
June 2009
Agnar Aamodt, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A CBR/RL system for learning
micromanagement in real-time
strategy games

Martin Johansen Gunnerud

Problem Description
RTS games pose many challenges from a computational reasoning point of view. Previous work in
our group addressed the problem of improved micromanagement of units during combat, and a
software environment within the game Warcraft III was developed for experiments. The system,
based on case-based reasoning, proved successful and was able to improve its capability by
storing new cases given by the human player.

In this master thesis the problem of automated learning during game playing shall be studied. A
literature study shall be made in order to identify previous work done with automated learning of
micromanagement in RTS games. A learning task will be identified, and the learning task will be
implemented and tested in an RTS game environment.

Assignment given: 15. January 2009
Supervisor: Agnar Aamodt, IDI

Abstract

The gameplay of real-time strategy games can be divided into macromanagement
and micromanagement. Several researchers have studied automated learning for
macromanagement, using a case-based reasoning/reinforcement learning architec-
ture to defeat both static and dynamic opponents. Unlike the previous research,
we present the Unit Priority Artificial Intelligence (UPAI). UPAI is a case-based
reasoning/reinforcement learning system for learning the micromanagement task
of prioritizing which enemy units to attack in different game situations, through
unsupervised learning from experience. We discuss different case representa-
tions, as well as the exploration vs exploitation aspect of reinforcement learning
in UPAI. Our research demonstrates that UPAI can learn to improve its mi-
cromanagement decisions, by defeating both static and dynamic opponents in a
micromanagement setting.

i

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Structure of report . 3

2 Background 5
2.1 Real-time strategy games . 5

2.1.1 Real-time strategy vs turn-based strategy 5
2.1.2 Micromanagement vs macromanagement 6
2.1.3 AI in RTS games today . 7

2.2 Machine learning techniques . 7
2.2.1 Case-Based Reasoning . 8
2.2.2 Reinforcement learning . 8
2.2.3 Utility value . 9

3 Game environments 11
3.1 Requirements for game environment 11
3.2 Choice of game environment . 11

3.2.1 MadRTS . 11
3.2.2 Wargus . 12
3.2.3 ORTS . 12
3.2.4 Spring Total Annihilation 13
3.2.5 Bos Wars . 13
3.2.6 Warcraft 3 . 13
3.2.7 Summary of game environments 13

i

ii CONTENTS

3.3 Development of game environment 14
3.3.1 Microsoft XNA . 14
3.3.2 ORTT . 14

4 Learning in RTS games 19
4.1 Learning in commercial RTS games 19

4.1.1 Black & White . 19
4.2 Learning from experience in RTS games 21

4.2.1 Adaptive reinforcement learning agents in RTS games . . . 21
4.2.2 Reinforcement learning in RTS Games 22
4.2.3 CBR for improved micromanagement in RTS games 24
4.2.4 Intelligent combat behavior in RTS games 25

4.3 Use of CBR/RL hybrid systems in RTS games 25
4.3.1 Case-based Tactician . 26
4.3.2 Continuous Action State Space Learner 27
4.3.3 Case-Based Reinforcement Learner 28

5 System design 31
5.1 Design decisions . 31
5.2 Case structure . 33
5.3 System overview . 35

6 Implementation 37
6.1 Game state . 37
6.2 Implementation of case architecture 38

6.2.1 The case matching problem 38
6.2.2 Case identifier implementation 39
6.2.3 Case solution implementation 40

6.3 The case-based reasoning system 43
6.3.1 Case retrieval . 43
6.3.2 Case reuse . 44
6.3.3 Case revision . 45
6.3.4 Case retainment . 45

6.4 The utility value system . 45
6.4.1 Calculation of utility values 46
6.4.2 Unit orders . 47

6.5 The reinforcement learning system 48
6.5.1 Reward values . 48
6.5.2 The exploration parameter 51
6.5.3 Graph data . 51

6.6 Other AIs in ORTT . 51

CONTENTS iii

7 Testing and results 53
7.1 Testing environment . 53

7.1.1 Units used in testing . 53
7.1.2 AIs used in testing . 54
7.1.3 Rewards for the CBR system 55
7.1.4 Exploration parameter . 55

7.2 Test results . 55
7.2.1 Test in Warcraft 3 . 56
7.2.2 UPAI vs DumbAI . 57
7.2.3 UPAI vs DamageOptimalAI 59
7.2.4 UPAI vs FocusFireAI . 59
7.2.5 UPAI vs UtilityAI . 61
7.2.6 UPAI vs UtilityAICoward 62
7.2.7 UPAI vs SmartAI . 64
7.2.8 UPAI vs all AIs . 65

8 Discussion 71
8.1 ORTT as game environment . 71
8.2 UPAI . 72

8.2.1 Case representation . 72
8.2.2 Reward value . 73
8.2.3 The utility value system . 75
8.2.4 Unit retreat order . 75
8.2.5 Exploration vs exploitation 75

8.3 Test results . 76

9 Conclusions and Further Work 77
9.1 Conclusion . 77
9.2 Further work . 78

9.2.1 Index and sort cases . 78
9.2.2 Prioritize hurt units . 78
9.2.3 Observe changes in game state 78
9.2.4 Add other goals . 78
9.2.5 Add support for planning 79

Bibliography 81

A Running the project software 85

B RTS terms used 87

C Unit attributes 89
C.1 Unit attributes in ORTT . 89

iv CONTENTS

C.2 Attributes of units used in testing 90

D System execution 93

List of Figures

2.1 The CBR cycle [1] . 9

3.1 The game loop used in ORTT . 15
3.2 A screenshot of ORTT, with descriptions 16

4.1 A screenshot of Bos Wars . 22
4.2 A screenshot of Imrei’s project . 23
4.3 A screenshot of Warcraft 3 . 24
4.4 An example of micromanagement in Spring Total Annihilation 26
4.5 The action selection process of CASSL 28

5.1 The case structure . 34
5.2 Overview of UPAI . 36

6.1 The matching problem, represented by unit health bars 38
6.2 The unit position pattern problem . 40
6.3 Structure of first solution approach . 41
6.4 Structure of a complete case . 43
6.5 Reward distribution graph for a solution where distributed reward = 20 50

7.1 Reward values of UPAI vs DumbAI test 58
7.2 Total number of cases of UPAI vs DumbAI test 58
7.3 Reward values of UPAI vs DamageOptimalAI test 60
7.4 Total number of cases of UPAI vs DamageOptimalAI test 60
7.5 Reward values of UPAI vs FocusFireAI test 61
7.6 Total number of cases of UPAI vs FocusFireAI test 62
7.7 Reward values of UPAI vs UtilityAI test 63
7.8 Total number of cases of UPAI vs UtilityAI test 63
7.9 Reward values of UPAI vs UtilityAI test 64
7.10 Total number of cases of UPAI vs UtilityAI test 65
7.11 Reward values of UPAI vs SmartAI test 66

v

vi LIST OF FIGURES

7.12 Total number of cases of UPAI vs SmartAI test 66
7.13 Reward values of UPAI vs all AIs, changing AI after test runs 67
7.14 Total number of cases of UPAI vs all AIs, changing AI after test runs 68
7.15 Total number of cases of UPAI vs all AIs, changing AI during test runs 69
7.16 Reward values of UPAI vs all AIs, changing AI during test runs 69

8.1 Example of unintelligent unit behavior 73
8.2 Case representation weakness with health points 74

D.1 Execution of UPAI, step 2 . 93
D.2 Execution of UPAI, later step . 94
D.3 Execution of UPAI, last step . 95

List of Tables

3.1 Requirements for the game environment 12
3.2 Summary of RTS game environments 14
3.3 The Warcraft III: The Frozen Throne: Attack Type vs. Armor Type

Chart [4] . 15

4.1 Example of feedback for the creature in Black & White 20
4.2 Transfer learning levels 0 - 4 [17] . 29

6.1 Example of calculated utility values 47

7.1 The units used in testing . 54
7.2 Description of the AIs used in testing 56
7.3 Unit rewards used in testing . 57

B.1 Special RTS game terms used in report 88

C.1 Attributes of units used in testing . 90
C.2 Description of unit attributes . 90
C.3 Attributes of abilities . 91

vii

Chapter 1

Introduction

This chapter is the introduction to the project, and contains three important
sections; section 1.1 gives our motivation for choosing to study learning based on
experience in RTS games, section 1.2 lists the goals of the project, and section
1.3 describes the overall structure of the report.

1.1 Motivation

The commercial video games available today usually advertise graphics and story
as their main selling points. Nevertheless, AI is quickly becoming more important
in video games. Considering the game F.E.A.R as an example. The game received
excellent reviews, and the reviewers praised the smart behavior of the enemy
soldiers [15]. However, the seemingly intelligent behavior of the soldiers was the
result of their internal planning system, which was loosely based on the STRIPS
planning system [13]. STRIPS was developed by Richard Fikes and Nils Nilsson in
1971, and successfully implemented in a game 34 years later. In the coming years,
we believe that more and more commercial games will embrace AI techniques.

While playing against intelligent opponents utilizing planning techniques,
these opponents should also be able to obtain new knowledge. In real-time strat-
egy (RTS) games, the computer should be able to learn from past experiences,
and predict the actions of the opposing player in order to provide a fun and chal-
lenging game for the human player. However, today’s commercial RTS games
suffer from bad AI [3]. The AI in these games usually has only one default strat-
egy, which will be used independently of what the human player is doing. Stene
[18] explains this poor behavior:

”In most RTS games the units have basic behavior, for example a unit

1

2 CHAPTER 1. INTRODUCTION

that is fired upon will attempt to move close enough to the enemy unit
to be able to attack it back. Human players learn over time how to
control their different types of units in the most efficient way, but
traditionally RTS game AI will rely on the basic behavior and not
control units beyond telling them to where to attack and when to
retreat.”

This default, deterministic behavior makes it easy for human players to predict
the actions taken by the AI, and defeat it. Previous work with learning in RTS
games such as work by Aha [2], Buro [3] and Ram [14] have successfully found
ways to improve the AI of RTS games.

However, most of the previous research on automated learning in RTS games
have focused on the macromanagement aspect of RTS games [19]. Macromanage-
ment include decisions such as building the right buildings and units, harvesting
enough resources, and similar high-level actions. On the other hand, the mi-
cromanagement aspect of RTS games deal with how units should be moved in
combat, which enemy units they should target, and when they should run away.

The motivation behind this project is the lack of research related to micro-
management learning from experience in RTS games. We believe that allowing
the computer to learn and adapt to situations automatically could make RTS
games more fun and challenging to play. Further, we wish to test whether a com-
puter controlled AI player can learn to improve their micromanagement during
gameplay by learning which order enemy units should be killed, based on the
current state of the game.

1.2 Goals

The goal of this project was to study how learning from experience during game
playing could improve the micromanagement of a computer controlled AI player.
A study of previous research on this topic was conducted in order to get an
understanding what work had already been done, and topics which had not been
sufficiently researched yet. The result of previous research was used to design and
implement a system in a chosen RTS game environment, which goal was learn
the micromanagement task of choosing which enemy units to target in given
situations in order to defeat an enemy player.

The system was implemented using the machine learning techniques case-
based reasoning (CBR) and reinforcement learning (RL). CBR was used because
it is the primary focus of our research group. RL was used because several
previous works on learning in RTS games used either RL or a CBR/RL hybrid

1.3. STRUCTURE OF REPORT 3

system for learning. Our system was based on some of the previous systems we
studied, most noticeably CaT [2], described in section 4.3.1. Additionally, utility
values were used to support the CBR/RL system. The goal of testing was that
the system should improve itself while playing, and be able to defeat the AIs
already implemented in the chosen game environment.

1.3 Structure of report

The report is structured to be read as a whole from beginning to end. Later
chapters may refer to earlier chapters, hence it is not recommended to read the
report in fragments from different chapters.

The report obviously starts with this introduction, followed by a brief intro-
duction to CBR, RL and AI in RTS games in chapter 2. Next, in chapter 3, the
choice of game environment is discussed. This is followed by an overview of pre-
vious research related to micromanagement in RTS games, and some CBR/RL
approaches to learning in RTS games, which is discussed in chapter 4. The design,
implementation and results of the implemented system are described in chapter
5, 6 and 7, before the discussion in chapter 8. Finally, the conclusion and further
work sections are found in chapter 9.

Throughout this report several RTS game terms will be used, which may
be unfamiliar to those who have not played an RTS game before. These terms
are listed in appendix B table B.1, and the reader is recommended to read and
understand these terms before reading further.

Chapter 2

Background

This chapter presents the background of the project. Section 2.1 describes a
typical RTS game, and the state of AI in RTS games today. The machine learning
techniques we used in the implementation of our project are explained in section
2.2.

2.1 Real-time strategy games

Games in the real-time strategy genre are very popular today. Many RTS games
are released each year, and some catch on to become immensely popular. RTS
games are war games, with two or more players controlling different types of
buildings and units on a large map. Building new buildings allows production
of different units and research of new technologies for improving these units, but
buildings, units and technologies require resources. Resources are mined from
specific map locations, hence controlling as many resource locations as possible
is often vital. In order to win a game, a player needs to use his army to destroy
all enemy buildings. Armies consist of different types of units which never get
tired and never miss when attacking their targets in combat. Most players dislike
having their buildings destroyed, and will use their own army to defend them
from attacks. The key to winning an RTS game is finding a good balance between
economy and warfare.

2.1.1 Real-time strategy vs turn-based strategy

Turn-based strategy games are classic games such as board games, like chess and
backgammon. These games are somewhat predictable, and there exist a finite
(though very large) number of possible game states which may be represented as

5

6 CHAPTER 2. BACKGROUND

a tree. In turn-based games, only a single player can affect the game at any given
time, and turns are taken in rotation.

However, real-time strategy games are very different. In these games, all
players simultaneously affect the state of the game, and the state of the game
is measured in milliseconds, not in turns. Hence such strategy games are called
real-time strategy games. Since multiple players can execute different actions
at all times, it makes predicting game states of real-time strategy games almost
impossible.

2.1.2 Micromanagement vs macromanagement

Macromanagement in RTS games refers to the economic strategy of the game.
This includes deciding which buildings to construct, units to train, upgrades to
research, and when to build expansions. In short, macromanagement can be
defined as how to best use the available resources. In most strategy games,
macromanagement is more important than micromanagement, due to low health
points of units and few unit abilities.

On the other hand, micromanagement in RTS game terms are defined as
small, detailed gameplay commands, most commonly commands such as moving
units or using a unit’s special abilities during combat. Micromanaging units in
an RTS game are essentially the task of giving orders to units. The ultimate
goal of micromanagement is to win by losing as few units as possible. In RTS
games made before year 2000, most unit orders had to be manually addressed
by the player. However, steps to reduce micromanagement have been taken from
older real-time strategy games. Improved pathfinding for units and formation
movement are now state-of-the-art in most RTS games.

In some RTS games, units can have many special abilities which could be
quite a hassle to manually activate during combat. In Warcraft 3, almost every
unit has an activated special ability, and several units have more than one. In
order to reduce the micromanagement required by players, Warcraft 3 introduced
autocasting; beneficial abilities which the player would want to use in every battle
are used automatically by the computer [5]. The autocast system is implemented
as series of rules, and an ability is used once all the conditions of the rule are
true. Autocast reduces the micromanagement required by players, and gives units
limited intelligence, in the sense that they can execute beneficial actions without
being told to do so. We extended this concept in our system, by giving units
more control over their own actions, without explicit orders from a player or an
AI.

