
June 2009
Kjetil Nørvåg, IDI
Jon Olav Hauglid, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Semantic Cache Investment
Adaption of Cache Investment for DASCOSA

Konrad Giæver Beiske
Jan Bjørndalen

Problem Description
This master's thesis will look into how information about semantic cache can be used in
optimization of queries for distributed databases. Information such as location and cost shall be
used in this process. Implement a solution that evaluates the profit of suboptimal choices in order
to get more valuable contents in cache. Adapt and implement the caching strategy called cache
investment to work with the peer-to-peer database management system DASCOSA.

Assignment given: 19. January 2009
Supervisor: Kjetil Nørvåg, IDI

Abstract

Semantic cache and distribution introduce new obstacles to how we use
cache in query processing in databases. We have adapted a caching strategy
called cache investment to work in a peer-to-peer database with semantic
cache. Cache investment is a technique that influences the query optimizer
without changing it. It suggests cache candidates based on knowledge about
queries executed in the past. These queries are not only limited to the local
site, but also detects locality in queries by looking at queries processed on re-
mote sites. Our implementation of Semantic cache investment for distributed
databases shows a great performance improvement, especially when multiple
queries are active at the same time.

To utilize cache investment we have looked into how a distributed query
optimizer can be extended to use cache content in planning. This allows the
query optimizer to detect and include beneficial cache content on remote sites
that it otherwise would have ignored. Our implementation of a cache-aware
optimizer shows an improvement in performance, but its most important
task is to evaluate cache candidates provided through cache investment.

Preface
This paper is the result of a master thesis in computer science during the
spring of 2009. The title of the project is "Semantic Cache Investment", and
it was given by the Database Systems Group at the Department of Computer
and Information Science. This master thesis was the continuation of our work
in "DASCOSA Query Optimizer" during the autumn of 2008. Participants
on this master thesis was the two final year master students, Jan Bjørndalen
and Konrad G. Beiske.

We would like to thank our supervisor, Jon Olav Hauglid, for providing us
with solid guidance throughout the whole period. He was of great help during
research and implementation, and gave good feedback during the creation of
this thesis. We would also like to thank the rest of the DASCOSA team,
Kjetil Nørvåg and Norvald Ryeng for the aid they have given us with their
expertise during our work.

June 15, 2009

Jan Bjørndalen Konrad G. Beiske

1

Contents

1 Introduction 7
1.1 Problem Description . 9
1.2 Our Contribution . 10
1.3 Approach . 11
1.4 Outline . 12

2 Preliminary Study 14
2.1 Distributed Databases . 15
2.2 Queries . 15
2.3 Caching . 16

2.3.1 Data Cache . 17
2.3.2 Semantic Cache . 17
2.3.3 Cache Hit Ratio . 18

2.4 Query Optimization . 19
2.4.1 Search Space . 20
2.4.2 Cost Model . 23
2.4.3 Search Strategy . 26

2.5 Using Cache . 26
2.5.1 Query Matching . 27

2.6 Cache Investment . 29
2.6.1 Identifying Caching Candidates 31

2.7 DASCOSA . 32
2.7.1 Architecture Overview 32
2.7.2 Query Processing in DASCOSA 35
2.7.3 Query Optimization in DASCOSA 36
2.7.4 Caching in DASCOSA 37

2

3 Design and Implementation 38
3.1 Overview . 38
3.2 Making the Optimizer Cache-Aware 39

3.2.1 Design . 40
3.2.2 Implementation . 44

3.3 Extending Operator Support 45
3.3.1 Design . 45
3.3.2 Implementation . 48

3.4 Semantic Cache Investment 50
3.4.1 Design . 50
3.4.2 Implementation . 57

3.5 Adaption for TPC-H Queries 60

4 Evaluation 62
4.1 Testing Environment . 63

4.1.1 Data Set . 64
4.1.2 TPC-H Queries . 65

4.2 Evaluation Criteria . 67
4.3 Test Cases . 67
4.4 Results . 69

4.4.1 Heterogeneous Distribution, WAN 69
4.4.2 Homogeneous Distribution, WAN 72
4.4.3 Homogeneous Distribution, LAN 74
4.4.4 Concurrency with Distribution, WAN 77
4.4.5 Comparison . 78

5 Conclusion 81

3

List of Figures

2.1 Two equivalent algebra trees for a query. 19
2.2 Left-deep tree. 21
2.3 Bushy tree. 22
2.4 Distributed search space for a join. 22
2.5 B receives coordinates from A and adjusts itself. 25
2.6 Example query match transformation. 28
2.7 Cache investment[9]. 30
2.8 Dascosa DB with sites connected through the DHT. 33
2.9 The DASCOSA architecture[32]. 34
2.10 Query processing [32]. 35

3.1 Two comparable query trees. 40
3.2 RSID containment. 46
3.3 The process of cache investement. 48
3.4 A plan with constraints from the query optimizer is translated

into an algebra tree. 49
3.5 Query logging: Operands are reported individually to their

own specific site. 51
3.6 Query logging: Operands are reported as batch to all partici-

pating sites. 52
3.7 Clusters of sites. 56
3.8 Sequence diagram for cache investment. 57
3.9 PJS subtrees in a TPC-H query. 61

4.1 TPC-H database. 64
4.2 Network map[39]. 66
4.3 Execution time for setup with hetereogeneous distribution on

WAN. 70
4.4 Standard deviation for each workload for heterogeneous WAN. 71

4

4.5 Execution time for setup with homogenous distribution onWAN. 72
4.6 Standard deviation for each workload for homogeneous WAN. 73
4.7 Standard deviation for workload 3 for homogeneous WAN with

bad query batch removed. 74
4.8 Execution time for setup with homogeneous distribution on

LAN. 75
4.9 Standard deviation for each workload for homogeneous LAN. . 76
4.10 Execution time for setup with concurrent sites on WAN. . . . 77
4.11 Standard deviation for concurrency test case 1. 78
4.12 Standard deviation for concurrency test case 2. 79
4.13 Standard deviation for concurrency test case 3. 79

5

List of Tables

2.1 Variable definitions for Formula 2.1. 23
2.2 Query optimizer. 36

3.1 QA scans table A and QB scans table B. 39
3.2 Query optimization with cache. 43
3.3 Values of A in relation to x = 3 and y = 4. 47
3.4 The contents of the log message. 54

4.1 Tuplecount for each table. 63
4.2 Table fragments and site distribution. 65
4.3 Query workloads. 65
4.4 Machine setup for heterogeneous distribution. 68
4.5 Speedup compared to Implicit Cache. 80

6

Chapter 1

Introduction

Databases are used all over the world to help people handle their data. Such
databases are usually run centralized on a single computer. Accessing data in
a database is just a matter of formulating a question in a query language, such
as SQL, which enables the database to look for the data on its own terms.
The effort required to process a query closely depends on how the database
decides to run the query. This is where the the query optimizer comes into
play. The query optimizer is tasked with finding the most efficient ordering
of operations in a query, a query execution plan. Several plans are generated
consisting of operations interpreted from the query language. The goal is to
keep the cost of executing the plan low, and the best plan is the plan evaluated
to the lowest cost among all possible plans for a given query. Good query
optimization is important, because without it database management could
not work in an efficient manner. If results are not produced according to
time and demand, they are useless. Query optimization for single-computer
databases are a mature topic where much research has been done[1][2][3].

Distributed databases is a research subject with a newfound interest.
New generations of computer network technology have made this concept
possible. Distributed databases introduces the location of data as a new
factor. The need to use data at more than one location, raises new issues
when dealing with resources, scalability and availability requirements. The
important question is, how these new challenges can be addressed and bring
distributed databases to the same mature state as the centralized databases.
In a distributed database system the computer network is utilized to connect
multiple databases[4]. There are several motivations for a database to be
distributed over more than one computer. One computer neither has enough

7

resources to handle the load or the preferred safety in case of system crash.
Multiple contributors of data will ultimately lead to larger data collections
than one machine can handle alone. How network communication is handled
should also be considered to achieve quick response and good throughput.
More machines holding the data results in higher redundancy, because in case
of data loss the data could be recovered from another copy in the system.
This would lead to a greater chance of surviving a failure. Keeping data safe
and uncorrupted is a very important issue of data management.

The primary drawback of distribution is added complexity and the com-
plications that follow[1]. Examples of such are maintaining ACID-properties,
scalability, heterogeneous systems and utilizing all resources with as little
shared state as possible. Distribution and scalability is an issue that will
directly challenge many old assumptions in query optimization. These com-
plications will need to be addressed before distributed database systems can
reach full efficiency. In order to maintain the autonomy and independent ac-
cess that have made relational databases popular in the first place[5], updates
will have to be done to the now distributed database management system
(DBMS).

Data transfer is in many distributed database systems the dominating
contributor to both the total workload and the response time of individual
queries[1]. As there usually is more than one way to execute a query, the
system should choose the less costly one. One basic approach is to reduce
the temporary result as early as possible, which in turn often reduces the
amount of data transfered. However the cost of suboptimal choices in one
operation might give greater payoff later on. Hence, there is a need to look at
the complete problem space, which is often too large to handle without com-
promising between precision and cost. Having a good query execution plan
will have a great impact on execution time. Distributed query optimization
is even more important than centralized query optimization, because the ex-
tra options provided allow for more execution plans. The extra factors from
distribution causes the variation between the best and the worst plan to be
even larger.

"Hitting the memory wall"[6] describes a consequence of Moore’s law that
makes computing power increase faster than memory bandwidth. Whether
the authors of [6] were correct in their predictions of future processing power
ultimately becoming limited by the memory, is outside the scope of this
thesis. However, there remains little doubt in the scientific community that
better caching alleviates the problem[7]. In the research field of DBMSs

8

there has been a great focus on minimizing data access, often at the cost of
using more CPU resources. We expect caching between sites to be necessary
in order for distributed database systems to reach their full potential. The
question on what to cache in a distributed DBMS is however not as simple
as for its centralized case. When other sites make decisions on what to cache
the value of local caching candidates changes. Typically there is no need for
two copies on the same network cluster.

Cache in databases can be divided into data cache, which is the tradi-
tional way of caching, and semantic cache. Semantic cache is a new caching
technique that utilizes a semantic description to describe its content. This
frees the cache from the overhead of index maintenance and gives it more
flexibility[8]. The focus of this thesis will be on semantic cache and its use
in databases.

In order to be able to cache data, the data must be produced so that the
cache module can create a cache entry for it. Prediction of future queries
based on previous queries is useful in identifying this data. Even though an
entry is useful to a query, it does not imply that the entry will be created by
that query. The example used by [9] is when a client has to choose between
performing a selection on the server or locally. Doing the selection at the
server implies less data transfer, because in order to do it locally it has to
ship the entire table in stead of just the result. The optimizer would then
choose to do selection at the server. If it had done the selection locally, the
table would be in the local cache and future queries doing other selections on
the same table would not require any data transfer at all. Cache investment
works by using the history to decide what should have been cached and then
tells the optimizer that it is cached[9]. This allows for creating cache entries
that only pay off for more than one query, by influencing the query optimizer
to produce certain plans that are identified to contain valuable cache content.
The adaption and implementation of cache investment for DASCOSA will
be the main focus of this master thesis.

1.1 Problem Description
The focus in this master thesis is how we can improve the use of cache for
query processing in DASCOSA. DASCOSA is a distributed DBMS developed
to facilitate research on the subject of distributed databases. The architec-
ture of DASCOSA is based on the P2P paradigm. DASCOSA is using a

9

caching method called semantic cache, which augments the cached data with
a semantic description.

The content of semantic cache is the intermediate results of previous
queries, which changes the way the cache is applied during query processing.
Instead of acting as a substitute to data fetching, semantic cache is more
often used as a substitute to more complex sub-queries. Because of this the
usage of semantic caching must be addressed differently.

The P2P nature of DASCOSA complicates the process of using cache
even further because DASCOSA, with its autonomous sites, does not have
full knowledge of the system state. This limits the number of metrics available
for the query optimizer to work with.

Currently the query optimizer does not use cache during planning. Cache
is only used during execution if an exact match between a sub-query and
cache data can be found. In such a case the database runs the risk of not
using the cached data as often as it could. The process of doing better cache
utilization has two sides.

The query optimizer must be adapted so that it becomes aware of cache
that is available on its own and remote sites. We expect to show, that actively
including cached data during planning will increase performance gain and
improve the utilization of said cache.

The content being cached should be subject to improvement. We will
adapt a caching technique called cache investment that suggests good can-
didates based on previously logged queries. The query optimizer will play
an active role in deciding if the suggestions provided through cache invest-
ment will be profitable for the system to cache. We will rely on the query
optimizer’s knowledge about network topology. This knowledge will aid in
determining the best location to establish cache and where would be the best
location to retrieve cached data from during planning.

1.2 Our Contribution
In this project we describe a solution based on cache investment, adapted
to work with semantic cache in a distributed database. The solution will be
made as an extension of the query optimizer we designed for the DASCOSA
DBMS[10].

Specifically, our solution provides.

10

• Cache-aware optimizer that is able to include cache content on remote
sites during planning.

• Semantic cache investment for a peer-to-peer environment. Queries are
logged to the distributed index and are thereafter subject to a method
that identifies good cache candidates.

• A new structure for representing queries that makes two query trees
comparable even if their subtrees have differences. We call this a Result
Set Identifier for its ability to represent intermediate query results.

• Method for suggesting the best site for a cache candidate, based on the
use of network coordinates. Network coordinates was introduced in our
implementation of the DASCOSA query optimizer.

• Performance evaluations for our cache-aware optimizer and cache in-
vestment. Both solutions has been implemented in the DASCOSA
DBMS.

1.3 Approach
We will approach this problem by creating a modular solution that will en-
hance the performance of caching in query processing. As a base for this
work we will use the DASCOSA database to implement and evaluate our so-
lutions. DASCOSA already has support for semantic caching, which we will
refer to as implicit caching. Our first extension will be to add to the query
optimizer the capability to plan with cache. This we will refer to as explicit
caching. The second extension will be to add more functionality to the query
optimizer with new operators such as selection and project. These operators
will allow the query optimizer to utilize more specialized cache entries. The
third extension will be an implementation of cache investment for semantic
caching.

