
June 2009
Ingeborg Torvik Sølvberg, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Prototyping a location aware
application for UBiT.
A map-based application, designed, implemented and evaluated.

Bjarne Sletten Olsen

Problem Description
In [1] several possible applications based on location-awareness are described.
Based upon these proposals, design a prototype and implement it using existing technologies and
tools.
The prototype should demonstrate the possibility for taking advantage of existing services.
Evaluate the prototype in regard to the technology used as well as the usability for library users.

References:
1. Bjarne Sletten Olsen, "Lokasjonstjenester for Universitetsbiblioteket i Trondheim",
Prosjektoppgave NTNU, 2008, 69 p., http://folk.ntnu.no/oleh/UBIT2010/Lokasjonstjenester.pdf

Assignment given: 23. January 2009
Supervisor: Ingeborg Torvik Sølvberg, IDI

i

Abstract

Through the research performed in this thesis, it has been shown how location awareness and
maps can be exploited to facilitate the use of library resources, such as information on
documents and objects. A prototype has been developed to demonstrate the feasibility of
integrating several different information sources for this use. The prototype created allows for
users located within the city centre of Trondheim to search for documents and to locate the
library departments holding them. The user is shown a map and given information on how to
travel to the nearest bus stop, as well as bus schedules on how to get to the selected library
department.
Several information sources for the prototype has been identified and evaluated. The
prototype communicates with BIBSYS for document information retrieval, Google Maps for
map generation, team-trafikk.no for bus schedules querying and Amazon.com and
LibraryThing.com for book cover image downloading. To ensure data consistency some local
data sources are also maintained, such as a list of all the UBiT (NTNU library) departments in
Trondheim.
The prototype was implemented so that it would satisfy a set of requirements. These
requirements were created by applying the technique of use cases. Each requirement has been
discussed and prioritised based on requests from UBiT. The most important requirements
have been incorporated into the design of the prototype. This focuses on modularity and it has
been discussed how the external sources best can be integrated with the prototype. The
prototype is implemented using a combination of programming languages. The differences
between these languages have posed a challenge, and solutions to how these can be avoided
are presented. The prototype has been tested according to an extensive test plan, and the
results of these tests have been document and evaluated.
Each of the design decisions have been evaluated and discussed, and suggestions on how
these could have been improved are given. Finally, suggestions on how the functionality of
the prototype can be extended are presented.
The prototype created in this thesis allows for users, familiar or unfamiliar with the city and
its transportation network, to locate a document and travel to the library holding it. It
demonstrates how emerging technologies such as location awareness can contribute to
increased use of library services.

ii

iii

Preface

This thesis marks the end of 5 years at NTNU. This final assignment has required a large
variety of the skills I have acquired throughout my education, and has proved to be both
challenging and interesting.

I would like to thank my supervisor professor Ingeborg T. Sølvberg. Her experience and
ability to see the larger picture has guided me, especially when I dug myself to deep in
technical details.

I would also like to thank UBiT, represented by Ole Husby and Joost Hegle, for participating
in defining the requirements for the application.

Trondheim, 17th June 2009
Bjarne Sletten Olsen

iv

v

Table of Contents
Abstract ... i
Preface ...iii
Table of Contents ... v
List of Figures ..vii
List of tables ..viii
Listings ..viii

1 Introduction .. 1

1.1 Current situation... 1
1.2 Assumptions and premises ... 2
1.3 Goals... 2
1.4 Structure ... 2

2 Background .. 3
2.1 UBiT... 3
2.2 Location aware applications today... 4
2.3 Previous work... 4
2.4 Prototype description.. 5

3 Requirements.. 7
3.1 Use cases .. 7
3.2 Functional requirements ... 11
3.3 Non-functional requirements.. 13

4 Available technologies ... 15
4.1 Operating systems .. 15
4.2 Programming Languages.. 16
4.3 Location technologies .. 17
4.4 External services .. 17

5 Design... 19
5.1 Top-level design ... 19
5.2 Design considerations .. 20
5.3 Class Diagrams... 22
5.4 Sequence Diagrams .. 24

6 Implementation... 29
6.1 Mobile application.. 29
6.2 Server side application and adapters .. 29

7 Walkthrough... 37
7.1 Logging the users location ... 37
7.2 Searching for documents .. 37
7.3 Displaying the map... 38

8 Testing.. 41
8.1 Testing the mobile application ... 41
8.2 Testing the server side.. 42
8.3 Testing service communication.. 44
8.4 System Test .. 44
8.5 Test summary ... 46

9 Evaluation and discussion .. 47
9.1 Mobile application.. 47
9.2 Server-side application ... 48
9.3 Adapters and services... 49

vi

9.4 The tools and technologies ... 52
9.5 Usability and usefulness... 53
9.6 Conclusion.. 54

10 Future work .. 57
10.1 Real time bus schedules ... 57
10.2 Map at the library ... 57
10.3 Advanced searching options... 59

11 References .. 61

A. Appendix A – Use case point estimation 1 .. 63
B. Appendix B – Use case point estimation 2 .. 65
C. Appendix C – Project schedule .. 67
D. Appendix D - Test documentation ... 69
E. Appendix E - Bus stop addresses ... 79
F. Appendix F - Library information file ... 81
G. Appendix G - ECDL 2009 accepted poster article... 85
H. Appendix H – Source code information... 91

vii

List of Figures

Figure 1. Library departments in Trondheim ... 3
Figure 2. The overall design with three modules. .. 19
Figure 3. Class diagram of the mobile application in C#... 22
Figure 4. Class diagram - Server Application .. 23
Figure 5. Sequence diagram - Start-up use case... 24
Figure 6. Sequence diagram - Locate document part 1.. 25
Figure 7. Sequence diagram - Locate document part 2.. 26
Figure 8. Search interface... 29
Figure 9. Partial BIBSYS SRU query result for keyword "Java" .. 32
Figure 10. The response received on a bus query .. 33
Figure 11. Wireless coverage and located bus stops .. 35
Figure 12. Registering user coordinates ... 37
Figure 13. Search interface... 38
Figure 14. Search results .. 38
Figure 15. Map with user indicated.. 39
Figure 16. Map with library indicated.. 39
Figure 17. Test documentation overview... 41
Figure 18. TC01-01 - Mobile application .. 42
Figure 19. TC02-06 - Correctly indicating bus schedules.. 43
Figure 20. TC02-07 - Correctly indicating the nearest bus stop .. 43
Figure 21. TC03-03 - Comparing document searches ... 44
Figure 22. TC04-01 - GPS coordinates registered at the server... 44
Figure 23. TC04-01 - The user indicated in the map ... 45
Figure 24. TC04-01 - The library indicated in the map ... 45
Figure 25. Bing Enterprise Maps ASP.net controller... 50
Figure 26. Image service analysis results... 52
Figure 27. Real time bus schedules .. 57
Figure 28. Local map of library ... 58
Figure 29. Gantt diagram - Schedule for project.. 67

viii

List of tables
Table 1 – Use case 1……………………………………………………………….…………. 8
Table 2 – Use case 2……………………………………………………………….…………. 8
Table 3 – Use case 3…………………………………………………………………….……. 9
Table 4 – Use case 4……………………...……………………………………...…………….9
Table 5 – Use case 5……………………………………..……………………….….……….10
Table 6 – Use case 6…………………………………………………………...……….…….10
Table 7 – Functional requirements………………………………………….……….…….....12
Table 8 – Non-functional requirements…………………………………………….…..…….13
Table 9 – Test summary…………………………………………………………….………...46

Listings
Listing 1: Inverse geocoding………………………….………………………………………30
Listing 2: A MARC record in XML format…………………………………………………..30
Listing 3: Determining input line type………………………………………………………..33

1

1 Introduction
As the number of mobile devices sold reaches new heights every day, ubiquitous computing is
becoming a natural part of the modern life. No longer does one have to sit behind a desk to
perform tasks such as browsing, searching or editing of documents. As the mobile phones
grow more powerful new applications emerge, providing functionalities that not long ago
would have been unthinkable. Some of these applications take advantage of the location of the
user. Such location aware applications are able to provide contextual information,
reconfigure, trigger actions or select nearby objects based on this location.

The NTNU library (UBiT) offers a large variety of services and has a large collection of items
distributed throughout various departments in Trondheim. Information on each of these
objects resides in a central database. Gaining information on them can be quite time
consuming for the user. If the information on these objects and services could become more
available and visible to the user, the value of them could be highly increased. One way of
accomplishing this could be through the use of location aware services.

In a project that handles this subject, several services that combine multiple library resources
and exploits location awareness are presented[1]. Those of these services that could provide
the most value to UBiT are combined into the design of one single application. This work
takes advantage of GPS[2] and GeoPos[3] to pinpoint a user’s location. It describes an
application that enables the user to select from a variety of services. One of these services is
the possibility to search for a document, where a document is defined as any physical or
electronic object registered in the library database. If the document is found the user is
presented with a map showing the respective library. A second possibility is to search for a
library with documents on a given subject, also providing the user with a map with directions
on how to get there. It is also possible to locate libraries with available computers, printers
and rooms. The final functionality of the application described in this previous work is to
display recent news from the present location of the user.

In the mentioned earlier project an overall design was presented along with
recommendations on what positioning technologies and platforms to use[1]. Based on this
work, a prototype implementing a subset of this functionality is to be developed. It will
demonstrate the possibilities of location aware applications, as well as the integration of these
services with other pre-existing ones.

1.1 Current situation

BIBSYS is a database containing information on objects located at 119 different Norwegian
libraries. Each library has one or more departments. BIBSYS ASK provides a search interface
for information on objects located at each of these departments.
Today a user in need of a document visits the web page of UBiT and enters one or several
keywords. BIBSYS ASK is the search interface for the information on documents stored in
libraries in Norway. When a search is performed, the user is presented with a listing of the
results. By clicking on one of the results, the system shows an overview of the library
departments holding the document. When the user select a department, a local shelf-map of
the given library department is shown if it is available. The user has to determine the
geographical position of the library manually, and no information on how to travel to it is
generated. The user has no information on which department is closest to him or her.

2

1.2 Assumptions and premises

There are some elements of this thesis that are given by the preliminary work in the previous
project, as well as by the fact that UBiT has contributed to define the functional requirements
for the application [1].
It is assumed that a subset of the services described in the preliminary work will be
implemented in a prototype. The information on objects in the library database will be
retrieved using BIBSYS SRU, a service developed to access information in the BIBSYS
database. It is assumed that the user is within the city limits of Trondheim when the
application is used, and it is not required of the prototype to fetch information on objects
located in other libraries than UBiT’s departments.

1.3 Goals

The overall goals for this project are:

1. Demonstrate how location awareness and maps can be exploited to facilitate the use of
library resources, such as information on documents and objects.

2. Show the feasibility of integrating several different information sources into the
prototype.

1.4 Structure

Chapter 1 gives an introduction to the thesis, and describes the overall goals for the work. In
chapter 2 UBiT is presented and a short presentation of existing location aware applications
today is given, along with a description of the work that preceded this thesis. Then a
description of the prototype and its functionality is given. Chapter 3 determines and ranks the
functional- and non-functional requirements for the prototype, while chapter 4 describe some
of the technologies that can be used to meet these requirements. The design of the prototype is
described in chapter 5, before some important design considerations are discussed in chapter
6. A walkthrough of the functionality of the prototype is given in chapter 7. The result of
testing the prototype against the requirements is presented in chapter 8, and the prototype is
evaluated and discussed in chapter 9. Chapter 10 suggests some additions to the prototype that
can be implemented at a later time.

3

2 Background
This chapter describes the background for the thesis. The NTNU library (UBiT) and BIBSYS
are presented. An overview of the work done in a previous project is presented. Finally the
desired functionality of the application is described, before some existing location aware
applications are presented.

2.1 UBiT

As described earlier, the UBiT library consists of large number of departments. In addition
there are other libraries that also have a number of departments spread across Trondheim.
Figure 1 shows the departments of UBiT, HiST (Trondheim and Sør-Trøndelag University
College) and Folkebiblioteket in the centre of Trondheim. Some departments are located
further away from the city centre and are not shown. The map shows that it can be difficult to
locate a specific document within a specific department. This thesis focuses on UBiT and its
data collections. UBiT consists of 11 departments, and subscribes to a large number of journal
databases and online databases.

Figure 1. Library departments in Trondheim

4

2.1.1 BIBSYS

UBiT participates in BIBSYS, which is a collaboration between 119 libraries in Norway
currently holding information on more than 14,800,000 items in its database[4].
BIBSYS offers BIBSYS ASK, a service that allows for search in printed literature and
journals using simple or advanced search. When searching in BIBSYS ASK, the search is also
relayed to MetaLiB which offers searches in digital book packages, FRIDA which contains
information and documentation of scientifically activities, and DIVA which offers
scientifically publications from universities across the Nordic countries. The information in
the BIBSYS database is described in MARC format[5, 6]. MARC is an international
metadata-format used worldwide. A MARC file consists of a series of lines, where each line
contains some information on the document described. Each line begins with an either a
variable- or data control field that defines what information the line contains. As an example,
a line beginning with the number 245 contains the title of the document. This structured data
is well suited for parsing by an application that e.g. extracts information on documents.
In addition to the information available through BIBSYS, the library provides some special
collections, including historical archives and picture collections.

2.2 Location aware applications today

There already exist a variety of location aware applications. This section gives a short
presentation on two of them, demonstrating some of the possibilities that location awareness
provides. Additional applications are described in the preliminary project [1].

WhosHere
WhosHere combines multiple localisation technologies to provide the user with information
on other people, by performing searches on predefined attributes [7]. By searching for e.g.
persons that could be interested in a carpool, users nearby with this attribute indicated are
shown in a list, and you are given the opportunity to chat with them directly. The application
allows you to see the position of users you previously have chatted with. It currently runs on
iPhone and iPod Touch.

Sekai camera
Sekai camera is another iPhone application [8]. By holding the mobile phone in front of you
and pointing the camera at any object, information registered by other users on the object in
view is shown. It also allows for the user to add additional information on the objects. The
application rely on GPS to determine the users position

2.3 Previous work

The prototype developed in this thesis, is one of several suggested applications described in a
project produced in autumn 2008[1]. Among other suggestions was the presentation of
historical photographs in a map, promoting library events, an interactive city guide and
presentation of community generated content. This section gives a short description of these
applications.

Presentation of historical photographs
More than 350 000 photographs are available through UBiT and their partners. By registering
the position of the user, images from places nearby may be presented. Along with these

5

photographs, information on them can be shown, as well as information on where literature
relevant to the photographs can be found.

Promoting library events
UBiT hosts several exhibitions. When a user is inside a library, information on upcoming
events can be pushed to the user. This could in the form of a web page, or an mms containing
an image of a poster delivered directly to the user’s mobile device.

Interactive city guide
A large amount of tourists visit Trondheim every year, and a map on the users mobile device
containing suggested routes or points of interest could make it easier for tourists to navigate
the city. When the user is at a pre-indicated point of interest, historical photographs and
information is displayed on the mobile device.

Community generated content
An open community solution allows for the users to append their own information to e.g.
photographs in the UBiT image database. This can allow for large amounts of new
information, but would also require some sort of quality control.

2.4 Prototype description

UBiT wants to increase the usage of its collections and to offer improved services, taking
advantage of new technologies. The library has, as described in the beginning of this chapter,
a large amount of information available. A challenge for the user can be to locate the exact
document that is desired. By taking advantage of location aware services and mobile devices,
the user can reach information on this document at the time and place preferred by him or her.
A location aware map application can make it easier for users to navigate to the library, and
might contribute in lowering the barrier for visiting it.

The aim of the application that is to be developed is to guide a user from his given
position to a library holding a document desired by him. An example is when the user is in the
city and needs a specific book right away. A search performed using the prototype running on
the mobile device, informs the user that the desired book resides in several of the university
library departments. The user is able to select the nearest department with the given
document. The system generates a map, indicating the last registered position of the user as
well as the position of the selected library department. The system also queries the local bus
company on how to get there. A route to the nearest bus stop with connections to the
department is then displayed on the map, along with the time of the next departure. A more
elaborative description of the functionality is available in chapter 7 where a walkthrough of
the prototype is given.