2.2. MACHINE LEARNING TECHNIQUES 7

2.1.3 AI in RTS games today

AI in games has existed since the first single player games in the late 1970s, like
Pong. However, video game AI is a broad term covering the behavior of computer
players or agents, such as pathfinding or finite state machine behaviors. Topics
covered by the academic definition of artificial intelligence are seldom used in
games, but there is one game which has utilized academic AI with success. This
game is discussed in chapter 4.1.

Even though the first RTS game was released 17 years ago [7], the AI of
commercial RTS games today is poor. Buro [3] gives several reasons for this:

• RTS games feature imperfect information, as well as hundreds of objects,
which may move and act at the same time, independent of each other. In
games like chess, an AI has perfect information about the game world, and
each move has global effect. Hence human players may be outsmarted by
enumeration.

• Most RTS games are multiplayer games, hence developers prioritize enter-
taining human vs human games, not human vs machine games.

• RTS games are complex and closed source. Even though most of these come
with a mapmaking tool, there is no AI tool available to the public.

The challenge with RTS game AI is the vast search space. RTS games feature
hundreds of interacting objects, partially observable environments and fast-paced
micro actions [3]. Even in the early phases of an RTS game round, the decision
complexity can be estimated to 1.5 ∗ 103, compared to 30 for chess [2].

To overcome their weaknesses, RTS AIs often cheat. For example in the RTS
game Warcraft 3, the computer can see the whole world map without fog of war.
Sight is usually limited to how far units can see, hence being able to see the
whole map is a huge advantage. This means the AI never has to scout ahead,
and always know where the player base is. Warcraft 3 features three AI difficulty
levels, and on the hardest one, the AI earns resources at double the normal speed.

2.2 Machine learning techniques

We used two machine learning techniques for implementing our system. These
were case-based reasoning and reinforcement learning. Additionally, we used
utility values to compute unit actions. All techniques are described below.

8 CHAPTER 2. BACKGROUND

2.2.1 Case-Based Reasoning

Case-Based Reasoning (CBR) is a machine learning technique in which problems
and their solutions are stored in a knowledge base as cases. These cases may
be retrieved later should a similar problem arise, as the solution to this problem
will already be in the knowledge base called the case base. Aamodt and Plaza
[1] defines CBR as: ”To solve a new problem by remembering a previous similar
situation and by reusing information and knowledge of that situation.”

CBR may be described as four processes: [1]

1. RETRIEVE the case or cases from the knowledge base that are most similar
to the current problem.

2. REUSE the information from the retrieved cases to solve the current prob-
lem. If no exact match is found, the solution to the new problem must be
adapted from one or more cases.

3. REVISE the proposed solution if it failed.

4. RETAIN the experience for solving this case in the knowledge base.

Even though CBR is a machine learning technique, it has three key proper-
ties which differentiate it from other techniques [11]. First, it is a lazy learning
method, which means that generalization beyond the training data is delayed
until the system receives a new query. This is opposed to eager learning, where
the system tries to generalize the training data, before observing new queries.
Second, new query instances are classified based on similar instances, while those
which are very different are ignored. Third, instances are represented as symbolic
descriptions, as opposed to real-valued points.

2.2.2 Reinforcement learning

Reinforcement learning (RL) is a machine learning technique where an agent
learns how to select the optimal actions for achieving its goal. [11] The agent
learns from delayed rewards when the agent reaches a good state (for example,
winning a game of backgammon). Hence the agent must learn how to select
actions from this indirect reward, which results in the greatest cumulative reward.
The agent will select a sequence of actions, and over time learn to select the
actions which give the highest cumulative reward.

In all RL algorithms, finding a good balance between exploration and ex-
ploitation is important. Exploration is the exploration of uncharted states, such
as choosing actions where the reward for the action is unknown. By exploration,

2.2. MACHINE LEARNING TECHNIQUES 9

Figure 2.1: The CBR cycle [1]

the agent will learn new information, which may be used later. Exploitation is
the exploitation of information the agent has already learned. It will select ac-
tions which will yield a high reward, to maximize cumulative reward. However,
there might be better actions to take which are not know to the agent, because
it has not explored enough. Finding a good balance between exploration and
exploitation for a given RL problem is often difficult.

2.2.3 Utility value

Utility value is a method for measuring how good a state is [23]. The utility value
is a numeric value, where higher value means better state. When faced with a
choice, an agent calculates the utility values of each state that may be reached
from the current state, and executes the action which will lead to the state with
the highest utility value. This technique is not a machine learning technique, but
it is used to select the best action from a state without going through several sets
of rules. An advantage of using utility values is that the designer of an agent only
needs to tell the agent what to do, not how to do it.

Chapter 3

Game environments

This section describes the process we used for choosing a game environment in
order to implement our CBR/RL system. First, our requirements of an RTS
game environment for implementing the system is listed, together with the game
environments considered for the implementation. In section 3.3, the development
possibilities of the game environment used in our project is discussed.

3.1 Requirements for game environment

In order to test a system which learns from experience in a micromanagement
setting, the chosen game environment had to fulfill some requirements. These
requirements are listed in table 3.1 below.

3.2 Choice of game environment

In order to implement and test the system described in section 1.2, a game en-
vironment was needed. Several open-source RTS games exist, and some of the
most popular of these which had already been used in AI research [9], [18], [17],
[14] were considered for our project. A game environment had to fulfill all the
requirements of table 3.1 to be suitable for the implementation of our system.
Below is a summary of these game environments, and which requirements they
fulfill.

3.2.1 MadRTS

Though MadRTS had been used as a game environment for testing some of the
CBR/RL hybrid systems described in section 4.3, we could not find any mention

11

12 CHAPTER 3. GAME ENVIRONMENTS

Requirement
ID

Description

1 The environment must support the creation of custom map
scenarios, like a map which only has two players with a defined
number of units, and no buildings.

2 The environment must be suitable for micromanagement. Units
should have a fair amount of health points, and be able to take
several hits before dying. It should also be easy to heal units,
to encourage losing as few units as possible in battle.

3 The units in the environment must have the option to have ac-
tivated, special abilities, such as targeted healing or unit sum-
moning.

4 The environment must have the ability to read and write files
when the AI is running, in order to read and update the knowl-
edge base.

5 The AIs created for the environment should be written in a
programming or scripting language which we already know, or
may learn in a short time. This excludes C and C++.

Table 3.1: Requirements for the game environment

of it on the internet. Further research revealed that the creators of MadRTS,
Mad Doc, was bought by Rockstar, and MadRTS was no longer available.

3.2.2 Wargus

Wargus is an open-source Warcraft 2 mod written in C++, which allows play-
ers to play Warcraft 2 with the Stratagus engine. Wargus support custom map
creation, special abilities for units, file IO, and AI scripted in the scripting lan-
guage LUA, which we should be able to learn for our project. However, there are
some limitations with micromanagement in Wargus, most noticeably no support
for micromanagement in the Wargus user interface, and low unit health points.
Wargus fulfills all requirements except requirement 2.

3.2.3 ORTS

ORTS (Open Real-Time Strategy) is an open-source programming environment
written in C, for studying real-time AI problems such as pathfinding, dealing
with imperfect information, and planning in the domain of RTS games. [NEED
SOURCE?] It is most commonly used to study low-level AI functions such as
pathfinding, resource gathering and attack and defense formations. ORTS is
a game engine, and new units may be defined though simple modifications of
game files. AIs written in ORTS are written in C, and are generally complicated,

3.2. CHOICE OF GAME ENVIRONMENT 13

spanning from 5 to 10 classes, each dealing with a specific behavior. ORTS
support creation of custom maps, an environment suitable for micromanagement,
and file IO. However, it does not support unit abilities. Hence ORTS fulfills
requirements 1, 2 and 4.

3.2.4 Spring Total Annihilation

Spring TA is an open-source project written in C++, which is aiming to recreate
the original Total Annihilation RTS game in a 3D environment. The Spring TA
engine supports mods as well, hence it is possible to make a new game on top of
the engine. It has a large and active development community, and quite a few
AIs have been developed. AI bindings from C++ to java exist as well, but these
are currently in an alpha version, hence being both buggy and unstable. Also,
this environment supports micromanagement and file IO, but not special abilities
for units. Spring TA fulfills all requirements, except requirement 2.

3.2.5 Bos Wars

Bos Wars is a futuristic RTS game written in C++. The implemented microman-
agement AI is not very sophisticated, and the high level AI has only one strategy,
namely rushing. However, Bos Wars support custom made AIs scripted in LUA,
and file IO. It is not that suited for micromanagement, and units cannot have
special abilities. Hence Bos Wars fulfills requirements 1, 4 and 5.

3.2.6 Warcraft 3

Warcraft 3 is a commercial game, hence it is not open source. It features a
powerful editor, but the target audience for the editor is gamers, not program-
mers. Maps and AIs made through this editor cannot read data from external
files. However, Warcraft 3 is an excellent game for micromanagement, and al-
most every unit has a special ability. Warcraft 3 fulfills all requirements except
requirement 4.

3.2.7 Summary of game environments

A summary of the requirements fulfilled by the game environments may be found
in table 3.2. None of the environments we considered proved to be suitable for
our project. While most game environments fulfilled nearly every requirement,
none were particularly suited for what we wanted to implement. As we could
not use any of the open-source game environments, we decided to develop a new
game environment.

14 CHAPTER 3. GAME ENVIRONMENTS

Environment Req 1 Req 2 Req 3 Req 4 Req 5
Wargus X X X X
ORTS X X X
Spring TA X X X X
Bos Wars X X X
Warcraft 3 X X X X

Table 3.2: Summary of RTS game environments

3.3 Development of game environment

The benefits of developing an environment from scratch was that it would fulfill
all the requirements for game environments listed in table 3.1. Additionally,
several features absent in other game environments related to micromanagement
could be added, such as visible health bars for tracking health points of units.
In order to quickly develop an environment, a game-development framework was
needed.

3.3.1 Microsoft XNA

XNA (XNA’s Not Acronymed) is a framework by Microsoft [21] for game de-
velopment for Windows and Xbox 360. The framework is built on top of the
.NET 2.0 framework, and provides game developers with a basic implementation
of the game loop architecture [20] running at 60 frames per second at default.
XNA supports both threaded game loops and loops with variable time steps. The
framework includes methods to handle game logic updates and rendering, hence
developers are given more time to focus on the gameplay, and not common game
methods such as drawing graphics, which are solved over and over for all games.
XNA also has a large community, and many tutorials and examples are available
for free online.

3.3.2 ORTT

The environment we developed in the XNA framework was named ORTT, the
name being inspired by ORTS. As the environment we developed did not feature
buildings, research or unit production, the ’Strategy’ term of RTS was replaced
by ’Tactics’, hence ORTT is an abbreviation of Open Real-Time Tactics. Despite
similar names, ORTT and ORTS are not related other than that both are used to
study learning in RTS games. ORTT was implemented as a single-threaded game
loop shown in figure 3.1, running at the XNA default of 60 frames per second.

3.3. DEVELOPMENT OF GAME ENVIRONMENT 15

Figure 3.1: The game loop used in ORTT

The game world of ORTT contains two teams, with a number of different
units, as shown in figure 3.2. Units have different attributes, inspired by the unit
attributes of Warcraft 3. The attributes are such as size, move speed, damage,
health points, attack speed and armor. Some units also have special abilities, such
as a summon unit ability and a heal ability. The attack and armor types found
in Warcraft 3 are found in ORTT as well. Each unit has one attack type and
one armor type, and some weapons deal more damage to some armor types, and
less to others. The full chart is found in table 3.3. This system is implemented
to encourage units to attack specific enemy units for bonus damage. Units also
have a numeric value named armor rating. Units take 0.06 ∗ armorrating less
damage from each attack.

Light Medium Heavy Fortified Hero Unarmored
Normal 1.00 1.50 1.00 .70 1.00 1.00
Pierce 2.00 .75 1.00 .35 .50 1.50
Siege 1.00 .50 1.00 1.50 .50 1.50
Magic 1.25 .75 2.00 .35 .50 1.00
Chaos 1.00 1.00 1.00 1.00 1.00 1.00
Spells 1.00 1.00 1.00 1.00 .70 1.00
Hero 1.00 1.00 1.00 .50 1.00 1.00

Table 3.3: The Warcraft III: The Frozen Throne: Attack Type vs. Armor Type
Chart [4]

As in other RTS games, units in ORTT may not stand on top of each other.
In order to avoid other units when moving from point to point in the game

16 CHAPTER 3. GAME ENVIRONMENTS

Figure 3.2: A screenshot of ORTT, with descriptions

world, each unit has to calculate a path before moving. This is done by an
implementation of the A* algorithm written specifically for XNA by Ziggyware
community member Semei [16]. A unit calculates a new path to its target every
400 milliseconds, unless it was already at its target position.

3.3. DEVELOPMENT OF GAME ENVIRONMENT 17

The basic actions of all RTS units are orders. Without an order, units will
stand idle until they spot an enemy. In ORTT, there are four different orders.
These are attack, move, use ability, and use ability on target. Use ability is
for abilities which does not require a target, like the summon ability, while use
ability on target is the order for abilities like heal. When given an order, a unit
will immediately do its best to fulfill the order. If the unit is given an attack
order and is too far away from the target, it will calculate a path to the target,
move, and attack when it is close enough to attack.

Orders in ORTT are given by the current AI controlling a player. Only one
AI may control a player at any given time, but the current AI controlling a player
may be changed every second, by specifying which AI to use in the update method
of the game loop. This may enhance learning by playing against opponents which
are changing their strategies mid-game, which would not happen in commercial
RTS games. In ORTT, the current player AI will update unit orders every second.
The AI procedure of ORTT is referred to as the AI loop in later chapters of this
report.

Chapter 4

Learning in RTS games

This chapter presents the current state of learning from experience during play
in RTS games. Section 4.1 describes the state of automated learning in commer-
cial RTS games, while section 4.2 presents several projects related to automated
learning in RTS games. Finally, section 4.3 mentions some examples of how
learning in RTS games can be achieved using CBR/RL hybrid approaches.

4.1 Learning in commercial RTS games

Though we believed there to be more, we could only find one commercial RTS
game using automated learning. For most RTS games, it is usually enough to
implement competitive multiplayer to sell the game, hence AI in these games is
often not a priority [3]. However, the game Black & White and the sequel Black &
White 2 feature some impressive implementation of machine learning techniques.

4.1.1 Black & White

The real-time strategy game Black & White by Lionhead Studios was released in
2001, and was one of the first commercial games which utilized machine learning
[22]. The game place the player in the role of a god, tasked with controlling the
villagers of a certain tribe of Eden island, which is the fictional world the game
takes place. The objective of the game is to make as many villagers as possible
obey the player as their god. This can be achieved either by ruling through
admiration, or ruling by fear.

There are two types of interesting agents in Black & White, which may be
perceived as intelligent. The first of these are the villagers. Unlike most RTS
games, these villagers cannot be directly controlled by the player, only moved to

19

20 CHAPTER 4. LEARNING IN RTS GAMES

different locations. However, the villagers have limited intelligence, represented
in desire tables and situation calculus. If left alone, they will do tasks they believe
is best for their village. When the player wants a villager to do a specific task,
all he has to do is move the villager to the location of the task. If the player
wants a villager to chop wood, he can place the villager next to a tree, and the
villager will deduct from its lookup table that the player wants him to chop wood.
This behavior can be seen as intelligent, but the villagers are not learning during
gameplay.

