
June 2009
Svein Erik Bratsberg, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Similarity Search in Large Databases
using Metric Indexing and Standard
Database Access Methods

Erik Bagge Ottesen

Problem Description
Improving, experimenting with and implementing methods for performing similarity search in
large databases using metric indexing and standard database access methods. With special
emphasis on parallelization, distribution and continually increasing data volumes.

Assignment given: 15. January 2009
Supervisor: Svein Erik Bratsberg, IDI

Abstract

Several methods exists for performing similarity searches quickly using
metric indexing. However, most of these methods are based on main mem-
ory indexing or require specialized disk access methods. We have de-
scribed and implemented a method combining standard database access
methods with the LAESA Linear Approximating Eliminating Search Algo-
rithm to perform both range and K nearest neighbour (KNN) queries using
standard database access methods and relational operators.

We have studied and tested various existing implementations of R-trees,
and implemented the R*-tree. We also found that some of the optimizations
in R*-trees was damaging to the response time at very high dimensional-
ity. This is mostly due to the increased CPU time removing any benefit from
reducing the number of disk accesses. Further we have performed compre-
hensive experiments using different access methods, join operators, pivot
counts and range limits for both range and nearest neighbour queries. We
will also implement and experiment using a multi-threaded execution en-
vironment running on several processors.

We found that the number of pivots, but most importantly the range
limit, is the most important factors in reducing the number of candidates.
This again reduces the number of data objects that must be fetched from
disk and distance comparisons that must be performed. Selecting the ap-
propriate range limit for a KNN query is especially important, and has an
enormous impact on the response time. This can be made easier by using a
range distribution histogram for the data set, allowing a reasonable range
limit to be found for KNN queries using the expected result set size.

Our biggest contributions is the investigation of data sets and metrics,
implementation and comparison of different access methods, specifically
heap files, B+-trees and R*-trees, for use in metric indexing. Our experi-
ments show that R-trees are well suited for this purpose, and perform sig-
nificantly faster than B-trees. Specifically filtering can be performed more
than five times faster, and both range and nearest neighbour queries have
under half the response time when using R-trees. In addition we have
shown that R-trees have a high advantage when using multi-processor and
multi-core systems.

Preface

This report was written as a part of a master project for the Department of
Computer and Information Science at the Norwegian University of Science
and Technology. The report was written under the supervision of Svein
Erik Bratsberg during five months during spring 2009, under the Data and
Information Management section, Database Systems group, and as a part
of the Information Access Disruptions (iAd) research group.

The report is largely based on work performed and results gathered
during a specialization project during autumn 2008 by the same author and
supervisor. In addition parts of the report is based on the experiments and
final report written during the specialization project, both to give adequate
background and context information.

The author would like to thank his supervisor Svein Erik Bratsberg for
valuable guidance and assistance during the project. In addition Magnus
Lie Hetland provided much insight and advice in the field of metric index-
ing.

Erik Bagge Ottesen
Trondheim, June 18, 2009

Contents

1 Introduction 1

2 Background 3
2.1 Metric Space . 3

2.1.1 Distance Measurements 4
2.2 Similarity Queries . 5

2.2.1 Range Query . 5
2.2.2 Nearest Neighbour Query 5

2.3 Metric Indexing . 7
2.3.1 Partitioning . 7
2.3.2 Pivot Filtering . 7

3 Related Work 11
3.1 AESA . 11
3.2 M-tree . 12
3.3 Omni-concept . 12
3.4 iDistance . 13

4 Indexing and Query Method 15
4.1 Indexing . 15
4.2 Number of Pivots . 16
4.3 Pivot Selection . 16
4.4 Filtering . 17
4.5 Range Query . 18
4.6 Nearest Neighbour Query . 19

5 Implementation 23
5.1 Database Framework . 23

5.1.1 Buffer Handling . 24
5.1.2 Cursors . 24

5.2 Access Structures . 25
5.2.1 Heap Files . 26
5.2.2 B+-tree . 26
5.2.3 R*-tree . 27

i

5.3 Metric Indexing . 28
5.3.1 Distance . 28
5.3.2 LaesaIndex Interface 29
5.3.3 Pivot Selection . 29
5.3.4 Indexing . 30

5.4 Similarity Search . 31
5.4.1 Filtering . 31
5.4.2 Range Query . 32
5.4.3 Nearest Neighbour Query 32

5.5 Parallelization . 32
5.6 Testing and Experimentation 34

6 Data Sets and Metrics 35
6.1 Data Sets . 35
6.2 Data Distribution . 36
6.3 Dimensionality . 40
6.4 Result Set Size and Range Limit 41
6.5 Metric Performance . 43
6.6 Discussion . 45

7 Indexing and Query Processing 47
7.1 System Configuration . 47
7.2 Number of Pivots . 48
7.3 Indexing . 51
7.4 Filtering . 52
7.5 Range and Nearest Neighbour Query 56

8 Parallel Processing 59
8.1 Indexing . 59
8.2 Filtering . 61
8.3 Discussion . 65

9 Conclusion 67

10 Further Work 71

Bibliography 73

ii

List of Figures

2.1 Minkowski distance . 5
2.2 Range query . 6
2.3 Nearest neighbour query . 6

4.1 Range query filtering process 18
4.2 KNN query example . 20

5.1 Parallel query join tree example 33

6.1 Summary information of the data sets nasa, colors and TREC 36
6.2 Data distribution: nasa . 37
6.3 Combined data distribution: nasa 37
6.4 Data distribution: colors . 38
6.5 Combined data distribution: colors 38
6.6 Data distribution: TREC GOV2 (subset) 39
6.7 Combined data distribution: TREC GOV2 39
6.8 Statistics and dimensionality: nasa 40
6.9 Statistics and dimensionality: colors 41
6.10 Statistics and dimensionality: TREC GOV2 41
6.11 Expected result set size: nasa 42
6.12 Expected result set size: colors 42
6.13 Expected result set size: TREC GOV2 43
6.14 Range limits with average result set size: nasa 43
6.15 Metric response time performance 44
6.16 Metric grouped response time performance 45

7.1 Experimental system specification 47
7.2 Filtered candidate set size . 49
7.3 Distance calculations for range query 50
7.4 Distance calculations for 10 nearest neighbours query 50
7.5 Indexing time . 51
7.6 Indexing file pages written . 52
7.7 Response time for filtering process with r = 0.2 53
7.8 Response time for filtering process with r = 0.4 53
7.9 Response time for filtering process with r = 0.6 54

iii

7.10 File pages read for filtering process with r = 0.2 55
7.11 File pages read for filtering process with r = 0.4 55
7.12 File pages read for filtering process with r = 0.6 56
7.13 Number of results for random query set 57
7.14 Response time for range query with r = 0.4 58
7.15 Response time for 10-NN query with r = 0.4 58

8.1 Parallel indexing time . 60
8.2 Parallel indexing speedup . 61
8.3 Response time for filtering process with r = 0.2 using 4 threads 62
8.4 Response time for filtering process with r = 0.4 using 4 threads 62
8.5 Response time for filtering process with r = 0.6 using 4 threads 63
8.6 Filtering process speedup with r = 0.2 using 4 threads . . . 63
8.7 Filtering process speedup with r = 0.4 using 4 threads . . . 64
8.8 Filtering process speedup with r = 0.6 using 4 threads . . . 64

iv

Chapter 1

Introduction

Similarity search is important in domains where canonical ordering of data
is not possible, for instance multidimensional vector spaces or general met-
ric spaces. In a general metric space only the distance between objects can
be calculated, and as such it is trivial to return all objects within a given
range or the K nearest objects. The domains we will investigate contain
either large data volumes, or prohibitively expensive exact distance calcu-
lation, making a full scan to answer similarity queries unfeasible. Examples
of data types include large text documents, images, video files, web pages
or any heterogeneous data set where exact matches are not likely.

To solve the problem of reducing the number of needed distance cal-
culations, several solutions for indexing metric spaces, known as metric
indexing, have been proposed. However very few of these solutions allow
direct adoption in a standard database context, and none have compared
the usage of standard access methods and relational operators. Our report
will investigate the usage of standard database access methods, specifically
heap files, B-trees and R-trees, with standard join methods.

This will including indexing a large data volume in one or more index
files using the different access methods. Performing queries using range
predicates inherit to the given access methods, combined with standard
join methods, to perform pre-processing or filtering. This will result in a
candidate set that will then be post-processed in the application layer to
discard false matches.

Our main motivation is to compare the performance of B-trees against
R-trees for this purpose. This will mainly be a measure of how suited the
usage of either multiple B-trees or a single or multiple R-trees of varying
dimensionality, is at performing pre-processing in a metric space designed
for read-mostly database activity. Heap files are also included as a baseline
for comparing performance with a full file scan.

To give a better foundation we will first investigate various real-life
databases from various sources. In addition we will look at a range of

1

2

different metric distance functions to see how they differ in their perfor-
mance and statistical characteristics. We will show how the different dis-
tance functions are distributed differently even on the same data set.

Finally we will implement support for multi-threading in an attempt to
both increase performance using multi-processor and multi-core systems,
and lay the groundwork for a future effort to distribute the method over
several computers in a shared-nothing environment.

Chapter 1 has given a short introduction to the report subject. Chapter
2 and 3 will give some background information on metric indexing and de-
scribe the theory and implementation of several related and existing meth-
ods. Chapter 4 will outline the theory and describe our method, while
chapter 5 will give details of the implementation.

Chapter 6 will experiment with various data sets and metrics, and show
how they differ. In chapter 7 the indexing and query methods will be inves-
tigated and experimented with, while chapter 8 will look at indexing and
querying performed in a parallel on multiple processors. Finally a sum-
marized conclusion and ideas for further work are given in chapters 9 and
10.

Chapter 2

Background

While traditional queries are performed either in a relational database for
exact field matches, or in a full text search engine for word matches, similar-
ity searches allows querying a much wider range of information. Similar-
ity search is often performed in a non-vector space where only the distance
between objects can be measured, such a space is known as a metric space.
The search criteria is given using a query object, or prototype, and addi-
tional parameters depending on the query type. While exact matches are
seldom feasable, the system will return the nearest matches to the query
object and criteria.

In this chapter we will give some background information on the con-
cept of metric spaces, especially with regard to similarity search and metric
indexing. We will give special attention to pivot based filtering, and es-
pecially the LAESA Linear Approximating Eliminating Search Algorithm
as this is used in the implementation. We will however assume that the
reader is fairly comfortable with the subject and will not go into any de-
tailed descriptions on either subject. For a more thorough description of
metric indexing the reader is advised to read [39] or [13].

It is also assumed the reader has knowledge of database technology,
and specifically database index methods. For a description of the database
access methods used [27] or any text book about database management
systems will provide the relevant information.

2.1 Metric Space

A metric space is a generalization of Euclidean space, where only a few
properties about the objects in the space is known. Specifically the distance
between objects can be measured, but the exact position of any one object
can not be defined. For this purpose the function distance function d(x, y) is
defined for any objects x, y in the metric space. For the definition of metric
space in this report we assume the following postulates hold true:

3

4 2.1. METRIC SPACE

d(x, y) ≥ 0 (non-negativity)
d(x, y) = d(y, x) (symmetry)
d(x, y) = 0⇔ x = y (identity)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

2.1.1 Distance Measurements

The distance function d(x, y) in a metric space measures the distance (or
inverse closeness) between two objects in the given metric space. Distance
functions can be either discrete, with a fixed set of possible values, or con-
tinuous, with unlimited or very large maximum values and possibly end-
less divisibility. Virtually unlimited distance functions exists, as these are
often specific to both the data domain and application requirements. How-
ever, we will give examples of two common distance functions.

Levenshtein distance

Levenshtein distance, or edit distance, was first presented in [20] as a way
to measure the distance between two strings. The measure is actually the
number of edit operations that must be performed to transform one string
into the other. Here an edit operation is defined as one of the following:

insert a single character is inserted into the string

delete a single character is deleted from the string

update a single character is deleted, and a new character inserted in the
same position

This results in a discrete function, assuming that string lengths are con-
strained to a certain maximum. The edit operations can also be weighted,
however to conform with symmetry insertions and deletions must be weighted
equal. The results of the Levenshtein distance function is very dependent
on string lengths, preferring short strings over longer ones. This can be
handled by performing normalization as described in [38].

Euclidean distance

Euclidean distance is a well known geometric distance function that repre-
sent the shortest distance between two points. In a two dimensional space
it is given by the function d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2. This func-

tion is a Minkowski distance functions which can be defined generally for a

CHAPTER 2. BACKGROUND 5

Figure 2.1: Displays the border at a constant distance from the center for
various Minkowski distance functions Lp

n-dimensional space as:

Lp = p

√√√√ n∑
i=1

|xi − yi|p

Euclidean distance is here the L2 function, while the L1 function is the
city block, or Manhattandistance. This method assumes independence
among coordinates when measuring distance, and as such will be influ-
enced by codependent coordinates. See Figure 2.1 for a illustration of Minkowski
distances in a two-dimensional space.

2.2 Similarity Queries

Several query methods exists in metric spaces. We will concentrate on
the two most basic method, range queries and nearest neighbour queries.
Other, more complex, query types exists and are in use. However, these
will not be used in our implementation and will therefor not be discussed.

2.2.1 Range Query

One of the most basic query types that can be performed in a metric space
is the range query. This returns all objects within a given distance from
the query object. Any object with a distance d(q, x) ≤ r is included in the
result set, while any object with d(q, x) > r will be discarded. This can
easily be performed naively by scanning the data set and calculating the
distance between the query object and every data object, however this will
cause a large amount of distance calculations, an operation that is often
very expensive.

2.2.2 Nearest Neighbour Query

A nearest neighbour (NN) query finds the closest object in the data set to
the given query object q. In other words it finds the object with the least

6 2.2. SIMILARITY QUERIES

Figure 2.2: Range query in a two-dimensional Euclidean space. The data set
is represented by dots, where the black dots are part of the result set. Five
circles have distance from the query object d(q, x) ≤ r, and are included in
the range query with limit r.