6

7

3 Requirements
This chapter determines the requirements that have to be fulfilled in order for the application
to offer the services described. These requirements consist of two parts; functional and non-
functional requirements. The functional requirements describe the features available to the
user, and how the user has to interact with the software to take advantage of these. The non-
functional requirements are a requirement that do not directly affect the user’s experience of
the software. As a tool for generating the functional requirements, use cases are applied.

3.1 Use cases

As a tool for determining the functional requirements for the prototype, textual use cases are
applied. Textual use cases consist of several cases, or scenarios [9]. Each case describes a
functionality that the user could take advantage of. A series of steps are defined, to describe
what a user would have to do. Each of these steps consists of two parts; what the user does
and how the system responds to this action. The textual use describes the full functionality of
the map-application described in the preliminary work, summarised in section 2.3 [1]. The
purpose of the use cases is to facilitate a discussion on the functional requirements and to
make sure that the developer and the representatives from UBiT has the same basic
understanding of the application’s targeted functionality.

Each use case contains a title that describes the case. In each case one or several actors are
defined, where actors are users, external systems that interact with the system or the system
itself. Pre-conditions are requirements that have to be true before the use case can start. Each
use case contains a series of steps that defines the main success scenario. When these steps are
completed, the case is finished.
Variations are used to describe what happens if the main success scenario fails. Each variation
is identified by the number of the corresponding success step and a letter.

The use cases described in the following pages are:

1. Start up: The user starts up the application and his or hers position is registered.
2. Locate document: The user issues a search with a keyword. A corresponding

document is selected and the user navigates to the nearest library department, using
the application.

3. Subject based search: The user selects a subject and navigates to the nearest library
with documents on the given subject.

4. Free capacity: The user wishes to use a computer and is shown to the nearest library
with free capacity

5. Local news: the user is shown news from the area nearby his or hers current position
6. Where is. The user desires to navigate to a given object inside a library. A shelf map

is shown, indicating the position of the user and the desired object.

8

Case 1: Start up

Actors: Private user, “Trådløse Trondheim”, GPS system

Pre-conditions: The user is within the boarders of “Trådløse Trondheim”

Step Private User System

1 Start the application Retrieves location
information from localisation
service, e.g. GPS
Variation: 1a

2 The user enters username and
password

The system retrieves the
user’s preferences.

3 The coordinates, username
and time of registration is
passed to the server.

Table 1 – Use case 1

Table 1 describes what takes place when the user starts up the application. The user starts up
the localisation application, and the position of the mobile device is updated on the server

Case 2: Locate document
Actor: Private user, Bus schedule service, BIBSYS, Google Maps

Pre-conditions: The user wishes to locate a document, and to travel to the nearest library
department holding it. The coordinates of the user is registered.

Step User System

1 The user selects ”Navigate”

2 The use selects ”Document
search”

3 The user performs a keyword
search.

The system retrieves
information on the
documents.
Variations: 3a, 3b, 3c

4 The user selects a book that
he/she wishes to reserve.

The system reserves the
document, and retrieves
information on the
corresponding library.

5 The user selects bus as the
preferred mean of
transportation.

A map is presented with
instructions on how to get to
the nearest bus stop, along
with information on bus
schedules”.
Variations: 6a

6 The user is at the final bus-
stop.

A new map with navigation
instructions to the library is
presented.

Variations:
3a –
The document is not
available

 The search interface is
presented again. The user is
informed that the document
is not available

3b –
The document is registered in

 The user is presented with
information on when the

9

the database, but not
physically available at the
library

document will be available.

3c –
The document is already
reserved

 The user is informed of when
the document will be
available, and is offered to
register his/hers interest. If
the document is available at
other libraries, the user is
informed of this

5a –
No bus available

 The user is informed that no
bus is available. A walking
route is presented.

Table 2 – Use case 2

In Table 2 the use case of detecting a book and viewing a map with navigation instructions is
described. The mobile has the browser running, and the user has navigated to the main menu
of the application. The user selects to perform a keyword search, and selects a document. A
map is then presented, and the user takes advantage of this to navigate to the library holding
the document.

Case 3: Subject-based search
Actor: Private user, BIBSYS, Google maps,
Pre-conditions: The user wishes to retrieve a map with directions to a library with
documents on a given subject. The coordinates of the user is registered.

Step User System

1 The use selects “navigate” The Navigation-menu is
presented.

2 The use selects to perform a
subject-based search, and
chooses a subject from a list.

Information on libraries with
books on the chosen subject
is retrieved. The closest one
is indicated.

3 The user chooses one of the
presented libraries

A map with directions is
presented

Table 3 – Use case 3

Table 3 describes how the user, by selecting a subject, can get navigation instructions to a
library department containing books on the given subject. A map with directions is presented
as in use case 2.

Case 4: Free capacity
Actor: Private User, BIBSYS, Google Maps, Bus schedule service

Pre-conditions: The user wishes to retrieve a map with directions to a library with free
capacity on e.g. computers. The coordinates of the user is registered.

Step User System

1 Select “Navigate” The navigation menu is
presented

2 Select “Capacity” Several capacity criteria’s are
presented

3 Choose the capacity criteria Capacity information for
each library is retrieved. If

10

preferred libraries are
previously indicated, these
are prioritized.
Variation: 3a

4 The user navigates using the
map presented.

Variations

3a –
No library with available
resources

 The user is informed that no
library is available

Table 4 – Use case 4

Table 4 describes how the user can get to a library with available computers and printers, and
other equipment.

Case 5: Local news
Actor: Private user, ATEKST, Google Maps

Pre-conditions: The user is in Trondheim and wishes to get the latest news for his/hers
nearby area. The coordinates of the user is registered.

Step User System

1 Select “Local news” The system gets the
preferences previously
indicated by the user, and
displays the local news in a
map.

2 The user clicks on one of the
headlines

The complete article is
presented

Table 5 – Use case 5

Table 5 describes how a user can get news for the local area, based on predetermined
preferences and the user’s location.

Case 6: Where is …
Actor: Private user, Google Maps, BIBSYS
Pre-conditions: The user is near a library, and wishes to get a map with directions to an
object inside the library.

Step User System

1 The user selects “where is” The system checks if the user
has any stored preferences.

3 The user selects which object
to locate

The system retrieves
information on the available
objects in the library, along
with the local map. The map
and the directions is
presented

4 The user follows the static
map with directions to the
object

Table 6 – Use case 6

11

When the user is inside a library, the “Where is” part of the program is enabled. As described
in Table 6, it enables the user to determine the location of a document, the nearest printer,
computer, etc.

The 6 use cases described here are the foundation for the functional- and non-functional
requirements that are presented in the next sections.

3.2 Functional requirements

Based on the use cases presented in section 3.1 a set of functional- and non-functional
requirements is created. An informal ranking of the use cases shows that use case 1 (Table 1)
and use case 2 (Table 2) are the most interesting ones. The implementation of use case 1
ensures the location awareness of the application, which is one of the premises for the
application. The implementation of use case 2 will create an application that shows a great
deal of functionality in one single service. It will also require the communication with other,
already existing, services such as BIBSYS and a bus schedule service. Based on the complete
list of use cases, the functional requirements in Table 7 are created, as well as the non-
functional requirements in Table 8. Each of the requirements is assigned a priority based on
the use-case observations. These priorities will determine the functionality implemented in the
prototype.

Table 7 describes a complete list of the functional requirements for the application. Along
with each requirement is an ID, as well as a priority. The priority can be High (H), Medium
(M) or Low (L). A high priority indicates that the implementation of the requirement is highly
relevant for fulfilling the goals given in section 1.3. A medium or low priority indicates that a
requirement can be excluded from this project due to time- or cost restrictions. See Appendix
A and Appendix B for a use case point estimation of the time necessary to implement the
different set of requirements.

12

ID Functional requirement Priority

C01 Let the user perform a search for documents using free text search.

H

C02 Display a map containing both the position of the user and the position
of a library with a given document.

H

C03 In C02 a route should be displayed on the map, so that the user can
navigate to the library using it.

H

C04 In C02 navigation to and from bus-stops, and information on bus
schedules should be possible.

H

C05 Let the user determine what libraries that are holding documents on a
given subject.

M

C06 Display a map containing both the position of the user and the position
of a library with documents on a given subject.

M

C07 When at a library, let the user see a library map with the position of a
selected document indicated.

M

C08 Let the user determine what libraries have capacity on equipment such
as printers, computers and rooms.

L

C09 Display a map containing both the position of the user and a library with
capacity on printers, computers and rooms.

L

C10 When at a library, let the user see a library map, with a path to selectable
equipment, such as printers, books etc.

L

C11 The application must support reservation of books.

L

C12 The user must be able to view local news, based on the user’s position.
Local can be defined as either part of town or on the city as total.

L

C13 The local news in C12 must be displayed in a map.

L

Table 7 - Functional Requirements

The functional requirements in Table 7 are listed according to priority. The ones that are
indicated as high are outlined with a solid border. The first requirement, C01, demands that
the applications enables user to locate documents using some sort of free text search method.
As searching for documents is one of the fundamental functionalities of a library, and as
retrieval of information from the library database is one of the premises for this application,
this requirement gets a high priority.
C02 enables the user to view either him- or herself in a map, together with the position of a
library in a map. By using a map and presenting the user with his or hers position, reaching
the library can be simplified.
C03 and C04 give the user information on what bus to take to the library, and how to navigate
to and from the nearest bus stop. This enables the integration of information from many

13

different resources, as required by the second goal in section 1.3, and can increase the value of
the application from a user’s point of view. Therefore C03 and C04 get a high priority.

The subject based search in requirement C05 enables users to locate a library based on the
main subjects of the library department. This is practical in the case where a user has not
decided upon a specific document, but wants to travel to a library with documents on a given
subject. Again, a map is useful for presenting this sort of information, as defined in C06.
These requirements have a medium priority because this subject-information is not available
in the current library database. The C07 requirement, displaying a map on library-level with a
selected document indicated, gets a medium priority as this is not one of the functionalities
necessary to demonstrate the functionality of the prototype.

Determining the amount of available printers, computers and rooms is a nice-to-have
function. It would increase the value of the application, but the implementation requires a
large amount of work. It may prove valuable at a later time, but no means are currently
available to measure these variables, so C08, C09 and C10 get a low priority.
Today the reservation of books through BIBSYS is not available. The implementation of C11
requires a change in the current structure of the reservation system of the libraries, and this
requirement gets a low priority.
As the presentation of local news falls somewhat outside the traditional field of a library,
requirements C12 and C13 get a low priority.

3.3 Non-functional requirements

Table 8 describes a complete list of the non-functional requirements for the application. As
for the functional requirements, High (H), Medium (M) and Low (L) priorities are used to
rank these. The requirements inside the heavy border are the ones with a high priority.

ID Non-functional requirement Priority

D01 The system must take advantage of an existing map-service H

D02 The system must communicate with BIBSYS H

D03 The system must retrieve bus-schedules from team-trafikk H

D04 The application for the mobile device must be platform-independent

H

D05 The system must take advantage of the user’s location.

H

D06 The location service must use GPS to locate the user H

D07 The system must have a module-based design to facilitate additional
functionality at a later stage

M

D08 Responsiveness L

D09 Ease-of-use L

D10 The navigational directions must be updated as the user moves, at an
intersection level.

L

D11 The location service must use GeoPos to locate the user L
Table 8 - Non-functional requirements

The use of map can simplify the experience for the end user. The prototype must be able to
demonstrate communication with existing services, therefore D01, D02 and D03 gets high
priorities. As it is desirable that as many users as possible are able to use the application with
as little effort as possible, the platform-independence requirement D04 also gets a high

14

priority. D05, location awareness, is given as a premise for the project, and is given a high
priority. D06 requires that GPS is used to determine the position of the user.

In requirement D07, module based design gets a medium priority. It is desirable that the
application gets a module based design so that new functionality easily can be added to it at a
later stage. However, as this is a prototype, the focus of the design does not have to be on this,
so it gets a medium priority.

As the product resulting from this development is to be a prototype, aspects such as
responsiveness and usability gets a low priority (D08, D09). A very frequent update of the
user’s current position and the navigational steps necessary to reach the destination is not
needed to demonstrate the functionality (D10). There are examples of applications that are
taking advantage of GeoPos, and the quality of this service is not satisfactory enough for it to
be used as the primary localisation technique [1]. At a later stage, it can be added as a backup
to be used if GPS is not available (D11).

Now the requirements that were formed based on the use cases described in the previous
section are ready. Each of them has been elaborated on, and assigned a priority. Next is to
decide how these requirements can be met.

15

4 Available technologies
This chapter describes the relevant technologies that can be used to fulfil the requirements
determined in the previous chapter. It describes different operative systems for mobile
phones, a selection of programming languages available for the server-side application, some
location technologies available, as well as the different external services that could be
beneficial to take advantage of in such an application. The descriptions in this chapter will
function as a platform for design- and implementation-decisions that are to be presented in
chapter 5.

4.1 Operating systems

There exist a large number of mobile devices, and each brand supports one or several
operating systems. Each operating system put restrictions on which programming languages
that can be used, and how the local resources can be accessed. Some platforms only supports
a subset of the languages available, and some cross-platform languages are not able to fully
exploit the possibilities of each platform.
In this section some of the most popular operating systems for mobile phones are described,
as well as some of the most popular development languages.

Windows mobile
Windows mobile is an operating system for mobile phones that is designed to look and
behave in somewhat the same manner as Windows for desktops. This simplifies the
manufacturing of new applications for developers, as it is based on the WIN32 API. In
addition many users will find the user interface easy to use because of its similarity to
traditional Windows for desktops.
An analysis performed by Gartner in August 2008 shows that Windows Mobile was pre-
installed on 12 % of all smart phones sold in the second quarter for 2008 [10]. This is a 0.5
per cent increase compared to the first quarter.
The 6.1 version of the Windows Mobile OS is currently the one most used. The 6.5 version
was released during spring 2009. One of the most criticised aspects of Windows Mobile is the
usability for touch screen cell phones, and the size of menus, icons and text. It is expected that
this update will improve the touch-screen abilities of the operative system by addressing these
issues.
Windows Mobile 7 is expected to reach market in 2010. This update can further increase the
functionality of the OS, and better take advantage of the touch screen.

Symbian OS
In August 2008 the market share for Symbian was 57.1 per cent, making it by far the most
sold operative system on smart phones [10]. However, this is a reduction of 8.5% from the
first quarter of 2008. The leading manufacturer of Symbian phones is Nokia, with their
software platform S60. The latest edition Symbian S60 v 6.5 is the first with support for touch
screens. S60 gives access to device specific features such as the GPS through Flash Lite.

iPhone OS
The latest version of iPhone OS is 2.1.1. It is based on Apple’s OS X, and is deployed on
IPhone and iPhone 3G. Developers are highly encouraged, and somewhat forced, to develop
applications that do not compete with applications already provided by Apple. Both a SDK
and an API is available, and the number of applications developed by users is constantly
growing. As of today applications can only be legally installed on the iPhone through Apples

16

App Store, and only applications that are approved by Apple can be submitted to this App
Store. iPhone 3.0 is available for download 17th June 2009.

Android
Android is an operating system for mobile devices developed by Google[11]. It is based on a
Linux kernel, and it is expected that user contributed software will be a large part of the
operating system. This is accomplished by providing a SDK and API, facilitating Java
development. Also C development is possible, although not officially supported by Google.
Only a few phones are currently sold with the Android OS pre-installed, such as the HTC
Dream[12], but users have been able to perform aftermarket installation on other phones.

4.2 Programming Languages

As well as deciding upon which operative systems the applications will run on, it is necessary
to decide what programming language to use. This section describes the most common
programming languages used on mobile phones today.

Java
JME, previously known as J2ME, is a reduced version of Java Standard Edition (J2SE)
designed to operate on devices with “limited memory, display and power capacity” [13]. It is
partially platform independent, meaning that the devices the application is installed on has to
support the profiles and configurations that the application was designed for [14]. Therefore
an application design for a mobile phone can not be expected to run on, for instance, a java-
supporting satellite tuner. A profile defines the API’s and interfaces available on that device,
while a configuration defines how large a subset of J2SE is available on the device.

When an application is designed for a specific mobile device, the application may run on any
device in the same category. JME is a subset of J2SE, and development on this platform is
therefore very much like developing for J2SE. Java has traditionally been given a reputation
for being slow, but whether this is still true is a subject widely discussed. Development of
user interfaces for JME applications can be cumbersome and time consuming.

