
July 2009
Babak Farshchian, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A mobile extensible architecture for
implementing ubiquitous discovery
gestures based on object tagging

Simone Mora

Problem Description
Resource discovery has become the cornerstone of ubiquitous computing. Connected devices and
objects in our physical environment necessitate mechanisms for finding these objects before
being able to use them. Resource discovery (also called service discovery) is the common term
used to denote technologies that assist us in finding/discovering available services/resources/
objects around us. The objective of this project task is to further enhance UbiCollab Resource
Discovery Manager subsystem. The focus in UbiCollab is to implement a user-friendly and user-
centered resource discovery mechanism. Conventional discovery technology is focused on
machine-to-machine resource discovery, allowing for various levels of self-configuration of
networked services. In UbiCollab we focus on resources/services that are provided, advertised and
used by end users in online communities.

Assignment given: 14. January 2009
Supervisor: Babak Farshchian, IDI

Abstract

Mobility of people and their interactions with devices and services that every day become
more pervasive in our life is a valuable challenge for system engineers. Locate friends,
retrieve multimedia informations from physicals objects, have medical assistance remotely
is going to be a commodity for a more and more wide part of the population, including
elderly people. In this scenario have an easy way for discovering and communicating with
third party services and resources that we encounter in our every day life is going to make
the difference between an enjoyable user experience or a frustrating one that quickly leads
to the abandon of a system.

Building on the work done in the past about resources discovery and management I study
a solution for user-centered interactions with resources and services dynamically discov-
ered and used by the user in nomadic environments. The solution designed make use of
embedded devices, addressing the problem encountered in the research from both end-user
and developer point of views.

The solution proposal make a full use of the service oriented architecture (SOA) concepts
focusing on the goal of achieving the most natural human interaction with devices that the
user discover on his way, keeping at the same time the framework architecture lightweight
and easily extendible by third-party developers, as the SOA paradigm requires. Acces-
sibility and extensibility are achieved on the end-user side by deploying software needed
for the personal device (UbiNode) on most common smartphones and providing a easily
understable Graphical User Interface; on the developer side by creating a pluggable frame-
work based on xml and Eclipse eRCP runtimes for a fast development of multiple user
interface that fits the constrains of the device in which are them deployed in.

Work done consists in design and implementation of several platform components and
development of prototypes that takes profit from the overall architecture. Developed
modules have been deployed end tested on handheld devices.

UbiCollab provides a solution platform for ubiquitous collaboration scenarios and this
thesis has been carried out as a contribution to it.

Keywords: Ubiquitous Computing, User Centered Collaboration, User Interfaces,
Mobile Devices, Discovery Gestures, Object Tagging, UbiCollab.

i

ii

Preface

This thesis is submitted as the final work for the degree of Master of Science in Computer
Science that has been taken by the writer at Norwegian University of Science and Technol-
ogy (periods Jan-Jun ’07 and ’09) and University of Bergamo, Italy. The report is based
on the research work conducted by the writer from January 2009 throughout June 2009
on a project assignment given by the Department of Computer and Information Science
(IDI). The work performed is a contribution to the UbiCollab platform. UbiCollab is a
technological platform for supporting mobile and ubiquitous collaboration.

In this work is developed an architecture for building user interfaces for core components
and applications in UbiCollab. This work builds and takes ideas on the work that Kim-
Steve Johansen did in 2007 about resources discovering. The report presents the design,
implementation and evaluation of a user interface framework, prototypes of applications
which take advantages from the UI Framework.

The general task description for this work is included in Appendix A.

I wish to thank my supervisor Babak Farshchian and co-adviser Monica Divitini for the
excellent support and valuable feedbacks. Conversations and group discussion with them
and other students have been extremely interesting and motivating and have played a
needful role in achieving project goals. I also thank professor Divitini and IDI for the
provision of equipments that I have been used during the research.

Trondheim, June 24, 2009

Simone Mora

iii

iv

Contents

1 Introduction 1
1.1 Motivation and Contributions 3

1.1.1 Motivation . 3
1.1.2 Contributions . 4
1.1.3 Research Problems . 5

1.2 Research Method . 6
1.3 UbiCollab Context and backgrounds 7

1.3.1 Ubiquitous Computing 7
1.3.2 Computer Supported Collaborative Work (CSCW) . . 7

1.4 UbiCollab . 8
1.4.1 The Human Grid . 8
1.4.2 UbiNode . 9
1.4.3 Services, Service Proxies and Service Domain 10
1.4.4 Resource Discovery . 11

1.5 Report Outline . 11

2 Problem Elaboration and Analysis 15
2.1 Problem Definition . 15

2.1.1 Approaches to User Interactions for
Resource Discovery . 15

2.1.2 Resource Discovery Actions and Gestures 17
2.2 Approaches to User Interaction 18

2.2.1 Touchscreens vs Free-form Interaction 18
2.2.2 The next step: Brain-Computer Interfaces 19

2.3 Requirement Analysis . 20
2.4 Discovery Gestures Comparison 23

3 Solution Proposal 25
3.1 GUI Mockups . 26
3.2 User Interface Management in UbiCollab 29

3.2.1 User Abstraction Layer 29
3.3 GUI Design Guidelines . 32

3.3.1 Target Platform . 32

i

ii CONTENTS

3.3.2 Finger-Operated vs Stylus-Operated Approach 33
3.3.3 Design Patterns . 34

3.4 Platform Abstraction Layer 37
3.4.1 Components Standardization 37

3.5 Platform Summary . 38
3.6 Scenario . 40

4 Implementation 43
4.1 The UbiCollab Implementation Stack 44

4.1.1 Hardware . 44
4.1.2 Operative System . 45
4.1.3 Java Virtual Machine 46
4.1.4 JVM Implementations 49
4.1.5 OSGi . 51
4.1.6 eRCP/eSWT . 53

4.2 Components Architecture . 59
4.3 Components Implemented . 60

4.3.1 Implementation Overview 60
4.3.2 Platform Components Enhancements 62
4.3.3 eWorkbench . 62
4.3.4 Type-a-Number Resource Discovery Plugin 68
4.3.5 ImageViewer Application 71
4.3.6 SharedScreen Proxies 73
4.3.7 SharedScreen WebService 74

5 Evaluation 79
5.1 Group Evaluation . 79

5.1.1 Demonstration Scenario 79
5.1.2 Scenario Walkthrough 81
5.1.3 Feedbacks . 88

5.2 Platform Benchmark . 89
5.2.1 What we tested? . 90
5.2.2 How we tested? . 91
5.2.3 Results and conclusions 91

5.3 Requirement Fulfillment Analysis
and improvement suggestion 93

6 Conclusion and future research 95
6.1 Contributions . 95
6.2 Problems Encountered . 98
6.3 Evaluation . 98
6.4 Future Works . 99

A Task Assignment and Scenario 101

CONTENTS iii

A.1 Project description . 101
A.2 Scenario . 102

B UbiCollab Runtimes 105
B.1 Runtime components . 105
B.2 Tools Used for Development 106
B.3 Compatibility of Code . 107

C Devices Specifications 109
C.1 HTC Touch HD - UbiNode 109
C.2 Asus R2H TabletPC - SharedScreen 110
C.3 IDI Open Wall - Shared Screen 111

Bibliography 113

iv CONTENTS

List of Figures

1.1 Knowledge transfer in UbiCollab 2
1.2 Commodore PET and Commodore 64 3
1.3 Research Methodology . 6
1.4 The Collaboration Grid . 9
1.5 The UbiNode . 10
1.6 The Resource Domain Subsystem 12
1.7 4+1 View model adopted in this report 13

2.1 Retroactive vs. Proactive Resource Discovery 17
2.2 Microsoft Surface (a forefront touchscreen) and Essential Re-

ality P5 Glove (the first commercial controller for gestural
interfaces) . 18

2.3 Brain-Machine Interface . 20
2.4 Requirements in Mobility Area 21
2.5 Requirements in User Interaction Area 21
2.6 Requirements in User Interaction Design 22
2.7 Requirements in Resource Discovery Plugin Design Area . . . 22
2.8 Discovery Gestures Comparison Chart 23

3.1 GUI Mockups, steps: 1,2,3,4,5,6 27
3.2 GUI Mockups, steps: 7,8,9,10,11,11a 28
3.3 An UbiCollab Component . 29
3.4 User’s behavior matching in UbiCollab 29
3.5 An UC component which exposes multiple UIs 30
3.6 Views - eWorkbench connection 31
3.7 User behaviour - Perspective matching 31
3.8 Perspectives . 32
3.9 Finger-Operated vs Stylus-Operated Approach (data from

SAP research) . 33
3.10 The algorithms for 3D reconstruction of a fingertip (Courtesy

of MIT) . 35
3.11 Layouts comparison . 36
3.12 UbiCollab Components Classes 37

v

vi LIST OF FIGURES

3.13 Platform Summary . 39

4.1 The UbiCollab Implementation Stack 44
4.2 Device Supported . 45
4.3 Native Widget Implementation Dependencies 45
4.4 Java Distributions . 46
4.5 Java for Mobile . 47
4.6 Java Stack used in UbiCollab 48
4.7 JVM Implementation comparison chart 49
4.8 JVM Implementation comparison chart (2) 50
4.9 Java vs. Java + OSGi Dependency Management 52
4.10 Eclipse eRCP . 54
4.11 Visual Component Comparison 55
4.12 The AWT LCD Problem . 55
4.13 eSWT Architecture . 56
4.14 Native Widget Invocations on different Operative Systems . . 58
4.15 Component’s Internal Architecture 59
4.16 Implemented Components Overview 61
4.17 UbiCollab Implementation Stack 61
4.18 Perspectives inside a eWorkbench 63
4.19 plugin.xml from eWorkbench bundle 63
4.20 Extension system for a bundle into the eRCP framework . . . 64
4.21 Extension Point Declaration 64
4.22 application.exsd . 65
4.23 plugin.xml from org.ubicollab.rdp.tan bundle 66
4.24 eWorkbench Architecture . 67
4.25 eWorkbench UML Class Diagram 67
4.26 Service Advertisement Schema 69
4.27 Architectural view of the TAN Plugin 69
4.28 Sequence Diagram for Resource Discovery Operations 70
4.29 Class diagram for the Type-a-Number Resource Discovery

Plugin . 71
4.30 Standalone and distributed modality for the ImageViewer App 72
4.31 Class Diagram for the ImageViewer application 72
4.32 Communication System through proxy 73
4.33 Interface published by the proxy 73
4.34 Sequence diagram for proxy initialization and method invo-

cation . 74
4.35 Service Advertisement and wsdl file for the SharedScreen Web-

Service . 75
4.36 Class diagram, SharedScreen for Tablet PC 76
4.37 Class diagram, SharedScreen for IDI OpenWall 77

5.1 Demostration Scenario . 81

LIST OF FIGURES vii

5.2 UbiCollab Platform Launched 82
5.3 ImageViewer in standalone mode 82
5.4 Photo Browsing . 83
5.5 Resource Advertisement for the Tablet PC 84
5.6 Resource Advertisement for the OpenWall 84
5.7 Type-a-number Plugin GUI 85
5.8 Resource Found Screenshot 85
5.9 Resource Proxy Successfully Installed in the UbiNode 86
5.10 UbiNode and tabletPC SharedScreen showing a photo 87
5.11 ImageViewer started with two SharedScreens available 87
5.12 ImageViewer with TabletPC and OpenWall Proxies Connected 88
5.13 Implementation Stacks Benchmarked 89
5.14 UbiCollab Configuration Used in the Benchmark 90
5.15 Benchmark’s Results . 92
5.16 Benchmark’s Results (2) . 92
5.17 Benchmark’s Results (3) . 92
5.18 Benchmark’s Results (4) . 92
5.19 Benchmark’s Results (5) . 93

viii LIST OF FIGURES

Chapter 1

Introduction

Separating computer system in Central Processing Units and peripheral de-
vices has been the first step made in computer modularization and and
service approach. The first computer I owned was a Commodore 64, it was
1990 and the era of home computing was just started. The C64 followed
the Commodore PET (Personal Electronic Transactor) in the 80s. As the
name suggests the PET was the first all-in-one home computer, composed
of a CPU , a QWERTY keyboard, a monochrome monitor and a data tape
unit, all framed together in a tough metal case for the considerable weight
of about 20kg. The C64 was built following a total opposite design pattern:
just the keyboard was wrapped with the CPU, in addition it came with in-
terfaces for connecting external resources like data tapes, printers and game
pads sold as optional devices; moreover I think that the killing feature that
convinced my parents to buy it for me, was that they hadn’t to buy me
even a computer screen (really expensive at that time) but they could just
connect it to the standard TV we were sharing. This design approach (com-
bined with a good marketing strategy) let the C64 became the best-selling
personal computer of all the time.

Nowadays we live in the ubiquitous computing era and we have to deal
day-to-day with complex modular systems both for work and leisure. In
these systems a module can be small enough to be embedded in a ordinary
object like a book, a key or a clothes, therefore technologies for discov-
ering and connecting these resources has become a cornerstone topics for
ubiquitous computing. As matter of fact, connected devices and objects in
our physical environment necessitate mechanisms for finding these objects
before being able to use them. Resource discovery (also called service dis-
covery) is the common term used to denote technologies that assist us in
finding/discovering available services/resources/objects around us. On top
of that, any discovery operation that is user initiated involves the presence

1

2 1. Introduction

UbiCollab

Modularity
SOA

Service
Discovery

User
Interaction

Figure 1.1: Knowledge transfer in UbiCollab

of one or more HMI - Human Machine Interaction mechanism. A friendly
User Interface in Service Discovery is hard to achieve since it has to hide
the underlying complexity of the service oriented architecture from the end
user view (Fig. 1.1).

The following scenario could clarify these concepts:

Arne is a 50 years old man with chronic hearth diseases, because of this
he needs monthly check-up with his cardiologist, dr. Tor. Arne wears a
biomedical shirt which records earth pulse and blood pressure data; the shirt
is also connected via Bluetooth with his smartphone and he can constantly
check his heart’s health by a green-yellow-red status light rendered on his
phone screen. On the 20th of the month he is at his doctor’s office for the
scheduled check-up. Dr. Tor’s office is equipped with a big screen framed in
the wall and a printer just below it. When Arne enters in the ambulatory
the screen is displaying a 2d-barcode and the printer has a label attached on
with a 4-digits code. Dr. Tor needs Arne shows him data collected by his
biomedical shirt in the last month. Arne clasp his smartphone and takes a
picture of the barcode displayed on the screen. The screen got activated and
start to show graphs and details about Arne’s earth pulse and blood pressure.
Dr. Tor agreed with Arne that his earth is fine and doesn’t show any sickness.
Arne asks Dr. Tor to have a copy of the results for his own archive, then
it takes back the smartphone and digits the code advertised on the printer.
The printer starts to print out his medical certificates.

The UbiCollab project aims to cover these research fields and this thesis
is provided as support to it. We elaborated a solution proposal for User
Interaction in User Centered Service Discovery scenarios, modules and proof-
of-concepts applications have been implemented.

The UbiCollab platform is also getting in touch with other research projects,
such as Awareness Services and System - Towards theory and ReAlization
(ASTRA), an ongoing project where among others NTNU is a participant.

1.1 Motivation and Contributions 3

Figure 1.2: Commodore PET and Commodore 64

The rest of this chapter is organized as follows:

In Section 1.1 the motivation for this work along with goals and contributions
is described. This will give an overview of what is being accomplished by this
work and how this fit into the larger UbiCollab project. Research problems
are also pointed out.

In section 1.2 research method which has been followed to achieve project
goals is described.

In section 1.3 we will introduce main concepts and context related topics
involved in UbiCollab.

In section 1.4 the main Ubicollab concepts and terminologies will be de-
picted.

Finally, Section 1.5 will be described how the rest of the report is organized.

1.1 Motivation and Contributions

1.1.1 Motivation

The main motivation beyond this work is to do researches in Resource Dis-
covery and Management fields, develop solutions and implement proof-of-
concepts applications of these in UbiCollab.
Since Ubicollab Resource Discovery subsystem aspire to be user-centered,
our research focus will not cover just modules logic implementation but also
we take in account users, their interactions with the system and their needs;
because it doesn’t matter how much a system could be efficient, reliable,
advanced: if a person without any technical knowledge on ubiquitous com-
puting feels frustrated using it or hard adaptable to his needs, we have failed

4 1. Introduction

and all the unseen work on the bottom of the architecture is mostly use-
less. Anyway before refine the friendliness of user interactions we need to
have a reliable solution on our system fundamentals and especially that this
solution must be deployed on handheld devices. The achieving of this goal
implies to deal with a lot of different third-party components and obtain-
ing a stable configuration, connecting different technologies not born to talk
among them could also be considered a valuable result even if it is a pre-
requisites to build a proprietary system over. Moreover, designing a system
like UbiCollab which aims to support collaboration among users in a wide
arena of scenarios, from simple personal devices management, to forefront
healthcare applications; involves the design of a system that has to be really
adaptable to different problem domains, loosed coupled and platform inde-
pendent.
These are the main guidelines that aimed my work: design a highly efficient
loosed coupled architecture keeping on sight that the benefits from my work
has to been available and usable even by elderly and children.

1.1.2 Contributions

In this project an extensible architecture to handle different User Interac-
tions in UbiCollab is proposed, implemented and evaluated. The solution
proposed is focused on interaction in the Resource Discovery area but thanks
to the solution modularity it can be adopted to provide User Interactions
support even to the other UbiCollab subsystem such as the identity manager
or the space manager.

This work presents the following contributions:

Theoretical works:

• Research on User Centered Service Discovery protocols and Object
Tagging: a research about user-centered service discovery protocols
and technologies used to tag resources that have to be discovered

• Research, comparison and evaluation of different User Interaction tech-
nologies: an analysis of possible user interactions according to the
direct-manipulation paradigm

• Research, comparison and evaluation of different Java Virtual Ma-
chines for handheld devices: a comparison chart among possible JVM
implementations compatibles with our platform

• Research, comparison and evaluation of technologies for Graphical
User Interfaces development: a comparison among tools and technolo-
gies available for GUI implementations.

1.1 Motivation and Contributions 5

• Elaboration of a test Scenario for platform evaluation purpose

Engineering works:

• Update of the UbiCollab modules developed in previous works and
standardization of the module unit:

Design and implementation of the following software components:

• UbiCollab eWorkbench: the user interactions manager

• Type-a-Number Service Discovery Plugin

• ImageViewer App

• SharedScreen Proxy

• SharedScreen WebService for Tablet PCs

• SharedScreen WebService for IDI OpenWall

• Setup of the platform on mobile devices and benchmarks.

1.1.3 Research Problems

Because of this project have also to deal with not strictly technical topics
like user behavior and user friendliness is not always possible to achieve
an user friendly interface and a lightweight service oriented architecture at
the same time. This trade-off have brought me to decide to focus more
on the architectural/technical domain of the problem, in order to bring
to the platform multiple user interactions capability, instead of choosing
to support one particular UI approach and implement it. This decision is
justified by the central idea of UbiCollab which is to support collaboration
in mobile, nomadic environments, where neither environmental variables nor
user groups are not prior defined. It means, for instance, that a fast gesture-
based interaction with the system could be the preferred choice for a youth
traveling on a bus whereas a voice-based one with lights notifications can
be the most preferred by an elderly person sat on his wheelchair. For this
reasons our efforts are most driven to provide a framework which supports
all this interaction mechanisms end let the user choose which one is the best
for a given context exploiting the environment. Moreover since UbiCollab
Application has to be written by developers without extensive coding [1] we
try to provide this multiple UI support in the most developer-friendly way.