These three extensions will be referred to as the three phases in this
project. Phase 1 will be known as ’Making the Optimizer Cache-Aware’,
phase 2 as ’Extending Operator Support’, and phase 3 as ’Cache Invest-
ment’. This arrangement of phases will be applicable both during Design
and Implementation and Evaluation.

Phase 2 is a direct consequence of scoping done during our implementa-
tion of the DASCOSA query optimizer described in [10]. The DASCOSA

11

query optimizer is an exhaustive cost-based query optimizer which merges
the ideas of R*[11] with the concept of network coordinates for sites[12]. Join
operations are considered the most costly elements in query execution and
was given priority due to our set time frame. The optimizer currently con-
siders join ordering and site selection for joins and table scans1. This project
will implement more operators for query planning. The scope for phase 3 on
the other hand will be limited to only create hints for natural joins of tables.

Finally, we will evaluate our implementation by running queries from
TPC-H[13] with different network topologies. Based on this we will consider
if cache investment is suitable for a semantic cache in a distributed DBMS,
and in which settings its performance differs. To do this we will measure
the change in query response time for cases with different caching strategies
applied.

1.4 Outline
Here is a description of the chapters in this document.

Preliminary Study This chapter explains the theory that will be helpful
in understanding the problem and our solution. Among the subjects de-
scribed are distributed databases, queries and query optimization, caching,
using cache and cache investment. We will also give a introduction to the
DASCOSA database, which we will use as a base for implementing and eval-
uating our solution.

Design and Implementation This chapter will describe our solution in
detail. We divide the work into three phases. The phases are not standalone
solutions, and build on work done in earlier phases. The work in each phase
will be split into a design section where we describe our plans for the phase,
and an implementation section where we describe how we achieved our goal.
Special attention will be given to the pros and cons of the data structure
invented to solve the problem.

Evaluation This chapter will describe the evaluation of our solution. An
understanding of our testing environment, test cases and evaluation criteria

1DASCOSA supports table replication.

12

will be given. Each test case and its results will be explained in detail.

Conclusion This last chapter will conclude our work with our findings.
We will give a summary of the merit of semantic cache investment in DAS-
COSA and how it performed compared to other caching strategies. We will
explain which goals that has been achieved in this project, and what has
been reserved to be solved in the future.

13

Chapter 2

Preliminary Study

In this chapter we will detail the relevant existing theory that our research
is based upon. To start with we will introduce the concept of distributed
databases, and how these differ from the traditional centralized databases.
We will describe queries and the function of queries in a database.

Then we will give a brief introduction to caching before continuing with
query optimization, before we will come back to the topic of cache optimiza-
tion. Query optimization has been described in greater detail during our
work on the DASCOSA query optimizer[10], but we will give an introduc-
tion in this chapter. Query optimization with cache is the main focus of
this project. We will describe how the query optimizer and cache can work
together to create a synergy effect on performance in a distributed database
setting.

Then we will introduce an advanced caching strategy, cache investment.
Cache Investment is an opportunistic caching strategy that actively tries to
influence the query optimizer to make sub-optimal plans that will generate
better cache entries.

In the end of this chapter we will describe the architecture of the DAS-
COSA database which we will use in Chapter 3, Design and Implementation,
to develop our solution.

Among work related to ours we count the original cache investment design
for client/server architecture[9], the ADMS query optimizer which integrate
query result caching and matching[14], query optimization with materialized
views[15] and answering queries by semantic views[16].

14

2.1 Distributed Databases
Database management systems (DBMS) have been popular for some decades
now[17]. There are several reasons for this. An autonomous DBMS with a
declarative query language, like the Structured Query Language (SQL), pro-
vides data independence from the systems accessing the data. Having several
different systems access the same data concurrently with high throughput is a
tough task while maintaining ACID-properties of every transaction. DBMSs
have matured the techniques to address all these issues. To use a standard
of-the-shelf DBMS is in many cases an obvious choice. Such systems have
traditionally been centralized DBMSs.

For many organizations this task cannot be done by one machine. For in-
stance, the total load might simply be too large for the biggest commercially
available computer to this date. The systems accessing the data might be
geographically distributed and the connecting network inadequate for a cen-
tralized solution. Availability requirements may also mandate a distributed
solution as one computer alone represents a single point of failure. Inde-
pendent data access, making all data available irregardless of location, is a
commonly desired property of a distributed DBMS and an important one in
making a cluster of sites participating in a DBMS appear as one site to the
user.

2.2 Queries
A query is a request to the database for information. Database queries are
well formed, based on the query language used, such as SQL. Once in the
DBMS the query is translated into relational algebra[1]. Relational algebra
consists of a series of operators. There is one operator type for all tasks
needed to transform the data. Together these operators produce the result
for the query. Relational algebra operators can be represented as a tree.
The leaf nodes are data relations. Each inner node represent some job that
must be done on the data to produce the result, such as a constraint or join.
Typically two or more data relations are combined through a join to produce
a new data set which are handed over to the next relational algebra operator
on the next level in the tree.

SELECT ∗

15

FROM Certification , Sailor , Ship
WHERE certification_type = ’Doctor’ ;

Listing 2.1: An example SQL query.

Listing 2.1 gives an example of an SQL query. This query requests in-
formation about sailors who has the doctor certification type. Interpreting
this query we see that it will make use of the Certification, Sailor and Ship
tables. The operations included are selection for the certification constraint
and joins to merge the data from the three tables. A more advanced query
would also have other operations. More about these operations in Section
2.4, Query Optimization.

2.3 Caching
A cache is a temporary storage, and the term caching is used to describe the
process of storing something that is believed to be needed in the future[18].
When using a cache, the system does not have to discard every result after
they are used, but can choose to place the result in cache instead. The
intention is to keep items in cache that are likely to be reused, saving the
system the cost of reproducing the result.

The reason caching works is due to the locality principle[19]. The two
most common appliances of the locality principle are the ones that are ap-
plicable to caching, locality in time and locality in space. Locality in time
means that within a time frame a program accesses only a subset of its data.
This implies that the recent history is an appropriate indication of what to
cache for the recent future. A common reason for this behavior is the fre-
quent use of loops in programs. A cache usually exploits locality in time by
using, a simple yet very successful replacement strategy, Least Recently Used
(LRU). Locality in space means that the data used together usually also is
stored together. This is due to organization of software into modules, the way
compilers allocate memory to variables and how collections of variables used
together often is organized into lists, arrays and similar structures. Spatial
locality is commonly exploited with prefetching. Prefetching means that the
system assumes a linear access pattern and places the next element in cache
while the first is still in processing. In overall, this leads to lower response
times, less message traffic and better scalability of the system[20].

There are two general approaches to caching. The first is physical caching
done in the form of keeping records, pages or static partitions of base ta-

16

bles. The other being logical caching done by keeping query results or query
intermediate-results as in [9]. We will refer to the physical caching technique
as data cache and logical caching as semantic cache. Data caching is the
traditional caching technique. Semantic caching will be described in Section
2.3.1.

The concept of caching works well in databases. The process of producing
a query result is costly, and by using cache some of these results can be
fetched instantly from cache instead. In distributed database system, data is
shipped from its stored location to the processing location. In a centralized
database the RAM is directly above the disk in the memory hierarchy, but
in a distributed database the network layer is often placed between the disk
and the RAM. This in effect increases the distance between where the data
is stored and where the results are produced and further increases the need
for cache. The main purpose of caching in this environment is to reduce
communication cost and work load of shared data sources. The most common
type of cache used in databases is data cache.

2.3.1 Data Cache
Data cache is a term for physical cache. By physical cache we mean that the
cache consists of raw data, whether it is records, pages or tables. There is no
logical structure to the data. This is the most traditional caching method.
Content is described in the simplest form by listing data identifiers. This
creates a lot of a overhead, and leaves the cache with little flexibility to its
use. It can be very effective if one is willing to sacrifice flexibility in favor
of simpler maintenance of the cache. Data caching is not well suited for
fine-grained caching of something other than whole units of data.

In terms of distributed databases, data cache requires a tight coupling
between sites. Data caching requires similar storage and is usually coupled
with shared indexes. In other words data caching is not very suitable for
heterogeneous systems[21].

2.3.2 Semantic Cache
In the context of database systems, an entry in a semantic cache[16] is simply
a result produced by a previously executed query. The entry could be the
result of the complete query, or intermediate results produced during execu-
tion. As an example, a database is producing the join of three tables: A, B,

17

C. After producing the first join of A and B, the database would have the
option of caching this intermediate result, even if the complete query has not
been executed yet. Semantic cache is based on the idea of semantic locality.
By semantic locality, we say that future queries is likely to be conceptually
related to queries executed in the past. Instead of doing much of the same
work over and over, as would be the case with related queries, there is a
chance that the same result would be available in the semantic cache. One
may consider semantic locality a special case of spatial locality, but then it
is important to remember the distinction that in data caching the space is
linear or at least euclidean, with semantic caching it is neither. This is why
prefetching is not suited for semantic locality.

The semantic cache is aptly named so because of the semantic description
of the data it contains[22]. The idea behind semantic descriptions is to avoid
the high overhead of maintaining a list of physical pages or tuple identifiers.
The semantic description offers a more elegant approach of determining what
parts of a query is cached and what must be considered a remainder query.
The data for the remainder query must be produced in the traditional way,
while the cached query can be read directly from the cache.

2.3.3 Cache Hit Ratio
Cache hit ratio is a term often used to measure the effectiveness of cache.
This has been the case for data cache for a long time. As data cache content
is units of data ranging from whole tables to individual tuples, this is a type
of cache that will be used during table scan. Any data not needing to be
fetched at this point is time saved, and thus every cache hit is good for overall
performance.

Semantic cache on the other hand is using another approach to caching,
by caching intermediate query results and storing them with a semantic de-
scription. The nature of semantic cache makes it more likely to be used as a
substitute for a more complex sub-query than a simple table scan, although
this can of course also happen. It follows that the effectiveness of semantic
cache is better measured in the quality of a cache entry instead of the quan-
tity of cache entries used. The ideal cache entry is small, expensive, often
used and rarely invalidated.

18

Sailor Ship

Certification

σDoctor

(a) From parser

Certification

σ
Sailor

Ship

Doctor

(b) Optimized

Figure 2.1: Two equivalent algebra trees for a query.

2.4 Query Optimization
Query optimization is the process of finding the most efficient way to run a
query. The goal is to produce a query execution plan[23]. Query execution
plans are often represented as an algebra tree. For those already familiar
with the tree structure, the root node is the result node for the query. Each
inner node is some algebra operator contributing to the result, and the leaf
nodes are data sets. This can be seen in the trees in Figure 2.1a and 2.1b. A
database query consists of one or more algebra operations, and these opera-
tions do not necessarily have to be executed in the same order. For instance
are the trees in Figure 2.1, logically equivalent. However, their execution
time can be vastly different. Most algebra operations also have options on
their own on how they can be calculated and this leads to many ways of
producing an execution strategy. For instance may selection operators be
placed almost anywhere in the tree, but most optimizers will try to push
them down so that their reducing effect will be applied as early as possible.

The query optimizer is usually seen as three components that are tasked
with producing the best query execution plan[1]. The components are the
search space, cost model, and search strategy. The search space is the dif-
ferent execution plans. Cost model is how each alternative cost is estimated.

19

The search strategy is how the optimizer finds the alternative with the lowest
cost. The two trees in Figure 2.1 each represent a part of the search space
for the query. These concepts will be further described in the next sections.

2.4.1 Search Space
The search space can be defined as the set of equivalent operator trees which
one can reduce a single query into by using transformations[24]. Many rela-
tional algebra operations are both commutative and associative. This allows
for a large search space. Some parts of the search space can however be
excluded with simple heuristics, for instance it is very common to avoid
Cartesian joins. Other parts can be transformed with rules that always pay
off if applicable. The moving of the selection operation as far down in the
tree as possible in Figure 2.1, is one example of such a rule.

Some systems allow for using the result from one operation as the operand
to several operations. This changes the tree into a DAG (Directed Acyclic
Graph). In systems with multi-query optimization this is essential. In single-
query optimization not so much. In fact, this can only be achieved in a single
query if it uses aliases, as in self-joins, or with sub-queries. Cache may also
compensate for not supporting DAGs.

Most DBMSs only include algorithms for joining two relations at a time
and solve this by nesting joins. This requires the optimizer to generate a
binary tree of join operations. Since joins are associative, a tree of n joins
has n! equivalents. Which one of these is the optimal choice, is evaluated
with the cost model. The set of trees to consider is typically limited in two
ways: how they are generated and a pruning step. The disadvantage with
such limitations is that one might not find the optimal plan. A short path
might lead to a longer path at the next intersection. By not looking at the
total picture and not allowing oneself to change a choice once it is made, the
likelihood that one will end up with a less than optimal path is very much
present. Thinking ahead and considering more than one step at a time might
pay off in the end.

Some classic optimizers, like System R[1], only consider left-deep trees.
The class of left-deep trees, as seen in Figure 2.2, is defined as the trees
where every right node is a leaf node. Figure 2.1 has two examples of left-
deep trees. Left-deep trees has the advantage of being fully pipelineable [25].
A pipelined plan is advantageous with join algorithms that require reading
of the entire right operand before finishing the processing of the first tuple

20

A B

C

D

Figure 2.2: Left-deep tree.

in the left operand. Nested loops is one such join algorithm. The class of
linear trees is defined as all nodes have one base relation as child, but not
necessarily the right one. Hence it is a superset of the class of left-deep trees.
Bushy trees, see Figure 2.3, contain nodes where both children are the result
of another join. Bushy trees may on some systems be more appropriate for
parallelization[26].

A system may implement more than one algorithm for computing a join
for instance “hash join”, “sorted join” and “index join”, adding another di-
mension to the search space. Each algorithm typically have different prop-
erties: producing a sorted result, running faster with sorted input or good
performance on very selective joins.

Join operations often have great impact on performance in relational
queries, but when many relations are considered, the size of the search space
can get very big[1]. Measures often need to be taken to reduce the number
of operator trees, so that efficient processing is possible.