C#.NET
.Net Compact is a framework built for small devices, and facilitates communications through
standardized protocols such as Simple Object Access Protocol (SOAP) and Web Service
Description Language (WSDL) [15]. It runs on several Windows-based operative systems,
such as Windows Mobile, by taking advantage of a Platform Adaptation Layer (PAL). Both
C#.NET and VB.NET is supported.

.NET development is based on taking advantage of already existing standards.
Communication with device specific technologies can be uncomplicated, and user interface
development is simple drag and drop using Microsoft Visual Studio. Development on this
platform can be less time consuming than the alternatives, but also less platform-independent.

C++
For software to run on the Symbian platform, Java and C++ are the most used alternatives.
When it comes to appearance and user interface, different solutions exist based on the
producer of the device.

17

4.3 Location technologies

There are several location technologies available for mobile devices. This section describes
the outdoor localisation technologies that are most used; GPS, WiFi-based and GSM-based.

GPS
GPS is integrated into an increasing number of mobile devices[1]. The positioning service is
quick when first connected, has high accuracy, and is free to use. The reliability is also high,
as long as a free view to the sky is ensured. However, there is still a large number of mobile
devices that does not have this technology installed. Also, in city centres, there is the
possibility of ending up in signal shadows. There have been some reports on the possible lack
of founding for the GPS system [16].

WiFi-based
When the user is indoors, or the view to the sky is blocked by buildings in narrow city streets,
the connection to the GPS-satellites most likely will be lost. If this happens, positioning in
wireless networks can be used. In the Metropolitan Area Network (MAN) ”Trådløse
Trondheim” the positioning service ”GeoPos” is available [3]. This positioning service is less
reliable, less accurate and slower than GPS. However it is available within some buildings,
and does not require a GPS to be installed on the mobile device. Instead a WiFi card is
required.

GSM-based
All mobile phones are able to access the GSM network if it runs at the same frequency as the
phone was designed for. There exist several methods for pinpointing the position of the
mobile device, and the most accurate ones has a resolution of approximately 65 meters [17].

4.4 External services

The prototype will retrieve information from many different services. This section provides a
short description of the most relevant ones. Which of these will be used in the prototype is
decided upon in the design considerations, section, 5.2.

Google Maps
Google offers an API that lets developers include maps in their web pages using JavaScript
[18]. Through Events, Controls, Overlays and Services the map can be configured to serve
many different aspects, one of which is displaying the route to and from different points of
interest.

Bing maps for enterprise
Microsoft has for some time hosted the Live Maps service. This is now known as the Bing
maps for enterprise (previously also known as Microsoft Virtual Earth). This service enables
web users to search in online maps. The Bing maps exposes a series of services that allow
developers to take advantage of location and local search features in their applications[19].
The Web services are available for three platforms; Silverlight, .Net and mobile applications.
This service is currently in Community Technical Preview, meaning that one have to apply for
access to the SDK [20]. The documentation does not appear to be complete.

Yahoo! maps
Yahoo maps is a map web service that provides Flash-, Ajax- and Map Image APIs[21]. This
enables the generation of maps with or without of directional instructions, as well as

18

geocoding services. The design and functionality of Yahoo! Maps services are highly
comparable to the Google Maps API.

BIBSYS
BIBSYS contain information about libraries and documents that can be used in the
application. One way to access this information is through a web service [22] provided by
BIBSYS, the BIBSYS SRU[23]. By passing a valid CQL query to this address an easily
parsable XML result is returned.

Bus schedules service
On their web page Team Trafikk offers natural-text based search for bus schedules [24]. The
result of this search is also in natural-text. To be able to communicate with this service one of
two things can be done. Directly accessing the database containing the bus-schedules for
Trondheim is one of them. The other is to perform a scraping1 of the web page. When a
scraping is performed the response to a query is read directly of the web page. The result is
information on the bus-stops nearest to the user and the selected target, as well as information
on departures between these bus-stops.

Amazon image service
Amazon has the book covers for a large part of the books they sell available as images on
their servers. By passing ISBN2 code of the document in an URL, the image is created if the
document is present in their database. This service can be used to present the users with he
cover of a book they search for, in addition to the textual information. If the user learns what
the document looks like, this can simplify the task of locating the document when at the
library.

LibraryThing image service
LibraryThing is an alternative to the Amazon image service[25]. It is an open community
database that contains cover images of more than 39 million books, and that let their users
contribute by uploading book covers. In January 2009 1 million covers were available by
passing the ISBN of the document to their servers. In June 2009 this number has raised to
more than 1.4 million cover images.

1 A technique for extracting information from web pages.
2 International Standard Book Number

19

5 Design
Based on the requirements and their priorities in chapter 3, this chapter presents the design of
the prototype. By elaborating on some important design considerations the overall design, as
well as class- and sequence diagrams, is constructed. The relevant technologies and services
are discussed, and the ones to be used in the prototype are determined.

5.1 Top-level design

Figure 2 describes the design of the prototype. The red border indicates the modules that are
to be implemented in the prototype.

Figure 2. The overall design with three modules.

The mobile application (A), the server-side application (B) and adapters and services (C).

The dotted line indicates the prototype border.

The prototype consists of three modules as shown in Figure 2. Module A is the application
running on the mobile device, handling communication with the localisation services. Module
B is the server-side application, consisting of the Web server and the applications server. The
application server responds to requests issued by the web server, and returns information
retrieved from numerous local and external services. Module C consists of external services.
In order for a service to be implemented, an adapter has to be created at the application server.
This adapter handles all communication with the external service. If the source of information
is to be replaced by another, all that has to be changed is the corresponding adapter.
In addition the web server communicates directly with the Google Maps server.
The next section discusses the design of the prototype.

20

5.2 Design considerations

In this section some important design aspects are discussed. It is necessary to determine
whether the prototype should run solely on the mobile device, or if the computation is to be
performed on a remote server. In the previous chapter a large variety of external service was
presented, and it is determined which of these that are to be used. In Appendix A it is
calculated that development of all the use cases would take approximately 19 weeks. This is
not feasible in the span of this project, but by reducing the design, based on the priorities of
the functional- and non functional requirements the development process is reduced to 9
weeks, as shown in Appendix B.

5.2.1 Distributed vs. local application

One of the aspects that should be considered is whether the application is to run in full on the
local device, or fully on a remote server. Running the complete application locally will
require more processor capabilities on the device. In addition it could reduce the level of
portability. For these reasons it is desirable to deploy the application on a remote server. If
this server is a web server, the user can navigate to a web page using a standard web-browser
on the mobile device. However, to be able to access data from the localisation device on the
unit, some form of local application is required.

5.2.2 Platform and programming language

Section 4.1 describes several different platforms, and in section 4.2 some programming
languages are presented. In the non-functional requirements specified in section 3.3,
requirement D04 states that UBiT has a high desire for a platform-independent application
running on the mobile device. Both Opera and Firefox are developing browsers that are able
to access the GPS device or any other localisation device. As a consequence of the technology
emerging, it is reasonable to state that a mobile application will not be a part of a future
application. Because .Net enables easy access to the GPS on the mobile device, and since the
developer is using windows mobile with an internal GPS device, C#.Net will be used in the
prototype. This has no consequence for the development or execution of the server, as this
simply reads the users GPS coordinates from a file. It can appear as this decision directly
interferes with the functional requirement of platform independence, but the mobile
application is made for this prototype only and will not be part of the complete application.

5.2.3 Location service

The design of the application running on the server defines that the coordinates of the user is
read from a text file on the server. This determines that the server side of the application is
able to run independent of which localisation service that is used, as long as the coordinates
are written to this file.
Localisation in the GSM network does not have a high enough resolution to support the
functionality required by the prototype, and is therefore deemed unsuitable.
As several projects at NTNU have already attempted to take advantage of GeoPos in their
work with map-based applications, it is demonstrated that this service pinpoint the user’s
position with a lower resolution and a higher delay than GPS [26]. The use of GeoPos as
localisation service is therefore excluded from this project.
GPS signals are normally not available indoors, and it is therefore likely that it will not be
possible to pin point the user’s location when he or she is indoors. In the prototype this issue

21

can be solved by using the last registered position of the user before the building was entered.
38% of all smart phones sold in Europe have GPS installed[27]. As the use of GPS is one of
the non-functional requirements it is desirable to show that the prototype functions with this
location technology. The prototype will therefore focus on the use of GPS a location service.

5.2.4 Bus schedule service

The prototype must show that integration with external services is possible. One such service
is Team-trafikk.no’s bussorakel. The prototype will communicate with this service to extract
bus schedules. An alternative is to access the bus schedule database directly. As this will not
simplify the process of retrieving bus schedules, nor demonstrate the possibilities of
exploiting existing services, this is not an option. Team-trafikk is the only bus company in the
city of Trondheim, and their service bussorakel is selected as source for the local bus-
schedules.

5.2.5 Map service

As map service for the application, Google Maps is selected. It provides a JavaScript interface
enabling the generation of maps with directions displayed in them. When compared to Yahoo!
Maps, it is obvious that these two have a lot in common. However, the developer has previous
experience with the Google Maps API. As the timeframe for the thesis is limited, Google
Maps is preferred in this case. Another alternative is Bing Enterprise Maps. That project is
however in an early phase of development, and it would be quite time consuming to get an
overview of the possibilities offered by this service. Google Maps is preferred over Bing
Enterprise maps on the same basis as for Yahoo! Maps; the timeframe.

5.2.6 Book-cover data source

Both Amazon and LibraryThing provides free download of their book-covers. However, none
of them are adequate for the amount of documents present in the BIBSYS library. The cover
image will first be attempted downloaded from the servers at Amazon.com. If the image is not
available here, the database at LibraryThing will be used.

5.2.7 Additional data sources

As the prototype will incorporate information from multiple services, it is necessary to
perform some sort of data validation or conversion when data from one source is applied to
another. This will in some cases require the use of additional data sources.

When the bus service is queried on a bus-schedule, the name of the bus stop nearest to the
position of the user and the name of the bus stop nearest to the library are returned. However,
in order to indicate these points in a Google map, the addresses of them must be retrieved.
Therefore a local data file is created, where the addresses of the bus stops are registered. This
registration is done manually by the developer, and in order to support additional bus stops
this file will have to be extended. The server manages this file, which enables conversion
from bus-stop names to bus-stop addresses.

When the user selects a document the corresponding library department is indicated in the
map. When a book is queried for, the result contains an id that represents a given department.
In order to plot the library department in the map, its address is retrieved. Again, the server

22

holds a manually generated file that converts from library id to address and coordinates. This
file contains the address of each library department elaborative descriptions on how to get to
the department, coordinates, phone numbers and so on. This information is also shown in the
map.

5.2.8 Multiple users

Implementation of user login and settings will not contribute to the functionality in the
demonstrating prototype, nor is it a requirement. Therefore the prototype will not handle
multiple users and their preferences.

5.3 Class Diagrams

In section 5.1 the overall design of the system is established. Based on this design and
decisions made in the previous section, the next step is to elaborate on the different
components of the system.

5.3.1 Mobile application design

Figure 3 describes the design of the application that runs on the mobile device. The
application is responsible for fetching the coordinates of the user, and to register them on the
server. When the application starts up, the Form described in Figure 3 is loaded. It then
registers the gps_LocationChanged and the gps_DeviceStateChanged methods as event
handlers. When the location changes, the gpsLocationChanged method calls the updataData
method that connects to the server and passes the parameters using an HttpWebrequest. On
the server these parameters are written to a local file.

Figure 3. Class diagram of the mobile application in C#

5.3.2 Server side application design

A class diagram for the server side of the application is shown in Figure 4.

23

Figure 4. Class diagram - Server Application

In the bottom middle is the Application Server class. This is implemented in the singleton
pattern, so it is only one instance of it at all times. The first time the instance of this class is
requested, it generates the BibsysAdapter object and the BusAdapter object, and calls
methods on them to fill up their respective hash map objects Those methods reads the
required data in from local files. For each line in the library information file, an instance of
the Library class is created an added to the hash map. The BibsysAdapter holds a collection of
Libraries, and the BusAdapter holds a collection of bus stops.
At the top of the figure there are four classes that extend the Page class. These are the code
behind files for the asp.net web pages. Each of these web pages implements the Page_Load

24

function that is registered as handler for the Load event in the Page object, so that when a
page is requested, this method is automatically called.
The Default class is responsible for generating the map. It holds the variables necessary for
this, and it has methods that each produces a part of the JavaScript necessary for this
generation. The gpsHandler accept requests from the application running on the mobile
device, and writes the user coordinates to a local file.

The next section describes the correlation and communication between the classes by the use
of sequence diagrams

5.4 Sequence Diagrams

This section contains sequence diagrams representing use case 1 and 2 as described in chapter
3. The diagrams show the objects, and the messages that are exchanged between them, in each
of the use cases. The purpose of these diagrams is to clarify how the system operates in the
given cases, and in which sequence the interaction occurs.

The first sequence diagram, in Figure 5, describes the first use case where the GPS position of
the mobile devices is determined. Whenever the GPS registers that the location of the user has
changed, it notifies the positionChangedEventHandler in the Form1 class, which is the
UpdateDataHandler. This method calls the updateData method on itself, which in turn creates
an httpGet request, passing the new latitude and longitude of the device to the application
server. On the server the new data is written to the local GPS file. Whenever the position of
the user changes this sequence is repeated.

Figure 5. Sequence diagram - Start-up use case

The next sequence diagrams, Figure 6 and Figure 7, describe the process of retrieving a map
with instruction on how to get to the library department holding a given book. Before these
sequences can take place, the sequence in Figure 5 has to be performed at least once in order
for the coordinates of the user to be registered at the server.

25

Figure 6. Sequence diagram - Locate document part 1

26

Figure 7. Sequence diagram - Locate document part 2

The first part, Figure 6, describes how a query is passed along to the BISYS service. When
the user selects to perform a document search, the documentSearch class generates a
JavaScript whose purpose is to retrieve the user coordinates. This is done by calling the
getUserCoordinates method which reads the user coordinates from the local GPS file as it was
generated in Figure 5. These coordinates are then translated into textual address by
performing calls on the Google maps server. The calls on external servers are omitted from
the figures for simplicity. When the control returns to the user, he is presented with a search
field. A valid CQL query, e.g. a keyword, is entered and a new httpGet call is performed on
the documentSearch class. Now the search result is generated. This is performed by calling
the documentSearch method on the application server, passing along the keyword and the
latitude and longitude of the user retrieved in the previous step. The application server queries
the BibsysAdapter, passing along the parameters. This adapter issues a request to the external

27

BIBSYS SRU service, and parses the returned XML. It downloads cover images if they are
available. The result is returned to the user.
Next, the sequence in Figure 7 takes place. By selecting one of the returned book results, an
httpGet request is performed on the Default page. This object performs the
genereateJavaScript operation on itself. As a result, the parameters necessary for generating
the map is retrieved from the URL and from the Session object. Then the busSearch call is
performed on the application server, with the address of the user and the address of the
selected library passed along. The application server is then responsible for passing the query
along to the BusAdapter, which issues an Http Request on the remote bus schedule service. It
structures the resulting data and returns the route information. Finally the Default web page
prints the JavaScript for generating the complete map, and the control is returned to the user
who is free to navigate the map as soon as the browser has performed the JavaScript calls
required.

28

29

6 Implementation
This chapter describes how the prototype is implemented. The mobile application that logs the
position of the user is presented. Then the implementation of the server side of the
application, the web server, application server and adapters, is described

6.1 Mobile application

The mobile application is indicated as module A in the design shown in Figure 2. In the
design section of this document it was elaborated on whether to use a distributed or local
application. Due to the limited resources of mobile devices, and the use of JavaScript, it was
determined that the application can not run completely on the local device. Due to current
access restrictions on the local resources, the application can not run entirely remote.
The newest beta versions of desktop browsers such as Opera[28] and Firefox[29], support the
Geolocation API specification provided by W3C[30]. This enables the browser to access the
local device’s localization equipment such as GPS through JavaScript. This is currently
available for desktop browsers in beta versions only, and it is therefore expected to take some
time before it can be used in mobile browsers as it is desired in this case.
The solution for the prototype is to develop a small local application that transmits the
coordinates of the user to the server at given intervals.
This application is for ease of testing developed as a Windows Mobile application, using
C#.Net.
The application listens to the local GPS device If the position changes, it is transmitted to the
server using an http-connection to an asp.net page at the server (gpsHandler.aspx). This
asp.net page writes the passed parameters to a local file, gps.txt, logging the time of
registration as well as the username of the user of the application.