6 1. Introduction

1.2 Research Method

The research method I adopted in my work time is schematically presented
in figure 1.3. All the steps were reviewed and corrected by feedbacks from
tests and meetings with my supervisor professor Babak Farshchian and co-
advisor professor Monica Divitini.

UbiCollab Whitepaper
Previous UbiCollab

project and
pubblications

Scientific Literature about service
discovering and object tagging

Problem elaborationScenarios State-of-the-art
evaluation

Solution Proposal

Technical literature
review

Prototype Demo

Evaluation

Research Report

Iterations 1..n

Component design

Evaluation

Analysis

Figure 1.3: Research Methodology

1.3 UbiCollab Context and backgrounds 7

1.3 UbiCollab Context and backgrounds

This section will introduce the main concepts and context related topics
involved in UbiCollab. For a more complete description of the platform,
refer to the UbiCollab White Paper [1].

1.3.1 Ubiquitous Computing

The contemporary writer William Gibson said in an interview :

”One of the things our grandchild will find quaintest about us is
that we distinguish the digital from the real”

this could be considered a manifesto of Virtual Reality (VR) and even a
source of concerns and discussions for psychologists and philosophers. Ubiq-
uitous computing claims to be the opposite of Virtual Reality [2], it brings
back the informations to physical objects and these informations become
accessible through a natural interaction with them. The focal point has to
move from machines to people and people’s needs; moreover the computa-
tion has to be thoroughly integrated into everyday objects and activities that
should become invisible. The associated ”many computer per person” con-
cept is considered the third wave of computing, coming after the first wave
”Many people per computer” and the second w. ”A person per computer”.

The idea of Ubiquitous Computing (or Pervasive Computing) was first for-
mally introduced as research field by Mark Weiser’s seminal paper in 1991 [3]
and is now explored by a number of leading technological organization, such
Xerox’s Palo Alto Research Center (PARC), IBM, The Massachusetts Insti-
tute of Technology (MIT).

1.3.2 Computer Supported Collaborative Work (CSCW)

CSCW is an interdisciplinary field of research that is concerned about how
people work or collaborate together, and how technology can be used to
support collaborative activities and coordination. The objective is thus to
create a basis for designing computer systems by establishing the nature and
requirements of collaboration among people [4]. UbiCollab aims to support
CSCW but even looks to support a wider domain of applications including
leisure activities and personal healthcare.

8 1. Introduction

1.4 UbiCollab

UbiCollab (short for Ubiquitous Collaboration) is a service platform for pro-
vision of basic services for supporting collaboration among people. UbiCollab
make extensive use of earlier CSCW research, and extends this research with
insights from ubiquitous computing and wireless services [5]. It provides a
platform that captures the commonalty of collaborative applications and
provides generic mechanism for applications to be built without extensive
coding, in order to naturally support collaboration in any situation the user
are in [1].
UbiCollab tries to be domain-independent and providing only the basic func-
tionality, is therefore following an open innovation approach where third
party applications play an equally central role as the platform itself. In-
tegration with physical environment where collaboration happens is a key
aspect of UbiCollab.

UbiCollab architecture follows the Service-Oriented Architecture (SOA) ap-
proach. UC is implemented as a collection of independent components in
form of dynamically deployable services that can be deployed and used in-
dependently on a mobile device.
Each UC component is being developed to cover a very specific area of re-
sponsibility in UC. Components can be mixed and used together in different
configurations (compositions) decided by the application using them. Only
those components that are needed by a specific user (and his/her applica-
tions) will be deployed on his/her mobile device [1].

UbiCollab is an OpenSource project registered with Sourceforge1, and the
source code is available under the Apache License v2.0.
Everyone, users and developer, can try it and contribute to the growing of
UC developing applications for it or just sending feedbacks.

1.4.1 The Human Grid

The abstract concept of a human grid constitutes the vision underlying
UbiCollab. A human grid is a collection of people and their artifacts/resources
connected together using UC platform technology, as schematically pre-
sented in figure 1.4 . Interactions in a human grid are supported using
resources, artifacts, services, etc. imported into the grid by its participants.
UC assists its users in building a human grid and supports communications
among them, and they can be distributed geographically.

Human grid is adaptive and reconfigurable in that it will change its config-
uration in order to best fit context, services and artifacts that users have

1Available at: http://ubicollab.sourceforge.net/

1.4 UbiCollab 9

Figure 1.4: The Collaboration Grid

available in any given space. It may change its configuration and deploy-
ment configuration in order to assists users in a lot of different scenarios,
from work-collaborative related to health care assistance, as the user moves
from a space to another.

1.4.2 UbiNode

Each user in UC is represented and assisted by a mobile device called a
UbiNode.
UbiNode is a network-enabled device that acts as a personal server, run-
ning a subset of the main UC components and some of user’s applications
designed for it. This means that each user has his/her own instance of a
Resource Discovery Manager, Service Domain Manager, Space Manager, CI
Manager etc. running locally on his/her UbiNode.

As reported in figure 1.5, UbiNode is organized in a ”platform space” where
core components resides and a ”user space” where each user can store and
run his/her application which communicate with external devices. All the
components allows interaction with other applications exposing WebService
interfaces.

Complete independence among UC components allows us to outsource all
composition tasks to the applications and guarantees a high level of modular-
ity in the architecture of a UbiNode, in accordance with the SOA approach.

Currently the UbiNode is deployed on Windows Mobile smartphones and
tested on devices reported in Appendix C.

10 1. Introduction

Figure 1.5: The UbiNode

1.4.3 Services, Service Proxies and Service Domain

UbiCollab allows a group of distributed users share an arbitrary set of infor-
mation, and be aware of each other’s physical location. These two concepts
support the idea of mobility in distributed online collaboration by allowing
users be aware of each other’s location. A step further in supporting natural
and ubiquitous collaboration is implemented by the UC concept of Services,
Service Proxies (SPs) and Service Domain (SD). The goal is to allow users
deploy external resource in their collaboration with others. This will allow
for a natural way of collaboration by for instance using dedicated devices
and services in a meeting (such as projectors, whiteboards) in an unknown
environment. For instance, a table lamp is used to signal the availability of
a contact in a instant messaging application developed for UC. A nabaztag
rabbit is used for the same purpose, while a digital camera is used to take
photos and share it with the other users. A GPS-enabled clock is in addition
used to provide the user’s current GPS coordinates. The notion of a Service
is used in UC to denote such external resources brought into a UC environ-
ment in order to be used in collaboration. The mechanism used to connect
to these Services (which might be devices, web services etc.) is through a
dedicated Service Proxy (SP). SPs are discovered using UC’s service discov-
ery mechanisms (described later) by e.g. reading an RFID tag or a Barcode
attached to the actual Service. This tag refers to a Service Advertisement
used in order to dynamically locate, install and set up an SP at user’s wish.
In order to facilitate the management of many SPs that a user potentially
might have, each user is assigned a Service Domain (SD). All the SPs in-
stalled by a user are registered and maintained by that user’s SD, which is
also responsible for other tasks such as secure access to SPs and protection of
user’s privacy. Each SP is in addition tagged using a Space identifier. This
means that UC can support location-aware access to Services. For instance,

1.5 Report Outline 11

if a user resides in a Space called ”My home”, only Services labeled with
”My home” might be available to that user’s applications by default. Since
the main purpose of UC is to support ubiquitous collaboration, we need
to allow users share their Services with other users. This is done through
a process we call service publishing. A user can choose to publish one of
his/her Services in a CI.

1.4.4 Resource Discovery

Resource Discovery (RD) Manager implements a mechanisms for accessing
and integrating external resources in UC. Discovery of resources can be
done in many different ways, each modality is characterized by a different
user interactions. In UC we wanted to avoid creating yet another discovery
protocol. RD Manager uses so-called discovery plug-ins to enable interaction
with our native discovery mechanisms. For instance, a plug-in can use a
camera embedded in the UbiNode to take a photo and decode a 2D barcode
which encode an URL. All plug-ins thus return to the resource discovery
module a URL which points to the Proxy Service (an OSGi bundle) for the
discovered resource. This URL can be passed to Service Domain Manager,
which will use it to install the Proxy Service in user’s Service Domain. When
a resource is correctly installed it become a service that exposes an public
interface and thus can by used by applications. The overall procedure is
illustrated in figure 1.6.

My work builds on and take advantages from APIs provided by the Re-
source Discovery subsystem that Kim-Steve Johansen has developed [2],
which provides an indispensable technical background for an User Centered
interaction with the system.

1.5 Report Outline

The rest of this report is organized into the following chapters:

Chapter 2 investigates general concepts related to User Interaction with
the resources and evaluates which set of interactions are more suitable for
Resource Discovery operations thus, defining the concept of Discovery Ges-
tures a personalized, user centered solution for handling Resource Discovery
in UbiCollab is defined.

Chapter 3 presents the solution proposal for the main research problem.
It will be described from the functional and deployment point of view, in
accordance with the ”4+1 Architectural Model View” technique [6] (fig-
ure 1.7). This chapter will give an high-level description of concepts and

12 1. Introduction

Application

Query
pool

Service
pool

RFID
Plugin

2D Barcodes
Plugin

Numeric
Code
Plugin

Num.
code

Bar
code

RFID
Tag

1) Send Service query

2) Notify plugins

3) Read a Tag

4)Add Service
Advertisement to pool

5) Fetch Service
Advertisement

Resource
Discovery
Manager

Service
Domain
Manager

Figure 1.6: The Resource Domain Subsystem

a critical explanation of the choices made in the components design work.
It also shows mockups and real deployment examples of GUIs and other
components developed as part of the research.

Chapter 4 reveals how the proposed solution has been implemented. It
exposes keypoints and inner functionality of the platform components and
also schemas and diagrams that have been derived.

Chapter 5 describes how the solution has been evaluated. The evaluation
are based on a prototype developed by the solution proposal and take advan-
tage of feedbacks collected during the public workshop occurred on April,
30th.

Chapter 6 concludes the report by presenting results and contributions,
giving an overall evaluation of the research process and the report itself.
Finally, some ideas and thoughts for future work to the UbiCollab platform
will be suggested.

Appendices:

• Appendix A contains the problem assignment that was given and a
related scenarios

• Appendix B presents technical informations about UbiCollab current

1.5 Report Outline 13

Fuctional view

Deployment view

Implementation view

"What is done"

"Where is done"

"How is done"

SC
EN
AR
IO
S Chapter

4

Chapter
5

Architecture views

Figure 1.7: 4+1 View model adopted in this report

distributions, install procedures and versioning

• Appendix C contains the hardware specifications of devices used in
the research and during the workshop

14 1. Introduction

Chapter 2

Problem Elaboration and
Analysis

2.1 Problem Definition

2.1.1 Approaches to User Interactions for
Resource Discovery

Nowadays a lot of resource discovery systems have been developed, some
of them are designed for wired and wireless network such as Jini, uPnP,
Apple Bonjour, and others just for wireless, like the Bluetooth advertising
system. These systems can also include a proprietary communication proto-
col among devices, as Bluetooth does, or can work over standards protocols
like ethernet or wifi LANs as uPNP and Bonjour do.
Therefore a valuable question is: why we need to develop a new resources
discovery system instead of using a standard one? Recalling that UbiCollab
targets nomadic scenarios and is deployed on handled devices, there’s two
main arguments that justify efforts on designing a new RD approach:

1. standards RD protocols like uPNP even if are really efficiency in dis-
covery and network operations are too generic and lacks in effective-
ness: how many time, for instance, you searched for a printer in your
workplace on your PC and the system returns a long list of printers,
including ones that maybe resides in another building or are locked in a
colleague office? If you have experience about the place where you are
consequently you know the resources location and you can choose the
closest to your position, but how a guest who enters in your workplace
for leading a conference can choose the closest printer?

2. Handheld devices have limited resources and user interfaces, thus users

15

16 2. Problem Elaboration and Analysis

should be presented an optimized short list of available resources in-
stead of a long list of discovery results

3. Improvements introduced by self advertising system, as the Bluetooth
one, are still not effective enough to address problem mentioned in
points 1 and 2. Procedures for coupling devices in the BT domain
is sometimes tricky and not user-friendly enough for a part of the
population, including elderly.

Searching for the most appropriate resource we should exploit the envi-
ronment in which we are and interact with objects that show us a service
advertisement. According with the Ubiquitous Computing ideas we want
to bring the information back to the objects and interact with them in a
natural way. That’s the reason because for UbiCollab we chose to develop
a resource discovery system based on Discovery Gestures, instead of a
service listing search approach.

A Gesture is any physical movement that a digital system can sense and
respond to without the aid of a traditional pointing device such as a mouse
or a stylus [7] A Discovery Gesture (DG) is a gesture settled for resource
discovering, it takes benefits and grow up from study in the Automatic
Identification and Data Capture (AIDC) field mixed with Service Discovery
Protocols.

A discovery gesture can be pointing to a RFID tag, taking a photo of a
Barcode, typing or saying a code. We support both gestures and discov-
ery gestures. Gestures are used for a natural interaction with applications:
browsing photos sliding fingers on the screen, for instance; these can be im-
plemented even by third-party applications. Discovery gestures rather are a
set of predefined gestures developed by UbiCollab crew and used in resource
discovery operations, these are considered the most natural way to interact
with resources, because the use of pointing provides a natural way of com-
municating [2]. A single Discovery Gesture is implemented in a plugin for
the UC Resource Discovery architecture.

The goal of this approach should be to switch from a retroactive resource
discovery to a proactive RD (figure 2.1) where services pops out when pre-
defined events occur, for example if the user reaches or leaves a certain point
of interest [8] .

This kind of approach will contribute to the development of a ”Personalized
Resource Discovery” where services primarily advertised to the user are the
ones closer to his location and those that fits user’s interest.

User Interactions in UbiCollab are not just referred to resource discovery
operations, these are core tasks and their UIs are designed by the internal
developers, but as working with an open source project we aim to support

2.1 Problem Definition 17

HOME

WORK

?
??

0 0 00
Code:

1 0 2 0

Code:

RETROACTIVE
RESOURCE DISCOVERY PROACTIVE (USER CENTERED)

RESOURCE DISCOVERY

HOME

WORK

Figure 2.1: Retroactive vs. Proactive Resource Discovery

new developers and provide them the easiest way to add their own con-
tribute.

2.1.2 Resource Discovery Actions and Gestures

At the present time UbiCollab works towards four Discovery Gestures:

1. Point an RFID tag

2. Type a number

3. Take a photo of a 2D Barcode

4. Say a number

The Discovery Gesture 1 was designed and developed by Kim-Steve Jo-
hansen in his master thesis [2]. The Type a number DG has been developed
during my researches, its implementation will be reported in Chapter 4.
The “take a photo of a barcode” and “say a number” discovery gestures
have been investigated and will be implemented by the writer during a sum-
mer job. An UbiCollab distribution can include all these discovery gestures
and the user can choose which one to use according with his/her preferences
and environmental factors.

18 2. Problem Elaboration and Analysis

2.2 Approaches to User Interaction

2.2.1 Touchscreens vs Free-form Interaction

Currently, most gestural interface can be categorized as touchscreens or
free-forms. Touchscreen gestural interfaces (also called touch user interfaces-
TUIs) require the user to touch the device directly. This puts a constraint
on the types of gestures that can be used to control it. Free-form gestural
interfaces don’t require the user to touch or handle them directly. Sometimes
a controller or a glove is used as an input device, but even more often the
body is the only input device for free-form gestural interfaces

Figure 2.2: Microsoft Surface (a forefront touchscreen) and Essential Reality P5
Glove (the first commercial controller for gestural interfaces)

Touchscreens

The first concept related to touchscreens usability be born in a seminal 1983
paper [9] written by the Maryland professor Ben Shneiderman which forged
the concept of direct manipulation. Direct Manipulation is the ability to
manipulate digital objects on a screen without the use of command-line
commands acting, for example, dragging a file to a trash on your desktop
instead of typing del into a command line.
Shneiderman was mostly talking about mice, joysticks, and other input de-
vices, since at that time (1983) they where considered innovations connected
with the growing desktop metaphor.
Touchscreens and gestural interfaces take direct manipulation to another
level. Touchscreen users can simply touch items they want to manipulate
right on the screen itself, tapping fingers on buttons, dragging icons, scrolling
texts. These gestures are performed on a physical surface, thus are also
called tangible interfaces. In the next section we will see the use of gesture
where a tangible support is missing. This is the ultimate in direct manipula-

2.2 Approaches to User Interaction 19

tion: using the body to control the digital (and sometimes even the physical)
space around us.

Free-form Gestural Interfaces

Free-form gestures exploit the movement of body limbs in the air (fingers
and arms movement, head rotations, etc) and map them to a set of com-
puter commands. This body-computer information transfer is achieved by
wearable devices which record physical variables like accelerations and ori-
entation matching them against patterns and thus decoding the associated
command. This represent a big improvement for User Interaction since the
gesture are not just narrowed to a limited set that a touchscreen can support
but are potentially infinite. Moreover the designed gesture can really reflect
real-word operations like pointing a TV to turn it on (without the remote
controller!) or shake a music player to listen a random song. As drawbacks,
a successful free-form interaction is really hard to achieve since without the
support of a physical surface to interact with is hard to return to the user
feedbacks about the command interpreted by the calculator and this, to-
gether to the high complexity of the mathematical model that link physical
variables to the gesture, can lower down precision and rate of success in
understanding user willings.

2.2.2 The next step: Brain-Computer Interfaces

The next step in Human Computer Interaction (HCI) will probably be the
Brain-Computer Interfaces. Since is demonstrated that electrical activity
generated by ensembles of cortical neurons can be employed directly to con-
trol a digital device as a computer or a robotic manipulator, research on
brain-machine interfaces (BMIs) has experienced an impressive growth. To-
day BMIs designed for both experimental and clinical studies can translate
raw neuronal signals into motor commands that reproduce arm reaching
and hand gasping movements in artificial actuators [10]. Clearly, these de-
velopments hold promises for the restoration of limb mobility in paralyzed
subjects. However before this goal can be reached several bottlenecks have
to be passed. These include designing a fully implantable biocompatible
recording device, developing real-time computational algorithms, introduc-
ing a method for providing the brain with sensory feedback from the actua-
tors, and designing and building artificial prostheses that can be controlled
directly by brain-derived signals. By reaching these milestones, future BMIs
will be able to drive and control revolutionary prostheses that feel and act
like human arms. Anyway, despite the optimism raised by some new accom-
plishments, there are still many issues that preclude a widespread translation
of experimental BMIs into practical applications. Indeed, most of the in-
vasive BMIs have been tested only in experimental animals. Thus, despite

20 2. Problem Elaboration and Analysis

recent enthusiasm much experimentation remains to be done before [10].

Figure 2.3: Brain-Machine Interface

2.3 Requirement Analysis

Requirement Analysis has been made in order to support elaboration and
implementation of solutions. Note that the elaborated requirements don’t
replace those that have been formulated in previous works [2, 1, 11] rather
they add requisites in the areas reported in figure 2.4, 2.5, 2.6, 2.7.

Each requirement is tagged by IDs named RQ-RA-XY.