Figure 2.3: Nearest neighbour query with k = 2 in a two-dimensional Eu-
clidean space. The two nearest objects are marked and will be returned as
the result set.

CHAPTER 2. BACKGROUND 7

distance d(q, o), so that no other object exists with a smaller distance to the
query object. More generally a K-nearest neighbour (KNN) query finds the
K closest objects to the given query object. As several objects can be at the
same distance from q, which is returned in a KNN-query containing one of
the objects is undefined. Some implementations include all objects, even if
thus exceeding the limit of K objects.

Several variations of this query type exists. For instance nearest neigh-
bour queries can be incremental, continually returning the next nearest
neighbour. Reverse nearest neighbour is also possible, returning all ob-
jects that has the given query object as one of its nearest neighbours. We
will describe and implement the KNN query type.

2.3 Metric Indexing

Metric indexing is the concept of using indexing techniques to reduce re-
sponse times for similarity queries. This is most often done by reducing
the number of distance calculations, but for a disk based index reducing
the number of disk pages fetched is just as important. Several methods
exists for metric indexing, and we will describe a few in the next chapter.
In this section some basic principles of metric indexing will be described,
especially those related to the subject of the report. First we will briefly
discuss partioning, before describing pivot based filtering and two related
algorithms, AESA and LAESA.

2.3.1 Partitioning

Partitioning is used to dive the data set into two or more subsets. This al-
lows queries to be performed on only a subset of the data, and possibly
only a subset of the subset, and so on. Partitioning is the method used in
indexing canonical data, for instance binary searches and trees divide the
search space in half for each step. Metric spaces can also be partitioned,
usually by the use of one or more pivot objects and dividing the data set
according to the distance from the nearest pivot. However, due to the in-
exact nature of the similarity queries, it is not guaranteed that partitioning
will in fact reduce the number of distance calculations or data pages that
must be fetched by any relevant margin. However, this technique is used
by many of the existing indexing methods.

2.3.2 Pivot Filtering

Pivot filtering consists of indexing the distance between each object and a
set of pivots. The pivots can either be chosen from the data set, or be a
separate set of real or fictitious objects, and can be chosen randomly or by
a variety of different selection algorithms.

8 2.3. METRIC INDEXING

These pivots are then used during querying to reduce the data set to
a candidate set, by eliminating objects that are known to be outside the
query region. The candidate set will usually still have to be checked for
exact matches, as false positives are fairly common.

AESA

The Approximating and Eliminating Search Algorithm (AESA) [30, 35] treats
all objects as pivots, and indexes the distance between every pair of object.
During querying a pivot object p is chosen from the pivot set and the dis-
tance to the query object calculated. From this a lower bound in the dis-
tance to all other objects is found by using the lower bound function ď. All
objects that have a lower bound higher than the current range limit can be
eliminated immediately.

d(p, o) ≤ d(p, q) + d(q, o)⇒ d(q, o) ≥ ˇd(q, o) = |d(p, o)− d(p, q)|

A new pivot is then chosen from the candidate set, and the filtering is
performed again with the greatest lower bound stored in the candidate set.
Note that the upper bound could also be used for fast inclusion, that is
including objects that are known to be within the range limit. However as
lower bounds are much tighter than upper bounds, and usually far more
objects are discarded than included, lower bounds are the most important.
With the set of used pivots P the lower and upper bounds are given by:

ď = max
p∈P

(|d(p, o)− d(p, q)|)

d̂ = min
p∈P

(d(p, o) + d(p, q))

Pivots are usually chosen as the object with the lowest lower bound. As
pivots near the query object will be more effective, it is intuitive to take a
pivot that has the possibility of being the closest object. This is however
not necessarily the most effective, as demonstrated by the improved per-
formance in iAESA [10] by using a different pivot selection heuristic.

The filtering algorithm just described require a range limit to be known.
For a KNN query, the range limit can either be estimated or set to infin-
ity. On each subsequent distance calculation that results in an object that
is within the K nearest objects, the range limit can be reduced to the Kth
nearest distance, and candidates with a higher lower bound immediately
discarded.

AESA is the best known algorithm for performing both nearest neigh-
bour and range queries when measured in the number of distance calcu-
lations. This comes at a price of O(n2) memory consumption and similar
worst-case processing time. The latter is reduced by Reduced Overhead
AESA [36], while the former will be discussed shortly.

CHAPTER 2. BACKGROUND 9

LAESA

Linear AESA [23] solves the main problems with AESA, of quadratic time
and space complexity, by reducing the number of pivots. Instead of index-
ing the distance between all pairs of objects, only a fixed size subset is used
as pivots. Query processing is performed as before, except the pivot used
for filtering must be chosen from the pivot set and not the entire data set.
This also means that pivots should be handled specially when it comes to
discarding objects, or kept in a separate set where they can be utilized as
pivots despite being discarded from the candidate set.

Using a reduced pivot set reduces the time and memory complexity
to O(np) where p is the number of pivots, while increasing the number of
distance calculations needed during query processing. This is a trade-off
between indexing time and memory usage against query processing time.
The tightness of the lower bound is also reduced by the use of non-optimal
pivots for the query object.

10 2.3. METRIC INDEXING

Chapter 3

Related Work

There are several existing methods for indexing a metric space to provide
fast range and nearest neighbour queries. However, most of the existing
methods are designed for use in main memory and does not work espe-
cially well when either the data set or index structure does not fit in main
memory. Of the remaining methods that do allow the index structure to
grow beyond the available main memory, specialized access structures are
often required for the index files, making them unsuitable for use in a stan-
dard database system.

There exists however a few notable methods that work well within the
framework of database systems, most of these are based on B-trees or R-
trees similar to the method we will propose. We will discuss the most
relevant methods in this chapter. For a more detailed survey of existing
methods see [13].

3.1 AESA

We have already described AESA [30, 35] and LAESA [23] in section 2.3.2.
AESA is the fastest known nearest neighbour algorithm, however slightly
surpassed by its variant iAESA [10] that modifies how the pivots are se-
lected during query processing. The main issue with AESA is a quadratic
time and space complexity, making the solution infeasible for larger data
sets. This problem is solved by LAESA which utilizes a fixed number of
pivots that is much fewer than the number of data objects, and as such
only incurs linear time and space complexity with only a slightly higher
query processing cost [28].

Several algorithms have improved on, or is based on, the LAESA method.
TLAESA [22] reduces the processing CPU time by utilizing a tree struc-
ture for storing the distances. Spaghettis [5] stores the distance matrix in
columns ordered according to distance from the pivot, with pointers be-
tween the cells to allow intersecting the arrays of different pivots. This is

11

12 3.2. M-TREE

similar to our method of storing the distances from each pivot ordered by
distance with a key that can be used for intersection and retrieval of data
objects.

3.2 M-tree

The M-tree [7] is a disk based, balanced tree structure, very similar to B-
trees and R-trees. The tree contains several nodes, each node contains a
series of objects that are all contained inside a sphere or ball, similar to
bounding regions in R-trees. The tree is built in a bottom-up fashion, in-
serting items into the single root node until it is full. The node is then split
in two and both parts (now leaves) are inserted into a new root node. This
is equal to the way both B-trees and R-trees are built, and ensures a mini-
mum fill factor of 50% in all nodes (except the root).

Several variations of the M-tree have been proposed, one of the most
compelling is the Slim-tree [4]. The Slim-tree defines the fat-factor of a
tree as a measure of the overlap between nodes and their metric regions.
It uses new insertion and split algorithms to reduce the fat-factor, and as
such improve both insertion and query performance greatly. In addition
a fat-reduction algorithm called the Slim-Down algorithm is specified that
attempts to reduce the fat-factor of an existing tree by moving outlier ob-
jects from a node to its overlapping siblings. This algorithm can be used
on most other variants of the M-tree, and in fact also on other trees using
overlapping regions, for instance R-trees.

The Pivoting M-tree [33] combines an M-tree with the LAESA algorithm
to allow better pruning of nodes. This variant stores a matrix of precom-
puted distances between a set of pivots and the data objects in each node.
While this will increase the number of disk accesses due to an increased
storage need, it has a positive effect on the number of distance calculations
that must be performed.

The Metric B+-tree [15] is not based on the M-tree, but a variant using
a standard B+-tree as the data store and a block tree for auxiliary informa-
tion. The data is partitioned using slices rather than spheres as in M-trees,
leading to less overlap and thus potentially increased performance due to
fewer nodes to traverse. The unique aspect of the MB+-tree is the usage
of standard disk based access methods. There is however little evidence of
how well it will fare in complex metric spaces where their approximation
might not work as well.

3.3 Omni-concept

Omni-concept [11] is based on the selection of several foci (pivots), and in-
dexing the distance from all objects to all pivots. Range queries can then be

CHAPTER 3. RELATED WORK 13

performed using range queries from each foci and intersecting the results,
while KNN queries can be performed with a predefined or estimated range
query followed by a post processing step. This is in fact an implementation
of LAESA, despite the authors seemingly being unaware of the existence of
LAESA.

The scheme can be implemented on top of several existing indexing
structures, and the authors describes the usage over sequential files, B+-
trees and a single R-tree. Each have its own specialized implementation,
and as such the Omni-concept as described in [11] is not a general scheme
that can be implemented on any access structure.

This is the existing method that most resembles the method described
in this paper. The major difference is our focus on comparing the B-tree
and R-tree indexing structures, as well as our methods generality allowing
it to be used with virtually any access structure. We add the possibility
of using several R-trees of a fixed or variable dimensionality to increase
performance, parallelism and high-dimensionality scalability.

3.4 iDistance

iDistance was first proposed in [37] and later refined and compared with
both Omni-sequential and M-tree in [16]. It is based on using several pivots
(reference points) and partitioning the data set according to distance to the
nearest pivot, a ball partitioning scheme using several pivots. The unique
concept of iDistance is how the distances are stored. The distance between
pivots and their data objects are stored in intervals as a part of one large B+-
tree. Each interval of the B+-tree containing the pivot and all data objects
with this pivot as its nearest, ordered according to their distance from the
pivot.

This allows queries to be performed as one or more range queries within
the single B+-tree. One range query must be performed for each partition
that the query range intersects with, and the union of the result of all the
range queries are returned for exact distance calculation. For KNN queries
the range limit is gradually extended until K objects are found within the
limit. As only the distance between each object and a single pivot is known,
the lower bound will usually be very loose except when the query object
is very close to a pivot. This makes using lower bounds for finding and
pruning nearest neighbours, similar to AESA, infeasible. Thus leading to
more distance calculations than other, similar methods.

The experiments performed with iDistance prefer comparisons of page
reads and response time, and does not take any account of the number of
distance calculations. All the experiments are also performed using Eu-
clidean data sets, ensuring an insignificant distance cost. With data sets of
this type, sequential scan becomes one of the most effective methods and

14 3.4. IDISTANCE

the purpose of metric indexing is lessened. In fact iDistance aims to reduce
the number of page accesses at the cost of increased number of distance cal-
culations. This conflicts with experiments performed for most other meth-
ods, as they usually concentrate on reducing the number of distance calcu-
lations, and makes it harder to compare iDistance with other methods as
well as our own.

Chapter 4

Indexing and Query Method

Several methods for performing similarity search have been proposed, and
implemented, in earlier works. While most of these concentrate on mem-
ory only systems, there are also a few that work with disk based systems.
Some are even suited for implementation in database systems, especially
the many M-trees based methods. However, few or none of these are suited
for use with the currently available commercial database management sys-
tems.

The method we will propose is actually an implementation of earlier
ideas using only what is available in a standard database management sys-
tem. Our method uses only standard database access methods available
in a large range of currently used systems, in addition to a combination
of standard relational operators and custom operators to handle exact dis-
tance calculations and KNN-queries more effectively. The latter can eas-
ily be implemented in the application layer, with the database layer re-
sponsible for the filtering and the application layer responsible for post-
processing, including application-specific exact distance calculations.

4.1 Indexing

Our database contains one data file and one or more index files. The data
file contains all objects and an unique key for the object, that is it contains
a set of tuples (i, oi) for each data object in D. The index is based on one or
more independent pivots, equal to the index in LAESA [23] only with the
index stored in files on disk. The number of index files depends on both
the number of pivots and the access method used.

When a pivot is added to the index, a new index file for this pivot is cre-
ated. Then the distance between the pivot and all data objects is calculated,
and the distance and key added to the index file. That is for each object a
tuple (d(p, oi), i), where i is the object key, is added to the pivots index file.

How the objects are ordered in the index file depends on the access

15

16 4.2. NUMBER OF PIVOTS

method, they can be added consequently as they are indexed, or they can
be ordered on the result of the distance function. The formed is used for
our heap file based implementation, while the latter is used for the B-tree
based implementation.

Pivots can also be added in a group, either with separate index files or,
in the case of spatial access methods, combined in a single file. This is used
for the R-tree access method described later. Adding several pivots at once
saves disk reads from the data file, as the data file only needs to be scanned
once for the entire group instead of once for each pivot.

4.2 Number of Pivots

It is important to note that the result size for both range queries and nearest
neighbour queries remains constant and is independent of the number of
pivots used. This is because the filtering process guarantees that all data
objects within the limit is returned, but gives no guarantee that every object
returned is in fact inside the range limit. The number of pivots is therefor
only related to how many candidates outside the limit will also be returned
and will have to be purged by post processing. This is also true for nearest
neighbour queries, as only objects inside the range limit will be added to
the result set despite being a part of the candidate set.

We then have that the only difference, with regard to both query types,
is how many distance calculations must be performed during filtering and
in post processing. During filtering the number of distance calculations
equals the number of pivots, as the only distance that is calculated is be-
tween pivot objects and the query object.

