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With the increasing design and production costs and long time-to-market for Application Specific Integrated Circuits (ASICs),
implementing digital circuits on reconfigurable hardware is becoming a more common practice. A reconfigurable hardware
combines the flexibility of the software domain with the high performance of the hardware domain and provides a flexible life
cycle management for the product with a lower cost. A complete design and assertion-based verification flow for Run-Time
Reconfigurable (RTR) designs using functional programming abstractions of Haskell are proposed in this article, in which partially
reconfigurable hardware is used as the implementation platform. The proposed flow includes modelling of RTR designs in high
levels of abstraction by using higher-order functions and polymorphism in Haskell, as well as their implementation on partially
reconfigurable Field Programmable Gate Arrays (FPGAs). Assertion-based verification (ABV) is used as the verification approach
which is integrated in the early stages of the design flow. Assertions can be used to verify specifications of designs in different
verification methods such as simulation-based and formal verification. A partitioning algorithm is proposed for clustering the
assertion-checker circuits to implement the verification circuits in a limited reconfigurable area in the target FPGA. The proposed

flow is evaluated by using example designs on a Zynq FPGA as the hardware/software implementation platform.

1. Introduction

The exponential scaling of feature size has led to an expo-
nentially growing number of transistors in integrated circuits.
In order to improve the productivity of the designers with
the continuously growing complexity of circuits, a great deal
of innovation is required in the development of high-level
design and verification methodologies.

Describing designs in high levels of abstraction enables
the designer to do a broad design space exploration (DSE)
to achieve better solutions. VHDL and Verilog are the two
most common hardware description languages (HDL) used
for describing synthesizable digital circuits. In order to raise
the abstraction-level of design descriptions, an HDL based
on a functional programming language such as Haskell can
provide new design abstractions with higher-order func-
tions and polymorphism [1]. Higher-order functions and
polymorphism of Haskell hide the unnecessary details and

increase the productivity of the designer. With the increasing
nonrecurring engineering costs and long time-to-market
for Application Specific Integrated Circuits (ASICs), imple-
menting digital circuits on reconfigurable platforms such
as Field Programmable Gate Arrays (FPGAs) is becoming
a more common practice. Reconfigurable hardware offers
a flexible life cycle management of software as well as the
high performance of hardware at the same time. Some of
the reconfigurable platforms such as the recent FPGAs from
Xilinx support partial reconfiguration which enables recon-
figuration of a user-selected area in the programmable logic
on the fly while the other parts of the circuit are functioning
without interruption. This is also referred to as Dynamic
Partial Reconfiguration (DPR) or partial reconfiguration
(PR) for short [2].

Using the high-level abstractions of Haskell to model
Run-Time Reconfigurable (RTR) designs to be implemented
on partially reconfigurable hardware enables the designer
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to perform DSE in the early stages of the design flow and
increases the productivity of the designer by abstracting away
the unnecessary details of the design and the flow. Functional
programming abstractions can also play an important role
in the verification of digital designs. Verification takes more
than 50 percent of the whole development time and effort
in most of today’s complex designs [3]. Functional HDLs
provide a mathematical description for functions and are
more suited for formal verification compared to other high-
level imperative languages such as C.

Describing verification circuitry together with the Design
Under Verification (DUV) in high levels of abstraction
enables the designer to use a unified language for design
and verification, which offers an easier development and
integration of verification expressions with the DUV by using
parametrization, higher-order functions, polymorphism, and
other high-level structures and functions of Haskell.

One of the recent techniques for accelerating the verifi-
cation process is to implement the verification functions on
hardware together with the DUV [4-6].

In some complex SoC designs, it is common to have
hundreds or thousands of assertions checking different
behaviours of the design [7, 8]. Placing all the assertion
checkers of the design in one verification module will lead
to a large, resource demanding module, and the amount of
the available resources on the target implementation platform
might not be enough to implement the verification module.
Thus, implementing such a resource demanding module
on hardware can be challenging for the designer. Imple-
menting the verification circuitry on partially reconfigurable
platforms enables swapping different verification circuits in
the partially reconfigurable area on the fly, which increases
the flexibility of the verification process. Haskell is used to
describe RTR designs and synthesizable verification func-
tions in high levels of abstraction with a unified language in
this work, which leads to an integrated design and verification
flow targeting partial reconfigurable platforms.

CAES Language for Synchronous Hardware (CAaSH) is a
Haskell-based HDL which is used as the design description
language in this work. It is also the name of the tool that
is used for simulating Haskell descriptions and converting
into synthesizable VHDL/Verilog code. CAaSH has a distinct
advantage over other functional languages such as Lava and
ForSyDe in terms of user-defined data types, being the only
language that supports the full range of choice constructs,
especially pattern matching. A more detail comparison of
CAaSH with other functional HDLs can be found in [1].

The main contributions of this article are summarized as
follows:

(i) Modelling of RTR designs with CAaSH (Haskell),
in higher levels of abstraction by using higher-order
functions and polymorphism of Haskell.

(ii) Proposing and implementing a new flow for imple-
menting RTR designs on FPGAs with PR support,
by integrating the latest PR design flow from Xilinx,
and automatic generation of simulation-only VHDL
description of the RTR design, partial and full bit-
streams and a reconfiguration management software.
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(iii) Design and implementation of synthesizable basic
building blocks for assertion checkers in Haskell.

(iv) Expressing Boolean layer and temporal layer proper-
ties of designs in Haskell and their automatic com-
position from the basic building blocks.

(v) Using a unified description language, Haskell, for
describing the DUV, its verification expressions
(assertions), and RTR structures.

(vi) Proposing a complete flow for modelling, assertion-
based verification, and implementation of RTR
designs.

(vii) A partitioning algorithm for mapping verification
circuitry to partially reconfigurable regions in FPGAs.

Section 2 provides the background for the rest of the
paper. Section 3 explains the proposed high-level mod-
elling of RTR designs with CAaSH. The proposed modelling
approach is generic and is not limited to a specific domain.
Section 4 briefly presents the state of the art for implementing
assertion checkers on hardware, and Section 5 explains how
hardware assertion checkers are implemented with CAaSH.
An RTR implementation of the proposed assertion checkers
is discussed in Section 6 as an specific application of the
proposed modelling approach. A unified flow for design
and verification is presented in Section 7 and the paper is
concluded in Section 8.

2. Background

2.1. Partially Reconfigurable Hardware. Implementing com-
putationally expensive parts of a design as ASIC can lead
to nonflexible, high performance, and low-power solutions
and cost a lot of time and money. In contrast, software
implementation of them may result in a lower development
time and lower performance. Reconfigurable hardware fills
the gap between ASIC and software solutions by combining
the flexibility of software and the high performance of ASIC,
which makes it an appropriate option when both flexibility
and performance are required at the same time.

The need for reconfigurability can be driven by 3 main
factors: Multiability (to perform different functions at dif-
ferent times), Evolvability (to adapt to the environment
and changes in standards over time), and Survivability (the
system remains functional despite having a few failures) [10].
Different architectures have been proposed for reconfigurable
hardware, but FPGAs are the most common reconfigurable
hardware in practice. Some FPGAs provide partial reconfigu-
ration at run-time, which means it is possible to change some
parts of the circuit on FPGA, without affecting the operation
of the rest of the circuit functioning on the FPGA fabric. This
feature is called DPR or PR for short. There are a few design
flows available from Xilinx on implementing RTR designs on
FPGAs with PR support. The PR supported in Xilinx’s Vivado
is a script-based flow and easier to integrate with custom
design flows compared to the old PR flows. The Vivado-based
PR flow is supported by the 7-series FPGA families such as
Kintex7, Zynq7000, and Virtex7 [2]. As shown in Figure 1,
the designer can specify reconfigurable regions (RRs) in the



International Journal of Reconfigurable Computing

Partially Reconfigurable FPGA

Input
Partition Pins
>
Output
Partition Pins

Static Region

FIGURE 1: An RTR system on Xilinx FPGAs.

FPGA fabric and change the functionality of the region at
run-time by downloading the partial bitstream of the desired
module, as long as it has the same communication interface
with the static part of the design. Each RR needs specific
communication structures bound to a fixed location in the
FPGA tiles to communicate with the static part. These com-
munication structures are usually called bus-macros or proxy
logic made of Look-Up-Tables (LUTs) mapped to specific tiles
in FPGA fabric array by using physical constraints in the
design tools [2]. The alternative candidates for the specified
RR are provided by the user (4, B, and C modules in Figure 1)
which have the same interface and are called reconfiguration
candidates (RCs) or reconfigurable modules (RMs) of the RR.
Only one of these reconfigurable modules can be configured
in the RR at once, and this module is called the active
reconfigurable module. The generated partial bitstreams can
be programmed through Xilinx’s standard programmer or
through Internal Configuration Access Port (ICAP) by the
embedded processor on the target FPGA. Therefore, the
embedded processor can be used for running reconfiguration
management software along with other applications.

2.2. Haskell for Hardware Design. HDLs such as VHDL and
Verilog are common and conventional for describing detailed
hardware, but they can be cumbersome for describing higher
levels of abstraction such as polymorphism, higher-order
functions, and parametrization in larger designs [1].

In this work, we use Haskell as the hardware description
language. Haskell is a functional programming language in
which computation is similar to the evaluation of mathemat-
ical functions [1]. Being close to mathematical and formal
description of hardware enables the designer to avoid exhaus-
tive tests of large designs. This features make the designs
described by Haskell more amenable to formal verification.
Formal verification is also possible for imperative languages;
however, they are not self-describing in the way functional
languages are. Furthermore, the program transformation is
also easier for functional languages compared to imperative
languages [11].