RQ is the requirement category, can be:

• AR: Architectural Requirement

• FR: Functional Requirement

• NF: Non-Functional Requirement

RA represent the requirement area, can be:

• MB:Mobility Area

• UI: User Interaction Area

• DE: UI Design Area

• RD: Resource Discovery Plugin Design Area

XY is the number of the requirement

This classification will improve requirements traceability. Individual priority-
assignment for each requirement have also been performed. Each require-
ment is weighted by High (H), Medium (M) or Low (L) importance,
assessed for its priority in the component implementation schedule. In addi-
tion, a degree of difficulty (abbreviated as DoD) is given to better understand
the strain and hence the time needed for implementing each requirement.

2.3 Requirement Analysis 21

This will be weighted the same way as priority, where high means ”high
difficulty” and low means “low difficulty”.

Figure 2.4: Requirements in Mobility Area

Figure 2.5: Requirements in User Interaction Area

22 2. Problem Elaboration and Analysis

Figure 2.6: Requirements in User Interaction Design

Figure 2.7: Requirements in Resource Discovery Plugin Design Area

2.4 Discovery Gestures Comparison 23

2.4 Discovery Gestures Comparison

According with what written about User Interactions we made a comparison
chart of the three discovery gestures which are currently under development.
In each row are reported a feature and how much the Discovery Gesture
accomplish that feature. Each DG is starred from one to four “+”, one
“+” means “low feature compliance”, four “++++” means “high feature
compliance”.

Figure 2.8: Discovery Gestures Comparison Chart

.

24 2. Problem Elaboration and Analysis

Chapter 3

Solution Proposal

This chapter will give a description of the proposed solution for User Inter-
action in UbiCollab, it present the design and overall functionality of the
components.

An user interaction architecture based on a User Interaction Manager, the
Ubicollab eWorkbench, has been designed and developed. By this compo-
nent each developer can build an application for UbiCollab with a propri-
etary UI mechanism without extensive coding. Since a Service Oriented
Architecture (SOA) is being used the importance of maintaining loose cou-
pling between components is stressed in the solution. This is particularly
evident in this component, which uses a pluggable solution.

In order to simplify the understanding of the overall system and help the
development of future works a standardization of the UbiCollab components
architecture and naming conventions has been made. A test scenario for the
functionalities designed has also been elaborated.

Chapter start presenting GUI mockups driven by an Use Case analysis re-
ported in Section 3.1.

In section 3.2 the User Interface Manager, called UbiCollab eWorkbench,
and all the related concepts are presented. We make use of abstractions like
Views and Perspective in order to group concepts and highlight architecture
keypoints.

Since each component can provide proprietary UIs but all of them has to
furnish at least a GUI1 in section 3.3 best practices and patterns for GUI
design are investigated. These guidelines has been applied in the design of
mockups showed in section 3.1.

1Graphical User Interface

25

26 3. Solution Proposal

In section 3.4 the overall platform structure is outlined, the inner component
architecture is illustrated and technical names for the component parts are
established.

In section 3.5 a scenario for platform testing is elaborated.

3.1 GUI Mockups

Consecutively you can find some mockups for Resource Discovery Plugins
and Service Domain Manager GUIs; these are built on requirements study
connected to the Use Case reported below.

Goal: The User discovers and starts using a new resource.

Main Success Scenario:

1. User starts the UbiCollab Interface on his smartphone

2. User choose the ”Resource Management” perspective

3. User choose the ”Discover new Resource” view

4. User choose a Resource Discovering Plugin

5. System show the Discovery GUI embedded with the Plugin

6. User perform the ”Discovery Gesture” related with the plugin

7. System notify that a resource is found and show an information page
about the resource

8. User read the resource description

9. User choose to install the resource on his UbiNode

10. System shows a progress bar to notify the progress status to the user

11. System confirm that the resource is installed and ready to be used by
any UbiCollab Application

Extension:

7a: System cannot find the resource and show an error message
.1: User repeat the ”Discovery action”

9a: User tap the discard option
.2: System returns at step 5

11a: System fails to install the resource and show an error message
.3: System returns at step 8

Mockups of GUIs related to the Use Case are reported in figure 3.1 and 3.2

3.1 GUI Mockups 27

400px

Resource ManagerICON

System LogsICON

Identity ManagerICON

Session ManagerICON

ApplicationsICON

BACK ?

80
0p

x

GUI Embedded in a bundle eWorkbench

eP
er

sp
ec

tiv
es

eP
er

sp
ec

tiv
es

XUbiCollab1)

2)

Manage your resourcesICON

Discover new resourcesICON

BACK ?

X Resources Manager3)

GUI Embedded with
the Resource Discovery bundle

BACK ?

X Select a Discovery Action

Type a number ICON

Point the barcode
and take a photo

ICON

Use the RFID penICON

Discovery plugin #ICON

Manual InstallICON

4)

?

X

Phone Camera
Interface

GUI Embedded with the Plugin

BACK ?

X QR Barcodes Discovery Plugin

DECODE
and install the

resource on my
UbiNode

DISCARD
and go to the

Discovery Action
Plugin Page

Point your Phone Camera to the QR
Barcode on the Device

6)
5)

Figure 3.1: GUI Mockups, steps: 1,2,3,4,5,6

28 3. Solution Proposal

BACK ?

X New Resource found!

Resource Name: GPS
Type: UbiProxy
Location: Room 100
Owner: Simone
Description: GPS service for location
extimating
Found by: QRBarcodes plugin

OK
Install the resource on

my UbiNode

DISCARD
Try to discover

another resource

8)
7)

9)

BACK ?

X Processing...

Discard

Status: Downloading | Installing

10)

BACK ?

X UbiCollab Resource Manager

Operation Successful!

The GPS resource has been installed on
your resource domain

and is ready to be used by an
UbiApplication!

Discover another
Resource

UbiCollab
Home Page

11)

BACK ?

X UbiCollab Resource Manager

Operation Failed!

Error Message: "................."

Try Again UbiCollab
Home Page

11a)

Figure 3.2: GUI Mockups, steps: 7,8,9,10,11,11a

3.2 User Interface Management in UbiCollab 29

3.2 User Interface Management in UbiCollab

In a high-level view we can consider each UbiCollab component whose pro-
vide User Interfaces as a combination of two layers working together: the
user abstraction layer which connects the component to the UI Manager
then consequently to the user and the platform abstraction layer which con-
nect the bundle to other bundles and straight to the OSGi framework (fig-
ure 3.3).

User Interface 1

XML

XML

UbiCollab bundle engine

User Interface 2

XML

User Interface n

XML

User Abstraction Layer

Platform Abstraction Layer

Figure 3.3: An UbiCollab Component

3.2.1 User Abstraction Layer

The User Abstraction Layer make use of three concepts which match users
behavior: eWorkbench, View and Perspective (figure 3.4).

User

Intention

Task

eWorkbench

Perspective

View View View

User's behavior domain UbiCollab domain

Figure 3.4: User’s behavior matching in UbiCollab

30 3. Solution Proposal

eWorkbench

The eWorkbench is the central component of User Interaction solution in
UbiCollab, is the glue between user actions and the underlying component
model. Acting as a User Interface manager, it supplies to other modules
a plugin mechanism to let them publish their proprietary UIs engines as
soon as they are discovered by the RD subsystem and without charging any
configuration process to the user. Moreover this approach let UI can be
developed without extensive coding since new UIs mechanism can wrapped
in the existing modules.

In fact an UC component can expose more than one user interface2, for
examples it may have a simple GUI adapted for small phones display likewise
an enhanced GUI with voice recognize interface for more capable devices
(figure 3.5).
The way in which the UB eWorkbench presents and internally handle the
UIs embedded in the bundles make use of two abstract concepts: views and
perspectives.

UbiCollab Workbench

Standard View Voice Controll View
WS

XML XML

UbiCollab Component Model

 WS

ViewSOAP
Invocations

EDIT SEND

Embedded Views

Remote View

Figure 3.5: An UC component which exposes multiple UIs

Views

A view is the component of the bundle directly involved in the user interac-
tion. Each view is composed by a GUI and an interaction mechanism with
it that could be, for instance, touch based, voice based, gesture based, or
another proprietary technique.
All the views stand for child view of the eWorkbench, they are embedded
in the component package and connected to the eWorkbench by an XML

2Requirement AR-UI-02

3.2 User Interface Management in UbiCollab 31

file (figure 3.6), the eWorkbench decides which view has to be activated and
shown to the user due to the device hardware features and user preferences.

Standar View

Voice controlled View

plugin.xml
UbiCollab

Workbench

Figure 3.6: Views - eWorkbench connection

Perspectives

A perspective is a set of views that belongs to the same scope, for exam-
ples all the UIs provided by the Resources Discovery Plugins belongs to the
Resources Discovery Perspective, in the same way of all the UbiCollab Ap-
plications belong to the application Perspective.
As we wrote in the problem definition, to do an action like discover a new
resource we provide different user interactions mechanisms, called Discovery
Gesture, these hence are implemented as views in the resource discovery
perspective of the eWorkbench, as outlined in figure 3.7.

User

Use a shared resource

Taking a photo of the
resource barcode

eWorkbench

Resource Discovery
Perspective

2D-Barcode
Plugin

Type-a-Number
Plugin

RFID
Plugin

Figure 3.7: User behaviour - Perspective matching

Formally perspectives are conglomerations of views that come from one or
more components which map predefined user tasks with the system (fig-
ure 3.8).

We defined three perspective:

• Resource Discovery Perspective

• Service Domain Manager Perspective

• Applications perspective

32 3. Solution Proposal

UbiCollab
Workbench

Disc.Plugin UI

UI Application

UI Application

Disc.Plugin UI

Disc.Plugin UI

U
I

 S
D

M

Resource Discovery Perspective

Service Domain Manager Perspective

Applications Perspective

Figure 3.8: Perspectives

3.3 GUI Design Guidelines

UbiCollab aspire to be platform independent and provide multiple interac-
tion approaches, but for our proof-of-concepts applications development we
had to choose a family of the mobile devices for the deployment and a User
Interaction mechanism. First off we chose to focus on touch-based Graphical
User Interfaces as interaction mechanism and consequently we chose smart-
phones (which usually comes up with touchscreens) as deployment platform.

3.3.1 Target Platform

The target devices which currently host the UbiCollab platform, in the
UbiNode shape, are smartphones running Windows Mobile Professional
6.1. According with Microsoft [12] WMP6.1 allows screen resolution up
to 480x800 pixels (WXGA), thus I focalized the design on this screen reso-
lution that would probably became a standard for smartphones and PDAs
in the close future.

The screen size (or better the screen coverage area) combined with screen
resolution is a very important aspect, not just for designing the more usable
icons and buttons sizes but even because it determines what kinds of gestures
(use fingers instead of the PDA stylus, one or two hand, etc) are appropriate
or even possible to have on the target device.

The device chosen to host our platform is the HTC Touch HD, which has
WXGA screen resolution and 3.8” screen size, see the Appendix C for the
full technical specifications.

3.3 GUI Design Guidelines 33

3.3.2 Finger-Operated vs Stylus-Operated Approach

Starting to design the GUIs it has been evaluated which kind of user gestures
would have been available for the target device, and first off we had to
decide between adopting a finger-based interaction with the device or the
stylus-based interaction commonly used in windows mobile platforms. I
established my evaluation drawing on the ”SAP Interaction Design Guide for
Touchscreen Applications” [13] which reports comparison criteria between
finger and stylus input as summarized in figure 3.9.

Figure 3.9: Finger-Operated vs Stylus-Operated Approach (data from SAP re-
search)

Considering our Discovery Gesture paradigm and our target scenarios (see
Appendix A) we can assume that what we essentially need is a GUI where

34 3. Solution Proposal

the point-and-tap3 on few screen buttons would be the most used gesture.
We don’t need to do heavy data entry operations with the device and the
number entry operation required by the Type-a-Number discovery gesture
can be handled drawing the needed digits as screen buttons instead of using a
full keyboard that could be bewildering. Looking to the fact that UbiCollab
has to support a wide range of population, including elderly people; we
think that the chance to avoid the use of a small stylus that could be lost
and may be difficult to manipulate for someone has definitely to be taken.
Furthermore the finger-operated approach also allow the use of just one
hand, even wearing gloves4. For the illustrated reasons we chose to develop
fingers-operated GUIs.

3.3.3 Design Patterns

The minimum size of buttons and other interface elements is determined
by the size of an adult finger. According with MIT’s researches [14] adult
fingers typically have a diameter of 16 mm to 20 mm, children’s and teens’
fingers may be smaller; elderly, disable and obese people may have misshapen
or larger fingers. When interacting with a touchscreen usually the pad of
the finger is used instead of the tip. Fingertips are narrow, only 8-10mm
wide. Because of this small surface area, humans usually push buttons at an
acute angle using the pad of the finger, not straight on using the tip of the
finger [7]. Finger pads are wider than fingertips, typically 10-14mm (figure
3.10).

Gloves can make it difficult to use GUIs, so in climates that often necessitate
to wear gloves, as the norwegian one, we should keep on mind that our GUIs
probably will be handled with gloves on for a considerable amount of time.

Buttons and Targets

As our GUIs will be mainly used for point-and-tap operations, most of the
screen area will be filled with pushbuttons; therefore buttons play an im-
portant factor in the design.

The range for what counts as an acceptable target size varies widely, but we
considered as one reasonable guideline that the target should be no smaller
than the smallest average fingertip which, as said before, is rounded up to
1cm in diameter or 1cmx1cm in square.

3The point-and-tap paradigm substitutes the point-and-click paradigm for hand ges-
tures, the finger’s tap is considered the new mouse click

4This is not valid for touchscreens that use capacitive sensor panels technology, whose
display are coated with a material that stores electrical charge. When a user touches the
screen a portion of the charge is transferred to the user, decreasing the panel’s capacitive
layer and thus triggering a touch event. For this reason this principle doesn’t work if
hands are electrically isolated by gloves.

3.3 GUI Design Guidelines 35

Figure 3.10: The algorithms for 3D reconstruction of a fingertip (Courtesy of
MIT)

However, what 1cm sized target is translated into the pixel domain depends
on the pixel density or pixel per inch (PPI). Pixel density is a measurement of
computer display resolution, PPI is related to the size of the screen measured
in inches and the number of pixels available (screen resolution). You can
compute the PPI by dividing the width (or height) of the display area in pixel
by the width (or height) of the display area in inches. The higher is the PPI,
the larger your interface elements will have to be to create suitable touch
targets. To calculate the ideal size for a button we used the equation 3.1 [7]:

target = target size in inches
screen width in pixels

screen width in inches
(3.1)

Screen Layout

Designing a layout for elements rendered on a touchscreen is quite different
from designing a normal GUI for a mouse operated desktop computer, due
to the following differences:

• Our finger pads, unlike a mouse cursor, don’t float transparently in
space; the rest of the finger, the hand and the arm will likely cover
up some part of the interface while the user is touching it, especially
the part of the screen immediately below what the user is interacting
with. For this reason placing menus and controls at the bottom of
the screen instead of in their traditional place at the top is helpful to
prevent screen coverage and involuntary button clicks (figure 3.11).

• With traditional input devices such as mouse or trackball, it makes
good sense to place targets such as menu items on the edges of the
screen so that the hit target becomes huge because the user cannot
overshoot it as the cursor stops at the edge of the screen. With touch
interfaces users usually don’t drag their finger across the screen as they
do with a cursor but they will likely lift their fingers and place them

36 3. Solution Proposal

Type-a-Number Discovery Plugin

BACK ?

Look to the device and type
the 4 digits number

stamped on

1 1 3 3

1 2 3 4

OK ERASE

X Type-a-Number Discovery Plugin

BACK ?

Look to the device and type
the 4 digits number

stamped on

1 1 3 2

1 2 3 4

OK

ERASE

X

CORRECT LAYOUT WRONG LAYOUT

Figure 3.11: Layouts comparison

from target to target, therefore put targets in screen corners doesn’t
improve usability.

• Touchscreens get finger oil (and dirt) as well as fingerprints and smudges.
Dark backgrounds and color patterns (popular on many default smart-
phone interfaces) makes fingerprints even more visible and disturbing,
the use of brights background colors helps mask this issues.

• Unlike a mouse does, a touch event does not return a mechanical
feedback to the user’s fingers, therefore implementing a notification of
the touch event by a sound alarm or vibration can be really useful to
have a physical feedback and thus to avoid triggering not intentional
operations.

• As well of common interfaces we have to pay attention to the mutual
positions of buttons drawn on the screen; the Fitt’s law (Equation 3.2)
help to define it. Fitt’s law simply states that the time it takes for
a user to reach a target by pointing it (with a finger or a mouse)
is proportional to the distance to the object divided by the size of
the object. Thus a larger target that is close to the user is easier
to point to than a smaller one farther away; for this reason buttons
and other visual targets need to be designed in a way that important
and preferred operations are reached by gestures which minimize the
distance for reaching them by fingers.

3.4 Platform Abstraction Layer 37

Fitt’s Law5:

MT = a + b log2

(
2A

W
+ c

)
(3.2)

3.4 Platform Abstraction Layer

3.4.1 Components Standardization

An UbiCollab module can span between a wide range of tasks. We grouped
them in task domains with an assigned fixed identifier, each component has
to belong to one of these domain. However, since all the module share
similar features as well as mandatory classes used to wire them with the
frameworks, in Chapter 4 (Implementation) we will also provide a draft of
the internal structure highlighting mandatory and optional units. We hope
that this kind of standardization helps developers to pursuing best practices
developing their modules. Each class own a name and a short name which
will be used to technically identify components by developers. Classes names
and name abbreviations are reported in figure 3.12.

UbiCollab Components classes

core
Core Compoment

rdp
Resource Discovery Plugin

app
Application

proxy
Proxy

service
Service

Figure 3.12: UbiCollab Components Classes

Component classes:

• Core Component: is intended to be a mandatory modules which
shapes the basic functionality and provide support to other compo-
nents; therefore has to be included in every UC distribution. Instances
of core components are the eWorkbench and the Resources Discovery
Manager

5* MT is the average time taken to acquire the target.
* a and b are empirical constants determined through linear regression.
* A is the distance from the starting point to the center of the target.
* W is the width of the target measured along the axis of motion (how close to the target
you need to get to count as acquiring it).
* c is a constant which is either 0, .5, or 1, depending on the specific environment.

38 3. Solution Proposal

• Resource Discovery Plugin: is intended to be a plugin for the Re-
source Discovery core component which implements a specific discov-
ery gestures. They fundamentally do the same task: feed the Resource
Discovery with the location of the proxy service, but they operate in
different ways like typing a number or reading a RFID tag.

• Application: an application is a piece of software directly operated
by the end-user, like an Instant Messaging application or text editor.
It can be developed by third-party company, independent developers
or students (thanks to the UbiCollab open source license). Complex
applications can use a proxy to get informations and drive a remote
resource. The Image Viewer app developed as contribution to this
thesis takes steps in this way; another example could be an application
for controlling a coffee machine via a X10Proxy6.

• Proxy: As detailed explained in the introduction, a proxy is a sort of
driver that let internal application talk with remote embedded device.
It need at least one RD Plugin in order to be discovered and usually
doesn’t provide an user interface since is directly controlled by an UC
application which furnish it. As contribute to this thesis have been
developed proxies for shared screen resources.