For post processing the number depends on the query type. Range
queries will need to process every candidate, and as such will need as many
distance calculations as there are candidates. Nearest neighbour queries
are a bit more complex, and depend on the quality of the lower bound
estimates. Better lower bound estimates allows the post processing to ter-
minate faster, as it can purge all candidates with a lower bound higher than
the distance to the Kth nearest neighbour. In general the more pivots are
used for filtering, the better the lower bound estimates will be.

4.3 Pivot Selection

For the initial pivot we employ the technique described in [11]. A data
object is chosen at random, or simply using the first object in the data set,
and the distance from this object to all other objects are calculated. The
object that is furthest away, that is it has has the highest distance d(o1, oi)
where o1, is the selected object, and will be used as the first pivot. The
initial pivot thus requires n = |D| distance calculations to be found.

CHAPTER 4. INDEXING AND QUERY METHOD 17

For selecting further pivots, we aim at exploiting the known informa-
tion regarding distance between the set of all objects and all current pivots.
In order to maximize the pruning power of the newly selected pivots, any
new pivot candidate should be as far away from the current pivot set as
possible. This is done by scanning all the existing pivot indexes and com-
piling a list of all objects and their distance to the nearest pivot. The object
that has the highest minimum distance, in other words is furthest away
from their nearest pivot, will be the new pivot candidate. Using the nota-
tion introduced earlier, we select the candidate oi with the highest value of
minp∈P(d(p, oi)).

Our method is similar to the method used in [11] as well as the incre-
mental selection method described in [3]. Unlike the latter however, we
rely solely on maximizing the distance between existing pivots and the new
candidate. This results in the selection of several outliers as pivots, some-
thing that while suitable in a Euclidean space, is not optimal in a general
metric space [3, 25]. Our method however has the advantage of determin-
ism and fast pivot selection without performing a single distance calcula-
tion during pivot selection.

A better solution to the pivot selection problem in non-Euclidean met-
ric space is selecting pivots that are suitably far apart, instead of maximally
separated, as done in [25]. This greatly reduces the number of outliers that
become pivots. Our algorithm can similarly be extended by selecting can-
didates that have minp∈P(d(p, oi)) > Mα as in [25], while still exploiting
the known information and eliminating the need for distance calculations
during pivot selection.

4.4 Filtering

The filter process must be supplied with two parameters, the query object q
and a range limit r. In addition a set of index files supporting range queries
are needed. The result of the filtering is a candidate set, and filtering is most
often a pre-processing step to reduce the number of data objects before the
actual query is processed.

The filter process starts by performing a range scan on each index file.
For a data object to be withing the given range, the distance from the pivot
to the data object must also be within a given range. This is given by the
triangle inequality, and results in the inclusion of only objects that satisfy
|d(p, q) − d(p, oi)| ≤ r. As d(p, oi) is pre calculated and stored in the index
file, only d(p, q) must be calculated and all objects between d(q, p) − r and
d(q, p) + r are returned as candidates for this pivot. This also allows us
to find the lower and upper bounds as seen from this pivot, without per-
forming any distance calculations, respectively ď = |d(p, oi) − d(q, p)| and
d̂ = d(p, oi) + d(q, p).

18 4.5. RANGE QUERY

(a) (b)

(c) (d)

Figure 4.1: Range query filtering process in a two-dimensional Euclidean
space using three pivots: (a) The query object with surrounding data ob-
jects; (b) First pivot, objects outside the range d(p1, q)± r are discarded; (c)
Two pivots, objects outside d(p2, q)± r are also discarded. (d) Three pivots,
only candidate set remains.

The candidate set returned from each index file is joined with the can-
didate set of every other index file, and only the objects that exists in every
candidate set is returned. In practice this is done by intersecting the candi-
date set from the first index file with the candidate set of the second index
file, and further intersecting the result with the next index file until the final
candidate set. This is shown in Figure 4.1 using three pivots.

The lower bound distances returned from each index file is combined
and returned as a single greatest lower bound, that is ď = maxp∈P(|d(p, oi)−
d(q, p)|, while the upper bound is discarded. In a relation database this
is performed using a series of range scans for each index, joined using an
equi-join operator and with the highest distance returned for each join. The
result of the filtering process is a set of tuples (i, ď) containing the object key
i and the lower bound distance ď between the query object and each data
object. The lower bound can be used to reduce the number of distance
calculations needed in post-processing steps, as will be seen for nearest
neighbour queries.

4.5 Range Query

Range queries must be supplied with two parameters, the query object q
and a range limit r. The query will return any object o that has d(q, o) ≤ r,

CHAPTER 4. INDEXING AND QUERY METHOD 19

as well as the exact distance from the query object to each object in the
result set. The query is performed in two separate steps. The first is a
filtering process as described above, and the second an exact distance cal-
culation post-processing on each of the candidates resulting in a final result
set including only objects that are known to be within the range limit.

Post-processing is performed on each candidate as it is returned from
the filtering process, this means that filtering and post-processing can be
performed in parallel. For each candidate, the data object is fetched from
the data file using the key, and the exact distance between the query ob-
ject and the data object is determined. If it is within the range limit, that
is if d(q, oi) ≤ r, the object will be included in the result set, otherwise dis-
carded. The result set contains tuples (oi, d(q, oi)) with the object oi and
the exact distance between the query object and each object. The order of
the result set is undefined, and independent of both the insert order and
distance to query object.

The cost of the query depends on the range limit and number of pivots,
as well as the data set, and will be further explored in chapter 6 and 7. The
number of distance calculations is given by ndistance = npivots + ncandidates,
where npivots distance calculations must be performed to find the distance
between the query object and each pivot during filtering, while ncandidates
are performed during post-processing to find exact distances to the result
set and discard the remaining objects.

4.6 Nearest Neighbour Query

Nearest neighbour (NN) query or K nearest neighbours (KNN) is sup-
ported by first performing a range filter to remove objects from the data
set that are too far away to be interesting. Both parameters for the filter
process, a query object q and a range limit r, must be supplied, in addition
to the maximum number of nearest neighbours k that should be returned.

The range criteria used in the range query can either be determined
from the intrinsic dimensionality as in [11], or it can be provided by the
user. It can also be found by trial and error, performing an incremental
search with increasing query ranges until the wanted number of candidates
are returned. Too large a range criteria will lead to a large candidate set that
needs post-processing, and too small a range criteria might lead to too few
candidates and as such less than the K nearest neighbours returned.

After the initial range-based filtering is performed, the exact distances
needs to be calculated and the candidates ordered according to shortest
distance to the query object. This is done by first ordering the candidate
set ascending according to the lower bounds that are returned from the
filtering step. Then the exact distance is calculated for each candidate and
the candidate moved to an ordered list limit of K entries. The ordered list is

20 4.6. NEAREST NEIGHBOUR QUERY

i ď d

9 0.02 -.–
3 0.04 -.–
6 0.12 -.–
1 0.32 -.–
5 0.40 -.–

k i d

1 - -.–
2 - -.–

(a)

i ď d

9 0.02 0.22
3 0.04 -.–
6 0.12 -.–
1 0.32 -.–
5 0.40 -.–

k i d

1 9 0.22
2 - -.–

(b)

i ď d

9 0.02 0.22
3 0.04 0.05
6 0.12 -.–
1 0.32 -.–
5 0.40 -.–

k i d

1 3 0.05
2 9 0.22

(c)

i ď d

9 0.02 0.22
3 0.04 0.05
6 0.12 0.12
1 0.32 -.–
5 0.40 -.–

k i d

1 3 0.05
2 6 0.12

(d)

Figure 4.2: KNN query example with k = 2. Top table contains candidates,
and bottom table contains the result set for each step. (a) 5 candidates re-
turned from filtering, sorted on lower bound distances ď, and empty result
set. (b) First candidate has distance d9 = 0.22, and is added to the result
set. (c) Second candidate has distance d3 = 0.03. (d) Third candidate has
distance d6 = 0.12, object 9 is discarded from the result set and replaced by
6. As all further candidates have lower bounds ď exceeding d6 = 0.12, the
process terminates with only 3 distance calculations performed.

also what will become the result set, and will always contain the K nearest
objects found up to this point. Any object that is found to be further away
than the Kth object currently in the result set is discarded, as it is known
that at least K objects are closer.

Further, the exact distance calculations can be stopped, and all further
candidates discarded, once the lower bound of the next candidate exceeds
the Kth entry in the result set. This is because all further candidates have
a lower bound higher than the K objects that are currently in the result set,
and as such must have a distance that is also greater than each of these
objects. This post-processing is illustrated in Figure 4.2.

For this to work efficiently a good estimate for the range query is re-
quired, as too low a range limit will result in too few candidates to guar-
antee a result set if size K. Even if more than K candidates exists, all the
candidates with a higher distance than the range limit must be discarded
as there might exists other objects closer to the query object that have been
filtered away. As such it can not be guaranteed that the result set contains K
objects, but the objects in the result set can be guaranteed to be the nearest
neighbours and in increasing order of distance.

The post processing described here is identical to the algorithm used in
LAESA [23] and k-LAESA [24], and results in far fewer actual distance cal-
culations than number of candidates returned from the filtering process. As

CHAPTER 4. INDEXING AND QUERY METHOD 21

the presorting of candidates according to lower bound requires all objects
to be returned from the filtering process before post-processing begins, it
can not be performed in parallel with the filtering process. The exact cost
of the KNN query depends on how many candidates must be tested before
termination, however the cost can be upper bounded for the worst case
with the same cost as for range query described in the previous section.
The average cost is usually less than half of this for normal queries.

22 4.6. NEAREST NEIGHBOUR QUERY

Chapter 5

Implementation

The methods described in the previous chapter has been implemented in
order for experiments to be performed and for the usage of future appli-
cations. The implementation is done in the Java programming language,
and is platform independent with the prerequisite of supporting the Java
Virtual Machine with access to a file based storage device. To ease develop-
ment of the database layer, the database framework is based on the NEU-
Store package [9].

In this chapter we will detail how the various parts of the database and
application have been implemented. We will start with the database layer,
and then explain the indexing and query processing that is performed both
in the database and application layers.

5.1 Database Framework

The database framework creates a framework for supporting a disk based
database with varying access structures, query processing methods and
buffer handling. This is based on NEUStore, a Java package that aims to
support the development of disk-based, paginated, and buffered index structures.
NEUStore provides only the basic building blocks for a database system,
such as page and buffer handling. In addition example implementations of
heap files and buffers are provided. While lock handling is supported for
atomic operations, transactions are not used.

On top of this package we implemented several access structures, query
processing methods, join methods and relational operators. As we have
based our system on the NEUStore package, we are also limited to some of
the limits in this package. Specifically NEUStore assumes distinct keys, and
handles keys and data objects differently. It also assumes that all keys have
a total ordering, while data objects need only be comparable for equality.
To be able to fulfill our requirements the division between key and data
will be loosened, while some access methods will only allow a certain type

23

24 5.1. DATABASE FRAMEWORK

of keys.

5.1.1 Buffer Handling

Buffer handling is performed during both read and write operations on any
database page. The buffer has a fixed number of pages that can be held in
memory, and must also control which pages are purged when the buffer is
full. For read operations the page can either be fetched from disk or from
memory, while write operations must additionally decide when and how
to write the page to disk. There are also many methods for deciding which
page should be swapped out when the buffer is full.

In our experiments we have used a naive Least Recently Used buffer im-
plemented in the LRUBuffer class, where the page that was last accessed
is removed from the buffer whenever it is full. Writes are handled in a no-
steal/no-force method, that is buffer pages can not be written before they
are unpinned, and are not forced to disk at commit. This implementation
does not differ between dirty or non-dirty pages, nor between index and
leaf pages, when choosing a page for purging. It also has no special han-
dling of file scans, and as such perform badly when many or large files are
scanned.

5.1.2 Cursors

For query processing cursors are the most important objects. The Cursor
interface defines three methods: next() for moving to the next record
and returning true or false indicating if any more records are available;
getKey() for fetching the current key; and getData() for fetching the
current data object. This simple interface must be implemented and be the
result of any query, join or relational method. In addition any join and re-
lational operator should take cursors as input parameters, so as to allow
combinations of several operators.

As virtually any relational method must take as input zero or more cur-
sors and result in a cursor object, several different cursor have been imple-
mented. Most of these are used in special operations, and will be described
in the appropriate section. A few general ones will be described here. Many
of these have since implementation been removed from the project as they
were superseded and no longer in use, but are still included here for de-
scriptive purposes.

SelectionCursor is a relational operator discarding any object that does
not pass the selection criteria given. The selection criteria is defined
using a Selection class.

RangeCursor is a specialization of the selection cursor, implementing the
SQL BETWEEN method. This discards any object outside the given

CHAPTER 5. IMPLEMENTATION 25

range. A single input cursor, as well as minimum and maximum
boundaries must be given as input.

UnionCursor is a set operator taking one or more input cursor and re-
turning all objects from all input cursors as a single cursor. This does
not discard duplicate objects, and the data is returned in the same
order as in the input cursors, and in the order of cursors. Similar to
SQLs UNION ALL.

IntersectCursor is a set operator taking two input cursors and return-
ing the key and data objects that are in both cursors. Both key and
data must be equal, and the resulting order is undefined. Similar to
SQLs INTERSECT.

SwapCursor swaps the key and data objects of the input cursor. However,
it does not change the data type of these, and as such both objects
should implement the Key and Data interfaces of NEUStore.

NestedLoopJoinCursor implements a standard nested loop equality join
on two input cursors and returns the data object of the first cursor.
As most cursors does not support rescanning, this implementation
requires the entire inner cursor to fit in available memory.

HashJoinCursor implements a standard hash based equality join on two
input cursors and returns the data object of the first cursor. Again the
inner cursor must fit in available memory as hash buckets are not
written to disk in this implementation.

BufferedCursor is used for implementing parallelization and will be
described further in section 5.5

5.2 Access Structures

Several access structures were implemented or refined as a part of this
project. All the access methods are extended to support LaesaIndex. As
LaesaIndex only requires support for insertion and range queries, virtu-
ally any access method can be used. As our experiments will not contain
updates or deletes, these were not implemented in all the access methods.