The second kind of agent in Black & White is the creature. The creature is a
learning agent with a Beliefs-Desires-Intentions (BDI) architecture [6]. The player
can only have one creature at any given time, and he has no direct control over
it. Three different representations are used to represent the creature’s beliefs and
desires. Beliefs about individual objects are represented as symbolic attribute-
value pairs, and an example of a creatures’ representation is:

Strength of obstructions to walking:

object.man.made.fence->1.0

object.natural.body-of-water.shallow-river->0.5

object.natural.rock->0.1

Beliefs about general types of objects are represented as decision trees. If
the creature is hungry, it knows that it must eat in order to satisfy its hunger.
However, the creature has not yet learned what will satisfy its hunger, so it will
try to eat different objects. Example of objects may be rocks, fences or cows. The
creature receives feedback based on how good the object tasted, and the creature
updates its internal food decision tree based on this feedback. See table 4.1.

What he ate Feedback
A big rock -1.0
A small rock -0.5
A tree -0.2
A cow +0.6

Table 4.1: Example of feedback for the creature in Black & White

Finally, neural networks are used to represent a creature’s desire. After com-
pleting an action to satisfy a desire, the creature will evaluate how well the desire
was satisfied, and update the weights of the neural network accordingly.

The creature learns in different ways. The first way is learning from reflecting
on experience, as is described above. Second, the creature will learn from the

4.2. LEARNING FROM EXPERIENCE IN RTS GAMES 21

orders it is issued by the player, believing that all orders issued by the player
are beneficial. For example, the player may order the creature to attack a Celtic
village. The creature will learn that villages of this kind should be attacked, and
may do so on its own in the future. Third, it will observe the actions of the
player, other creatures or villagers and try to mimic these. If the player picks
up a rock and throws it at a Celtic village, the creature will get the impression
that this is a good idea. Lastly, the player has the option to give direct feedback
to the creature, by either stoking it, or slapping it after it has completed a task.
Based on this feedback, the creature will learn which tasks are beneficial, and
which are bad. Since the player can rule through admiration or fear, actions
which are beneficial for a player ruling through fear may be devastating for a
player ruling through admiration. The player ruling through fear may teach his
creature to throw rocks at random houses of his own village, but this would not
be feasible for the player ruling through admiration. The creature will maintain
its own representation of the player, in order to track his playing personality.

4.2 Learning from experience in RTS games

Though automated learning is rarely used in commercial RTS games, it has been
the focus of several research projects. This section presents four research projects
related to learning in RTS games which we adopted elements from in order to
use them in our system.

4.2.1 Adaptive reinforcement learning agents in RTS games

The goal of a recent project by Eric Kok [9] was to test whether a belief-desire-
intention (BDI) agent could learn to outperform other scripted agents in the RTS
game Bos Wars shown in figure 4.1. Kok used reinforcement learning to train his
agent, and each agent had complete control over a player. The scripted agents
either follow a single script, or switch between scripts in programmed patterns
between learning episodes, where each game round is an episode. The agent has
to learn to solve four problems in order to win an episode:

• What kind of units is needed to defeat the opponent.

• The requirements for training this army.

• How to counter attacks?

• How to exploit knowledge about the opponent for own benefit.

Ultimately, the BDI agent learned to adapt to different strategies, while try-
ing to come up with new strategies at the same time. This way the agent is

22 CHAPTER 4. LEARNING IN RTS GAMES

Figure 4.1: A screenshot of Bos Wars

constantly improving, and by saving previous results, it is learning to avoid inef-
fective behavior. In the end, no single strategy proved dominant, as the game had
a counter for everything. The AI of this project focused only on macromanage-
ment learning, while micromanagement was handled by the default unit behavior
already defined in Bos Wars. However, the idea of training the system by letting
it play against opponents changing their strategies between learning episodes was
used in our project as well.

4.2.2 Reinforcement learning in RTS Games

Nicolas Imrei [8] sought to investigate whether reinforcement learning could be
used to develop a human-like computer player. In order to test his hypothesis,
he implemented a scaled-down version of an RTS game, which was only a bat-
tlefield with units. Common RTS game elements such as economy management
and base building was omitted, hence he was investigating micromanagement
learning. However, the testing environment was severely limited; all units used
in the simulations had the same attribute values, and they could only execute
the actions ’move’ and ’shoot’ (no special abilities). The reinforcement learning
units were tested in play against both human and computer players. Each unit

4.2. LEARNING FROM EXPERIENCE IN RTS GAMES 23

was controlled locally, and not by a central AI. After running several simulations,
the units developed the following behaviors:

• Shoot when seen unless health is low

• If health is low, move to a health spot

• Units form a health-spot queue

• Diversion of a centralized opponent’s attention

Health spots are specific spots on the battlefield which will slowly regenerate
the health of any unit standing on top of them. A screenshot of the testing
environment is illustrated in figure 4.2. Here, the arrows of different colors are
agents of different teams, and the pink spots are health spots. This project shows
that advanced behaviors can emerge when units are given intelligence, and the
idea was adopted for our project as well, as our units acted individually on orders
received from our system which chose enemy units to target.

Figure 4.2: A screenshot of Imrei’s project

24 CHAPTER 4. LEARNING IN RTS GAMES

4.2.3 CBR for improved micromanagement in RTS games

Tomasz Szczepanski [19] researched how CBR could be utilized to improve mi-
cromanagement in the RTS games. A CBR system for controlling a player was
implemented in the game Warcraft 3, and tested against both human and com-
puter opponents. Similar to the tests done by Imrei, RTS game elements such
as economy management and base building were omitted. Situations observed
during gameplay were matched to cases in the case base, and the solutions of
matching cases were applied to the current situation of the game. Even though
this project did not employ automatic learning, it was learning through supervi-
sion from an expert player during gameplay. While observing a simulation, the
expert player would pause the simulation and add a new case if he noticed that
the AI system was executing the wrong case. Figure 4.3 illustrates the graphical
interface used by the expert player during training.

Figure 4.3: A screenshot of Warcraft 3

After training the CBR system, it was able to successfully outperform the
hardest AI difficulty in Warcraft 3 in terms of micromanagement. Additionally,
once the CBR system was trained, it could be used as support for novice Warcraft

4.3. USE OF CBR/RL HYBRID SYSTEMS IN RTS GAMES 25

3 players, by aiding them in battle against the computer AI. The implementation
and results of this project were highly relevant both for motivation and for the
implementation of our project. We decided to create the same units used in this
project for our system, and use a similar unit setup for testing our system.

4.2.4 Intelligent combat behavior in RTS games

A system similar to the one tested by Imrei was developed by Sindre Berg Stene
[18]. This project was implemented in the open source game Spring Total Anni-
hilation, and the goal was to create an AI with behavior that gave the impression
of human intelligence. The AI computer players implemented did not learn from
experience through automated learning, as their behavior was pre-programmed.
Even though the project dealt with all aspects of RTS games, only the micro-
management part was relevant for our project. This part was implemented as a
’military decision module’, which controlled all unit actions.

The military decision module is responsible for moving friendly units, deciding
which enemy units to attack, and how to move friendly units around during
combat to minimize losses. Deciding which enemy units to attack is done by
calculating which unit does the most damage per second, and then attacking this
unit. The other micromanagement done in the project is moving units out of
range from attacking units in order to minimize incoming fire. Individual units
will analyze their position based on how many units that can hit them, and move
as far away as possible while still being able to hit the desired target. The military
decision module also uses the RTS game technique focus fire attacking described
in table B.1. An example of how the AI micromanage a unit is illustrated in
figure 4.4.

The behavior implemented in the military decision module was relevant for
our project as well. We wanted to be able to order units in our system to focus
fire attack enemy units for maximum damage, as this seemed to be effective in
Spring TA. Targeting the enemy unit which did most damage per second was also
a strategy we used for one of the opponent AIs we tested our system against.

4.3 Use of CBR/RL hybrid systems in RTS games

This section describes some previous research on automated learning in RTS
games with CBR/RL hybrid approaches.

26 CHAPTER 4. LEARNING IN RTS GAMES

Figure 4.4: An example of micromanagement in Spring Total Annihilation

4.3.1 Case-based Tactician

Case-based Tactician (CaT) [2] is a plan retrieval algorithm that combines three
sources of domain knowledge to learn to defeat dynamic opponents in RTS games.
The first of these is the state lattice, which defines game states by which buildings
a player owns. Buildings built opens new possibilities for research and units,
which lead to more available tactics. Hence each state of the state lattice has an
associated number of tactics which may be executed in the state. These tactics
are the second domain knowledge used in CaT. The third source is cases that map
game states to tactics and their performance. Thus the goal of CaT is to learn
which tactics to execute from different states, in order to win the game. Testing

4.3. USE OF CBR/RL HYBRID SYSTEMS IN RTS GAMES 27

of CaT was done by letting it play against eight custom scripted opponents one
at a time for 100 games. CaT outperformed these, and achieved an average win
percentage of 82.4%.

CaT is similar to our system, except that it operates on the macromanagement
level, while our system operates on the micromanagement level. First, CaT learns
to win by selecting correct strategies for different cases, which is exactly what
we wish to achieve. Where CaT uses buildings to differentiate states, we use
units. Each state in CaT has specific buildings which enable different strategies.
Our cases have different priorities, which enable friendly units to attack different
enemy units. CaT keeps track of the performance in order to execute winning
tactics later, and we do the same for our states. Where we use elements of RL
to give rewards to cases, CaT updates the score of each case after each game,
and selects the tactics with highest value during case retrieval. CaT even has an
exploration parameter, which is also an element from RL we use in our system.
We implemented numerous elements from CaT in our system.

4.3.2 Continuous Action State Space Learner

The Continuous Action State Space Learner (CASSL) [12] is an integrated CBR/RL
algorithm developed for selecting actions in an RTS game environment. CASSL
models the space of possible actions in an RTS game directly as a countinuous
model, and not as CaT which use discrete states. This allows the algorithm to
more quickly improve the accuracy of actions taken. Learning is achieved by
using two case bases; the transition case base for modeling effects of applying
actions, and the value case base for modeling the value of a state. Each case
base supports the CBR cycle described in section 2.2.1. Cases are retained and
revised as a series of gameplay episodes.

Selection of action states is done in a 5-step process. First, similar actions
are retrieved from the case base by a k-nearest neighbor algorithm. Next, the
algorithm predicts the next states from the current situation, and calculates the
values of the predicted states. Finally, a value model of states is computed, and
the action with the highest value is selected and executed. An illustration of the
action selection process may be found in figure 4.5.

The task to be learned was to minimize the number of orders given to units in
order to win a predefined scenario. After training, CASSL performed significantly
better than other algorithms which selected actions from discrete states, hence
improving performance of the algorithm. Where algorithms such as CaT needed
to issue on average 80 orders, CASSL won with 12. Like our project, CASSL is a
CBR/RL hybrid system. The goal of CASSL was to reduce the number of orders

28 CHAPTER 4. LEARNING IN RTS GAMES

Figure 4.5: The action selection process of CASSL

given, while in our project, the goal is to learn to improve micromanagement, no
matter how many orders are given. We believed that our system would benefit
more from an architecture like CaT, hence we did not use any elements from
CASSL.

4.3.3 Case-Based Reinforcement Learner

The CAse-Based Reinforcement Learner (CARL) [17] is a CBR/RL hybrid sys-
tem, which learns by the concept of transfer learning. Transfer learning is defined
as [17]:

Transfer learning is somewhat like generalization across tasks; that
is, after seeing example instances from a function task, the transfer
learning agent is able to show performance gains when learning from
instances of a different task or function. For example, one might
imagine that learning how to play checkers should allow one to play
chess, a related but unseen game.

The implementation of CARL use transfer learning levels 0 - 4. A description
of these levels may be found in table 4.2.

Upper levels of CARL reason about strategy, while the lower levels handle
tactics. More important decisions are taken in the higher layers, and these are
passed down to the lower levels as goals. The top level strategy of CARL is
hard-coded. The layer below consists of a CBR/RL hybrid system, which makes
tactical decisions such as attack, explore, retreat, or conquest new territory. Lay-
ers below are responsible for performing the above tasks in a predefined manner
by using a planner. Like previous examples of CBR, the CBR system of CARL is
implemented as the CBR cycle of section 2.2.1. Retrieval is done with a k-nearest
neighbor algorithm, and revision use the RL algorithm Q-learning.

Using CARL reduces the time needed for learning new tasks after the system
is trained. In some cases, the final performance of the system increases in com-
plex scenarios. CARL has several similarities to our project. We use a two-layer

4.3. USE OF CBR/RL HYBRID SYSTEMS IN RTS GAMES 29

Transfer level Description
0. Memoriza-
tion

New problem instances are identical to those previously en-
countered during training. The new problems are solved more
rapidly because learning has occurred.

1. Parameteri-
zation

New problem instances have identical constraints as Memoriza-
tion, but have different parameter values chosen to ensure that
the quantitative differences do not require qualitatively differ-
ent solutions.

2. Extrapolat-
ing

New problem instances have identical constraints as Memoriza-
tion, but have different parameter values that may cause qual-
itatively different solutions to arise.

3. Restructur-
ing

New problem instances involve the same sets of components but
in different configurations from those previously encountered
during training.

4. Extending New problem instances involve a greater number of components
than those encountered during training, but are chosen from the
same sets of components.

Table 4.2: Transfer learning levels 0 - 4 [17]

architecture, where the higher level handles the strategy, and the lower layer gives
orders based on input from the high layer. Additionally, RL is used for case revi-
sion, like in our project. Like CARL we are also trying to achieve learning from
experience. Where CARL does this with CBR and RL on the macromanagement
level, we are also using CBR and RL, but on the micromanagement level.

Chapter 5

System design

This chapter describes the design and architecture of the system we implemented
in our project. Section 5.1 describes decisions taken while designing the system,
while section 5.2 describes the design of cases used in the CBR system. Finally, an
illustration of the complete system and a description of how the system operates
during gameplay may be found in section 5.3.

5.1 Design decisions

In RTS games, telling units where to attack is very different from telling them
who to attack. In order to win battles, it is important to know which enemy units
to attack first. Unit targeting is the task of selecting which enemy units to attack
during a battle, and which friendly units to attack with. As described in section
3.3.2, Warcraft 3 uses an attack-defense table system of damage multipliers to
encourage different mixes of units. A naive strategy would be to have every
unit attack a target which would result in achieving the highest possible damage
multiplier. This would involve a lot of unit movement, and possibly not targeting
the most dangerous units first. For example, one of the units in Warcraft 3 has
the ability to summon a special stationary unit, which will restore 12 percent of
total health points to all friendly units within a large range every second. The
summoned unit has 5 health points, which means it will die if it is attacked
once. Because it gives the player who summons it a huge advantage, it should
be destroyed as quickly as possible. Which enemy units to attack are based on
several conditions, hence choosing enemy units to attack are situation-specific.

There exist many strategies for selecting which enemy units to kill first when
in a battle. Some strategies are to just attack the closest unit, attack the weakest

31

32 CHAPTER 5. SYSTEM DESIGN

unit, or the unit which does the most damage, which was the measurement Stene
[18] used in his project. In his project, the enemy unit which did most damage
per second was attacked first. However, the optimal strategy may be a mixture of
these, or something completely different. Choosing which enemy units to attack
in a battle is a very important task which is used many times during an RTS game
round. These target choices often determines the outcome of battles. While the
strategy of focus fire attacking the enemy unit which does the most damage
works in Spring TA, it will not work in an environment like Warcraft 3, refer
to the example of the summoned healing unit in the previous paragraph. The
summoned healing unit should be the highest priority, as it is the most important
unit to kill in order to win the battle.