• Service: A service is a third-party software that controls a remote
device. It can be a bundle inside the UC framework, as are the ser-
vices developed for out tests, but is more intended to be a proprietary
software developed in any language and embedded in the device by
the manufacturer. We don’t care about service implementation since
it has to adhere to fulfill the WebService standard exposing a wsdl7

document which is the only interface needed for building a proxy for
UbiCollab. For this reason a service can be any software from a compo-
nent in another UC distribution to a internet weather forecasts service
or an Amazon book search Webservice.

3.5 Platform Summary

Platform components and available tasks are schematically presented in fig-
ure 3.13.

The reported Platform design show a basic UbiCollab distribution which
consists in the platform components for Resource Discovery and Service
Administration, an Application that make use of remote files and shared

6An X10Proxy is a proxy service for the X10 protocol which allow devices remote
control using the common power-grid.

7Web Services Description Language: http://www.w3.org/TR/wsdl

3.5 Platform Summary 39

Figure 3.13: Platform Summary

40 3. Solution Proposal

resources, a proxy services repository.
A generic interaction with the system consists in discovering a shared device
and starting to interact with it via the proxy and through an application.
This operation goes towards the following steps:

1. A resource is advertised with three different tags: an RFID, a QR
Barcode and a Label with a 4-digits code. The user choose which
wants to use for the discovering operation activating a RDPlugin. The
RDPlugin retrieves the URL of the service and pass it to the RDM.

2. The RDM pass the URL to the SDM throughout a SOAP invocation.

3. The SDM connect to the proxy repository, then it fetches and down-
loads the proper proxy.

4. The Proxy is installed and activated.

5. The proxy takes care to establish a connection with the remote re-
source which is thus now available to the applications.

6. The Application starts to use the shared resource via the proxy

A scenario which revises these concepts will be outlined in the next section.

3.6 Scenario

We elaborated a test scenario for the described architecture

The scenario is the following:

Bjørn is invited to held a presentation in a foreign university Meeting Room
equipped with shared screens. The available shared screens are advertised by
a four-digits code and a 2D Barcode.
Bjørn has never been in that room and doesn’t know the specification of those
displays, but he would to use them to show slides and pictures to the audi-
ence.
At home he uploaded slides and photos on his web personal space and he left
home just with his UbiNode smartphone.

On the presentation day he reviews the speech in his hotel room looking to the
slides showed on the smartphone with UbiCollab Image Viewer application;
then he reaches the presentation room and finds two UC shared screen of
different sizes. One is a tablet PC and one is a huge LED screen.
He decides to use them to share the slides with his audience using the smaller

3.6 Scenario 41

screen to show pictures and the bigger one to show a text related with the
content.

He takes out from the pocket his UbiNode and runs the UbiCollab platforms
interacting with the system via a touch interface. He finds on both screens an
advertising label reporting the two Discovering Gestures available for those
devices: a numeric four-digits code and a 2D Barcode.
He chooses to discover both screens by typing a code because his smartphone
doesn’t have a camera.
The UC Resource Discovery Manager installs the UC proxies for those de-
vices, establishes a communication with them and notify the user about the
outcome of the operation.

Finally Bjørn runs the UC Image Viewer application he used earlier to re-
view the slides, now the application recognizes and notifies the user that two
new shared screen services are now available and start to communicate with
them.
The two shared screens get activated and start to display the contents of the
presentations in a proper way. Bjørn controls and browse the slide to dis-
play interacting with his smartphone and the contents showed on the shared
screens are automatically updated.

This scenario will be evaluated in Chapter 5.

42 3. Solution Proposal

Chapter 4

Implementation

In this chapter we describe how the solution proposed in Chapter 3 has
been implemented, components development will be described in details.
Applications, Proxies and WebServices have been developed as proof-of-
concepts of the solution proposal and there will be evaluated in the next
chapter. Before starting with the in-depth analysis a short introduction is
given and some important aspects are illustrated.

Because UbiCollab components have to be published on Sourceforge and
all the platform have to be released as Open Source software, we try to
make use, even for the third-party components involved in the project, of
open source tools. At the present time just the Java Virtual Machine we
run is commercial licensed but, as explained later, we have explored several
possible alternatives.

In section 4.1 the UbiCollab implementation is defined and each stack tier
is explained in details, possible tier implementations are given as well as
justification of the choices made.

In section 4.2 the inner component architecture based on functional units is
described tier-by-tier

In section 4.3 we will present an overview of all the implemented components,
grouped by category, and where they have been deployed for testing. Finally
we will describe each own component implementation.

We will draw UML diagrams of the main functionalities; because the large
number of class-files distributed in 8 components, complete class diagrams
have not been created for all of these. The focus is to highlight the archi-
tecture keypoints, therefore diagrams made includes just objects needed to
understand its own logical functioning. All the implemented components
code has been documented using JavaDoc and sources are freely available

43

44 4. Implementation

on UbiCollab SourceForge website1. All the components have been fully
developed by the writer except for the eWorkbench that has been built on
a draft component jointly developed by the Eclipse foundation and Nokia.

4.1 The UbiCollab Implementation Stack

The UbiCollab Platform runs on the top of a stack involving different tech-
nologies (figure 4.1).

Hardware

Operative System

Java Virtual Machine

OSGi

 eRCP

 UbiCollab

eSWT jFACE

Platform Space User Space

UbiCollab Implementation Stack

Figure 4.1: The UbiCollab Implementation Stack

This stack fulfill requirements in mobility area. A complete evaluation of
other requirements will be presented in Chapter 5 (Evaluation).

Subsequently the stack is analyzed tier by tier.

4.1.1 Hardware

Ubicollab is implemented pursuing a scalar paradigm (figure 4.2) which takes
and shares advantages with the underlying Service-Oriented Architecture
approach.

Thanks to SOA we can deploy each platform module on devices that fit
hardware constrains and, at the same time, user requirement in mobility
and usability areas.

1http://ubicollab.svn.sourceforge.net/viewvc/ubicollab/

4.1 The UbiCollab Implementation Stack 45

Servers Desktops Tablets

Mobility

Computation power

PDAs
Hi-End SmartPhones

Low-End
Phones

Figure 4.2: Device Supported

4.1.2 Operative System

Since UbiCollab aims to be platform independent we would like to say that
it runs over all the operative system for which an implementation of the Java
Virtual Machine exists. This is quite true regarding the core engines but
it’s not concerning user interaction interfaces. Actually, considering GUI us-
ability issues there’s an insider trade-off between portability and usability:
we can design a GUI with a proprietary look and feel2, OS independent, or
we can use the OS native l. and f. to render our GUI components.
We adopted the second approach thinking that our platform should be inte-
grated as much as possible with device operative systems in view of the fact
that users are used to interact with it and would find less painful to learn
how to use UbiCollab if, for example, popup notifications and screen buttons
are provided in a way they are used to recognize and interact with. This ap-
proach has drawbacks in portability domains since an java implementation
of system widgets3 is needed. As we will see later, the use of eRCP/eSWT
UI framework imply that, in order to provide native widget to third party
applications running over the OS -as UbiCollab is- a ”bridge” or to be more
precise an implementation of system widget for the UI framework, needs to
be provided between the OS and the UI framework (figure 4.3).

Operative
System

UI
Framework

Native Widget
Implementation

Figure 4.3: Native Widget Implementation Dependencies

Using Eclipse eRCP/eSWT as UI framework (for the reasons explained lat-
ter) we need to run Windows, for desktops, or Windows Mobile and Symbian

2In GUI design, look and feel is used to depict aspects of its design, including elements
such as colors, shapes, layout, and typefaces (the ”look”), as well as the behavior of
dynamic elements such as buttons, boxes, and menus (the ”feel”)

3A widget is an element of a graphical user interface that displays an information
arrangement changeable by the user, such as a window, a text box or a button. The
defining characteristic of a widget is to provide a single interaction point for the direct
manipulation of a given kind of data.

46 4. Implementation

OS, for mobiles; given that at the present time implementations of native
widget are provided just for those Operative Systems.

4.1.3 Java Virtual Machine

The java programming language grow up a lot in the last years becoming one
of the most popular development environment. It moved from supporting
consumer electronic devices, purpose for whose was created, to support a
wide range of platforms: from servers to mobile devices, passing through
desktop PCs and ending with smartcards.
There are mainly four technology editions of the Java Platform, according
with a scalar approach, as presented in figure 4.4 :

• Java Platform, Standard edition (Java SE): which is designed
for desktop applications

• Java Platform, Enterprise edition (Java EE): a superset of Java
SE that support scalable, transaction-oriented, and database-centered
enterprise programming.

• Java Platform, Micro edition (Java ME): specification of a lim-
ited set of runtime and APIs for embedded consumer devices, such
as mobile phones, PDAs and other devices that are constrained from
supporting a full Java SE or Java EE implementation

• Java Card: a small Java framework including security and remote
invocation APIs intended to develop applications deployed on smart-
cards. It is widely used in SIM cards (used in GSM mobile phones)
and ATM cards.

Java EE
Java SE

Java ME
Java Card

Server\Desktop

Mobile
Optional

Packages Optional
Packages Optional

Packages

Configurations

Profiles

Figure 4.4: Java Distributions

An application developed in compliance with the ubiquitous computing
paradigm should take advantage from all four dictions in different scenarios.
Our focus will be on Java ME because our platform is mainly deployed on

4.1 The UbiCollab Implementation Stack 47

mobile devices and all the applications designed for Java ME will run at the
same way for the SE and EE editions, thanks to the backward compatibility
of Java distributions4.

Unlike JSE and JEE, JME is not a piece of software, nor is it a single
specification. Because JavaME spans such a variety of devices, it wouldn’t
make sense to try to create a one-size-fits-all solution, therefore Java ME is
divided into configurations, profiles and optional packages.
Devices implement a complete software stack which usually consists of a
configuration, a profile, and optional packages (figure 4.5).

Java
Platform
Micro
Edition CDC CLDC

MIDPFoundation Profile

Personal Basis Profile

Personal
Profile

JSR 234
Multimedia

JSR 82
Bluetooth

JSR 172
Web

Services
JSR 179
Location ... Optional Packages

Profiles

Configurations

Configuration + Profile + Optional Packages = complaint JRE

Figure 4.5: Java for Mobile

A configuration defines the core functionality of the platform runtime envi-
ronment; this includes the Virtual Machine and a set of core classes derived
from the Java SE platform.
At the heart of Java ME are two configurations, targeting different family
of devices:

• CLDC (Connected Limited Device Configuration): supports small-
est devices such as cell phones, two-way pagers and low-end PDAs.
Technically speaking, devices with 16-bit or 32-bit processors, at least
160KB of persistent memory and at least 32KB of volatile memory.

• CDC (Connected Device Configuration): supports more powerful con-
nected devices, such as high-end PDA and Smartphones as well as
sophisticated embedded devices. Technically speaking, devices with
32-bit processor, at least 2MB of volatile memory, 2.5MB of persistent
memory and network connectivity

4This is mostly right except for some optional components addressing the same spec-
ification but implemented in different way for mobile and desktop platform, for instance
the Mobile Media Extensions (JSR135) for mobiles and the Java Media Framework (JMF)
for desktops. Moreover to address the stricter limitations of devices, Java ME sometimes
replaces Java SE APIs and adds new interfaces.

48 4. Implementation

CDC includes all the classes defined by CLDC, including any new ones not
included in the Java SE platform, since they are designed for addressing
mobile constrains in communication area.

Right above configurations there are profiles. A profile, as well as optional
packages, builds on a configuration providing classes for managing applica-
tions life-cycle, driving UIs, accessing data locally and over the network. Is
a way to include in the distribution a set of standardized optional classes
addressing domain-specific functionality that most or all devices in a class
need. At this writings, there are four profiles, one based on CLDC and three
on CDC, as schematically presented in figure 4.5:

On the top of the stack are optional packages. These can be seen as profile
extension since they provide support in relatively narrow areas of function-
ality that some devices and applications need but other’s don’t, such as
messaging, multimedia and location service. One example of an optional
package is the Multimedia Support (JSR234), which provides access and
control to smartphone multimedia resources, like phone cameras. This op-
tional package could be implemented alongside virtually any combination
of configurations and profiles. All JavaME optional packages are defined by
the JCP5, making them standard APIs

As it will be proved afterwards UbiCollab needs, in order to run, a Foun-
dation Profile, CDC Virtual Machine enhanced with some optional compo-
nents, as listed in figure 4.6

JSR 234
Multimedia

Support

CDC JVM

Foundation Profile

UbiCollab Stack

Figure 4.6: Java Stack used in UbiCollab

The use of different configurations has been investigated but finally this
one resulted the only full compatible with our platform. In truth all the
configurations below CDC doesn’t provide enough resources to run the OSGi
framework; on the other hand all the profiles higher than Foundation already
include a support for UI technologies like AWT for the Personal Profile or

5Java Community Process, a open community-based standards organization (under Sun
Microsystems authority) with a formal process for defining and revising Java technology
specificatio

4.1 The UbiCollab Implementation Stack 49

even SWT for some stack’s implementation6, these components crash against
our UI framework implementation, making the whole stack unstable.

4.1.4 JVM Implementations

Nowadays a lot of Virtual Machine implementation, both open source and
commercial, based on Sun’s specifications are available for the deployment.
Seeking the best solution for our platform in terms of performances and
compatibility, we filled the comparison chart reported in figures 4.7 and 4.8.
Important features as well as weakpoints are highlighted.

Figure 4.7: JVM Implementation comparison chart

In accordance with considerations expressed in the comparison chart, we
chose to focus on the two Virtual Machines which express best reliability and
compatibility with other third-party technologies employed in UbiCollab.
At the present time IBM J9 is the most reliable and tested JVM available
and it works well with UbiCollab but IBM is discontinuing the free version

6As for the IBM implementation of the CDC stack

50 4. Implementation

Figure 4.8: JVM Implementation comparison chart (2)

4.1 The UbiCollab Implementation Stack 51

moving to the integration of it in its commercial product; that is not good
step for a project UbiCollab since it aspires to work in a opensource envi-
ronment. Sun’s phoneME project, despite it suffers from some youthness
problems and is not widely tested enough, has a really bright roadmap [15]
and, as it will be proved in Chapter 5, it has expressed good performances.
Sprint Titan is also a really promising solution for our platform. It is a com-
plete mobile framework that already include OSGi and eRCP tiers and is
fully complain to the Mobile Operational Management (JSR232) that most
likely will become a standard, for mobile modular software distributions, in
the near future. If the Titan project will earn enough notoriety to cross US
borders and being also licensed for the rest of the world it will be certainly
a perfect running environment for UbiCollab.
Benchmarks of the two quoted JVM have been made and reported in Chap-
ter 5 (Evaluation).

4.1.5 OSGi

Modularization and Services are two cornerstones for the UbiCollab plat-
form. In order to implement these concepts in our software components the
plain Java programming language is not efficient enough.
The source of concerns coding with traditional Java is that the global, flat,
classpath and the indeed absence of dependency management do not prop-
erly fit the requirement of a Service Oriented Architecture.
OSGi provides a solution to these issues since is both [16] a programming
model to develop Java applications from modular units (bundles), decoupled
through service interfaces, and wired in a runtime infrastructure for control-
ling bundles life cycle. OSGi improves modularization deploying each bundle
in a JAR file with an enhanced manifest used to wire it in the framework.
All that allows developers to dynamically manipulate bundles: new bundles
can be added, existing bundles updated or removed all at runtime, without
rebooting the Java Virtual Machine. This means, in UbiCollab terminology,
that is possible to download, install and start to use a proxy service with-
out rebooting the UbiNode, according with AR-UI-077 requirement. OSGi
maintains consistency across modules by keeping track of the dependencies
between them, at the same time it makes them loosed coupled by arranging
for each module an its own classpath, separated from the classpath of all
others module. This method imply that the framework provides a separate
class loader for each bundle, therefore just classes and resources inside the
JAR file are loaded. This is the core secret that stand at the ground of OSGi:
in standard Java class loaders are arranged in a hierarchical tree, loading

7AR-UI-07: System’s components just installed must show their UI mechanism without
rebooting the platform or the device.

52 4. Implementation

requests are a delegated upwards, and classes cannot be shared horizon-
tally: OSGi moves to a network-like paradigm where dependencies between
modules can bee seen more like a provider-user relation instead of a parent-
child one, and loading request are delegate from one bundle’s class loader
to another’s based on the dependency relationship between the bundles (fig-
ure 4.9).

A

B C

D

A

B

C

D

Java Java + OSGi

Figure 4.9: Java vs. Java + OSGi Dependency Management

We can easily realize that this kind of approach really shapes our idea of a
centralized service-oriented architecture with loosely coupled services, since
in the OSGi model any Java class can be published as a service to be used
by other bundles (services) in the system.

OSGi is a standard defined by an Alliance of around forty companies, in-
cluding IBM, Motorola, Oracle. The current standard version, release 4.1
(R4.1) has been shipped in March 2007 and especially improves the wide
used release 3 (R3) shipped in 2003.
OSGi specification are freely available and several independently implemen-
tations both commercial and opensource are available. Our research interest
is centered on implementation that obey open licenses, the most popular are:

• Equinox: [17] is the widest deployed OSGi framework and is the
core runtime for most of the Eclipse foundation products. It’s born to
work together and support eRCP UI framework and this combination
can be found in many custom application, desktop and mobile, as for
instance the IBM WebSphere suite8. Equinox implements Release 4.1
of the OSGi specifications and is licensed under the Eclipse Public
License (EPL) [19]

• Knopflerfish: [18] is a popular and mature implementation of both
OSGi Release 3 and Release 4.1 specifications. It is developed by
Makewave AB and licensed under a BSD-style license. There is even
a commercial version of this distribution called Knopflerfish Pro.

8IBM WebSphere Software - http://www.ibm.com/software/websphere/

4.1 The UbiCollab Implementation Stack 53

• Felix: [19] is an implementation of the OSGi release 4.x by the Apache
group. It is designed particularly for compactness and ease of embed-
ding and it feature one of the smallest footprint for Release 4 imple-
mentations. It is licensed under the Apache License Version 2.0

• Concierge: [20] is a very compact and highly optimized implementa-
tion of OSGi Release 3. This makes it particularly suited to resources-
constrained platforms such as mobile phones. Concierge is licensed
under a BSD-style license.

The version of UbiCollab which I started to work with was running over the
Knopflerfish implementation, during the GUIs implementations we decided
on move the platform to Equinox, since it’s the most natural running envi-
ronment for the eRCP framework we adopt to implement our user interfaces.

4.1.6 eRCP/eSWT

Eclipse Rich Client Platform (RCP) is a platform for building and deploying
rich client applications [21], it let multiple applications run in a single JVM
using OSGi and allows developers implement native GUI applications to a
variety of desktop operating system such as Windows, Linux and Mac OS.
The embedded Rich Client Platform (eRCP) aims to extends RCP features
to mobile and embedded devices. Generally eRCP APIs are quite similar
to RCP ones, but more lightweight. eRCP APIs are created using a subset
of RCPs further modified to fit constrains and features of the embedded
devices. Modification mainly concerns adapting it to run over constrained
resources which embedded devices have, like: small screen, reduced amount
of memory, small keyboard, etc...
Because eRCP is basically a subset of RCP, applications developed to run
on embedded devices automatically run on the desktop platform. As eRCP
applications will likely be optimized for small screens, display on a desktop
might not be optimal, but the application should be functional; anyway by
the high number of shared components is really fast to upgrade a mobile
application to fill the desktop model. eRCP, in order to run, requires at
least CDC Foundation Profile Java Virtual Machine and an OSGi imple-
mentation; the Eclipse foundation recommends equinox for OSGi, and the
IBM J9 as JVM.