In distributed databases it is common that tables may be fragmented
over several sites and each fragment may also have replicates on different
sites. Figure 2.4 displays the search space for a single join in a distributed
setting. The optimizer must choose which replicate to use for each fragment.
However, the figure lacks one detail. The optimizer also has to choose which
site to perform the join on.

In fact, every algebra operation of a query will need to have a designated

21

A B C D

Figure 2.3: Bushy tree.

A1 A2 A3 B1 B2

Replicates

Fragments Table A Fragments Table B

Figure 2.4: Distributed search space for a join.

site and therefore the addition of distribution increases the size of the search
space by one magnitude. However, most distributed optimizers alleviate this
by not considering the different local access paths to be used at each site,
like index lookup compared to table scan. This can be a just simplification
if the different sites with the same replicate maintain the same indexes and
orderings.

Moving selection as far down in the tree as possible is still a smart ap-
proach in distributed DBMSs, perhaps now even smarter. It will reduce the
amount of bytes sent and it may even allow discarding some of the fragments
all together.

22

2.4.2 Cost Model
To be able to evaluate paths in query execution plans, we need a way to
separate good plans from bad plans based on cost. The cost model includes
the cost functions and necessary statistics to predict the cost of operators
and to estimate the sizes of intermediate results. There are several ways
to measure the cost of an operation. Total time, which is the sum of all
components in the operation, is the most common[1]. Response time, which
is the time that has passed since the query was started to a result has been
produced, is another common metric. Response time is critical in real-time
systems.

In distributed databases the cost model is given an extension to be able to
work with the new factors introduced through distribution. The distributed
cost model is in essence just a variation of the centralized cost model with
a new layer of complexity added[23]. Communication cost is added because
we now must take into consideration all the time and resources spent on
transporting data between each participant in the distributed environment.
Not only must we consider the overhead introduced with communication, but
the communication cost now becomes a major part of executing a query.

Total_time =Tcpu ∗#inst+ TI/O ∗#I/Os
+ TMSG ∗#msgs+ TTR ∗#bytes

(2.1)

Tcpu CPU instruction time
#inst Number of instructions
TI/O I/O operation time
#I/Os Number of I/O operations
Tmsg Time to send a message
#msgs Number of messages
TTR Time to transfer a data unit of one byte
#bytes Number of bytes
Table 2.1: Variable definitions for Formula 2.1.

Formula 2.1, with variable definitions in Table 2.1, is used to evaluate
the total cost of executing a distributed query. Based on the plan used, each
part in the formula will be given a cost. The sum of all these costs is the

23

total time. Of all plans generated, the one that is evaluated to have the
least total cost will be chosen to be the best query execution plan. Response
time, on the other hand, discards every operation that is done in parallel
and looks at the total time that has passed and not the total work done.
It is important to have good knowledge about the hardware components in
the system and the inter-connecting network used. Such knowledge will help
make the time estimates more in line with the real world and improve the
optimizer’s choices.

Processing Cost This is the local cost representing the local resources
that will need to be used to execute a query. Relevant to this cost is number
of instructions and CPU speed, and number of I/O operations and disk speed.
These factors is known to be important in traditional centralized databases.
For distributed databases the whole situation is escalated to another scale
with the cost of communication. Local processing cost will still have impact
on the total cost, but the question is whether it is worth it. The case of
communication cost will be described in greater detail below.

Communication Cost Communication cost has a tendency to dominate
the work cost in a distributed database[1]. Sending and receiving data on
shared networks and the Internet in particular is prone to be affected by
variations in network speeds. These variations could be explained in the
topology of the network or temporary high loads. For a distributed system
to be able to make good decisions when doing inter-node communication, the
ability to predict such variations is desirable. This is illustrated in the time
between a request is sent and the time the response is received. This delay,
called latency, is a good measure for response time between two given nodes.

At first glance, the simplest way would be to keep a record of every site-
to-site latency in a table. Achieving good scalability with this solution is not
realistic as the size of the table would grow with the square of the number
of sites. Even with an abundance of storage it is not a feasible solution, as
maintaining such a table up to date would be costly. If every node were to
measure the latency to every other node the load on the network would be
substantial as well.

A better tool for predicting inter-node latencies is synthetic coordinate
systems[12]. Nodes maintain a set of synthetic coordinates that place them
in a Euclidean space. The Euclidean distance between different nodes predict

24

the latency between them. A node x need only to learn about the coordinates
of another node y to determine a latency estimate. Network coordinates
help to increase performance while keeping measurements overhead low in
a growing distributed system where latency predictions are crucial to good
decisions[27].

In the case of a system where data is replicated on several hosts, the
coordinate system can be used to decide on the best replica to choose in
operations. Such a replica could be chosen without the overhead of probing
every node in the system for the right replica.

Vivaldi is a simple, distributed symmetric algorithm for computing syn-
thetic coordinates[12]. In Vivaldi, each node is responsible for its own set of
coordinates and to regularly exchange coordinates with other nodes in the
system. Exchange of coordinates allows nodes to adjust themselves in the
coordinate space according to each other. This can be seen in Figure 2.5.
Nodes seek to converge against a placement that will minimize the overall
error for each node. In this state the coordinate system is a good prediction
tool for inter-node latencies.

A

B
Coordinates

RTT

Figure 2.5: B receives coordinates from A and adjusts itself.

A large number of nodes trying to adjust their coordinates at the same
time will take some time to converge. Once the majority of nodes in the
system has reached their correct positions, new arrival or departures of nodes
will have little impact on the given coordinates. Some disruption is possible,
but the new node will not before long have found its rightful place.

25

2.4.3 Search Strategy
The search strategy is how the query execution plan is found. Without a
search strategy, one would simply be evaluating pseudo-random alternatives.
This is problematic for several reasons. First, one would not know when to
stop. Second, one would consider options that are known to perform poorly.
Finally, one would not be guaranteed to find the optimal solution, even when
the search space has no local minimum. Additionally to the issues they might
cause, all these cases will also contribute to more time consumption than
necessary during planning.

The choice of a strategy is not as clear as the need for having one. It is
usually influenced by other design choices in the system. Not all strategies
are applicable in a dynamic environment where planning is done interleaved
with execution of the query. A popular approach is dynamic programming.
With its exhaustive search, it is guaranteed to find the optimal solution[1].
However, for queries with many relations to join, it is often considered too
expensive, and probabilistic methods based on genetic programming are usu-
ally preferred[1]. Pruning is another less drastic approach to a large search
space. It is the process of discarding parts that is proven, or simply con-
sidered, not to be optimal. Pruning can be done implicit as a part of the
alternative generating process or with explicit filters before evaluating a gen-
erated alternative. The implicit method is inherently faster, but the explicit
is more flexible as it does not require alteration of the actual algorithm. All
strategies use pruning to some extent, the difference is more in whether it is
actually proven that it does not contain the optimal solution or just expected
not to.

Many proposals for search strategies have been made for different types of
queries and most commercial DBMS’s implement several of them. However,
the exact details of how they are utilized often remain secret as this is one
of their main competitive areas. We looked into different strategies in [10]
when we made the solution for the DASCOSA optimizer.

2.5 Using Cache
In this section we will address the implications of cache to the optimizer in
a DBMS. The optimizer may be oblivious to the cache and create plans as
if there were no cache. This is usually the case with data caching. Then the

26

cache hit is not detected until the plan is in execution. We refer to this as
implicit caching.

Implicit caching might give a low cache hit rate with a semantic cache.
For example, the cache contains the join of tables A and B and the optimizer
is tasked with finding the best plan for joining A, B and C. If the best plan
without cache is to first join tables B and C and then join with table A, then
that is the plan chosen with implicit caching. Clearly such a plan will not
give a hit for the cache entry with A and B. If the optimizer is aware of the
cache’s contents and is capable of planning for cache usage by inserting cache
entries at the planning stage then it has what we refer to as explicit cache
usage.

Cache in general is used to make data access faster, but it is not given
that it will give a speedup in all situations. This is not just an issue in
terms of making optimizers cache aware. The optimizer has to do the same
considerations for materialized views[15]. A materialized view means that the
system maintains an up to date copy of a query’s result set on disk. Using
a materialized view or cache entry might exclude using an advantageous
index, join ordering or site. For the query in question the optimizer has to
choose between recalculating the required parts of the result or using the
materialized copy, but before deciding upon the cost of using a cache entry
a cache aware optimizer must decide which entries are applicable. We will
address this issue in the following section.

2.5.1 Query Matching
Query matching is a term used for the problem of detecting if a cache is
useful to a query[28]. If query and cache entry is represented as a relational
algebra tree, then query matching can be done through transformations on
the query tree so that the entire query tree or one of its subtrees equals
the cache tree. Then parts of the query tree may be replaced with one or
more cache trees, without altering the result. Because two algebra trees can
vary in structure but still produce the same result, the real challenge lies in
detecting equivalence.

Figure 2.6a displays a typical query tree as generated by the parser. This
is the same query as depicted in Listing 2.1. Figure 2.6b displays what is
cached in the query. Should one execute the query as represented in Figure
2.6a the executor would not be able to utilize the cache. This is because the
cache entry does not match any of the partial results. In order to do so the

27

Sailor Ship

Certification

σDoctor

(a) Original query

Certification

σDoctor

Sailor

(b) Cache entry

Cache Match

Ship

Certification

σDoctor

Sailor

(c) Query transformed

Figure 2.6: Example query match transformation.

query tree must be transformed before execution. Figure 2.6c gives a tree
that is both equivalent with the query and contains the cache as a subtree.

As was seen in Section 2.4 this query is transformed into the query in
Figure 2.1b before execution. Evidently the cache only caches the queries
that are executed and hence only queries that have been optimized. In terms
of cache utilization this has both pros and cons. The advantage is that due
to the optimizer being deterministic it will increase the similarities in the
executed queries. The optimizers’ tendency to apply reducing operations
early may result in cache entries with so specialized constraints that they
are highly unlikely applicable for future queries. Generalizing query results
before submitting them to cache is a suggested solution for dealing with
over-specialized queries[29].

In situations where it is worth while optimizing heavily on transport cost,
it could be useful executing a remainder query. A remainder query is a query
that fetches the tuples a cache entry lacks in order to be useful for the query
in planning. For instance, if the cache entry contains all tuples with id more
than 500 and the query needs all tuples with id less than 1000, one could
execute the query constraint anded with the negation of the cache constraint
as a remainder query. One would then have to execute the query’s constraint

28

on the cache entry and union the result with the remainder query. However
there are situations where the remainder query is just as expensive as the
actual query. For instance the site executing the remainder query might
have to do a scan of the entire table irregardless of the constraints, and the
savings in transfer cost executing the remainder query might not match the
work of the extra local processing. In order to consider remainder queries an
optimizer should have a fairly accurate cost model.

When the database through query matching detects that there is data
cached that that might be useful to a query, measures must be taken so that
the cache is utilized in the best way. Query rewriting is such a technique,
which seeks to change the structure of the query so that the old result in the
cache can replace some or all of the current query. Good query matching
plays an important role here, so that one can be sure that the final result
does not contain wrong information.

Query folding[30] is an example of a query rewriting technique. It fo-
cuses on determining whether a query can be answered with the resources
at hand. These resources could be materialized views, cached results of pre-
vious queries and remainder queries. Query containment is a special case of
query folding, in which a query is checked to see if it can be answered using
another query. If that is the case, it is said to be contained.

2.6 Cache Investment
Cache investment[9] is a technique for combining data placement and query
optimization in a manner that does not change the query optimizer directly.
Cache investment affects data placement by influencing the optimizer to
make suboptimal choices regarding operator site selection. These suboptimal
choices will be based on policies producing cached data placement beneficial
for subsequent queries. Because this technique only influences the optimizer,
it is always up to the optimizer to determine if a suboptimal choice is worth-
while. The key selling point of this technique is the effective integration with
an already existing query optimizer, such as a cost-based query optimizer
like R*[11]. This is shown in Figure 2.7. Cache Investment as described is
designed for a distributed DBMS with a server-client architecture, but there
is nothing in the concept that disallows it for operating with a more flexible
peer-to-peer (P2P) architecture. On the other hand, it would have to be
adapted to its new environment.

29

Optimizer

Cache
Manager

Cache
Investment

What is cached

What should be cached

Figure 2.7: Cache investment[9].

As an example, the cache investment based on some kind of policy de-
cided that some part of a query would be a good idea to cache. The cache
investment modules influences the query optimizer by telling it that such a
cached result in fact exists on a given site. This might be true or not. The
cache investment module is in fact allowed to provide the query optimizer
with false information about a cache. It is important to note that this is
not going to be some malicious lie, but rather a friendly nudge telling the
query optimizer that keeping such data in the cache would be a good idea.
The cache investment knows this because of the policy it is using to keep
track of data usage. It is ultimately up to the query optimizer to decide if
it should believe the cache investment module, based on its own calculations
on execution cost. If the query optimizer decides to go through with this
fictional cache and produce the result, the data can be cached and the cache
will become reality.

Here is an example on how cache investment works. Consider three sites
each with one table A, B, and C. The cache investment identifies the result
of join of A and B as a profitable cache at site 2, since A and B are frequently
used together. When a subsequent query consisting of the join of all three
tables is submitted to the database, the cache investment module informs the
optimizer that the join of A and B exists on site 2. The optimizer evaluates
a plan consisting of the false cache on site 2 and the retrieval of table C from

30

site 3. The optimizer determines that this is the best plan and sends it along
to be executed. While the cache does not exist, the cache will have to be
created during execution this first time. This might hurt performance during
the first run, but any subsequent queries will now profit. Since the cache is
based on statistics provided by the cache investment module, we have better
assurance that this cache should prove to be useful in the future.

Cache investment is not a technique for the actual caching process, but
more like a helpful tool for bringing data together to produce a good candi-
date for caching[9]. Data replacement in the cache is left to policies native
to the cache being used, such as the LRU-policy.

2.6.1 Identifying Caching Candidates
The purpose of the cache investment policy is to determine what data that is
beneficial to cache. Such a data item is known as a candidate in the context
of cache investment[9]. In the process of determined good cache candidates,
there are two useful terms: investment cost and return on investment. In-
vestment cost is the sum of all work required to put a data item into the
cache. This work will only pay off if the cached data item will be used in
any subsequent queries. Return on investment (ROI) is the value for what
can be gained by caching the data. Finding good candidates for caching is
a trade-off between investment cost and return on investment. How this is
calculated is left for the policy being used by the cache investment module.
Below are two policies suggested in the paper by Donald Kossmann[9] on
how to identify good caching candidates.