A specialized LowerBoundCursor is implemented for each index method
to return the lower bound on the distance between the query object and the
results, and not the distance between the pivot and the results, as a data
object. In addition the object key is returned as the key, as this will be used
later for joins.

26 5.2. ACCESS STRUCTURES

5.2.1 Heap Files

Heap files are unsorted files where each record is append to the end of file
or in the first unfilled page. The original heap file implementation was
performed by Donghui Zhang and is a part of neustore, this was however
modified during the project to be better suited for generalized usage. The
heap file implementation is located in the package neustore.heapfile
and the main class is HeapFile. This contains a linked list of full and non-
full HeapFilePage pages, that again contain a list of HeapFileRecord.

When a record is inserted a new record is created and appended to the
first non-full page. If no non-full page exists, a new page is allocated and
added to the non-full list. If the page is now full it is moved to the list of
full pages. This allows insertions in constant time. The only available direct
access method is a full scan. Searches and range queries are implemented
by performing a full scan followed by a selection operator. Deletions are
similar to a search, followed by removing the record from the page if found
and moving the page to the non-full list.

5.2.2 B+-tree

B+-tree is implemented as described in [27, ch. 10] but without support for
deletion and updates. The implementation consists of a tree hierarchy of
BTreePage nodes that can represent both index and leaf nodes. Both con-
tain a SortedRecordList for maintaining a sorted list of records, with
each record consisting of a key and either a page id for the next level or
data objects for the leaf pages.

Most of this implementation was performed by the project supervisor
Svein Erik Bratsberg as a part of another, earlier project. Some tweaks and
bug fixes has been performed as part of this project by the author, mostly
to allow the B+-tree to function properly within the general metric index-
ing framework. The implementation was also extended with the subclass
LaesaBTree that implements LaesaIndex and allows for the usage of
the B+-tree in LAESA indexing and querying.

Searches are performed by traversing the tree from root to leaf follow-
ing the paths that contain the interval of the desired key. Binary searches
are performed in each node. Range queries are implemented by a tree
traversal for start key, followed by a scan of leaf nodes until the end key
is found. As the record are sorted in each page, the results of range queries
is sorted on the key in ascending order.

Insertions are performed by a search for the key, followed by an inser-
tion and possible split of the leaf node that was traversed last in the search.
Duplicate keys are allowed, as this is a prerequisite for distance indexing
objects that can have the same distance from the pivot.

CHAPTER 5. IMPLEMENTATION 27

5.2.3 R*-tree

Several R-tree methods was investigated before choosing the R*-tree [2].
The main reason for this choice was because this is the most commonly
used R-tree type used in database systems, due mostly to it’s engineering
approach to reducing overlap and thus increasing query performance [21].
The implementation is faithful to the description in [12] and [2] except for
two key areas.

During experimentation we found that our usage of the R*-trees was
mainly CPU bound, and thus disabled optimizations that attempt to reduce
file accesses at the cost of increased CPU time. Beckmann [2] states that
minimum-overlap has a minimal effect on the number of file reads, with the
cost of increased cpu-time. Reinsertions were also disabled as these were
found to have no effect on query processing, but a detrimental effect on file
accesses and time during indexing, especially for high-dimensional trees.

The implementation is located in the ntnustore.rtree package, with
the main class RTree. The main tree has a root node, with a links to page
ids of all children. Leaf pages have a list of data objects instead of page
ids. The RTreePage represents both leaf and index pages. Each page
a RTreeRecordList, which is basically a list of RTreeRecord. Each
record contains a key and a data object, however the key is not user defined
and can only be a RTreeRegion. This limitation was added to ensure the
algorithms used work properly, as there was a need for multidimensional
data, and also support for several algorithms available for those data types.
The RTreeRegion contains methods for area, margin, union, intersection
and containment calculations on region objects.

Insertions are handled by first using the chooseSubtree() method to
find the best leaf node to place the new object. The best node is defined as
the node that needs the minimum overlap or area enlargement, depending
on the node type. When a leaf node is found the object is inserted and
the MBR of the leaf node and all parent nodes are adjusted accordingly. If
the node is overfull after insertion it is split according to the best axis and
grouping of objects within this axis. The new node is added to the parent,
and further splits could occur propagating up the tree. If the root node is
split a new root is created. Duplicate keys are allowed, and for this reason
deletes and updates are not implemented.

Queries are implemented in RTreeRangeQueryCursor and performed
using a depth-first traversal of the tree from the root node. A list of page
ids for unvisited nodes are kept on a stack. For each node visited the MBR
of each children is tested for intersection with the query region. If they in-
tersect the child is either added to the result set, if this is a leaf node, or to
the unvisited node list. The order of results is undefined and not related to
either the key or data objects ordering. Due to the search method used the
stack is limited to the number of records per index node times the height of

28 5.3. METRIC INDEXING

the tree, and with a page id of 4 byte it can easily be kept in memory. This
method ensure that no page (except possibly the root) is fetched from disk
unless their MBR intersects with the query region.

LaesaIndex is implemented in RTreeLaesaIndex, and differs from
the heap file and B-tree index in an important way. Because the R-tree is
multidimensional, and only the lower bound should be returned with the
query cursor, this will need to calculate the greatest lower bound. This
is done by calculating the lower bound for each pivot, between the query
object and result object, and then calculating the greatest lower bound. This
is equal to what is done during joining, and will be described later in this
chapter.

5.3 Metric Indexing

While the bottom layer of the index is dependent on the access methods
used, the higher level application logic is independent of access method,
and can in fact simultaneously be used with different access methods for
each index file. While the access methods ensure that it is possible to insert
and query for each pivot (or set of pivots in the case of R-trees), the higher
layer application code is needed to coordinate insertions in multiple index
files, perform distance calculations, and distribute, manage and join query
results.

This section will describe the concepts, classes and methods used dur-
ing indexing, while the next section will concentrate on query processing. It
should be noted that the various LaesaIndex implementations described
in the previous section is also a part of the application logic. However, as
these are dependent on the access method used, they have been described
previously.

5.3.1 Distance

A general interface for distance calculations is given in Distance. All dis-
tance implementations must implement this interface, with either a gener-
alized data object or specified data type. All implementations are located
in the package ntnustore.distance. We have implemented several dis-
tance metrics specifically for this project, as well as a wrapper for the Sim-
Metrics project [32] (albeit none of the SimMetrics distance measures are
used in the experiment). For more information regarding various string
metrics and the implementation of these see [31].

Two main methods are defined in the interface: initialize(o1) is
used to initialize the distance calculation using the given (o1) data object
(usually the pivot or query object); distance(o2) returns the distance
between o1 and o2, that is d(o1, o2). In addition getDistances() is used

CHAPTER 5. IMPLEMENTATION 29

for experimental purposes, and should return the number of distance calcu-
lations performed or, if the cost is more complex, a similar value describing
the cost of all distance operations performed since initilization.

For string based data sets we have implemented the Levenshtein dis-
tance, or edit distance, in the class LevenshteinDistance. In addition
we have introduced a variant using words as the methods alphabet, for
increased speed and reliability in the class LevenshteinWordDistance.
For vector data a general Minkowski distance has been implemented in the
class LXDistance, and in addition the Euclidean and Chebyshev distance
have been implemented in L2Distance and ChebyshevDistance. All
the distance algorithms are described in section 2.1.1.

5.3.2 LaesaIndex Interface

The LaesaIndex interface is implemented by all access methods that sup-
port LAESA indexing and querying. In practice this is done by a subclass,
and not the actual index structure. The interface contains two relevant
methods: insert(key, data) allows the insertion of new data objects;
query(query, range) returns all data objects within the given range of
the query object, as well as the lower bound distance between the query
object and the data objects. The result set might contain false matches, and
should only be treated as a candidate set until post-processed.

In addition the class LaesaIndexList implements the interface, and
thus allows a list of index files to be grouped together and handled as one.
This class is also used by applications and contains the high level interface
and application logic for distributing inserts, handling queries and joining
the results from the list of indexes. The detailed operation of this class will
be described in the relevant sections below.

5.3.3 Pivot Selection

There are several methods to selecting pivots, as described in section 4.3.
We have chosen to select pivots that are as far away from each other as pos-
sible, and have implemented this as three methods in LaesaIndexList
all named getPivotCandidate() with varying number of parameters
and purposes. The methods will return either a single key, or a list of keys,
for the data object(s) chosen as the next pivot candidate.

The first method requires no existing pivots and is only useful for find-
ing the first pivot. This takes a random object, in fact our implementation
uses the first data object, and measures the distance to every other object
in the data set. The object furthest away from the random object is the first
pivot. This requires n distance calculations to be performed, where n is the
number of data objects, as well as a single scan of the data set.

30 5.3. METRIC INDEXING

The second method finds the next pivot candidate using the current set
of pivots and index files. This is done by first creating a candidate set con-
taining all objects, and then scanning all the index files from d = 0.0. Every
object encountered is then removed from the candidate set until there are
no more candidates, then the last candidate or the candidate is the new
pivot. This method requires no data objects to be fetched, and no dis-
tance calculations to be performed. However, it does require all pivots to
be scanned and has a worst case complexity ofO(n∗p) where p is the num-
ber of pivots. Experiments have shown that the average complexity is only
O(max(n, k ∗ p)), where k is constant albeit fairly large. This is because the
increased pivot count has extra cost for initiating the scan, but the candi-
date set is more quickly reduced to near zero.

The third method is a combination of the two above, but is performed
solely in memory and does not require any stored index files. It also re-
turns a list of p pivot keys, and not just a single pivot. This is useful for
finding a list of pivots that can later be used, and is for instance used before
performing our experiments. The initial pivot p1 is first found using the
first method. The distance from pivot p1 to all other objects is then calcu-
lated and stored in an array, the object furthest from p1 is now picked as
p2. The distance from p2 to all objects is calculated, and the array updated
with the minimum distance to any pivot. The array now contains for any
object oi, di = min(d(p1, oi), d(p2, oi)), and the next pivot is selected with
the maximum distance value in the array. This continues until p pivots are
found. This method requires n ∗ p distance calculations and has a runtime
complexity of O(n ∗ p).

5.3.4 Indexing

Indexing contains two main parts that can either be done sequentially or
interwoven. First one or more pivots must be selected, a distance object
initialized with each pivot must be created, and an appropriate index file
created. The index file must implement LaesaIndex, and usually take the
distance object(s) as parameter. Second all data objects must be inserted
into the index files.

Insertions are performed by each implementation, and varies slightly
with the type of access method used. For the single dimensional access
methods the distance between the pivot and the data object is calculated,
and the distance and object key is inserted into the index file. For multi-
dimensional access methods, the distance between the data object and all
pivots are calculated, and a record containing the list of distances is inserted
with the data key. LaesaIndexList implements insertions by delegating
the insert to all the child indexes sequentially.

CHAPTER 5. IMPLEMENTATION 31

5.4 Similarity Search

Similarity search is performed in two main phases, first the filtering step
will remove all objects that are known not to be within the range limit.
This results in a candidate set, together with lower bound distances from
the candidate set to the query object. The candidate set must then be post-
processed to give the final result set. The post processing used depends on
the query type, while the filtering step is always equal.

5.4.1 Filtering

Filtering is performed as described in section 4.4 by the LaesaIndex query()
method. This takes a single query object, as well as the range limit for ex-
cluding data objects. The results of the query on each index file is a cursor
containing a set of tuples (i, ď) where i is the object key for object oi and ď
the lower bound distance as seen from this pivot, or set of pivots. All im-
plementations created with the same pivot must return an equal result set,
both with regard to keys and lower bounds, albeit with different orderings
allowed.

The basic index types as described earlier perform the query using ei-
ther a range query or a file scan followed by a range selection. For multidi-
mensional methods this range query is somewhat more complex, but con-
ceptually equal. The LaesaIndexList allows the query to be performed
using several index files. The query is performed on all child indexes, and
the result set of all the queries is joined using a standard database join
method. During the join only the highest lower bound is kept for each
object key.

During implementation and experiments several join methods have been
tested. Nested loop join was effective when the result sets was small, but
quickly caused problems with increasing result set size, while hash based
joins managed to grow without decreased performance. We also tested
several join hierarchies, mainly variations of left-deep and bushy join trees.
The conclusion was that pure left-deep trees offer a substantial advantage
due to the selectivity of the equality join causing the inner (left) cursor to
decrease rapidly in size.

The final join method was implemented in MaxFloatHashJoin as spe-
cialized a hash based equality join on two input cursors. As only the high-
est of the lower bounds should be returned, the data objects of both cursors
must be a Float object, and the larger of the two data objects are returned
together with the object key.

32 5.5. PARALLELIZATION

5.4.2 Range Query

Range queries are performed as a post-processing step after filtering is com-
plete, however it is often performed pipelined and including or discarding
objects as they are returned from the filtering process. The DistanceCursor
takes a input cursor as well as a query object q and range limit r. The input
cursor can either be the result of a filtering step, or a full scan of the data
file.

All data objects are fetched using the object key, and the exact distance
di = d(q, oi) between the query object and the data object calculated. If
di ≤ r then the object is included in the result set, together with the exact
distance, otherwise it is discarded.

5.4.3 Nearest Neighbour Query

Nearest neighbour queries are performed using the KnnCursor. This takes
as input a cursor returned from the filtering process with lower bounds, a
query object q, the number of nearest neighbours k and the range limit r.
It returns as output a cursor with an ordered set of the k nearest objects
within the range limit r.

All objects are read from the input cursor before further processing is
performed, and pipelining is therefore not possible. The candidates are
then sorted by lower bound cursor and put in an input queue. Objects are
removed from the head of the queue, and the exact distance between the
query object and data object calculated. If the object is within the distance
to the Kth nearest object found until now, it is added to the sorted list of
nearest objects and the K+1 object removed from the list. This continues
until the next candidate has a lower bound higher then the Kth nearest
object, at this point the entire candidate queue is discarded and the result
set can be returned.

