
June 2009
Helge Langseth, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Skippy
Agents learning how to play curling

Frode Aannevik
Jan Erik Robertsen

Problem Description
The purpose of this project is to work on the subject of AI agents in the domain of curling, and
includes the following tasks:

1) Design a curling simulator (using an adequate physical model) that curling-playing agents can
interface with.
2) Explore knowledge representation in the curling domain.
3) Build a curling-playing agent and test it in the simulator.

Assignment given: 15. January 2009
Supervisor: Helge Langseth, IDI

Abstract

In this project we seek to explore whether it is possible for an artificial
agent to learn how to play curling. To achieve this goal we developed
a simulator that works as an environment where different agents can
be tested against each other. Our most successful agent use a Linear
Target Function as a basis for selecting good moves in the game. This
agent has become very adept at placing stones, but we discovered that
it lacks the ability to employ advanced strategies that reach over more
than just one stone. In an effort to give the agent this ability we ex-
panded it using Q-learning with UCT, however this was not successful.
For the agent to work we need a good representation of the information
in curling, and our representation was quite broad. This caused the
training of the agent to take an unreasonably large amount of time.

Preface

This project is the result of our work during the spring of 2009, and is
done as part of our fulfillment of the master program in computer sci-
ence at The Norwegian University of Science and Technology (NTNU).
We would like to thank the following for their help and support during
the project; our supervisor at IDI, associate professor Helge Langseth,
as well as our friends and family.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims of the project . 2
1.3 About Curling . 2

1.3.1 History of Curling . 3
1.3.2 Rules . 4
1.3.3 Strategies . 4

1.4 Report Structure . 7

2 The Problem and Challenges 11

3 Goals and Constraints 13
3.1 Curling learning problem . 13
3.2 Curling Simulator . 14

3.2.1 Realism . 14
3.2.2 Agent . 15
3.2.3 Constraints . 15

4 Theories behind Skippy agents 17
4.1 Intelligent Agent? . 17

4.1.1 Environment . 18
4.2 Linear Target Function . 20

4.2.1 Defining the State . 21
4.2.2 Defining the V Function . 22
4.2.3 Training . 23
4.2.4 Trade-offs . 25
4.2.5 Expectation for the agent 25

4.3 Reinforcement Learning . 26
4.3.1 Q-Learning . 27

4.4 State and Action space . 30
4.5 MDP and our Q-Learning agent . 36

v

CONTENTS

4.6 Exploration vs Exploitation . 38
4.6.1 The K-armed bandit problem 38
4.6.2 The UCB algorithm . 39
4.6.3 UCT (UCB applied to Trees) 41

5 SkippySimulator 43
5.1 Architecture . 43

5.1.1 Design . 44
5.1.2 Architectural Rationale . 45

5.2 Main Components . 46
5.3 Implementation . 47

5.3.1 SkippySimulator . 48
5.3.2 Agent implementation . 49

6 Results 55
6.1 Experiment 1 - Linear Target Function

– Single Weight Set . 55
6.1.1 Setup . 55
6.1.2 Weaknesses/Expectations 56
6.1.3 Results . 57
6.1.4 Discussion . 57
6.1.5 Conclusion . 59

6.2 Experiment 1b . 60
6.2.1 Setup . 60
6.2.2 Weaknesses/Expectations 60
6.2.3 Results . 61
6.2.4 Discussion . 62
6.2.5 Conclusion . 62

6.3 Experiment 2 - Linear Target Function
– Double Weight Set . 63
6.3.1 Setup . 63
6.3.2 Weaknesses/Expectations 63
6.3.3 Results . 64
6.3.4 Discussion . 64
6.3.5 Conclusion . 66

6.4 Experiment 3 - Q-learning . 66
6.4.1 Setup . 67
6.4.2 Weaknesses/Expectations 67
6.4.3 Results . 68
6.4.4 Discussion . 68
6.4.5 Conclusion . 71

vi

7 Discussion 73
7.1 Curling Simulator . 73
7.2 Curling Playing Agents . 74

8 Conclusion 75
8.1 Further Work . 75

Appendices

A Tournament Results 77

B Q-Learning Results 81

vii

CONTENTS

viii

List of Figures

1.1 Left: Curling as played in the olden days on a frozen pond. Right:
a modern curling hall. (Images courtesy of worldcurling.org) 3