As seen from the previous paragraph, the task of choosing which units to
attack is situation dependent in many RTS games, and it is difficult to program
a rule-based AI to handle all situations. In our project, we wanted to solve this
problem by implementing a priority system which could learn which units to
attack given different situations. We believed that we could solve this problem
with a CBR/RL hybrid system, where all battle situations encountered by our
system in the game environment could be matched to a case. Once a battle was
over, the system would learn through an RL system how good the attack choices
used in the battle were from a delayed reward given by the environment. Our
system would assign priorities to enemy units, where higher priority meant more
important to victory. The units with highest priority were the units which should
be killed first. Units controlled by our system were given orders to attack the
enemy unit which was most important to victory, according to the solution of the
best-matching case. This is similar to how humans learn to play RTS games. The
first time an experienced RTS player tries a new game, he is likely to build some
units and engage in battle. He will observe the battle, and learn how different
units perform in different battle scenarios. Over time, he will know how to best
use each unit, and which enemy units to attack first.

As the cases of our system were learned with automatic learning, no case
revision from expert players could be done during play or after a case had been
learned. Hence our system had to learn without supervision. In unsupervised
learning, it is difficult to determine if a decision is right ; when is a solution
good, and how can a failed solution be improved? Since the solutions learned
could not be revised by a human, we decided that each case stored in our system
needed several solutions in order to keep track of past failed solutions. Revising
one solution for each case might have ended up revising in a circle without the
system knowing, hence each revised solution was stored as a separate solution.
Each solution also had an attribute which kept track of how good the solution

5.2. CASE STRUCTURE 33

was. This attribute was updated after each battle by the RL system, based on
the delayed reward from the environment after a battle was finished.

The evaluation and revision of the solutions was done like evaluation of tactics
in CaT, by implementing a simple RL system. These elements were only basic
evaluations of solutions. Like CaT, we also implemented an exploration param-
eter. Exploration rate of new solutions could be set by this parameter, defining
when to exploit a solution, or explore in order to find a new one. The value of
the exploration parameter was set by us prior to each test.

Our system was directly responsible for the actions of a computer-controlled
player, as unit orders were given based on priorities. In order to simplify the
implementation of the system, it was implemented as a two-layer system. The
priority system with the CBR and RL systems was the high layer, and was re-
sponsible for determining the attack priorities of enemy units. The lower layer
consisted of unit actions. Friendly units were controlled by this layer, as opposed
to being directly controlled by the priority system. This distribution of control
was done because we knew from work by Imrei [8] that units could act on their
own, or with guidance from a higher entity (in this case, the priority system), once
an overall strategy had been set, from work by Stene [18]. A second argument
for this division was the results of tests run by Szczepanski [19]. Here, units were
controlled by a CBR system, but each unit had a list of behaviors implemented
as rules. This was done to reduce the number of cases required, and allowed
the units to react to sudden changes on the battlefield. The lower layer of our
system acted like the behaviors. This layer was responsible for giving orders to
individual units after the overall strategy had been chosen by the CBR system.
These unit orders were found by utility values. For each game state our system
encountered, each unit calculated the actions it could take based on input from
the CBR system, and executed the action with the highest value. The actions of
a unit were to attack an enemy, run away, or use a special ability.

5.2 Case structure

The case structure for the CBR system consisted of identifiers and solutions. The
identifiers were simply data from when the case was recorded, namely attribute
values of the units currently alive. As described in section 5.1, cases were im-
plemented in such a way that they could have more than one solution each. A
section on choices for case identifiers and solution structure may be found in sec-
tion 6.2. The case structure is illustrated in figure 5.1. The case base containing
all cases was stored as an XML file. XML was chosen because it was easy to
implement an XML reader in ORTT, and because XML is also easy to read for

34 CHAPTER 5. SYSTEM DESIGN

humans.

Figure 5.1: The case structure

5.3. SYSTEM OVERVIEW 35

5.3 System overview

We chose to name our entire system the Unit Priority Artificial Intelligence
(UPAI). UPAI consists of the CBR system, the RL system and the utility value
system. An overview of UPAI is illustrated in figure 5.2. A description of the
flow of data is described below the figure. Diamonds are choices UPAI have to
make, and rounded squares are processes.

The current game state is retrieved from the system every second, and matched
against all cases in the case base. If the current game state cannot be exactly
matched to any of the cases in the case database, a new case is created. Since
each case also needs at least one solution, a new solution is adapted for the new
case by combining solutions from the three cases with the highest similarity value
to the new case. The priority values found in the solution are then sent to the
utility value system.

If an exact match to the current game state is found, the best solution of the
case is evaluated by the solution attribute keeping track of how good the solution
is. If it is not good enough, a new solution will be created for the current case,
and this new solution will be used immediately. If the solution attribute of a
solution is larger than the exploration parameter, the solution is considered to
be good, and the priority values of this solution will be used. Either way, the
priority values of the best solution found are sent to the utility value system.

In the utility value system of UPAI, every action a friendly unit can take is
calculated by a utility value. The action with the highest value is the best action,
and a new order is created to execute the best action every second. The unit is
given the order, and executes it in the environment. This procedure is done for
all friendly units, hence they will all be assigned a new order every second, yet
the new order may be identical to the old order.

After a battle is over, either the player controlled by UPAI or the opponent
won by killing all enemy units on the battlefield. The RL system of UPAI updates
the victory rate of all solutions used in the battle, and the solutions are stored
in the case base. This step happens only once per battle, and the environment
exits automatically after this step, in order to run a new test run. The creation
of new solutions could have been moved to the RL system, but we chose to not
create new solutions until the last moment when they were needed right away.

A full walkthough of a battle where a player is controlled by UPAI is found in
appendix D. However, there are some spesific terms described in chapter 6 used
in this walkthough. The reader is recommended to read chapter 6 before reading
appendix D.

36 CHAPTER 5. SYSTEM DESIGN

Figure 5.2: Overview of UPAI

Chapter 6

Implementation

This chapter describes how the CBR system was implemented. It is structured
as follows: first, a description of the game state in section 6.1. This is followed
by a description of the implementation of the case structure in section 6.2, with
sections on case identifiers and case solutions. Further, section 6.3 explains the
implementation of the CBR cycle. Lastly, the utility value system is explained
in section 6.4, and the RL system in section 6.5. Section 6.6 closes the chapter
with a short description of how other AIs were implemented in ORTT.

6.1 Game state

The game state of an RTS usually consists of a large amount of information. Each
player has a number of resources, some sections of the map explored, and several
units and buildings. ORTT simplifies the game state by removing irrelevant
information such as the number of resources, buildings, and percentage of map
explored. In ORTT, the entire map is visible to all players at all times.

However, the game state retrieved from ORTT at any given time still contains
a lot of information. Each unit has 15 attributes which are visible to all players.
This is information about the enemy an AI may use to describe the game state.
The AI is not able to see other attributes of enemy units. If a case is represented
by all 15 attributes for all units, in a battle between two players with 10 units
each, the total number of stored attributes will be 300. Comparing two cases
with 300 attributes would be computationally infeasible in a real time strategy
game, as it would simply take too long. A case solution must be ready within
milliseconds. A list of all visible unit attributes are found in appendix C.

37

38 CHAPTER 6. IMPLEMENTATION

6.2 Implementation of case architecture

As described in section 5.2, the case architecture consists of both identifiers and
solutions. In this section, we will present our choices of identifiers and solutions,
and present the final case structure used in UPAI.

6.2.1 The case matching problem

During the first implementation of the CBR system, we encountered a problem
concerning case matching of numeric attribute values. Cases were first sorted by
unit type, then sorted by attribute values for each unit. Matching units in cases
were done unit by unit, trying to match same unit types first. The formula used
to match units was a modified 1-nearest neighbor algorithm, similar to the one
used by Szczepanski [19]:

Case difference(unit1, unit2) =

√√√√ n∑
i=0

(
pi − qi

Pi
)2 if same unit type

Case difference(unit1, unit2) =

√√√√ n∑
i=0

1 otherwise

Here pi is attribute value i of unit p, qi is attribute value i of unit q, and Pi is
the maximum distance between the attribute value (the value of the maximum
attribute value of the unit with highest maximum of the attribute). All values
are positive, as the distance cannot be less than zero. If a case consists of more
units than another, the remaining units will be matched up to no unit, which is
the same as a different unit.

The matching problem was identified when trying to write a good matching
algorithm. Basically, matching units must be done in a smart way to find the
actual match between cases. An illustration of this problem may be found in
figure 6.1.

Figure 6.1: The matching problem, represented by unit health bars

On the left side of figure 6.1 is a typical matching problem, where similar
units are to be matched by their health points. The length of color in the health
bars determines the amount of health points left. The two cases to the left are
discussed first. Here, the top case contains two of units, while the bottom one

6.2. IMPLEMENTATION OF CASE ARCHITECTURE 39

contains three. Units are sorted by health points to make the matching easier.
However, matching by first occurrence would not be the optimal solution for these
cases. The first unit of the bottom-left case should be matched to no unit for the
best match, while the other units should be matched against each other. This
problem may be fixed by searching for the best match, but this would take time.
Consider the cases on the right side of figure 6.1. Here, the first two units of the
top case should be matched to no units. However, the only way to discover this
is to search through the other case once for each unit in the top case. In a case
with 20 units on each team, this would take a long time. This problem is not just
a problem with health points, but other numeric attribute values of units as well.
We believe that this problem must have been encountered by other researchers of
AI for RTS games, but we have not found any papers concerning this problem.

6.2.2 Case identifier implementation

Having the limitations described in section 6.1 in mind, the case identification
attributes of the cases had to be simple. The most relevant unit attributes were
unit type, health points, mana points and position. Sczcepanski [19] used these
attributes as identifiers in his CBR system, yet encountered problems with the
position attribute. He concluded that unit positions should be compared as pat-
terns, not directly. To see why this is a problem, consider the two cases shown in
image 6.2. The case is exactly the same, except that unit positions are turned 180
degrees. Instead of solving this problem by patterns, we moved the evaluation
of unit positions to the utility value system. All units controlled by UPAI act
independent of each other in the utility value system, and we took advantage of
this. Instead of comparing whole patterns of both friendly and enemy units, each
friendly unit would use the distance from itself to all enemies in the calculation
of utility values. Distances from unit to unit could be easily calculated, hence we
avoided the unit position problem by using distances in the calculation of utility
values, and not as case identifiers.

The health point and mana point attributes are also important identifiers for
game states. However, these attributes could also be moved to the lower layer,
to simplify the case identification and avoid the case matching problem described
in section 6.2.1. We wanted to implement a system which could learn to attack
enemy units in the correct order, and only unit type was relevant for this task,
not enemy position, health points and mana points. These three attributes could
be used to differentiate units of the same type in the utility value system.

By moving the three attributes to the lower layer, the only case identifier
attribute remaining was the unit type. Units of the same type have the same
priority, as they are all alike when not matched by health points, mana points

40 CHAPTER 6. IMPLEMENTATION

Figure 6.2: The unit position pattern problem

or position. Both enemy and friendly units are used for case identification, as
attack priorities are dependent on both friendly and enemy units. For example,
if a player only has flying units, he would not want to attack ground melee units,
when there are other dangerous ranged units nearby.

6.2.3 Case solution implementation

The solution to a case consists of a list of unit names, and a list of priority values,
and both lists are the same length. The indexes of both lists are the same as well,
meaning that the unit with index 4 in the unit list has the priority value of index
4 in the priority value list. As described in section 5.1, each case needs several
solutions due to case revision. The only input from the environment is whether
UPAI wins or loses, and this information is what the CBR system has to learn
solutions from. Two approaches were designed in order to find solutions which
would work with automatic learning from experience during gameplay.

Solutions in the first approach consist of a single list with priority values
between 0 and 100 for each enemy unit, where units of the same type have the
same priority. How many units there are of the same type has no influence on the

6.2. IMPLEMENTATION OF CASE ARCHITECTURE 41

priorities. Additionally, there are two additional integer attributes which keep
track of how many times the execution of the solution lead to victory or defeat.
If UPAI win a battle, the victory counter of all cases used from the beginning
of the battle to the victory is increased by 1. Should the system lose, the defeat
counter of all cases is increased by 1. However, using this solution approach also
caused some problems with the creation of new cases, which are described in
section 6.3.3. The structure of a solution of this approach is illustrated in figure
6.3.

<Solution Number="0">

<WinCount>3</WinCount>

<LoseCount>1</LoseCount>

<PriorityUnits>

<Priority>100</Priority>

<Priority>40</Priority>

<Priority>20</Priority>

<Priority>20</Priority>

<Priority>20</Priority>

<Priority>20</Priority>

<Priority>45</Priority>

<Priority>45</Priority>

<Priority>45</Priority>

</PriorityUnits>

</Solution>

Figure 6.3: Structure of first solution approach

In the second approach, we constructed a simpler priority value list. This
list still hold priority values for all units, but the priority values are limited to
0 and 1. Units of the same type have the same priority, and only one type of
unit can have priority 1 at any time. A value of 1 means that the unit should be
attacked, while a value of 0 mean ignore. The idea behind this decision is that
focus firing on an enemy unit is a smarter choice than attacking several targets.
This strategy is true for almost every RTS game. When facing a group of the
same units, where all units have a priority value of 1, the utility value system will
favor units with low health points. If all priority units of the same type have the
same amount of health points, the first unit which is attacked will loose health
points, causing every other friendly unit to attack this damaged enemy unit as
well.

42 CHAPTER 6. IMPLEMENTATION

The other solution attributes were also changed slightly in the second ap-
proach. The victory and defeat counters of the first approach were replaced by a
reward value attribute and a play count (number of times the case has been used)
attribute. The reward attribute held the total reward the solution had received
from all tests, and the times used attribute held the number of times the case
had been used. These attributes are used to measure how good a solution is, in
the case retrieval process of the CBR cycle. A complete case with two solutions
of the second approach is illustrated in figure 6.4.

<Case Number="0">

<EnemyUnits>

<EnemyUnitName>Archmage</EnemyUnitName>

<EnemyUnitName>MountainKing</EnemyUnitName>

<EnemyUnitName>Spellbreaker</EnemyUnitName>

<EnemyUnitName>Spellbreaker</EnemyUnitName>

<EnemyUnitName>Priest</EnemyUnitName>

<EnemyUnitName>Priest</EnemyUnitName>

</EnemyUnits>

<FriendlyUnits>

<FriendlyUnitName>Archmage</FriendlyUnitName>

<FriendlyUnitName>MountainKing</FriendlyUnitName>

<FriendlyUnitName>Spellbreaker</FriendlyUnitName>

<FriendlyUnitName>Spellbreaker</FriendlyUnitName>

<FriendlyUnitName>Priest</FriendlyUnitName>

<FriendlyUnitName>WaterElemental</FriendlyUnitName>

</FriendlyUnits>

<Solution Number="0">

<TotalReward>26</TotalReward>

<PlayCount>2</PlayCount>

<PriorityUnits>

<Priority>1</Priority>

<Priority>0</Priority>

<Priority>0</Priority>

<Priority>0</Priority>

<Priority>0</Priority>

<Priority>0</Priority>

</PriorityUnits>

</Solution>

<Solution Number="1">

<TotalReward>-12</TotalReward>

<PlayCount>1</PlayCount>

<PriorityUnits>

6.3. THE CASE-BASED REASONING SYSTEM 43

<Priority>0</Priority>

<Priority>0</Priority>

<Priority>1</Priority>

<Priority>1</Priority>

<Priority>0</Priority>

<Priority>0</Priority>

</PriorityUnits>

</Solution>

</Case>

Figure 6.4: Structure of a complete case

6.3 The case-based reasoning system

As described in section 3.3.2, the AIs of ORTT are only allowed to update unit
orders every second. UPAI is no exception, and the current state of the battlefield
is evaluated by UPAI every second. The full implementation details of the CBR
cycle 2.2.1 is described in this section.