It is possible to return parts of the result set as soon as it is known that
no object on the candidate queue can be nearer the query object. This is
done when the first object on the result list has a distance below the lower
bound of the next object on the candidate queue. Thus allowing incremen-
tal nearest neighbour queries to be performed.

5.5 Parallelization

Modern database systems often rely heavily on parallelization to increase
the throughput of operations, especially related to handling large amounts
of data. Two methods that can be used to perform this is by either partition-
ing the data itself, or by pipelining the relational operators that handle the
data. We have primarily relied on data portioning due to the join methods

CHAPTER 5. IMPLEMENTATION 33

P-1 P-2
P-3

P-4 P-5
P-6

P-7 P-8
P-9

P-10 P-11
P-12

Figure 5.1: Parallel query join tree example using 12 pivots and 4 execution
threads. The pivots (squares marked with P-K for pivot K) are divided
in equal size groups of pivots according to the number of threads. Each
pivot is joined by a hash join, and each group is read by a BufferedCursor
running in each thread. The join groups are then joined in a bushy join tree,
and finally written out as the result/candidate set.

used, while pipelining would be more important in a distributed environ-
ment.

For indexing each index file is handled separately. For single-pivot in-
dex files this equals one job per pivot, and for multi-index files (namely
R-trees) multiple pivots are contained inside one index file. A job is created
for each pivot reading in the entire data set one object at a time, calculating
the distance to the pivot, and adding the distance and object key to the in-
dex structure. A parallel executor is instantiated with P threads and given
the job queue. The number of threads depending on the level of paralleliza-
tion wanted. As all pivots are independent all the indexing processes will
also be independent and the job queue will be emptied in a FIFO fashion.

As the filtering method inherently consists of several range scan oper-
ations combined by hash joins, it is not well suited for pipelining. This is
because the hash joins require the entire inner relation to be fully read and
hashed before it can proceed with the outer relation. Using a different join
algorithm would alleviate this issue, however that would take increased
cost to perform the join itself, and would give little benefit compared to
partitioning the pivots.

By partitioning the pivots into as many groups as there are executable
threads, each group of pivot scans can be joined together independently of
the other groups. And only when one or more of the groups are done will

34 5.6. TESTING AND EXPERIMENTATION

the results of these be joined together using a bushy join tree. As the result
set from the filtering is reduced drastically when combining several pivots,
this will result in most of the computation being performed in the main join
groups in parallel, and only minor parts of the data set being joined in the
final join of these groups. See Figure 5.1 for a visualization of this process.

This was implemented mainly using a new cursor called the BufferedCursor,
which both contains a buffer of data objects as well as being Runnable it-
self. One BufferedCursor is used at the top of each join group, thus
reading in the entire result set from each of these join groups in parallel.
When the first group finishes execution, the data is read as soon as it is
available from the buffer of both this and the next cursor, even if this has
not finished execution yet.

5.6 Testing and Experimentation

During development several test classes were used, specifically several JU-
nit [1, 14] test suites. These are located in the test/ folder and contain the
same package and class name as the class under test. These tests were used
to ensure that the implementation was working correctly, especially when
modifying parameters or testing different implementations.

The experiments were performed using three classes located in the test
package. The class TestRange contains methods related to testing the ef-
fect of different range limits, independent of access method used. This class
does not use the standard indexing and query method, but instead relies
on a large available main memory to perform range tests. Specifically the
method printDistanceDistribution() is used to create a range dis-
tribution histogram including information about result set size. For the
performance cost experiments the class TestDistanceCost is used in a
similar fashion.

The remaining experiments related to pivot count, indexing, range and
nearest neighbour queries were performed using the TestPivotCount
class. This contains methods for building an index, performing queries,
and printing statistics based on data, pivot and query sets located in a data
file. It also provides most of the configuration settings that are detailed
in the experimentation section. As such this also functions a sample ap-
plication of how to use the indexing and query implementation described
earlier.

Chapter 6

Data Sets and Metrics

We have described a general system that can be applied to any data set
providing it has a meaningful metric distance function. However, the prop-
erties and functioning of the system, especially related to its performance
characteristics, are highly dependent on the characteristics of the data set
and distance function.

For this reason we will show detailed information about the data sets
used during the rest of the experiments. Specifically we will show the data
distribution, intrinsic dimensionality, expected result set size. These prop-
erties are solely dependent on the data set and metric used, and not related
to the methods or system developed during this report (however, we have
used the system to calculate parts of the data. In addition we will show
the response times of various metrics, something which is dependent on
both the data set, metric function complexity, implementation and system
properties.

6.1 Data Sets

For the experiments we will use three distinct data sets with different prop-
erties, two vector sets and one document collection. The vector data sets,
nasa and colors, are both a part of the Metric Space Library [17] from the In-
ternational Workshop on Similarity Search and Applications (SISAP). nasa
is a set of 40,150 20-dimensional feature vectors, generated from images down-
loaded from NASA and with duplicate vectors eliminated, and colors a set of
112,682 color histograms (112-dimensional vectors) from an image database. These
two vector sets should represent real world data better than synthetic data
sets, especially uniformly generated data sets.

The document collection is a subset of the GOV2 Test Collection [34]
from the Text REtrieval Conference (TREC) Terabyte Track. This contains
a large proportion of the available pages under the .gov top level domain
in early 2004. The subset used are the folders GX000, GX001 and GX002.

35

36 6.2. DATA DISTRIBUTION

All documents are stripped of all html-related tags and whitespace, and
truncating to a maximum of 2048 characters. All collections are shuffled to
reduce unnatural clustering effects due to the method of data collection.

For the two vector sets we will use Minkowski distance [26] metrics, in-
cluding Manhattan distance (L1) [18], Euclidean distance (L2) and Cheby-
shev distance (L∞). For the TREC document collection we will use two
variations of Levenshtein distance with either a single character or single
word alphabet. Summary information about the data sets are given in Fig-
ure 6.1.

Name Type Count Object size Total size
nasa vector (20 dim.) 40,150 80 b 3.06 MB
colors vector (112 dim.) 112,682 448 b 48.1 MB
TREC documents 25,205,179 17.7 kb 426 GB
TREC (subset) documents 272,390 1.50 kb 399 MB

Figure 6.1: Summary information of the data sets nasa, colors and TREC

6.2 Data Distribution

To calculate the histograms 100,000 object pairs (o1, o2) is randomly sam-
pled for each database and metric, using two independent random vari-
ables for each of o1 and o2. The distance d(o1, o2) is calculated and recorded
for each pair. A relative distribution histogram is then constructed us-
ing the stored data, with the mean centered for all single distribution his-
tograms to allow for easier direct comparison.

The distance distribution for the nasa data set is shown in figure 6.2 for
each metric separately, and in 6.3 they are combined in a single graph. From
the histograms we can clearly see that while they all resemble a Gaussian
distribution, the L5 and L∞ distributions are skewed heavily towards the
lower range. This causes serious problems for filtering applications, as it
relies heavily on discarding elements that are above the range limit, and
much less on those that are below the limit. In the combined histogram, it
is also clear that L5 and L∞ are nearly identical.

The distance distribution for the colors data set is shown in figure 6.4
for each metric separately, and in 6.5 they are combined in a single graph.
We here see much the same results as with the nasa data, except for a much
thicker right tail.

The distance distribution for the colors TREC set is shown in figure 6.6
for each metric separately, and in 6.7 they are combined in a single graph.
This shows quite a different story from the nasa and colors data. While
there are still resemblances of a Gaussian distribution, the data is far more
clustered with just a small range holding virtually all the data. This will

CHAPTER 6. DATA SETS AND METRICS 37

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(d)

Figure 6.2: Data distribution for nasa using various Minkowski distance
metrics: (a) Manhattan distance (L1); (b) Euclidean distance (L2); (c) L5; (d)
Chebyshev distance (L∞).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9

fr
eq

ue
nc

y

distance

L1
L2
L5

Lmax

Figure 6.3: Combined non-normalized data distribution chart for the nasa
database with all metrics

38 6.2. DATA DISTRIBUTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

(d)

Figure 6.4: Data distribution for colors using various Minkowski distance
metrics: (a) Manhattan distance (L1); (b) Euclidean distance (L2); (c) L5; (d)
Chebyshev distance (L∞).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5

fr
eq

ue
nc

y

distance

L1
L2
L5

Lmax

Figure 6.5: Combined non-normalized data distribution chart for the colors
database with all metrics

CHAPTER 6. DATA SETS AND METRICS 39

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 500 1000 1500 2000 2500

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 100 200 300 400 500 600

(b)

Figure 6.6: Data distribution for TREC GOV2 (subset) using two Leven-
shtein distance metrics with: (a) a single-character alphabet; (b) a single-
word alphabet.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 500 1000 1500 2000 2500 3000

fr
eq

ue
nc

y

distance

Levenshtein (char)
Levenshtein (word)

Figure 6.7: Combined non-normalized data distribution chart for the TREC
GOV2 subset with both metrics

40 6.3. DIMENSIONALITY

make it far harder to perform filtering on this type of data. It is also a sign
that Levenshtein could be a bad metric of document similarity, as most
documents are rated similarity when compared to each other.

6.3 Dimensionality

The dimensionality of a data set largely defines the hardness of the index-
ing and filtering operation. The more dimensions a data set contains, the
more likely it is to cluster towards the center, with a lower variance in av-
erage distance. Thus more objects are returned within the same range in-
terval. This also influences the number of false positives returned in the
candidate set, and thus the number of pivots that are needed to filter out
enough candidates. This is often referred to as the curse of dimensionality.

The dimensionality of a vector data set is given by the number of co-
ordinate points. However, often there is a strong correlation between two
or more of the coordinates. In traditional spatial indexing it is not possi-
ble to eliminate these correlated coordinates from the index, and such a lot
of space and time is wasted on storing unneeded information. With pivot
filtering correlated dimensions are automatically merged as they will give
the same results (or some kind of mathematical relationship) in a distance
computation.

When removing these correlated dimensions we are left with the data
sets intrinsic dimensionality. The intrinsic dimensionality can be calculated
using the data distribution histogram from the previous chapter combined
with the formula p = µ2

2σ2 [6]. This uses both the mean and variance of
a histogram to calculate its intrinsic dimensionality. The flatter or more
spread out a digram is, the lower the dimensionality, while a more centered
distribution gives a higher dimensionality.

Metric Mean Variance Dimensionality
Manhattan (L1) 4.347 1.360 6.946
Euclidean (L2) 1.478 0.210 5.202
L5 1.038 0.159 3.394
Chebyshev (L∞) 0.981 0.163 2.956

Figure 6.8: Statistics and dimensionality for nasa data set using various met-
rics

In Figures 6.8 and 6.9 we show the mean, variance and dimensionality
for the two vector data sets and all metrics used. As we can see the dimen-
sionality is hugest for the L1 metric and steadily reducing for the higher
L-metrics. This is also evident in the distribution graphs, with L1 having a
much more centered around the mean distribution.

CHAPTER 6. DATA SETS AND METRICS 41

Metric Mean Variance Dimensionality
Manhattan (L1) 1.1763 0.1412 4.901
Euclidean (L2) 0.4164 0.0313 2.773
L5 0.3198 0.0293 1.744
Chebyshev (L∞) 0.3093 0.0301 1.588

Figure 6.9: Statistics and dimensionality for colors data set using various
metrics

Metric Mean Variance Dimensionality
Levenshtein (char) 1484 106166 10.38
Levenshtein (word) 303.2 5875 7.825

Figure 6.10: Statistics and dimensionality for TREC GOV2 data set with
both metrics

Similarly from the Figure 6.10 for the TREC data set, we can see that
using the word alphabet results in a lower dimensionality, and this metric
is thus more suitable for filtering than its character-based variant. We can
also see that the dimensionality (and thus hardness) for the TREC data set
using Levenshtein is much higher for both metrics than using any of the
Minkowski distances.

6.4 Result Set Size and Range Limit

The most important factor for an effective filtering technique to work is
the range limit, especially so for our disk based method. The range limit
defines the tightness of the lower bound, and as such the pruning power of
each pivot. This is very important as all our performance factors are related
to the pruning power. A high pruning power results in fewer file pages
that must be read from each index, less CPU time spent joining candidate
sets, and most importantly fewer false positive matches (candidates) that
must be discarded after a costly exact distance calculation. Contrary, a low
pruning power has the opposite effect on all of these performance factors.

The average expected result set size for a given range limit can be anal-
ysed using the distance distribution diagrams from the previous sections.
This results in a cummulative distribution graph. We have shown only the
lower range limits, as these are the most interesting in relation to range
limits. From the figures we clearly see that the range limits used are highly
dependent on the metric.

Common for all metrics is an exponential growth in result set size for
the low range. Thus it is important to use the lowest range limit possible to
get sufficient pruning power. Even a difference of 1− 5% in the range limit

42 6.4. RESULT SET SIZE AND RANGE LIMIT

 0

 5000

 10000

 15000

 20000

 25000

 0 0.2 0.4 0.6 0.8 1

re
su

lt
se

t s
iz

e

range

L1
L2
L5

Lmax

Figure 6.11: Expected result set size for the nasa data set using all applicable
metrics for range limits r ≤ 1.0

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.05 0.1 0.15 0.2 0.25 0.3

re
su

lt
se

t s
iz

e

range

L1
L2
L5

Lmax

Figure 6.12: Expected result set size for the colors data set using all applica-
ble metrics for range limits r ≤ 0.3

CHAPTER 6. DATA SETS AND METRICS 43

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.05 0.1 0.15 0.2 0.25 0.3

re
su

lt
se

t s
iz

e

range

L1
L2
L5

Lmax

Figure 6.13: Expected result set size for the TREC GOV2 (subset) data set
using all applicable metrics for range limits r ≤ 100

r N(R) N(R)/N(D)
0.2 17.8 0.04 %
0.4 135.7 0.33 %
0.6 771.1 1.92 %

Figure 6.14: Range limits with average result set size and fraction of total
data set size, using the nasa data set and L2 metric

can have a severe impact on the number of results returned. To ensure
our experiments are representative for different query requirements, we
will perform all filtering and query experiments using several range limit
values.