Modelling languages such as SystemC are also used for
describing hardware designs in higher levels of abstraction,

ylor - z[o] y[l o z[a] y@er o oz[2] oyl z[3]

fi fi fi fi
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Description in Haskell:
dsp fl1 f2 x = foldl f2 x (zipWith fl y z)

FIGURE 2: Description of a parametric module in Haskell.

but most parts of the high-level structures are not synthesiz-
able and are mainly for simulation purposes. We use CAaSH
to translate designs described in Haskell into synthesizable
VHDL code. CAaSH is an experimental tool that accepts a
subset of Haskell as its input language and provides libraries
for modelling hardware in Haskell [1]. The following features
offer the possibility of exploiting higher levels of abstraction
and generality for hardware description:

(i) Higher-order functions: functions in functional HDLs
can receive other functions as their input arguments,
or return functions as their return value. This feature
is used for parametrizing different parts of the design.

(ii) Polymorphism: functions in functional HDLs are not
tied to a specific type. Types are inferred for the
functions and the designer can use polymorphism to
apply a function on variety of data types.

Figure 2 shows an example circuit described in Haskell in
which parametrization and higher-order functions are used
to shape a general circuit. zipWith function generates a
vector of elements with applying a function on elements of
its two input vectors. Each element in the output vector is the
result of applying a function (£1) on corresponding elements
from the input vectors (y and z). Another useful function
used in this example is foldl. It folds a vector of elements
with a function (£2), starting from left, with an initial value
X. In this example, functions £1 and £2 and the initial value
X are passed as parameters to the dsp function. It is possible
to specialize the structure to a digital filter just by applying
multiplication and addition functions to £1 and £2,
respectively (i.e., by calling dsp (%) (+) 0).

2.3. Design Properties and Assertions. Design properties are
Boolean expressions which express the behaviour of a design.
Assertions are set on design properties, and any violation
from a property is reported as an error. The Accellera
Property Specification Language (PSL) and System Verilog
Assertions (SVA) are the two common languages for property
description. The main part of these languages is based on
the Linear Temporal Logic (LTL), augmented with regular
expressions to overcome the limitations in the expressiveness
of LTL [12]. These property description languages can be
used at different levels of abstraction during the design
process from high, transaction-level down to low gate-level
implementation of the design. In the verification stage,
assertions are used to detect violations from the described



// A verification expression with PSL sequences

{ rd[*3] } [=> { wr }

// A verification expression with Boolean expressions
-> next[3](wr)

rd && next(rd) && next[2](rd)
(a)
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FIGURE 3: (a) A PSL sequence and the equivalent PSL Boolean expression. (b) A matching diagram for the expression.
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FIGURE 4: (a) The original design.

properties which can be done through dynamic verification
(e.g., simulation) or static verification (e.g., theorem provers
for formal verification). In addition, it provides standard
means for designers to describe formal specification of the
design for documentation purposes. Usually a property is
built from operators and signals of the design. An example
assertion on a design property in PSL is expressed as follows:

always rose(ready&&grant)-> next [2] (wr) .

In this example, a master is expected to write its data into
the bus exactly two clock cycles after it has received the grant
and ready signals from the arbiter and the slave respectively;
otherwise, an assertion will trigger to indicate an error.

In addition to Boolean expressions, there are Sequen-
tial Extended Regular Expressions (SEREs) in PSL which
describe the multicycle behaviour of the DUV. The simplest
form of an SERE is a set of Boolean expressions separated by
semicolons such as {a;b;c} on three inputs a, b,and c.
This SERE describes a scenario in which the input signal a
is true in the first clock cycle, b is true in the second clock
cycle, and finally c¢ is true in the third clock cycle. Every
semicolon represents a clock cycle border in the behaviour
of the sequence. Generally, SEREs enable the designer to
describe a sequence of Boolean expressions in consecutive
cycles. Additional operators such as repetition operators are
used to represent a compact description of some scenarios.
For example, the operators [+N] and [+] are used on SEREs
to represent a compact description of the activation of a signal
for exactly N consecutive clock cycles, or any number of clock
cycles, respectively, starting from the current clock cycle.
The sequence implication operator |[=> is a nonoverlapping
implication which means, in the expression S1|=>S2, the
first cycle of sequence S2 begins after the last cycle of S1
ends. In contrast, the overlapping implication operator |->
in the expression S1|->S2 assumes the first cycle of S2 has an
overlap with the last cycle of S1.

()
(b) Grouping RMs to a DRCF.

A specific behaviour of a design can be expressed in
different ways using Boolean expressions or SEREs in PSL.
For example, the design behaviour shown in Figure 3(b)
is described using two different expressions shown in Fig-
ure 3(a). More details about operators of PSL are presented in
[12]. Property description languages such as PSL or SVA are
usually used for describing design properties and assertions
which are simulated using simulation tools such as ModelSim
alongside the DUV. Depending on the size and complexity of
the DUV, hundreds or thousands of assertions are described,
each checking for a specific behaviour of the DUV [8].

3. High-Level Modelling of Run-Time
Reconfigurable Designs

Modelling of dynamic reconfigurable systems is done with
SystemC in [13] which is one of the most referred works in this
topic. The main contribution of that work is to collect all RMs
of an RR into a module called Dynamically Reconfigurable
Fabric (DRCF) and configure a module to the RR when it is
requested from other parts of the design. Since the interfaces
with the static part can differ for each RM, the containing
DRCF module must provide a superset of interfaces of all the
RM:s for a specific RR. This approach provides a DSE in higher
levels of abstraction by assigning the existing modules of a
design into different RRs without being involved in the details
of the partial reconfiguration process.

Figure 4 shows an example with three reconfigurable
modules before and after using a DRCF component. The RMs
are embedded in the DRCF component and accessed by their
corresponding interfaces and a multiplexer/demultiplexer in
the DRCF component. The whole process of including the
DRCF component in the design is divided into the following
steps. First an analysis of the existing modules is done to
extract their interfaces, and all the instances of the modules
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Static
Channel

FIGURE 5: A portal connecting dynamic and static parts, adapted
from [9].

targeting the same RR are located and analysed at the same
level of hierarchy. After this phase, a DRCF component is
created and instantiated from a template which includes
all the interfaces and ports collected in the analysis phase.
The DRCF module should contain all the reconfigurable
alternatives for an RR in the same level of hierarchy. When a
call to a specific RM is issued, it becomes active in the DRCE,
ifit is not already the active module in the DRCF component.

The modelling approach presented in [9], which is also
using SystemC as the high-level modelling language, is based
on the concept that reconfiguration of RMs on a specific
area on the target hardware can be modelled by changing the
connections between RMs and the static part. This reorga-
nizing the communication between static and dynamic parts
is achieved by using Reconfigurable Channels (ReChannel)
named portals. A portal is a switch that is designed to connect
astatic channel to ports of the RMs. As shown in Figure 5, sev-
eral RMs can share a portal to connect to the static part and
only one of the them can be connected to the static part at a
time. The connection between static and reconfigurable parts
of the design is established by forwarding the events and calls
from the static part to RMs by means of event_forwarder
and Accessor components, respectively.

In [14, 15] authors use UML and design patterns to
explore the design space in a multiprocessor system on
programmable chip to capture dynamic properties of both
the application and the architecture. Standard UML elements
and some well known design patterns are used to model
RTR designs. RMs are specified by means of design patterns.
Two well known design patterns strategy and state, which
are traditionally used in software domain, are used for this
purpose. These design patterns are used to select alternative
algorithms at run-time in an application. There are similar
works on modelling RTR designs in high levels of abstraction
using high-level languages such as SystemC in [16-18] with
more focus on simulation or using UML in [19-22] for
managing components of the RTR design described mainly
with VHDL/Verilog.

3.1 Describing RTR Designs with CAaSH. The high-level
modelling approaches mentioned so far, either do not support
implementing RTR designs on hardware (such as SystemC
based approaches) or are more suitable for integrating already
existing designs rather than designing custom FPGA-based
systems (such as UML based approaches). This section briefly
describes how RTR designs are modelled and implemented
on partially reconfigurable FPGAs.

In order to describe an RTR design in high levels of
abstraction without being involved in the low-level details
of the partial reconfiguration process of the target hardware,
the higher-order functions of Haskell are used. Higher-order
functions in Haskell provide the ability of passing functions as
arguments to other functions. In higher levels of abstraction,
an RR can be seen as a programmable function with the
following features:

(i) Maximum number of input and output ports of the
programmed function is limited to the number of
input and output ports of the RR, respectively.

(ii) The maximum amount of hardware resources needed
for implementation of the programmed function is
limited to the amount of available resources in the RR.

Figure 6(a) shows the representation of a reconfigurable
region (recRegion) in a high level of abstraction, in which
the input-type, output-type, and the programmed function
of the RR are represented with RecI0Typel, RecI0Type2,
and £, respectively. Any function with the above-mentioned
features can be programmed to the RR. Using the higher-
order functions of Haskell, an RR can be represented with
a function that receives another function as an input and
applies it on its data input, as shown in Figure 6(b). In
other words, the function £ is a placeholder for any function
that is compliant with it in input-output types. Using the
higher-order functions of Haskell enables the designer to
determine and pass the functionality of the reconfigurable
region from higher levels of hierarchy from the top level of
the design, without applying any change in the lower levels of
hierarchy in the design. This is compliant with the hardware
implementation of an RTR design on a hardware with DPR
support, in which the RR can be programmed with different
partial bitstreams from software, without the need to apply
changes in the implemented static part of the design.

