with a configuration area. It populates a set of domains based
on a list of dimensions and a list of shapes. For example, configuring the script with
the two lists:

s i z e s = [ 1 2 8 ]
shapes = [ [ 0 . 5 , 1 ] , [ 1 , 1 ] ]

it would generate two domains with dimensions respectively 64×128 and 128×128.

D.3.2 Code: populate.py

#!/ usr / bin /python
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Config s e c t i on
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Define the d i r e c t o r y conta in ing the programs to be run ( r e l a t i v e to t h i s s c r i p t )
program=” ./ bin / g r id gen ”
#Define the d i r e c t o r y conta in ing the input f i l e s ( r e l a t i v e to t h i s s c r i p t )
inputDir=” . / in /”

#Define the s i z e s
#e . g . s i z e s = [14000 , 33000]

#Define the shapes as dimensional f a c t o r s :
#With s i z e s and f a c t o r s [ f , g ] −> [ s∗ f , s∗g ] matrix
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#e . g . shapes = [ [ 0 . 5 , 1 ] , [ 1 , 1 ] , [ 1 , 0 . 5 ] ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Do not e d i t beyond t h i s l i n e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
from subproces s import ∗

################################################

def main ( ) :

t o t a l = 0 ;
for shape in shapes :

for s i z e in s i z e s :
m = in t ( shape [ 0 ] ∗ s i z e )
n = in t ( shape [ 1 ] ∗ s i z e )
s i z e = m∗n∗4
cmdLine = program + ” ” + s t r (m) + ” ” + s t r (n) + ” ” + inputDir

+ s t r (m) + ” . ” + s t r (n) + ” . in ”
i f s i z e < 1E3 :

print ”Execution o f : ” + cmdLine
+ ”\ tGenerat ing ” + s t r ( s i z e ) + ” bytes . . . ”

e l i f s i z e >= 1E3 and s i z e < 1E6 :
print ”Execution o f : ” + cmdLine
+ ”\ tGenerat ing %.2 f KB . . . ” %( s i z e /1E3)

e l i f s i z e >= 1E6 and s i z e < 1E9 :
print ”Execution o f : ” + cmdLine
+ ”\ tGenerat ing %.2 f MB. . . ” %( s i z e /1E6)

else :
print ”Execution o f : ” + cmdLine
+ ”\ tGenerat ing %.2 f GB . . . ” %( s i z e /1E9)

p = Popen ( cmdLine , s h e l l=True , s td in=PIPE ,
stdout=PIPE , c l o s e f d s=True )

p . wait ( )
i f p . returncode != 0 :

print ”Something went wrong launching g r id gen .
Return code ” + s t r (p . returncode )

else :
print ”Done”
t o t a l += s i z e

i f t o t a l < 1E3 :
print ”Created ” + s t r ( t o t a l ) + ” bytes o f good data . ”

e l i f t o t a l >= 1E3 and t o t a l < 1E6 :
print ”Created %.2 f KB of good data . ” %( t o t a l /1E3)

e l i f t o t a l >= 1E6 and t o t a l < 1E9 :
print ”Created %.2 f MB of good data . ” %( t o t a l /1E6)

else :
print ”Created %.2 f GB of good data . ” %( t o t a l /1E9)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Execution s t a r t s here
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f name ==” main ” :

main ( )

D.4 Benchmark Launcher

D.4.1 Usage

The tool is a script used to launch several different configurations of the run tetra
benchmark application. In the configuration area, it allows to specify:

• Different versions of the benchmark;

• A dictionary with entries of the form: < #GPUs, [listofsizes] >;



D.4. BENCHMARK LAUNCHER 117

• A dictionary with entries of the form: < #GPUs, [listofshapes] >;

• A dictionary with entries of the form: < Benchmarkversion, [#GPUs] >;

• A list of border widths;

• The relaxation factor omega;

• Whether to save output images or not.

The script launches the different configurations and collects output results in a cvs
file with columns’ format:

M N Border Size MKT[ms] MST[ms] MTT[ms] MCT[ms] Elapsed Time[s]

D.4.2 Code: launcher.py

#!/ usr / bin /python
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Config s e c t i on
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Define the d i r e c t o r y conta in ing the programs to be run ( r e l a t i v e to t h i s s c r i p t )
programsDir=” . / bin /”
#Define the d i r e c t o r y conta in ing the input f i l e s ( r e l a t i v e to t h i s s c r i p t )
inputDir=” . / in /”
#Define the d i r e c t o r y conta in ing the input f i l e s ( r e l a t i v e to t h i s s c r i p t )
outputDir=” . / out/”
#Set the l i s t o f programs to be run
programs=[” r u n t e t r a p s y n c s t r i p s ” , ” run t e t r a p sync b l o ck s ” ]