The eRCP is made up of the following components (figure 4.10):

• embedded Standard Widget Toolkit (eSWT), with Core, Expanded
and Mobile extensions

• eJFace

• eUpdate

54 4. Implementation

• eWorkbench

eRCP

eSWT eJFace eWorkbench eUpdate

Figure 4.10: Eclipse eRCP

eSWT

The embedded Standard Widget Toolkit-eSWT (a subset of the well-known
Java graphic Standard Widget Toolkit-SWT) is a technology that can be
used to develop native-looking applications for a variety of mobile phones.
It comes as part of eRCP framework but is designed to be independent from
other eRCP components, so it is possible to use eSWT without eRCP as
part of a ”midlet”9.

There are several technologies for GUIs design for mobile devices, the most
popular are the ones derived from the desktop implementations of Swing,
AWT and SWT indeed.
Why we chose eSWT? Right, it comes as part of eRCP but our choice is
not related to that but rather to usability (once again!) and performances
justifications. Let’s analyze the competing technologies to prove that.

The AWT (Abstract Windowing Toolkit) framework uses native-looking
widgets10, it come as part of CDC Personal Profile JVMs but unfortunately
suffer from a LCD-problem11: in a nutshell if a platform A provides ten
widgets and platform B has that ten widgets plus twenty more, the cross-
platform AWT framework only offers the intersection of these two sets (fig-
ure 4.11 and 4.12).

Thereof we have evaluated that AWT framework doesn’t supply enough
visual components for developing our system GUIs.

Swing is considered the standard Java SE framework for GUIs implementa-
tion. It provides a large set of features, comes up with elegant look and feel
and results easy to use from a developer view due to a high abstraction level
of the implementation concepts. From a technical point-of-view it solves
the LCD-problem using emulated widgets instead of natives. This solution

9eSWT has has lighter hardware requirement compared with eRCP, it requires a CLDC
JVM (instead of the CDC one) and thus can run as a midlet even on low-end phones

10A Widget is the smallest unit of a UI: for instance windows, buttons, tables, popup
windows are all widgets

11Lowest Common Denominator problem

4.1 The UbiCollab Implementation Stack 55

Figure 4.11: Visual Component Comparison

Platform
B

Platform
A

BUTTON

S M T W T F S
1 2 3 4 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

March 2009

5

Small Big

Object size10 Options

Smooth

Smooth
Sweet
Sub title
background color

Smooth

Place scroll arrows: TogetherScrolling: Use smooth

Minimize

Nam : Option

Widgets

Cross Platform Widgets
(available for developing)

Figure 4.12: The AWT LCD Problem

56 4. Implementation

entails some important drawbacks that crash against UbiCollab AR-DE-
0312 requirement: Swing application no longer look like native applications,
moreover, because widgets have to be emulated, Swing applications consume
too much memory thus this technology is not optimal for mobile devices.

eSWT go beyond these issues normally acting as Java wrapper13 around the
operating system’s native widget, as AWT does, but emulating widgets, as
Swing does, when some of them are not available on the host platform. This
approach not only lends eSWT-based application the look and feel of native
(non-Java) applications, but also boosts their performances, since native
widget libraries are likely optimized for their target operative system.
As downside of this technique eSWT is only supported on platforms for
which a platform-specific eSWT implementation exists, but being conscious
that in computer science portability and performances are competing issues
the Eclipse engineers decided to sacrifices portability across different mobile
platforms to achieve enhanced performances and especially usability. This
modus operandi is highly compatible with UbiCollab design rules, thus we
chose eSWT (coupled with eRCP) in order to implement our GUIs. A
proof of goodness of the choice made can be found digging in the eSWT
architecture (figure 4.13), three components are included into:

• Core

• Expanded

• Mobile Extension

Core eSWT
(required)

Expanded eSWT
(optional)

Mobile Extension
(optional)

eSWT Architecture

API derived from SWT API introduced with eSWT

Figure 4.13: eSWT Architecture

This kind of componentization allows for flexibility to configure what com-
ponents should be included in the device, based on device capability and
purpose. The core component, mandatory on every distribution, is a subset
of basic desktop SWT API, including low-level graphics, events, and ba-
sic widget infrastructure. The Expanded component contains a subset of
more sophisticated desktop SWT widgets, such as layout managers. These
require resources commonly found on high-end mobile devices and PDAs.
The Mobile component includes widgets, such as dialogues box and controls,

12AR-DE-03: System’s GUI provided for User Interaction has to use OS native widgets
13Through JNI - Java Native Interfaces

4.1 The UbiCollab Implementation Stack 57

targeted for embedded devices. This component plays a fundamental role in
usability providing support to device-proprietary input/output mechanism
and it uses the native UI capabilities common to mobile devices to better
adjust eRCP applications to different devices. Instead of desktop machines,
which all share common features in terms of screen sizes and pointer mech-
anism, mobile devices come in a wide range of shapes and sizes and have
a variety of input mechanisms. As much as possible, a developer involved
in Ubicollab UIs design has to keep on mind that his/her GUIs should run
well on any kind of mobile device. Usability is more difficult to accomplish
for mobile devices where environments vary and expectation for ease of use
are very high. eSWT and Mobile Extension attempts to normalize devices
so that the application programmer does not have to do a lot of work to
handle the differences among devices. It does it in two ways: implicitly, by
providing a device’s native look and feel that a user is familiar with, and
explicitly, by providing mechanism that abstract input and output through
the actual device hardware [22].

Implicit normalization is automatically provided since eSWT widgets are
implemented using a platform’s native widgets, they appear and behave
similarly to widgets in native applications. The end-user can recognize and
interact with these widgets as his/her is used to.

Explicit normalization is provided via specific mechanisms that a program-
mer is encouraged to use. These generally fall into two categories: organizing
output on a display and handling different input mechanism.

At the present day the Eclipse foundation officially provides eSWT imple-
mentations for Windows, Windows Mobile, Symbian OS. There are even
unofficial implementation for some linux mobile OS as Jalimo project [23]
for Linux Maemo14, a popular linux distribution shipped with Nokia tablet
PCs. A typical invocation to a widget and its own connection with the
native implementation is schematically presented in figure 4.14

eJFace

eJFace wraps the eSWT widgets in the context of the Model-View-Controller
(MVC) paradigm. In short, it assures data binding among model, controller
and view classes. It also provides resource-handling classes that allows for
efficient manipulation of resources as fonts and images, thus increasing sys-
tem performances.
eJFace provides the mechanism by which plugins programatically contribute
to the workbench, which is further discussed in the next section.

14Maemo Community - http://maemo.org/

58 4. Implementation

...
MessageBox msg;
msg = newMessageBox(parent.getShell());
msg.setText("About");
msg.setMessage("Hello...Ubicollab
Platform");
messageBox.open();
...

Windows

Windows Mobile

Symbian OS

Component Model

Component View

org.eclipse.ercp.swt.win32

org.eclipse.ercp.swt.wm6pro

org.eclipse.ercp.swt.symos

JNI Invocation

JNI Invocation

JNI Invocation

MessageBox
widget

Button
widget

Tree
widget

Slider
widget

eSWT native implementation

Development View Deployment View User View

Figure 4.14: Native Widget Invocations on different Operative Systems

eUpdate

eUpdate is a bundle part of the eRCP distributions that handle other bun-
dles (plugins) installation and upgrade by the update site mechanism typical
of the Eclipse Products15 This bundle management system is not used in
UbiCollab since it comes with a proprietary bundle discovery and manage-
ment apparatus16 and thereby eUpdate has been excluded in the UbiCollab
customized eRCP distribution

eWorkbench

eWorkbench provides an implementation of concepts that came in the pic-
ture in Chapter 3. It is included in eRCP framework as a draft17 component
that can be expanded and customized according with the Eclipse EPL li-
cense [24]. Even if is a relative new technology, and customizing it is not an
easy task, it has become a central component of several successful commer-
cial product like the IBM WebSphere Everyplace Micro Environment18 and
the Sprint Titan Framework19 due to its high integration with eSWT, which

15Developers which use the Eclipse IDE are familiar with this plugin installation modal-
ity

16The Resource Discovery Manager, SD Plugins and Service Domain Manager bundles
17Sources of the draft component are available from Eclipse cvs:

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ercp/core/
18IBM WEME: http://www-01.ibm.com/software/wireless/weme/
19Sprint Titan Framework: http://developer.sprint.com

4.2 Components Architecture 59

is the component that renders the GUIs, and with OSGi, which guarantee
integration with other bundles and Service Oriented approach. Our imple-
mentation of the eWorkbench draft will be presented in the next section.

4.2 Components Architecture

Thanks to its inner modularity an Ubicollab distribution can be customized
and selectively composed, saving resources, in plenty of different configura-
tions addressing specific scenarios needs. A distribution is built with compo-
nents which share the same internal architecture. A component is arranged
in mandatory and optional units, as depicted in figure 4.15.

Activator

Controller

org.ubicollab.
[core | sdp | app | proxy | services].

x.model

org.ubicollab.services.axis.x Connection to remote WebServices

Component Model Implementation

Component UI View(s) Implementation

Mandatory units Optional units

plugin.xml

Connection to the OSGi Framework

Connection to the UI framework

manifest.mf

or
g.

ub
ico

lla
b.

[c
or

e
| s

dp
 |

ap
p

| p
ro

xy
 |

se
rv

ice
s]

.x
.#

.#
.#

.ja
r

org.ubicollab.
[core | sdp | app | proxy | services].

x.ui

x is the name of the implemented component

Mandatory classes Optional Classes

Figure 4.15: Component’s Internal Architecture

A component is made up of the following units, sorted in mandatory and
optional:

- manifest.mf file [mandatory]: it contains informations required to
connect the component to the OSGi framework and properly run it
like: classpath, imported and exported packages.

- plugin.xml file [optional]: it contains informations required to con-
nect the component to the eRCP framework, like number and names of
views and their implementation paths; it is required just if the bundle
provide user interfaces.

- org.ubicollab.services.axis.x package [optional]: it contains classes
needed in order to create a local stub of the webservice x and thus

60 4. Implementation

let the bundle call remote procedures on it. This package is generated
at compile time by the Apache Axis20 engine feeded by the wsdl file
of the service we want to connect to. It is an optional unit since is
only included in component that necessitate to directly communicate
outside the UbiCollab framework, proxies for instance.

- org.ubicollab.[core / sdp / app / proxy / services].x.model
package [mandatory]: this package encloses all the internal procedures
and algorithms that implement bundle x functionalities. The model
includes the activator class which is used to wire the bundle with the
OSGi framework and thus get services references and system events
notifications. If the bundle provide UIs is a good practice to also have
a controller class used to drive UIs in accordance with the model-
view-controller pattern21. Due to the high complexity of this package
is allowed and suggested to organize it in sub-packages.

- org.ubicollab.[core / sdp / app / proxy / services].x.ui package
[optional]: it includes classes which implement user interface function-
ality, as well as GUIs or other user interaction mechanism. It has to
be designed using interfaces provided by the underlying model pack-
age and thus can be modified and more user interaction can me added
afterwards without re-implementing the model.

All these units are deployed in a versioned jar file named org.ubicollab.[core /
sdp / app / proxy / services].x.#.#.#.jar where x the represent component
name and #.#.# the component version. Besides device embedded service
implementation the only exception to this set of rules is represented by the
eWorkbench component since, as it will be explained latter, it act as link
between the eRCP framework UC components; therefore has to adhere to
both framework specifications.

4.3 Components Implemented

4.3.1 Implementation Overview

All the components implemented as contributions to the research work are
schematically presented in figure 4.16. All the components run on the top
of the implementation stack reported in figure 4.17.

Each component implementation is analyzed in the following sections.

20Apache Axis: http://ws.apache.org/axis/
21The jFace toolkit included with eRCP can be used to simply pattern implementation

4.3 Components Implemented 61

Core ApplicationService Discovery
Plugin Proxy Service

eWorkbench Type-a-number
SDiscovery Plugin

Image Viewer SharedScreen
Proxy

for tablet PCs

SharedScreen
Proxy

for OpenWall
Tablet

Presenter
OpenWall
Presenter

Ubi Node Asus Tablet PC IDI Open Wall Controller

WS API WS API

Component Classes

Component Implemented

Component depolyment

WS Proxy WS ProxyWebService Proxy

Figure 4.16: Implemented Components Overview

HTC Touch HD (528Mhz ARM CPU - 288MB RAM)

Windows Mobile Professional 6.1

IBM J9 6.1 - CDC1.1 - FP

Eclipse Equinox OSGi 3.2.2

 Eclipse eRCP 1.1.1 eSWT jFACE

UbiCollab Implementation Stack

 UbiCollab Platform Space User Space

Figure 4.17: UbiCollab Implementation Stack

62 4. Implementation

4.3.2 Platform Components Enhancements

Because the modules implemented as contribution of this work rely on Re-
source Discovery and Service Manager modules developed in a previous re-
search work [2] these have been updated to be compatible with the new
project specifications and running environment. Compilation units have
been renamed according with the conventions reported in Section 4.2. Since
before the current work UbiCollab was running over Knopflerfish OSGi im-
plementation, the manifest file has been rewritten to fulfill equinox specifi-
cations, that are more constraining compared with Knopflerfish’s in terms
of bundle’s activation policies and dependencies management. Thus the ver-
sion of these components have been moved from 0.5 to 0.6 for the Service
Domain Manager and from 1.0 to 1.1 for the Resource Discovery Manager
(which was named Service Domain Manager according with the out-of-date
specifications). No reengineering of the source code have been made since it
was already suited for the requirement introduced in mobility area.

4.3.3 eWorkbench

Building on the Eclipse Foundation draft we developed a customized eWork-
bench. Modification has been mainly involved the GUI layout and look and
feel in order to accomplish UbiCollab requirement and produce an imple-
mentation of mockups presented in Chapter 3. Now we are going to explain
how we have interpreted the eWorkbench idea, starting with some general
concepts that the reader may don’t know if is not familiar with Eclipse
products designs.

Generally speaking the eWorkbench supply a technology to create a visual
framework for displaying plugins22 UIs and, thanks to the OSGi layer, allows
them run simultaneously inside a single workbench window. eWorkbench
works providing extension points that the plugins extends. An extension
point is the definition of a port, an entry-plug for other plugins to offer ser-
vices. It could be better understood if we consider an extension point similar
to a Java interface. Like an interface, an extension point defines a con-
tract between the user and the service provider [25]. In our implementation
it offer to other UbiCollab components to contribute to User Interactions
provided by eWorkbench publishing one or more views in a determinate
perspective, all the perspectives belongs to the UbiCollab eWorkbench (fig-
ure 4.18); therefore in UbiCollab domain the service provider involved

22In eRCP terminology a plugin is any OSGi bundle that provides one or more views
and the mechanism to wrap these GUIs in the context of the eWorkbench. Hence, in
UbiCollab terminology could be any component that come up with a UI like a Service
Discovery Plugin as well as a third-party UbiCollab Application

4.3 Components Implemented 63

in the contract, is an User Interface Service Provider impersonated by the
eWorkbench and users are UbiCollab modules that issue one or more user
interfaces to it.

-

-

-

-

-

-

-

UbiCollab
eWorkbench

Perspectives

Views

Figure 4.18: Perspectives inside a eWorkbench

The contract that binds views and perspectives with the eWorkbench is
written in XML language and enveloped in a plugin.xml (figure 4.19) file
where extension point are defined as well as extension implemented by the
plugin.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>

<extension-point id="applications" name="UC eWorkbench"
 schema="schema/applications.exsd"/>

<extension id="eWorkbench"
point="org.eclipse.core.runtime.applications">
<application>
<run class="org.eclipse.ercp.eworkbench.eWorkbench">
</run>
</application>
</extension>
.........
</plugin>

Extensions Point Published

Extensions Implemented

plugin.xml

Figure 4.19: plugin.xml from eWorkbench bundle

Still referencing to Java concepts we can assume the extension point as a
Java Interface and the implemented extension as a Class that implements
that interface. The plugin.xml provides the path where extensions are imple-
mented as well as fingerprints of the extension-points provided. Extension
point definitions are enveloped in a XML Schema file with extension .exsd,
thus bundles that want to implement the extension points have to adhere
to that schema (figure 4.20).

To be of any use, extension points and extension implementations must find
each other. The eRCP framework maintain an extension registry for this
purpose, and allows bundles implementing extension to plugin the respec-

64 4. Implementation

plugin.xml

ex-point_1.exsd ex-point_2.exsd ex-point_N.exsd

Extension Implemented

Extension-points published

Figure 4.20: Extension system for a bundle into the eRCP framework

tive extension point at runtime. It means that a proxy, for instance, as
soon is discovered and downloaded is just ready to present its user interface,
without any further setup or reboot operation. UbiCollab eWorkbench of-
fers extension points for bundles that want to publish UIs and implement
extension provided by framework core component in order to have low-level
access to device displays and other hardware needed to implement view and
perspective concepts.

The extension point for UbiCollab components provided by eWorkbench
included as part of plugin.xml file is shown in figure 4.21

<plugin>
<extension-point id="applications" name="UC eWorkbench" schema="schema/applications.exsd"/>
</plugin>

1

2

3

Figure 4.21: Extension Point Declaration

The extension-point tag requires three parameters:

1. id is the extension point identifier. The eRCP framework concatenates
it with the plugin id to make a platform-wide unique identifier.

2. name is a user-friendly name

3. schema points to an XML Schema that describes the markup for the
extension, stated in figure 4.22

Any UC component that comes with UI mechanism has to use this markup
schema in its own plugin.xml file.

4.3 Components Implemented 65

<?xml version='1.0' encoding='UTF-8'?>
<schema targetNamespace="org.eclipse.ui.workbench">
<annotation>
<appInfo>
<meta.schema plugin="org.eclipse.ui.workbench" id="applications" name="eRCP Application"/>
</appInfo>
<documentation>
This extension point allows plug-ins to register as eRCP applications
</documentation>
</annotation>
.....
<element name="views">
<annotation>
<documentation>
The views this application implements
</documentation>
</annotation>
<complexType>
<sequence>
</sequence>
<attribute name="normal" type="string" use="required">
<annotation>
<documentation>
Identifier of Normal view
</documentation>
</annotation>
</attribute>
<attribute name="large" type="string">
<annotation>
<documentation>
Identifier of Large view
</documentation>
</annotation>
</attribute>
......
</schema>

applications.exsd3

Figure 4.22: application.exsd

To make this idea better clear we now analyze how this binding contract is
implemented on the user side23, looking inside the plugin.xml file included
in the Type-a-number RDPlugin bundle presented in Chapter 3, which code
are listed in figure 4.23

A view implemented by the component is stored in a Java Package embedded
in the bundle and hence deployed in a Jar file. It contains at least a GUI
designed with eSWT and eJFace tools, but that can be enhanced adding
additional User Interaction mechanism such as voice or gesture recognition
designed by the developer itself or supplied in third-party libraries24. For
plugin that provides views for specific display scenarios, eWorkbench auto-
matically decides which view has to be prompted based on the hardware
capability of the mobile device in use. For example, if a device has two dis-
plays, a eWorkbench can display a different application on each display or
transfer an application’s view from one display to another. When a device
is opened, an application can move from a small external display to a larger
internal one.