6.3.1 Case retrieval

During case retrieval, all cases from the case database are matched to the current
case by the case identifiers, and the similarity value calculated by the following
formula:

Casedifference(case1, case2) =
n∑

i=0

UnitDifference(case1Units, case2Units)

Hence the total case difference is the sum of the difference in both friendly
and enemy units. A total case difference value of 0 is an identical match. The
difference between units is weighted as follows:

UnitDifference(unit1, unit2) = 0 if same unit type

UnitDifference(unit1, unit2) = 1 otherwise

The similarity values of all cases are calculated because the similarity calcula-
tion was fast, and there are a limited number of cases in the case base. However,
in a real game the number of cases in the case database could be huge. A better
solution to case matching is to sort cases based on the number of units in each. A

44 CHAPTER 6. IMPLEMENTATION

breadth-first search could be done to first calculate similarity values of cases with
an equal number of units as the current case, and expand the search by one unit
more and less if no satisfactory match is found, hence potentially reducing the
amount of similarity values calculated. If an exact match is found, the current
case would use the best solution from this case. If no exact match is found, some
adaption of cases is necessary.

6.3.2 Case reuse

All cases are stored in the case base once they have been observed, hence no fur-
ther adaption is needed on cases already stored in the case base. As a result, case
adaption is done several times during the first test, and then more seldom as cases
are added to the case base. Two case adaption algorithms were implemented; one
for each of the solution approaches.

The adaption algorithm for the first solution approach creates a solution for
the current case by combining the three cases closest to the current case, retrieved
by the case matching algorithm described in section 6.3.1. The best solutions
from each of these best matches are found by searching for the solutions with the
highest win percentage. For each unit type in the current case, the priority value
is set to the average value of the unit type from the best solutions. If a unit type
is not present in any of the cases, the priority value was set to 10. The distance
from the current case does not matter, as long as three cases are retrieved. If
the three best matches has similarity values of 1, 9 and 11, they all contribute
equally much to the new case solution, even though similarity values of 9 and 11
are far away from the current case.

The adaption algorithm for the second solution approach use a similar com-
bination method to create a solution for the current case. The three cases with
the highest similarity value (lowest total case difference value) compared to the
current case are retrieved, and the solutions with the highest solution reward is
found. Each solution contains exactly one unit type which has a priority value of
1. If two or more of the cases contain the same unit with priority value 1, then
this unit type will also be the priority unit type of the solution for the new case.
If all three cases have different priority unit types, the priority unit of the best
matching case is chosen as the priority unit for the current case. Like in the first
approach, the distance from the current case to the three best matches is not
important.

6.4. THE UTILITY VALUE SYSTEM 45

6.3.3 Case revision

In order to achieve automatic learning during gameplay, the solutions of the
cases had to be revised without interference from a human. To revise solutions,
each solution needed some measurement of how ’good’ it was. Additionally, a
method for creating new solutions while utilizing the information of previous
failed solutions was needed. Revision of cases happen only once per battle, once
a player has won. Therefore, we need to revise all cases used in a battle based
on the delayed reward received at the end of each battle. Case revision is done
by the RL system, which is described in section 6.5. The first solution approach
was discarded during the implementation of case revision, due to a problem with
the creation of new case solutions. This problem is also described in section ??.

6.3.4 Case retainment

Each new state encountered during a battle is stored in the CBR system as a
new case. A solution for this new case is created by adapting the three nearest
cases, and the case can be used for adaption of new cases immediately after it is
learned. After a battle, the attributes of the solutions used are updated with new
victory or defeat counters for the first solution approach, and with new reward
values for the second approach.

No sorting or indexing is done for cases after they are learned. All cases are
retrieved and matched to the current case during case retrieval. As described in
section 6.3.1, sorting the cases by the number of units in each could possibly have
decreased the time needed for case retrieval.

6.4 The utility value system

The utility value system was only implemented for the second solution approach,
as the first solution approach had been discarded at this point. It is implemented
as several lists, where each unit controlled by UPAI has its own list. A list
contains the utility values of possible actions a unit can take at a given state in
the game. These actions are attacking, using a special ability, or running away.
The lists are of different length, depending on whether the unit has any special
abilities. Utility value lists are calculated for all units controlled by the utility
value system every time the AI loop is executed. After calculating all values, the
action which results in the highest utility value is chosen. This action is used to
create a new order for the unit, which is executed immediately.

46 CHAPTER 6. IMPLEMENTATION

6.4.1 Calculation of utility values

The basic action available to all units controlled by UPAI is to attack units with
a priority value of 1. We constructed a formula to calculate the utility values of
attacking enemy units:

Attack pri(unit u) = 10 ∗ priu ∗ (1 +
Hu − hu

Hu
+ (1 +

Mu −mu

Mu
∗ 0.05)) −

d(u, f) ∗ 0.001

Where

d(u, f) =
√

pos2
u + pos2

f − rangef

Where priu is the priority of unit type u received from the current solution,
Hu is the maximum health points of unit type u, hu is the current health points
of the unit, Mu is the maximum mana points of unit type u, mu is the current
mana points of the unit, and d(u, f) is the distance between enemy unit u and
the friendly unit f for which the attack priority value is calculated, minus the
range of the friendly unit f. If d(u, f) is negative, it is set to 0. This is a measure
of the movement effort the friendly has to do in order to attack unit u. A d(u, f)
value of 0 means that no extra movement effort is involved, and the enemy unit
can be attacked without moving.

We constructed this formula because we wanted to differentiate units of the
same type. Since only one type of unit can have a priority value of 1 at any time,
a simple solution is to order units controlled by UPAI to attack the first enemy
unit of this type in the enemy unit list. However, this unit can be far away,
and have a lot of health points left. In our formula, we calculate the percentage
of health points left, the percentage of mana points left, and the distance from
attacker to target. Units with a lower amount health points left will result in a
higher priority, which was what we wanted. This way, the utility value system
favors units of the same type with low health points over units with high health
points. We implemented the same system for mana points, but multiplied this
by 0.05, as mana points are not nearly as important as health points. However,
we implemented this formula backwards; we actually wanted the utility value
system to favor units with higher mana points, but implemented a favorisation
of low mana points. This was a bug we did not discover before after we had run
tests. However, as the mana point percentage was multiplied by a factor of 0.05,
compared to a factor of 1 for the health point percentage, this did not influence
the priorities that much.

However, some units use a slightly different formula. The spellbreaker unit

6.4. THE UTILITY VALUE SYSTEM 47

type has a special skill which does increased damage if the target has mana left,
hence the mana calculation for spellbreakers is multiplied by 0.25 instead of 0.05.
Note that if a priority is 0, the attack priority will be 0 or lower (depending on
the distance between the friendly unit and enemy unit), and the enemy unit will
be ignored.

Calculating the utility value of using a special ability follow other formulas,
which are very different. For example, the very useful summoning ability will
summon a new friendly unit to the battlefield, and this ability should be used
as often as possible. If the conditions of using the summon ability are met, the
utility value of using the summon ability is set to 1000. However, if the conditions
cannot be met, the utility value of using this ability is set to -1000. Note that
only specific units have access to the summon ability. If a unit has an ability,
using the ability would have a higher value than attacking.

An example of a solution from the CBR system, current enemy unit attributes
and a calculated priority list for an archmage unit who cannot use the summon
ability and does not need to run away may be found in table 6.1. Here, the action
with the highest utility value is attacking enemy spellbreaker 3. Note that the
archmage listed in the table is the enemy archmage.

Case solution Unit attributes Utility
Name Pri Hu hu Mu mu d(u, f) Utility
Archmage 0 450 450 285 167 23 -0.023
MountainKing 0 700 700 225 76 0 0
Spellbreaker 1 600 600 250 250 12 19.988
Spellbreaker 1 600 590 250 250 23 19.937
Spellbreaker 1 600 420 250 250 0 23.000
Priest 0 290 290 200 86 122 -0.122
WaterElemental 0 425 425 0 0 0 0
Run away NA NA NA NA NA NA 0
Summon ability NA NA NA NA NA NA -1000

Table 6.1: Example of calculated utility values

6.4.2 Unit orders

After calculating utility values for all friendly units, the values are used to gener-
ate orders. If the action with highest utility value of a friendly unit is attacking
an enemy unit, a new attack order telling the friendly unit to attack the enemy
unit is generated. For example, the order given to the friendly archmage unit in

48 CHAPTER 6. IMPLEMENTATION

table 6.1 will be a new attack order targeting spellbreaker 3. If the action with
the highest utility value is using a special ability, a new ability order is generated
for the unit.

6.5 The reinforcement learning system

The RL system handles the revision of case solutions, based on a delayed reward
it receives after each battle. This reward is used to update all solutions used in
a battle. When designing the RL system, we had not yet abandoned our first
solution approach, hence we implemented both solutions in our RL system.

6.5.1 Reward values

In the first solution approach, we used following formula was used to determine
how good a solution was:

Win percentage =
victories

victories + losses

The delayed reward in this approach is simply whether our system has won
or lost. If the total victory percentage falls below 20 percent, the solution is
discarded, to be used again only when all other possible solutions have been
tested, and none of these found satisfactory. If this happen, a new solution
which is believed to be winnable is created based on all the previously discarded
solutions. This proved to be harder than anticipated, as we could not find an
algorithm for teaching the CBR system how to modify the priority values to create
a better solution without human interference. With priority values between 0
and 100 for every unit type, the number of possible solutions is too high for trial-
and-error. Since we could not implement an algorithm for creating new solutions
without a large number of trial-and-error solutions, we discarded the first solution
approach.

The measurement of how good a solution is in the first approach only hold
information about the victory percentage, which mean how many times the so-
lution has been used to win a battle. However, it does not give an information
about how good the solution is in terms of surviving units. The primary goal of
micromanagement in battles is of course to win a battle, but the second goal is
to win by loosing as few units as possible. As the first solution approach could
not measure this, we constructed a new formula for the second approach. This
formula could also be used the first solution approach instead of the victory per-
centage, but we had already discarded it when implementing this formula. In
this formula, the delayed reward is based on how many of the units controlled
by UPAI survive, or a penalty based on how many of the enemy units survive, if

6.5. THE REINFORCEMENT LEARNING SYSTEM 49

UPAI lose the battle. To measure how good a solution is in the second approach,
the following formula is used:

Reward value =
total reward

times used

In order to calculate the total reward value, the RL system has to measure
the reward of a solution after a battle. We implemented this similar to how the
performance score of tactics are updated in CaT. After a battle, the RL system
will notice which units are still alive when the battle is over, and use this as a
measure for how well UPAI did. Each unit has a certain ’worth’ value specified
by us, and the RL system simply looks up the values of surviving units, and
calculates the sum of these values. If UPAI win a battle, the reward value is
positive. If UPAI lose, the reward will be the same value, only negative. We
know from experience with RTS games that the decisions taken early in a battle
are more important than decision taken later. This also mean that solutions
used early in the battle have the greatest effect on the outcome, and hence these
receive a larger reward or penalty than the later solutions, which might not affect
the outcome that much. The reward is distributed to the solutions by the RL
system with the following formula:

Distributed reward =
Calculated new reward

solution number used + 1

Solution number used is a number specifying which place a solution has in an
ordered list of all used solutions. The first solution used has a solution number
used equal to 0, the second solution used has solution number used equal to 1,
and so on. This distributes the reward as described above, according to the graph
in figure 6.5.

This distributed reward is added to the total reward of the solution after
battles, hence the new reward value for each case is updated with the following
formula:

New reward value = Old reward value + Distributed reward

If all solution values of a case are lower than the specified exploration pa-
rameter value described in section 5.1, the CBR system will try to create a new
solution. This is done by simply looking at the previous solutions, and prioritize
a unit type which has not yet been prioritized. If the RL system is unable to cre-
ate a new solution, it will simply execute the best solution found. This approach
is also a trial-and-error approach, but it is limited to the number of enemy unit
types present on the battlefield. This number is far less than the values between
0 and 100 for every unit on the battlefield used in the first solution approach.

50 CHAPTER 6. IMPLEMENTATION

Figure 6.5: Reward distribution graph for a solution where distributed reward =
20

Using this approach for solution representation removes the problems from the
first approach, by limiting the priorities so only one type of unit can be targeted
at any time. By using a reward value, it is easier for our system to learn how
good a case solution is. This can be read directly from the reward value, while
in the first approach, a solution has to be used several times in order to have
enough data to calculate an average win percentage. The win percentage for the
first approach can change from 1 to 0.5 very fast if the solution has not been
run many times, while we believed that the reward value in the second approach
should remain more stable.

6.6. OTHER AIS IN ORTT 51

6.5.2 The exploration parameter

In order to be able to adjust the balance between exploration and exploitation, we
implemented the exploration parameter e. This parameter is the measurement of
how high a reward value of a solution had to be in order to be exploited. When
the CBR system find an exact case match, it will check if the reward values of
any of the case solutions are higher than e. If this is the case, the solution with
the highest value is used. If none of the solutions has higher reward value than
e, the CBR system will try to create a new solution.

Setting e to 0 means that any solution which will lead to victory will be used.
However, this might not be the best solution available. If e is set higher than
0, the CBR system will be forced to test new solutions. How high to set e to
explore is determined by the reward value, which is again determined by the unit
rewards (’worth’ of units). The unit rewards of our system are specified in table
7.3.

6.5.3 Graph data

In order to track the number of cases learned and the reward value of each test
run, we write these values to a text file after each test run. After several test
runs, the text file contains the data of the entire test. This data is interesting
for us, since it allows us to see how the growth of the number of cases for each
test run, and the reward values of each test run. By creating graphs of these, we
can easily see if UPAI is improving at all, by looking at the reward value graph.
If this graph is growing over test runs, UPAI is learning. We use the free data
graph plotter LiveGraph [10] to plot our graphs, as LiveGraph can read text files
and automatically create graphs from these. The graphs created by LiveGraph
may be found in chapter 7.

6.6 Other AIs in ORTT

In order to test UPAI, it needed an opponent. Since support for letting a human
player control a player in ORTT was not implemented, UPAI had to learn by
battling a player controlled by another AI. These AIs are implemented as scripts,
without the ability to learn. The AIs has the same functionality as the utility
value system; giving orders. Every second, the units controlled by an AI other
than UPAI give new orders to the units it controls. Hence ORTT cannot distin-
guish orders given by the utility value system and another AI. The AIs used for
testing are described in section 7.1.2.

Chapter 7

Testing and results

This chapter describes the testing of UPAI. Section 7.1 explain our choice of
testing environment, such as units and AIs used for testing. The results of all
test runs are discussed and illustrated in section 7.2

7.1 Testing environment

Testing was done using two players, with an equal number of units in each army.
The first player (red color) was controlled by UPAI, while the other player (blue
color) was controlled by another scripted AI. A test was over when all units
belonging to a player had been killed. Test runs were done in rapid succession;
once a test run was over and the solutions used were updated in the case base, a
new test began. This cycle continued for as long as we wanted to.

7.1.1 Units used in testing

The units used to test UPAI had the same attribute values as the ones used
by Szczepanski [19]. These units were chosen based on studies of professional
players done by Szczepanski, where he discovered that this particular unit setup
was often used in human vs human games. In order to run quick tests of UPAI,
the number of units used for testing was less than the number of units used by
Szczepanski. An overview of the unit setup used during testing may be found in
table 7.1.