1.2 Dimensions of curling ice . 5

1.3 Curling Terms Examples. 8

1.4 Three types of stones. 9

4.1 Basic anatomy of an agent. 18

4.2 Thermostat-Heating Agent. 18

4.3 A simple deterministic grid world is used to demonstrate the basic
principles of Q-learning. Each cell represents a distinct state, each
arrow a distinct action. The reward function rps, aq gives reward
100 for actions entering goal state G and zero otherwise. Values of
V � and Gps, aq follow from rps, aq and the discount factor γ � 0.9.
The optimal policy figure corresponds to actions with maximal Q
values. 28

4.4 Markov chain representation of scoring transition from state ti, ju
with k defined as the number of points scored in a state. 32

4.5 The Area the different action groups operates in. 35

4.6 The pseudocode of a generic planning algorithm. 41

5.1 Software Architecture of SkippySimulator 44

5.2 Screenshot of SkippySimulator’s user interface. 46

5.3 BasicAgent class . 48

5.4 UML diagram for SkipppyAgent. 50

5.5 UML diagram for RLSkippyAgent. 52

6.1 Weights for SkippyAgent, Figure (a) shows the weights when train-
ing against AKA, and Figure 6.1(b) shows the weights when training
against itself (opponent uses constant weights) initialized with the
previous trained weights. 58

ix

LIST OF FIGURES

6.2 SkippyAgent weights from training while using alternative update
policy. 61

6.3 Weights for SkippyAgent, Figure 6.3(a) shows the weights that the
agent uses when it does not have the hammer. Figure 6.3(b) shows
the weights that are used when the agent is playing with the ham-
mer. 65

6.4 The Qps, aq size as training progressed 69
6.5 The ratio of wins against various agents. 70

B.1 The ration of wins against various agents including the omitted data
not showed in Figure 6.5 . 81

x

List of Tables

4.1 The description of the vectors in the state model. 33
4.2 Description of the attributes in the state model. 34

6.1 Results from 5-Matches tournament. 57
6.2 Results from 5-Matches tournament. 61
6.3 Results from 5-Matches tournament. 64
6.4 RLSkippyAgent setup. 67

A.1 Result from five matches between SkippyAgent and AKA. 77
A.2 Result from five matches between SkippyAgent and Scott. 78
A.3 Result from five matches between SkippyAgent Mod and AKA. . . 78
A.4 Result from five matches between SkippyAgent Mod and Scott. . . 78
A.5 Result from five matches between SkippyAgent Mod and SkippyA-

gent. 79
A.6 Result from five matches between SkippyAgentHammer and Skip-

pyAgent. 79

xi

LIST OF TABLES

xii

Chapter 1

Introduction

This chapter gives an introduction to the report and the project as a whole. We
start by describing our motivations for starting this project and continue with
specifying our main goals. We have also included a short introduction to the game
of curling with the most important rules and some strategies that are useful. For
readers that are unfamiliar with curling we hope this will be popular to get a
better understanding of this project. Finally this chapter concludes with outlining
the structure of each chapter in this report.

1.1 Motivation

As students of Artificial Intelligence we wanted to do a project within this field.
Still, there remained to find a suitable problem that we both found interesting and
that was not to complex for a project of this size. There are many problems that
are suitable for trying to solve using AI techniques, and some that we found inter-
esting were those that involve computers playing games. One game that emerged
as a good alternative was that of curling.

First of all there has not been much work on AI in the context of Curling before.
Further more, curling poses some new and difficult challenges compared to games
that are typically used when creating intelligent agents, such as checkers and other
board games. In a game like checkers there is a board and some pieces that can be
in a finite number of configurations and a fast computer can calculate all of them.
In fact Jonathan Schaeffer et al. [20] have completely solved the game of checkers,
showing that with optimal play the worst one can do is a draw.