At this stage of the report we can render a more detailed description of the

23In this context an user is a bundle that publish UIs in the eWorkbench
24Third-party user interaction engines can me embedded in the view’s bundle or come

as separate bundle shared among multiple views.

66 4. Implementation

<?xml version="1.0" encoding="UTF-8"?>

<?eclipse version="3.2"?>

<plugin>

<extension point="org.eclipse.ercp.eworkbench.applications">

<application id="TAN_SDPlugin" name="Type-a-number SDPlugin">

<views normal="no.ubicollab.ui.MyViewPart"/>

</application>

</extension>

<extension point="org.eclipse.ui.views">

<view category="org.eclipse.ercp.eworkbench.viewCategory"

class="no.ubicollab.ui.NormalView"

id="no.ubicollab.ui.MyViewPart" name="My ViewPart"/>

</extension>

</plugin>

This plugin contribute to the extension point with id: "applications"
provided to the bundle "org.eclipse.ercp.eworkbench"

path of the class where is implemented the view

State the contribution to the extension point "views"
of the bundle "org.eclipse.ui", it provides references to

device displays and manage windows passing

plugin.xml

Category of the provided view

Figure 4.23: plugin.xml from org.ubicollab.rdp.tan bundle

platform abstraction layer and the user abstraction layer reported in Chap-
ter 3 for the UbiCollab eWorkbench component, as reported in figure 4.24
and 4.25.

4.3 Components Implemented 67

OSGi

eRCP

org.eclipse.core.runtime org.eclipse.ui

views.exsd perspectives.exsdapplications.exsd

eJFace

eSWT

manifest.mf
plugin.xml

OSGi
Bundle
Registry

applications.exsd

eWorkbench
Core

Content Provider Workbench Views

..core
component..

..core
component..

Layouts Widgets

(Model)* (Controller)* (View)*

Platform Abstraction Layer User Abstraction Layer

UbiCollab components which provide user Interfaces
(SDPlugins, Applications, Proxies)

Extension-Point System

* Model-View-Controller Design Pattern

Figure 4.24: eWorkbench Architecture

Figure 4.25: eWorkbench UML Class Diagram

68 4. Implementation

4.3.4 Type-a-Number Resource Discovery Plugin

The Type-a-Number (TAN) is plugin for the Resource Discovery Subsystem
developed by KSJ [2] and make use of the API provided with it. The TAN
Plugin implements the Type a number discovery gesture, providing to the
user an easy way for discovering and adding services to his/her UbiNode.
Even if it needs to have the resource on sight and use fingers to digit the
number on the PDA screen, as already pointed out ,it work well in a lot of
scenarios; moreover due to its low hardware requirement it can be deployed
as part as every UC distribution.
In short the plugin resolves the number entered by the user looking for a
matching Service Advertisement. The Service Advertisement (SA) is one of
the most central concepts for Resource Discovering. SA is the descriptive
information concerning a service that is made available for potential service
requesters [2] .

A Service Advertisement includes these fields:

- Service id: the 4 digits number which identify the resource

- Name: an user-friendly name for the resource, e.g. ”Tablet PC”.

- Location: the location where the resource resides, e.g. ”IT-Bygg, room
054”

- Owner: the owner of the shared resource, e.g. ”NTNU IDI Depart-
ment”

- Type: The service type. Can be used by applications to determine
how to handle a discovered service.

- Description: a short description of what the service does

- ServiceUri: the URI which point to the resource proxy jar file, needed
in order to communicate with the WebService implemented by the
resource

- DescriptionUri: a URL which point to a an HTML page with infor-
mations about the resource and how to use it.

When a user initiate a Service Discovery gesture, typing a name in this in-
stance, the intrinsic information embodied in the gesture is matched against
available service advertisements. Since a resource is listed by a 4 digits num-
ber spacing from 0 to 9, we can index up to 104 = 10.000 resources. Because
UbiCollab seek to be platform independent, XML is used to describe ser-
vices, in this way service informations will be used and interchanged among
several platform components. Thereby each SA has to be validated against
the XML schema listed in figure 4.26.

4.3 Components Implemented 69

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Service" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name="id" type="xs:int"/>
 <xs:attribute name="Name" type="xs:string"/>
 <xs:attribute name="Type" type="xs:string"/>
 <xs:attribute name="Location" type="xs:string"/>
 <xs:attribute name="Owner" type="xs:string"/>
 <xs:attribute name="Description" type="xs:string"/>
 <xs:attribute name="ServiceUri" type="xs:string"/>
 <xs:attribute name="DescriptionUri" type="xs:string"/>
 </xs:sequence>
 <xs:complexType>
</xs:element>
</xs:schema>

Figure 4.26: Service Advertisement Schema

Using XML has even the benefit that the SA list can be stored in a web-
server and kept updated whereas a new resource would be made available
or adapted to work with UbiCollab.

Type-a-Number
SDPlugin

Rsource Domain
Manager

W
S Proxy W

S
 A

PI

eWorkbench <<SOAP Invocations>>

Internet Space

Platform Space

User Space

Provide Service informationsProvide Users Interface

Service list, local copy

<<Extension-point>>

Service list, remote copy

UbiNode

Figure 4.27: Architectural view of the TAN Plugin

The design of the component is reported in figure 4.27: the plugin at startup
time tries to retrieve an updated version of the Service Advertisement list
from the UbiCollab server, if it cannot connect to the server (network failure
or server down) it search for a cached version of the list in the user space.
If the plugin cannot have use of the network and the cached list both (file
corrupted or nonexistent) the plugin recover the service list file from a copy
included with the plugin when was released, and store it in the user space,
ready to be updated as soon as the connection to the server will be available
again.

70 4. Implementation

eWorkbench TAN::MainView TAN::PluginImpl TAN::Servicelist Resource Discovery
Manager

Service Domain
Manager

createPartControll()

getServiceList()

updateServiceList()

serviceList

registerService()
findService(service_id)

Service

registerService(Service)

installService(Service)

requestOK

requestOK

notification
dispose()

registerSDPlugin(plugin_protocol)

pluginID

start()

Figure 4.28: Sequence Diagram for Resource Discovery Operations

The discovery and service install operations generated by the end-user dis-
covery gesture involves several classes as shown in the sequence diagram
reported in figure 4.28.
The component Class diagram is also reported in figure 4.29. Note that the
Resource Discovery Manager and the Service domain manager are classes
automatically generated from the wsdl document exposed by the those mod-
ules. In our framework they act a stubs25 reflecting all methods invocation
to the RDM implementation via the SOAP protocol. Thereby the TAN
plugin can be also deployed on a device where RDM and SDM are running
remotely. This feature allows distributed service discovery scenarios since
more discovery plugins can be distributed on multiple UbiNodes register-
ing the discovered services within centralized RDM/SDM modules. We can
think to barcodes based inventory or goods scanning as scenarios for this
strategy.

25In the distributed computing environment, stub stands for client side object partici-
pating in the distributed object communication. It acts as a gateway for client side objects
and all outgoing requests to server side objects that are routed through it.

4.3 Components Implemented 71

Figure 4.29: Class diagram for the Type-a-Number Resource Discovery Plugin

4.3.5 ImageViewer Application

The ImageViewer app is an example of a composite application that make
use of several UbiCollab concepts: application, proxies and services.
Basically is a software developed for the UbiNode, resource comply for mo-
bile devices indeed, that shows pictures downloaded from a remote user
spaces like a shared folder on a webserver. It response to screen touches
browsing through the digital contents and showing them in a full-screen
modality. But it is not all this. ImageViewer can connect to external shared
screens -a shared resource in UC terminology- and drive them showing an
adapted version of the contents the user is watching on the PDA, as an
high-res version of a photo for a big size shared screen or a descriptive text
on a shared led screen. In order to run the application in this distributed
modality the user has to discover and install proper proxy, called Shared-
Screen Proxy, the discovery gesture required by the discovery plugin he/she
choose to use.
The installed proxy contains configuration informations and the protocol
implementations to interact with the remote resource, thus one proxy for
each shared screen to be used is needed.
Therefore the ImageViewer application can run in two modality: standalone,
if there’s no SharedScreen proxy installed on the ubinode; or distributed
(figure 4.30).

72 4. Implementation

UbiCollab Apps

ImageViewer App
Image

Presenter
proxy

for TPC

Image
Presenter

proxy
for IOW

Tablet PC

IDI OpenWall

UC Core Components

UbiNode Shared Screens

STANDALONE MODALITY

DI
ST

RI
BU

TE
D

M
O

DA
LI

TY

Figure 4.30: Standalone and distributed modality for the ImageViewer App

Our application uses proxy via the OSGi services interface. Proxies lookup
is performed when the application starts or when is reactivated during the
same session26. Class diagram for this application is reported in figure 4.31

Figure 4.31: Class Diagram for the ImageViewer application

Images description and location are also stored in a xml file in the user
space. The number of SharedScreen devices connected to the ImageViewer
application is only limited by computation power of the UbiNode.

26Since inside the eWorkbench applications run in multitask mode they can be sus-
pended, for discovering operations for instance, being then reactivated at the same state.

4.3 Components Implemented 73

4.3.6 SharedScreen Proxies

The SharedScreen proxy are modules that allow the use of generic Shared-
Screen WebService in UbiCollab domain, exposing an interface that can be
used by other modules to have access to the services provided by the remote
resource via SOAP invocations (figure 4.32).

Bu
nd

le
Co

nt
ex

t

ImagePresenter
Proxy

W
S Proxy Stub

UbiCollab
Application Shared Screen

W
S

AP
I

BundleContext

OSGi Domain WS Domain

SOAP Invocations
over HTTP

Figure 4.32: Communication System through proxy

The proxy routes the OSGi internal methods invocations outside the UbiN-
ode over the network. On one side it implements an interface and register
itself as service in the OSGi registry, making remote procedures accessible
to other bundles; on another side it instantiate a stub (a WS Proxy) in order
to communicate with external WebServices (running on shared resources)
via the SOAP protocol.

+showImage(sourceUrl):bool
+showImageInfo():bool
+showAdvertisement():bool
+showUbiNodeConnected():bool
+getCurrentImageInfo():string
+getDeviceInformations():string
+getUbiNodeConnected():string

<<interface>>
ImagePresenter

Figure 4.33: Interface published by the proxy

The proxy contains all the information needed to handle the connection over
the network, such as the resource IP address, the implementation of the
communication protocol, and routines to handle network communications
errors; therefore we need to have a configured version of the SharedScreen
P. for each screen we want to use.

A proxy is an independent component, once that is installed by the RDM
and registered with the SDM is ready to be used as soon as an application
will retrieve its service reference27, an object needed by bundles to invoke
methods published by other bundles. After having redeemed the service
reference from the OSGi service registry the Application is finally able to
invoke proxy methods instantiating the interface reported in figure 4.33. The

27See the Javadoc for more informations:
http://www.osgi.org/javadoc/r4v41/org/osgi/framework/ServiceReference.html

74 4. Implementation

complete procedure for interfaces registration and procedure invocations is
disclosed in figure 4.34.

Proxy::IPPImplProxy::ActivatorBundle Context ImagePresenter

start()

BundleReference

registerService(IPPImpl)

ServiceReference

connectToRemotePresenter()
getImagePresenter(WSUrl)

WSstub
requestOK

getDeviceInfo()
getDeviceInfo()

deviceInformations

WS
Domain

OSGi
Domain

Figure 4.34: Sequence diagram for proxy initialization and method invocation

As support to the platform evaluation two SharedScreen proxies have been
released targeting two differed type of shared screens: one for a Tablet PCs
and one for the IDI Open Wall. Devices specifications and configurations
are described in Appendix C.

4.3.7 SharedScreen WebService

In collaborative environments can be useful to have shared visual output
devices such as LCD-projectors or tablet PCs. In order to use them in
UbiCollab, which is a SOA-based architecture, we need have a WebService
running on them listening for remote procedure calls via SOAP protocol.
The WebService implementation can be in any language because we see it
like a black box that implement a public interface declared in a WSDL file
(figure 4.35), which is the only information UbiCollab needs to build a proxy
for it. We assume that the WS is released by the resource manufacturer and
that UbiCollab’s crew has just to develop the proxy from the specifications
enveloped in the WSDL file; however we developed WebServices for eval-
uation purposes, in order to drive shared screens hardware and test the
developed proxies.
The two resources that we turned in a shared screen WebService are a Tablet
PC and the IDI Open Wall; consequently two SharedScreen proxies config-
ured for these WS have been released too. Devices specifications and used
configurations are described in Appendix C.

4.3 Components Implemented 75

<wsdl:definitions targetNamespace=
"http://129.241.102.121:8080/axis/services/ImagePresenter">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:message name="getDeviceInfoResponse">
<wsdl:part name="getDeviceInfoReturn" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="showAdvertaismentRequest">
 </wsdl:message>
<wsdl:message name="getImageInformationRequest">
</wsdl:message>
<wsdl:message name="showTargetResponse">
 </wsdl:message>
<wsdl:message name="getDeviceInfoRequest">
</wsdl:message>
<wsdl:message name="showTargetRequest">
<wsdl:part name="targetUrl" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="showAdvertaismentResponse">
</wsdl:message>
<wsdl:message name="getImageInformationResponse">
<wsdl:part name="getImageInformationReturn" type="soapenc:string"/>

Figure 4.35: Service Advertisement and wsdl file for the SharedScreen WebService

Being free to decide which technology has to been employed in the WS im-
plementation we chose to exploit our knowledge in Java technologies already
used for the rest of the platform, thus we implemented WS using OSGi and
eRCP. In this environment WebService capability is provided to OSGi by the
Knopflerfish Axis bundle28 here utilized to turn our OSGi-Services in Web-
Services and publish the respective WSDL advertisement file. SharedScreen
service can be deployed on any device running Windows and OSGi.

Methods provided by this interface allow a proxy on a UbiNode to:

• getDeviceInfo(): get device information, such as position, ip address,
owner etc..

• showTarget(): it let the shared screen show the image (.jpeg or .png
extension) URL passed as method parameter.

• showAdvertisement(): this method show a resources advertisement
reporting the supported gestures available for its discovery

• getImageInformation(): it return the name of the image currently pre-
sented by the device screen

Because we have developed Web-Service for two resources which serve the

28See the Appendix B for more informations about third-party technologies used in
Ubicollab and their configurations

76 4. Implementation

same purpose (show a visual output) but which deeply differs in output
hardware (one has a 800x600px LCD Screen, the other has a 80x30px 201”
LED screen) we had to make a proprietary implementation of the WebSer-
vice Interface for each device. Class diagrams for both WS are reported in
figure 4.36 and 4.37.

Figure 4.36: Class diagram, SharedScreen for Tablet PC

Tablet PC WS implementation make use of eSWT widgets and is quite
similar to the implementation of the ImageViewer app.

IDI-OpenWall WebService uses the APIs available as part of the sart project29.

29sart project wiki: http://mediawiki.idi.ntnu.no/wiki/sart/index.php/Main Page

4.3 Components Implemented 77

Figure 4.37: Class diagram, SharedScreen for IDI OpenWall

78 4. Implementation

Chapter 5

Evaluation

In this chapter work done in this project is evaluated. The solution imple-
mented has gone through two different evaluations: a focus group evaluation
and a technical evaluation. The focus group evaluations has been performed
in workshop and driven by a scenario. The technical evaluation consists in
benchmarks of the platform components

In section 5.1 is reported the focus group evaluation

In section 5.2 is reported the technical evaluation

In section 5.3 requirement accomplishment will be evaluated

5.1 Group Evaluation

The implemented solution has been demonstrated in a workshop the 28th
of April 2009 at IDI/NTNU. People attending the event were professors
Farshchian and Divitini, people for ASTRA project and a group of visit-
ing students and researchers from University of Bergamo. As part of this
demonstration a presentation was held to give an overview of the solution,
before the different components were demonstrated separately. Finally, a
demonstration scenario was walked through and feedbacks collected are re-
ported.

5.1.1 Demonstration Scenario

Bjørn is invited to held a presentation in a foreign university Meeting Room
equipped with shared screens. The available shared screens are advertised by
a four-digits code and a 2D Barcode.

79

80 5. Evaluation

Bjørn has never been in that room and doesn’t know the specification of those
displays, but he would to use them to show slides and pictures to the audi-
ence.
At home he uploaded slides and photos on his web personal space and he left
home just with his UbiNode smartphone.

On the presentation day he reviews the speech in his hotel room looking to the
slides showed on the smartphone with UbiCollab Image Viewer application;
then he reaches the presentation room and finds two UC shared screen of
different sizes. One is a tablet PC and one is a huge LED screen.
He decides to use them to share the slides with his audience using the smaller
screen to show pictures and the bigger one to show a text related with the
content.

He takes out from the pocket his UbiNode and runs the UbiCollab platforms
interacting with the system via a touch interface. He finds on both screens an
advertising label reporting the two Discovering Gestures available for those
devices: a numeric four-digits code and a 2D Barcode.
He chooses to discover both screens by typing a code because his smartphone
doesn’t have a camera.
The UC Resource Discovery Manager installs the UC proxies for those de-
vices, establishes a communication with them and notify the user about the
outcome of the operation.

Finally Bjørn runs the UC Image Viewer application he used earlier to re-
view the slides, now the application recognizes and notifies the user that two
new shared screen services are now available and start to communicate with
them.
The two shared screens get activated and start to display the contents of the
presentations in a proper way. Bjørn controls and browse the slide to dis-
play interacting with his smartphone and the contents showed on the shared
screens are automatically updated.

5.1 Group Evaluation 81

ImageViewer App
Image

Presenter
proxy

for TPC

Image
Presenter

proxy
for IOW

Tablet PC
WebService

IDI OpenWall
WebService

UbiNode

Shared Screens

<< SOAP Invocations>>

<< SOAP Invocations>>

Service Domain Manager

Resource Disocovery
Manager

TAN
Plugin

UbiCollab Proxy Repository

jpegjpeg

png

User's personal space

jpeg

Platform Space User Space

<<HTTP\GET> <<HTTP\GET>

Figure 5.1: Demostration Scenario

5.1.2 Scenario Walkthrough

There are some prerequisite that have to be in place in order to play out
this scenario. These prerequisite are:

• The XML file containing the service list has to be filled with proxies
URIs and be uploaded on the UbiCollab server.

• Sample photos and texts have to be prepared and uploaded on my
NTNU personal space used as user personal space

• The full UbiCollab platform has to be installed on the smartphone
used as UbiNode

• SharedScreen WebServices has to be installed and started on both
screens

In an application of the scenario to the real world the first step has to be
made by the UbiCollab crew. The name ”Bjørn” from the scenario is used
in the walkthrough when end-user actions are performed.

1) The scenario walkthrough starts off with Bjørn launching the UbiCollab
distribution on his UbiNode from his hotel room. A screenshot is displayed
in figure 5.2.

2) Then Bjørn tap with his finger on the UbiNode screen and the Im-
ageViewer app starts. ImageViewer fetch the XML file containing the lo-
cation of Bjørn’s remote space where the digital contents are stored, then
search for SharedScreen proxy installed in Bjørn’s UbiNode. Because there
aren’t any available SharedScreen proxies the application starts in stan-
dalone mode, as shown in figure 5.3.