Reference-Counting Policy The idea of Reference-Counting is to count
the number of queries in which a table is used[9]. With knowledge about
the popularity of data this policy is able to influence the query optimizer.
This approach does not calculate ROI for cache investment, but it does try to
maximize the value of every unit of space used in cache. This is the knapsack
problem based on value relative to size for each table. The technique requires
intimate knowledge about the cache size and free space on all sites. In a
distributed setting this level of knowledge can be hard to achieve.

Profitable Policy The Profitable policy is directly trying to estimate what
the cache investment will cost and what the gain would be in form of ROI.

31

The technique makes active use of the query optimizer to compute the cost
of the cache investment, even before the cache candidate information is used
to influence the query optimizer for the actual query. ROI is computed as the
cost of a query without cache minus the cost of the query with cache. This
estimate can tell us about the cost savings of doing this cache investment.
The criteria for suggesting this cache candidate for a given query is that the
candidate must be contained in the current query, the ROI must be greater
than the cache investment cost and its value in cache must qualify according
to the Reference-Counting policy described above.

2.7 DASCOSA
DASCOSA is a distributed P2P database. It will serve as our platform for
doing implementation and evaluation of our solution. DASCOSA is being
developed at Department of Computer and Information Science (IDI) at the
Norwegian University of Science and Technology (NTNU) for the purpose of
doing research into distributed DBMS. DASCOSA as a system consists of a
number of sites where each site contains data and participates in the query
processing. Each site is autonomous and responsible for maintaining its own
data and contributing to the system index. DASCOSA stores its index in a
distributed hash table (DHT). The DHT index is responsible for the collective
meta-data and other states that affect the whole system, as seen in Figure
2.8. The DHT is also responsible for connecting the sites and routing traffic
between them. DASCOSA is implemented to use FreePastry[31], which is an
open source DHT. The use of P2P technology in DASCOSA seek to achieve
better scalability and availability.

2.7.1 Architecture Overview
The architecture of DASCOSA is illustrated in Figure 2.9. Its main compo-
nents are: query processor, storage and DHT. The query processor is respon-
sible for handling queries and producing a result. The storage component
manages all data locally stored on a site. The DHT connects all the sites
and handles communication in the form of lookups.

The query processor handles queries. To be able to do this it is divided
into three parts: parser, planner and executor. The parser takes an SQL
query and transforms it into a relational algebra tree. The planner transforms

32

DHT

Node

Node

Node

Node

Node

Node

Node

Node

Figure 2.8: Dascosa DB with sites connected through the DHT.

the algebra tree further by enumerating alternative plans and evaluate them.
The executor uses the best plan found by the planner and executes it to
produce the result.

Node allocation to sites in DASCOSA is deterministic. For a given set
of coordinates, operations are guaranteed to end up at the same site. DAS-
COSA starts by letting the planner find the plan with the cheapest transfer
cost. In order to do this the planner evaluates different replicates, join enu-
merations and sites for each join in a dynamic programming fashion. Then it
proceeds by assigning sites to parent nodes of the final join, always choosing
to assign a parent node to the site of the leftmost child. This deterministic
behaviour is advantageous for implicit cache usage, more on this in Section
2.7.4.

The storage component manages data stored locally. It handles the local
database and meta-data about local table fragments. The storage component
is also responsible for maintaining its share of the distributed index. DAS-

33

Figure 2.9: The DASCOSA architecture[32].

COSA is currently using Derby DBMS[33] for persistence within the storage
component.

The DHT is responsible for loosely connecting each site in the DASCOSA
network. Lookups are done through the DHT to locate the table fragments
needed for the query. The DHT is used for all communication of administra-
tive purposes. For transfer of data sets a direct link between sites is preferred
to ensure the best throughput possible. This way DASCOSA also avoid
clogging the channel for messages that contribute to keep the distributed
system in a consistent state. The DHT in DASCOSA is implemented us-
ing FreePastry[31]. FreePastry enables lookup and message routing without
every node being aware of one another. This is an important property to
handle churn (sites leaving and joining) in a large network.

34

2.7.2 Query Processing in DASCOSA

Query

Parsing

Create Algebra Tree

Localization

Execution

Result

Simulation

Optimization

Figure 2.10: Query processing [32].

Figure 2.10 shows the stages of query processing done in DASCOSA. This
closely resembles the traditional way of doing distributed query processing
as detailed in [32]. The query undergoes several stages: parsing, algebra tree
creation, localization, simulation, optimization, execution and finally result
processing.

Parsing is the stage where the query SQL is put through syntax verifi-
cation and broken down into operations. These operations are assigned to
algebra nodes in an algebra tree. DASCOSA’s parser builds the algebra tree
as a left-deep tree as explained in Section 2.4.1.

The Localization stage collects information about which sites that are rel-
evant for the query based on the table definitions from the index. Every site
holding a table fragment of a table involved in the query is included. Infor-
mation about candidate sites is found in the distributed index. A simulation
is done to make sure that all the required information is in place.

35

Plans are generated during the optimization stage. The set of plans gen-
erated is known as the search space, as explained in Section 2.4.1. The
optimizer will be further explained in Section 2.7.4.

Execution of the query happens in the last stage. The subtrees of the
distributed query plan are assigned to sites according to the findings of the
query optimizer in the optimization stage.

2.7.3 Query Optimization in DASCOSA
Our previous work on the DASCOSA query optimizer is described in [10].
The optimizer is a cost-based optimizer inspired by the well-known dis-
tributed query optimizer R*[11]. Other optimizer concepts was also ana-
lyzed during the design of the optimizer, such as Mariposa[34], Distributed
INGRES[1] and SDD-1[35]. The optimizer takes an exhaustive approach to
determining the best query execution plan by applying a bottom-up dynamic
programming algorithm to the search space. This search strategy determines
the best query execution plan and optimize heavily on communication cost.
Synthetic network coordinates is used to give a representation of each site’s
distance to each other in form of latency. This information is used to com-
municate with the nearest nodes with the best response time. This provides
DASCOSA with the ability to do "smart" site selection during planning.

Table 2.2 shows how the DASCOSA query optimizer evaluates the cost
for each plan. Each table cell symbolize the calculated cost of producing the
join at the given site. All alternatives are evaluated. After evaluation the
options with the lowest cost are chosen, as seen in Table 2.2. The plan chosen
in this example would be the join of A and B first, then join the result with
C and finally with D. The final plan is not known until the complete plan
has been evaluated.

Step Tables Site0 Site1 Site2 Site3 Site4
1 AB x
1 BC
1 CD
2 ABC x
2 BCD
3 ABCD x

Table 2.2: Query optimizer.

36

2.7.4 Caching in DASCOSA
The existing caching solution for DASCOSA[36] is based on semantic caching.
The algebra node tree structure plays a role in the caching process. During
execution, the result of every algebra node is considered as a candidate for
caching. How an intermediate result is weighted for caching is based on
certain user-defined parameters, but for the purpose of this project we will
stick to simple LRU.

Cached content does not play an active role during query planning. In-
stead, during execution, a cached result can be substituted for an algebra
node and sub-tree. This is only if a match can be found between the cached
content and the result that would be produced by the algebra node. In
other words, DASCOSA has implicit cache usage as described in Section 2.5.
Implicit cache usage with a semantic cache in a distributed DBMS requires
that the same sub-plan is planned for the same site repeatedly, possibly by
optimizers at different sites.

The caching module in DASCOSA continuously considers new candidates
for caching during execution. Data replacement in cache is done with the use
of a Least Recently Used (LRU) queue. That means that an algebra node, if
identified as a suitable candidate for caching, replaces the least recently used
element in the queue.

Although the optimizer is currently oblivious to the cache, the cache
module does advertise its contents. At each site it publishes the cache entries
in a similar fashion as table fragments are published. The difference is that
table fragments only relate to one table while cache entries may contain
more than one table. This is solved by a deterministic hashing function that
decides which of the tables to use for choosing an index site. This allows
for piggybacking pointers to cache entries when the initiating site does its
ordinary table lookup. As the initiating site has to lookup all the tables
in the query, it does not matter if the cache entry is only indexed at one
site. The entries are identified by a string representation of the algebra trees
they are generated by. So far this has only been utilized to do simple exact
matches of query trees in performance tests of the cache module without the
optimizer by using preplanned hard coded queries. In other words it is not
capable of doing query transformations like suggested in Section 2.5.1.

37

Chapter 3

Design and Implementation

This chapter will describe the work on our solution to enhance caching in
DASCOSA. The work will be split into three phases, each focusing on a
particular extension to the DASCOSA database and its query optimizer,
which we developed prior to this project[10]. Each phase will have a design
section and an implementation section. The design section will explain how
we approached the problem and discuss alternatives for solving the task. The
implementation section will explain how we carried out our design from the
preceding section. When a problem with the design is encountered, this will
be discussed and we will explain how the problem was dealt with.

The three phases that can found in this chapter are:

1. Making the Optimizer Cache-Aware

2. Extending Operator Support

3. Cache Investment

3.1 Overview
The goal is to integrate the concept of cache investment with the semantic
cache and peer-to-peer (P2P) nature of DASCOSA. This will be achieved
through three phases, each extending DASCOSA and its query optimizer
with new functionality. The first phase will make the query optimizer cache-
aware, that is make it able to plan for cache utilization. By letting cache
play an active role during planning we seek to achieve a much better cache

38

usage. The challenge here is query representation and query matching when
dealing with semantic cache.

The second phase will extend the query optimizer to support selection
and projection. This is required for DASCOSA to support a broader range
of queries. These queries will be more applicable for testing the profit of
cache investment.

The third phase is the actual cache investment. We will address issues
such as query logging, history analysis, cache candidate identification and
site selection to do cache investment in the context of semantic cache.

3.2 Making the Optimizer Cache-Aware
The goal of this phase was to make the existing optimizer in DASCOSA
capable of planning for cache usage. In other words to go from implicit to
explicit cache usage, as described in Section 2.5. As the existing optimizer
only considers joins and replicates, this should be a feasible initial goal and
we expect it to be advantageous to have this in place before extending the
optimizers query transformation capabilities with more algebra operations.
The motivation for making the optimizer cache-aware can be described with
the following example. Given two sites located relatively close, for instance
on the same local area network, both sites executing the same two queries
repeatedly, but in an interleaving fashion, as given in Table 3.1, and the
tables are stored at a remote site. If in such a situation the cache cannot
contain both table A and B and the cache uses Least Recently Used (LRU)
as its replacement strategy there will be a thrashing situation and the stored
entries will never be used. If the optimizers at both sites where aware of one
another’s cache entries then at time step 2 they would simply retrieve the
data from each other instead of the remote site.

Timestep Site1 Site2
1 QA QB
2 QB QA
3 QA QB
4 QB QA
5 QA QB
6 QB QA

Table 3.1: QA scans table A and QB scans table B.

39

A B
C B

A

C

σ
σ

A B C

Tree A
Tree B

Tables

c > 5

c > 8

Figure 3.1: Two comparable query trees.

3.2.1 Design
The goal is to make the optimizer cache-aware, which means letting it know
about cached data and actively include this information during planning.
The solution will be done in 3 steps. The first step is query matching. Query
matching is the term used for the process of determining if a cache entry is
relevant for a given query, as detailed in Section 2.5.1. The challenge lies in
finding if two queries with their relational algebra trees, which can be very
different in structure, have any subtrees in common.

The second step, planning with cache, describes how the actual planning
process must be changed when a new type of elements, cache entries, are
added to the search space. The focus on the third step, cache in execution,
will describe how cache nodes should be handled when the query execution
plan is used and what should happen if the cache entry planned for goes
missing after the plan has been produced.

40

Query Matching As described in Section 2.5.1, finding a match between
a query and the contents of a cache entry can be a challenge. Often in a
potential match, the cache entry resembles some or all of the query but with
minor deviations. To discover that there is a match, these small differences
will need to be worked around. These are usually tree structures with the
same result, but in which the nodes are arranged differently. Clearly we
needed some form of representation that would simplify this matching. We
considered two different approaches: normalizing the tree structure and re-
moving the structure altogether. Tree normalization is a thorough and solid
technique that would preserve the structure. This approach with the struc-
ture intact should be more flexible in terms of supported queries. On the
other hand, the nature of relational algebra and placement of operators gives
us many trees that are comparable but has structural variations. An example
can be seen in Figure 3.1, where Tree A and Tree B have different orderings
of the nodes. If their constraint values was equal they would produce the
same result. Determining when and if these would be equal is a challenge.
Tree normalization in this case would work, but drastic changes would be
needed to match the trees while ensuring they still produce the same result.
Removing the original structure altogether and finding a new representation
might be more effective for a specialized problem. We choose to pursue this
path when designing query matching in the optimizer. We consider tree nor-
malization to be cumbersome and time-consuming and outside the scope of
this project.

Therefore in our approach we choose to look into so called PJS-queries[28],
that is queries which are limited to only containing projection, join and se-
lection. In such a query the most important elements are the tables involved,
the constraints set by the selection-operator, and the attributes determined
by the Projection. The ordering of algebra operations is not important, be-
cause any order will produce the same result. Although there are some join
operations where order plays a role, we assume that only natural joins are
used in our context.1 To represent such a result set we introduce a Result Set
Identifier (RSID). The RSID describes the content of the result set, instead
of the operations producing it. This way it is easier to overlook variations in

1Equĳoins would certainly be more flexible, but they are not necessary to do cache
investment and the DASCOSA optimizer does not support them. However the work done
in this report should easily apply to equĳoins as well. For instance could the join attributes
be added explicitly as an extension to the RSID or implicitly by making them part of the
selection constraints.

41

the sub-tree in cases where the result produced is the same. This structure
is similar to node labels introduced in[29].

This query can be represented as the following RSID:

SELECT c_name
FROM nation, region
WHERE r_name = "Africa;"

R: nation, region
σ: r_name = "Africa"
π: c_name

When matching a query and a cache entry using RSID, the relations,
constraints and attributes of both query and cache is compared. During this
comparison containment is checked. As the optimizer up until now just deals
with joins only the table set of the RSID is of interest for this phase. In this
phase, containment between two RSID is defined as given in equation 3.1.