As shown in Figure 6(b), the reconfigurable region
is represented with the higher-order function recRegion,
which simply applies the received function on input i of type
RecI0Typel to produce an output of type RecI0Type2. The
function argument is exported as a port in the hierarchy levels
up to the top module, to make the design reconfigurable from
the testbench without changing its internal modules.

Figure 7 shows the architecture of the target platform used
for implementing RTR designs in this work, together with
three reconfiguration candidates RC1, RC2, and RC3, which
have the same input and output types. The embedded proces-
sor of the target FPGA is used for accessing the reconfigurable
fabric, as well as for running the reconfiguration management
software. Specific types are defined to be used as input/output
types of the RMs and the RR which is stored in a library.
Listing 1 shows several of the defined data types with different
sizes.

For example, Signal (BitVector 32) defines a 32-bit
port on the RR and its RMs. The set of reconfiguration can-
didates is represented by a vector of functions with the same
type signature. For example, the reconfiguration candidates
of Figure 7 are represented with a vector of functions called
rclist as follows:
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ReclOTypel : - Programmable RecIOType2
L functionality recRegion £ i = f i
(@) (b)
FIGURE 6: (a) High-level abstraction of a reconfigurable region. (b) Modelling a reconfigurable region with CAaSH.
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FIGURE 7: An RTR design with three RMs.
rclist = (rcl:> rc2:> rc3:> Nil) using the simulation commands in the CAaSH tool. The
which has the following type signature: reconfiguration candidates are extracted from the vector
rclist:: Vec 3 (Signal i -> Signal o). of functions used in the test bench (rclist). The whole
The :> operator is used to attach an element to the  design is translated to VHDL with the CAaSH tool, to do

vector, and Nil represents an empty vector. The vector
elements are accessed by their indexes using the indexing
operator !! . For example, expressions "rclist !! 0" and
"rclist !! 2" return rcl and rc3 functions, respectively.
The input/output types i and o are defined in terms of the
reconfigurable types of Listing 1. The structural description
for the example design of Figure 7 as well as its list of recon-
figuration candidates is shown in Listing 2. Lines 16-18 show
how different reconfiguration candidates are passed to the top
module as a part of the stimuli from the test bench, to verify
the functionality of the design. The first element in the input
tuple (e.g., (rclist!!0)) specifies the functionality of the
RR. The stimuli vector stimuliVec is used with the simu-
lation command to apply the stimuli to the design one ele-
ment at a time. For example, the following command applies
the stimuli vector to the top module and shows 4 samples of
the output vector in the command line:

take 4 $ simulate top stimuliVec.

The operator $ is used to replace parentheses in Haskell.
More details on simulating designs in CAaSH can be found in
[23].

3.2. Proposed Design Flow. The proposed design flow is
shown in Figure 8. The whole design, including RMs as well
as the static part, is described with CAaSH. The functionality
of the design in CAaSH is verified by simulating the design

register Transfer Level (RTL) simulation by using the auto-
matically generated VHDL models of the static part, RMs,
reconfigurable regions, and their interfacing logic. The ex-
tracted information about the reconfigurable regions and
their RMs is used to generate both hardware modules through
the VHDL-generation feature of the CAaSH tool, and the
software for managing the reconfiguration process which is
compiled for the embedded processor of the target FPGA.
The last steps in the flow include integration of the proposed
flow with the latest partial reconfiguration flow of Xilinx,
which is briefly explained in the next section.

3.3. Integration with Conventional Design Tools. The pro-
posed flow is fully automated and implemented by a script
called rclash which integrates the the CAaSH tool with
the conventional design tools such as ModelSim and Vivado
for simulation and FPGA implementation, respectively. The
steps “Extracting Reconfiguration Candidates”, “Integration
with Xilinx Partial Reconfiguration Flow”, and “Reconfigura-
tion Control Software Generation” are fully implemented in
Python, while the rest of the steps in the flow are performed
by CAaSH, ModelSim, and Vivado which are integrated in the
flow. The rclash script is accessible at [24]. In order to run
the reconfiguration management software on the embedded
processor of the target FPGA, a template Vivado project,
which contains the embedded processor, is integrated with
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1 type RecRegSigIOType8 = Signal ( BitVector 8 )

2 type RecRegSigI0Typel6 = Signal ( BitVector 16 )
3 type RecRegSigI0Type32 = Signal ( BitVector 32 )
4 type RecRegSigIOType64 = Signal ( BitVector 64 )
5 type RecRegSigI0Type65 = Signal ( BitVector 65 )

L1sTING 1: Input/output types for RMs.

1 -- Structural description of top module.

2 -- Functionality of the reconfigurable region
3 -- is specified with function ’f’.

4 top (f, i3) = 03

5 where

6 --ml and m2 are functions representing

7 -- the module instances

8 il=m1 (i3, o1)

9 (i2, 03 ) =m2 02

10 -- recRegion is a function representing the
11 -- reconfigurable region

12 (o1, 02 ) = recRegion (f, (i1, i2))

13 -- A vector specifying all RMs

14 rclist = (rcl:> rc2:> rc3:> Nil)

15 -- Stimuli for testing the functionality of top
16 stimuliO=(rclist!!0,val0) --(rclist!!0) = rcl
17 stimulil=(rclist!!0,vall) —-(rclist!!0) =rcil
18 stimuli2=(rclist!!1,val2) --(rclist!!1) = rc2
19 stimuliVec = [stimuliO, stimulil, stimuli2]

LISTING 2: Description of top and its test bench with CAaSH.

the RTR (CAaSH) design. The top level wrapper of the CAaSH
design is automatically instantiated in the top level module of
a template processor-system design, as shown in Figure 9. The
main reconfiguration management software is automatically
generated in the flow, which includes addresses of the full and
partial bitstreams in the memory as well as the initialization
of the device and example reconfiguration steps. The designer
can implement the desired reconfiguration scheduling in the
generated software. The template project uses ZedBoard as
its default target, but it can be adapted to other 7-series FPGA
boards by changing the implementation target information
and constraints in the synthesis script.

The designer can add constraints to connect the signals
of the user-design to internal signals from the AXI-Slave or
external pins of the FPGA. The modelling, simulation, and
implementation of an example design using the proposed
flow are shown in the following section.

3.4. A Run-Time Reconfigurable Coprocessor. 'The architecture
of an example AMBA AHB-based RTR design is shown in
Figure 10. There are two AHB masters in the design (master0
and master1) connected to two AHB slaves (ahbSlaveCP
and ahbSlaveMem) with a 64-bit AHB bus. The AHB slaves
are a shared memory (memory) and an RTR coprocessor
(recCP). The RTR coprocessor is mapped to a reconfigurable

region on the target FPGA with 65 input/output ports. The
desired number inputs/outputs can be set on an RR during
the design phase. There are three reconfiguration candidates
in this design for the reconfigurable region, and the RTR
coprocessor can be programmed to function as a 64-bit
DES block-cipher, a Finite Impulse Response (FIR) filter,
or an Infinite Impulse Response (IIR) filter. The AHB bus,
masters, and slaves are all described in a relatively high
level of abstraction close to mathematical description with
CAaSH which is available in [24]. As an example, Figures
11(a) and 11(b) show the structure and the high-level CAaSH
description of the IIR filter, respectively. Function init in
the CAaSH description of the IIR filter returns the vector by
dropping the last item, and function : > attaches an element
to the start of a vector. xRegs and yRegs are the registers (D)
for storing x and y values, respectively. Figure 11(c) shows the
CAaSH description of the reconfigurable coprocessor slave
on the AXI bus. Function f which defines the functionality
of the reconfigurable region is passed as an argument to the
reconfigurable region and applied on its input data according
to Figure 6. This function is passed to the top level module
from the test bench which provides the capability of chang-
ing the functionality of the reconfigurable region without
changing the internal modules in lower levels of hierarchy.
The simplified structure of the RTR coprocessor is shown
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in Figure 12. In the automatically generated simulation-only
model of the design, the functionality of the reconfigurable
region is simply modelled by multiplexing reconfigurable
modules. The generated simulation-only model for the RTR
coprocessor is shown in Figure 13.

An isolation logic is added at the output of the multiplexer
to simulate the delay of the reconfiguration operation as
well as sending unknown (X’) values into the static part to
simulate the unknown state of the output signals during the
reconfiguration process. The simulation result for the recon-
figurable coprocessor design using ModelSim is shown in
Figure 14, in which the coprocessor is reconfigured from DES
to FIR. The dout0 and dout1 signals shown in the waveform
are connected to the output of the reconfigurable coprocessor
on the AHB-slave by default. In addition to the generated full
and partial bitstreams, an embedded software for managing
the reconfiguration process is also generated by the script and
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FIGURE 10: An example RTR design.

copied into the reconfig directory in the SDK directory of
the generated Vivado project. The generated software which
isa Cfileis called reconFig. c can be edited by the designer
to apply the desired reconfiguration management on the
available partial and full bitstreams. The main part of the
autogenerated reconfiguration software is shown in Listing
3. This software assumes that the generated partial and full
bitstreams are stored on a SD card attached to the ZedBoard.
Each partial bitstream is copied from SD card into a specific
address in the DDR memory during the initialization phase
in init_device() function. The automatically generated
addresses are for accessing partial bitstreams on the SD card;
however, they can be changed to desired memory addresses
by the designer. The function XDcfg_TransferBitFileisa
Xilinx APT used for sending partial and full bitstreams into
the FPGA in Xilinx’s 7-series FPGAs.