This unit setup was also quite interesting due to the abilities of the units
involved. The archmage has the ability to summon a new water elemental unit
every 20 seconds, to aid him in battle. While the water elemental disappears
when killed or after 60 seconds, summoning it does help killing the enemy units
faster. The archmage has enough mana to use the summon ability twice, but

53

54 CHAPTER 7. TESTING AND RESULTS

Unit name Number used
Archmage 1
MountainKing 1
Spellbreaker 4
Priest 3

Table 7.1: The units used in testing

it can be used additional times if the archmage survive long enough to regain
sufficient mana points. The mountain king has a storm bolt ability where he can
throw a hammer at an enemy units every 9 seconds, instantly doing 100 damage.
This ability can be used three times per battle. The priest units can heal a hurt
friendly unit for 25 health points every second. This ability is usable 42 times
per battle for a total healing of 1050 health points, and more times if the priests
survive to regain mana points.

The really interesting part of this unit setup was the spellbreakers. These
units have a special ’feedback’ skill which allows them to drain the mana points
of enemy units with each hit. The archmage and mountain king units lose 4 mana
points when hit, while the priests lose 20. Enemy spellbreakers are immune to
the effect. The feedback skill opened up some interesting strategy choices; should
the spellbreakers attack the archmage first and drain him of mana points, making
him unable to use the summon ability, or attack the priests to prevent them from
healing other units?

The best way to prioritize in this scenario was to kill all the enemy priests
first, before they could use all their mana to heal other units. This limited
the maximum amount of health points the enemy could regain, which gave the
friendly army the upper hand, since they had more total health points available.
The second priority should be the enemy archmage hero. If his mana was not
drained, he was able to summon a third water elemental to the battlefield. The
water elemental has the second highest damage per second ratio of all units
involved in the battle, which made it a powerful enemy. Further priorities were
not as important as the first two.

7.1.2 AIs used in testing

We implemented a total of six different AIs which were used during testing to
train UPAI. It was important to have several different training AIs, in order to
avoid that UPAI learned to defeat a specific AI, but failed against other AIs.
The AIs used, as well as their strategies are listed in table 7.2. We implemented

7.2. TEST RESULTS 55

these AIs because we wanted to test how UPAI did against several known RTS
strategies. The strategies we wanted to test were: attacking the closest unit,
attacking the unit which does the most damage per second, attacking units to
maximize the damage multiplier, dancing, and a strategy which we believed was
the best one. All AIs implemented can use special abilities, or else UPAI would
have an unfair advantage. On the other hand, how the special abilities are used
is different for each AI. In all AIs, the priests will heal the most damaged unit,
and the archmage will summon a water elemental as soon as the conditions for
doing so are met.

7.1.3 Rewards for the CBR system

Rewards are given to the solutions used, according to the distributed reward
formula in section 6.3.3. To measure the reward, each unit used during testing
is given a reward value where the values of surviving units are summed after a
test is complete. The rewards for the units used in testing may be found in table
7.3. The water elemental gave a reward of 0, since it would disappear after 60
seconds. The maximum reward value UPAI could achieve in a test was 56, by
killing all enemy units without losing any friendly units. Similarly, the maximum
penalty value was -56, if UPAI lost all its units without killing any enemy units.
56 is the total sum of all unit values used in testing.

7.1.4 Exploration parameter

The exploration parameter e implemented in our system defines when a solution
is good enough, or if the system should try to find a new solution. If e is set to
0, the CBR system will not try to create a new solution if there exists one for
the current case with average reward value above 0. Similarly, if e is set to -56,
the CBR system will never try new solutions, hence it will not learn. We tested
our system with values of e equal to 0 and 56. In the latter case, no solution is
considered good enough, and the CBR system will try a new solution every time
it has the opportunity to do so.

7.2 Test results

The testing of UPAI was done systematically; first, the unit setup used for testing
was tested in Warcraft 3, to see how the AI of Warcraft 3 would play. Then, UPAI
was tested against all six implemented AIs with values of e equal to 0 and 56.
The case base was set to the empty set before each test run. The performance of
UPAI vs the other AIs was tested several times, until no more cases or solutions
were learned. The result of each test is illustrated as two graphs; one for reward
value and one for the total number of cases.

56 CHAPTER 7. TESTING AND RESULTS

Name of AI Strategy
SmartAI This AI will focus fire attack and use storm bolt ability on

the enemy priests first. It will then focus fire attack the re-
maining units in the following order, moving further down
the list once all units of one type are dead: archmage, moun-
tain king, spellbreaker.

DumbAI This AI will move forward, and the units will attack the first
enemy they spot. The mountain king will use the storm bolt
ability on the first enemy he spots. Focus fire is not used by
this AI. As this AI does not have any overall strategy, it is
the most random of the implemented AIs.

FocusFireAI This AI will focus fire attack the enemy unit which does
most damage per second. Once this enemy is dead, the
AI will focus fire attack the enemy with the second highest
damage per second, and so on. The mountain king will use
storm bolt on the enemy with highest damage per second.
The priority list from highest to lowest damage per second
is: mountain king, water elemental, archmage, spellbreaker
and priest.

DamageOptimalAI This AI will look up the attack and defense chart 3.3 and
order each friendly unit to attack the enemy unit which will
result in the highest damage multiplier for the friendly unit.
The mountain king will use the storm bolt ability on the
archmage. Focus fire is not used by this AI.

UtilityAI This AI will use the utility value system of UPAI to calcu-
late best actions. The AI is given the following priorities
of units, which it will try to kill in order: priest, archmage,
spellbreaker, mountain king, water elemental.

UtilityAICoward This AI is the same as the UtilityAI, except for one differ-
ence; it has an override for giving orders to retreat whenever
a friendly unit is hit. Once hit, the unit will dance around
the battlefield for 6 seconds. If it is hit while dancing, it will
continue dancing for 6 new seconds.

Table 7.2: Description of the AIs used in testing

7.2.1 Test in Warcraft 3

Since the testing environment was implemented as a system based on Warcraft
3, we decided to test our chosen unit setup in Warcraft 3, where both sides would
be controlled by the insane difficulty AI. We ran the test five times, in order to
get an idea of how the AI would micromanage in this setup and what to expect
from UPAI.

7.2. TEST RESULTS 57

Unit Reward value
Archmage 10
MountainKing 10
Spellbreaker 6
Priest 4
WaterElemental 0

Table 7.3: Unit rewards used in testing

The results were somewhat surprising; the AI focus fire attacked the enemy
mountain king, while using the storm bolt ability on the enemy archmage. While
testing, we also disabled some micromanagement abilities of one player, so it
could not use the summon water elemental or storm bolt abilities in battle. This
player was crushed, while the micromanaging player lost no units at all.

7.2.2 UPAI vs DumbAI

The DumbAI was the easiest AI to learn to defeat, despite the fact that it was the
only implemented AI without a predefined strategy. For tests with e equal to 0,
UPAI explored three different solutions before learning that attacking the priests
first would lead to victory. This knowledge was exploited in subsequent test runs,
leading the UPAI to victory in nearly every test run without losing a singe unit.
However, the DumbAI sometimes managed to kill the archmage, and even win.
If UPAI could not kill all enemy priests before the archmages summoned their
second water elementals, UPAI would ignore the priests, and attack the enemy
spellbreakers instead. This rare occurrence threw UPAI completely off balance,
and resulted in defeat. We believe that UPAI will eventually learn to target the
priests in this scenario as well, if it is played several times. Since UPAI quickly
learned to kill the priests first, it did not explore much, which meant that it only
learned 103 cases.

The test result where e was equal to 56 was a little more varied. Here, UPAI
used slightly longer time to find the best solutions. As seen from the graph in
figure 7.1, the exploration caused the reward value to drop from 56 in some cases,
yet once this fact was learned, UPAI would not try the same again. As with test
runs where e was equal to 0, UPAI sometimes lost when it could not follow its
original priority sequence. Additionally, UPAI sometimes lost the archmage, like
in test runs where e was equal to 0. The value of e forced UPAI to explore, hence
it learned more cases than the test with e equal to 0.

The reward values of all UPAI vs DumbAI test runs for both values of e is
illustrated as a graph in figure 7.1. The total number of cases in the case base
for each test run of UPAI vs DumbAI for both values of e is illustrated in figure

58 CHAPTER 7. TESTING AND RESULTS

7.2.

Figure 7.1: Reward values of UPAI vs DumbAI test

Figure 7.2: Total number of cases of UPAI vs DumbAI test

7.2. TEST RESULTS 59

7.2.3 UPAI vs DamageOptimalAI

The DamageOptimalAI was somewhat tricky for UPAI to defeat without knowing
the trick. In the first few test runs with e equal to 0, UPAI would attack some
other target than the priests, while the DamageOptimalAI would try to maximize
the damage done. This caused UPAI’s priests to run out of mana faster than the
DamageOptimalAI’s, as UPAI’s units received more damage per second and as a
result needed more healing. Eventually, this lead to crushing defeats for UPAI.
However, once UPAI leaned to target the priests first, most subsequent games
were won without losses, as seen in the graph of figure 7.3. Here, UPAI receives
reward values of 56 in each test run for e equal to 0. Due to the fact that UPAI
quickly learned to win, the number of cases for e equal to 0 was only 71.

As for the test with e equal to 56, UPAI struggled to learn how to win without
loosing a singe unit. We believed that the UPAI would be able to perform as well
in this test as with e equal to 0. However, it seemed that this was not the case.
We believe that this was caused because of the problem described in section 8.2.2,
where UPAI explore a good solutions together with several bad ones, which results
in the good solution receiving a large penalty value.

The reward values of all UPAI vs DamageOptimalAI test runs for both values
of e is illustrated as a graph in figure 7.3. The total number of cases in the case
base for each test run of UPAI vs DamageOptimalAI for both values of e is
illustrated in figure 7.4.

7.2.4 UPAI vs FocusFireAI

Test results from test runs with the FocusFireAI were among the most interesting
of the results. With e equal to 0, UPAI discovered that prioritizing the enemy
mountain king first was a smart decision. This often led to victory, yet never a
total victory where all of UPAI’s units survived. This was because UPAI never
tried attacking the priests first, as it found a solution which was better than 0,
which it exploited every time. In spite of this, UPAI learned more cases with e

equal to 0 than with e equal to 56. This was because the exploitation encountered
more cases, due to unit a lot of unit movements of the FocusFireAI.

However, setting e equal to 56 yielded a different result. The UPAI explored
several case solutions, and once it had tried attacking the priests first, it won all
subsequent test runs without losing a single unit. The amount of cases learned
was lower than with e equal to 0, because UPAI did not encounter as many cases
with e equal to 56.

60 CHAPTER 7. TESTING AND RESULTS

Figure 7.3: Reward values of UPAI vs DamageOptimalAI test

Figure 7.4: Total number of cases of UPAI vs DamageOptimalAI test

The reward values of all UPAI vs FocusFireAI test runs for both values of e

is illustrated as a graph in figure 7.5. The total number of cases in the case base

7.2. TEST RESULTS 61

for each test run of UPAI vs FocusFireAI for both values of e is illustrated as a
graph in figure 7.6.

Figure 7.5: Reward values of UPAI vs FocusFireAI test

7.2.5 UPAI vs UtilityAI

The UtilityAI used exactly the same utility value calculations as UPAI, yet the
priorities of the UtilityAI were hard-coded. However, UPAI learned to defeat
the UtilityAI based on one difference; when the archmage and all priests were
dead, the most dangerous unit was the mountain king, not the spellbreaker. As
UPAI learned to prioritize the mountain king, it was able to learn to win. Tests
run where e was equal to 0 showed a slow learning curve. Many solutions were
tested before UPAI began winning several games in a row. However, UPAI and
UtilityAI were about equally good, and UPAI achieved a victory percentage of
about 50 after training.

The result from the test where e was equal to 56 was not very different from
when e was equal to 0. This was because a loss meant a reward value below 0,
and UPAI lost many test runs with e equal to 0, hence it was forced to explore.
However, once winning, test runs with e equal to 56 produced better results, as
UPAI explored more. As seen from the graph in figure 7.7, UPAI won more and
better victories with e equal to 56 than with e equal to 0. The number of cases
learned were less than with e equal to 0, and we believe that this was by chance.

62 CHAPTER 7. TESTING AND RESULTS

Figure 7.6: Total number of cases of UPAI vs FocusFireAI test

We had believed that more exploration would result in more cases learned, but
test runs with e equal to 56 simply encountered fewer cases than with e equal to
0.

The reward values of all UPAI vs UtilityAI test runs for both values of e is
illustrated as a graph in figure 7.7. The total number of cases in the case base for
each test run of UPAI vs UtilityAI for both values of e is illustrated as a graph
in figure 7.8.

7.2.6 UPAI vs UtilityAICoward

The UtilityAICoward was implemented in order to abuse a flaw in UPAI: dancing.
However, the UtilityAICoward danced too much. When UPAI learned to attack
the priests first, they ran away, which resulted in UPAI having three priests for
healing, while the UtilityAICoward had two. This resulted in health points in
the form of healing being lost, hence one of the reasons UPAI won was because it
had more health points available. A second reason was because almost all units
used during testing were ranged units. Dancing is more effective when the goal
is to bait melee units into pursuit. With e equal to 0, UPAI won most of the test
runs. However, in most cases only a few units survived. While observing the test
runs, we discovered that the UtilityAICoward could have won more test runs if
it had stopped dancing near the end, as it usually had one more unit than UPAI

7.2. TEST RESULTS 63

Figure 7.7: Reward values of UPAI vs UtilityAI test

Figure 7.8: Total number of cases of UPAI vs UtilityAI test

left. UPAI learned 120 cases with e equal to 0.

64 CHAPTER 7. TESTING AND RESULTS

The result of the test where e was equal to 56 was almost the same. UPAI
learned to attack the priests first, and this leads it to victory. However, UPAI
also explored more with e equal to 56, which resulted in over double the amount
of cases learned compared to the test where e was equal to 0. Ultimately, UPAI
won better victories with e equal to 56, yet lost a few test runs more than with
e equal to 0.

The reward values of all UPAI vs UtilityAICoward test runs for both values of
e is illustrated as a graph in figure 7.9. The total number of cases in the case base
for each test run of UPAI vs UtilityAICoward for both values of e is illustrated
as a graph in figure 7.10.

Figure 7.9: Reward values of UPAI vs UtilityAI test

7.2.7 UPAI vs SmartAI

The SmartAI was the hardest AI for UPAI to beat. With e equal to 0, UPAI won
only 4 of 100 test runs. One of the advantages of SmartAI was that the units it
controlled never ran away, as they did with UtilityAI and UtilityAICoward. This
enabled the units to attack once or twice more before they died. During observa-
tions, we observed that UPAI did not always make the best choices (i.e. attacking
another unit when there were still enemy priests alive). This was because UPAI
had tried the solution of attacking the priest before, and lost without killing any

7.2. TEST RESULTS 65

Figure 7.10: Total number of cases of UPAI vs UtilityAI test

enemy units. Hence the solution received a large penalty, because other solutions
also used in the same test run were poor.

Tests with e equal to 56 showed little difference. Test runs with e equal to
0 and 56 both lost almost every test run, hence both explored equally much. In
the test with e equal to 0, UPAI learned more cases than with e equal to 56. We
believed that both tests would learn the same amount of cases, as the tests were
both forced to explore. The UPAI probably learnt more cases with e equal to 0
by chance, similar to the UPAI vs UtilityAI test with e equal to 0, described in
section 7.2.5.

The reward values of all UPAI vs UtilityAICoward test runs for both values
of e is illustrated as a graph in figure 7.11. The total number of cases in the
case base for each test run of UPAI vs UtilityAICoward for both values of e is
illustrated as a graph in figure 7.12.