As we will concentrate especially on the nasa data set and the L2 metric
(Euclidean distance) we have shown the average result set size and fraction
of total data in Figure 6.14. These are also the three range limits we will
concentrate on during our experiments, allowing us to show how widely
different range limits will have an impact on the experiments.

6.5 Metric Performance

Another factor to consider when choosing a metric is its computational per-
formance, that is how long it takes to perform a distance computation. For
some applications several metrics will give equivalent distance measures

44 6.5. METRIC PERFORMANCE

and thus equivalent recall and precision, then the computational time will
come into play. A faster algorithm will allow more distance calculations to
be performed, and require fewer pivots (and thus lower memory and disk
cost) to achieve a similar response time.

Figure 6.15 shows the average response time of performing a single
distance calculation between two objects. For each of our three data sets
1,000,000 object pairs were picked at random, and the distance between
each was calculated. The calculations are of course dependent on the test
machine used (see section sec:system-configuration for details), so we will
only compare the relative response times here and ignore the absolute re-
sponse times.

Metric nasa colors TREC
Manhattan (L1) 2.93 µs 7.42 µs -
Euclidean (L2) 1.92 µs 2.59 µs -
L5 10.4 µs 28.4 µs -
Chebyshev (L∞) 2.17 µs 3.84 µs -
Levenshtein (char) - - 12900 µs
Levenshtein (word) - - 557 µs

Figure 6.15: Average response time for a single distance calculation be-
tween two random objects in a given data set for all applicable metrics

The two quickest metrics are the L2 and L∞ metrics, which is not sur-
prising considering their both fairly straight-forward algorithms and are
implemented using a specialized class. The following metrics, L1 and L5,
are both implemented using the same parameterized class, and shows how
performing more complex exponentiation and nth root calculation has a
much higher cost. We can also clearly see that the colors 112-dimensions
takes much longer to compute than the 20-dimensional nasa data, however
it is by no means a 5-fold increase as one would expect with five times as
much data.

More importantly we can see that compared to the L2 metric, Leven-
shtein distance is 5 orders of a magnitude slower when using the most com-
mon character based alphabet. This shows the high complexity of compar-
ing documents, even at only 2048 characters long, compared to easier data
like vectors. For images or video data, this complexity is of course even
higher, with comparison times measured in seconds and minutes instead
of micro- and milliseconds.

When using the word-based alphabet this drops to only 3 orders of a
magnitude slower. This result is not surprising when looking at the com-
plexity function of Levenshtein, O(n1, n2), where n1 and n2 are the lengths
of either string. Thus it has a large advantage when reducing the length
(in number of alphabet characters) at the cost of increased alphabet size.

CHAPTER 6. DATA SETS AND METRICS 45

Considering the enormous speed advantage of the word-based approach,
it would be hard to ignore it as an option for a metric even if it had a lower
recall or precision (it is also quite likely that word-based Levenshtein is
better in these aspects as well).

While we have now looked at pairwise distance computations, our meth-
ods have just a few objects (pivots or query objects) that are used in all
computations. This could give advantages to algorithms that benefit from
cached results, locality of reference or has a high initialization cost for each
source object used for comparison. We have therefor also performed a mea-
surement with 10,000 random objects compared against 100 random objects
each. That causes each object to be re-used in a distance calculation 100
times with only a single initialization.

Metric nasa colors TREC
Manhattan (L1) 1.39 µs 6.01 µs -
Euclidean (L2) 0.39 µs 0.93 µs -
L5 8.89 µs 26.5 µs -
Chebyshev (L∞) 0.68 µs 2.12 µs -
Levenshtein (char) - - 12800 µs
Levenshtein (word) - - 554 µs

Figure 6.16: Average response time per single distance calculation between
a random source object and 100 random target objects.

As can be seen in Figure 6.16 the effect on the various Minkowski algo-
rithms was greatest, especially were the original response time was lowest.
While there is little difference for the metrics with higher response time,
with the Levenshtein metrics seeing virtually no difference. This result is
easily explained by the fairly constant absolute initialization cost for all the
metrics. This leads to a much higher relative initialization cost for the faster
metrics compared to their low computation cost.

6.6 Discussion

As we have seen the intrinsic dimensionality, and thus the complexity of
indexing and querying, of a data set is both related to the data set itself, as
well as the metric used for comparison. From this we could assume that
choosing the metric with the lowest dimensionality would be optimal, and
for a pure time-performance measure that would be true. However, in real
world applications the comparison performance of the metric compared to
what a human would consider similar objects is often more important than
memory usage and response time. For metrics that give similar recall and
precision performance, one should however also consider the dimension-
ality as well as the response time performance of similar algorithms.

46 6.6. DISCUSSION

The dimensionality is also an important factor when considering the
number of pivots that are needed to give an adequate filtering power, and
should be used together with the distribution and other statistics when the
optimizer determines the number of pivots used when answering a query.
We will perform, and show the results of, more detailed experiments re-
lated to the number of pivots in the next chapter.

Chapter 7

Indexing and Query Processing

In order to verify the performance of the different indexing methods pro-
posed and implemented, we have run several experiments. First an overview
of the system configuration will be presented, followed by a few initial ex-
periments to determine some final parameters for the experiments.

For all the experiments performed, the nasa vector database from [17] is
used as the experimental data set. This is a set of 40,150 20-dimensional fea-
ture vectors, generated from images downloaded from NASA and with duplicate
vectors eliminated. And should represent real world data better than gener-
ated data sets, especially uniform data sets. We use Euclidean distance (L2)
for distance measurements.

50 randomly selected objects from the data set compromise the query
set. All query experiments are performed by issuing 50 independent queries
from this set and averaging the measured results.

7.1 System Configuration

The specifications of the system used for experiments is given in Figure
7.1. In addition the implementation described in the previous chapter has
a series of configuration parameters for controlling the indexing method
used. These parameters are described below, in addition to their setting
during the experiments.

CPU 2 ∗ AMD Opteron 2218 2.6GHz Dual Core
Memory 8.0 GB main memory
Disk 2 ∗ 146GB 10K SAS 1.5 Gbps, SmartArray E200i RAID-1
Operating system Microsoft Windows 2003 Enterprise Edition SP2
Virtual machine SUN Java SE 1.6.0_10

Figure 7.1: Experimental system specification

47

48 7.2. NUMBER OF PIVOTS

Page size the size (in bytes) of each buffer page. Set to 8192.

Buffer size sets the number of pages the buffer will have room for. Set to
10000.

Index type allows different indexing methods to be used for each test. For
the tests where the indexing method is relevant, one of the following
values will be used.

Heap file for using the heap file indexing method.

BTree for using the B-tree indexing method.

RTree d for using the R-tree indexing method, with a maximum di-
mensionality of d. Values used for d will be 16, 32, 64 and 128.

Java Virtual machine experiments are run with -Xms1536m -Xmx1536m
to ensure enough memory is available and the garbage collector will
not interfere with the performance measurements.

7.2 Number of Pivots

Different studies have come to different conclusions regarding the number
of pivots that are optimal with a given data set. While some favor that
only the intrinsic dimensionality is a factor [11], others have found that
increasing the number of pivots with growing data size is preferable [6].
As all the experiments in this report are performing using a fixed data set,
the volume and dimensionality is also fixed, and all that is needed is to find
the optimal pivot count for the data set given various queries.

The number of pivots give a trade-off between filtering and post pro-
cessing. While adding more pivots will indeed reduce the number of can-
didates returned from filtering, it also increases the cost of both indexing
and filtering. Three factors are important when deciding on the number of
pivots. The number of distance calculations that must be performed, the
number of disk accesses, and the total response time. Disk accesses are
needed both during filtering for accessing the index files, and during post
processing for fetching candidates, but depends greatly on the indexing
method and query type and will be discussed later.

The number of candidates returned from the filtering process, with vary-
ing number of pivots, are shown in Figure 7.2. The number of candidates
is reduced drastically by the first pivots, however the effect for each added
pivot diminishes until there is virtually no advantage of more pivots.

Distance calculations are performed both during filtering and post pro-
cessing, and are independent of the index structure used. During filtering
the number of distance calculations are equal to the number of pivots, while
during post processing they depend on the query type. Range queries will

CHAPTER 7. INDEXING AND QUERY PROCESSING 49

 0

 1000

 2000

 3000

 4000

 5000

 0 64 128 192 256 320 384 448 512

ca
nd

id
at

es

pivots

r=0.2
r=0.4
r=0.6

Figure 7.2: Size of candidate set returned by filtering process with varying
number of pivots

need to calculate the distance of all candidates, while KNN queries usually
only need to perform distance calculations until the remaining candidate
set can be discarded by using the lower bounds.

Figure 7.3 shows the total number of distance calculations that must be
performed for range queries, including those performed during filtering.
We see that for all the range limits the distance count falls sharply at first,
coinciding with the known drop in candidates. After the initial drop they
remain fairly steady until finally rising slowly as the number of candidates
remain equal. It is clear that increasing the number of pivots above about
256 give very little, if any, further benefit. We can also conclude that the
number of pivots used for filtering depends heavily on the range limit, as a
small range limit requires far less pivots for eliminating a majority of false
candidates.

For 10-NN queries we see a similar trend in Figure 7.4, albeit more
prominent due to the AESA algorithm causing far fewer distance calcu-
lations for KNN queries. Note especially the scale difference between the
two query types. The minimum distance calculations needed for a range
query at r = 0.6 is about 3300 against only 400 for 10-NN. And this also re-
quires far fewer pivots, 128 versus 512, in fact the filtering alone took more
distance calculations during query.

Once again the optimal number of pivots depend on the range limit,
with lowest values at 32 pivots for r = 0.2, and 128 pivots for both r = 0.4
and r = 0.6. As such both the query type, and the range limit must be taken

50 7.2. NUMBER OF PIVOTS

 0

 1000

 2000

 3000

 4000

 5000

 0 64 128 192 256 320 384 448 512

di
st

an
ce

 m
ea

su
re

m
en

ts

pivots

r=0.2
r=0.4
r=0.6

Figure 7.3: Distance calculations for range query

 0

 200

 400

 600

 800

 1000

 0 64 128 192 256 320 384 448 512

di
st

an
ce

 m
ea

su
re

m
en

ts

pivots

r=0.2
r=0.4
r=0.6

Figure 7.4: Distance calculations for 10 nearest neighbours query

CHAPTER 7. INDEXING AND QUERY PROCESSING 51

 0

 100

 200

 300

 400

 500

 0 64 128 192 256 320 384 448 512

tim
e

(s
)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.5: Time spent indexing for different indexing methods.

into consideration when selecting the number of pivots. However, what is
clear is that adding more pivots is only useful up until a limit, when further
pivots have a negative effect. For this reason we have concentrated on the
results of experiments at 512 pivots and below.

7.3 Indexing

Indexing is performed by adding one index file at a time, scanning the
datafile and inserting the distances into the index. For single pivot index-
ing methods (Heap file and B-tree) this is done once for each pivot, while
for multidimensional indexing methods (R-tree) this is done once for each
group of pivots. With a larger data set, adding several pivots at once would
give an advantage as the data set would only be read from disk once. How-
ever, as the data set used in the experiment is much smaller than the avail-
able buffer space, there is no advantage to this method.

As indexing is independent of the query type it easy to compare the
different indexing methods in Figure 7.5. Heap files are clearly fastest, with
B-trees taking about twice as long. R-trees take a considerably longer time,
and seem to be dependent on the dimensionality of the R-trees. Specifically
the 16 and 32 dimensional R-trees are about equal, while the 64 and 128 are
slower. It is not surprising that the simpler the index structure, the faster
indexing is performed.

Looking at the number of file pages written in Figure 7.6 the reason for
B-trees taking longer is obvious, in addition to the extra work of performing

52 7.4. FILTERING

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 64 128 192 256 320 384 448 512

pa
ge

s

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.6: File pages written during indexing for different indexing meth-
ods.

comparisons it also has to write many more pages to disk. The reason for
this is both the additional index nodes and underfilled data nodes. As we
know the heap files are I/O bound, it is safe to assume that B-trees are also
mainly I/O bound due to the high number of disk pages.

For R-trees however, the picture is a bit less clear, writing fewer pages
then both heap files and B-trees. The dimensionality is less important here,
with only the 128 dimensional sticking out with a few more pages, mostly
because of lower fill-degree due to fewer records per node. This is in fact
the key to why the 64 and 128 dimensional R-trees are so slow. As the
number of records per node is bounded by the dimensionality, R-tree 128
has only 7 records per index node, and 15 per data node. This leads to a
very high amount of splits, a very costly operation in R-trees compared to
B-trees. As such R-trees seem to be mainly CPU bound.

7.4 Filtering

Filtering is the most important operation in a metric indexing system, and
is where the different indexing methods we propose are most important.
Because the candidate size is identical for all our methods at the same num-
ber of pivots, the additional time to perform post processing will also be
identical. As have been seen B-trees and heap files are clearly faster during
indexing, however while databases are only indexed during creation and
insertion of new objects, filtering will be performed for every query.

CHAPTER 7. INDEXING AND QUERY PROCESSING 53

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.7: Response time for filtering process with r = 0.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.8: Response time for filtering process with r = 0.4

54 7.4. FILTERING

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.9: Response time for filtering process with r = 0.6

As the filtering depends heavily on the range limit used, filtering time
is shown for r = 0.2 in Figure 7.7, r = 0.4 in Figure 7.8 and r = 0.6 in
Figure 7.9. What is immediately obvious is that while B-trees work well
at r = 0.2, they do not have any advantage over heap files at r = 0.4
and actually perform worse at r = 0.6. This can be explained by looking
at the distribution graph in 6.3 and expected result set size in 6.11, and
remembering that each pivot can only discard the objects known to be more
than r from the query object. This gives an interval of 2r that must be
included for each pivot, for r = 0.6 this is an average of 80%-95% of each
index file. As such B-trees only give an advantage at low range limits.