Curling has been described as chess on ice, which is a good analogy considering

1

Introduction

curling is a thinking persons game, requiring sound strategy and good planning
abilities to succeed in. However there are some aspects that make curling very dif-
ferent form traditional board games. In the case of curling, the board, or actually
the ice, is a continuous surface where the pieces, or stones, can be positioned any-
where. This means we can not use the same techniques as in the case of checkers,
at least not without some modifications.

1.2 Aims of the project

We want to explore whether or not it is at all possible to create an agent capable
of playing curling, given the continuous nature of the game. Or more specifically;
will it be possible to do so with the computing power we have at our disposal.
Further more, we want to explore how sophisticated such an agent can become.
Finding a measure for this might not be so easy. One way is to see whether or
not it is able to do better than someone just placing stones at random. If this
becomes the case, it will have shown that the agent has acquired at least some of
the techniques required to play a good game of curling. Another measure for the
agent’s success would be to see how it fares against a human player. Although,
creating an agent that can consistently beat a human is probably very difficult,
but we hope that the agent will be sophisticated enough that it poses a challenge.

We want to implement this project is such a way that the code is reusable. We
envision creating an at least rudimentary simulator, with which two players may
compete against each other in a game of curling. A player might be either a hu-
man or a computer agent, and the simulator allows for any combination of play;
computer vs. computer, computer vs. human, or human vs. human. We want the
simulator to have a clearly defined API, so that new versions of computer agents
can be easily tested. This also opens up for future projects to take advantage of
some of our code.

1.3 About Curling

Curling is a team sport played on ice, where the object is to slide stones along the
playing field towards a target area called the “house”. Two teams of four players
have two stones each for a total of sixteen stones. They take turns sliding the
stones and the team with stones closest to the center of the house scores points.
Each stone in the house which is closer to the center than all the opposing team’s

2

stones, earns the team one point. If no stones lie within the house at the end of
a round, no team scores points. One round, that is when all players have set two
rocks each, is referred to as an end. A game of curling consists of ten such ends,
however recreational games often have fewer ends. If the game is tied after ten
ends, additional ends are played to break the tie.

In curling, two players may use brooms to sweep the ice in front of the stone as
it slides down the ice. This will of course remove any debris that may hinder the
stone, but the primary purpose is to control the speed of the stone. The friction
from sweeping creates heat, which melts the ice in front of the stone making it
go further. Professional players can increase the distance of the shot with several
meters.

1.3.1 History of Curling

The exact origin of curling is unknown, there are however paintings from mid 16th
century depicting an activity similar to curling. There are also written references
from 1540 from a monastery in Scotland involving throwing stones across a frozen
pond. It is clear that what started as an enjoyable pastime in northern Europe has
become a modern sport with its own world championship and which is included
in the winter Olympics. Figure 1.1 shows people playing curling.

Figure 1.1: Left: Curling as played in the olden days on a frozen pond. Right: a
modern curling hall. (Images courtesy of worldcurling.org)

3

Introduction

1.3.2 Rules

The rules of curling are quite extensive and intricate. In this section we will only
discuss the ones that are needed for a basic understanding of the sport, as well
as any rules that are relevant for our project. All rules are from World Curling
Federation [6].

Dimensions of the Curling Ice - Figure 1.2 shows the dimensions of a curling
ice according to official regulations.

Setting a Rock - A players sets a rock by pushing off from the hack, sliding the
rock in front of him. The rock must be released before it reaches the near hog
line. The player can use in- or out-curl (“give the rock a twist” clock- or counter-
clockwise) before releasing the rock. Using curling will make the rock screw as the
speed decreases and can be used to “hide” the rock behind other rocks. A stone is
out of play if it fails to completely cross the far hog line, if it at any point touches
the lines on either side of the ice, or if it completely crosses the back line.