6.2 Server side application and adapters

The server side of the application consist of the Web server that generates the web pages the
user visits, the application server that ensures communication between the web server and the
adapters, and the adapters that fetches information from the external services.

Web pages
The user is able to interact with the application using a web browser. The web pages are
hosted by the web server in module B in Figure 2. Most mobile browsers on the marked do
not render JavaScript in accordance with the full standard. As a result of this the latest beta
version of Opera (Opera Mobile 9.5 beta) that does render the Google Maps correctly, has
been used during the development of the application[31]. It is reasonable to expect that
mobile browsers in general will support the full JavaScript specification within short time.
When the user navigates to the start page of the application (mainmenu.aspx), the user is
allowed to select “Search for documents”. When this link is clicked, the user is redirected to
search.aspx and the search interface is presented as shown in Figure 8. The server side
application then prepares for queries against the BIBSYS SRU service.

Figure 8. Search interface

30

At the same time the address of the user is determined by executing JavaScript code for
communicating with the Google server. By using the coordinates provided by the application
running on the user’s mobile device, an inverse geocoding as shown in Listing 1 is performed.
This example demonstrates one of the challenges with inconsistency between different data
sources, as comma sign in decimal numbers has to be replaced by a period before they can be
passed to Google for processing. The address is then stored and passed on to subsequent site-
requests. This implies that if the user changes location, this page has to be loaded again for the
address values stored in the application to be updated.

97. var geoCoder = new GClientGeocoder();
98. var latlng = new GLatLng(" +
99. lat.Replace(',', '.') + ”," +

100. lon.Replace(',', '.') + @");

101. address = geoCoder.getLocations(latlng,

102. writeAddress);

Listing 1. Inverse Geocoding

Application server
The application server class handles communication between the web pages and the adapters
providing the application with information, and is part of Module B in Figure 2. The
application server class is responsible for instantiating and holding one instance of each of the
adapters, and are able to perform operations on these. These operations generate information
that is passed back to the web site that requested the information.

BibsysAdapter
The BibsysAdapter is located in module C in Figure 2. When the user submits a CQL query it
is passed along to the BibsysAdapter. It communicates with the BIBSYS SRU, which is a
service that accepts a query to be passed as parameters in an URL [23]. The keywords are
then processed as a query against the BIBSYS database, and the result is displayed as an xml
document on the web site. This xml document contains MARC information for each of the
documents [5]. The BibsysAdapter parses the xml document using an XPathNavigator. The
intention of using this kind of parser, as opposed to e.g. XmlReader, is that the
XPathNavigator allows for non-sequential reading. This is desirable when information in one
part of the document has to be read before it can be decided if another part is to be read later
on. One example is that it is necessary to read the ISBN number of a document in order to
fetch its cover image before the rest of the node is read. Also, the XPathNavigator is able to
read the Xml document directly from a stream, as the one generated when fetching the result
of the HTTP request. An example of a record in the xml document is shown in Listing 2. Here
is only the information that is read by the BibsysAdapter presented, but as the
XPathNavigator read through each of the nodes, all the information in the MARC record can
be harvested.

1 <marcxml:record xmlns:marcxml="http://www.loc.gov/MARC21/slim">

2 marcxml:datafield tag="020" ind1=" " ind2=" ">

 <marcxml:subfield code="a">

 1-57851-558-0(ib.)

 </marcxml:subfield>

</marcxml:datafield>

3 <marcxml:datafield tag="245" ind1="0" ind2=" ">

 <marcxml:subfield code="a">

 The digital enterprise

 </marcxml:subfield>

31

 <marcxml:subfield code="b">

 how to reshape your business for a connected world

 </marcxml:subfield>

 <marcxml:subfield code="c">

 edited with an introduction by Nicholas G. Carr

 </marcxml:subfield>

</marcxml:datafield>

4 <marcxml:datafield tag="852" ind1=" " ind2=" ">

 <marcxml:subfield code="a">

 TEK/IØT

 </marcxml:subfield>

 <marcxml:subfield code="z">

 (Ikke fjernlån)

 </marcxml:subfield>

</marcxml:datafield>

5 <marcxml:datafield tag="852" ind1=" " ind2=" ">

 <marcxml:subfield code="a">

 UBIS

 </marcxml:subfield>

</marcxml:datafield>

 </marcxml:record>

Listing 2. A MARC record in XML format

Each entry in the xml document is parsed, and a selection of the data is stored, such as the
library department holding a copy of the document (Node 4 and 5, Listing 2), the ISBN
number (Node 2, Listing 2), the availability of the document (Node 4, Listing 2) and so on.
The “Ikke fjernlån” value in Node 4, Listing 2, indicates that it is not allowed to remove the
document from the library.
The first time the application runs the addresses of the library departments are read from a
pre-generated local file and stored in a hash table. Later, if the library department exists in the
hash table, the ID of the library is added as a hyperlink to the library name, as shown in
Figure 9. “DORA” and “TEK/IDI” represents library departments of UBiT, and their names
appear as hyperlinks. “NITH”, “UMN/INF”, “HIG” and “MF” are not library departments of
UBiT, and are therefore not hyperlinked.

32

Figure 9. Partial BIBSYS SRU query result for keyword "Java"

Some documents are not allowed to take out of the library. This is shown by a small padlock
next to the library link, as shown in Figure 9. This indicates that the “Ikke fjernlån” property
is present for this record, as shown in node 4, Listing 2. For each book, the library department
that is nearest to the user is indicated by a yellow marker. This information is created by
reading the latitude and the longitude of each of the coordinates for the user and each library
that resides in Trondheim. The property of “nearness” is based on Pythagoras' theorem, and is
derived by calculating the square distance between the points in each of the dimensions. Other
measures could have been used, such as shortest travel time.
Further information on the availability of the document, if it is on shelf and so on, is not
included because it is not available through the MARC code (Listing 2).
When the user has decided upon a document, he clicks the link of the desired library
department and is redirected to the map.

BusAdapter
The BusAdapter is located in Module B in Figure 2. When the user has selected a library
department, a query is generated that requests the next bus leaving from the position of the
user to the address of the department. The addresses are generated by passing coordinates to
the Google Maps Server. This requires some pre-processing before it can be used directly in
the query. One example is the house numbers. As the GPS system has an accuracy of
approximately 30 meters, Google Maps returns a series of house numbers, e.g. “Nordre gate
1-25”. This is not a deterministic street name that can be passed to team-trafikk, so the last
part of the street number is removed, resulting in “Nordre gate 1” being passed to the bus-
query. An alternative solution could be to take the average of the two numbers, placing the
user in the middle of the street section

33

The result returned from the bus service is a natural text paragraph. Figure 10 shows what this
result looks like when it is viewed on the bus company’s webpage, with the numbers 1-4
added prior to each sentence.

Figure 10. The response received on a bus query

The paragraph consists of four different types of textual lines relevant for this application.
Line number 4 in Figure 10 is the line that indicates a successful query result. The entire
paragraph is checked to ensure that this sentence is present. If it is, the rest of the paragraph is
parsed as described below. If it is not present, a message is presented to the user explaining
that there was an error when querying for bus schedules. Listing 3 shows how the remaining
paragraph is parsed. The first two lines in Figure 10 are sentences that determine the name of
the bus stop nearest to the user and the library. These lines are parsed using code line 105-107
in Listing 3. Sentences that describe busses with direct route to the given bus stops are not
present in Figure 10, but these are parsed by code line 108-111, Listing 3. Finally sentences
that describe bus routes with connections as line 3 in Figure 10, are handled by code line 112-
115 in Listing 3. Each of the methods called in the different cases analyses the different
sentences and determines the bus stop names, the bus numbers and the given departure times
if required, respectively. If the structure of the sentences returned from the bus schedule
service is changed in the future, this method and the methods called from it will have to be
updated.

102. private string[] determineLineType(string line)
103. {
104. string[] returnString = new string[6];
105. if (line.Contains(" nearest to ")){
106. updateStationNames(line);
107. }
108. else if (line.Contains("and bus"))
109. {
110. returnString = handleTransfers(line);

111. }

112. else if (line.Contains("arrives at"))
113. {

34

114. returnString = handleDirect(line);
115. }
116. return returnString;
117. }

Listing 3. Determining input line type

If the read input line contains information on a transferring line, it only contains one time of
arrival, as opposed to the direct line that contains a varying number of arrivals. This
inconsistency is why the prototype displays only the next departure instead of a list of
departures.
When a street name is returned from the bus query, an operation is performed on it to remove
accents and apostrophes. This is done to ensure that the spelling is consistent with the one
used in Google Maps when the directions are created. This can be done as the prototype is
created to function within a limited area, and this manipulation will not create a street name
that is equal to another already existing one.

As a result of the code running in Listing 3, a string array with the following six entries is
created:

- The bus stop nearest to the user,
- The bus stop nearest to the library,
- The departure time of the next bus,
- The line number of the next departing bus,
- What bus line the user has to change to if a transfer is required,
- At which bus stop a potential transfer would take place

If no bus schedule is available, the user is returned to the main menu, where an error message
is shown.
When the schedule information has been determined a Google map is created, generating
routes from the user to his nearest bus stop and from the arrival bus stop to the library. The
content of information bubbles that appear when an icon in the map is clicked is also pre-
generated, and contains information on the bus stop addresses, bus departure times, transfer
lines and so on.
When a query is submitted to the bus schedule service, the name of the bus stops nearest to
the user is returned. However, these names are not deterministic addresses. As a solution to
this, the bus stops returned have to be converted to street addresses. The addresses of a large
part of the bus stops in the centre of Trondheim have been registered in a local file by the
developer. As this is a prototype, some limitations can be put on the amount of bus stops
required: As mobile internet is currently quite expensive, it is natural to believe that the
application mostly will be used in areas with wireless network coverage. Figure 11 shows the
bus stops in Trondheim indicated as blue dots, and the coverage area of the wireless network
Trådløse Trondheim is indicated by the darkened area. The address of the bus stops that lay
within or near this coverage area has been collected and is registered in the application, along
with the ones surrounding the library departments. The list that converts from bus stop names
to addresses is shown in Appendix E.

35

Figure 11. Wireless coverage and located bus stops

Image service
The image services are indicated in Module C in Figure 2. When the xml is returned from the
BIBSYS SRU service, each node is parsed sequentially. Whenever a new record node is
discovered, the ISBN number of the document is fetched. If this ISBN number is present, the
prototype attempts to retrieve the cover image of the document from two different sources.
Amazon provides the possibility of linking to an image by providing the ISBN number of the
corresponding document as a parameter in an URL. By checking if the response from an http-
request to this address is larger than a given threshold, it can be determined whether an image
is available or not.
If an image is not available the same procedure is attempted against the LibraryThing service.
The length of the response stream for this http request is also checked, and if it is large
enough an html image tag is returned with this picture as a source. If the picture is not
available here either, a “No image available” string is displayed where the image should be.

36

37

7 Walkthrough
This chapter demonstrates the functionality of the prototype. It shows what the user can do,
from logging his or hers position to receiving the complete map with instructions on
navigation and bus schedules.

7.1 Logging the users location

The first thing the user has to do is to log his or hers position. This is done using the GPS on
the mobile device. It is assumed that the mobile application of the prototype is already
downloaded, no installation is required.

Figure 12 shows the running mobile application. The user is informed that the device
is connected to the remote server, and a counter informs the user every time the coordinates
are updated. The latitude and Longitude are displayed, along with the number of satellites in
view. In order to calculate the correct coordinates at least three satellites have to be in view.
When this program runs the user’s coordinates are transmitted to, and stored at, the remote
server. The user can minimize this application and let it run in the background. If the user
exits the application, the last registered position is stored at the server.

Figure 12. Registering user coordinates

7.2 Searching for documents

When the user navigates to the start page of the application using the mobile browser, the
main menu is shown. In this prototype only the “Search for document” option is available,
and when this is selected, the search interface in Figure 13 is shown.

38

Figure 13. Search interface

By entering a keyword, or any CQL query, and pressing the “query” button, the user performs
a search in the BIBSYS database. As an example, by entering the search word “Java”, the 10
first results are shown. Figure 14 shows a subset of these hits, as they appear on a mobile
device.

Figure 14. Search results

The title and the authors of the document are displayed, along with the cover images of the
corresponding books. All the library departments that holds a copy of the document is
displayed, and if the department resides in Trondheim its name is a hyperlink. For each of the
documents, it is indicated which library department is nearest to the user by a yellow triangle.
If it is not possible to take the document out of the library, this is indicated by a padlock, as in
the second result in Figure 14.

7.3 Displaying the map

When the user selects one of the libraries in Figure 14 a new page is displayed. If the users
e.g. selected the “TEK/IDI” department, the page in Figure 15 is shown.

39

Figure 15. Map with user indicated

In Figure 15 the position of the user is indicated by a drawing of a person holding a mobile
phone. There is also a route to the nearest bus stop (the bus icon) with connections to the
selected library department. When the bus icon is clicked information on the next bus leaving
for the library is shown. If the user would have to perform a transfer, information on this is
displayed in the same bubble. By clicking on the library icon (NTNU logo) on the far right,
the map shifts focus to the library department. The result of this operation is shown in Figure
16.

Figure 16. Map with library indicated

The arrival point of the bus is indicated by a bus icon. When clicking on this icon, the address
of the bus stop is shown in the information bubble. A route to the library department (NTNU
logo) from the bus stop is shown. If the NTNU logo in the map is clicked, the address and
phone number of this library department is shown.

40

41

8 Testing
In Appendix D the test documentation is presented. The documentation contains test plans test
designs, test cases for all the requirements described in section 3, as well as the test log. The
purpose of the test documentation is to determine what has to be done in order to perform a
complete test of the system, and to determine whether or not all of the requirements has been
satisfied. The three modules of the system, the mobile application, the server application and
the adapters are each tested individually, before they are tested together in a complete system
test. The purpose of this chapter is to function as a test report, and to analyze and discuss the
results of the tests. A complete overview of the test documentation is shown in Figure 17. The
test plan, test designs, test cases and test log are located in appendix D, while this chapter is
the test report.

Figure 17. Test documentation overview

In order for the application to satisfy all of the requirements described in section 3, all four
tests must pass. What is required in order to pass a test is described in each test plan, located
in the appendix.

8.1 Testing the mobile application

The first plan ensures that the mobile device is able to communicate with the GPS system, so
that the position of the user can be registered. The first test design handles the reading of the
coordinates at the mobile device, while the other is concerned with the coordinates being

42

received at the web server. During this test, an external GPS unit was used to position the
tester at the predetermined coordinates. The first three cases show that the mobile application
correctly communicates with the local GPS device, by displaying the coordinates in real time
to the user. Figure 18 sows the mobile application running on a mobile device, and displaying
the coordinates as they were defined in the test case TC01-01, where the user is located on the
street of “Bakke bru” in Trondheim.

Figure 18. TC01-01 - Mobile application

In one of these cases, TC01-03, the observed latitude was off with two decimals. The
observed longitude was 63.42745 while the external GPS reported 63.427496. This difference
represents a distance that is lower than the resolution of GPS, and is therefore ignored.

The last case shows that the coordinates are correctly transmitted to, and registered at,
the server.

The conclusion after the first tests is that the mobile application is successfully able to
detect the position of the user, and to register that position at the server.

8.2 Testing the server side

This test plan ensures that the application server, the web server and the local file handling
functions in accordance with the requirements.

The first tests in this section consist of registration of the information passed from the
application server to the adapters. The first test confirmed that the keyword entered by the
user is indeed the one used to query the BibsysAdapter, and the second confirmed that the bus
service is queried for a route from the users address to the address of the library.