RSIDA ⊇ RSIDB ⇔ TablesA ⊇ TablesB (3.1)

Planning with Cache When creating a query execution plan DASCOSA
uses a dynamic programming algorithm based on R* from [11]. During the
base step the planner is tasked with finding a plan for each table in the
query. Each additional step creates plans of incrementing size by joining
two previous plans. In the planner these basic building blocks for plans are
called options. An option represents either a join or a table scan and the
site to execute it. Options representing joins also has pointers to the options
producing the operands.

To let the optimizer be able to utilize results in cache we introduce a
new option called a cache option. The cache option will contain information
about the cache entry that will let the optimizer evaluate it on the same level
as the normal options for plans. Like described earlier, the optimizer use a
dynamic programming approach to find the best query execution plan. This
is done by joining two previous plans creating a new and larger plan. While
step-wise building a plan this way, the best plan can be decided when all
options in the search space has been exhausted. Introducing cache options
provides the optimizer with new alternatives that will produce plans with

42

cache. The cost model differentiates the cache options in such a way that
they may be chosen when profitable to the plan as a whole.

Tables Site0 Site1 Site2 Site3 Site4
AB x
BC
CD Cache
ABC Cache x
BCD
ABCD x
Table 3.2: Query optimization with cache.

Table 3.2 shows how the query optimizer works with cache entries during
planning. The x marks the sites that would originally be chosen for the plan.
In this case there are cache entries on Site3 for the join of C and D, and
Site1 has a cache entry for the join of A, B and C. The optimizer can now
choose to substitute any cache with a matching sub-plan if this results in a
lower cost. In this case it might be better to use the cache entry on Site1
and then join this cache entry with table D to complete the plan.

Cache in Execution As mentioned in Section 2.7.4 the existing caching
module in DASCOSA only inserts cache nodes when the site executing an
algebra node recognizes that the executing node has an exact match with
a cache entry. We refer to this as implicit cache usage in contrast to the
extensions made to the optimizer in this phase where the optimizer may
explicitly plan for cache usage by inserting cache nodes at the planning stage.

Explicit cache usage runs the risk of cache misses, as the decision to use
cache is done before the node arrives at the site with the cache. In order for
DASCOSA to handle cache misses, the optimizer augments the cache nodes
with an alternative plan. The alternative plan is generated from the best
non-cache option similar to the cache option.

Cache in nature continuously runs the risk of being replaced by other
data, therefore we had no guarantees that the cache would exist long enough
to be there when needed. This was no problem before our proposed solution,
because cache was left out of planning. With this new approach that made
the query optimizer aware of all the options provided by the cache, we needed
a way to handle this special case that might arise.

43

Initially we had three options:

1. Abort and restart

2. Pause execution and create cache at given site

3. Fall back to alternate plan for the cache node

We do not consider aborting query execution when a cache miss occurs
as an acceptable strategy, although DASCOSA has support for partial query
restart[37]. Of the three, the last was chosen. Because of the exhaustive
search strategy of the query optimizer in DASCOSA, an alternate plan was
already found. Integrating this to our solution was just a matter of adapting
the cache node by allowing it to have an operand. This operand would be
the top node of the alternate plan, and would be executed in case the cache
entry for the cache node was not found. We will see later how this helps us
to do cache investment.

3.2.2 Implementation
To successfully do query matching, we needed an alternative to the query
string that identified cache entries. Our solution was the introduction of
data representation called RSID, which is explained above. When a cache
entry was created, an RSID would also be created and published to the index.
Just as the string representation was in Section 2.7.4. Once the RSID for
each cache entry was available in the index, it could be retrieved through
normal index lookups. During query processing in DASCOSA, this is called
Localization and is explained in Section 2.7.2.

As the optimizer in DASCOSA at this stage only considered join order-
ings, only the relation part of RSIDs are used. This limited the potential
number of cache entries, but in the near future we plan to change this. With
potentially many different cache entries, the search space could become quite
large. Clearly there was a need to filter out the inapplicable cache entries be-
fore exposing them to the actual query optimization algorithm. We chose to
do this at the indexing site, by adding the query RSID to the ordinary table
lookups. This way only RSIDs of interest to the optimizer was sent back as a
part of the index lookup. This implied that containment checking was done
on every site were the index was checked for data involved in the query. Still
there was no duplicate work done as each of the indexing sites had pointers

44

to different cache entries. By filtering out RSIDs that was not applicable for
the query, we ensured that the search space as well as the message sizes was
not extended unnecessary. Another advantage by colocating the containment
checks was that the indexing site’s storage could be organized in a manner
that allowed for discarding part of the entries.

To make the optimizer become aware of the cache, we took advantage of
its exhaustive nature. The optimizer attempted to produce the best execu-
tion plan using the options given by the search space. These options could
be either table scans or algebra operations. By adding the cache entries to
the search space as cache options, the optimizer could evaluate cached data
on the same level as table scans and algebra operations. The query execution
plan would be produced in the same fashion, but with potential cached data
included right from the start.

3.3 Extending Operator Support
The goal of this phase is to add optimizer support for the selection and project
operators which make the query optimizer able to process the whole range
of PJS-queries. The selection operator would require the planning step for
the optimizer to be compatible with constraints and how these will change
the data size exchanged by the sites. When dealing with the selection and
project operators it is important to pay attention to their placement in the
algebra tree. Both operators remove elements from the data set (selection
horizontally and project vertically), and if some element is removed at the
wrong point, it will have consequences for the rest of the execution.

3.3.1 Design
The first step towards realizing selection support in the query optimizer is
to add constraint information to the RSID and the basic building blocks for
the optimizer, the options. We now consider phase 1, described in Section
3.2, to an integral part of DASCOSA and will design the operators in such
a way that they support semantic cache.

To determine if a cache RSID will be usable, it will be checked for contain-
ment against the query RSID. By containment we mean that every element
of the cache RSID must exist, or be contained, in the query RSID. In the
previous phase this simply required the tables of the cache RSID to be a

45

5 8
value range

contained by A

contained by B

Figure 3.2: RSID containment.

subset of the tables in the query RSID, as given in Equation 3.1. This rule is
still relevant, but it will have to be extended. We will now refer to this rule
as table containment as given in Equation 3.2.

tableCon(RSIDA, RSIDB)⇔ TablesA ⊇ TablesB (3.2)

In addition to table containment, we have to consider selections and projec-
tions. So we extend Equation 3.1 to become Equation 3.3.

RSIDA ⊇ RSIDB ⇔tableCon(RSIDA, RSIDB)
∧ projectionCon(RSIDA, RSIDB)
∧ selectionCon(RSIDA, RSIDB)

(3.3)

The projection containment is not so different from table containment,
except it is the other way around. If a query is to use a cache entry, all the
columns it requires have to be included for all the tables in the query. Extra
columns in the cache entry is no problem. Then we get Equation 3.4.

projectionCon(RSIDA, RSIDB)⇔ ∀p[(p ∈ AllColumns(RB)
∧ p ∈ πA)→ p ∈ πB] (3.4)

We define selection containment as that all selection constraints in the
cache entry has to be part of the query or be contained by a constraint in
the query and we get Equation 3.5.

46

selectionCon(RSIDA, RSIDB)⇔ ∀yB∃yA[yB ∈ (σB − σA)
∧ yA ∈ σA ∧ contained(yB, yA)] (3.5)

An example of constraint containment can be seen in Figure 3.2, where
the value range for B is contained in A. This is the value ranges for the query
represented by Tree A and B in Figure 3.1. From Figure 3.2 it is clear that
the constraint B can be applied either to the entire table or on the result
of constraint A. In order to adhere with previous terminology we would like
to say that constraint B contains constraint A. This is why we define the
contained relation between two constraints by the tuples they exclude, as
given by Equation 3.6.

constraintCon(x, y)⇔ ∀txtyexcludedby(ty, y)→ excludedby(tx, x) (3.6)

In other words the containee does not exclude any tuple not excluded by
the container. In which case it would also be applicable for the given query
as the container can be applied after the containee and the result would be
exactly the same as if only the container had been executed.

Table 3.3 shows which logical operators which can be substituted in the
containment technique used for matching queries against cached data. From
the table we can read if a constraint is contained within another constraint,
and if necessary, what data is not contained and must be fetched indepen-
dently. A contained query must satisfy Equation 3.6 to qualify. The process
of generating such remainder queries and evaluating if they are profitable
is outside the scope of this report. Although we do not see any immediate
problems with doing so, our time frame is limited and remainder queries are
not necessary to do cache investment.

A = != < <= > >=
1 xy xy xy
2 xy xy xy
3 x y y xy x
4 y x y x xy
5 xy xy xy

Table 3.3: Values of A in relation to x = 3 and y = 4.

47

Query logging

History
Analysis

Publish
candidate

Cache creation

Queries are logged in history

Candidates are identified
 from history

Profitable candidates are
added to cache index

Evaluation The optimizer evaluates the
benefit of candidate to history

Ca
ch

e
In

ve
st

m
en

t

Figure 3.3: The process of cache investement.

3.3.2 Implementation
The implementation of selection support was done by adding a set of con-
straints to the options used in query planning. With the new set of con-
straints the planner was able to determine a reduction estimate for join op-
erations. As explained in the design section above, the constraints on each
option was made into independent constraint nodes when building the query
tree from the query execution plan produced in the optimizer. These nodes
was placed directly above the algebra node linked to the option with con-
straint. Except for constraints on table scans which was performed by Derby
before the data was loaded into DASCOSA.

Because of time constraints and low priority, the project operator was not
a part of the solution at this point. This will be a part of future work on the
DASCOSA optimizer.

After the best plan has been determined, it must be translated into an
executable algebra tree. The plan will be traversed top-down. When an

48

Nation

σ
Region

Norway

Derby

Dascosa

Nation
n_name = Norway Region

Composite Option

Figure 3.4: A plan with constraints from the query optimizer is translated
into an algebra tree.

49

option with constraints is encountered, two nodes will be created. First a
constraint node with the given constraint is created, then the algebra node
for the option itself is created as a child node of the constraint. This way,
the constraint will be executed immediately over the algebra node, as seen
in Figure 3.4.

Constraints on leaf options, or table access operators, will be handled as
a special case. The constraint will in this case by applied directly on the
table access in the database layer under DASCOSA. This is a highly efficient
way of reducing the data set before it enters DASCOSA.

3.4 Semantic Cache Investment
This section will describe our solution for how semantic cache investment is
applied to the P2P structure of DASCOSA and its existing semantic cache.

3.4.1 Design
The design for our adaption of cache investment consists of 5 steps, as seen in
Figure 3.3. The first step is query logging, which is responsible for publishing
information about queries in execution to the index. This information is col-
lected and stored in the index, and made available for the next step, History
Analysis. During history analysis the raw information is post-processed to
produce statistics of data usage in queries. The third step, Evaluation, deter-
mines the most profitable candidates from these statistics and suggests a site
where this candidate can be created. The fourth step, Publish Candidate,
publishes the candidate to the index as a false cache entry. This cache entry,
if used by the optimizer during planning, will ultimately be turned into a
real cache entry as a part of the fifth step, Cache Creation.

Query Logging Cache investment depends on a knowledge of what has
been processed in the past. To do this we will gather information by logging
queries. As a means of logging query and sub-query usage we will introduce
query logging. Query logging will make use of the structure we call RSID to
publish information to the index when a query is executed. Initially there
are two approaches to this. We can either choose to send a message for
every executing node in the algebra tree, as seen in Figure 3.5, or we can
collect a batch of information which is then published to the index when the

50

A B

C

D

Each operand reported to one site

Figure 3.5: Query logging: Operands are reported individually to their own
specific site.

51

A B

C

D

Operands reported to all sites

Figure 3.6: Query logging: Operands are reported as batch to all participat-
ing sites.

complete query has executed successfully. Sending a batch, as seen in Figure
3.6, will reduce message traffic but will require additional information about
which sites had which algebra node assigned to them during execution. This
information is implicitly given if every message is sent individually.

Before deciding upon how to log, we must also consider where to log. In
order to adhere with the peer-to-peer design of DASCOSA, it seems natural
to utilize the DHT for this logging. As explained in Section 2.7.1, the DHT
is responsible for holding the distributed index. The distributed index can
be seen as the system’s collective consciousness. The index is primarily con-
cerned with storing pointers to sites storing table fragments. The index does
this by storing the pointers in the DHT with the table name as key. This
means that for every table there is a site responsible; the table’s indexing
site. All index sites contribute to maintain the index as a whole. In contrast
to the table lookups the index is created for, a query being reported usually
contains more than one table. This gives us the choice of either choosing
one of the tables with a hash function or logging to all of them. As a side
note the latter has the advantage that more of the history may be preserved
in case of site failure, but at the cost of a larger overhead. As an a priori

52

decision we believe the cost of the extra messages could be just as harmful in
terms of handling churn, but in the end we chose to not weight this as DAS-
COSA currently has no replication scheme for the tables either. It should be
mentioned that too few messages is really not a problem. If a query logging
message at some point is lost, the degradation of the history entry in question
would be negligible. The history is after all only a rough estimate.

We now have two decisions to make, so we need to see if they are related.
One algebra node reports to one indexing site: This solution implies that

for the join of tables A, B, C and D a hashing function has to select one the
tables’ indexing site. Such a function could be to always choose the site for
the table name that comes first in alphabetical order. The query with tables
A, B, C, and D would then be reported to the indexing site for table A, SiteA,
and the query with tables B, C and D would be reported to the indexing site
for table B, SiteB. In some swarms, SiteA and SiteB could in fact be the
same site, but this is not guaranteed at all and can not be assumed. This
case leads us to the problem with this solution. Individually the indexing
sites may choose neither of the queries profitable for investment. In fact if
they had had the complete picture, they would have suggested caching B, C
and D. This would also be advantageous for the query A, B, C and D, and
therefore profitable in sum.

One algebra node reports to all indexing sites: This combination solves
the problem of the previous, in that one of the indexing sites would receive
both queries and see the potential for caching B, C and D. The disadvantage
with this solution lies in the overhead during execution, as this alternative
would require reporting of the tuple counts of from every sub-operation to
the final site.