Reconfiguring the reconfigurable region is performed
by the function XDcfg_TransferBitfile. This is a Xilinx
function that provides the access for the embedded processor
to write to the configuration memory through the Processor
Configuration Access Port (PCAP). The full code of this
software is also available in [24]. Currently, only one RR is
instantiated and experimented in this work; however, extend-
ing the flow to support more than one RR is straightforward.

4. Implementing Assertion Checkers
on Hardware

In [3] a modular approach is proposed to generate synthe-
sizable assertion checkers from PSL properties which are
composed of logical and temporal operators. The design
properties are translated into basic synthesizable components
and connections between them are established. The intercon-
nection method is based on the syntax tree of the property. A
similar work has been done in [4] on SEREs of PSL which
assembles SEREs from synthesizable basic building blocks.
Figure 15 shows an example property and its assembled circuit
from the basic components. Boulé and Zilic have proposed
an automata-based approach for implementing PSL assertion
checkers on hardware in [5]. The presented implementation
techniques are part of their checker generator tool named
MBAC. Figure 16 shows how the MBAC tool is used for
assertion-checker circuit generation and integration with the
DUV. The DUV, which is described in an HDL, together
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Description in CLaSH:

iir (xRegs,yRegs) (a, b,x) = ((xRegs’,yRegs’), y)

where
xRegs’ = x :> (init xRegs)
yRegs’ = yRegIn :> (init yRegs)
yRegIn = foldr (+) xRes (zipWith (%) a yRegs)
xRes = foldr (+) x  (zipWith (%) b xRegs)

yReglIn

()

ahbSlaveCP (f, (hsel, haddr,hwrite, hwdata, htrans)) = (hready, hrdata)

where
(hready ,hrdata, cpdin)
cpdout

recReg f cpdin

slvIF (hsel, haddr,hwrite, hwdata, htrans,cpdout)

FIGURE 11: Representation of the IIR filter (a), (b) and the Coprocessor (c) in CAaSH.
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with its PSL assertions is inputs to the MBAC tool. MBAC
generates synthesizable HDL descriptions of the assertion
checkers from the PSL expressions. The generated checker

circuits are then integrated with the DUV and implemented
together on the target platform. A Nondeterministic Finite
Automaton (NFA) is built by combining the base structures
which is then transformed into a circuit. The automaton has
an initial state, from which the pattern matching begins,
and one or more final states. When a final state is active, it
means a match is found for the pattern or, in other words, the
expression holds. The automaton is translated to a circuit in
two steps. First, each state signal is sampled by a D Flip-Flop
and its output is referred to as a sampled state signal. Second,
a state signal is defined as a disjunction of the edge signals that
hit a given state. An edge signal is a conjunction of its symbol
and the sampled state signal from which the edge originates.
The result signal of the automaton (the signal returned by the
automaton) is a disjunction of the state signals of the final
states [5].

In the related works mentioned so far, PSL or SVA expres-
sions are translated into synthesizable VHDL or Verilog
modules, but integrating assertion checkers in higher levels of
abstraction is not addressed. An ABV approach for SystemC
designs is presented in [25], which embeds PSL assertions at
high levels of abstraction into SystemC code in the form of
Abstract State Machines. However, this approach is only for
simulation purposes and neither the DUV nor the properties
are translated to hardware.

Another work on embedding synthesizable assertion
checkers is done in [26]. The authors used Impulse-C as
the system-level design language to represent the DUV and
its assertion checkers. The described design properties are
limited to a specific type of properties and there is no support
for multicycle properties such as PSL sequences or LTL-based
design properties, which play an important role in ABV.
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Implementation of some of the basic LTL operators using
Arrows of Haskell is discussed in [27]. Designing circuits
directly with Arrows is complex and limited, since only a few
Arrow-composition operators can be used to compose more
complex circuits [27].

5. Assertion Checkers in CAlaSH

This section explains how Boolean and temporal properties
of a design and their assertion checkers are described and

implication) or temporal operators (such as always,
eventually!,and SERE operators) and their operands [12].
In this work, each of these operators is defined as a Haskell
function in CAaSH. In Haskell, functions can be combined
in variety of ways to compose more complex functions.
Since each Haskell function in CAaSH is translated into an
equivalent synthesizable VHDL entity, design properties and
checkers described as compositions of Haskell functions,
are translated into synthesizable building blocks connected
according to the syntax tree of the expression. As an example
consider the following property:
propertyl: always, if both signals 'a’ and 'b" are True, signal
'c" or 'd' must be True.
A possible PSL representation of the property can be as
follows:
propertyl is always ((a and b) -> (c or d)).
This property is expressed in CAaSH using the following
expression:
propertyl = always ((a /\ b) -=> (c \/ d)).
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////// Define addresses of RMs in the DDR RAM

#define DES_addr_in_ddr XPAR_DDR_MEM _BASEADDR+0:x0x60000U
#define FIR_addr_in_ddr XPAR_DDR_MEM_BASEADDR+1%0x60000U
#define IIR_addr_in_ddr XPAR_DDR_MEM _BASEADDR+2:x0x60000U

1

int main()

{

init_platform();
init_devices();

= O 00 ~NO O WwN -

12 //
13 //
14 //

17 //
18 //
19 return O;
20 }

//Initialize the base platform

0 // User code can be added here to manage the
reconfiguration. An example code for configuring the
DES module into the RR is as follows:
status = XDcfg TransferBitfile(

15 // Check if the reconfiguration was successful

16 // if (status !'= XST_SUCCESS) {

xil_printf("error!"); return XST_FAILURE; }

xil printf ("DES is configured to the coprocessor!");

XDcfg O,
DES_addr_in_ddr,
(BITFILE_LEN / 4));

L1sTING 3: The Initial reconfiguration management software.
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FIGURE 17: Implementation of property1.

Composition of functions in Haskell is translated by
CAaSH into communication ports between building blocks.
The building blocks are synthesizable Mealy machines imple-
mented in Haskell themselves. Figure 17 shows the final
circuit for propertyl which is formed by connecting the
basic building blocks of operators according to the syn-
tax tree of the expression. Blocks /\, \/, and -->
are implemented as Haskell functions and represent the
Boolean PSL operators and, or, and -> , respectively.
The Boolean operators implemented in this work are slightly
more complicated than the simple logical operators (such as
and, or, or implication) in which the input and output
values can be either true or false. As an example, consider
the following property expressed in PSL:

pO is always ( rose(a) -> (auntil b) ).

If the left side of the implication operator does not
hold, the property p0 will hold regardless of the result of
the evaluation of the right side. When the left-side holds,
the result of the implication becomes dependent on the
evaluation of its right side. Evaluation of the expression
(a until b) in this property can take multiple clock cycles
before it is finalized, which means when a rising edge of signal

False False
FalseWeak | Inputs Outputs | FalseWeak
——>»| Building Block ——
True True
Waiting Waiting

FIGURE 18: Input and output types of an operator building block.

a is detected, the implication operator must be able to wait
until the evaluation of its right side is finished. In addition
to the Boolean values (false and true), each operator can
output values to inform the operators ahead, of an ongoing
and unfinished evaluation. Since the evaluation result of the
right side of the implication might need multiple clock cycles
to be finalized, the implication operator must wait until the
evaluation of the right side is finished. The inputs and outputs
of every implemented operator are of the new 4-value type
which is shown in Figure 18. Evaluation of the expressions
composing property p0 is shown in Figure 19.

True and false values are referred to as known values,
and the operator input that does not have a known value is
referred to as waiting input in this text. As a general rule for
the Boolean operators implemented in this work, if an input
to the operator is waiting and depends on the signal values in
the future cycles, and the result of the operation depends on
the value of the waiting input, the evaluation is delayed until
the values on inputs are known. However, the other input(s)
with the known value will be considered for the evaluation of
the operation while waiting for the other input to get a known
value. Therefore, the output of the operation can change based
on the value of the nonwaiting input, and a specific value
called FalseWeak is used on the operation output signal to
notify other operators consuming its result.
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b: False | False i False False False False True True
rose(a): False False False True False False False False
(auntil b): False False False Waiting Waiting Waiting True True
pO: True True True Waiting Waiting Waiting True True

time

FIGURE 19: Evaluation of expressions in property p0.
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always (a -> b and (c until d))

FIGURE 20: Delaying the evaluation of Boolean operators.
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For example, when an input of the and operator is
waiting, a False value on the nonwaiting input at the current
cycle generates the FalseWeak value on the output. This is for
discriminating between the False output value that can be
generated as a result of a False value on the waiting input
in the future and the evaluation result of the operation in
the current cycle. As an example consider the property and
its evaluation shown in Figure 20 with two subtraces shown
starting in cyclel and cycle2. While the evaluation of the
implication operator is delayed because of the "c until 4"
expression, any False value on the b input of the and
operator can evaluate the result of the implication operation
to False if input a is True at the same cycle. If a was
False in cycle2, the implication operator would still be in

the waiting state waiting for a known value and the expression
would hold. Considering the multicycle behaviour, the logical
operators such as and and or are not state-less Boolean
operations. They are implemented by Finite State Machines
(FSMs), since they need to have memory elements to keep
track of the past input values. Similarly, the temporal layer
operators such as until and before are also implemented
by FSMs. Figure 21 shows the simplified FSM of the and
operator implemented in this work. For example, while an
and operation is waiting on its second input to receive a
known value, any False value on the first input ( b ) can
evaluate the result of the and operation to FalseWeak. Values
True, False, FalseWeak, and Waiting are shown with 1,
0, Fw, and W in the FSMs, respectively.