82 5. Evaluation

Figure 5.2: UbiCollab Platform Launched

Figure 5.3: ImageViewer in standalone mode

5.1 Group Evaluation 83

3)Bjørn browse the photo taken at Trondheim, which his presentation is
about, tapping once to proceed to the next photo or tapping twice to go
back to the previous photo (figure 5.4). Then Bjørn packs is UbiNode and
goes to the presentation place.

Figure 5.4: Photo Browsing

4)At the conference room Bjørn identify the SharedScreens by their service
advertisements. Service advertisement for the tablet PC is directly in view
on device screen (figure 5.5), service advertisement for the LED screen,
also called IDI OpenWall1, is revealed on a broadsheet close to the wall
(figure 5.6).

5) Bjørn takes out his UbiNode and run the UC platform. At this time he
choose to start using the SharedScreen tablet PC with his ubinode, he taps
to select the service discovery plugin associated with the chosen discovery
gesture: the Type-a-number SD Plugin. The plugin starts, fetches the ser-
vice list from the UbiCollab server and show to Bjørn the GUI reported in
figure 5.7.

6) Bjørn types the tablet PC advertisement code with the aid of the on-
screen buttons. The system notify feedback sound for any number typed,
then Bjørn push the button ”DISCOVER”. The plugin search in the service
list a resource that match the code in input and prompt to Bjørn a con-
firmation popup message with the name of the resource which match that
advertisement code (figure 5.8).

1More informations about the OpenWall are available on the project wiki:
http://mediawiki.idi.ntnu.no/wiki/sart/index.php/Main Page

84 5. Evaluation

Figure 5.5: Resource Advertisement for the Tablet PC

Figure 5.6: Resource Advertisement for the OpenWall

5.1 Group Evaluation 85

Figure 5.7: Type-a-number Plugin GUI

Figure 5.8: Resource Found Screenshot

86 5. Evaluation

7) Bjørn confirm the operation, the system download the SharedScreen
proxy from the UbiCollab server, install and activate it; after that it shows to
Bjørn a message about the successful outcome of the operations (figure 5.9).

Figure 5.9: Resource Proxy Successfully Installed in the UbiNode

8) Bjørn go back to the platform home window and taps on the ImageViewer
App. The application recognize that a SharedScreen proxy is now available
and turns on in the distributed modality showing a popup message with the
name of the SharedScreen available to be used. As soon as Bjørn tap on the
popup box confirming his choice the ImageViewer app show the first image
of Bjørn’s presentation and at the same time the tablet PC SharedScreen
changes from its Advertisement mode to the active mode showing an high-
resolution version of the photo which Bjørn is watching on the UbiNode
(figure 5.10).

9) Bjørn wants to use the OpenWall LED screen to show to the audience
a descriptive text related to the photo reproduced on the tablet, therefore
he moves to the resource discovery perspective and repeats the steps 5-6-
7 keying in the OpenWall advertisement code. Finally turn on again the
ImageViewer app which now show that two shared screen are available (fig-
ure 5.11).

10)Finally Bjørn is ready to show to the audience a rich version of his pre-
sentation with photos showed on the tablet PC and a related text printed
on the LED screen (figure 5.12).

5.1 Group Evaluation 87

Figure 5.10: UbiNode and tabletPC SharedScreen showing a photo

Figure 5.11: ImageViewer started with two SharedScreens available

88 5. Evaluation

Figure 5.12: ImageViewer with TabletPC and OpenWall Proxies Connected

5.1.3 Feedbacks

During this demonstration the components worked as expected, without
any problems. The feedback received after the demonstration was generally
positives. If any remarks has not been made about the platform archi-
tecture, some hints came for the user interaction area. Professor Divitini,
looking to implemented GUIs and mockups from the designed components,
pointed out that a person without any knowledge in UbiCollab terminology
cannot easily understand the meaning of proxies, resources and discovery
reported in our mockups; therefore a work in achieving a more user friendly
way and different abstractions to communicate these concepts has to be in-
vestigated. People from ASTRA project stated that an integration of our
Service Discovery with their platform would be really interesting in order
to use Discovery Gestures to improve the effectiveness of the UPnP discov-
ery protocol currently employed in ASTRA. The possibility of creating a
gateway between ASTRA and UbiCollab resource is highlighted as really
interesting for both projects. Researchers from Bergamo observed that we
should exploit more the environment where the user operate in order to make
the resources ”User Aware” and responds to him/her as soon as him/her
will come close to the resource. This improvement could make the overall
architecture more customized on user’s habits.

As results of these feedbacks the mockups have been changed providing

5.2 Platform Benchmark 89

less but more significant informations and trying to explain with adjectives
or actions terms like ”Get your location proxy” instead of ”GPS Proxy”.
A discussion about Service Discovery in ASTRA and exchange of technical
concepts have been established with an ASTRA researcher. The feasibility of
use WiFi network to make resources and users location awareness is started
and is still under research [26, 27, 28, 29, 30, 31]

5.2 Platform Benchmark

We have tested and benchmarked our solution proposal in order to have
formal evaluation of platform efficiency and provide a starting point and a
comparison value for future releases.
The testbed used in our benchmark is the HTC Touch HD smartphone
whose technical specification are reported in Appendix C.
We performed set of tests based on two different implementation stacks
reported in figure 5.13. At the ground of the stack A there’s the well
known IBM J9 JVM, this represent the actual technology platform where
UbiCollab is running on. The stack B probably represent the configuration
where UbiCollab is moving in the close future. It is based on the new Sun’s
phoneME JVM that, when will have been tested for enough time without
significant flaw, will substitute the J9 for its open license and better spec-
ification support. We decided to not test the platform even on different
OSGi implementations since Equinox ensures the best compatibility with
the eRCP framework and at the same time, according with international
researches [32], it has even remarkable performances. However a previous
version of UbiCollab was running well on Knopflerfish OSGi implementa-
tion, thus we can even use that configuration as a backup solution in case
we won’t manage to run Equinox on some hardware configurations or JVM
implementations.

HTC Touch HD (528Mhz ARM CPU - 288MB RAM)

Windows Mobile Professional 6.1

IBM J9 6.1 - CDC1.1 - FP

Eclipse Equinox OSGi 3.2.2

 Eclipse eRCP 1.1.1 eSWT jFACE

Stack A

 UbiCollab Platform Space User Space

HTC Touch HD (528Mhz ARM CPU - 288MB RAM)

Windows Mobile Professional 6.1

SUN phoneME Advanced MR2 - CDC1.1 - FP

Eclipse Equinox OSGi 3.2.2

 Eclipse eRCP 1.1.1 eSWT jFACE

Stack B

 UbiCollab Platform Space User Space

Figure 5.13: Implementation Stacks Benchmarked

For this test the UbiCollab stack tier has been composed in a common con-

90 5. Evaluation

figuration which includes mandatory core components, one discovery plugin
and one proxy service (figure 5.14).

 UbiCollab

Platform Space

Resources Discovery
Manager 0.9

Service Domain Manager 0.9

Type-a-number
Discovery Plugin 0.9

Third-party support libraries: XMLParser, axis,..*

User Space

Image
Presenter
Proxy 0.9

*See Appendix B for a ful list of the third-party libraries used

Figure 5.14: UbiCollab Configuration Used in the Benchmark

5.2.1 What we tested?

We made five different benchmarks:

(a) Platform Space Bundles time to load and start: we reported
and compared time taken by the mandatory core bundles to load and
start on a typical platform launch. We clocked the overall time taken
by platform to start, as well as time taken by each bundle2, in order to
find possible bottlenecks and check the efficiency of the Bundle startup
schedule.

(b) User Space Bundles time to download, install, load and start:
since functionality implemented in bundles those resides in user space
are intended to be dynamically discovered and downloaded3 by the user
and not shipped as part of the standard distribution, tests of these bun-
dles include also time to download and install them inside the frame-
work. Furthermore we even keep track of data transmitted and received
over the network. This marker has also to be taken in account since wire-
less network where UbiNodes operate such as WiFi or UMTS/GPRS4

ones could have a limited bandwidth as well as pay-as-you-use data
plans.

(c) CPU rate of utilization: This is an important marker for the reason
that is highly related with device autonomy. According with our HTC’s
specifications, our devices allow a stand-by time up to 440hours. Since

2Time taken by third-party bundles to load and start include an overhead time due to
the initial OSGi and eRCP framework startup. This overhead doesn’t significantly longer
affects UbiCollab bundles since they have a lower startup priority (they’re loaded after
mandatory third-party bundles).

3Via HTTP protocol
4Universal Mobile Telecommunications System/General Packet Radio Service are

two popular transmission protocols allowed by cellular provider to exchange data over
3G/GSM networks

5.2 Platform Benchmark 91

processor load in stand-by is between 1% to 5%, and reminding that
CPU usage and autonomy are competing issues in mobile environments,
our goal would be to optimize our architecture to achieve the lowest CPU
usage for the same service level and thus expand device’s autonomy when
is unplugged from the power-grid.

(d) Physical Memory Usage: This marker has an evident impact since
keeping the complete platform compact is a remarkable goal for every
mobile applications. Because UC and third-party technology implemen-
tations are the same for both stacks, this marker totally lever on the Java
Virtual Machine implementation.

(e) Central Memory Usage: This index is relevant for devices com-
patibility and reliability points. First off compatibility. Our testbed
come with huge amount of RAM for a smartphone, but Sun’s specifica-
tion allow CDC JVMs running on devices equipped with a much smaller
amount of memory: 2Mb5. Allowing UbiCollab running in a tight quota
of RAM permit us deployment on a wider number of devices including
older ones. Hence, monitoring memory usage, we can notify potential
system flaws since an abnormal memory usage characterized by an high
number of usage peaks and consequent resource saturation besides being
an indicator of bugs or poor code optimization can tamper with back-
ground process like OS system notifications crashing or making unstable
the device.

5.2.2 How we tested?

Bundle operations inside the OSGi framework have been clocked running
Equinox in debug mode, recording and comparing system’s timestamps.
CPU and memory usage data have been logged (using a two-second resolu-
tion) by the software acbTaskMan pro 1.4.16 running in background inside
the Windows Mobile stack tier.

5.2.3 Results and conclusions

Tests have been performed interacting with the UbiNode for 72 seconds,
making common operation, like discovering resources and managing services.

5See chapter 4 for more technical details
6acbTaskMan, Acbpocketsoft - www.acbpocketsoft.com

92 5. Evaluation

Figure 5.15: Benchmark’s Results

Figure 5.16: Benchmark’s Results (2)

Figure 5.17: Benchmark’s Results (3)

Figure 5.18: Benchmark’s Results (4)

5.3 Requirement Fulfillment Analysis
and improvement suggestion 93

Figure 5.19: Benchmark’s Results (5)

Results confirm the overall good performances of both stacks.
J9 JVM at the ground of stack A is faster in computing discovery opera-
tions (test b): this result can be justified since those are really resources
high-consuming operations which involve third-party technologies for mak-
ing SOAP invocations and connect to networks interfaces; the more experi-
enced J9 probably can better serve requests and notification among different
components. The new phoneME at the ground of stack B uses 1/3 of phys-
ical space occupied by J9, takes 1 second less than J9 to complete the
platform launch and generally let the platform feel more reactive to the
user. With some optimizations to fix the discovery bottleneck highlighted
in test b can be ready to became the official Virtual Machine used for the
UbiCollab platform.

5.3 Requirement Fulfillment Analysis
and improvement suggestion

Analyzing the results of both evaluations, group and technical, I can assert
that all of the requirement listed in Section 2.3 have been partially or totally
accomplished.
The requirement partially satisfied and motivations are the following:

• AR-MB-04 (accessing to mobile device features): At the present time
we just manage to use embedded device speaker and camera resources,
it would be really interesting, for new UI mechanism development,
manage to have access even to embedded accelerometers (a feature
that is becoming popular on high-end smartphones) and to the device
microphone.

94 5. Evaluation

• AR-MB-05 (code optimization): Components code has to be better
optimized for mobile, the startup launch time of the platform is still
too high compared on an average typical Windows Mobile application.
Code should be written using procedure less resources-demanding and
comply with to Java 1.4. Component implemented in Java 1.6 should
be rewritten in order to avoid the use of converters like retroweaver7

and thus boosts performances.

• FR-UI-01 (user can set default UI): At the present time the User can-
not choose a default interaction mechanism, this is a feature that can
be easily implemented in the future.

• AR-DE-04 (UIs user friendliness): Currently our UIs are not user-
friendly enough or at least we cannot say nothing concrete about user
friendliness without having performed an usability test.

• FR-RD-06 (SDPlugin can be mutually discovered): In the current
release Service Discovery plugin can discover only proxies, since they
are stored in the user space. Because RDPlugins are intended to reside
in the Platform Space a mechanism to allow this discovery operation
and separate it from the proxy discovery one.

7 See Appendi C: Ubicollab distribution and versioning for more details

Chapter 6

Conclusion and future
research

This chapter concludes the report by presenting and evaluating the work that
has been done. The contributions this project has yielded will be presented,
and some suggestions for future research projects will be proposed.

In section 6.1 the contribution this project has provided to UbiCollab will
be described.

In section 6.2 problem encountered during the work will be explained.

In section 6.2 a short evaluation from the writer point of view of work results
will be given

In section 6.3 some suggestion for future research project and technical im-
provement within UbiCollab project will be presented.

6.1 Contributions

The work started with readings about UbiCollab existing architecture [1]
and third-party technologies used in: Java, OSGi, Web Services; then my
focus moved on topics assigned me for the diploma task:

The contribution that my work has provided to UbiCollab is here listed:

Research on User Centered Service Discovery protocols and Object Tagging:
The study about user interaction in UbiCollab started with a research about
user-centered service discovery protocol and object tagging technologies; in
fact before starting to interact with a resource we must recognize it and
give to our system the information needed to download and install a proper

95

96 6. Conclusion and future research

proxy in order to use the resource, these informations are wrapped in a
physical tag that could be a label with a number, a barcode or a RFID
tag. I’ve evaluated this technologies and decided in which direction focus
the research on.

Research, comparison and evaluation of different Java Virtual Machines for
handheld devices: In order to read a tag and use resources that can be found
on our way we need to deploy the system on mobile device, moreover the
User-Centered paradigm implies that all the core components of the system
belong to a unique user who has to have a full control on them. I’ve evaluated
different solutions in order to run our java based core on smartphones that
fit the requirements of usability we are pursuing.

Research, comparison and evaluation of different User Interaction technolo-
gies: After the elaboration of a user-centered service discovery concept I an-
alyzed the way in which the user would interact with the system to perform
a resource discovery operation, following the direct-manipulation paradigm.

Research, comparison and evaluation of technologies for Graphical User In-
terfaces development: Even if I designed an UI solution which supports
multiple sort of User Interaction, the common denominator for them is the
presence of a GUI used to interact with and return feedbacks. Therefore a
review and a comparison of the actual tools for building GUI in java mobile
environment has been produced.

Elaboration of a test Scenario for platform evaluation purpose: Since the
UbiCollab overall discovery subsystem was not still tested on mobile devices
I elaborated a scenario in order to test modules from past contributions,
modules I developed and their integration. The scenario elaborated has
driven the development of application and proof-of concepts modules and
the architecture evaluation.

Update of the UC modules developed in previous works and standardization
of the module unit: the change of the platform running environment: from
desktop to mobile has induced a change of the OSGi container and Java
Virtual Machine, therefore the existed Service Discovery modules has been
updated in order to adhere the new container and new VM constrains. Dur-
ing the update work the module structure (in term of package and file inter-
nal distribution and naming) has also been updated, thus the a new module
structure and naming conventions has been defined in order to provide a
standardized module architecture to future works.

The eWorkbench is the central component of User Interaction solution in
UbiCollab. It acts as User Interaction service provider supplying to other
modules a plugin mechanism to let them publish their proprietary UIs en-
gines as soon as they are discovered by the RD subsystem and without
charging any configuration process to the user. Moreover this approach let

6.1 Contributions 97

UI can be developed without extensive coding since new UIs mechanism can
wrapped in the existing modules.

The Type-a-Number Discovery Plugin is a plugin for the Service Discovery
subsystem which allow to install a shared resource tagged with a four-digits
code that can be used by application in the UbiCollab domain. It comes with
a touch-based GUI designed following design patterns elaborated during the
theoretical work.

In order to test the SD subsystem and the UI framework following the
elaborated scenario we designed several modules:

The ImageViewer app is an application shaped on the idea to absolve the
task to show and browse pictures stored on a remote space by an handled
device. Pictures are shown on the device screen and can be browsed tap-
ping on the screen with fingers. Moreover ImageViewer can connect and
control shared screen devices in order to share user pictures to an audience.
ImageViewer can drive multiple external device simultaneously and show a
version of the picture adapted for the output device.

The SharedScreen Proxies are modules that allow the use of generic Shared-
Screen WebService UbiCollab domain, exposing an interface that can be
used by other modules to have access to the services provided by the remote
resource via SOAP invocations. In order to be used by an UC app they have
to be discovered by a Service Discovery Plugin (such as the Type-a-Number
on presented earlier). A proxy is configured map one-to-one interaction with
the WS for which is configured for

The SharedScreen WS for tablet PCs is a WebService deployable on table
PCs wich provide a WS interface and thus methods to control the repro-
duction of pictures on the PC remotely. Since it is a standard WS it can be
used by any software which follow the specification enclosed in its wsdl file.

The SharedScreen WS for IDI OpenWall is a WebService with provide the
same interface of the tablet PCs edition but which differ in implementation
since it has to connect to a really unique device. For other aspect is equal
to the one for tablet PCs.

Setup of the platform on mobile devices and benchmarks: finally the com-
ponent developed have been deployed on mobile devices and tested. During
the tests resources usage data from the user device have been collected and
discussed.

98 6. Conclusion and future research

6.2 Problems Encountered

Problems have been encountered mainly in the engineering part of the work.
UbiCollab components works with several third party components. These
software are not designed to work together and thus find a stable configu-
ration has not been trivial. For instance the Apache Axis module we are
using to provide WebServices capability to our components has been re-
vealed incompatible with the last release of eRCP (1.2) therefore, since the
WS capabilities is a mandatory requirement and we haven’t found a valid
alternative, we have to use the previous version of eRCP (1.1). This bug
has been submitted to the Eclipse foundation and we hope will be fixed in
the next eRCP release. Another engineering problem concerned the eWork-
bench. This component, provided as a customizable draft, is not well doc-
umented. Hence we had to do some reverse engineering on it in order to
understand methods and procedures logic and thus being able to adapt it
for our platform.

6.3 Evaluation

The assignment for this thesis was to assists the developing of Service Dis-
covery in UbiCollab working on the User Interaction aspects. This tasks
brought me to spread my work in different areas, from design patterns for
GUI layout (concepts related to Usability topics and theoretical user behav-
ior analysis) to strictly technical issues like Virtual Machine implementa-
tion and dependency conflict resolution. Because I didn’t have any previous
knowledge in almost all of the concepts involved, both theoretical and tech-
nical, this work has been a big challenge for me and I learned really much
from it. Moreover the scientific approach to problems patiently taught me,
the evaluation of solutions elaborated, criticism and merits received during
the report work by my supervisor Babak Farshchian and co-advisor Monica
Divitini will help me in my work life in any kind of project I will have to
work with. For this reason I’m soundly grateful to them.