R-trees however has the advantage of combining the pruning power of
several pivots, and thereby reading far smaller portions of the index file.
This leads to an enourmous improvement in filtering time, almost an or-
der of a magnitude faster than B-trees. It is also evident that the highest
dimensional R-tree, combining 128 pivots in a single index structure, is the
fastest. However the lower dimensional trees are not much slower, and in
fact 16 is virtually identical with 32.

The number of file pages read is shown in Figures 7.10, 7.11 and 7.12.
For the heap file the page count is identical and independent of the range
limit, as this is a pure file scan. For B-trees we see a clear advantage at r =
0.2 reading almost half as many pages, however for r = 0.4 it is identical to
heap files, and for r = 0.6 it is much worse. For the latter the B-tree method
is almost as bad as a full scan of the entire data level due to the low pruning
power of a single pivot.

CHAPTER 7. INDEXING AND QUERY PROCESSING 55

 0

 5000

 10000

 15000

 20000

 25000

 0 64 128 192 256 320 384 448 512

pa
ge

s

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.10: File pages read for filtering process with r = 0.2

 0

 5000

 10000

 15000

 20000

 25000

 0 64 128 192 256 320 384 448 512

pa
ge

s

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.11: File pages read for filtering process with r = 0.4

56 7.5. RANGE AND NEAREST NEIGHBOUR QUERY

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 64 128 192 256 320 384 448 512

pa
ge

s

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.12: File pages read for filtering process with r = 0.6

R-trees are once again far better, reading only one fifth the number of
pages for r = 0.2. For the larger range limits more pages are needed here
as well, but still below half of that needed for the B-tree based filtering.
Once again the dimensionality of the R-trees separate them slightly, with
the higher dimensionality leading to fewer page reads.

7.5 Range and Nearest Neighbour Query

Range queries are one of the fundamental query types in a metric space,
and also a fundamental part of our filtering process. Nearest neighbour
queries are however more intuitive for end users, and is probably the most
used query type. The results from the previous section could make it seem
that fewer pivots are better, because of the linearly rising cost per pivot
added. However the filtering process only returns candidate keys, and
each of these must be fetched from disk and compared to the query object
before inclusion in the result set. For nearest neighbour queries, the LAESA
algorithm enables a large fraction of the candidates to be eliminated with-
out any fetch or comparison, and as such saves considerable time compared
to range queries.

The main cost in this experiment, in addition to filtering, is related to
reading the candidate objects from disk and performing distance calcula-
tions. As our experiments are performed using Euclidean distance in a
low-dimensionality vector space, the time to perform distance calculations
is almost negligible. For this reason we have weighted the distance calcu-

CHAPTER 7. INDEXING AND QUERY PROCESSING 57

lations that are performed with an extra 1ms to get a result closer to what a
real world application would see. Note that as the number of candidates is
equal for all the indexing methods, this only affects the number of optimal
pivots.

r N(R) N(R10−NN)
0.2 17.68 3.58
0.4 129.84 8.64
0.6 753.30 9.92

Figure 7.13: Number of results for random query set

Figure 7.13 shows the average number of results for our random query
set for both range and 10-NN queries. We will concentrate on the r = 0.4
limit as this gives a fair amount of results for range queries, while returning
nearly 10 nearest neighbours for all query objects except for a few outliers.
The results of the range query are shown in Figure 7.14 and the 10-NN
query in Figure 7.15, both with varying number of pivots.

From this we see that the optimal number of pivots for Heap files and
B-trees are about 32 for both query types, while the R-trees optimal num-
ber of pivots is 128. All the R-tree methods also perform in under half the
time with the optimal number of pivots. It is clear that the much lower
overhead for filtering with a large number of pivots using R-trees allows
for better pruning, and thus less time for fetching and comparing data ob-
jects. Performing the given queries using sequential scan with the given
presumptions would take slightly over 40 seconds. This is mainly due to
the cost of distance calculations set at 1ms, and will vary greatly depending
on the data set size and distance calculation cost.

58 7.5. RANGE AND NEAREST NEIGHBOUR QUERY

 0

 2000

 4000

 6000

 8000

 10000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.14: Response time for range query with r = 0.4

 0

 2000

 4000

 6000

 8000

 10000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 7.15: Response time for 10-NN query with r = 0.4

Chapter 8

Parallel Processing

We have now looked at how well our method fares while using several
different access methods. In our experiments so far, only a single process
with a single thread was used for the processing, leading to a strictly serial
execution. We will now look at how the method fares in relation to both
raw performance figures and the relative speedup achieved compared to
the serial tests in the previous chapter. The speedup is the most important
factor here, and should optimally be linear with the number of processors.
We will use the same system for testing as in the previous chapters (see
Figure 7.1), except we will now allow the system to use 4 threads during
execution, thus utilizing all four processor cores.

Optimally one should see speedups of up to the number of threads,
depending on how saturated the disk and CPU is respectively. However,
as we use only a single disk (actually two disks in RAID-1) for the exper-
iments, this is probably unlikely. This will clearly give the indexing and
filtering methods that were CPU bound during the last experiment will
have a better chance at a higher speedup. The usage of four CPU cores
against a single disk is consistent with where modern computer architec-
ture is moving, where continued processor speed gains are now achieved
using multi-processor and multi-core systems.

8.1 Indexing

Figure 8.1 shows the indexing time when using this setup. What is clearly
visible is that the disadvantage of R-trees compared to B-trees is now com-
pletely gone. While Heap files still remain the fastest indexing method,
the difference is now minimal compared to all the R-trees except the 128-
dimensional. It is not surprising that the higher-dimensional R-trees are not
as fast, as they do not have enough pivots to divide them among all the ex-
ecutors. If more pivots were added to allow a higher number of trees, these
high-dimensional trees would most likely catch up to the performance of

59

60 8.1. INDEXING

 0

 20

 40

 60

 80

 100

 120

 140

 0 64 128 192 256 320 384 448 512

tim
e

(s
)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.1: Time spent indexing for different access structures using 4
threads in parallel.

the lower dimensional trees.
The main reason for the increased performance for R-trees is because

they were not IO bound in the previous experiments. In fact R-trees write
far fewer pages to disk compared to B-trees, and even fewer than Heap files
(see Figure fig:exp-indexing-file). Thus when it is allowed to use more CPU
resources, it is also able to utilize more of the available disk resources and
thus gain a significant speed advantage.

In figure 8.2 the speedup, given by Sp = T1
Tp

is shown for the indexing
response time using 4 threads compared to the single thread run in the pre-
vious chapter. This clearly shows that adding more threads makes virtually
no difference to either B-trees or Heap files and both stay at a speedup of
about 1.0 (that is no speedup). In fact Heap files are slightly lower than
this, indicating a slowdown due to the multi-threading. This is not surpris-
ing, as what was previously a more or less continuous disk write is now
interrupted by three other threads doing the same. B-trees similarly have
a fairly easy structure, and as such require little computation and thus are
also limited by disk IO (however, B-trees use more random IO as writes are
spread across the various pages).

R-trees however have a very complex structure and especially splitting
pages is an extremely costly operation. Because of this they have a huge
speedup advantage in indexing, and in fact come very close to a linear
speedup of S4 = 4. What is evident is that R-trees have a disadvantage
when there are not enough pivots to fill 4 full trees. 16-dimensional R-trees

CHAPTER 8. PARALLEL PROCESSING 61

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 64 128 192 256 320 384 448 512

sp
ee

du
p

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.2: Speedup, S4, of indexing for different indexing methods using
4 threads in parallel.

do not reach their potential for speedup until at least 64 pivots are used
(16∗4 = 64), similarly 32-dimensional require 32∗4 = 128 pivots, up to 128-
dimensional that requires 128 ∗ 4 = 512 pivots. As such lower-dimensional
R-trees are probably more suitable in situations where a lower number of
pivots, or a large number of execution threads, are used.

8.2 Filtering

The response times for filtering is given in Figures 8.3, 8.4 and 8.5 for r =
0.2, r = 0.4 and r = 0.6 respectively. There is not much relative change
in the figures compared to the single-threaded experiments, there are de-
creases in the absolute response times but overall there is no major varia-
tion as was seen with indexing. This is mainly because of the enormous
advantage to all the R-trees.

The speedup comparison is shown Figure 8.6, 8.7 and 8.8 for r = 0.2,
r = 0.4 and r = 0.6 respectively. This shows that there was a speedup
of between 1.5 and 2.5 for all access structures, however nowhere near the
linear speedup we saw for indexing. This is not surprising considering we
made no increases in the number of disks, and filtering is mainly a large
number of semi-sequential reads from disk. Even for R-trees the compu-
tational complexity of queries is far less and as such there is not as much
room for improvement.

It is however still clear that the lower-dimensional R-trees have the

62 8.2. FILTERING

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.3: Response time for filtering process with r = 0.2 using 4 threads

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.4: Response time for filtering process with r = 0.4 using 4 threads

CHAPTER 8. PARALLEL PROCESSING 63

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 64 128 192 256 320 384 448 512

tim
e

(m
s)

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.5: Response time for filtering process with r = 0.6 using 4 threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 64 128 192 256 320 384 448 512

sp
ee

du
p

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.6: Filtering process speedup with r = 0.2 using 4 threads

64 8.2. FILTERING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 64 128 192 256 320 384 448 512

sp
ee

du
p

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.7: Filtering process speedup with r = 0.4 using 4 threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 64 128 192 256 320 384 448 512

sp
ee

du
p

pivots

Heap file
B-tree

R-tree 16
R-tree 32
R-tree 64

R-tree 128

Figure 8.8: Filtering process speedup with r = 0.6 using 4 threads

CHAPTER 8. PARALLEL PROCESSING 65

greatest advantage, this is of course for the same reason as before. The
larger dimensional R-trees simply need far more pivots to be able to create
enough trees to utilize all the threads completely.

8.3 Discussion

As we have seen, R-trees have a higher advantage to parallelization than
both B-trees and Heap files. This is mainly because of the much higher CPU
cost in R-trees compared to B-trees, especially related to indexing where a
huge amount of splits occur and the area and overlap needed for this are
fairly complex calculations. It does however require there to be enough
R-trees to actually divide them among the available processors. As such
using lower dimensional R-trees would probably be advantageous. This
would also simplify adding more pivots after the initial indexing.

Overall it is clear that R-trees have an even greater advantage over B-
trees when used on multi-processor or multi-core machines. For indexing
we very nearly got a linear speedup, which is remarkable considering the
number of disks was not increased. We did not see as large an increase
in speedup during filtering, however this is not surprising considering the
lack of increased disk resources.

66 8.3. DISCUSSION

Chapter 9

Conclusion

Our report shows that pivot based filtering can be implemented using sev-
eral standard database access structures and join methods. Heap files, B-
trees and R-trees are all available in modern database management sys-
tems, and can all be used to implementing pivot based search. In fact, any
database access method that supports a range selection can be used for
pivot filtering.

We also studied and tested several different types R-trees, settling on
a R*-tree with some of its optimizations turned off as they had a negative
effect on CPU usage and response time. This was especially important in
very high-dimensional trees, where we found that CPU time is the major
bottleneck. Our implementation of R*-trees work well up to 200 dimen-
sions, and this is currently only limited by the small block size and a mini-
mum requirement of five records per node. We did see increased response
time and CPU usage during insertions on trees with more than 150 dimen-
sions, however query processing performance was not impacted. The rea-
son for increased response time for inserts is the enormous amount of splits
that are caused by the small number of records per node, and as such an
increased block size should allow even higher-dimensional trees with our
implementation.

Using pivot based filtering can greatly reduce the cost of similarity search
in large databases, both for range and nearest neighbour queries. This is es-
pecially true when comparing complex objects, like images or documents,
with an expensive and time consuming distance measure. Pivot based fil-
tering can reduce the number of distance calculations needed greatly com-
pared to a full scan and comparison with all objects. This is done by fil-
tering out objects that are guaranteed to be outside the query region, using
the lower and upper bounds as seen from the pivot.

The candidates returned from the filtering process must be processed
and, depending on query type, either the distance from query object to all
or parts of the candidate set will need to be calculated exactly. We have ex-

67

68

perimented with varying number of pivots and varying range limits during
filtering. While adding pivots will continually decrease the number of can-
didates, it also increases both indexing and processing time. In addition, as
the distance between the query object and all pivots used for filtering must
be calculated, adding more than the optimal number of pivots will increase
the number of distance calculations.

We found that the optimal number of pivots for a query depends both
on the query type and, most importantly, on the range limit. This is im-
portant when designing databases for use with varying range limits, and
suggests using a variable number of pivots for filtering depending on the
query specification. The range limit also depends on the data distribution
as we have shown with several range distribution histogram for various
data sets and metrics. This also shows that different metrics have widely
different results in performance and data distribution.

The reduced distance calculations when querying is of course with the
added cost of doing pre-indexing. However, as each pivot added to the
index costs the same as doing a single full scan and comparison with all
objects, this cost is quickly amortized in a read-mostly database. Index-
ing can also be performed during idle time, or in periods of low activity.
We have implemented pivot selection algorithms that exploit our indexing
structure and already calculated distances, allowing the selection of a new
pivot without performing a single distance calculation (with the exception
of the initial pivot). The algorithm performs in linear time to the number
of pivots when selecting a new candidate and can return a list of p pivots
in O(p ∗ n) time.

Indexing is not surprisingly cheapest using heap files, with B-trees per-
forming only slightly worse. R-trees require significantly more index time,
especially with high dimensionality. As mentioned earlier this is due to
the high amount of splits that occur when the number of records per node
drops below 20, and the high CPU cost related to such splits in the R*-tree.
During indexing the R*-tree is clearly bound by the processor speed, as the
number of disk accesses are much lower than for B-trees.