When testing TD02-02, “Passing addresses to bus adapter”, an error was detected. The
Google map service translates user coordinates into readable addresses. The coordinates
<63.43287, 10.391302> should translate into the address “Sandgata 1, 7012, Trondheim,
Norway”. But this is a classified road and therefore its identification number, 715, is returned

43

instead of its name, “Sandgata”. As this street number is unknown to the bus schedule service,
it is not able to serve requests based on this address. For this issue to be solved, the
application should implement a translation from these identification numbers to street names.
There are not many such roads within the city limits of Trondheim, and the problem is solved
by generating a list with these translations and reading them into memory at start-up of the
application.

Test design TD02-03, “Reading user coordinates from file”, confirms that the application is
able to correctly read the coordinates of the user from the local GPS file.

In TD02-04, “Generating a static map”, a map is generated with simulated bus stops,
departure times and bus lines. This map was correctly created, and it is determined that the
application is able to provide a correct map if the background data is correct. Figure 19 shows
the result of the test case TC02-06. The bus stop and the schedule are correctly indicated.

Figure 19. TC02-06 - Correctly indicating bus schedules

Finally, a document search is simulated in TD02-05, “Determining the nearest bus stop”. It is
confirmed that the application is able to detect the bus stop nearest to the library holding the
given document. Figure 20 shows one of the library departments, and the nearest bus stop
correctly indicated.

Figure 20. TC02-07 - Correctly indicating the nearest bus stop

44

All the tests in this module have passed, except the one with the classified road issue, but
suggestions on how this issue can be resolved have been given.

8.3 Testing service communication

When the application server requests some data from the external services, the adapters have
to retrieve it.
The two first test designs confirm that the adapters connect to the correct external services for
retrieval of data. Next a document search result for the prototype and the original library
search engine is compared. The results show that the two searches return identical results.
Figure 21 demonstrates two documents that match. The top part is from the prototype. The
bottom is from the BIBSYS SRU.

Figure 21. TC03-03 - Comparing document searches

Test design TD03-04, “Comparing bus schedule search”, shows that a bus route created in the
prototype is identical with the response retrieved from the bus schedule service.

All tests have passed, and it is confirmed that the adapters accept requests from the
application server, and that they are able to retrieve the data required of them.

8.4 System Test

The purpose of the system test is to ensure that all modules work together, and that the
communication between them functions as designed. It also shows that the web server
produces the user interface correctly.

The test was performed step by step as defined in the design specification. Figure 22 shows
how the coordinates were correctly registered at the server when the test user was located in
the position indicated by the test case.

Figure 22. TC04-01 - GPS coordinates registered at the server

45

When the search for a document is performed, the document located at the library given in the
test case is selected. The system correctly generates a map indicating the user’s position
(Figure 23). The nearest bus stop is also correctly indicated, along with information on the bus
schedules.

Figure 23. TC04-01 - The user indicated in the map

When focusing on the library holding the selected document, it is correctly indicated. The
nearest bus stop is shown, along with information on the arrival address as shown in (Figure
24). In addition to this, address information on the library along with its phone number is
shown.

Figure 24. TC04-01 - The library indicated in the map

The map indicates the user, the bus stop nearest to the user, the bus stop nearest to the library,
and the library correctly. In addition it displays the bus information for the next bus leaving
for the library correctly. The prototype has passed the system test.

46

8.5 Test summary

Table 9 summarises the test results. All the tests were completed successfully, except the one
with the classified road issue, TD02-02.

Test design Test Case Pass

TD01-01 TC01-01 Yes

TD01-01 TC01-01 Yes

TD01-01 TC01-03 Yes

TD01-02 TC01-04 Yes

TD02-01 TC02-01 Yes

TD02-02 TC02-02 No

TD02-02 TC02-03 Yes

TD02-03 TC02-04 Yes

TD02-03 TC02-05 Yes

TD02-04 TC02-06 Yes

TD02-05 TC02-07 Yes

TD03-01 TC03-01 Yes

TD03-02 TC03-02 Yes

TD03-03 TC03-03 Yes

TD03-04 TC03-04 Yes

TD04-01 TC04-01 Yes

Table 9 – Test summary

The test report shows that the user is able to perform a search for documents using free text
search. A map is generated that contains both the position of the user as well as the position of
the selected library department. A route is generated to the bus stop nearest the user. Bus
schedules are correctly displayed, and a route is shown from the arrival bus stop to the library
department.
All the functional requirements with a high priority are met.
The system takes advantage of the Google Maps service, and retrieves document information
from BIBSYS. Bus schedules are correctly retrieved from team-trafikk. The application for
the mobile device is currently not platform independent, but this is a design decision. The
reason for this decision is given in section 5.2.2, and it is further discussed in section 9.1. The
system successfully takes advantage of the user’s location, and it retrieves this location using
GPS.

The conclusion of the test phase is that the prototype satisfies all requirements with high
priority given in section 3, except for the platform independence of the mobile device.

47

9 Evaluation and discussion
This purpose of this chapter is to evaluate the prototype created. The decisions made during
the design and implementation phases are to be analyzed and evaluated. If the evaluation
determines that some decisions have not been optimal, an alternative and improved solution
will be discussed.

9.1 Mobile application

The mobile application communicates with the GPS device and transmits the GPS coordinates
to the server. The need for a user first to download and install the mobile application, and then
run two applications (both the mobile application and the web browser) in order to access the
service is not optimal. Neither is the use of a Windows mobile application in accordance with
the non-functional requirement for platform independence. An alternative solution that was
considered was to integrate a web browser into the mobile application. This way the user only
had to download, install and run a single application. Unfortunately there are some issues with
this approach. In order to integrate a browser window in a .net application, we need to use a
Windows ActiveX control. These controls have a much reduced functionality on the mobile
platform, and enable only the use of Internet Explorer. For correct display of the Google Map
generated by JavaScript, the JavaScript engine of the newest beta version of Opera 9.5 for
mobile devices has to be used. As a result of this, the integration of an Internet Explorer
window in the application using .net development is considered inadequate.
 As Java was considered used as the development language for the mobile application,
an integration of a browser window in such an application has to be considered. However,
JME does not support this integration of browser windows. It does however support the
running of other applications in the optional CHAPI package[32], but this would again give
the two applications running at the same time. This would be preferable to the solution of the
user to manually start two applications, but a third possibility is yet to be presented.
 Opera and Firefox are two well known web browsers. Opera is currently available for
both desktops and mobile devices, and is in fact the second most user mobile browser in the
world[33]. Their newest beta version, Opera Mobile 9.5b, supports the retrieval of location
information directly from the mobile devices by JavaScript, conforming to the Geolocation
API specification [30]. The positioning can either be done by using e.g. the local GPS, or by
wireless network access point triangulation. Mozilla has yet to release a Firefox mobile web
browser, but it is reported that their first mobile browser will have the same localisation
possibilities as Opera. As a consequence of this development, the prototype will in not long be
able to run completely without the local application as long as the user has either Opera or
Firefox installed on their mobile device. All the user has to do is to navigate to the web page,
and it will automatically fetch the coordinates of the user. As a result of this development, the
prototype contains a local application that can be removed as soon as the new browser
versions are released. This prototype part is developed in C#.Net as this application is solely
to be used during the test period of this prototype, and as a Windows mobile telephone is
currently available to the developer.
 In the future, the server application should be updated to support the Geolocation API
specification as it is to be supported by Opera and Firebox mobile browser [30]. When this is
implemented the user does not have to run the mobile application, but is able to grant the
browser direct access to the local GPS device.

48

9.2 Server-side application

The server side application was designed as a web server accepting http requests from a web
browser. The web server exploits services exposed by the application server to provide the
user with the application interface. The Application server communicates with external
service using adapters, so that if an information source changes structure or behaviour, only
changes in the adapters would have to be made. The same applies if it is desirable to change
the sources of information.

The web server
The web server is responsible for generating the JavaScript necessary to communicate with
the Google Maps Server. This server handles the actual generation of the map, as well as the
conversion from geographical points to addresses, and vice versa.
The generation of the Java Script is handled by a method being called upon the page load.
This method requests parameters from either CGI or the Session object. These are combined
with a static script. The complete Java Script is then written to the web page.
This generation of JavaScript makes the code for the web page rather illegible, and it would
be hard to maintain. It also reduces the modularity of the code. If one part of the map
generation is to be changed, the static pre-generated string has to be updated.
There exists a variety of alternatives to printing JavaScript strings in order to perform
operations on the Google server. One of them is the Google Maps .Net control[34]. This is an
open source project that attempts to wrap the functionality of Google Maps into asp.net. This
way the developer will not have to write the JavaScript code, but instead call asp.net methods
that handle the communication with the Google server. Unfortunately this project has some
issues that require the wrapper to reproduce some of the functionality of the Google Server.
Since the project site was latest updated in November 2006, this project appears to be
abandoned. In order to use this as a solution in this project, it could be required to work
around the issues. This will probably have had to be done without support of the original
developers, and it would have to be considered whether this is in conflict with the terms of
use for the Google Maps API[35].
Other .net wrappers are also available such as Subrigum [36], which is in Spanish, as well as
one for the Geocoding alone, Desai [37]. For Java a complete wrapper is provided by Google
[38].

As the JavaScript is printed as a string on the web page, debugging of this script is not
available in the Visual Studio. The development therefore required the combination of a
browser plug-in and an external validation tool. The use of a Java or .net wrapper can remove
this issue, and can drastically shorten the development time for such an application. It can also
contribute to the modularity, the readability, security and performance of the application. The
modularity may be increased because one will be able to write in one language only, hence
making it easier to move code around and to structure it in a modular way. This will also
increase the readability. The security would be increased because it would be easier to write
correct code when only one language is used, as well as the fact that debugging and writing
assistance would be available in the developing environment. Performance may benefit from
such a wrapper because there no longer is the issue of passing data from one programming
language to another, as well as it can be easier to write the code efficiently.

In the prototype a web page (gpsHandler.aspx) is responsible for handling the
registration of the user coordinates passed from the application running on the mobile device.
As the coordinates are passed to the server they are written to a text file along with the name
of the user that submit the coordinates as well as the time of registration. Using the external

49

file ensures that the localisation technology easily can be replaced at a later time, as long as
the coordinates are written in the in the given form to the text file.

The application server
The application server is responsible for communication between the web server and the
adapters. It is implemented using the Singleton pattern, meaning that only one instance of it
exists at all times. This ensures that the data stored in local files only has to be read to
memory one time, at server start-up. The application server functions as an abstraction layer
between the web server and the adapters. It is very useful during development and testing,
because it allows for easy interruption and manipulation of data.

It may be considered whether the reading of local data sources, such as the library
information file, can be moved to the application server, or into a separate class. By doing this
the adapters could become better structured and easier to modify, supporting the principles of
modularisation.

9.3 Adapters and services

The adapters were created as stand alone classes, allowing the application server to perform
operations on them. Communications with the Google Maps server is not done through the
use of adapters.

Google Maps
The communication with the Google Maps server is not done through the use of an adapter
because it uses JavaScript to generate the map. The simplest way of running this client-side
script is by letting the user visit a page containing the script. Therefore the web server itself
handles communication with the Google Maps server.
Google Maps was selected as the map service because the developer had previous experience
with it, and because it offers relatively advanced possibilities. The issues with the use of
JavaScript as map generator have been presented earlier in this section. Some of the
alternatives to Google Maps presented in section 4.4 will be discussed in the following
section.
The use of Bing Enterprise Maps as map service was rejected due to the state of the .net
framework at the time this prototype was designed. It is developed an asp.net controller that
allows developers to drag and drop map controls during the design of a web page that is to
contain such maps. This controller allows the developer to write the methods that are called
when events occur at the server, so that there is no need to wait for the call-back from the
server in order to modify the functionality of the controller. The controller enables Ajax, so no
full post back is required when the map is updated, reducing the network traffic. Figure 25
shows an example created for comparison with the prototype implemented using the map
service from Google Maps. The code written for generating this example appears to be better
structured, faster, more modular and easier to read than the one used to produce the
corresponding example using Google Maps. However, the documentation for this controller is
unstructured and is hard to understand. The development of such a controller may therefore
require a longer start-up time, but the final result may benefit from it. This controller also
provides the Bird’s eye, located in the top right corner of Figure 25. This gives a diagonally 3-
D view of the map that can simplify navigation for the user. The ASP.net controller also
allows for the integration of additional services such as MSN and Silverlight streaming of
multimedia directly on the web page. This map service should be tested in a new version of
this project.

50

Figure 25. Bing Enterprise Maps ASP.net controller

Yahoo! Maps was earlier proposed as an alternative to Google Maps, but as this service
suffers from the same drawbacks and as it has no larger selection of API’s available this is not
considered an option.

An issue worth mentioning about the Google Maps service is that some of the addresses are
wrong. An example is “Høgskoleringen 1”, which should indicate the location of the main
building of NTNU, but which is indicated in a nearby street.

In further development it can be considered to replace the Google Maps with Bing
Enterprise Maps. The Bing Enterprise Maps offers direct .Net API’s, while Google Maps
offers wrappers. Because the rest of the server application is written in .NET, this
modification appears natural.

BibsysAdapter
The BibsysAdapter uses an XPathNavigator3 to traverse the results retrieved when querying
the BIBSYS SRU. An alternative could be to use an XmlReader4, but as this is an event-
based, forward-only XML pull parser, XPathNavigator was chosen as it was believed that it
could become necessary to read backwards or ahead in the xml file. As a result, the fetching
of ISBN numbers of documents occurs before the reading of the libraries holding it. In the
xml document, however, they occur in the opposite order. With some modification in the
design of this adapter, the XmlReader can be used instead. This may produce code that is
easier to read, easier to debug and easier to manage. The biggest advantage with the
XmlReader is that it only needs to hold a small part of the xml document in memory at all
times, making it very efficient when it comes to memory use.

3 http://msdn.microsoft.com/en-us/library/system.xml.xpath.xpathnavigator.aspx
4 http://msdn.microsoft.com/en-us/library/system.xml.xmlreader.aspx

51

The file containing information on names, addresses and so on for each library department,
was created as a part of this project. All information, except the coordinates, was retrieved
from a webpage describing the different departments of NTNU; hence all departments of
NTNU can be used as navigational targets in this prototype if it is desired. Some of the
addresses are modified to some degree, so that each department is represented correctly in the
map. This has no consequences for the user of the application. The opening hours are
currently not included in this external file. The prototype supports the reading of those, and
they can be appended to the file at a later time. This library information file is appended in
Appendix F.
If the BibsysAdapter is updated the xml parsing should be updated according to the comments
made in this section.

BusAdapter
The BusAdapter communicates with the bus schedule service. As team-trafikk is the only bus-
company in the city of Trondheim, there exists no alternative information source except the
direct database access approach. The use of natural text in paragraphs produces some extra
work concerning data validation and consistency. Street names have to be stripped of special
characters so that they can be placed in the map, and the addresses of bus stops have to be
read from an external file. This work will however not be removed if the bus schedules are
manually read from a database. The direct database access solution will in addition add the
problem of locating the bus stop nearest to the user and the library, resulting in re-
implementing much of the logic already present in bussorakel. In addition, such a solution
will require the manual entry of all bus schedules into a database, and these schedules will not
be up to date at all times.
There are additional issues with the solution of parsing real text paragraphs from the bus
schedule service. The identification of strings, as described in section 6.2, depends on the
words used in the sentence. If the sentences returned from the bus schedule service changes,
this analysis must be rewritten. A solution to some of these issues could be to cooperate with
the developers of bussorakel, and tag their returned paragraphs to indicate bus stop names,
departure lines, transfer lines and arrival times.
The generated list of bus stops and their addresses are shown in Appendix E.
In the prototype the text in the information bubbles is created in the web server. In future
development, the BusAdapter should handle the creation of the information bubbles generated
when a user clicks on a bus icon the application. This would increase modularity, and make it
easier to modify the content of these informational bubbles.

Image services
The Amazon server containing book cover images is used by the BIBSYS SRU service to
display the front pages of documents returned by a query. Amazon’s amounts of images are
not enough to match all the documents returned when searching in the BIBSYS database. In
an analysis performed on the search for 1500 search results, distributed over 15 keywords
with 100 results for each, the percentage of images returned for each keyword were
registered. The figures from this analysis are presented in Figure 26. It must be commented
that it’s not possible to get the cover images for all documents, as there are information on
CD’s and audio books in the results.