After having performed a deep evaluation of the implemented solution, the
conclusion is that this work has successfully achieved its goal. A user inter-
action framework for UbiCollab has been designed, implemented and eval-
uated.

At the time the project assignment was agreed and the master contract was
signed, it was clear that the amount of work associated with user interactions
would be quite large, thus I had to make some choices. I chose to define a
framework to support future contributors in the development of their own
proprietary mechanism instead of focusing on the development of my own

6.4 Future Works 99

interaction way; therefore the main regret is that I haven’t had enough
time to experiment some innovative interaction mechanisms such us free-
form gestures which I depicted in the problem evaluation. However this
additional work will be part of my summer job and will be reported for the
UbiCollab project.

At the end of my research period I can say that I’ve set the fundamentals for
an efficient user interaction, but a lot of work has still to be done to improve
the user experience with UbiCollab. It’s an hard challenge, but the number
of applications suitable for this scopes and the needs that can be addressed
by our collaboration system worth to spend time and resources on it.

6.4 Future Works

In this section some ideas for future works will be suggested. These ideas
have been categorized into project suggestion (elements in the service dis-
covery field) and Technical Improvements (suggestions about third party
technologies adoptions).

Suggested Research Projects:

Service Discovery: Looking to the future the use of the Discovery Gesture
should be just the last ring of the discovery chain and would be used just
for the proximity resource discovery, when we have the resource on sight.
Indeed when we are far from the resource we’re looking for and therefore
this one cannot be seen, we would use a sort of virtual 2D/3D navigation-
based discovery that make use of ”Virtual Tags”. An approach to implement
these concepts would be to make services and resources location aware by a
scalar technology that uses GPS, Wifi Triangulation/Fingerprinting[28], and
a Discovery Gesture for dynamically estimate the mutual position of services
and users, giving back an overview of services closer to the position[6, 35]

Service Discovery Plugin: New discovery gestures has to be invented and
implemented. For their contiguity with Ubiquitous Computing concepts in
terms of hiding and pervasive computation power, Free-form gestures can be
a extremely interesting field of research. Sun, with its Sunspot technology1,
is providing to developers and scientist a plumb device for implementing and
testing new gestures. Moreover Sunspot technology accomplish UbiCollab
opensource license hence can be distributed with it.

Proxies: We need more proxies both for resources and services. Proxy
for services can be easily implemented from WebService freely available

1Sunspot technology: http://www.sunspotworld.com/

100 6. Conclusion and future research

on internet like Weather Forecast webservices, as the one provided by Ac-
cuWeather2; or finance services as the one provided by Yahoo3. Because
location awareness is everyday raising in importance a popular resource
proxy can be a GPS proxy

Technical Improvements

Remote OSGi: R-OSGi is a middleware which extends the centralized
standard OSGi service registry to support distributed module management.
It is deployed and looks like a conventional OSGi bundle, but it turns stan-
dard application into distributed applications by simply indicating where
the different module should be deployed. During benchmarks [33] this new
distributed approach has shown better performance than famous competi-
tors such as RMI or UPnP. It can be employed alternatively to Axis to
provide distributed computation capabilities

Qt: Qt4 (pronounced as the word ”cute”) is a cross platform UI framework
that is earning popularity among developers since it provide tools to build
really fancy and powerful GUIs. Born for developing in C++ language with
a proprietary look and feel, now a Java porting is officially supported as
well as the use of native widget. If a porting for OSGi would be feasible Qt
libraries could improve a lot GUIs usability.

WS-SOAP provider: Axis v.1.x (Axis v1) is currently used as the core
engine to provide Web services in UbiCollab, but this product has been
discontinued since April 2006. One of the major problems with the Axis
v1 is that the ”rpc/encoded” format is used in SOAP encoding instead of
the ”document/literal” format. ”rpc/encoded” has been deprecated by the
WS-I Basic Profile5, which is the baseline for inter-operable Web services.
Axis v1 is for instance not inter-operable with Axis v2 (a redesign of Axis
v1, with the support for SOAP1.2/REST/and other newer standards). In
addition Axis v.1.2 and older versions (like the port to OSGi which is used
in UbiCollab) have problems with the changes in the XML-handling that
were introduced with Java v1.5.x (JAX-RPC 1.1 specifications). Axis 1.x is
even incompatible with the latest eRCP distribution, thus another solution
has definitely to be investigated. Knopflerfish has developed a bundle of
Axis 2.x, thus its compatibility with Equinox OSGi should be tested. An
alternative to Axis 1.x can also be kSOAP6: another WS provided as OSGi
bundle.

2AccuWeather: http://www.accuweather.com/
3Yahoo Finance: http://developer.yahoo.com/finance/
4Qt Software: http://www.qtsoftware.com/products/
5http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
6KSOAP: http://ksoap2.sourceforge.net/

Appendix A

Task Assignment and
Scenario

A.1 Project description

Resource discovery has become the cornerstone of ubiquitous computing.
Connected devices and objects in our physical environment necessitate mech-
anisms for finding these objects before being able to use them. Resource
discovery (also called service discovery) is the common term used to denote
technologies that assist us in finding/discovering available services/resources
/objects around us. The objective of this project task is to further enhance
UbiCollab Resource Discovery Manager subsystem. The focus in UbiCollab
is to implement a user-friendly and user-centered resource discovery mecha-
nism. Conventional discovery technology is focused on machine-to-machine
resource discovery, allowing for various levels of self-configuration of net-
worked services. In UbiCollab we focus on resources/services that are pro-
vided, advertised and used by end users in online communities.

Scenarios that can be supported by such a system include:

• Sharing of user-generated content:

* Music files in an MP3 player are provided in form of services that
a group of friends in a party can access in order to listen to music.

* A shop owner in the town can provide his/her product catalog in
form of a service that can be discovered and browsed by potential
customers.

* A user can dynamically set up a photo sharing service on her
mobile phone, and give access to her family.

101

102 A. Task Assignment and Scenario

• User-centered discovery of services:

* Users can search for services based on friendly criteria such as ”I
want to see services published by my friends,” or ”I want to see
services in this shopping center.”

* Users can do explicit discovery of services, e.g. by reading an
RFID tag or taking a photo of a bar code.

Research questions

The main research questions to be answered by this project task:

• How can we extend existing discovery architectures to support user-
centered and community-based service provision and discovery?

• What technologies and architectures are most suitable for implement-
ing user-centered and community-based service publishing and discov-
ery?

• How can we evaluate the usability and utility of user-centered and
community-based service publishing and discovery?

Expected deliverables

• Scenarios for user-centered service discovery.

• Architecture and design (in UML 2.0) for UbiCollab service discovery
subsystem.

• Extensions, in form of Java code, to existing service discovery subsys-
tem in UbiCollab.

• Extensions, in form of Java interfaces, to existing service discovery
APIs in UbiCollab.

• Implementation (in Java) and testing (in JUnit) of user-initiated dis-
covery plugins for RFID, Bluetooth and optical barcodes.

• GUI (In Java) for allowing users to control UbiCollab service discovery
subsystem.

Note that UbiCollab is open source. This means your contributions in terms
of architecture, design and code will be submitted to an open source project
under Apache 2.0 terms.

A.2 Scenario

Collaborative care arena scenario from UbiLife

A.2 Scenario 103

Knut is an early retired man in his 50s with a chronic heart disease. He is
married to Inger. He lives at home but is in need of frequent medical care.
Marie is Knut’s contact nurse at the hospital. Marie is usually responsible
for 10-15 patients in Knut’s situation. In order to avoid daily hospital visits
for the patients, the hospital is using an e-care system. The hospital person-
nel, all patients and their closest relatives have received a connected mobile
care device (MCD). On this morning, Marie arrives at the hospital. After
taking a cup of tea, she goes to an e-Consulting station in the closest room
(e-Consulting stations are widely deployed at the hospital). She touches a
tag on the station using her MCD’s tag reader. The station immediately
shows her list of patients. Each patient has his/her own dedicated Collabo-
rative Care Arena (CCA). The list of CCAs includes a small photo of each
patient, a date showing the time of last consultation and home visit, and a
color bar showing status of measured data. She notices that Knut’s CCA has
a shade of yellowish green instead of saturated green. She touches Knut’s
CCA. At this time Knut is at home reading his newspaper while eating his
breakfast. He hears a knocking sound from the e-Consulting station in the
kitchen. Marie’s photo is shown on the screen. He touches the station using
his MCD, which activates the CCA and a video conference is set up between
Knut and Marie. They have a short chat and Marie brings up the CCA
data window by touching an icon. The data window shows a small map of
Knut’s house, with a red dot showing that he is in the kitchen. Together they
review the data collected from medical sensors in the house. Knut informs
Marie that he has received a new life jacket (a medical vest with integrated
sensors). An icon below the CCA window indicates that the life jacket is
ready to be used. Knut drags the icon into the CCA. Marie asks Knut to put
on the jacket. Knut goes to the bedroom where the jacket is. The video con-
ference is automatically moved to the e-Consulting station in the bedroom
and is changed to an audio conference due to Knut’s privacy preferences.
After Knut has the jacket on, Marie clicks on a couple of icons in the CCA
window and a fresh measurement from the jacket is taken. After a short
discussion Marie decides that there is nothing critical. She reminds Knut
to take his medication and says goodbye. After breakfast, Knut’s wife Inger
goes to work and Knut decides to take his morning walk. Knut is active in
an online local community initiated by a group of heart patients who compete
on walking longest. He can see in his CCA that some members are already
walking in the park. He leaves home wearing his life jacket and his step teller.
While in the park, Knut feels a pain in his chest. As this happens, Marie’s
MCD makes an emergency alert. Marie, not seeing any e-Consulting station
nearby, uses her mobile phone to view Knut’s CCA and start a phone con-
versation with him. The color is red and Marie decides to click on the CCA
alert icon. The MCDs of Alison (the heart specialist) and Knut’s wife Inger
start alerting. Alison is already at an e-Consulting station and gets Knut’s
CCA on the screen. A voice conference between Marie, Alison and Knut

104 A. Task Assignment and Scenario

is set up immediately (using Knut’s and Marie’s mobile phones). After a
short talk with Knut (who is sitting on a bench in the park) Alison decides
to involve ambulance personnel and bring Knut to the hospital. She touches
CCA’s ambulance icon. Arne (ambulance driver) is available and closest to
the park. His MCD alerts him. The voice conference is extended to Arne’s
mobile phone. At the same time Arne gets Knut’s CCA on his screen inside
the ambulance. The CCA shows the latest data, including Knut’s location
in the park. By this time Marie has had a phone conversation with Inger,
and she is on her way to the hospital. Knut pushes an icon on his CCA and
a phone call between him and Inger is set up. He talks to Inger while he is
waiting for the ambulance.

Appendix B

UbiCollab Runtimes

This appendix defines the running environment for the UbiCollab platform
used during the evaluation. Since at the present time platform setup wizards
have not been elaborated yet, this list of components can be used if the
reader would test our platform on his/her personal device. Components are
grouped by functionality area and a short description is provided.

B.1 Runtime components

Java Virtual Machine: IBJ J9 6.2, CDC 1.1, Foundation Profile 1.1

OSGi: R4 Specifications implementation from Eclipse Equinox project

OSGi Bundles:

org.eclipse.osgi v. 3.2.2
org.eclipse.osgi.services v. 3.1.2

org.eclipse.equinox.cm v. 3.2.0
org.eclipse.equinox.common v. 3.2.0
org.eclipse.equinox.preferences v. 3.2.1
org.eclipse.equinox.registry v. 3.3.1

Eclipse Runtimes:

Shared components used in the Eclipse Foundation projects:

org.eclipse.core.commands v. 3.2.0
org.eclipse.core.contenttype v. 3.2.0
org.eclipse.core.expressions v. 3.2.2
org.eclipse.core.jobs v. 3.2.0
org.eclipse.core.runtime v. 3.2.0

105

106 B. UbiCollab Runtimes

org.eclipse.core.runtime.compatibility.auth v. 3.2.0

eRCP:

org.eclipse.ui v. 1.2.0
org.eclipse.ercp.ui.workbench v. 1.2.0
org.eclipse.ercp.jface v. 1.0.2

org.eclipse.ercp.xml v. 1.0.2
org.eclipse.ercp.xmlParserAPIs v. 1.0.2

eSWT:

org.eclipse.ercp.swt v. 1.0.2
org.eclipse.ercp.swt.win32 v. 1.2.0
(swt native implementation for Windows)

org.eclipse.ercp.swt.wm2003 v. 1.0.2
(swt native implementation for Windows Mobile)

WebServices:

axis-osgi v. 1.4.0
http_all v. 2.0.0
(apache web server implementation)

javax.servlet v. 2.4.0
log_all v. 2.0.0
org.apache.commons.logging v. 1.0.4
org.apache.xerces v. 2.8.0
(xml parser used by Axis)

B.2 Tools Used for Development

• Eclipse Ganymede1 3.4.2: Java Coding, Debugging.

• Instantiations SWTDesigner2: GUIs visual editing

• Soyatec eUML23: UML modeling, report graphs

• Apache Axis 1.4 WSDL2Java emitter4: Development of Java stubs for
WebServices

• Retroweaver 2.0.75: Java 1.5/1.6 to Java 1.4 recompiling

1Eclipse Ganymede: http://www.eclipse.org/downloads/
2Instantiations eRCP/SWT Designer: http://www.instantiations.com/ercpdesigner/
3 Soyatec eUML2: http://www.soyatec.com/euml2/
4Apache Axis 1.4: http://ws.apache.org/axis/
5Retroweaver project: http://retroweaver.sourceforge.net

B.3 Compatibility of Code 107

B.3 Compatibility of Code

Several components have been developed in Java >= 1.5. This implies that
the code utilizes newer language specific features, such as generics, that
are not compatible with older Java versions. Because currently does not
exist a reliable CDC JVM which supports a JDK > 1.4 and thus these
newer language specific features and syntax, the existing code either needs
to be rewritten or adapted to be in conformance to Java 1.3. Retroweaver
is an open source library that enables the use and advantages of newer Java
language features on legacy versions of JVMs. Specifically, it compiles 1.5
source to 1.4 bytecode, which thus can be run with the JVM implementations
we used in our tests. Thanks to this, code may be written using more
advanced language syntax, and still be able to run on mobile devices.

108 B. UbiCollab Runtimes

Appendix C

Devices Specifications

This appendix show technical specifications of the devices employed for test-
ing during the research and the evaluation. The name of the device in
UbiCollab terminology is reported next to device’s brand and model.

C.1 HTC Touch HD - UbiNode

109

110 C. Devices Specifications

C.2 Asus R2H TabletPC - SharedScreen

C.3 IDI Open Wall - Shared Screen 111

C.3 IDI Open Wall - Shared Screen

112 C. Devices Specifications

Bibliography

[1] M. Divitini and B. Farshchian, “Ubicollab architecture white paper,”
2007.

[2] K.-S. Johansen, “User-centered and collaborative service management
in ubicollab - design and implementation,” Master’s thesis, 2007.

[3] M. Weiser, “The computer for the 21st century,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, 1999.
10.1145/329124.329126.

[4] K. Schmidt and L. Bannon, “Taking cscw seriously: Supporting artic-
ulation work,” COMPUTER SUPPORTED COOPERATIVE WORK,
vol. 1, pp. 7–40–7–40, 1992.

[5] B. A. Farshchian and M. Divitini, “Ubicollab: Improving collaboration
with location services,” 07/2005 2005. 417- 420.

[6] P. Kruchten, “Architectural blueprints: The ”4+1” view model of soft-
ware architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50, 1995.

[7] D. Saffer, Designing Gestural Interfaces: Touchscreens and Interactive
Devices. O’Reilly Media, Inc., 2008.

[8] P. Bellavista, A. Kupper, and S. Helal, “Location-based services: Back
to the future,” Pervasive Computing, IEEE, vol. 7, no. 2, pp. 85–89,
2008. 10.1109/MPRV.2008.34.

[9] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” Computer, vol. 16, no. 8, pp. 57–69, 1983.

[10] M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past,
present and future,” Trends in Neurosciences, vol. 29, no. 9, pp. 536–
546, 2006. 10.1016/j.tins.2006.07.004.

[11] K. A. G. Olsen, “Distributed session management, session mobility and
transfer in ubicollab,” master, Norwegian University of Science and
Technology (NTNU), 06/2008 2008.

113

114 BIBLIOGRAPHY

[12] Microsoft, “Windows mobile team blog.” http://blogs.msdn.com/.

[13] SAP, “Interaction design guide for touchscreen applications.”

[14] K. Dandekar, B. I. Raju, and M. A. Srinivasan, “3-d finite-element
models of human and monkey fingertips to investigate the mechanics
of tactile sense,” Journal of Biomechanical Engineering, vol. 125, no. 5,
pp. 682–691, 2003. 10.1115/1.1613673.

[15] F. Tournier, “Java mobility roadmap,” tech. rep., 2009.

[16] “Osgi alliance, specifications.” http://www.osgi.org/specifications/.

[17] “Eclipse equinox.” http://www.eclipse.org/equinox/.

[18] “Knopflerfish osgi.” http://www.knopflerfish.org.

[19] “Apache felix.” http://www.apache.com/felix/.

[20] “Concierge osgi.” http://concierge.sourceforge.net.

[21] “Eclipse rcp.” http://www.eclipse.org/ercp/.

[22] “eswt mobile extension programming guide,” tech. rep.

[23] “Jalimo project.” http://www.jalimo.org.

[24] “Eclipse public license 1.0.” http://www.eclipse.org/epl/.

[25] B. Marchal, “Working xml: Define and load extension points,” 2005.

[26] E. Mok and G. Retscher, “Location determination using wifi finger-
printing versus wifi trilateration,” J. Locat. Based Serv., vol. 1, no. 2,
pp. 145–159, 2007.

[27] I. Satoh, “A location model for ambient intelligence,” in Proceedings
of the 2005 joint conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies, (Grenoble,
France), pp. 195–200, ACM, 2005. 10.1145/1107548.1107598.

[28] D. L. Lee and Q. Chen, “A model-based wifi localization method,” in
Proceedings of the 2nd international conference on Scalable information
systems, (Suzhou, China), pp. 1–7, ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), 2007.

[29] S. Benford, A. Crabtree, M. Flintham, A. Drozd, R. Anastasi, M. Pax-
ton, N. Tandavanitj, M. Adams, and J. Row-Farr, “Can you see me
now?,” ACM Trans. Comput.-Hum. Interact., vol. 13, no. 1, pp. 100–
133, 2006. 10.1145/1143518.1143522.

[30] M. Youssef, M. Mah, and A. Agrawala, “Challenges: device-free
passive localization for wireless environments,” in Proceedings of the
13th annual ACM international conference on Mobile computing and

BIBLIOGRAPHY 115

networking, (Montréal, Québec, Canada), pp. 222–229, ACM, 2007.
10.1145/1287853.1287880.

[31] Q. Fu and G. Retscher, “Using rfid and ins for indoor positioning,”
2009. Location Based Services and TeleCartography II.

[32] S. A. Karsten Schmidt, “The sap eclipse story,” tech. rep., 2008.

[33] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “Building, deploying, and
monitoring distributed applications with eclipse and r-osgi,” in eclipse
’07: Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, (New York, NY, USA), pp. 50–54, ACM, 2007.

	Title Page
	Problem Description
	masteroppgave.pdf