The property evaluation results True, False, and
Waiting correspond to Holds, Fails, and Pending of PSL,
respectively. As shown in the FSM of the and operator, if
an input of the and operation is Waiting, and the other
input is not False, the output will be W to pass the waiting
value to the parent node in the syntax tree of the property.
The new 4-value data type is used to represent the input and
output values of the LTL operators, instead of the simple
two-value Boolean type. In order to keep the complexity of
the building blocks low, only a subset of the simple subset
of PSL is supported, in which only the right side of the
implication operator might have LTL operators and the left
side is composed of Boolean operators [12], which means the
waiting value W can appear only on the right side of the
implication operator. The simple subset of PSL is a subset that
conforms to the notion of monotonic advancement of time,
from left to right through the property. Properties described
with simple subset of PSL are more readable. Listing 4 shows
two simple properties described in CAaSH for the AHB-
based design presented in Section 3. The sig function is used
to convert a Boolean signal value to the four-value signal
introduced earlier in this section. The neg function is used
for negating its input. The PSL SEREs supported in this work
arein the form of S1 |=> S2,in which the operator |=> isthe
suffix implication operator, and S1 and S2 can be sequences of
Boolean expressions on the input signals from the DUV. The
overlapping implication operator |-> is notimplemented in
this work. Any expression composed of the suffix implication
operator of the form S1 |=> S2 is evaluated in the following
way in PSL:

The expression S1 |=> S2 holds if any recognition of the
sequence S1 in a signal trace leads to at least one recognition
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seql ={a;b[*2:4];c} seq2 ={d;e[*2:4] }

pl = always (seql | => seq2)

FIGURE 22: An example sequence evaluation.

prev (neg((sig g0) \/ (sig gl)) /\ (sigrl))

1 --0Only one master at a time can have control
2 -- over the bus, so only one of the grant
3 -- signals can be High at a time.

4 prl g0 gl rst=always

5 (

6 neg $ (sig g0) /\ (sig gl)

7 ) $ abort $ sig rst

8 -- If none of the masters is granted, any
9 --request (not simultaneously) will lead
10 -- to a grant in the next clock cycle.

11 pr2 g0 gl rl rst = always

12

13

14 --> (sig g1)

15 ) $ abort $ sig rst

L1sTING 4: Example properties for the AHB-based design.

of the sequence32. The implication still holds if sequence
S1 is not recognized in the signal trace. The sequence
implication implemented in this work, also holds while S1 or
S2 is pending (Waiting). Several ongoing recognitions of
a sequence can have overlaps depending on the value of the
input signals in the trace. Each evaluation of sequences S1
and S2 is called a run in this text. There are three overlapped
runs for both sequences S1 and 32 shown as runi, run2, and

run3 in Figure 22. The state of the evaluation of a sequence
will be one of the followings at every time point:

(i) inactive: evaluation of the sequence is not started
yet. This state is valid for both left and right sides of
the suffix implication operator.

(ii) waiting: the sequence has been recognized in the
trace so far but its evaluation is not finished yet. The
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FIGURE 23: An example SERE structure in CAaSH.

final result of the evaluation depends on its input
values in future clock cycles. This state is valid for both
left and right sides of the suffix implication operator.

(iii) true: the sequence is recognized in the trace suc-
cessfully (which can also be more than one clock
cycle expressing several overlapped evaluation and
recognition of it in the trace). This state is valid for
both left and right sides of the suffix implication
operator.

(iv) false: the evaluation of the sequence encountered a
mismatch between the actual value in the trace and
the expected value, which means the sequence is not
recognized. This state is valid only on the right side of
the suffix implication operator and implies a violation
of the expected behaviour. However, if the left side
does not hold the implication still holds.

A step by step evaluation of an example property which is
composed of two sequences and a suffix implication operator
( |=>) is shown in Figure 22. At the first positive-edge of the
clock signal (which is marked with t1 ) all three input signals
of sequence S1 are False and the evaluation of the sequence
is not initiated yet. Starting from time t2, with detecting a
valid value on signal a, the evaluation enters into the wait
state and holds in clock cycles t5 and t6 which expresses two
consecutive recognition of sequence S1 in the given trace.
The input signal a is True in two consecutive clock cycles
(t2 and t3) which leads to two concurrent evaluation runs
(runi1 and run2). The third evaluation run is created at time
t6 in parallel with the two ongoing evaluation runs. Any
activation of the antecedent (S1) must be followed by at least
one successful recognition of the consequent (52) ; otherwise
the evaluation will enter the false state. A corresponding
evaluation run of S2 for each true cycle of S1 is initiated. This
can lead to concurrent evaluation runs for the right side of the
implication, as in this example it leads to three concurrent
evaluation runs starting at t6, t7, and t10.

Both run1 and run2 reach to true states while run3 ends
in the false state which means that the property p1 does not
hold. The false state is entered because after the input signal

d is True at time t9, at least two consecutive True values
on signal e are expected, while it is True for only one clock
cycle. Every sequence represented in CAaSH automatically
sets up the corresponding synthesizable circuit for itself using
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function composition of Haskell and connecting the building
blocks serially. Further details of the building blocks are
explained later in this section. The general structure of the
final circuit for the example sequence is shown in Figure 23.
As shown in Figure 23, a sequence is assembled with a chain
of building blocks connected serially. The sequence building
blocks are divided into the following categories:

(i) Basic building blocks (BBBs) : a BBB monitors
the input signal from the DUV and the input signal
from the previous stage and generates output signals
which become the input set for the next stage.

(ii) Repetition building blocks (RBBs): an RBB,
in contrast to a BBB, has a more complex functionality
and structure because of its multicycle behaviour
which leads to overlapped and concurrent evalua-
tions.

(iii) Other sequence building blocks: this category
includes all the building blocks except BBBs and
RBBs, which are used for initialization, sequence
evaluation, and some temporal operations (e.g., init,
always, and eval) in the verification sequences.

The always building block checks the final evaluation
result of the verification expression at every clock cycle. The
eval building block is attached to the final stage of a sequence
and feeds the next temporal operator building block (such
as always) with the final evaluation result of the sequence.
The suffix implication building block ( |[=>) activates the
evaluation of its right side (consequent) in the next clock cycle
it its left side (antecedent) holds in the current clock cycle.

Each building block has a different behaviour depending
on which side of the suffix implication operator it is used.
Building blocks on the left side of the suffix implication
have less complex functionality than the same building
blocks on the right side. In order to cover both cases, each
building block has two working modes, antecedent mode and
consequent mode, referring to its working modes on left and
right side of the suffix implication operator, respectively. The
microarchitecture of these building blocks in both antecedent
and consequent modes is discussed in the rest of this section.

(1) Sequence building blocks in antecedent mode: each
BBB simply monitors the value of an input signal and the
value from the previous stage and generates the value for the
next stage. The generated value will be True if both of its
inputs are True; otherwise it will be False. The evaluation
process takes only one clock cycle and there is no need to
have overlapped evaluations. The equivalent circuit for a basic
building block is shown in Figure 24.

The repetition building blocks implement the functional-
ity of the repetition operators (e.g., b[*2:4]) and in contrast
to basic building blocks, they must handle overlapped evalu-
ations that can happen because of their multicycle behaviour.
The maximum number of overlapped evaluations is defined
by Maximum Overlap Index (MOI) parameter.

Figure 25 shows the general architecture of the equivalent
circuit for repetition operators. RBBs need more resources
compared to BBBs and contain MOI number of counters to
count the number of clock cycles the input signal (DataIn)



International Journal of Reconfigurable Computing

Dataln
Basic Building Block
StartOut
StartIn FF

clk

FIGURE 24: Structure of a basic building block.

is active. Each FSM runs an evaluation in case of overlapped
evaluations in the RBB. Therefore, the maximum number of
FSMs in an RBB is the same as the maximum number of
overlapped evaluations which is MOI. Currently, MOI is set
by the designer at design time and is not automated yet. For
example, in case of b[*2:4], MOI is set to 4 to ensure full
evaluation of each counting process for signal b without
missing any trace. Any StartIn signal initiates an FSM on
the next clock cycle. If StartIn input becomes active again
before the recently started FSM ends, another FSM will start
in parallel to keep track of the new counting process and the
new evaluation window (for example, at time points t3 and
t6 in Figure 22).

If an FSM in an RBB detects the expected number of
active values (or a range of repetitions as in the example of
Figure 22) on the input signal, the output StartOut (1) will
be activated in order to inform the next stage in the sequence.
The outputs of all FSMs are merged into one output signal
Start0Out since the next stage does not need to discriminate
between different evaluation processes running in the RBB
block of the previous stage. The functionality of the FSMs may
vary for different repetition operators. Figure 25(b) shows the
behaviour of the FSMs for the repetition operator [+N:M]
used in the example of Figure 22 as b[%2:4]. If an FSM
is activated (CntActive = true), the control moves to the
state LessThanN in which it waits until the input signal is
active for N consecutive cycles. Then the output is activated
and the control moves to the LessThanM state and stays there
until the input signal is active up to M consecutive clock
cycles.

(2) Sequence building blocks in consequent mode: sequence
building blocks are more complicated in consequent mode
than antecedent mode considering the following feature of
the suffix implication operator.

The implication holds if any recognition of the sequence on
the left-side of the implication operator leads to at least one
recognition of the sequence on the right side of it.