Free Guard Zone - One important rule in curling is that of the Free Guard Zone
(FGZ). The zone is the area between the hog line and the tee line excluding the
house. See figure 1.2. The rule says that a stone placed within the FGZ cannot
be taken out until after the fourth stone has been set. Should this happen, the
affected stone(s) will be placed as close as possible to where they lay before, and
the offending stone will be removed from play. This rule ensures that there will
be stones in play right from the start and the teams are forced to play offensively,
which also make the game more exciting for the spectators.

The Last Stone - Having the last stone in an end is an important strategic ad-
vantage in curling. Before a match each team throws one rock at the house and
the team which comes closest to the button (the center of the house) gets the last
stone in the first end. Whenever a team scores points, the opposing team will get
the last stone in the next end. If an end is tied, the team that currently has the
last stone will keep it in the next end. Having the last stone is often referred to
as having the hammer.

1.3.3 Strategies

Last Stone Strategies - As mentioned, having the last stone gives an impor-
tant advantage. Often teams play defensively, alternatively taking out each others

4

Figure 1.2: Dimensions of curling ice

5

Introduction

stones. It is obvious this will result in the team with the last stone scoring a point.
However, this also leads to the other team getting the last stone in the next round.
In general, most teams consider having the last stone as more valuable than scor-
ing one point. This leads to the following strategy. When having the last stone:
Try to take two or more points, and force a tie rather than take just one point.
However, take the one point if the alternative is the opponent scoring. Similarly
when not having the last stone: Try to take as many points as possible, but if the
best you can do is a tie, try to force the opponent to take one point.

The following list describes some common terms often used in curling. They are
the basic tools in a curling players arsenal that he can use to get the desired result.
Examples of the terms are shown in Figure 1.3.

• Hit and Stay - A takeout where the played stone stays in the spot where it
made contact with the stationary stone. Figure 1.3(a).

• Hit and Roll - When a played stone removes an opponent stone and then
slides (rolls) to a new position some distance away. Figure 1.3(b).

• Clearing (Peel) - A takeout that removes a stationary stone from play and
also rolls from play. Figure 1.3(c).

• Raised takeout - A takeout played to strike a stationary stone, usually a
guard, onto the stone behind it to remove it from play. Figure 1.3(d).

• Double takeout - A takeout that removes two of the opponent’s stones with
the same shot. Figure 1.3(e).

• Raised draw - The played stone promotes another stone into the house.
Figure 1.3(f)

• Come Around - A draw that curls narrowly past a guard and comes to rest
hidden behind the guard. Figure 1.3(g).

• Split - A stone played at near draw weight to hit a stationary stone in
such a way that the stones split in opposite directions, but remain in play.
Figure 1.3(h).

• Wick - When a played stone touches a stationary stone just enough so the
played stone changes direction. Figure 1.3(i).

• Drawing a port - A stone is played between two stationary stones close to
each other. Figure 1.3(j).

6

• Freeze - A precise draw-weight shot in which the delivered stone comes to
rest tight against a stationary stone. Figure 1.3(k).

Finally, we give some terms commonly used to describe properties about the stones
in play:

• Shot - At any time during an end, the stone which is closest to the button.
Figure 1.4

• Biter - A stone that comes to rest, so that only a portion of its circumference
bites the outer edge of the house. Figure 1.4

• Guard - A stone played to a position where it protects, or could later protect,
a stone behind it. Figure 1.4

1.4 Report Structure

Chapter 2 presents the problem and challenges for this project.

Chapter 4 describes techniques used in this project. Linear Target Function and
Reinforcement Learning are some of the techniques presented.

Chapter 5 explains the SkippySimulator architecture, its main components and
highlights some of its implementations including the implementation of the
agents.

Chapter 6 explains the experiments performed and presents the results from the
experiments.

Chapter 7 presents the evaluation of the project.

Chapter 8 presents the conclusion from our work and suggest further work.

7

Introduction

(a) Hit and stay (b) Hit and roll (c) Clearing

(d) Raise takeout (e) Double takeout (f) Raised draw

(g) Come around (h) Split (i) Wick

(j) Drawing a port (k) Freeze

Figure 1.3: Curling Terms Examples.

8

Figure 1.4: Three types of stones.