All nodes report to all indexing sites: The advantage with this alternative
is that just as the previous each indexing site is capable of doing the history
analysis and it does not require any particular roles during execution as the
previous. The huge disadvantage with this solution that gives it a worse
overhead than the previous is that for a query with n relations it requires
Ω(n2) messages.

All nodes report to one indexing site: This alternative combines the ad-
vantages of the previous alternatives and this at a message count of only
Ω(n) with n tables in a query. It does require all indexing sites to do history
analysis, but none of them are doing any duplicate work so this could be con-
sidered an advantage in terms of load balancing as well. All indexing nodes
have to be queried for table lookups anyways so there is no extra messages

53

when doing lookups. This is the alternative that we consider the best for
DASCOSA.

Now that we have decided on where the logging messages will sent from
and to, we can decide on what they actually have to contain. The RSID of
the data just produced is the first and most obvious component. However
as we are sending one log message per operation, one RSID per message is
sufficient. Non-PJS-operations are not logged as there is no point in doing
cache investment for them as the optimizer is not capable of planning for
their use. Secondly the cache investment needs to know where data is used.
It is important to note that this is not necessarily the same site as the site
reporting. We say that we have a data consumption-oriented history opposed
to one that is production-oriented. For this reason we include which site the
result was shipped to. The combination of RSID and site gives the picture
of where data is used, but for the purpose of comparing cache candidates we
also include the planned cost of the operation and size of the result produced.
The contents of the log message are summarized in Table 3.4.

Field Description
RSID The ResultSetIdentifier of the data produced
Site The site the data is produced for
Cost The planned cost of producing the data, as given by the optimizer.
Size The actual size of the data produced

Table 3.4: The contents of the log message.

History Analysis Every time an RSID is published to the index the value
of every candidate in the index is updated and if not present the RSID is
added to the candidate set itself. This means that for every site having
reported the use of a table set, a weight is maintained. A candidates weight
is incremented by the benefit has given to the queries logged. The benefit is
defined in Equation 3.7.

Benefit = Max(PreviousCostAtSite− UseCost, 0) (3.7)

A candidates weight represents the value of having the table set cached at
that site. In addition the history also maintains the average reduction factor
for the table set at every site. This allows for better estimation of the cost of
using a cache entry, as seen in Equation 3.8. For instance if SiteA repeatedly
runs a query requiring all the tuples and SiteB runs another query just as

54

often, but the query from SiteB asks the caching site to apply a constraint
that only lets 10% of the tuples through then the cache should be stored
closer to SiteA than SiteB.

UseCost = TupleCount ∗ AvgReduction
∗Distance(Site, CandidateSite) (3.8)

To maintain the query history we will use a technique called periodic
aging by division[9]. An aging factor, α, is a tuning parameter set between 0
and 1. Every time a query has been reported all the weights are multiplied by
α. A low α gives the most weight to recent queries. However, this also makes
the system prone to transient changes. According to [9], the performance is
better with high or low than with mean values of α.

If an RSID reference ever falls under a given threshold, it is removed from
the history. This is to ensure that only queries of a certain value will be kept
in the history. This also ensures that the size of the history does not grow
unbounded. If an RSID does not manage to stay alive, then its usage is
deemed too low and therefore uninteresting to our analysis.

Evaluation The purpose of this step is twofold. First, the cache investment
module must identify a good candidate for caching based on previous history
analysis. The statistics from the history analyses can be interpreted in several
ways. How much weight that should be given to previous usage or return
on investment is determined by the policy used. Some proposed policies
for identifying cache candidates are the reference counting policy and the
profitable policy, which were described in Section 2.6.1 Second, a site must
be identified for the cache to be created. This site must be located in such a
way that the cache will be of most value to as many nearby sites as possible.
This will be achieved through cluster analysis among known sites. Due to
scalability reasons and being a P2P system, a site in DASCOSA does not
necessarily know of every other site in the system, as mentioned in Section
2.7.1. The set of known sites to the index site is therefore the union of its
neighbor set and the sites participating in the history.

Figure 3.7 shows sites located in the network coordinate system. While
the coordinate system normally has more dimensions, we use two dimensions
here for easier representation. The figure shows two floating sites A and D,
and two clusters of sites B and C. If A finds a cache candidate and starts
looking for a potential site to create this cache on it will detect the two

55

A

B

C

D

Figure 3.7: Clusters of sites.

clusters B and C. Of the two clusters, C would likely be chosen because it
contains the most sites. Among the sites in the C, cluster a single site will
be picked as the destination for the cache candidate. The cache investment
module has no knowledge about the available space in the cache of sites.
This might be a problem if the selected destination site has no free space left
for the cache candidate. Perhaps the best solution here, is to leave the final
choice for the cache replacement policy used by the cache manager.

Publish Candidate This is the step where the cache investment module
will influence the query optimizer to possibly add the cache candidate during
planning. The query optimizer stands free to determine if the cache candidate
provided is profitable in the query execution plan. This hint is based on the
RSID and site identified in the previous step, Evaluation. If a hint turns out
to be not so good, the query optimizer will likely exclude it from the final
query execution plan and no harm is done. On the other hand, should it
decide to use the hint, this will lead to a cache miss during execution. Cache
miss is a special case which then will need to be handled.

56

Initiator Site Index Cache Investment

Lookup

Tables, Cache, Coordinates

Get hints

Determine hints

Hints

Lookup Response

Figure 3.8: Sequence diagram for cache investment.

Cache Creation This final step handles the actual outcome. The query
optimizer has found the cache candidate profitable enough to be a part of
the final query execution plan. The caching candidate is now translated into
a cache node in the algebra tree for the query and submitted along with an
alternate plan for execution. If the executing site for the cache node does
not have a cache entry corresponding to the RSID of the cache node it is
called a cache miss. A cache miss is handled by executing the alternate plan
provided. The alternate plan contains all operations required to construct
the cache entry at the site that originally as supposed to contain the cached
data. This finalizes the process of cache investment by creating a cache entry
based on a hint provided by the cache investment module.

3.4.2 Implementation
An independent cache investment module was established on every site. This
cache investment module was linked directly to the index manager on each
site, so that it could be notified about arriving index lookups. The message
flow can be seen in Figure 3.8. The main responsibility of this module is
to process messages that report completed algebra nodes in the database.
When an algebra node completes, a report is sent to the index site holding
the first of the tables making up the result.

57

double adjustWeights (ResultSetIdentifier reportedRSI , NodeHandle
reportedSite) {

double totalBenefit = 0 . 0 ;
for (NodeHandle site : resultSetUsage . get (reportedRSI) .

statistics . keySet ()) {
totalBenefit += benefit (reportedRSI , site , reportedSite) ;
resultSetUsage . get (reportedRSI) . statistics . get (site) . weight

+= benefit (reportedRSI , reportedSite , site) ;
}
return totalBenefit ;

}
Listing 3.1: Adjusting the weights of other entries and calculating their
constribution to the reported query’s weight.

Each processed report results in a weight increase for the query reported
at the site it was reported for. This increase is determined by the value
of having the RSID cached at that site. The increase is determined while
adjusting the other entries’ weights in the method defined in Listing 3.1.
Adjusting the other entries is done by incrementing their weight with the
benefit they would have given to the reported query had they existed as
cache. Finally all entries in the history are aged. By aging we mean that
that all entries will be given a weight reduction, resulting in a net decrease for
the entries not related to the reported query. The benefit method referred
to in Listing 3.1 is given in Listing 3.2. It is as close as possible a direct
implementation of the function in equation 3.7.
double benefit (ResultSetIdentifier rsid , NodeHandle site ,

NodeHandle candidateSite) {
Usage usage = resultSetUsage . get (rsid) . statistics . get (site) ;
double benefit = usage . cost − rsid . getTupleCount () ∗ usage .

getAverageReductionFactor () ∗ linkStatistics . getLinkCost (
candidateSite , site) ;

if (benefit > 0)
return benefit ;

else
return 0 . 0 ;

}
Listing 3.2: The benefit of a cache candidate to a site.

When structuring history, a sub-query is represented as an RSID. This
RSID points to an entry for each site where such a result has been produced.
These RSID-site pairs are given a weight, which are used in the process to
identify good caching candidates.

58

An implementation decision we needed to address was the question when
the cache investment should do its work. There were three alternatives for
how to do this.

1. Periodically.

2. On index lookup.

3. On query complete.

The first alternative, which is periodic cache investment processing seemed
like a decent choice, but we were unsure about the overhead it would cre-
ate and how to let it scale according to the current load. If we chose this
approach, managing cache candidate hints would be an issue. This solution
implied that the hints would have to be stored in a temporary location or
added to the index.

The second alternative, on index lookup, fulfilled the role of providing
hints on demand. This way we was sure that the hints given would be
included in the planning process right away. As this was a part of an ongoing
index lookup request, we could reply with a list of hints customized for the
current query, reducing the overhead.

The third alternative, on query complete, would function much like the
first alternative. While not as periodic, it would be called when a query was
complete and thereby have no relation to the query in planning. The same
management issues around cache candidate hint provision would exist.

Based on these considerations, we chose to use alternative two in our
implementation. This solution was easy to integrate with existing framework
in DASCOSA.

Once the decision on when to request and process hints was made, the
next issue was to fabricate the reply. The reply would be one or more cache
candidate hints with cost and site suggestions. Previous query results was
ranked from most to least popular based on weight. These weights was then
used to determine a weighted centroid for each cache candidate. The site
suggestion was set to be the site closest to this centroid in our synthetic
coordinate system. Three alternatives was considered for picking a threshold
for caching candidates to be used. Any candidate that exceeded the threshold
was to be a part of the reply to the query optimizer.

1. A factor of average cost of reported queries.

59

2. Top k candidates (globally or locally).

3. Knapsack algorithm.

The knapsack algorithm approach is obviously the one that utilize the
cache the most, by tailoring the hint to maximize the profit. The problem is
that keeping track of free size in caches on other sites is hard to do without
breaking with the P2P ideology. This approach is the closest we get to
Donald Kossmann’s Reference Counting Policy[9].

In our solution we chose to use the top k candidates approach. As cache
investment replied on each index lookup, the query optimizer was given k
hints from each indexing site. Thus scaling the number of hints with the
number of tables in the query. Giving away just the top ranking candidates
for each request, provides the query optimizer with enough hints to work
with. In our implementation, k was hard coded with the value of 2. A large
k gives the optimizer more choices and as it focuses solely on the query in
planning, too large a k would give little weight to the history.

During implementation we encountered a problem with how the alternate
plan from the query optimizer. As described in Section 3.2.1, the alternate
plan was generated with no cache included to avoid further cache miss. We
thought this was a good decision at that time, because to implement this
the query optimizer needed only select the next best plan. When finding an
alternate plan for a cache hint we found that a previously generated plan
was not sufficient, because the old plan could contain constraints or other
elements not included in the hint. In the end we found it necessary to invoke
the query optimizer a second time to generate the alternate plan. Since most
information already had been collected during the early stages of the query
optimizer, doing a second planning phase did not cost much.

3.5 Adaption for TPC-H Queries
TPC-H[38] queries need some adaption to be applicable for use with the query
optimizer. Our optimizer does only fully optimize PJS-query. To optimize a
full TPC-H query we must first identify the PJS-subtrees of a TPC-H query.
This is done with a depth-first search. When optimizing subtrees this way,
we will not know the target site for the sub-result because the complete plan
has still not been decided. Our assumption is that an aggregate node, which
is not a part of a PJS-query, often will be assigned to its child node. This

60

lineitem

orders π

σ

σ
γ

PJS subtree
PJS subtree

Figure 3.9: PJS subtrees in a TPC-H query.

aggregate node will in most cases reduce the result size enough that the
cost of transporting the result is negligible. This is not a perfect solution,
but it does make the optimizer able to handle more advanced queries than
just those applicable for the PJS-restriction. Figure 3.9 shows the relational
algebra tree for a TPC-H query. The query has nested constraints (in the
project node) and aggregates. Because of this, the query is not a PJS-query.

61

Chapter 4

Evaluation

This chapter will give a thorough evaluation of our implementation. With
this evaluation we seek to find out if cache investment is suited for semantic
cache in a distributed database management system. We hope to see that
cache investment pays off, by answering the following questions:

1. How does cache investment perform compared to explicit and implicit
cache usage?

2. How is cache investment’s performance affected by different distribution
scenarios?

3. Is cache investment better suited to serve a system with multiple con-
currently executing queries?

In order to answer these questions performance will be measured in exe-
cution time from a query is submitted to the result is produced and returned
to the user. Cache hit as a measurement, while commonly used for data
cache, will not be used. Our solution is designed for semantic cache, and as
explained in Section 2.3.3, cache hit rate is not a good measure for this type
of cache. We will see if geographic distribution affects the merit of caching
and cache investment, by testing them in three network scenarios.

First we will describe the testing environment in which all our test cases
will be done. We will explain the setup of machines with their respective
specifications and simulated locations. We will describe the data set that
is going to be used, and how this data set is distributed among the sites.
Then we will explain each specific test case and how these will be evaluated
according to our evaluation criteria.

62

4.1 Testing Environment
The test environment consists of 8 machines, either with setup A or B. Setup
A has Intel(R) Core(TM)2 Duo processors with 2.33 GHz, 4.0 GBs of mem-
ory, and are running Ubuntu linux with kernel version 2.6.27. Setup B has
Intel(R) Pentium(R) 4 processors with 3.0 GHz, 2.0 GBs of memory, and
are running Ubuntu linux with kernel version 2.6.28. Sites 0-5 was running
setup A, and site 6 was running setup B.

Table Tuples
Nation 25
Region 5
Supplier 200
PartSupp 16000
Customer 3000
Orders 30000
Part 4000
LineItem 120515

Table 4.1: Tuplecount for each table.