This feature implies that every single building block (BBB
or RBB) in the right side of the implication must be aware
of all overlapped evaluation runs going on at the current
clock cycle, to check no evaluation ends without at least one
recognition of the right side. This is done by monitoring
each evaluation run in the building block individually. Han-
dling overlapped evaluation runs in RBBs with a range of
repetitions in input (which are called Ranged-RBBs) such as
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a[*N:M] is more complicated than BBBs and other RBBs.
In these building blocks, a multicycle StartOut signal is
needed to enable the next building block in the chain, while,
in other building blocks, StartOut signal needs to be active
only for one clock cycle which means the expected signal
values are detected in the current clock cycle and enable
the next stage in the chain. For example, the {a[#4];b}
expression in a sequence holds if signal a is active for exactly
four consecutive clock cycles starting from the time it is
enabled by its previous stage, and b is active in the fifth clock
cycle. When a[#4] holds, Start0Out is activated for exactly
one clock cycle which is used as the start signal (StartIn
signal) for the next block in the sequence (BBB(b)). The
next block in the sequence must hold in the clock cycle that
it receives an active StartIn signal; otherwise the sequence
is not recognized and the evaluation ends with a mismatch.
The situation is different for a Ranged-RBB and the building
blocks following it in a sequence. Ranged-RBBs, instead
of a single cycle activation of the StartIn signal for the
next building block, generate a multicycle window of active
StartIn signal for the next building blocks in the sequence.
This window is called enable-window in this text and it moves
forward in the sequence at every clock cycle originating from
the Ranged-RBB. In fact the enable-window is the number
of clock cycles that the Ranged-RBB holds considering its
input signal. All the building blocks following the Ranged-
RBB in the sequence must hold at least once in the time-span
of the moving enable-window; otherwise a mismatch will
be reported. Each evaluation run generates its own enable-
window for the next building blocks in the sequence which
can lead to parallel active enable-windows in a Ranged-
RBB. For example, if input signal a is continuously active
for K clock cycles, the length of the enable-window for the
expression a [N :M] will be as follows in terms of clock cycles
which is the number of clock cycles the expression holds:

EnableWindowLength
0, if (K <N)
@
={K-N, if (N<K<=M)
M-N, if (K> M)

Figure 26 shows an example property (p2) which includes
a Ranged-RBB in the consequent part of the implication
operator and its evaluation on an example signal trace. The
antecedent part holds at time t2, which starts an evaluation
run in the Ranged-RBB block b[#2:4] (shown as runi). At
time t3, the second evaluation run (shown as run2) starts in
parallel with runi. The expression b[*2:4] holds for three
clock cycles from t4 to t7 which leads to an enable-window
of length three in runl in the Ranged-RBB operator. The next
building block in the sequence (BBB(c)) holds twice (at
cycles t5 and t7) in this enable-window and acknowledges
the recognition of the sequence until this point. The enable-
window is always passed to the next block in the sequence
(BBB(d) ) from current block (BBB(c) ) with one clock cycle
delay. In this case the shifted enable-window spans t5 to t8.
In this range of the enable-window, BBB(d) holds at t6 and
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FIGURE 25: (a) Structure of an RBB in antecedent mode. (b) FSM of the [«N:M] operator.
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FIGURE 26: (a) An example property with sequences. (b) Overlapped runs and enable-windows in consequent mode.

completes a recognition of the sequence for runl. run2 starts
att3in parallel with run1 and generates an enable-window at
t5 which lasts for two clock cycles. An active value is detected
for signal ¢ in block BBB(c) in the enable-window, which
acknowledges the detection of the sequence until this point.
The enable-window is then passed to the BBB(d) block and
spans t6 to t8 in which there is no activation of signal d and
the sequence recognition process for run2 fails which leads
to a mismatch in recognizing the sequence in the provided
signal trace.

In order to simplify the design of building block cir-
cuits, only one Ranged-RBB is allowed to appear in the
consequent and antecedent parts of the suffix implication
operator. Including more than one RBB in a sequence might

need handling a more complex communication and is not
addressed in this work. The detailed structure of a BBB in
consequent mode is shown in Figure 27(a). StartIn and
Start0Out ports are used to enable the current block and the
next block in the sequence, respectively. The mismatch signal
is generated inside the building block and ORed with the
input mismatch signal to reflect the global mismatch signal
in the sequence. The input port OverlapIn is used to receive
enable-windows from the preceding block in the sequence.
This input is used by the FSMs to evaluate the overlapped
evaluation runs in parallel. Maximum number of active FSMs
at the same time is MOI. The OverlapIn is registered and
passed to the next block in the sequence with one clock cycle
delay.
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Enabled_data_not_valid = Startin && OverlLapln(i) && (! Dataln)
Enabled_data_valid = Startln && OverlapIn(i) && Dataln
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FIGURE 27: Building blocks in consequent mode.

The FSM shown in Figure 27(b) represents a simplified
behaviour of one of the MOI identical processes running
in a BBB in consequent mode. Each FSM waits for an
enable-window on the corresponding OverlapInp port and
after detecting an active enable-window it waits (in state
Wait4Inp) untilit captures a valid value for DataIn signal. If
the enable-window ends without any detection of the active
value of DatalIn signal, the mismatch signal is activated and
the recognition of the sequence fails.

Functionality of the BBB circuits is very simple (similar
to Figure 24) if there is no RBB earlier in the sequence. The
BBBs, following an RBB building block, need to consider the
overlapped runs and the enable-windows of the preceding
RBB which is more complicated than the single clock cycle
monitoring of the input signals. This holds in both antecedent
and consequent parts of the suffix implication. The input port
RepOpInSeqlIn is used to specify the working mode of the
BBB. If this input is true it means that there is an RBB
preceding the BBB and it should use the circuitry of Figure 27
to handle overlapped runs and enable-windows from the
preceding building blocks. When this input is false, the
simple circuitry similar to the one of Figure 24 can be used
to handle the sequence recognition. This input is passed to
the next building block in the sequence without any change.
The detailed structure of a Ranged-RBB in consequent mode
is shown in Figure 27(c). StartIn and StartOut ports

are used to enable the current block and the next block in
the sequence, respectively. The mismatch signal is generated
inside the building block and ORed with the input mismatch
signal to reflect the global mismatch signal in the sequence.
Maximum MOI identical FSMs can be active at the same
time to create overlapped runs and enable-windows. The
output port OverlapOut is used to pass overlapped enable-
windows to the next building block in the sequence. Port
RepOpInSeqOut is a copy of the input port RepOpInSeqIn,
to inform the next building blocks about the presence of
an RBB in the sequence. The Scheduler process enables
an FSM for each activation of the input signal StartIn.
Any activation on StartIn portin a clock cycle means that
the RBB must hold starting from that clock cycle. If there
are already active FSMs, another FSM will be activated in
parallel which creates an overlapped run and generates its
corresponding enable-window on the OverlapOut port. A
simplified FSM of the behaviour of a Ranged-RBB is shown
in Figure 27(d). Each FSM waits in the wait state until it is
activated by the scheduler. The DataIn input must continu-
ously be true at least N clock cycles before it becomes false
(in state LessThanN); otherwise, it will fail to recognize
the sequence. In order to ease the automatic assembling of
the sequences by chaining the building blocks, as shown in
Figure 26(a), BBBs and RBBs have the same interfaces and
ports. OverlapIn input port is not used in RBBs but it exists
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TaBLE 1: Implemented operators.

PSL Operator In Haskell PSL Operator In Haskell
and /\ a[*N] al=|N
or \/ a[=N:M] al ~=|(N,M)
not neg before before
-> -—> until_ until_

| => ==> eventually! eventually
rose rose until until
prev prev always always
prev(a,N) prev(a,N) fell fell

af+] repPlus(a) a[*N:M] al ~~|(N,M)
before_ before_ ;
because of the interface-compatibility. Boolean and temporal a e | | s
operators supported in this work are shown in Table 1. The l l l
BBB operator, which is not shown in Table 1, is represented M M o M
by se inthe CAaSH descriptions of the sequences. The . .. i i i
operator as shown in Table 1, is equivalent to semicolon in TR

SEREs which is used for representing the clock edge between
sequence elements. Since the output values of the sequence
operators supported in this work are registered with the clock,
the ... operator only needs to combine its input operands
serially. Its description in CAaSH is as follows:

(...)ab=b.a.

As an example, consider the following property in PSL:

always {i1[+]} |=> {i2;i3;14[*3:6] }.

This property is described in CAaSH as follows:

always (((repPlus il1)) ==>

((sei2)...(se i3)...(i4 |~~| (3,6)))).

The assertion checkers generated in this work are not
optimized in resource usage or operational frequency. As an
example the circuit for the expression {a;b}|=> {c[x*
0:1];d} uses 4 flip-flops and 3 look-up tables on the target
FPGA according to [5] while the equivalent sequence using
our approach uses 49 flip-flops and 70 look-up tables.

5.1. High-Level Properties in CAaSH. Using Haskell as the
unified language for describing both the DUV and its syn-
thesizable properties offers an easier integration of properties
into the DUV and allows the designer to use parametrization,
higher-order functions, polymorphism, and other high-level
structures and functions of Haskell for describing design
properties. As an example, a general and parametric property
is described on a 64-bit block of data in Figure 28 which
can be specialized to variety of different properties with
parameters f2 and f1 which are Haskell functions themselves.
The map function in the expression, is a built-in function in
CAaSH that applies a function (£1) on anarray of inputs (i).
For example, in order to specialize the template to a property
that checks if the value of all input bytes (i) are less than 128,
the designer can simply pass the following parameters to the
template property:

1T128 = always (p-template (1T 128) aND High i)

in which, (1T 128) (passed as f£1) is a function that
checks if the input byte is less than 128, and aND (passed as £2)
is the logical AND function which is folded from left to right

Description in ClaSH (Haskell):

p_template f1 f2 init i = foldl f2 init (map f1 1)

FIGURE 28: A parametric property in Haskell.

with init as its initial value. Another property that checks if
the input bytes (i) are nonzero (nEq 0) is described using
the same property template as follows:

always(p_template (nEQ 0) aND High i).