52

Figure 26. Image service analysis results

The numbers in Figure 26 show that Amazon returns a higher amount of images in each case
than does the LibraryThing service. In fact, the number of images returned is 0 for 5 of the
keywords for LibraryThing. In addition, this analysis does not consider images that are
returned from both sources, so the benefit of implementing this service would not outweigh
the additional waiting time for the user. Currently LibraryThing contain cover images for
more than 1.4 million books. This is a little more than a tenth of the objects registered in the
BIBSYS database. This number however is currently rising, as descried in section 4.4.
If the ISBN number is present for a document, this approach requires in total three http
connections to be established per image in a worst case scenario. Whether the image is
available or not, it requires one connection to check if it is available from Amazon. If it is,
another connection is required when the html image tag is read by the browser. If it is not
available from Amazon, a new http connection is established to check the LibraryThing.com
database. If it is present here, this also requires the download of the image when the browser
reads the html image tag.
As a conclusion, Amazon proves the better of the two image sources presented. There are,
however, many book cover image sources on the Internet, and as Amazon doesn’t work
satisfactory others should be considered

9.4 The tools and technologies

Both the server- and client side of the application was implemented using C# and the .NET
framework. The decision was made due to a variety of reasons. C# was developed with
network communication in mind, and it simplifies the process of communication between the
mobile application and the server. On the client side, the .NET framework provides easy
access to the GPS interface. Time was also an issue. C# is the language the developer has
worked with the most during the last year, and has most experience in. There are no properties
of the language that limits the development. The usual development environment for C# is
Visual Studio, and the 2008 edition was used during this development. It provides the
developer with advanced intellisense5 and debugging possibilities. Visual Studio has

5 Auto completion of code fragments.

53

integrated mobile emulators that simplify the development of the mobile application. When
the Mobile 6 SDK is installed, a fake GPS application is available on the emulators which
solves the problem of sitting indoors and develop on the GPS interface.
As an alternative to C#, Java was presented in section 4.2. The two languages are structurally
similar, and neither gives functional restrictions on the development of this prototype.

The application generates JavaScript code that is interpreted by the user’s browser. There are,
as discussed earlier, some issues with this approach. In addition to the issues with generation
of long static strings, are the ones with JavaScript as a language. Different browser has
different JavaScript engines. As a result of this the prototype may end up looking different
from browser to browser. An example of this is seen when the map generated is viewed in
another browser than Opera Mobil 9.5 beta. The routes to and from the bus stops are not
shown.
 The current approach of generating JavaScript strings should, as discussed earlier, be
replaced with a single-language approach.

9.5 Usability and usefulness

This section evaluates and discusses the usability and usefulness of the application as well as
the graphical user interface and its functionality.

Mobile devices
Mobile devices have traditionally had small screens. This has changed during the last years,
and large screen touch sensitive mobile phones have become more common. The prototype
presents the user with a large map, currently at 600x300px. The user is able to navigate in this
map using different approaches. On each edge of the map there are partly transparent buttons
that when clicked pans the map in that direction. To the right of the map there are icons that
indicate the user and the selected library. By clicking on these the map focus on the
corresponding area.

One issue with the user interface is, as mentioned in section 9.1, that the user has to
use a specific browser. Also, on the mobile devices, click-and-drag is not possible. Therefore
the navigation buttons had to be created by the developer, and placed on top of and at the side
of the map.

The map has currently a static size. If the possibility for multiple users is implemented,
it can be simple to let the user select the preferred map size, as well as the layout of the
controls. This way the entire user design can be modified to the user’s needs. The same
applies for the listings of the search results, which now are presented in a rather wide column.
One way to implement this solution can be to generate a set of cascading style sheets (CSS),
and let the user select from these. A pre-generation of a style sheet for each of the different
device categories will not take to long time, and can be a nice way to increase the usability of
the application. Another possibility is to define the size of elements as relative to the size of
the screen, and create the border graphics in smaller units that repeat themselves accordingly.
 The development of the prototype has not focused on the user interface to a great
extent, as this was not one of highly prioritized requirements. In further development the
design should be evaluated. As an example, it is possible to rearrange the buttons on the right
hand side, to increase the size of the map. The development does not necessary has to focus
on too small mobile screens, as devices with the smallest screens most lightly do not have
GPS installed.

54

Speed and reliability
The application retrieves information from a large variety of sources. It is evident that the
reliability of the application is no better than the worst of the external sources. The service
that has been out of function the most during the development phase is the bus schedule
service. As of now the application informs the user that bus schedules is not available if a
connection to the bus schedule service can not be established. A way to reduce this problem in
the future can be to run a copy of the bus schedule service on a server that is under UBiT
control. This requires that the copy is updated according to the original bus schedule database
when the schedules changes due to season, or when there is a change on one or more lines.

In section 3 the property of speed was not chosen as one of the high prioritised
requirements. As a consequence, the application does spend some time on the retrieval of
information. The fetching of book cover images takes some time because two different
sources has to be checked before the image is actually fetched the third time. It does not
implement any form of cache, which may have improved the performance. The parsing of
returned data from the library database could have been somewhat different. At the time the
xml documents are parsed with focus on memory use. By reading the entire document into
memory, specific nodes may have been accessed more easily.

9.6 Conclusion

In section 1.3 two specific goals for this thesis were presented. The first was to demonstrate
how location awareness and maps can be exploited to facilitate the use of library resources
such as information on documents and objects. The application is able to detect the correct
position of the user. By searching for keywords the user is able to find information on
documents in the library database. If the documents are present in at least one of the
departments of UBiT, the user is correctly informed of the department closest to him or her. A
map is generated with information on bus stops and bus schedules that assist the user in
navigating to the correct department. This will simplify the process of determining the
physical location of a document and navigating to the library department holding a copy of it.
The second goal was to show the feasibility of integrating several different information
sources into the prototype. The prototype developed in this project communicates with a large
amount of external services. It queries the BIBSYS database on information on objects. It
reads the corresponding library locations from a local file. Bus schedules are fetched from the
local bus company, and the addresses of the bus stops are read from a local file. Finally, maps
are generated by communicating with the Google Maps server. The communications with the
external services have been done in such a way that it is relatively uncomplicated to replace
one information source with another. In conclusion, the prototype shows that it is feasible to
integrate with several sources of information. Both the goals that were set in the beginning of
the project have been met.
During development of the prototype, some valuable experiences have been made. If the
development process was to start over again, there are some changes that could contribute to a
better application and user experience. These experiences are summarised in the rest of this
section.
The mobile application that is currently determining, and submitting to the server, the location
of the user should be superfluous in future version. Instead the application should take
advantage of the Geolocation API specification from W3C, enabling the browser to read the
users position directly from the GPS installed on the mobile device. This simplifies the
process for the user, as the only thing that has to be done in order to use the application, is to
visit the web page.

55

The web server should abandon Google Maps and go for Bing Enterprise Maps as map
service provider, to ensure that the entire application is written in the same language as much
as possible. Alternatively one of the NET wrappers available could be used to implement the
current communication with Google. This will increase the modularity, and could increase
security, reliability and performance of the application.
The Application server should stay as it is. It helps the developer focus on the modularity, and
simplifies development.
There are more speed efficient ways to parse the results received from the BIBSYS service
than the methods currently used. By implementing a push parser, e.g. the XmlReader as
described in section 9.3, the process of reading and structuring the read data can be vastly
improved.
It should be attempted to collaborate with the developers of bussorakel, in an attempt to tag
the textual results from the service. This would contribute to a more stable service, not relying
on single words in the text that might change over time. Also the BusAdapter class should be
responsible for generating information bubble content, ensuring modularity.
New book cover image sources should be considered. Not enough images are available at
Amazon.com and LibraryThing, and the display of these images could greatly contribute to
the experience for the user.
The graphical user interface should be designed so that it simplifies navigation for users with
smaller mobile screens.

The prototype developed provides all the functionality that was required of it. By performing
the modifications suggested in this section an even better application, with equal
functionality, can be achieved.

56

57

10 Future work
While the previous chapter concluded on how the existing functionality could have been
implemented better, this chapter focuses on how the functionality of the prototype can be
extended to increase the value to the user. The suggestions presented here are in addition to
the unimplemented functional requirements presented in section 3.2. New external services
that can be integrated with the application are presented, and it is suggested how they can be
implemented in the application. These suggestions are services that can be integrated into the
application as it is today, and does not require the development of a new application.

10.1 Real time bus schedules

During the spring of 2009, the city of Trondheim was assigned money for providing the
public transport travellers with real time information on bus schedules[39]. When this system
was established in Oslo an API was provided and it was encouraged to develop applications
that took advantage of this. There is no reason to believe that this will not also become
available in Trondheim. This way the bus schedules displayed in the application can be
updated to show real-time schedule information.

Shown in Figure 27 is what this may look like. To implement it, the BusAdapter
would have to be updated so that it fetches bus schedules from the new source. Also the
method that generates the information shown in the information bubbles should be updated.

Figure 27. Real time bus schedules

10.2 Map at the library

When the user arrives at the library, it could be valuable to present the user with a map of the
library. In this map the location of the document that was searched for is indicated. For some
library departments, and some documents, this service already exists through BIBSYS.
The map can easily be created by passing the shelf number of document to an application
running on the BIBSYS server. The base URL that the call has to be made to is:

58

i)
“http://hyllekart.bibsys.no/app51/map/wicket/PageLocations?
instance_id=no_ubi&encoding=utf-8”

The parameter passed is simply the library department ID and the shelf the document resides
on. An example is a document that resides in a shelf in the Dragvoll library department:

ii)
“&loc=DRAGVOLL&shelf=SIR%2F2009%3A3”.

By simply inserting a hyperlink composed of i) and ii), the user will by clicking on the link be
showed the correct map. In order to generate the URL the correct parameters have to be
fetched. These parameters are present in the xml document returned when performing a
document query and it is therefore only a question of reading, saving and passing them to the
web page displaying the map.

Figure 28 shows what the map delivered by BIBSYS looks like on their website, with the
selected document indicated by a red marker.

Figure 28. Local map of library

The library department map, as described in this section, was considered implemented in the
prototype, but it became clear that very few documents can be placed in these maps. Only
some of the library departments have such maps, and a subset of these actually maintains
them. A lot of documents reside in storage, for which maps are not available.

If the amount of maps that is maintained is increased, this could prove a valuable
extension to the application. Other elements than the book searched for could be indicated in
such a map. It could include an overview of printers, toilets, resting areas, vending machines

59

and so on. This is already somewhat implemented in the current map solution from BIBSYS,
but the quality could be improved, and the functionality should be adapted to mobile phones.
Currently there is a menu (not indicated in Figure 28) on the left hand side of this web page
that let the user selects items such as printers. The indicators of these objects occur however
no different from indicators of documents in the map, and it can therefore be easy to mix them
up, especially on a small screen.

10.3 Advanced searching options

Currently the search field in the prototype only accepts key words, as this was one of the
requirements during the development of the application. The original BIBSYS, however, does
offer a vide variety of search options. These include limiting the search to library departments
which resides in Trondheim
The current search interface in the prototype does accept, as the original BIBSYS SRU, any
valid CQL query. This implies that the users are able to pass queries like:

i) dc.title=”origin of the species”

The response then only contains information on documents that has that exact string in the
title. By implementing an interface that automatically adds the required prefixes, as “dc.title”
in i), the full functionality of an advanced search interface can be achieved. This allows the
user to put restrictions on libraries to be included in the search results, limit the result to
documents produced by certain authors and so on. The implementation of these search
options could prove very valuable, as it at the time can be difficult to navigate the large
amount of search results generated if one is unfamiliar with the CQL standard.

60

61

11 References
1. B.S. Olsen, “Lokasjonstjenester for Universitetsbiblioteket i Trondheim,”

Project, IDI, NTNU, 2008.
2. J.G. McNeff, “The Global Positioning System,” 2002;

http://ieeexplore.ieee.org/iel5/22/21335/00989949.pdf?tp=&arnumber=989949&isnu
mber=21335.

3. GeoPos, “Geopos - Item,” 2008; http://geopos.item.ntnu.no/.
4. BIBSYS, “About BIBSYS Website,” 2009; http://www.bibsys.no/norsk/english.php.
5. l.o.c. Network Development and MARC standrads office, “MARC 21 Format for

bibliographic data,” 2006; http://www.loc.gov/marc/bibliographic/bdsummary.html.
6. BIBSYS, “BIBSYS-MARC,” 2009;

http://www.bibsys.no/files/out/handbok_html/marc/marctoc.htm#TopOfPage.
7. myRete, “WhosHere Overview,” 2008; http://myrete.com/WhosHere.html.
8. Gizmodo, “Sekai camera,” 2009;

http://www.gizmodo.com.au/2008/09/sekai_camera_turns_on_worlds_balloon_help-
2.html.

9. M. Fowler, UML distilled, Addison-Wesley, 2004.
10. Gartner, “Gartner says worldwide Smartphone Sales Grew 16 Per Cent in Second

Quarter of 2008,” 2009; http://www.gartner.com/it/page.jsp?id=754112.
11. Google, “Android Developers,” 2009; http://developer.android.com/guide/index.html.
12. HTC, “HTC Dream - Overview,” 2009;

http://www.htc.com/www/product/dream/overview.html.
13. Sun, “Java ME Technology,” 2009; http://java.sun.com/javame/technology/index.jsp.
14. S. Helal, “Pervasive Java,” Pervasive Computing, IEEE, vol. 1, no. 1, 2002,

pp. 82-85.
15. C. Neable, “The .NET Compact Framework,” Pervasive Computing, IEEE,

vol. 1, no. 4, 2002, pp. 84-87.
16. Bobbie Johnson, “GPS system 'close to breakdown',” 2009;

http://www.guardian.co.uk/technology/2009/may/19/gps-close-to-breakdown.
17. I. Jami, M. Ali, and R.F. Ormondroyd, “Comparison of methods of locating and

tracking cellular mobiles,” Novel Methods of Location and Tracking of Cellular

Mobiles and Their System Applications (Ref. No. 1999/046), IEE Colloquium on, pp.
1/1-1/6.

18. Google, “Google Maps API,” 2009;
http://code.google.com/apis/maps/documentation/.

19. Microsoft, “Virtual Earth Articles,” 2009;
http://msdn.microsoft.com/en-us/library/bb545001.aspx.

20. Microsoft, “Live Framework SDK and Tools,” 2009;
http://dev.live.com/liveframework/sdk/.

21. Yahoo, “Yahoo! Maps Web Services,” 2009; http://developer.yahoo.com/maps/.
22. W3C, “Web Services Architecture,” 2004; http://www.w3.org/TR/ws-arch/.
23. BIBSYS, “BIBSYS sru web service,” 2009; http://sru.bibsys.no/.
24. Team-trafikk, “Team Trafikk,” 2009; http://team-trafikk.no/.
25. L. thing, “LibraryThing,” 2009; http://www.librarything.com/.
26. J. Krogstie, “Prototype spring 08 - Wirless Trondheim living lab,” 2009;

http://research.idi.ntnu.no/trimaks/services/demonstrators/tradlos-
byvandring/submitted.pdf/view.

27. Canalys, “Canalys research release 2008/082,” Book Canalys research release

2008/082, Series Canalys research release 2008/082, ed., Editor ed.^eds., 2008, pp.

62

28. Opera, “Find me! Geolocation-enabled Opera build,” 2009;
http://labs.opera.com/news/2009/03/26/.

29. Mozilla, “Mozilla Firefox 3.5 Beta 4 Release notes,”
http://www.mozilla.com/en-US/firefox/3.5b4/releasenotes/.

30. W3C, “Geolocation API Specification,” Book Geolocation API Specification, Series
Geolocation API Specification, ed., Editor ed.^eds., 2008, pp.

31. Opera, “Opera Mobile,” 2009; http://www.opera.com/mobile/.
32. Sun, “CHAPI,” 2009; http://java.sun.com/products/chapi/.
33. StatCounter, “Top 9 mobile browsers from 1 jul 08 to 18 may 09,” 2009;

http://gs.statcounter.com/#mobile_browser-ww-daily-20080701-20090518-bar.
34. “Google Maps .Net Control,” 2006; http://gmapsdotnetcontrol.blogspot.com/.
35. Google, “Google Maps/Google Earth APIs Terms of Service,” 2009;

http://code.google.com/apis/maps/terms.html.
36. Subrigum, “Google Maps para ASP.NET,” 2009; http://googlemaps.subgurim.net/.
37. S.Y. Desai, “A .NET API for the Google Maps Geocoder,” 2008;

http://www.codeproject.com/KB/custom-controls/GMapGeocoder.aspx.
38. Google, “gwt-google-apis,” 2009; http://code.google.com/p/gwt-google-apis/.
39. Aftenposten.no, “Nå får du vite om bussen er forsinket,” 2009;

http://www.adressa.no/nyheter/trondheim/article1323322.ece.
40. R.K. Clemmons, “Project Estimation With Use Case Points,”

CrossTalk : the journal of defense software engineering, vol. 2, 2006, pp. 18.