To simulate geographic distance between the sites they are each routed
through a server in another city with IPv6 tunnels. This provides us with a
good approximation of the latency variance and throughput limitations that
real distribution would have given. The tunnels are provided by a tunnel
broker. Our tunnel broker is called Hurricane Electric[39] and provides tun-
nel locations from several cities in the United States, Europe and even Hong
Kong. Figure 4.2 illustrates the tunnel locations. This technique of simulat-
ing wide spread sites worked well in the specialization project[10]. One just
have to be aware that the tunnels also have a latency of their own, as the
sites are not actually located in each city. This means that the round trip
time between Amsterdam and Paris is actually the latency between Trond-
heim - Amsterdam - Paris - Trondheim and back again. For the purpose of
our evaluation this is not a problem, but if one should compare our work
with others this should not be forgotten. Another curiosity is that the sites
without tunnels have a shorter latency to all sites, as they do not have to
pay the initial cost of sending data to their tunnel endpoint. This results in
Trondheim appearing as the center of the network.

63

Figure 4.1: TPC-H database.

4.1.1 Data Set
To test the effect of cache investment on the performance of the seman-
tic caching in DASCOSA we will use the data set provided by TPC-H
Benchmark[38]. Figure 4.1 illustrates the distribution of tables within the
data set. The benchmark is designed to be complex enough to simulate an
industry workload for a decision support system. The data set has been gen-
erated with the 0.02 parameter, giving us a data set with scale factor (SF)
2% of the full size. The tables and an overview of how many tuples they
each contain can be seen in Table 4.1. It would have been desirable with a
larger scale factor, but unfortunately DASCOSA is an experimental system
and it has some stability issues outside of our control. It was infeasible to
complete all our tests within the desired time frame with a larger data set.
We were forced to decide between cutting down on the test cases or the data
set in order to finish on time. We prioritized the tests, because we did not
know what results to expect for any of them or how they would relate. Still
the 2% data set is large enough to allow the tuple counts of each table to be
properly reflected in execution time of table scans. A simple two-computer
LAN setup gave about 300ms for scanning customer, 2 000ms for scanning
orders and 30 000ms for scanning the table lineitem.

Table 4.2 shows how the tables are distributed on the sites used in this
evaluation. Empty sites can still be candidates for index maintenance and

64

caching, even if they contain no table data when booted.

Table Site0 Site1 Site2 Site3 Site4 Site5 Site6
Nation 1
Region 1
Supplier 1 2
PartSupp 1 3 4 5 2
Customer 1 3 4 5 2
Orders 1 3 4 5 2
Part 1 3 4 5 2
LineItem 1 3 4 5 2

Table 4.2: Table fragments and site distribution.

4.1.2 TPC-H Queries
The queries in the TPC-H Benchmark set does not follow the PJS-restriction.
We have dealt with this by optimizing only the parts of the queries that
qualifies to the PJS-restrictions.

We will use the query set provided by the TPC-H Benchmark. Due to
some limitations in the DASCOSA optimizer, not all tests applies. Queries
that are not applicable are those where constraints are connected with boolean
OR. TPC-H queries that qualify and will be used in this evaluation are shown
in Table 4.3

A workload with a 80/20 distribution between queries will be used to
simulate locality. That means that 20% of the queries will belong to a hot
set and the remaining 80% is the cold set. At each execution there is 80%
probability for the hot set and 20% for the cold set to be chosen. Within each
set the probability is uniform. This distribution does a better simulation of
the locality in a real workload than a completely uniform distribution. This
is important as locality is the reason caching works in the first place. The
different hot sets and corresponding cold sets are given in Table 4.3.

Hot-set Cold-set
1 1, 6 2, 3, 10, 11, 12, 13, 14, 15, 16, 17
2 1, 13 2, 3, 6, 10, 11, 12, 14, 15, 16, 17
3 11, 12 1, 2, 3, 6, 10, 13, 14, 15, 16, 17

Table 4.3: Query workloads.

65

Most of the TPC-H queries define substitution parameters that are to be
replaced with a random value from a given range. The benchmark specifies
that these parameters are chosen with a uniform distribution[13]. This suits
our implementation of cache investment very well as it always creates hints
without any constraints. With highly selective queries and locality in the
constraints we expect the non-investment alternatives to perform closer to
cache investment. Of course a future implementation of cache investment
should consider this as well.

Figure 4.2: Network map[39].

66

4.2 Evaluation Criteria
The criterium we will use to evaluate our solution is execution time for
queries. Execution time is elapsed time from the query is given to the result
is produced. To show the effect of applying different techniques we will run
test cases with the following parameters:

1. Implicit semantic cache.

2. Explicit semantic cache (our cache-aware optimizer extension)

3. Semantic cache investment

As explained in Section 2.5, implicit caching means that the optimizer
does not consider cache when planning. During execution a node can check
its site for a potential cache replacement. Cache hits occur because the same
site is still considered the best for producing a result. This is how semantic
caching is utilized in DASCOSA before we apply our solution. Explicit cache
is our cache-ware optimizer extension. Here the perspective of cache entries
are broadened by using the index to get complete overview. Cache entries
are included as options during planning and if found profitable also a part of
the final plan.

4.3 Test Cases
These four setups will be used for the sites. We aim to see how network
distance and clustering affects our techniques for semantic cache. Network
without tunnels will be referred to as local area network (LAN), and when
tunnels are included this will be referred to as wide area network (WAN).

1. Heterogeneous distribution, WAN

2. Homogeneous distribution, WAN

3. Homogeneous distribution, LAN

4. Concurrency with heterogeneous distribution, WAN

67

For network distance between sites we will be using IPv6 tunneling to
simulate distribution of the nodes. Clustering means that there can be more
than one site at the same geographic location. Assigning cache candidates
to a site within a cluster will be helpful for the whole cluster. No clustering
means each the location of each site is unique within the system. When no
network distance applies, the IPv6 tunneling will be turned off, and the sites
will be using their native connections instead. In all four cases there will only
be a single site executing queries. The last setup will be used to examine the
effect of different origins of queries in the system, this forces the system to
ship data in more than one direction.

Machine Tunnel Location RTT (ms)
Site0 London 103.00
Site1 Trondheim 0.27
Site2 Amsterdam 102.09
Site3 Ashburn 256.19
Site4 Paris 117.95
Site5 Amsterdam 104.53
Site6 Trondheim 0.17

Table 4.4: Machine setup for heterogeneous distribution.

Heterogeneous Distribution, WAN This test case will evaluate the
general performance of our solution. The test environment will be set up
with sites geographically distanced through IPv6 tunneling as seen in Table
4.4. The queries will be executed from a site in Trondheim, Site6 which holds
no data fragments.

Homogeneous Distribution, WAN This test case will evaluate the gen-
eral performance of our solution when there is little variation in inter-site la-
tencies, while keeping the geographically distance high. This makes all sites
more or less equal, but still gives good cache entries the opportunity to have
a great impact on performance.

Homogeneous Distribution, LAN One of the core ideas of the DAS-
COSA optimizer is to use knowledge about network distance to other sites
to estimate the most effective transmission route for data. Cache investment

68

is also dependent on this to determine good locations to position the cache.
We will tie the sites in the system closer together to a single cluster located
in a Trondheim, and see how this affects the execution time for queries.

Concurrency and Distribution, WAN The cache investment module
is designed to detect patterns in previously executed queries. When there
is little variations in the origin of queries this information is not very excit-
ing because the flow of data will always point towards the one site execut-
ing queries. We will try to run queries on more than one site concurrently.
More sites executing queries will distribute the demand for data more evenly,
thereby creating good foundation for the cache investment to determine cen-
troids for cache candidate locations. We hope to see that cache investment
can identify cache candidate sites and place this on a location such that more
than one site can make use of it and increase performance compared to the
previous case with heterogeneous distribution.

4.4 Results
This section will show the results of the test cases explained above. The
results will be analyzed and reasons will be given for the observed behavior.
The results was produced using 3 workloads with 5 repetitions for each. The
workloads can be seen in Table 4.3. The total amount of queries was 3000
per test case.

4.4.1 Heterogeneous Distribution, WAN
The results of this test are shown in Figure 4.3. The execution times for each
workload with standard deviation given are shown in Figure 4.4. As can be
seen in the graph, there is little difference between implicit and explicit use of
cache. By studying the details of the test run we can see that the coordinates
for the sites remained stable and unchanged throughout the test, which lead
to little variation in site selection and high determinism. Explicit use of cache
chose to use the same sites as the implicit cache run, and thereby used the
same cache entries for most of the tests. The small advantage explicit cache
has over implicit is based in those cases where another site not normally
detected by the planner would contain a favorable cache. Explicit cache

69

Figure 4.3: Execution time for setup with hetereogeneous distribution on
WAN.

would be able to detect this and exploit the cache entry created by another
query, and implicit cache would not.

The leap from those two techniques to cache investment requires some
explanation. Initially it will operate like the other two techniques, but after a
few runs when the history has been allowed to grow large enough for patterns
to be detected this changes. Cache investment will calculate the centroid for
the candidates it is going to suggest. Based on the origin of queries it will
detect a clustering of sites around this location. Therefore it will generate
a hint that will satisfy as many of the queries in the history as possible and
place this somewhere suitable in the cluster. The site executing queries will
receive a very good cache right at its doorstep and execution time for queries
thereafter will experience a drastic experience gain. These results are very
dependent on their environment, and we expect to see different results if
there are no clustering among the sites, or if all sites are put in the same

70

(a) Workload 1 (b) Workload 2

(c) Workload 3

Figure 4.4: Standard deviation for each workload for heterogeneous WAN.

71

cluster with little or no network distance.

4.4.2 Homogeneous Distribution, WAN

Figure 4.5: Execution time for setup with homogenous distribution on WAN.

In this case all the sites were setup up to route the traffic through Amster-
dam. This gave the data a much larger distance to travel between sites, and
gave communication cost a much bigger role to play during execution. The
results of this test can be seen in Figure 4.5. The execution times for each
workload with standard deviation given are shown in Figure 4.6. As given
in Figure 4.6c, the standard deviation for cache investment on workload 3 is
very large. To explain this we analyzed the logs and made graphs to uncover
a pattern. What we found was that one particular batch of queries for work-
load 3 showed consistently longer execution times for similar plans. Because

72

(a) Workload 1 (b) Workload 2

(c) Workload 3

Figure 4.6: Standard deviation for each workload for homogeneous WAN.

73

of this we reason that this was one unlucky batch stricken by an incident
at the tunnel broker or in our local network that drastically increased the
execution time required to finish. With this batch removed, the test shows
normal behavior. This is shown in Figure 4.7.

Figure 4.7: Standard deviation for workload 3 for homogeneous WAN with
bad query batch removed.

In general explicit cache runs better than implicit cache, but is unable to
”improvise” during cache creation like cache investment. Cache investment
makes use of its cache hinting feature to create cache entries for operations
not previously considered on this particular site. Common to both implicit
and explicit cache is that they consider only previously produced results
for caching. Cache investment is also capable of suggesting a cache entry
that is more general and therefore more applicable for future queries. The
combination of more general cache entries and cache located closer to where
it will be used is the reason for the speedup in cache investment.

4.4.3 Homogeneous Distribution, LAN
In this case the tunnels was switched off. The sites was located on the same
local area network. The results of this test are shown in Figure 4.8. The
results lived up to our expectations. When there is equal delay between all
nodes there is little to gain from smart site selection. Caching will have a
small impact if local cache is used often or if the operation cost of producing

74

Figure 4.8: Execution time for setup with homogeneous distribution on LAN.

a result is expensive. From the graph we can read that explicit caching has
a marginal advantage over implicit caching and cache investment takes this
one small step further. While cache investment does not hurt performance
in this setting, there is also little to gain. In a local network, communication
cost is just one of many factors. Cache investment seeks to place cache so
that it is near as many sites as possible, this criteria is not applicable in a
local area network the distance is the same for all sites.

The execution times for each workload with standard deviation given are
shown in Figure 4.9. Compared to the execution times the standard devation
is not that bad, but compared to the difference between each technique it is
apparent that more tests are required to confirm the trend in Figure 4.8.

This case confirms our theory that cache investment will have greater
impact in a geographically distributed setting. It also suggests that more
tests needs to be done in order to reveal the cases where cache investment

75

(a) Workload 1 (b) Workload 2

(c) Workload 3

Figure 4.9: Standard deviation for each workload for homogeneous LAN.

76

may degrade performance.

4.4.4 Concurrency with Distribution, WAN

Figure 4.10: Execution time for setup with concurrent sites on WAN.

This test attempted to measure the effect of concurrency and cache in-
vestment. By concurrency, we mean that more than one site in the system is
executing queries at the same time. When queries are issued from different
locations like this, it puts more pressure on the system’s ability to adapt
its execution plans to the changing demand for data. No site use the same
workload at the same run. As usual the cache is reset between each run.
Worth noting is that both workload 1 and 2 have TPC-H query 1 in their
hot-set.

77

(a) Site 0 Workload 1 (b) Site 1 Workload 2 (c) Site 2 Workload 3

Figure 4.11: Standard deviation for concurrency test case 1.

Figure 4.10 shows the results of the tests. This is the case where cache
investment excels like no other. The execution times with standard deviation
given are shown in Figure 4.11, Figure 4.12, and Figure 4.13. The standard
deviation for this test is fairly within limits to conclude that cache investment
handles concurrency better than explicit and implicit caching.

As the astute reader may have noticed, the test case for heterogeneous
WAN and this one use the same location setup for their sites. Therefore,
we would have expected the execution times for each caching technique to
be longer because of the higher system load. This is in fact not the case for
cache investment. We suspect two possible reasons for this behavior. One,
cache investment is capable of doing bigger investments when more sites are
demanding data. Two, the test cases are in fact not comparable, as they
were executed at several days apart and the situation at our tunnel broker
service might have changed.

4.4.5 Comparison
Table 4.5 shows the average speedup of the techniques compared to implicit
caching. Latency is average latency in setup. As can be seen in the results,
the speedup increases with the average latency value. This can be explained
by the fact that higher latency leaves more to be gained from good cache

78

(a) Site 0 Workload 2 (b) Site 1 Workload 3 (c) Site 2 Workload 1

Figure 4.12: Standard deviation for concurrency test case 2.

(a) Site 0 Workload 3 (b) Site 1 Workload 1 (c) Site 2 Workload 2

Figure 4.13: Standard deviation for concurrency test case 3.

79

placement. Concurrency adds to that even further because in that case more
than one site benefit from good placement of cache.