#Define the s i z e s
# s i z e s = {1: [128 , 200] , 2 : [128 , 200 , 256] , 4 : [ 128 ]}

#Define the shapes as dimensional f a c t o r s :
#With s i z e s and f a c t o r s [ f , g ] −> [ s∗ f , s∗g ] matrix
#shapes = {1: [ [ 1 , 1 ] ] , 2 : [ [ 1 , 1 ] ] , 4 : [ [ 0 . 5 , 1 ] , [ 1 , 1 ] , [ 1 , 0 . 5 ] ] }

#Define the number o f GPUs to use r e l a t i v e l y to the program index
#gpusL i s t = {0: [ 1 , 2 , 4 ] , 1 : [ 4 ] }

#Define the number o f GPUs to use r e l a t i v e l y to the program index
bsL i s t = [ 1 , 2 , 4 , 5 , 8 , 10 , 20 , 25 , 40 , 50 , 100 ]

#Define the r e l a x a t i on f a c t o r omega (0 = use the optimum va lue )
omega=0
#Save graph ic s output
img=0

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Do not e d i t beyond t h i s l i n e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
from subproces s import ∗
import re
import sys
import math
import time

################################################

def setupOutFi le ( outFileName ) :

ou tF i l e=f i l e ( outputDir+outFileName , ”w” )
ou tF i l e . wr i t e ( ”M;N; Border S i ze ;MKT[ms ] ;MST[ms ] ;

MTT[ms ] ;MCT[ms ] ; Elapsed Time [ s ]\n” )
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return ou tF i l e

################################################

def runTetra ( program , gpus , m, n , bs , k ) :

#Prepare the e x t r a c t i on regexp
mktREs=[ ]
mstREs=[ ]
mttREs=[ ]
mctREs=[ ]
for gpu in range ( gpus ) :

mktREs . append ( re . compi le ( ” t ”+s t r ( gpu )+” MKT: (\d+.\d+)” ) )
mstREs . append ( re . compi le ( ” t ”+s t r ( gpu )+” MST: (\d+.\d+)” ) )
mttREs . append ( re . compi le ( ” t ”+s t r ( gpu )+” MTT: (\d+.\d+)” ) )
mctREs . append ( re . compi le ( ” t ”+s t r ( gpu )+” MCT: (\d+.\d+)” ) )

elapsedRE=re . compi le ( ”Elapsed time : (\d+.\d+)” )

dim = n ;
i f (dim < m) : dim = m;

i n t i t e r =100
i f (dim >= 33000) :

e x t i t e r=5
e l i f (dim >= 8000) and (n < 33000) :

e x t i t e r =10
e l i f (dim >= 4000) and (n < 8000) :

e x t i t e r =20
e l i f (dim >= 128) and (n < 4000) :

e x t i t e r =30

r e s L i s t =[ ]
cmdLine=programsDir + program + ” ” + s t r ( gpus ) + ” ” + s t r (m) + ” ”

+ s t r (n) + ” ” +inputDir+s t r (m)+” . ”+s t r (n)+” . in ”+ ” ” + s t r ( i n t i t e r )
+ ” ” + s t r ( bs ) + ” ” + s t r ( k ) + ” ” + s t r ( omega ) + ” ” + s t r ( img )

tt ime=0

for i in range ( e x t i t e r ) :
mkts = [ ]
msts = [ ]
mtts = [ ]
mcts = [ ]
s t a r t = time . time ( )
p = Popen ( cmdLine , s h e l l=True , s td in=PIPE ,

stdout=PIPE , c l o s e f d s=True )
p . wait ( )
output = p . stdout . read ( )
e l apsed = time . time ( )−s t a r t
i f p . returncode != 0 :

print ”Run #”+s t r ( i )+” − Error . Return code ” + s t r (p . re turncode )
e x i t (1 )

else :
i f e lapsed > 60 :

print ”Run #%d − Execution went f i n e in %.2 fmin .
Extract ing r e l e van t data . . . ” % ( i , e l apsed /60)

else :
print ”Run #%d − Execution went f i n e in %.2 f s .