APPENDIX

63

A. Appendix A – Use case point estimation 1

Use case point estimation for the complete design
These tables were created based on a method presented in [40]. This estimation calculates the
cost of implementing all use cases listed in chapter 3.

Unadjusted Actor Weighting Table

Actor Type Description Weighting

Factor

Number Result

Simple The actor represents another system
with a defined application
programming interface

1 2 2

Average The actor represents another system
interacting through a protocol, like
Transmission Control
Protocol/Internet Protocol

2 3 6

Complex The actor is a person interacting via
a graphical user interface

3 1 3

Unadjusted Actor Weight Total (UAW) 14

Unadjusted Use Case Weighting Table

Use Case Type Description Weighting

Factor

Number Result

Simple Simple user interface. Touches
only a single database entity. Its
success scenario has three steps
or less.

5 2 10

Average More interface design. Touches
two or more database entities.
Between four and seven steps.

10 3 30

Complex Complex user interface or
processing. Touches three or
more database entities. More
than seven steps.

15 1 15

Unadjusted Use Case Weight Total (UUCW) 55

Unadjusted Use Case Points (UUCP) = UAW + UUCW = 14 +55 = 69

Technical Complexity Factors

Factor

Number

Description Weight Assigned Value

(0 – 5)

Weighted

Value

Notes

T1 Distributed system 2 4 8
T2 Response time or

throughput performance
objectives

1 1 1

T3 End-user online efficiency 1 1 1

T4 Complex internal
processing

1 0 0

APPENDIX

64

T5 Reusability of code 1 1 1

T6 Easy to install 0.5 4 2
T7 Ease of use 0.5 4 2

T8 Portability 2 5 10
T9 Ease of change 1 3 3

T10 Concurrency 1 1 1

T11 Special security objectives
included

1 0 0

T12 Direct access for third
parties

1 0 0

T13 Special User training
required

1 0 0

Technical Factor Value (TFactor) 29

Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactor) = 0,.6 + (0.01*29) = 0.89

Environmental Factors

Factor

Number

Description Weight Assigned Value

(0 – 5)

Weighted

Value

Notes

E1 Familiarity with system
development process being used

1.5 4 6

E2 Application experience 0.5 3 1,5

E3 Object-oriented experience 1 3 3
E4 Lead analyst capability 0.5 2,5 1,25
E5 Motivation 1 5 5
E6 Requirements stability 2 4 8
E7 Part time staff -1 0 0

E8 Difficulty of programming
language

-1 1 -1

Environmental Factor Value (EFactor) 21,25

Environmental Factor (EF) = 1.4 + (-0.03 * EFactor) = 1.4 + (-0.03 *21,25)=0,7625

Adjusted Use Case Points (UCP) = UUCP * TCF * ECF = 69*0,89*0,7625 = 46,8

Effort in Person Hours = UCP * PHM(hours per man per use case point)

 PHM is initially set to 18 in this case

Effort = 18*46,8 = 842 person hours in total

45 hours pr week = 19 weeks

APPENDIX

65

B. Appendix B – Use case point estimation 2
In chapter 3 a set of use cases are presented. The following calculations estimate the cost of
implementing the use cases that prove the most valuable to the prototype. The use cases
selected are based on the priorities of the requirements described in the same chapter.

Unadjusted Actor Weighting Table

Actor Type Description Weighting

Factor

Number Result

Simple The actor represents another system
with a defined application
programming interface

1 3 3

Average The actor represents another system
interacting through a protocol, like
Transmission Control
Protocol/Internet Protocol

2 2 4

Complex The actor is a person interacting via
a graphical user interface

3 2 6

Unadjusted Actor Weight Total (UAW) 13

Unadjusted Use Case Weighting Table

Use Case Type Description Weighting

Factor

Number Result

Simple Simple user interface. Touches
only a single database entity. Its
success scenario has three steps
or less.

5 1 5

Average More interface design. Touches
two or more database entities.
Between four and seven steps.

10 0 0

Complex Complex user interface or
processing. Touches three or
more database entities. More
than seven steps.

15 1 15

Unadjusted Use Case Weight Total (UUCW) 20

Unadjusted Use Case Points (UUCP) = UAW + UUCW = 33

Technical Complexity Factors

Factor

Number

Description Weight Assigned Value

(0 – 5)

Weighted

Value

Notes

T1 Distributed system 2 4 8

T2 Response time or
throughput performance
objectives

1 1 1

T3 End-user online efficiency 1 1 1
T4 Complex internal 1 0 0

APPENDIX

66

processing

T5 Reusability of code 1 1 1
T6 Easy to install 0.5 2 1

T7 Ease of use 0.5 2 1
T8 Portability 2 5 10

T9 Ease of change 1 3 3

T10 Concurrency 1 1 1

T11 Special security objectives
included

1 0 0

T12 Direct access for third
parties

1 0 0

T13 Special User training
required

1 0 0

Technical Factor Value (TFactor) 27

Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactor) = 0.6 + (0.01*27)=0.87

Environmental Factors

Factor

Number

Description Weight Assigned Value

(0 – 5)

Weighted

Value

Notes

E1 Familiarity with system
development process being used

1.5 4 6

E2 Application experience 0.5 3 1,5
E3 Object-oriented experience 1 3 3
E4 Lead analyst capability 0.5 2,5 1,25
E5 Motivation 1 5 5
E6 Requirements stability 2 4 8

E7 Part time staff -1 0 0
E8 Difficulty of programming

language
-1 1 -1

Environmental Factor Value (EFactor) 21.25

Environmental Factor (EF) = 1.4 + (-0.03 * EFactor) = 1.4 + (-0.03 *21.25)=0,7625

Adjusted Use Case Points (UCP) = UUCP * TCF * ECF = 33*0,87*0,7625 = 22

Effort in Person Hours = UCP * PHM(hours per man per use case point)

 PHM is initially set to 18 in this case

Effort = 18 * 22= 396 person hours in total

45 hours pr week = 9 weeks

APPENDIX

67

C. Appendix C – Project schedule
The Gantt diagram in Figure 29 is a plan for the development of the prototype and its
evaluation. The plan has, on the hole, been followed.

Figure 29. Gantt diagram - Schedule for project

APPENDIX

68

APPENDIX

69

D. Appendix D - Test documentation
Introduction
This document contains the plans for the testing of the prototype. It describes the goals with
the testing, the background for the testing, the granularity of the tests, as well as what result is
to be produced from these tests.

Goals
The goals of these test plans are to

1. Describe what has to be done in order to perform a complete test of the system.
2. Determine whether or not the application satisfies the requirements defined in

chapter 3.

Background
The system consists of three parts. One part handles the interaction with the external services,
such as Bussorakel. Another controls the localisation of the user. The third part, the web
server integrates these operations, and presents the user with an interface, as well as handling
the generation of the map. As a result of this, the tests will be divided into four parts. One for
each of the modules, and one system test to ensure the integration of these modules.

Granularity
This test is to be a black box test of each of the modules. All functional and non-functional
requirements with high priority, as described in section 0, are to be tested.

Test deliverables
As a result of this testing, two documents are to be produced:

- System Test Log, a document containing the log for each of the test cases
- System test Summary Report, a document that summarizes and analyses the result for

each of the test cases. Chapter 8 functions as this report.

Figure 17, in chapter 8, gives an overview of the test documentation.

APPENDIX

70

Test plan 1 – Mobile application
Goals
The goal of this test is to ensure that the mobile device is able to communicate with the GPS
system to retrieve the location of the user, and that this information is relayed to the web
server. This test covers module 1 of the system.

Requirements
The following requirements are tested in this test, as they are defined in section 0;
D04, D06

Test design

ID(TD01-XX) Steps Refs

TD01-01

Title: Generating user coordinates
1. Go to the coordinates defined in TC01-01 through 03
2. Start up the mobile application
3. Register the coordinates for each of the given points

D04,
D05,
D06

TD01-02 Title: Registering user coordinates
1. Start the mobile application
2. Go to the coordinates defined in TC01-04
3. Check the coordinates registered at the server, and observe

that they are equal with the ones in the test case.

D05,
D06

APPENDIX

71

Test plan 2 – Server side
Goals
The goal of this test is to determine that the application server, web server, and database
communicate correctly. The application must retrieve the correct information from the
services and the database, as requested by the web server. Many of the tests are performed by
running the application in debug modus, and by intercepting the various calls made between
the modules of the application. This test covers module 2 of the system.

Requirements
The following requirements are tested in this test, as they are defined in section 0;
C01, C02, C03, C04

D01, D02, D03, D05

Test design

ID(TD02-XX) Steps Refs

TD02-01

Title: Passing keyword to BibsysAdapter
1. Simulate a keyword search by performing an httpGet call

on the web server, using a normal computer, with the
keyword in case TC02-01

2. Register the keyword as a search request is performed on
the BibsysAdapter.

C01

TD02-02

Title: Passing addresses to BusAdapter
1. Using the user position and the document given in cases

TC02-02 and TC02-03, issue a http Get to the web server
using a regular computer

2. Register the two addresses as a bus search is performed
on the BusAdapter.

C04

TD02-03 Title: Reading user coordinates from file
1. Using the document and the user position given in case

TC02-04 and TC02-05, issue an http Get request from a
regular computer.

2. Log the coordinates of the user as read by the application
server

C02,
C04,
D05

TD02-04 Title: Generating a static map
1. Perform a document search. Intercept the server when it

attempts to perform a bus query and manually return the
bus stops, departure line and departure times given in
TC02-06

2. Log whether the map generated corresponds to the bus
stops, departure line and departure time given in the test
case

C01,
C02,
C03,
C04,

TD02-05 Title: Determining the nearest bus stop
1. Perform a document search. Intercept the server when it

attempts to perform a document query, and return the list
of documents given in case TC02-07

2. Log whether the arrival bus stop is the one nearest to the
library holding the document

C01,
C02,
C03,
C04

APPENDIX

72

Test plan 3 – Service communication
Goals
The goal of this test is to ensure that the external services are queried for the correct
information, and that they are able to provide the information requested. This test covers
module 3 of the system. The usual approach for these tests would be to perform operations on
the adapters alone by running the application in debug modus.

Requirements
The following requirements are tested in this test, as they are defined in section 0;
C01,C02

D01, D03, D05

Test design

ID(TD01-XX) Steps Refs

TD03-01 Title: Determining document information source
1. Perform a query on the BibsysAdapter with the keyword

given in TC03-01
2. Register the address that the adapters relays the query to

C01,
D02

TD03-02 Title: Determining bus schedule source
1. Perform a query on the BusAdapter with the addresses

given in TC03-02
2. Register the address that the adapters relays the query to

C03,
C04,
D03

TD03-03 Title: Comparing document information search
1. Perform a query on the BibsysAdapter with the keyword

given in TC03-03
2. Register the 10 first results retrieved from the BIBSYS

service
3. Perform a query for the same keyword on the BIBSYS

SRU webpage
4. Compare the two results

C01,
C02,
D02

TD03-04 Title: Comparing bus schedule search.
1. Perform a query on the BusAdapter with the two

addresses given in TC04-04
2. Register the departure bus stop, the bus line(s), transfer

time if applicable, and the arrival bus stop.
3. Perform the same search on team-trafkk.no’s bussorakel
4. compare the two results

C04,
D03

APPENDIX

73

Test plan 4 – System test
Goals
This test will ensure that the system works as a whole. The GPS system must be able to
retrieve the position of the user, and request the web server for a search interface and a map
based on these coordinates. The web server handles communication with the client, as well as
relaying request of information to the application server, which retrieves this information
from the database and external service. The web server must be able to accept this data, and to
generate a map containing this information and present this to the user. This test covers
module 4 of the system.

Requirements
The following requirements are tested in this test, as they are defined in section 0;
All functional- and non-functional requirements with high priority

Test design

ID(TD01-XX) Steps Refs

TD04-01 Title: System test
1. Go to the position specified in TC04-01.
2. Perform a search for the keyword specified in the case
3. Select the document occurring at the library defined in

the case
4. Record the map returned
5. Perform a search for the same bus at team-trafikk.no, log

the result
6. Perform a search for the same book at sru.bibsys.no, log

the result
7. Compare the result in step 4 with the ones in 5 and 6.

All

APPENDIX

74

Test Case specifications
This section defines the test cases that are applied in the previous described test designs.
Along with each case is an “expected result”. This is the result that is required in order for the
test to pass. Each case carries a reference to the test design that uses it.

Case ID Data Expected result Refs

TC01-01 <63.432813, 10.40519>
Bakke Bru

<63.432…,10.405…>,
with three decimals accuracy

TD01-01

TC01-02 <63.433178,10.391715>
End of Prinsens gate

<63.433…,10.392…>,
with three decimals accuracy

TD01-01

TC01-03 <63.427496,10.396693>
Nidarosdomen

<63.427…,10.397…>,
with three decimals accuracy

TD01-01

TC01-04 <63.432813, 10.40519>
Bakke Bru

Username;
63.432813;10.40519;registration Time

TD01-02

Case ID Data Expected result Refs

TC02-01 “internet” “internet” TD02-01

TC02-02 User-position:
<63.43287,10.391302>
Sandgata 1
Document:
ISBN: 9173730130
(search for the author)

Address 1:
Sandgata 1, 7012 Trondheim, Norway
Address 2:
Høgskoleringen 1, Trondheim, Norway

TD02-02

TC02-03 User-position:
<63.427496,10.396693>,
Bispegata
Document:
ISBN: 0130962775
(search for the author)

Address 1:
Bispegata, Trondheim, Norway
Address 2:
Sem Sælands vei 7, Trondheim, Norway

TD02-02

TC02-04

User-position:
<63.433178, 10.391715>.
End of Prinsens Gate
Document
Cognitive neuroscience a
reader
(ISBN: 0631216596)

The GPS coordinates read from the file
must be
63.433178, 10.391715

TD02-03

TC02-05 User-position:
<63.427496,10.396693>,
Nidarosdomen
Document
Building Oracle web sites
by James J. Hobuss
(ISBN: 013079841)

The GPS coordinates read from the file
must be
63.427496,10.396693

TD02-03

TC02-06 Departure bus stop:
Dokkparken
Departure Line
20
Departure Time
2:09 pm
Arrival bus stop:
Studentersamfundet

The map must correctly indicate the two
bus stops. The departure bus stop must
indicate line 20 as the departing line, and
2:09pm as the departure time.

TD02-04

APPENDIX

75

TC02-07 Document, isbn:
0130962775
Library:
TEK/IDI

Bus stop:
Høgskoleringen 6

TD02-05

Case ID Data Expected result Refs

TC03-01 Keyword:
“Internet”

http://sru.bibsys.no/ … TD03-01

TC03-02 From:
Gyldenløvesgate 25
To:
Kongens gate 66

http://team.trafikk.no/ … TD03-02

TC03-03 Keyword
“Data”

The first 10 results must be identical TD03-03

TC03-04 From:
Fjordgata 40
To:
Maskinistgata 1

The two bus departures must be identical TD03-04

Case ID Data Expected result Refs

TC04-01 Location
“Nidarosdomen”
Keyword
“Internet”
Library
“Teknisk hovedbibliotek”

The map returned must indicate the
user’s position and the location of the
nearest buss top. The time of the next
departure must be shown. The position of
the arrival bus stop as well as the selected
library must be correctly shown.
The queries on the original sources must
have the same result as indicated in the
map.

TD04-01

APPENDIX

76

Test log
For each of the test design and test cases, the result is logged in this section. For each test case
it must be evaluated whether the test has passed and not (indicated by yes or no in the Pass-
column). In order for a test to pass the result achieved must correspond to the expected result
for each of the test cases (as defined in the case specification). If a test is not passed, a log is
created with a description on what went wrong. When the occurring error is corrected, that
specific test is performed gain, along with any tests that could be affected by the changes.
When all the tests are passed, all requirements with high priority in section 3 are met.