Test Case Latency (ms) Expl. Cache Cache Inv.
Heterogeneous distribution, LAN 0.22 5% 12%
Homogeneous distribution, WAN 99.89 5% 39%
Hetrogeneous distribution, WAN 114.01 4% 46%
Concurrency with hetero. dist., WAN 114.01 3% 89%

Table 4.5: Speedup compared to Implicit Cache.

80

Chapter 5

Conclusion

Distributed databases is an important field in database research and devel-
opment. The field has experienced an increase of interest in the recent years,
mainly due to new demands on the database to handle larger data volumes
and more users. This sets new requirements on efficient query processing,
an important challenge which must be properly addressed before distributed
databases can become efficient. DASCOSA[40] is a DBMS based on the peer-
to-peer paradigm, designed to facilitate research into distributed databases.
It is being developed at the Department of Computer and Information Sci-
ence (IDI) at the Norwegian University of Science and Technology (NTNU).

The effectiveness of query processing is a major component of a DMBS’s
performance. When we began our specialization project, DASCOSA had
no dedicated query optimizer. During the project period we developed a
distributed query optimizer based on the R*-algorithm.

In this project we have addressed semantic caching in distributed data-
bases. We have designed an advanced caching strategy and implemented it
for the DASCOSA DBMS. Semantic cache investment is an active caching
strategy that deduces good caching candidates from query history and sug-
gests these to the query optimizer. Our implementation was done in three
phases, each phase designed to extend the capabilities of DASCOSA towards
the goal of semantic cache investment. These three phases added selection
support, query optimizer cache support and finally cache investment func-
tionality.

We have shown that the concept for cache investment can be successfully
deployed in a distributed database with peer-to-peer architecture and seman-
tic cache. We have also shown that cache investment integrates well with an

81

existing query optimizer solution such as the query optimizer in DASCOSA.
After doing the switch from data cache to semantic cache it is still possible
to do cache investment when proper query matching is applied.

Evaluation has shown improvement in performance when using seman-
tic cache investment. The degree of performance boost from using seman-
tic cache investment depends on the environment in which the distributed
database exists. We have explored how network topology and concurrency af-
fects caching in distributed databases. Results have shown that cache invest-
ment is effective. The effect on performance varies with changes in topology
and concurrency, but shows an overall speedup in all cases. Cache invest-
ment is most effective in Wide-Area-Network systems with concurrent query
execution. Our tests have also showed that the improvement of cache invest-
ment increases with both more latency and concurrency independently. This
shows that cache investment takes into account locality between both sites
and queries.

This solution has only explored the effects of cache investment on read
performance. If the database is to do both reads and updates, then the
issue of cache invalidation is introduced. DASCOSA’s cache module does
not currently handle updates, so neither does the cache investment. How
cache investment behaves in such a setting we leave as work that will need to
be addressed in the future. Still our results are interesting as data processing
in data warehouses and other applications with very large data volumes is
often done in phases. Numerous read only operations, like the one in our
case, can be processed in a row before the system moves on to updates.

Further Work
DASCOSA does now have a query optimizer and caching capability built
around the concept of cache investment. There are many ways to take this
work further.

One thing that struck us during our work on cache investment was the
limitations of the cost model. The cost model does not perform good cost
estimates for operations. This affects both the generation of the query exe-
cution plan and the cache replacement algorithm.

The query optimizer and cache in DASCOSA does not support all algebra
operators. This has been cut due to our project scope and time frame. Extra
operator support could very well lead to better query execution plans and

82

better cache utilization.
Query matching is another field with possibilities for enhancement. Our

solution does not support remainder queries. Remainder queries together
with more precise query containment would be the next step in maturing
caching in DASCOSA. This would require a better cost model.

There is room for improvements in cache investment in regard to cache
candidate identification. Our solution is using a weighted sum function to
identify centroids, but this does not consider size of the cache candidate nor
the space in the cache for the respective sites. Currently the cache investment
does not consider locality in selections. For future work we believe it to be
worthwhile investigating the possibilities of doing this with a modified R-tree
index with one dimension for each column of every table.

The cache investment module currently does not do load balancing. In a
future version, sites publishing cache entries should include the size of their
cache, how full it is and the value of of other cache entries.

83

Bibliography

[1] M. Tamer Öszu and Patrick Valduriez. Principles of Distributed
Database Systems (Prentice Hall), 1999.

[2] Yannis E. Ioannidis. Query optimization, 1996.

[3] Surajit Chaudhuri. An overview of query optimization in relational
systems. In In PODS, pages 34–43. 1998.

[4] Angela Bonifati, Panos K. Chrysanthis, Aris M. Ouksel, and Kai-Uwe
Sattler. Distributed databases and peer-to-peer databases: past and
present. SIGMOD Rec., 37(1):5–11, 2008. ISSN 0163-5808. doi:http:
//doi.acm.org/10.1145/1374780.1374781.

[5] Joseph M. Hellerstein and Michael Stonebraker. Readings in Database
Systems: Fourth Edition (The MIT Press), 2005. ISBN 0262693143.

[6] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implica-
tions of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24,
1995. ISSN 0163-5964. doi:http://doi.acm.org/10.1145/216585.216588.
URL http://portal.acm.org/ft_gateway.cfm?id=216588&type=
pdf&coll=GUIDE&dl=GUIDE&CFID=64279817&CFTOKEN=61037937.

[7] Philip Machanick. Approaches to Addressing the Memory Wall.
Technical report, School of IT and Electrical Engineering, University
of Queensland, 2002. URL http://www.itee.uq.edu.au/~philip/
Publications/Techreports/2002/Reports/memory-wall-survey.
pdf.

[8] Shaul Dar, Michael J. Franklin, Björn THór Jónsson, Divesh Srivastava,
and Michael Tan. Semantic data caching and replacement. In Proceed-
ings of VLDB’1996. 1996.

84

http://portal.acm.org/ft_gateway.cfm?id=216588&type=pdf&coll=GUIDE&dl=GUIDE&CFID=64279817&CFTOKEN=61037937
http://portal.acm.org/ft_gateway.cfm?id=216588&type=pdf&coll=GUIDE&dl=GUIDE&CFID=64279817&CFTOKEN=61037937
http://www.itee.uq.edu.au/~philip/Publications/Techreports/2002/Reports/memory-wall-survey.pdf
http://www.itee.uq.edu.au/~philip/Publications/Techreports/2002/Reports/memory-wall-survey.pdf
http://www.itee.uq.edu.au/~philip/Publications/Techreports/2002/Reports/memory-wall-survey.pdf

[9] Donald Kossmann, Michael J. Franklin, Gerhard Drasch, and Wig Ag.
Cache investment: integrating query optimization and distributed data
placement. ACM Transactions on Database Systems, 25(4):517–558,
2000. URL http://citeseer.ist.psu.edu/kossmann00cache.html.

[10] Konrad Giæver Beiske and Jan Bjørndalen. DASCOSA Query Opti-
mizer. preproject, Norwegian University of Science and Technology,
Dec. 2008.

[11] Guy M. Lohman, C. Mohan, Laura M. Haas, Dean Daniels, Bruce G.
Lindsay, Patricia G. Selinger, and Paul F. Wilms. Query processing in
R*. In Query Processing in Database Systems, pages 31–47 (Springer),
1985.

[12] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert
Morris. Practical, distributed network coordinates. SIGCOMM Com-
put. Commun. Rev., 34(1):113–118, 2004. ISSN 0146-4833. doi:http:
//doi.acm.org/10.1145/972374.972394.

[13] Transaction Processing Performance Council (TPC), Presidio of San
Francisco Building 572B Ruger St. (surface) P.O. Box 29920 (mail) San
Francisco, CA 94129-0920. TPC Benchmark H (Decision Support) Stan-
dard Specification, 2.8.0 edition, 2009. URL http://tpc.org/tpch/
spec/tpch2.8.0.pdf.

[14] Chungmin M. Chen and Nick Roussopoulos. The query optimizer of
adms. In Fourth Intern. Conference on Extending Database Technology,
Cambridge, UK, March 28-31, 1994. 1994.

[15] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Opti-
mizing queries with materialized views. In Proceedings of ICDE’1995.
1995.

[16] Parke Godfrey and Jarek Gryz. Answering queries by semantic caches.
In DEXA ’99: Proceedings of the 10th International Conference on
Database and Expert Systems Applications, pages 485–498 (Springer-
Verlag, London, UK), 1999. ISBN 3-540-66448-3.

[17] Michael Stonebraker and Joseph M. Hellerstein. What goes around
comes around. In Readings in Database Systems, chapter 1 (The MIT
Press), 4 edition, 2005.

85

http://citeseer.ist.psu.edu/kossmann00cache.html
http://tpc.org/tpch/spec/tpch2.8.0.pdf
http://tpc.org/tpch/spec/tpch2.8.0.pdf

[18] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530,
1982. ISSN 0360-0300. doi:http://doi.acm.org/10.1145/356887.356892.

[19] Peter J. Denning. The locality principle. Commun. ACM, 48(7):19–
24, 2005. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/1070838.
1070856.

[20] Arthur M. Keller and Julie Basu. A predicate-based caching scheme for
client-server database architectures. VLDB Journal: Very Large Data
Bases, 5(1):35–47, 1996.

[21] Björn Þór Jónsson, María Arinbjarnar, Bjarnsteinn Þórsson, Michael J.
Franklin, and Divesh Srivastava. Performance and overhead of semantic
cache management. ACM Trans. Internet Technol., 6(3):302–331, 2006.
ISSN 1533-5399. doi:http://doi.acm.org/10.1145/1151087.1151091.

[22] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava,
and Michael Tan. In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 330–341 (Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA), 1996. ISBN 1-55860-
382-4.

[23] Donald Kossmann. The state of the art in distributed query processing.
ACM Comput. Surv., 32(4):422–469, 2000. ISSN 0360-0300. doi:http:
//doi.acm.org/10.1145/371578.371598.

[24] Surajit Chaudhuri. An overview of query optimization in relational
systems. In PODS ’98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
34–43 (ACM, New York, NY, USA), 1998. ISBN 0-89791-996-3. doi:
http://doi.acm.org/10.1145/275487.275492.

[25] Raghu Ramakrishnan and Johannes Gehrke. Database Management Sys-
tems (McGraw-Hill), 2003.

[26] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computer Surveys, 1993.

[27] Peter Pietzuch, Jonathan Ledlie, and Margo Seltzer. Supporting net-
work coordinates on planetlab. In WORLDS’05: Proceedings of the 2nd

86

conference on Real, Large Distributed Systems, pages 19–24 (USENIX
Association, Berkeley, CA, USA), 2005.

[28] Chungmin Melvin Chen and Nicholas Roussopoulos. The implementa-
tion and performance evaluation of the adms query optimizer: integrat-
ing query result caching and matching. In EDBT ’94: Proceedings of
the 4th international conference on extending database technology, pages
323–336 (Springer-Verlag New York, Inc., New York, NY, USA), 1994.
ISBN 3-540-57818-8.

[29] Sheldon Finkelstein. Common expression analysis in database ap-
plications. In SIGMOD ’82: Proceedings of the 1982 ACM SIG-
MOD international conference on Management of data, pages 235–
245 (ACM, New York, NY, USA), 1982. ISBN 0-89791-073-7. doi:
http://doi.acm.org/10.1145/582353.582400.

[30] Xiaolei Qian. Query folding. In ICDE ’96: Proceedings of the Twelfth In-
ternational Conference on Data Engineering, pages 48–55 (IEEE Com-
puter Society, Washington, DC, USA), 1996. ISBN 0-8186-7240-4.

[31] FreePastry, http://freepastry.org/, 2007.

[32] K. Nørvåg, E. Eide, and O.H. Standal. Query planning in P2P database
systems. Digital Information Management, 2007. ICDIM ’07. 2nd In-
ternational Conference on, 1:376–381, Oct. 2007. doi:10.1109/ICDIM.
2007.4444252.

[33] Apache Derby, http://db.apache.org/derby/, 2007.

[34] Michael Stonebraker et al. Mariposa: A wide-area distributed database
system. VLDB J., 5(1):48–63, 1996.

[35] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L.
Reeve, and Jr. James B. Rothnie. Query processing in a system for
distributed databases (sdd-1). ACM Trans. Database Syst., 6(4):602–
625, 1981. ISSN 0362-5915. doi:http://doi.acm.org/10.1145/319628.
319650.

[36] Norvald H. Ryeng, Jon Olav Hauglid, and Kjetil Nørvåg. Distributed
semantic caching. Technical report, IDI, 2008.

87

http://freepastry.org/
http://db.apache.org/derby/

[37] Jon Olav Hauglid, Kjetil Nørvåg, and Norvald H. Ryeng. Efficient and
robust database support for data-intensive applications in dynamic en-
vironments. In Proceedings of ICDE. 2009.

[38] TPC-H, http://www.tpc.org/tpch/.

[39] Hurricane Electric, http://tunnelbroker.net/, 2008.

[40] DASCOSA Project, http://research.idi.ntnu.no/dascosa/.

88

http://www.tpc.org/tpch/
http://tunnelbroker.net/
http://research.idi.ntnu.no/dascosa/

	Title Page
	Problem Description
	Introduction
	Problem Description
	Our Contribution
	Approach
	Outline

	Preliminary Study
	Distributed Databases
	Queries
	Caching
	Data Cache
	Semantic Cache
	Cache Hit Ratio

	Query Optimization
	Search Space
	Cost Model
	Search Strategy

	Using Cache
	Query Matching

	Cache Investment
	Identifying Caching Candidates

	DASCOSA
	Architecture Overview
	Query Processing in DASCOSA
	Query Optimization in DASCOSA
	Caching in DASCOSA

	Design and Implementation
	Overview
	Making the Optimizer Cache-Aware
	Design
	Implementation

	Extending Operator Support
	Design
	Implementation

	Semantic Cache Investment
	Design
	Implementation

	Adaption for TPC-H Queries

	Evaluation
	Testing Environment
	Data Set
	TPC-H Queries

	Evaluation Criteria
	Test Cases
	Results
	Heterogeneous Distribution, WAN
	Homogeneous Distribution, WAN
	Homogeneous Distribution, LAN
	Concurrency with Distribution, WAN
	Comparison

	Conclusion