6. RTR Implementation of Assertion Checkers

As mentioned in Section 1, placing all the assertion checkers
of the design in one verification module can lead to a large,
resource demanding module, and the amount of the available
resources on the target implementation platform might not
be enough to implement the verification module. A solution
for this problem is to partition the verification module
into smaller parts and use partially reconfigurable platforms
to implement and run them on the hardware in a time-
multiplexed manner. By using this method, each partition
will include only a subset of assertions and can be deployed
into the partially reconfigurable hardware on its time-slot,
to check for a subset of the design properties. Current RTR
designs have one or more RRs defined in the target FPGA
and can be implemented using the partial reconfiguration
flow from Xilinx. In this work, we use the RRs on the target
FPGA for implementing assertion-checker circuits, in addi-
tion to their use for hosting different reconfigurable modules
(RMs), by integrating assertion checkers with the RTR design
descriptions in high levels of abstraction discussed in Sec-
tion 3. The verification circuits can be programmed into the
desired RR by the reconfiguration management software, on
demand.

In order to map verification-circuit partitions into each
RR, the limitations of the RR in terms of the number
of inputs/outputs and the amount of hardware resources
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FIGURE 29: The proposed verification flow.

available in the RR, should be considered. Each subset
must physically fit into the desired RR considering these
limitations. As a result, instead of checking the design with
the whole set of assertion checkers at once, the assertion
subsets can be programmed one by one in the RR until all of
them have been covered, in a time-multiplexed manner. An
RR can host any reconfigurable module if resources required
by the module (including input/output ports) are available
in the RR. Since the routing of the static part is fixed, the
operational frequency of the static part is not affected by
configuring different modules into the RR.

Usually assertion circuits are made of simple logical
operations, and the number of input signals used in the circuit
of the whole assertion set grows faster than the number of
hardware resources needed. Considering the fact that an RR
needs special communication structures such as bus-macros
or any kind of proxy logic to communicate with the static part
of the design, and these structures are implemented with logic
(such as look-up tables) themselves, increasing the number of
inputs/outputs of the RR and changing the design just for the
verification purpose are not an efficient solution.

We propose a partitioning algorithm that considers the
limitation on the number of inputs/outputs of the existing
RRs and the amount of available resources in them and try
to minimize the reconfiguration overhead (i.e., reduce the
number of reconfigurations). The reconfiguration overhead
of this approach is directly proportional to the total number
of assertion partitions, or, in other words, the number of
reconfiguration candidates for RRs, for verification purposes.
Lowering the total number of partitions lowers the number
of reconfigurations in the target FPGA. The problem of
achieving the minimum number of subsets can be mapped
into the so-called bin-packing problem, which is proven to
be NP-hard [28]. In bin-packing problem, objects of different
volumes must be packed into a finite number of bins each
with a specific size, in a way that minimizes the number of
bins used. In order to achieve close-to-optimal subsets we
use a two-phase partitioning approach shown in Figure 29
which depicts the main steps of the verification methodology.
It starts with describing the DUV and its assertions in CAaSH.
The described properties are extracted into a set which is
then clustered into assertion clusters using the first phase of
the partitioning algorithm. Assertion checkers in each cluster

are intended to be mapped into an RR on the reconfigurable
platform. If the hardware resources required to implement
a cluster of assertion checkers are more than the available
resources on the corresponding RR, a second phase of the
partitioning algorithm is used to partition it into two or more
reconfiguration runs, until each assertion-subset fits into the
target RR. Each reconfiguration-run will be mapped into
the corresponding RR with commands issued by the rest of
the system (e.g., software) based on the desired scheduling.
The general architecture of the verification circuitry is shown
in Figure 30. Each RR is fed by either normal-mode or
verification mode inputs. The normal-mode inputs come
from the reconfiguration candidates in regular operational
mode of the design, while the verification mode inputs are
the input signals of the assertion-checker subsets, selected
during the verification mode. The AssertInpSet_i input
in Figure 30 represents the input set for assertion-cluster
(i). The corresponding input set is selected when the RR is
programmed to function for a specific assertion-cluster by the
verification control process. The verification control process
is a software process that runs on the embedded processor of
the target FPGA and can program different reconfiguration
runs into the RR using the corresponding partial bitstreams
stored in the system memory, as well as the control signals of
the multiplexers for input-sets of the clusters. The reconfigu-
ration overhead of this approach in terms of time depends on
the total number of reconfigurations for verification purpose
which can be calculated as follows:

NumOfReconfigurat ions=zgﬂf N,y (@)

in which N Number of clusters after partitioning the
assertion set andN,,,,((i): Number of runs in cluster i .

In order to minimize the hardware overhead, which is the
multiplexers at input of the RR, as well as the reconfiguration-
time overhead, which depends on the total number of
reconfiguration runs, the value of NumOfReconfiguration
should be minimized. Since this can be mapped into a
variation of the bin-packing problem (by considering the
limitations on the inputs/outputs) which is an NP-hard
problem, a heuristic algorithm is used for partitioning the
assertion set which tries to get close to the minimum value
of NumOfReconfiguration by first minimizing the number
of clusters (N,) and then minimizing the number of runs for
each cluster (N,,,,,;(1)).
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ao =always ( (io ni4) > (i1 v i2))

a1 =always (rose (i2 nio nid) -->il)

a2 =always (rose (12 7 io ni4) > (i3 1\ 15))

a3 =always ( (is nisnis) > i7)

a4 =always ( prev(is ni3) --> (i5v i7) )

as =always (( rose i6 ) --> (until (i5,i4)))

a6 =always ( (i6 ni3) > eventually (i7 1 i4) )
a7z =always (i6 \/i4)

(a) Assertions described in Haskell

(b) Input Dependency Graph (IDG)

(c) Assertion Dependency
Graph (ADG)

FIGURE 31: Dependency graphs for the example assertions.

The clustering algorithm uses specific graph-based struc-
tures to represent assertions and their dependencies. The
definitions of the these graphs are as follows.

Definition 1. Input dependency graph (IDG) is an undi-
rected graph which is described as follows:

IDG = (V, E).

V= {vp} =1 U A, the set of all nodes in the graph.

E={ey | pel.qeAp cinps(q)}, the set of edges
between A and I.

A= {ap}, the set including all assertions.

I = {i,}, the set including all input signals of
assertions.

inps(a,) : set of input signals for assertion a,,.

N : total number of assertions.

An IDG of an assertion set shows how the input signals
are distributed between assertions. For example, the IDG of
the assertion set of Figure 31(a) is shown in Figure 31(b).

Definition 2. Assertion dependency graph (ADG) is a
weighted undirected graph which is described as follows:

ADG = (V,E,W).

V = A, the set of all nodes in the graph.

E = {e,, | inps(p) Ninps(q) + 0, p,q € A}, the set of
edges between assertions with common inputs.

W = {wpq | w,, = linps(n) Ninps(m)|,n,m € A},
the weight of the edge between p and q.

A= {ap}, the set including all assertions.

inps(a,,) : the set of input signals for assertion a,,.

An ADG represents the dependency for each pair of
assertions in terms of their common input signals. Assertion-
pairs with high number of common inputs are considered
strongly dependent in ADG, while the pairs with low number
of common input signals are considered loosely dependent.
The corresponding ADG for the assertions of Figure 31(a) is
depicted in Figure 31(c).

The heuristic clustering algorithm, which uses these
graphs is shown in Algorithm 1. The main goal in this algo-
rithm is to minimize the number of clusters by making
clusters as large as possible, considering the limitation on the
number of inputs/outputs of the target RR. In order to reach
that goal, the two most strongly dependent assertion-sets will
be merged while the number of inputs for the merged asser-
tion set respects the limitation on the number of inputs for
the target RR.
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FIGURE 32: An example run of the proposed partitioning algorithm.

input: IDG and ADG of the assertion-set
output: Clusters for RRs
1 // The main loop for creating clusters
2 ADG' = ADG;
3 while (!EdgesAllMarked) do
4 // Find a non-marked Edge with maximum weight
5 e, = FindMaxW (ADG');
6 if (linps(a,)| + linps(a,,)| — linps(a,) N
inps(a,,)|) < |RRinPS| then
7 //Merge the strongly-connected pair
8 MergeNodes (a,, a,,, IDG);
9 // Update the weights in theADG
10 UpdateW (ADG');
11 end
12 else
13 MarkEdge (e,,,);
14 end
15 end
16 // A Best-Fit bin-packing on still-mergable clusters
17 BFPacking (ADG');
18 // ADG’ contains the final set of clusters
19 WriteOutput (ADG');

ALGoRrITHM I: The proposed clustering algorithm.

A{2,1,0}

a7

A{2,1,0}

A{3,4,5,6,7}

(g)
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The inputs for the partitioning algorithm are the IDG and
ADG of the assertion set and the output of the algorithm is
an undirected graph in which each node represents a cluster
and each edge represents the degree of dependency between
the two assertion-cluster end nodes. In this algorithm, the
strongly connected nodes are continuously merged to max-
imize the size of the clusters while the total number of inputs
of the growing cluster is lower than or equal to the maximum
number of inputs allowed in the targeted RR. A greedy
approach is used to merge clusters and the most dependent
pair of nodes are merged first if the restriction for the number
of inputs holds on the merged cluster. If the restriction is
not satisfied on the merged cluster, the merging is undone
and the edge in between is marked while continuing with the
next most dependent pair. The greedy merging of connected
pairs continues until all edges in the resulting graph are
marked and further merging of the connected clusters is
not feasible because of the restriction on the number of
inputs for each cluster. Finally, a variant of the best-fit bin-
packing algorithm is applied by merging the not-connected
and mergeable assertion clusters on the resulting clusters to
make compact clusters without violating the restriction on

the number of inputs. The best-fit algorithm is one of the
several heuristics to solve the bin-packing problem. In the
best-fit approach, during choosing an object for the target
bins, an effort is made to waste as less bin-space as possible.
Further details on the best-fit algorithm and the bin-packing
problem can be found in [28].