9

Introduction

10

Chapter 2

The Problem and Challenges

We want to create a simulator that can adequately simulate a game of curling.
The main challenge here will be on the physics engine. One of the most important
features of curling is how the rocks move on the ice and what happens when they
collide. It will be necessary to create a simulator that is as realistic as possible.
Further more we need functionality for running full games of curling, where things
like who has the hammer and how many points each player has, are handled prop-
erly. Finally we want the simulator to have an intuitive interface that let us test
any combination of players against each other, be they human or artificial.

When it comes to the artificial agents, we want them to be able to play a good game
of curling. That means that they utilize some of the techniques and strategies that
increase ones chance of winning, rather than just placing stones at random. The
main challenge here will be to find what techniques within the field of Artificial
Intelligence are suitable for implementing these agents. Another challenge will be
how to represent information about the curling domain, which these agents will
rely upon to make their decisions. Unlike curling, the games traditionally used in
AI research are discrete. For example chess, where there are only so many states
the game can be in, and at any point there is only a relatively small set of actions
one can take. In curling everything is continuous, so we need a representation that
can adequately describe the world of curling, while at the same time be limited
enough that it will be possible for the computers we have at our disposal to work
with it.

11

The Problem and Challenges

12

Chapter 3

Goals and Constraints

This chapter presents a more detailed view of our goals and constraints. The
chapter is divided into two sections. Firstly, we deal with the goals and constraints
relevant to the task of creating an agent that can learn to play curling, secondly
we give technical overview of the requirements for the curling simulator.

3.1 Curling learning problem

Playing Curling as a human is fun and challenging. The game, nicknamed “Chess-
on-ice”, requires both physical skill and a sound strategy to defeat the opponent.

Combining all information available, both from current and previous games, is
challenging for a human. For an agent, it is even harder. Even when having a
complete picture of a game it is not clear how one agent should use past experience
to make sounds strategies/decisions. What strategy should we adopt now? Where
should we try to set the next rock? How will our actions now (current rock/round)
determine the end results? It is also important to balance the risk and gain: what
if we miss our targets?

Besides being non-deterministic and complex, the decisions also need to be taken
in a fashionable time. There are no real-time requirements, curling is like chess
or other turn-based games, but learning a system with high resource demands is
more difficult to control and test.

A possible bottleneck for our system could come from the simulator and how it
simulates the curling physics. It will therefore be important to prioritize simu-
lation performance over other features when designing the system. Beside from
bottlenecks found in the simulator it will be important to moderate the resource
demands from our agent. Example of such is to moderate the demands for task

13

Goals and Constraints

such as strategy selection and set a rock. The latter task will have a high use fre-
quency and should therefore be both efficient and computationally feasible. This
creates constraints for our choice of mechanism to use when enabling agents to
learn to play curling, and will requiring the use of both abstractions and finding
approaches to simplify the complexity of the game world.

For learning problem we have the following goals:

• Explore the effect of using Linear Target Function for finding favorable po-
sitions to set a rock.

• Determine possible system for handling the nondeterministic nature of curl-
ing.

• Examine the effect of boosting the AI level with Reinforcement Learning
(RL). Strategy planning is one example area where RL could be of interest.

For all three goals it will be important to find a balance between accuracy and
performance.

3.2 Curling Simulator

The main purpose of the simulator is to provide a basic, underlying system for
testing curling playing agents. Compared to other simulator frameworks such as
Robocode [17] the main focus will be on the rock physics (collision, curl) and
agent integration rather than real-time performance. The goals for the simulator
are divided into two main groups, their relationship to curling or to the agent.

3.2.1 Realism

Realism is an important part of any simulator. We have identified three main
realism goals that we believe is important to incorporate into the simulator.

• The simulator must use an adequate physic model.

• Simulate the game accordingly to official curling rules.

• Support a mechanism for simulating the nondeterministic nature of curling.

14

3.2.2 Agent

For the agent subsystem we have specified a set of goals and requirements to lessen
the effort needed when using the simulator framework to build curling agents.