Extract ing r e l e van t data . . . ” % ( i , e l apsed )
tt ime += e lapsed
#Extract
for gpu in range ( gpus ) :

mkts . append ( f l o a t (mktREs [ gpu ] . s earch ( output ) . group (1 ) ) )
msts . append ( f l o a t (mstREs [ gpu ] . s earch ( output ) . group (1 ) ) )
mtts . append ( f l o a t (mttREs [ gpu ] . s earch ( output ) . group (1) ) )
mcts . append ( f l o a t (mctREs [ gpu ] . s earch ( output ) . group (1 ) ) )

r e s L i s t . append ( [ ] ) ;
r e s L i s t [ i ] . append (max(mkts ) )
r e s L i s t [ i ] . append (max( msts ) )
r e s L i s t [ i ] . append (max( mtts ) )
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r e s L i s t [ i ] . append (max( mcts ) )
r e s L i s t [ i ] . append ( f l o a t ( elapsedRE . search ( output ) . group (1) ) )

f i n a l=tt ime /60
i f f i n a l > 60 :

print ”Done %d runs in %.2 fh . Saving r e s u l t . . . ” % ( e x t i t e r , f i n a l /60)
else :

print ”Done %d runs in %.2 fmin . Saving r e s u l t . . . ” % ( e x t i t e r , tt ime /60)

return [ e x t i t e r , i n t i t e r , r e s L i s t ]

################################################

def main ( ) :
i f l en ( sys . argv ) < 2 or l en ( sys . argv ) > 3 :

print ”Usage 1 : launcher <bo rde r s i z e>”
print ”Usage 2 : launcher <b o r d e r s i z e i n f > <bo rde r s i z e sup>”
e x i t (1 )

e l i f l en ( sys . argv ) == 2 :
sup = i n f = in t ( sys . argv [ 1 ] )

else :
i n f = in t ( sys . argv [ 1 ] )
sup = in t ( sys . argv [ 2 ] )

i f i n f < 0 or sup < i n f :
print ”Need 0 <= i n f <= sup”
e x i t (1 )

for p in [ 0 , 1 ] :
for k in [ 0 , 1 ] :

for gpus in gpusLi s t [ p ] :
for shape in shapes [ gpus ] :

print ”Prepar ing the output f i l e . . . ”
ou tF i l e=setupOutFi le ( ” r e s ” + programs [ p ] + ” k” + s t r ( k )

+ ” g ” + s t r ( gpus ) + ” s ”
+ s t r ( shapes [ gpus ] . index ( shape ) + 1) + ” . csv ” )

print ”Done”
for s i z e in s i z e s [ gpus ] :

for bs in bsL i s t :
m = in t ( shape [ 0 ] ∗ s i z e )
n = in t ( shape [ 1 ] ∗ s i z e )
print ”Execution o f : ” + programs [ p ] + ” [GPUs=”

+ s t r ( gpus ) + ” ,M=” + s t r (m) + ” ,N=” + s t r (n)
+ ” ,K=”+ s t r ( k ) + ” , bs=”+ s t r ( bs ) + ” , omega=”
+ s t r ( omega ) + ” , saveImg=” + s t r ( img ) +” ] ”

r e s u l t=runTetra ( programs [ p ] , gpus , m, n , bs , k )
for r e s in r e s u l t [ 2 ] :

ou tF i l e . wr i t e ( s t r (m) + ”\ t ” + s t r (n) + ”\ t ”
+ s t r ( bs ) + ”\ t ” + s t r ( r e s [ 0 ] ) + ”\ t ”
+ s t r ( r e s [ 1 ] ) + ”\ t ” + s t r ( r e s [ 2 ] ) + ”\ t ”
+ s t r ( r e s [ 3 ] ) + ”\ t ” + s t r ( r e s [ 4 ] ) + ”\n” )

ou tF i l e . f l u s h ( )
print ”Saved . ”

ou tF i l e . c l o s e ( )
print ”Stop”

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Execution s t a r t s here
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f name ==” main ” :

main ( )
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Appendix E

Graphs Collection

In this appendix we show many of the graphs obtained analyzing the results discussed in
Chapter 6. We have collect them depending on the execution round. Rounds are mainly
characterized by the domain size and the border width. In the first two rounds we used
unitary border width and different shapes. In the last round we used squared domains
with varying border sizes.

E.1 Execution Round 1

E.1.1 Global Memory-Based Kernels
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E.1.2 Texture-Based Kernels
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E.1.3 Speedups
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E.1.4 Regression-Based Predictions
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E.2 Execution Round 2

E.2.1 Execution Times and Speedups
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E.3 Execution Round 3

E.3.1 Execution Times
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Appendix F

NOTUR Poster

NOTUR 2009 was the eighth edition of the annual meeting on High Performance Com-
puting and Infrastructure for computational science in Norway. The meeting was intended
for everyone that works with compute- and data-intensive applications. We had the op-
portunity to show a poster describing an earlier stage of our work.

The Conference was hold in Trondheim at the Norwegian University of Science and
Technology (NTNU) in Trondheim on May 18-20, 2009.
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