When using several processors in parallel this causes R-trees to per-
form significantly better, and actually surpass B-trees when using low-
dimensional R-trees or a large number of pivots. B-trees would probably
perform far better if each processor had a separate disk. However, both
the number of processors and cores and speeds are increasing far faster
than the number of disks in contemporary systems, and it is unlikely that
servers of the future will contain a similar number of disks and processor
cores.

The biggest contribution from this report and our experiments is clearly
the comparison of filtering with different access methods. We found that
for query processing, R-trees perform significantly faster than B-trees. Specif-
ically filtering can be performed more than 5 times faster than B-trees. And

CHAPTER 9. CONCLUSION 69

as both methods scale linearly with the number of pivots, R-trees gain an
enormous performance advantage with a high number of pivots. Also R-
trees handles large query range limits without degradation in performance,
something that is a major issue with B-trees making them near unusable
for high range limits. This is due to the combined pruning power of sev-
eral pivots in the same index, thus reducing the number of disk pages that
must be fetched and candidate sets that must be joined. We also see a sig-
nificant drop in the number of IO operations when using R-trees. R-trees
are thus a significant improvement over B-trees and heap files, both in the
number of disk accesses and response time.

The dimensionality of R-trees does have an impact on both indexing
and query performance. While high dimensional R-trees are slower to in-
dex, they also have a lower response time for queries. What was surpris-
ing was however how little difference experiments showed from 16 to 128
dimensions during query processing. As such using several lower dimen-
sional trees will give the advantage of increased flexibility and lower index-
ing time, with only a very slight performance loss. This is both because of
the CPU time used to process and compare the high dimensional records,
as well as the few records per node causing more wasted space and a lower
fanout.

70

Chapter 10

Further Work

Several enhancements and optimizations are possible, and together could
have a substantial impact on the performance of the implementations tested
in this report. This is especially true for B-trees, but also applies to R-trees
and the join-based filtering technique used. While these enhancements are
outside the scope of this project and report, we will mention them here so
the method developed further in the future by other teams.

Different caching techniques have a large effect on the performance. In
this report a naive Least Recently Used (LRU) cache has been employed,
a method that is far from ideal for use with scanning operations. Better
caching of index blocks, and pre-fetching or group-fetching of page files
during scan would probably reduce query times.

Sorting of index and data blocks in B-trees, or the use of bulk-loading
or packing algorithms like STR for R-trees [19], would give a better locality
of data in addition to increasing the density of the index structure. This
would both reducing the total size of the index file, and reduce the number
of file pages the must be read.

While experiments were performed with several executor threads work-
ing in parallel on a shared-everything machine, no work was performed in
testing on shared-memory or shared-nothing machines as this was outside
the scope of this report. It should however be trivial to implement support
for a distributed environment based on our method.

While some join methods were tested briefly in this report, further work
in this area is certainly possible. For parallel systems it would probably be
advantageous to perform hash joins using the split and merge operators
described in [8]. This would probably be especially important in a shared-
nothing environment, where large amounts of data must be transferred be-
tween processes and nodes.

For the tests performed in this report only static datasets were tested.
In real world applications the dataset would likely evolve over time, pos-
sibly with large parts of the data volume added, updated or deleted daily.

71

72

This is especially true when the data is gathered from the internet or other
sources with many users performing simultaneous updates. In some cases
it might be beneficial to add more pivots as the data volume grows and
evolves, in that case B-trees or low-dimensionality R-trees would have a
clear advantage as single, or small groups of, pivots can be added easily.
As the method supports using a heterogeneous set of indexing methods, it
would also be possible to combine the added B-trees or low-dimensionality
R-trees into high-dimensionality R-trees at a later time.

Finally it would be interesting to see how standard database manage-
ment systems that support both B-trees and R-trees would perform using
the techniques described. For instance PostgreSQL, MySQL and IBM DB2
all support both B-trees and R-trees, and can be used to test the filtering
methods described here using real world database management systems.
It would also be interesting to test how well these methods would perform
on search architectures such as the FAST Distributed Processing Architec-
ture (DPA) [29].

Bibliography

[1] Kent Beck, Erich Gamma, and David Saff. JUnit. http://junit.
org. Collected September 22, 2008.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles. In SIGMOD ’90: Proceedings of the 1990 ACM SIG-
MOD international conference on Management of data, pages 322–331,
New York, NY, USA, 1990. ACM.

[3] Benjamin Bustos, Gonzalo Navarro, and Edgar Chávez. Pivot Selec-
tion Techniques for Proximity Searching in Metric Spaces. Computer
Science Society, 2001. SCCC 2001. Proceedings. XXI Internatinal Confer-
ence of the Chilean, pages 33–40, 2001.

[4] Jr. Caetano Traina, Agma J. M. Traina, Bernhard Seeger, and Chris-
tos Faloutsos. Slim-trees: High performance metric trees minimizing
overlap between nodes. In EDBT ’00: Proceedings of the 7th International
Conference on Extending Database Technology, pages 51–65, London, UK,
2000. Springer-Verlag.

[5] Edgar Chávez, J. L. Marroquín, and Ricardo Baeza-Yates. Spaghettis:
An array based algorithm for similarity queries in metric spaces. In
SPIRE ’99: Proceedings of the String Processing and Information Retrieval
Symposium & International Workshop on Groupware, page 38, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[6] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis
Marroquín. Searching in metric spaces. ACM Computing Surveys,
33(3):273–321, September 2001.

[7] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In VLDB ’97:
Proceedings of the 23rd International Conference on Very Large Data Bases,
pages 426–435, San Francisco, CA, USA, 1997. Morgan Kaufmann Pub-
lishers Inc.

73

http://junit.org
http://junit.org

74 BIBLIOGRAPHY

[8] David DeWitt and Jim Gray. Parallel database systems: the future
of high performance database systems. Communications of the ACM,
35(6):85–98, 1992.

[9] Donghui Zhang. NEUStore: A Simple Java Package for the Construc-
tion of Disk-based, Paginated, and Buffered Indices. CCIS, North-
eastern University, http://www.ccs.neu.edu/home/donghui/
research/neustore/, September 2005. Collected August 21, 2008.

[10] Karina Figueroa, Edgar Chávez, Gonzalo Navarro, and Rodrigo Pare-
des. On the least cost for proximity searching in metric spaces. In
Proceedings of the 5th International Workshop on Efficient and Experimen-
tal Algorithms (WEA), volume 4007, pages 279–290. Springer, 2006.

[11] Roberto Figueira Santos Filho, Agma Traina, Caetano Traina Jr., and
Christos Faloutsos. Similarity Search without Tears: The OMNI-
Family of All-Purpose Access Methods. In ICDE ’01: Proceedings of the
17th International Conference on Data Engineering, pages 623–630, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[12] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In Readings in database systems, pages 599–609. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[13] Magnus Lie Hetland. The basic principles of metric indexing. Swarm
Intelligence for Multi-objective Problems in Data Mining, 2009. To appear.

[14] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in Java with JU-
nit. The Pragmatic Programmers, September 2003.

[15] Masahiro Ishikawa, Hanxiong Chen, Kazutaka Furuse, Jeffrey Xu Yu,
and Nobuo Ohbo. Mb+tree: A dynamically updatable metric index
for similarity search. In Proceedings of the First International Conference
on Web-Age Information Management, pages 356–373. Springer, 2000.

[16] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
iDistance: An Adaptive B+-tree Based Indexing Method for Nearest
Neighbor Search. ACM Transactions on Database Systems, 30(2):364–
397, June 2005.

[17] Karina Figueroa and Gonzalo Navarro and Edgar Chávez. Metric
Spaces Library. http://sisap.org/Metric_Space_Library.
html, November 2008. Collected November 21, 2008.

[18] Eugene F. Krause. Taxicab Geometry: An Adventure in Non-Euclidean
Geometry. Dover Publications, New York, NY, USA, 1986.

http://www.ccs.neu.edu/home/donghui/research/neustore/
http://www.ccs.neu.edu/home/donghui/research/neustore/
http://sisap.org/Metric_Space_Library.html
http://sisap.org/Metric_Space_Library.html

BIBLIOGRAPHY 75

[19] Scott T. Leutenegger, Jeffrey M. Edgington, and Mario A. Lopez. STR:
A simple and efficient algorithm for r-tree packing. Technical Report
97-14, Institute for Computer Applications in Science and Engineering
(ICASE), February 1997.

[20] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, In-
sertions and Reversals. Soviet Physics Doklady, 10:707–710, February
1966.

[21] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Pa-
padopoulos, and Yannis Theodoridis. R-Trees: Theory and Applications.
Springer, Vienna, Austria, third edition, September 2005.

[22] Luisa Micó, Jose Oncina, and Rafael C. Carrasco. A fast branch &
bound nearest neighbour classifier in metric spaces. Pattern Recogni-
tion Letters, 17(7):731–739, 1996.

[23] María Luisa Micó, José Oncina, and Enrique Vidal. A new version
of the nearest-neighbour approximating and eliminating search al-
gorithm (aesa) with linear preprocessing time and memory require-
ments. Pattern Recognition Letters, 15(1):9–17, January 1994.

[24] Francisco Moreno-Seco, Luisa Micó, and José Oncina. Extending laesa
fast nearest neighbour algorithm to find the k nearest neighbours. In
Proceedings of the Joint IAPR International Workshop on Structural, Syn-
tactic, and Statistical Pattern Recognition, pages 718–724, London, UK,
2002. Springer-Verlag.

[25] Oscar Pedreira and Nieves R. Brisaboa. Spatial Selection of Sparse
Pivots for Similarity Search in Metric Spaces. In Proceedings of the 33rd
Conference on Current Trends in Theory and Practice of Computer Science,
number 4362 in Lecture Notes in Computer Science, pages 434–445, 2007.

[26] D.T. Phama, Y.I. Prostovb, and M.M. Suarez-Alvareza. Statisti-
cal approach to numerical databases: clustering using normalized
Minkowski metrics. In Proceedings of the Second Virtual International
Conference on Intelligent Production Machines and Systems, pages 356–
362, Oxford, UK, 2006. Elsevier.

[27] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw-Hill, Boston, MA, USA, 3 edition, 2003.

[28] Juan Ramón Rico-Juan and Luisa Micó. Comparison of aesa and laesa
search algorithms using string and tree-edit-distances. Pattern Recog-
nition Letters, 24(9-10):1417–1426, 2003.

76 BIBLIOGRAPHY

[29] Knut Magne Risvik, Børge Svingen, Tor Egge, and Arne Halaas. The
FAST Distributed Processing Architecture (DPA) and its Application for a
Large-Scale Search Engine. Dr.philos thesis, Department og Computer
and Information Science at the Norwegian University of Science and
Technology (NTNU), May 2004. NTNU 2004:54, ISBN 82-471-6318-7.

[30] E V Ruiz. An algorithm for finding nearest neighbours in (approx-
imately) constant average time. Pattern Recognition Letters, 4(3):145–
157, 1986.

[31] Sam Chapman. String Similarity Metrics for Information Integration.
Department of Computer Science, University of Sheffield, http://
www.dcs.shef.ac.uk/~sam/stringmetrics.html, 2006. Col-
lected March 20th, 2009.

[32] Sam Chapman. SimMetrics: Similarity Metric Library. SourceForge,
http://sourceforge.net/projects/simmetrics/, February
2007. Collected March 20th, 2009.

[33] Václav Snásel, Jaroslav Pokorný, and Karel Richta, editors. Proceedings
of the Dateso 2004 Annual International Workshop on DAtabases, TExts,
Specifications and Objects, Desna, Czech Republic, April 14-16, 2004, vol-
ume 98 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[34] TREC. Text REtrieval Conference (TREC) Terabyte Track: GOV2 Test
Collection. University of Glasgow, http://ir.dcs.gla.ac.uk/
test_collections/gov2-summary.htm, May 2004. Collected
March 20th, 2009.

[35] Enrique Vidal. New formulation and improvements of the nearest-
neighbour approximating and eliminating search algorithm (aesa).
Pattern Recognition Letters, 15(1):1–7, 1994.

[36] Juan Miguel Vilar. Reducing the overhead of the aesa metric-space
nearest neighbour searching algorithm. Information Processing Letters,
56(5):265–271, 1995.

[37] Cui Yu, Beng C. Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the
distance: An efficient method to knn processing. In VLDB ’01: Proceed-
ings of the 27th International Conference on Very Large Data Bases, pages
421–430, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[38] Li Yujian and Liu Bo. A Normalized Levenshtein Distance Met-
ric. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6):1091–1095, 2007.

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://sourceforge.net/projects/simmetrics/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

BIBLIOGRAPHY 77

[39] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko.
Similarity Search: The Metric Space Approach. Springer, November 2005.

	Title Page
	Problem Description
	Introduction
	Background
	Metric Space
	Distance Measurements

	Similarity Queries
	Range Query
	Nearest Neighbour Query

	Metric Indexing
	Partitioning
	Pivot Filtering

	Related Work
	AESA
	M-tree
	Omni-concept
	iDistance

	Indexing and Query Method
	Indexing
	Number of Pivots
	Pivot Selection
	Filtering
	Range Query
	Nearest Neighbour Query

	Implementation
	Database Framework
	Buffer Handling
	Cursors

	Access Structures
	Heap Files
	B+-tree
	R*-tree

	Metric Indexing
	Distance
	LaesaIndex Interface
	Pivot Selection
	Indexing

	Similarity Search
	Filtering
	Range Query
	Nearest Neighbour Query

	Parallelization
	Testing and Experimentation

	Data Sets and Metrics
	Data Sets
	Data Distribution
	Dimensionality
	Result Set Size and Range Limit
	Metric Performance
	Discussion

	Indexing and Query Processing
	System Configuration
	Number of Pivots
	Indexing
	Filtering
	Range and Nearest Neighbour Query

	Parallel Processing
	Indexing
	Filtering
	Discussion

	Conclusion
	Further Work
	Bibliography