Test-ID Case Registered result Pass

TD01-01 TC01-01 The mobile application reports the position to be:
63.432813 and 10.40519

Yes

TD01-01 TC01-01 The mobile application reports the position to be:
63.433178 and 10.391715

Yes

TD01-01 TC01-03 The mobile application reports the position to be:
63.427496 and 10.396693

Yes

TD01-02 TC01-04 The log file on the server contains the following entry:
testUser: 63.432813;10.40519;11:44

Yes

Test-ID Case Registered result Pass

TD02-01 TC02-01 “internet” Yes

TD02-02 TC02-02 Address 1:
715, 7012 Trondheim, Norway
Address 2:
Høgskoleringen 1, Trondheim, Norway

No

TD02-02 TC02-03 Address 1:
Bispegata 2C, 7013 Trondheim, Norway
Address 2:
Sem Sælands vei 7, Trondheim, Norway

Yes

TD02-03 TC02-04 The read coordinates:
63.433178, 10.391715

Yes

TD02-03 TC02-05 The read coordinates:
63.427496,10.396693

Yes

TD02-04 TC02-06 Departure bus stop:
Dokkparken
Departure Line
20
Departure Time
2:09 pm
Arrival bus stop:
Studentersamfundet

Yes

TD02-05 TC02-07 The bus stop was the one nearest to the library.
A screen shot was taken.

Yes

Test-ID Case Registered result Pass

TD03-01 TC03-01 http://sru.bibsys.no
/services/sru?
operation=searchRetrieve&version=
1.1&query=internet&startRecord=1&

yes

APPENDIX

77

maximumRecords=100&recordSchema=
info:srw/schema/1/marcxml-v1.1&
stylesheet=/util/MARCXML.xsl

TD03-02 TC03-02 http://team-trafikk.no/team_bussorakel.asp Yes

TD03-03 TC03-03 Titles returned from BIBSYS SRU
Surfactants UK…
Distributed database…
Beach and nearshore…
World-mining data 97…
Determination of relative…
Hjemmeside for Nosten…
Age misreporting…
Structures and abstractions…
Abortion a tabulation…
Dependable network…

Titles returned from prototype:
Surfactants UK …

Distributed databases…
Beach and nearshore…
World-mining data 97L…
Determination of relative…
Hjemmeside for Nostenet…
Age misreporting and…
Structures and abstractionsan…
Abortion a tabulation…
Dependable network…

Yes

TD03-04 TC03-04 Bus schedule registered in the application:
From Olav tryggvasonsgate 8. Line 11 at 4:12pm

Bus schedule received at team-trafikk.no:
The station nearest to Maskinistgata 1 is Strandveien.
The station nearest to Fjordgata 40 is Nova kinosenter.
Bus 11 passes by Nova kinosenter at 4:12 pm
and arrives at Strandveien , 3 minutes later .

As Nova kinosenter is located in Olav Trygvasonsgate 8,

these routes are equivalent.

Yes

Test-ID Case Registered result Pass

TD04-01 TC04-01 A screen shot was logged
The bus route was identical
The library locations was identical
The routes was identical

Yes

APPENDIX

78

APPENDIX

79

E. Appendix E - Bus stop addresses
The following list shows a subset of the bus stops in Trondheim, along with their respective
addresses. The addresses are on a form that allows them to be directly displayed in the map.

Bus stop name Bus stop address

Buran Mellomveien 1

Dokkparken Dokkparken 1

Rosenborg skole Stadsing dahls gate 6

Sigurd Bergs allé Sigurd bergs alle 18

Festningsgt Festningsgata

Jonsvannsveien Eidsvollsgate 23

Høyskoleringen Eidsvolls gate 2A

Vollabakken Christian frederiks gt 8

Studentersamfundet 2 Klostergata 28

Studentersamfundet 1 Elgeseter gate 1

Einar Tambarskjelves gate Elgeseter gate 26

St Olavs hospital hovedporten Olav kyrresgate

Prinsen kinosenter Prinsens gate 2

Torvet Kongensgate 26

Torget Kongensgate 26

Sentrumsterminalen Munkegata

Nordre gate Nordre gate 29

Bakkegate Innherredsveien 2

Hospitalskirka Kongens gate 66

Kalvskinnet Kongensgate 108

Skansen Ilevollen 6

Gløshaugen nord Høgskoleringen 3

Gløshaugen syd Høgskoleringen 6

Trondheim sentralstasjon holdeplass 10 Trondheim S

Trondheim sentralstasjon holdeplass 11 Trondheim S

Trondheim sentralstasjon holdeplass 13 Trondheim S

Trondheim sentralstasjon holdeplass 14 Trondheim S

Trondheim sentralstasjon Trondheim S

Strandveien Innherredsveien 54

Dragvoll Loholt alle 85

Nova kinosenter Olav Tryggvasons gate 8

APPENDIX

80

APPENDIX

81

F. Appendix F - Library information file
The following list shows the information registered on each of the libraries that are a
department of UBiT. Each record contains the Norwegian name of the library, its English
name, the phone number, its address, an explaining note on the address, as well as the latitude
and the longitude. The list currently contains information on all of the institute- and section
libraries at NTNU and some are not directly used in this prototype. They are included to show
that any building can be used as a target for the navigational tool.

ID Title Eng.Title Phone Address Address 2 Lat Lon

ARK/
ArkA
/F

Byggekunst,
historie,
teknologi

Dept. of
Architectural
Design,
History and
Technology

95090 Alfred Getz`vei 3 Sentralbygg
I, 7 etasje

63.41
787

10.05
324

ARK/
ArkB/
C/D

Byggekunst ,
prosjektering
og forvaltn

Dept. of
Architectural
Design and
management

95080 Alfred Getz`vei 3 Sentralbygg
I, 6etasje

63.41
787

10.05
324

ARK/
ArkE

Byggekunst.F
orm og farge

Dept. of
Architectural
Design, Form
and Colour
Studies

95010 Alfred Getz`vei 3 Sentralbygg
I, 2. etasje

63.41
787

10.05
324

ARK/
ArkH

Byforming
og
regionplanleg
ging

Dept. of Urban
Design and
Planning

95030 Alfred Getz`vei 3 Sentralbygg
I, 5 etasje

63.41
787

10.05
324

ARK/
DesA

Produktdesig
n

 90100 Kolbjørn
Hejesvei 2B

 63.41
8161

10.40
437

TEK/
Elek
A

Elkraftteknik
k -
Høyspenning
steknologi

 94210 O. S. Bragstads
plass 2 F

Elektroblok
k F, 4. etg.,
Vestfløy

63.41
8785

10.40
0298

TEK/
ElekB

Elkraftteknik
k-
Energiomfor
ming og el.
anl

 94241 O. S. Bragstads
plass 2 F

Elektroblok
k E, 4. etg.,
Vestfløy

63.41
8785

10.40
0298

TEK/
ElekC

Elkraftteknik
k -
Kraftsysteme
r

 94215 O. S. Bragstads
plass 2 F

Elektroblok
k F, 4. etg.,
Vestfløy

63.41
8785

10.40
029

TEK/
Elek
D

Teleteknikk Telematikk/De
p. of
Telematics

94324 O. S. Bragstads
plass 2

Elektroblok
k A, 2. etg

63.41
8785

10.40
0298

TEK/
Elek
G

Teknisk
kybernetikk

Dep of
Engineering
Cybernetics

94383 o.s. bragstads
plass 2

Elektroblok
k D, rom
336/Henv.

63.41
8785

10.40
0298

APPENDIX

82

Eva
Amdahl,
1.etg

TEK/
ElekJ

Elektronikk
og
telekommuni
kasjon

 94408 O. S. Bragstads
plass 2

Elektroblok
k A,
4.etg.rom 46

63.41
8785

10.40
0298

TEK/
IDI

Datateknikk
og
informasjons
vitenskap

Dep. of
Computer and
Information
Science

93440 Sem Sælandsvei
7

 63.41
6505

10.40
4524

MAT
EM

Matematikk; Dep. of
Mathematical
Sciences

 Alfred Getz`vei 1 Sentralbygg
2

63.41
7473

10.40
482

TEK/
GEO
BIB

Inst.bibl. for
Geologi og
Bergtekn

 94810 Sem.Sælandsvei
1

Bergbygget
2.etg

63.41
6381

10.40
3937

TEK/
Petrol

Petroleumste
kn. og
anvendt
Geofysikk

 94925 S. P. Andersens
vei 15A

Petroleumst
ekn.Senter

63.41
1053

10.40
7925

ARK/
Bygg
A/D/
F/M

Konstruksjon
steknikk

Dept. of
Structural
Engineering

94520 Richard
Birkelandsvei 1A

MTI
v/Perleporte
n 3.etg. mot
Realf.bygge
t v/grete
Lind

63.41
6349

10.40
8149

ARK/
Bygg
B/Ba/
E/G/J
/P

Bygg, anlegg
og transport

Dept. of Civil
and Transport
Engineering

94650/9
4592

Høgskoleringen
7

 63.41
3981

10.40
8823

ARK/
Bygg
C

Vann og
miljøtekn

Dept. of
Hydraulic and
Environmental
Engineering
/biblioteket
Valgrinda

93876 S.P.Andersens
veg 5

2.etg 63.40
948

10.40
7127

TEK/
Varm
eA/T
EK/M
ek

Energi-og
prosesst.Strø
mningsteknik
k

 93566 0.0 0.0

TEK/
Varm
eB/C/
E

Energi- og
prosessteknik
k

 93860 Kolbjørn Hejes
vei 1

Varmetekni
ske
laboratorier,
4. etg

63.41
8308

10.40
3535

TEK/
Varm
eD

Energi-og
prosesstekn -
Termisk

 92700 Kolbjørn Hejes
vei 2

Varmetekni
ske
laboratorier,

63.41
8542

10.40
467

APPENDIX

83

energi 4. etg

TEK/
Varm
e F

Energi- og
prosessteknik
k.Strømnings
teknikk

Dept. of
Energy and
Process
Engineering

93860 Kolbjørn Hejes
vei 2

Varmetekni
ske
laboratorier,
2.etg

63.41
8542

10.40
467

Verk
A/C

Produktutvikl
ing og
materialer

 93768 Richard
Birkelandsvei 2B

2. etasje i
Perleporten

63.41
6273

10.40
8755

Verk
B

Produksjons-
og
kvalitetstekni
kk

 93800 S.P.Andersens
veg 5

All
henvendelse
til
Biblioteket
Valgrinda

63.40
948

10.40
7127

Marin
A

Marin
prosjektering

 95572 Marinteknis
k Senter
(MTS)

0.0 0.0

Marin
B

Marint
maskineri

 95511 Marinteknis
k Senter
(MTS)

0.0 0.0

Marin
C

Marine
konstruksjon
er

 95535 Marinteknis
k Senter
(MTS

0.0 0.0

Marin
D

Marin
hydrodynami
kk

 95530 Marinteknis
k Senter
(MTS

0.0 0.0

Marin
E

Maskineri/St
yrkelab

 0.0 0.0

Marin
F

Norges
Fiskerihøgsk
ole

 0.0 0.0

Marin
G

Skips- og
havlaboratori
et

 0.0 0.0

MAR
INBI
B

Bibliotek for
marinteknikk

 95729 Otto Nielsensvei
10

Marinteknis
k Senter
(MTS)

63.42
2169

10.43
5564

REA
L/Fys
ikA

Kondenserte
mediers
fysikk

 93416 Sem Sælandsvei
7

2. etasje 63.41
6505

10.40
4524

REA
L/Fys
ikB/C

Biofysikk og
medisinsk
teknologi

 93474 Sem Sælandsvei
9

4. etasje 63.41
6172

10.40
3462

REA
L/Fys
ikD

Teoretisk
fysikk

 93646 O. S. Bragstads
plass 3

2. etasje 63.41
8851

10.40
0706

REA
L/Fys
ikE/H

Anvendt
fysikk og
fagdidaktikk

 93451 Sem Sælandsvei
9

3. etasje 63.41
6172

10.40
3462

REA Komplekse 93586 Sem Sælandsvei 1. etasje 63.41 10.40

APPENDIX

84

L/Fys
ikF

materialer 9 6172 3462

REA
LKje
miA/
G/K

Materialtekn
ologi

 51200/9
4057

Sem Sælandsvei
12

Kjemiblokk
II

63.41
6836

10.40
238

REA
LKje
miB

Organisk
kjemi

 50870 Sem Sælandsvei
8

Kjemiblokk
III

63.41
6377

10.40
3922

REA
LKje
miC/
D/E

Kjemisk
Prosessteknol
ogi

 94030 Sem Sælandsvei Kjemiblokk
V

63.41
6884

10.40
633

Kjemi
F

Fysikalsk
kjemi

 50870 Sem Sælandsvei
14

Kjemiblokk
I

63.41
7029

10.40
2183

Kjemi
G

Teknisk
elektrokjemi

 94057 Sem Sælandsvei
6

Kjemiblokk
IV

63.41
6631

10.40
5126

Kjemi
H/M

Bioteknologi 93320 Sem Sælandsvei
8

Kjemiblokk
III/IV

63.41
6631

10.40
5126

TEK/
IØT

Ind. økonomi
og
tekn.ledelse

 93511 Alfred Getz`vei 1 Sentralbygg
1 , 9 etg.

63.41
7473

10.40
482

10.40
482

Bibl. for
Ark/Bygg/De
sign

 95092 Alfred Getz`vei 3 SB 2, 2.etg 63.41
787

10.40
5324

DOR
A

DORA 96028 Maskinistgata 1 63.43
8737

10.42
1695

DRA
GVO
LL

Biblioteket
Dragvoll

 96735 Dragvoll 63.41
0371

10.46
5109

GUN
NER
US

Gunnerusbibl
ioteket

 92205 Erling Skakkes
gate 47

inng.
Kalvskinnsg
t

63.42
9315

10.38
5629

KUN
ST

Bibl. ved
Kunstakadem
iet

 97919 Innherredsv.7 6.etg 63.46
1844

10.91
3434

MED
ISIN

MedisinskBi
bliotek

 868495 St.Olavs Hospital Parkbygget
5.etg

63.42
0047

10.38
8913

MUSI
KK

Bibl. ved
Musikkonser
vatoriet

 97318 Kjøpmannsgata
42

Olavskv.3.et
g

63.43
3121

10.40
3803

REA
L

Realfagbiblio
teket

 95127 Høgskoleringen
5

Realfagbyg
get

63.41
4799

10.40
5866

TEK Teknisk
Hovedbibl

 95115/9
5100

Høgskoleringen
1

Hovedbygg
et

63.41
9277

10.40
4919

VAL
GRIN
DA

Biblioteket
Valgrinda

 93876 S.P.Andersens
veg 5

2.etg. 63.40
948

10.40
7127

APPENDIX

85

G. Appendix G - ECDL 2009 accepted poster article
The following article that gives a presentation of this master thesis has been accepted as a
poster in the ECDL conference of 2009. It will be published in the proceedings for this
conference, as a Springer LNCS (Lecture Notes in Computer Science) publication.

APPENDIX

86

APPENDIX

87

APPENDIX

88

APPENDIX

89

APPENDIX

90

APPENDIX

91

H. Appendix H – Source code information
Attached to the thesis is a zip file that contains the source code for the prototype developed.
The appended source code consists of two parts. One folder contains the source code for the
mobile application. One contains the source code for the server side application.

Mobile application (masterGPSWindowsMobile)
In the Debug subfolder an executable file is placed. By transferring this file to a Windows
Mobile device, and running it, the application starts submitting the coordinates to a server
address hard coded in the application. The address of this server must be updated in the source
code to the one running the server side application.

Server side application (LocationHttpServer)
The application can be run directly from Visual studio, or published to an IIS server. The
folder consist of one Project folder and one WebSites folder. The source code contains an
API-key that has to be changed whenever the server runs on another domain than the one this
key was registered for (in Default.aspx.cs). The file paths in the code must be changed to
reflect the change of environment.
Begin using the application by visiting the mainMenu.aspx web page.

	Title Page
	Problem Description
	Microsoft Word - MasterThesis.doc