7.2.8 UPAI vs all AIs

While testing UPAI against all other implemented AIs showed interesting results,
we could not be certain whether UPAI learned general good solutions, or good
solutions for defeating a certain AI. Opponents in an RTS game are unlikely to
use the exact same strategies 20 games in a row, hence we had to add diversity to

66 CHAPTER 7. TESTING AND RESULTS

Figure 7.11: Reward values of UPAI vs SmartAI test

Figure 7.12: Total number of cases of UPAI vs SmartAI test

testing. We did this in two ways, both based on how Kok [9] tested his RL agent,
described in section 4.2.1. The first was to run six test runs, and let UPAI play

7.2. TEST RESULTS 67

against one of the other implemented AIs each test run. The opponent AI was
selected at random, and once used, it could not be selected again. This ensured
that UPAI would play against all AIs exactly once. After six test runs, the cycle
was reset and run again. The opponent AIs were changed randomly because we
wanted UPAI to learn to find general good strategies, and we believed that we
could achieve this by randomizing the order of play. Based on the results from
previous tests, these test runs were only run with e equal to 56.

UPAI required considerably more test runs to learn to beat all the other AIs.
In previous tests, the number of total cases learned stopped increasing at around
200, while in this test, the number was 457 by test run 150. By this test run,
UPAI had learned to win. When playing against opponent AIs which did not
use focus fire attack, UPAI won without losing a single unit every time by test
run 100. However, the other AIs using focus fire were more difficult to defeat.
Against these, UPAI usually won with one or two surviving units, thus receiving
a low reward value. The result of test runs of UPAI vs all AIs are illustrated in
figure 7.13. This graph spikes a lot, as the reward values were dependent on the
opponent. Notice that as test runs progress, the reward values also increases. By
run 120, the reward value was never less than -28, and often equal to 56. The
total number of cases learned in the UPAI vs all AIs test is illustrated in figure
7.14.

Figure 7.13: Reward values of UPAI vs all AIs, changing AI after test runs

68 CHAPTER 7. TESTING AND RESULTS

Figure 7.14: Total number of cases of UPAI vs all AIs, changing AI after test
runs

Although changing the opponent AI from test run to test run allowed UPAI
to learn a general strategy, it was still playing against static opponents. We
also wanted to test UPAI against dynamic opponents, which would play different
every test run. To achieve this, the AI of the opponent player was randomly
changed to one of the implemented AIs every 20 seconds. Since all AIs were part
of the random selection the same AI could be selected several times in a row.

While the number of learned cases stopped at 457 for the test of UPAI against
all AIs played in different order, the number of cases grew to a total of 660 in
the test against dynamic opponents. When the opponent changed AI as often
as every 20 seconds, UPAI learned more cases, and used longer time to learn to
win. The graph illustrating the total number of cases in the case base at each test
run is illustrated in figure 7.15. We ran a total of 285 test runs before the UPAI
stopped learning cases. The results of the test runs were just what we had hoped
for. As we can see from the graph in figure 7.16, the reward values of later test
runs are generally higher than reward values of earlier test runs. Additionally,
few of the later test runs received reward values less than 0, which meant that
UPAI only lost a few of the later test runs. From this graph, we can conclude
that the UPAI did learn to win based on previous experiences against dynamic
opponents.

7.2. TEST RESULTS 69

Figure 7.15: Total number of cases of UPAI vs all AIs, changing AI during test
runs

Figure 7.16: Reward values of UPAI vs all AIs, changing AI during test runs

Chapter 8

Discussion

In this chapter, we evaluate our project in terms of choice of game environment in
section 8.1, the implementation of UPAI in section 8.2, and test results in section
8.3.

8.1 ORTT as game environment

When searching for a game environment to use for implementation and testing of
our system, we severely underestimated the time it needed to implement an RTS
game environment. Even though we used a free A* pathfinder implementation
for unit pathfinding, it took two weeks of development time to fine-tune the
pathfinder for use with ORTT. Even then, the system had a few problems which
we were not able to solve.

The first problem with pathfinding in ORTT was that sometimes units would
get stuck, when moving from one point to another. In order to continue move-
ment, the unit had to receive a new order, which happened only when either a
friendly or enemy unit was killed on the battlefield. When a unit was stuck, it
would not attack either, reducing the total damage per second a player could do.
This resulted in an unfair advantage to the opponent, yet this problem happened
to both players, and added some randomness to the environment. However, this
was a disadvantage for UPAI. If a unit became stuck when UPAI was testing a
new solution, the new solution could receive a penalty if UPAI lost the test run.
This solution might have been the best solution, but it would not be used again
in a long time, as UPAI believed it to be a bad solution. Another problem seen
in ORTT, was that units sometimes stood on top of each other, and other times
moved right through other units. This rarely happened, but it is clearly not a
desirable effect of an RTS game. The problems with unit movement could be

71

72 CHAPTER 8. DISCUSSION

fixed by implementing separation-like flocking behavior for units.

While test runs only involved a maximum of 22 units, executing pathfinding
for all units at the same time sometimes slowed down the visuals of the simulation.
If the time taken to update the game and draw the updates take longer than one
game tick (16 milliseconds for ORTT), XNA will prioritize the update. This
meant that XNA would skip the drawing of some frames, to update the game
logic instead. The result of this was somewhat slow visual updates at some points.

Despite the flaws of ORTT, it was easy to implement a CBR/RL system
in the XNA framework. Since the XNA framework is built on top of C#, it
was possible to pause ORTT while it was running, and debug anywhere in the
code. This proved to be very helpful for finding bugs during the implementation
and testing of our system. Additionally, setting environment parameters such as
exploration rate and opponent AI prior to each run was easily done with XML
files.

8.2 UPAI

The system we implemented had the same architecture as CaT, yet the systems
were focused on different learning tasks. While UPAI did learn to win, some
limitations emerged during testing, which were not found in CaT. One of the most
important differences where timing. Where actions in CaT are overall strategy
decisions on the macromanagement level, actions in UPAI are short and fast
micromanagement decisions. The speed in which the game state changes caused
some problems with cases and reward values, which are discussed in the following
sections.

8.2.1 Case representation

Moving important unit attributes such as position and health points from the
case representation to the utility value system seemed like a good idea. While
this division of attributes worked to some extent, it did cause a few problems
such as unintelligent unit behavior.

As an example of unintelligent behavior, consider the case illustrated in figure
8.1; the best solution chosen by UPAI was to prioritize attacking the healthy
spellbreaker. However, the enemy archmage with only 42 health points left is
ignored. The obviously best choice had been to kill the archmage first, since it
was almost dead. This problem was a result of the fast transition between game
states. UPAI would order its units to attack the archmage, and the units would
comply. However, UPAI lost a unit just before the archmage could be killed, and

8.2. UPAI 73

this resulted in a change of game state. In the new state, the best solution of
the case matching the current game state was to attack a spellbreaker, hence the
archmage was ignored. This rapid change in game states also resulted in some
unnecessary unit movement.

Figure 8.1: Example of unintelligent unit behavior

Another example of a weakness with the case representation can be found in
figure 8.2. The two cases illustrated here are equal in terms of case similarity
value, yet very different in terms of health points. In both cases, UPAI chose to
attack the archmage, while the best choice had been to attack the most damaged
unit. This problem could be solved either by extending the case representation
to include unit health points as well, or add behavior to the utility value system,
overriding priority orders when units with low health were nearby.

8.2.2 Reward value

During the first test runs, UPAI would try different solutions to cases, in order
to find good solutions which could lead to victory. Since all solutions used in
a test run were rewarded by a distribution of a single reward value, a test run

74 CHAPTER 8. DISCUSSION

Figure 8.2: Case representation weakness with health points

which received a large penalty could contain some good solutions, and vice versa.
These good solutions would not be used again in a long time, since they were
part of a bad test run. This problem was observed several times during testing.
For example, in later test runs of UPAI vs DamageOptimalAI with e equal to
56, UPAI would always attack the enemy mountain king before killing the last
priest, due to the fact that this solution was the solution with the highest reward
divided by times used. This resulted in victory, but UPAI always lost one or
two spellbreakers. This problem could be solved by forcing UPAI to explore;
for example retrying solutions which had only been used once, to rule out the
possibility of ignoring good solutions which had been used during a bad test run.

Another cause of the problem described above was that some solutions were
rewarded even though they had not been tested, since transition between the
different game states could happen very fast. For example, if two units were
killed within two seconds, this would result in two different states. For each state,
UPAI would find the case matching the state, and execute the best solution, or
create one if the other solutions were unsatisfactory. The solution to the case
which matched the state in the second between the unit deaths would only be
active for one second, hence it was difficult to evaluate the effectiveness of the
solution. Nevertheless, the solution was rewarded in the same way as the other
cases.

8.2. UPAI 75

8.2.3 The utility value system

As the CBR part of UPAI was only concerned with which units were on the
battlefield, the utility value system dealt with information such as health points,
mana points and position. However, these attributes only provided information
on the current game state situation, and gave no information of how they had
changed since the previous game state. Hence it was impossible for UPAI to
measure change in mana points, health points or position. This lead to problems
in situations where enemy units were running away from UPAI’s units, as all
units controlled by UPAI could potentially chase the enemy unit endlessly. Is
also made UPAI very vulnerable to dancing units. The UtilityAICoward used
dancing, but lost most games because priests were dancing instead of healing. In
battles where UPAI control only melee units, it would lose to an opponent which
orders his units to dance.

8.2.4 Unit retreat order

Units controlled by UPAI were ordered by the utility value system to retreat
whenever their health points dropped below 10%. However, after successfully re-
treating, units would stand idle on the edge of the battlefield. Having successfully
retreated, units should be moved away from the battlefield, to simulate that the
unit managed to run further away. This could reduce the penalty for losing the
unit in combat, by giving for example half penalty for units which managed to
run away. Currently, ordering a unit to retreat does not give any benefit over
losing it in combat. Hence UPAI was at a disadvantage against the SmartAI,
which never ordered units to retreat.

8.2.5 Exploration vs exploitation

As described in section 2.2.2, finding a good balance between exploration and
exploitation is often a difficult task with reinforcement learning. In our project,
we tested two approaches for all tests, which were controlled by the exploration
parameter e. In the first approach, e was set to 0, which meant that when a
winnable solution was found, it should be exploited every subsequent test runs.
This resulted in victories for UPAI, but it lost some units against almost all AIs
in every test run. In the second approach, e was set equal to 56, which meant that
no solution found could ever be good enough. This forced UPAI to explore new
solutions whenever it had the opportunity to do so. While the second approach
used somewhat longer time to achieve frequent victories against most of the test
AIs, the victories were better. UPAI lost less units in tests of the second approach,
and this is one of the goals of good micromanagement in addition to winning.

76 CHAPTER 8. DISCUSSION

8.3 Test results

The results from test runs of UPAI showed that our system did learn to win by
prioritizing enemy units correctly in most situations. We observed some situations
where UPAI prioritized a water elemental instead of a priest, but these situations
rarely occurred. Additionally, UPAI also won test runs where these situations
occurred, because it usually had an advantage at that point in a test run.

Six AIs were implemented in order to provide opponents for UPAI during
testing. Test runs against these showed that UPAI learned to defeat most of
these after several test runs. However, the SmartAI proved to be better than
UPAI, as UPAI won only 4 of 100 test runs with e equal to 0, and 12 of 100 test
runs with e equal to 56.

UPAI could be set to focus on exploration or exploitation by the exploration
parameter e. Through tests of UPAI vs the six AIs, we discovered that forc-
ing UPAI to explore resulted in more victories and fewer units lost in battles.
However, the number of test runs needed to win when focusing on exploration
was higher than when focusing on exploitation. Since we were concerned with
finding the best solutions and not really cared how many test runs this required,
we decided to focus on exploration by setting e equal to 56 for both the UPAI vs
all AIs tests.

Learning to win in the UPAI vs all AIs tests required more test runs than we
had anticipated, both for the static opponents changing AIs between test runs
and the dynamic opponents changing AIs during test runs. In the first test with
static opponents, we collected data from 150 test runs, and observed that the
average reward value increased during the test runs. While UPAI lost most of
the early test runs, it won nearly all the latter test runs, hence we could conclude
that UPAI had learned to defeat the static opponents we implemented. Learning
to win against dynamic opponents was much more difficult for UPAI, because
the opponents were dynamic. With 600 cases, UPAI did not achieve frequent
victories before test run 200. Like with static opponents, we observed that the
average reward value increased with each test run. Hence we concluded that
UPAI had learned to win, or at least make a good attempt at winning.

Chapter 9

Conclusions and Further Work

This chapter will close our project, by first evaluating how we reached the goal
of the project in section 9.1. In section 9.2, we will present ways to improve the
system we implemented.

9.1 Conclusion

In this project we have designed and implemented a CBR/RL hybrid system for
learning which enemy units to target in given situations during a battle in an RTS
game. We investigated the effects of learning with different focus on exploration
and exploitation, and trained the unit priority system (UPAI) so that it learned
to defeat both static and dynamic AI opponents.

The goal of this project was:

To study how learning from experience during game playing can im-
prove the micromanagement of a computer controlled AI player.

We feel that we partly managed to reach our goal, as the system we imple-
mented improved the micromanagement of a computer player, by learning to win
by prioritizing enemy units. However, learning to prioritize correctly required
many test runs just for the units used in our test setup. As the number of cases
for the unit setup used in testing exceeded 600, the number of cases and test runs
required in a full game with 40 different units would be too large to learn. Our
system also had some other problems, such as unintelligent unit behavior when
attacking and lack of option to track unit attributes over time.

While our system did improve the micromanagement of a computer player, it
would not be feasible to use the system in an RTS game without some modifica-

77

78 CHAPTER 9. CONCLUSIONS AND FURTHER WORK

tions to our system. We do not recommend using our implemented system any
further, unless some modifications described in section 9.2 are done.

9.2 Further work

This section lists some possible improvements of UPAI, which we would want to
focus on should we decide to continue work on the project.

9.2.1 Index and sort cases

When implementing the CBR system of UPAI we decided to not index cases, since
we believed that the number of cases would be rather small. However, as the test
in section 7.2.8 showed, the number of cases exceeded 600 just for the test setup.
With more units and test setups, the number of cases will increase exponentially,
and searching through all cases every second would be computationally infeasible.

9.2.2 Prioritize hurt units

UPAI should not ignore severely hurt units if they are not a priority. Attacking
a unit if it can be finished of with a few attacks is always a good choice of
action, even if the target in question is not a priority. Since the utility value
system already calculates the utility value for attacking units, it should calculate
additional low-health utility values. If a unit with sufficiently low health points
is found, it should be attacked.

9.2.3 Observe changes in game state

As described in section 8.2.3, our system does not measure attribute values over
time. In order to be able to react to certain situations, it should be able to observe
changes in attribute values over time. For example, if an enemy unit is running
away, there will be a large value change for the position attribute between game
states. Also, if the health points of a friendly unit are decreasing at a quick rate,
it probably means that the unit is being focus fire attacked. UPAI should detect
this, and order the unit to try to shake off the attackers by running away.

9.2.4 Add other goals

UPAI has currently only one goal: win the battle by losing as few units as possible.
However, during a battle players often wish to achieve other less important goals
in addition to victory, such as not losing important units, and not using mana
points if it is not necessary. For example, in Warcraft 3 it is considered bad
micromanagement to lose a hero unit. Our implemented system does not take
this into account.