• Interface to both human and computer agents.

• Provide the user of the simulator with a clearly defined agent interface con-
taining a basic set of commands required to play curling.

• Give adequate and informative feedback to the agents. This includes the
positions rocks, current and score.

Provide interface for both human and computer agents is an important option
that allows all agents to play against each other. It opens also up the possibility
of having cooperation between human and computer agents. A well defined agent
interface is a key feature for the simulator. Apart from providing the agent with a
set of basic commands it should also give access to all relevant information about
the curling environment created by the simulator. It will in the case of interface
design be important to use well known and easy naming convention that enables
both novice and expert curlers to understand their purpose.

3.2.3 Constraints

The constraints for the simulator relates to its architecture and implementation.

• Develop the simulator in Java 5.0

• Use third party libraries/framework where possible.

• Simulator must be built as a framework.

Java 5.0

It can be argued that there are other languages suited more for a curling simulator.
One example could be C# and Microsoft game framework XNA [24]. However,
our main programming skills lays in Java, and using it does not require us to use
time on learning a new language.

Third party libraries/frameworks

Third party solutions can provide us with great shortcuts in the development of
the simulator. There is also no reason to reinvent the wheel, and investigating
other solutions could provide us with valuable inspiration.

15

Goals and Constraints

16

Chapter 4

Theories behind Skippy agents

The field of Artificial Intelligence or AI is extensive and not easily summarized in
one single chapter. Hence, this chapter will be limited to only give an overview
over areas within AI that can have possible applications when building a curling
playing agent. This includes describing the properties of an Intelligent Agent, and
describing the algorithms used in the implementation.

4.1 Intelligent Agent?

The beginning is always a good place to start, so what exactly is an intelligent
agent? The answer depends on whom you ask and can vary quite widely. For
the purpose of this project however, we will focus exclusively on the definition
presented in Russel & Norvig [18, p.31].

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.

This definition of agent covers a broad spectrum of machines, from thermostats,
to animals, even humans. It is important to recognize that this definition does not
require that the agent has the capability to learn something new.

Figure 4.1 presents the basic elements of an agent. In most cases an agent will
have one or more sensor(s) that are used to perceive the environment, one or
more effector(s) that can change the environment, and a control system. The
control system has the task of assigning a mapping from sensors to effectors, and
hence provides more rational behavior. We illustrate in Figure 4.2 how one of
the simplest types of agent, the Thermostat-Heating Agent, fits this model. This
agent has one sensor in the form of a thermometer that senses the temperature

17

Theories behind Skippy agents

Figure 4.1: Basic anatomy of an agent.

of the environment, and one effector, the heating element that can supply heat to
the environment. Finally it has a control system in the form of a very simple logic
that says “turn the heat on if the perceived temperature is less than 20 �C , and
turn the heat off if it is over 30 �C.”

Figure 4.2: Thermostat-Heating Agent.

Even in a simple example as the Thermostat-Heating Agent we have an envi-
ronment that determines the action of an agent, and in turn, the agent’s action
modifies the environment.

4.1.1 Environment

There exist many variations of possible environments an agent could operate in;
we can use the following classification scheme taken from Russel & Norvig [18,
p.45].

Accessible vs. inaccessible: In an accessible environment the agent can detect
accurately all relevant information about the environment. This simplifies
the agent since it is not required to maintain any internal state to keep track
of the world.

Deterministic vs. nondeterministic: A deterministic environment is any en-
vironment in which a single action has a single guaranteed effect. It is no

18

uncertainty about what effect an action has when applied in a given state.

Episodic vs. non-episodic: An episode consists of the agent perceiving and
then acting. The environment is episodic if the quality of one episode depends
just on the episode itself. A non-episodic sequential environment requires the
agent to plan ahead.

Static vs. dynamic: If the environment can change while the agent is passive
(not executing any action), we say the environment is dynamic for that agent;
otherwise it is static. Dynamic environment are more difficult to deal with
because the agent needs to worry about the passage of time when planning
and deciding on an action.