The next phase of the partitioning algorithm is for creat-
ing reconfiguration runs for each cluster in order to minimize
its number of runs. The best-fit heuristic is used here as well
to partition each assertion-cluster into reconfiguration runs
constrained by the amount of resources available in the target
RR and the amount of resources needed for the cluster. The
capacity of the RR is considered as the capacity of the bin and
assertions of a cluster are considered as items to be packed in
that bin. An example execution of the partitioning algorithm
on the assertion set of Figure 31(a) is shown in Figure 32 for an
RR with 6 inputs. In Figure 32(a) the ADG for the assertion
set is shown which is followed by pair-merging steps from
(b) to (g). In (b), assertions al and a0 are merged into
assertion set A{ 1,0 }. The greedy merging is continued until
(f) in which assertion-sets A{2,1,0} and A{3,4,5,6} can
not be merged because of the restriction on the number of the
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a0 = always ( ((sig i0) /\ (sig il)) --> (before ((sig i2),(sig i4))) )

al = ((se 19) ... (se il3) ... (se 1i6)) ==> (i4 |~~| (2,4))
a2 = ((repPlus i3) ... (se il5)) ==> ((se i13) ... (se i12) ... (se i0))
a3 = ((repPlus i8) ... (se ill) ... (se i13)) ==> ( (repPlus i3) ... (se 19))

a4 = always ( (sig i0) --> ( (sig i2) \/ (sig i3) \/ (sig i4) \/ (sig i5) ))

a5 = ((se i8) ... (se 19) ... (se ill)) ==> (i3 |~~| (3,5))

a6 = always (((sig i3) /\ (sig i5) /\ (sig i6)) --> (rose(i7)))

a7 = always ( (rose(sig i14)) --> (before ((sig i5),(sig i6))) )

a8 = always( ( (sig 112) /\ (sig ill1l) /\ (sig i13)) --> ( (sig i15) /\ (sig 1i0)) )

a9 = always ( ((rose (sig i3)) /\ (rose (sig i4))) --> ((sig i6) \/ (neg (sig i7))) )

ald = always ((sig il1ll) \/ (sig i13))

all = ((se i13) ... (i3 |=| 5)) ==> (i8 |~=| (4,6))

al2 = ((se 17) ... (se i4)) ==> ((i0 |=]| 2) ... (se 1i3) ... (se il))

al3 = ((se i7) ... (se i0)) ==> ((se i6) ... (se i2) ... (i5 |~=| (3,6)) )

ald = ((se i7) ... (se i6) ... (repPlus i4)) ==> ((se il) ... (se 1i2) ...(i5 |~=| (3,6)))
al5 = ( (se i10) ... (il4 |~~| (4,8)) ) ==> ( (se i9) ... (i6 |~~| (3,7)) ... (se il3) )

alé = ((se i0) ... (se i0) ... (repPlus i4)) ==> ( (se i3) ... (se i3) ... (i5 |~=] (3,6)) )
al7 = ( (i13 |~=| (3,8)) ... (se i14) ) ==> (il® |~~| (3,9))

al8 = ( (se i6) ... (i9 |=| (3)) ) ==> (il0 |~~| (3,9))

FIGURE 33: An example assertion set.

inputs and the edge between them is marked (in red). Finally
the assertion a7 is merged with the set A{3,4,5,6} which
leads to two clusters for the input assertion set targeted for
the RR with 6 inputs.

To experiment the assertion description in CAaSH, asser-
tion circuit generation, and the partitioning algorithm, the
set of assertion checkers shown in Figure 33 is used, which
consists of 19 assertion checkers. The synthesis result on a
Zynqg-7000 FPGA is listed in Table 2. Considering the high
operational clock-frequencies of the checkers compared to
typical frequency of complex designs on FPGAs, they are
unlikely to be on the critical-path to limit the performance of
the whole design. Figure 34 shows the results of running the
partitioning algorithm on the ADG and IDG of this example
assertion-checker set. As shown in Table 3, three clusters or
partitions are created for an RR with 8 inputs, after running
the partitioning algorithm.

7. The Unified Design and Verification Flow

The complete design and verification flow used in this work
is shown in Figure 35. The steps shown in green in the flow
represent the main contributions of this work while other
steps (shown in blue) represent the existing design steps in the
conventional design flows. The flow starts with a high-level
description of the design and its assertions using CAaSH.
The RTR design together with its assertions are described

by exploiting the proposed RTR structures and assertion-
operators existing in the libraries. The Haskell description is
then simulated and translated into VHDL using the CAaSH
tool. An initial synthesis is done by Xilinx ISE/Vivado syn-
thesis tool to determine the amount of hardware resources
needed for each assertion. This stage can easily be adapted
to other resource estimation or synthesis tools as long as
implementing RTR designs on partially reconfigurable hard-
ware is supported in the tool-chain. The results from the
resource estimation stage are used as input data for the parti-
tioning stage. Based on size, number of inputs, and IDG/ADG
graphs of the assertions, the assertion set is partitioned into
clusters and reconfiguration runs as discussed in the previous
section. After the partitioning stage, a synthesizable module
is generated for each reconfiguration-run of each RR. The
reconfiguration runs are used as the reconfiguration candi-
dates for the RR in the Xilinx’s partial reconfiguration flow.
We use Xilinx’s PR flow in Vivado 2015.2 for implementing
RTR designs on FPGAs with DPR support such as Zyngq, as
discussed in Section 3.

8. Conclusion and Future Work

With the increasing number of applications for reconfig-
urable platforms such as FPGAs supporting DPR, the need
for high-level design languages and tools increases to cope
with the productivity gap. Some of the FPGAs from Xilinx
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TABLE 2: Synthesis results on Zyngq-7000 FPGA.
Name FFs LUTs Max Frequency (MHz)
a0 4 15 833
al 35 108 455
a2 19 24 733
a3 43 80 570
a4 1 3 1221
a5 35 125 450
a6 3 4 940
a7 5 11 841
a8 1 3 1221
a9 3 1131
al0 1 2 1221
all 72 168 450
al2 60 217 470
al3 50 111 460
al4 62 125 501
al5 80 240 431
al6 62 129 501
al7 81 225 423
al8 61 170 423
TABLE 3: Partitioning results.
Cluster number Checkers in the cluster FFs LUTs Max. freq.
1 {a2,a3,a5,a8,al0,all} 171 402 450
2 {al,a7,al5,al7,al8} 262 754 423
3 {a0, a4, a6,a9,al12,al3,al4,al6} 245 608 460

are among the common platforms for implementing RTR
designs. However, the DPR flows from Xilinx still require
the designer to have low-level knowledge on DPR. Dealing
with low-level and time-consuming steps in the DPR design
flow can limit the design space exploration. Design tools
and description languages with higher levels of abstraction
are required to improve the design space exploration and
decrease the productivity gap for the designer. A flow for
high-level modelling and implementation of RTR designs as
well as their verification, using a unified design language, is
presented in this article. A Haskell-based functional HDL
called CAaSH is used to describe RTR designs and verification
expressions.

A design flow including modelling of RTR designs in
high levels of abstraction using the functional programming
language Haskell, as well as its implementation on partially
reconfigurable FPGAs from Xilinx, is proposed in this article.
The proposed approach uses features such as higher-order
functions, strong function composition, and parametrization
in Haskell to model RTR components and reconfiguration
candidates. A Python script called rclash, which uses the
CAaSH tool as its Haskell-to-VHDL translation core, is used
for generating a simulation-only model of the design in
VHDL, integrating the PR design flow from Xilinx, and

generating a reconfiguration management software in C.
An example design including an RTR coprocessor is imple-
mented on a Zynq FPGA from Xilinx using the proposed
approach. Adding support for more FPGAs and their devel-
opment boards and generating a more precise simulation
model of the RTR design from Haskell descriptions are the
potential future development tracks.

The proposed verification approach in this work is ABV,
with assertion checkers implemented on the reconfigurable
hardware. The design properties and their assertion check-
ers are described in the same language as the DUV and
simulated with the CAaSH tool together with the DUV. The
design properties and assertion checkers described in Haskell
language are translated into synthesizable VHDL with the
CAaSH tool together with the rest of the design. A modular
approach is used for describing the design properties. The
design properties are composed of the proposed Boolean and
temporal operator building blocks which are implemented
as FSMs and combined by using Haskell’s strong function
composition features.

A complete flow is proposed by combining the proposed
RTR design flow and the proposed ABV approach, in which
Haskell (CAaSH) is used as the unified language for describ-
ing the design and its properties. The set of assertion checkers
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FIGURE 34: (a) IDG of the partitioned checker set. (b) ADG of the partitioned checker set.
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FIGURE 35: The complete design and verification flow.

is partitioned into smaller subsets with a proposed partition-
ing algorithm to fit the reconfigurable region on the target
FPGA. Currently, a limited subset of LTL and sequence oper-
ators is supported in this work, and adding more operators to
the set of supported operators can be a potential future work.
The proposed assertion-checker circuits are not optimized for
performance or resource usage. Improving their performance
and resource usage by revising their implementation method
is another possible future work.
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