9.2. FURTHER WORK 79

9.2.5 Add support for planning

Some advanced micromanagement maneuvers require players to plan ahead. An
example of this is the surround maneuver, where several units move to surround
a specific enemy unit, preventing it from moving. Adding support for planning
in the UPS would enable units to execute such advanced maneuvers.

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. In Artificial Intelligence Com-
munications, 7:39-59, 1994. [cited at p. v, 8, 9]

[2] David W. Aha, Matthew Molineaux, and Marc Ponsen. Learning to win: Case-
based plan selection in a real-time strategy game. In ICCBR 2005, number 3620 in
LNS, pages 5-20. Springer-Werlag, 2005. [cited at p. 2, 3, 7, 26]

[3] Michael Buro. Call for ai research in rts games. Proceedings of the AAAI-04 Work-
shop on Challenges in Game AI (pp. 139-142). AAAI Press, 2004. [cited at p. 1, 2, 7,

19]

[4] Blizzard Entertainment. Warcraft iii - basics -> armor and weapon types.
classic.battle.net/war3/basics/armorandweapontypes.shtml (accessed 28.05.09).
[cited at p. vii, 15]

[5] Blizzard Entertainment. Warcraft iii - basics -> spell basics. clas-
sic.battle.net/war3/basics/spellbasics.shtml (accessed 26.05.09). [cited at p. 6]

[6] Richard Evans. Ai in games: From black and white to infinity and beyond.
www.gameai.com/blackandwhite.html (accessed 12.02.09). [cited at p. 20]

[7] Bruce Geryk. A history of real-time strategy games, 2001.
www.gamespot.com/gamespot/features/all/real time/ (accessed 28.05.09).
[cited at p. 7]

[8] Nicolas Imrei. Reinforcement learning in real-time strategy games. School of com-
puter science and software engineering, Monash university, 2004. [cited at p. 22, 33]

[9] Eric Kok. Adaptive reinforcement learning agents in rts games. Master the-
sis number INF/SCR-07-73, Intelligent systems group, Utrecht University, 2008.
[cited at p. 11, 21, 66]

[10] LiveGraph. Livegraph: The real-time data graph plotter. www.live-graph.com (ac-
cessed 08.06.09). [cited at p. 51]

[11] Tom Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,
McGraw-Hill Science/Engineering/Math, 1997. [cited at p. 8]

81

82 BIBLIOGRAPHY

[12] Matthew Molineaux, David W. Aha, and Philip Moore. Learning continuous action
models in a real-time strategy environment. In FLAIRS 2008, pp. 257-262, Springer,
2008. [cited at p. 27]

[13] Nils J. Nilsson. Artificial Intelligence: a new synthesis. Morgan Kaufmann Publish-
ers, Inc., Morgan Kaufmann Publishers, Inc., 1998. [cited at p. 1]

[14] Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based
planning and execution for real-time strategy games. In ICCBR 2007: Lecture Notes
in Computer Science, Volume 4626/2007, pp 164-178, Springer Berlin/Heidelberg,
2007. [cited at p. 2, 11]

[15] Jonathan Schaeffer, Vadim Bulitko, and Michael Buro. Bots get smart. IEEE
Spectrum Online, 2008. www.spectrum.ieee.org/dec08/7011 (accessed 03.03.09).
[cited at p. 1]

[16] Semei. Xna tutorials and xna tools - pathfinding sample for xna.
www.ziggyware.com/readarticle.php?article id=162 (accessed 28.05.09).
[cited at p. 16]

[17] Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, Charles Isbell, and
Ashwin Ram. Transfer learning in real-time strategy games using hybrid cbr/rl. In
IJCAI-07, pp. 1041-104, Morgan Kaufmann, 2007. [cited at p. vii, 11, 28, 29]

[18] Sindre Berg Stene. Artificial intelligence techniques in real-time strategy games - ar-
chitecture and combat behavior. Master thesis, Department of Computer and Infor-
mation Science, Norwegian University of Science and Technology, 2006. [cited at p. 1,

11, 25, 32, 33]

[19] Tomasz Szczepański. Case-based reasoning for improved micromanagement in real-
time strategy games. Specialization project, Department of Computer and Informa-
tion Science, Norwegian University of Science and Technology, 2008. [cited at p. 2, 24,

33, 38, 39, 53]

[20] Luis Valente, Aura Conci, and Bruno Fiejo. Real time game loop models for single-
player computer games. In SBGames 2005 - IV Brazilian Symposium on Computer
Games and Digital Entertainment, Citeseer, 2005. [cited at p. 14]

[21] Mitch Walker. Xna team blog : What is the xna framework.
blogs.msdn.com/xna/archive/2006/08/25/724607.aspx (accessed 28.05.09).
[cited at p. 14]

[22] James Wexler. Artificial intelligence in games: A look at the smarts behind lionhead
studio’s ’black and white’ and where it can and will go in the future. University of
Rochester, 2002. [cited at p. 19]

[23] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
John Wiley & Sons, 2002. [cited at p. 9]

Appendices

83

Appendix A

Running the project software

The system implemented in this project is attached to this report. It was im-
plemented in Microsoft’s XNA framework, which is built on top of the .NET
framework. Hence running the implemented system requires both XNA Game
Studio and .NET framework 3.5. Running ORTT require a desktop resolution
larger than 1200 x 1000.

After installing the required software, the system may be run by running
the ”ORTT.exe” file. This will start a battle between two players, where each
one is controlled by AIs specified in the AI.xml file found in the same folder as
”ORTT.exe”. The AI controlling a player may be changed by typing in new values
between the AI tags of ”AI.xml”. The first tag is the AI for red player, while the
second tag is the AI for the blue player. A list of possible AI values may be found
in the text file ”Possible AI values.txt”. Note that only the red player may use
the CBRAI.

Also included with the project software are the files ”caseBase.xml”and ”Copy
of caseBase.xml” The ”caseBase.xml” file is the current case base, which will be
updated after each simulation. ”Copy of caseBase.xml” is the case database which
was used as a foundation during testing. It is not recommended to modify either
of these files, as the system may not work correctly without it. To exit ORTT,
either wait for the simulation to finish, click the right mouse button, or the close
button in the menu bar.

85

Appendix B

RTS terms used

The special RTS game terms we used in our report are listed in table B.1.

87

88 APPENDIX B. RTS TERMS USED

Term Meaning
Unit A unit is a solider in an RTS game. Each player controls sev-

eral units, which are used to battle and defeat the other play-
ers. Units have different attributes, and commercial RTS
games today consists of about 20 - 50 different units.

Game A round from start to finish in an RTS game is called a
game. Similarly, a game of chess starts by setting up the
pieces, and ends in checkmate for one of the players.

Battle A battle is a small skirmish during a game. A game may
contain many battles.

Health points The measurement of a unit’s life. When the health points
of a unit reach 0, the unit dies and is removed from play.

Mana points The measurement of a unit’s magic power. Each ability
of the unit costs a predefined number of mana points to
execute. If the unit’s total mana points are too low, it cannot
use the ability.

Focus Fire A player use all his units to attack a single enemy unit.
Focus fire is usually a better strategy than to attack several
enemy units at once.

”Dancing” Dancing refers to the act of using units as bait. If a player
orders a unit to pull back once it is hurt, and order it to run
around the battlefield while it is being pursued by the enemy,
this unit is ”dancing”. While enemy units are pursuing the
dancing unit, the player may attack these units while they
are running around.

Skill A skill is a passive attribute of a unit. It is always active, and
cannot be deactivated. Use of skills cost no mana points.

Ability An ability is an activated special ability of a unit. Each abil-
ity costs mana points to execute. Use of abilities is activated
by the player when he chooses to do so. To successfully use
an ability, all preconditions must be fulfilled. There can be
several preconditions, but is usually whether the unit has
enough mana, and a target to use the ability on.

Melee unit A melee unit, as opposed to a ranged unit, have an attack
range of 0. This means that melee units must be right next
to the target they want to attack.

Table B.1: Special RTS game terms used in report

Appendix C

Unit attributes

C.1 Unit attributes in ORTT

All units have the following attributes, which are visible to all players. Hence
AI’s may use this information in case representations. Some units have abilities
as well, but these are not visible to other players.

Static attributes, not changeable during gameplay:

• Name

• Radius (in pixels)

• Range (in pixels)

• Move speed (pixels per timeframe)

• Minimum damage

• Maximum damage

• Maximum mana points

• Maximum health points

• Armor value

• Armor type

• Damage type

Dynamic attributes, likely to change during gameplay:

89

90 APPENDIX C. UNIT ATTRIBUTES

• Position

• Heading

• Current health points

• Current mana points

C.2 Attributes of units used in testing

This table lists the attributes of all units used in testing. For a description of the
attributes, see table C.2

Name Size Rng Spd Dmg HP MP Ar ArTyp DmgTyp
Archmage 31.8 300 3.2 21-27 450 285 3 Hero Hero
MountainKing 31.8 6 2.7 24-36 700 225 2 Hero Hero
Spellbreaker 25.2 125 3.0 13-15 600 250 3 Medium Normal
Priest 22.5 300 2.7 7-8 290 200 0 Unarmored Magic
WaterElemental 27.8 150 2.2 16-24 425 0 0 Pierce Heavy

Table C.1: Attributes of units used in testing

Short Name Meaning
Size Size, in pixel radius. This is the measurement of how much space the unit

takes on the battlefield.
Rng Attack range, in pixel radius. This is how far a unit can shoot. Melee range

is defined as 6.
Spd Movement speed, the value is the number of pixel a unit can walk each frame.
Dmg Damage, the minimum and maximum damage the unit does.
HP Health points, the measurement of unit life. A unit dies if health points reach

0.
MP Mana points, the measurement of unit magic energy. Each ability costs a

defined amount of mana points.
Ar Armor rating, the numeric armor value of a unit. Each point of armor rating

reduces the damage a unit takes by 6&.
ArTyp Armor type, one of the six armor types of table 3.3.
DmgTyp Damage type, one of the seven damage types of table 3.3.

Table C.2: Description of unit attributes

C.2. ATTRIBUTES OF UNITS USED IN TESTING 91

Name Mana cost Cooldown Available to Description
Summon water
elemental

125 60 seconds Archmage Summons a water elemental

Storm bolt 75 9 seconds Mountain
king

Throw a storm bolt

Heal 5 1 second Priest Heals a friendly unit.

Table C.3: Attributes of abilities

Appendix D

System execution

This chapter contains a walkthrough of a battle, and what UPAI does at each
step when it is controlling an AI in ORTT.

1. Player 1 is set to be controlled by UPAI.

Figure D.1: Execution of UPAI, step 2

93

94 APPENDIX D. SYSTEM EXECUTION

2. ORTT is run, and the battle begins. UPAI will read all cases from the case
base, and try to find and exact match to current game state in the case
base. If no case is found, UPAI will store the current game state as a new
case in the case base, and create a new solution for this case. If an exact
match is found in the case base, UPAI will use the best solution of this
case, or try to create a new one if the best solution has a lower value than
the exploration parameter. The case seen in figure D.1 is matched to case
1, and solution 0 is used, and added to a list of used solutions. It is not
possible to see which solution number is executed in the GUI. The enemy
archmage (unit 1) get the highest priority value.

3. The priority values from the solution of step 2 is passed to the utility value
system. This system calculates utility values of all units controlled by UPAI.
In the case seen in figure D.1, the priests controlled by UPAI are ordered
by the utility value system to use the heal ability on the damaged priest
(unit 2). All other units controlled by UPAI are ordered by the utility value
system to attack the enemy archmage (unit 1).

Figure D.2: Execution of UPAI, later step

4. Step 1 and 2 is repeated every second until a player has lost all units, and the
units controlled by UPAI receive new orders from the utility value system

95

every second. In the case seen in figure D.2, the battle has progressed, and
the utility value system of UPAI has ordered the units to attack the enemy
mountain king (unit 3). The current game state match case 12 of the case
base, and the priorities of the best solution (solution 1) is used.

Figure D.3: Execution of UPAI, last step

5. As seen in figure D.3 player 2 lost all units, hence UPAI won the battle.
The total reward value of the remaining units is calculated, and distributed
to the solutions used according to figure 6.5. In this case, the surviving
units are an archmage and a spellbreaker, which give a total reward value
of 16. The battle is now finished, and ORTT automatically exits.

	Title Page
	Problem Description
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Structure of report

	2 Background
	2.1 Real-time strategy games
	2.1.1 Real-time strategy vs turn-based strategy
	2.1.2 Micromanagement vs macromanagement
	2.1.3 AI in RTS games today

	2.2 Machine learning techniques
	2.2.1 Case-Based Reasoning
	2.2.2 Reinforcement learning
	2.2.3 Utility value

	3 Game environments
	3.1 Requirements for game environment
	3.2 Choice of game environment
	3.2.1 MadRTS
	3.2.2 Wargus
	3.2.3 ORTS
	3.2.4 Spring Total Annihilation
	3.2.5 Bos Wars
	3.2.6 Warcraft 3
	3.2.7 Summary of game environments

	3.3 Development of game environment
	3.3.1 Microsoft XNA
	3.3.2 ORTT

	4 Learning in RTS games
	4.1 Learning in commercial RTS games
	4.1.1 Black & White

	4.2 Learning from experience in RTS games
	4.2.1 Adaptive reinforcement learning agents in RTS games
	4.2.2 Reinforcement learning in RTS Games
	4.2.3 CBR for improved micromanagement in RTS games
	4.2.4 Intelligent combat behavior in RTS games

	4.3 Use of CBR/RL hybrid systems in RTS games
	4.3.1 Case-based Tactician
	4.3.2 Continuous Action State Space Learner
	4.3.3 Case-Based Reinforcement Learner

	5 System design
	5.1 Design decisions
	5.2 Case structure
	5.3 System overview

	6 Implementation
	6.1 Game state
	6.2 Implementation of case architecture
	6.2.1 The case matching problem
	6.2.2 Case identifier implementation
	6.2.3 Case solution implementation

	6.3 The case-based reasoning system
	6.3.1 Case retrieval
	6.3.2 Case reuse
	6.3.3 Case revision
	6.3.4 Case retainment

	6.4 The utility value system
	6.4.1 Calculation of utility values
	6.4.2 Unit orders

	6.5 The reinforcement learning system
	6.5.1 Reward values
	6.5.2 The exploration parameter
	6.5.3 Graph data

	6.6 Other AIs in ORTT

	7 Testing and results
	7.1 Testing environment
	7.1.1 Units used in testing
	7.1.2 AIs used in testing
	7.1.3 Rewards for the CBR system
	7.1.4 Exploration parameter

	7.2 Test results
	7.2.1 Test in Warcraft 3
	7.2.2 UPAI vs DumbAI
	7.2.3 UPAI vs DamageOptimalAI
	7.2.4 UPAI vs FocusFireAI
	7.2.5 UPAI vs UtilityAI
	7.2.6 UPAI vs UtilityAICoward
	7.2.7 UPAI vs SmartAI
	7.2.8 UPAI vs all AIs

	8 Discussion
	8.1 ORTT as game environment
	8.2 UPAI
	8.2.1 Case representation
	8.2.2 Reward value
	8.2.3 The utility value system
	8.2.4 Unit retreat order
	8.2.5 Exploration vs exploitation

	8.3 Test results

	9 Conclusions and Further Work
	9.1 Conclusion
	9.2 Further work
	9.2.1 Index and sort cases
	9.2.2 Prioritize hurt units
	9.2.3 Observe changes in game state
	9.2.4 Add other goals
	9.2.5 Add support for planning

	Bibliography
	A Running the project software
	B RTS terms used
	C Unit attributes
	C.1 Unit attributes in ORTT
	C.2 Attributes of units used in testing

	D System execution