Discrete vs. continuous: An environment is discrete if there are a fixed, finite
number of percepts and actions in it.

The Curling Environment

The curling environment is evaluated by using the scheme suggested by Russel
and Norvig. Notice, this evaluation is based on the environment provided by the
simulator and not real-life curling. However, areas with key differences will be
highlighted together with the reason for the differences.

Accessible or inaccessible: The simulator provides the agent with all infor-
mation about the state of the environment, which entails accurate information
about rock position, progress in match (rock/round number), points, etc. From
this stand point it is clearly an accessible environment.

However, there are some aspects with the simulator environment that differ from
real-life curling accessibility. One example is the information related to the oppo-
nent. In real life, players may observe the other team, both on and off the ice.
The simulator however, provides no information about the other agent’s actions;
an agent can only observe the result of it. Without this type of information you
could state that the environment provided by the simulator is inaccessible when
compared to real-life. However, we argue that most agents would deem this type
of information as irrelevant or of less importance, which makes the environment
for our case accessible.

Deterministic or nondeterministic: Curling requires both skill and luck. In
order to be a good curler one needs to lay good plans. But there is no guarantee
that anyone will be able to execute those plans perfectly. There will always be
an element of luck involved, for good or for bad. The simulator adds noise to the

19

Theories behind Skippy agents

agents’ effectors to mimic this nondeterministic behavior, making the simulator
environment nondeterministic.

Episodic or nonepisodic: The environment is nonepisodic because the result
of a round (e.g. the result of the last rock) is dependent on past performance (both
of the agent and its opponent).

Having the last rock (hammer) in a round gives a great advantage to a player.
And teams will often take turns having the hammer every other round. This fact
also makes the environment nonepisodic.

Static or dynamic: Since curling is turn-based, we expect that the environment
will change while one player is passive; making the environment dynamic.

Discrete or continuous: In curling the positions of the rocks, as well as the
speed and angle at which rocks are sent, are all continuous values. This results
in an infinite number of possible states for a curling game and the environment is
clearly continuous.

To summarize, the curling environment is accessible, non-deterministic, nonepisodic,
dynamic and continuous. Apart from the property of accessibility, these are all
factors which complicate the task of creating capable agents for the environment.

4.2 Linear Target Function

The book “Machine Learning” by Tom Mitchell [13, p.7] presents an example of
how an agent using a linearfunction as its basis for decision making can be used
when learning to play checkers. We want to explore the possibility of using this
technique as a tool to find good moves in a game of curling. A move means sending
a rock at a specific angle and with a specific speed. To use this agent there are two
things we need. Firstly; we need a vector that describes the state of the ice at any
point in the game. Secondly; we need an evaluation function V psq Ñ R that maps
the desirability of any state s to a real value. We can then find the best action
to take at any point by simulating all legal actions, evaluating the resulting states
using the V function, and choosing the action that resulted in the most desirable
next state. Simulating all legal action will not be possible in the case of curling,
given that there are essentially an unbounded number of legal actions. We can
solve this problem by limiting the number of actions we test. An action consists of
two values, the speed and the angle at which the rock is sent. By defining limits

20

for these values and testing actions with discrete increases in speed and angle we
end up with a finite number of actions to test.

4.2.1 Defining the State

As previously mentioned we need a description of the state of a curling game. This
description needs to be in the form of a vector of real numbers. We propose the
following list of features that we feel adequately describes the state of a curling
game. Each feature will be a numerical value and together they make up our state
vector.

• x1: the points in a state, calculated as if the state was a final state at the
end of a game. The feature is positive if the player scores and negative if the
opponent does).

• x2: a score for the number of rocks the player has in house.

• x3: a score for the number of rocks the opponent has in house.

• x4: the number of guarded rocks belonging to the player.

• x5: the number of guarded rocks belonging to the opponent.

• x6: the number of corner guards.

• x7: the number of center guards.

The score in features x2 and x3 is calculated as follows: For each rock in the house,
add to the feature: 1 � d

12 ft
where d is the distance of the rock from the button

measured in feet. This ensures that a rock closer to the button contributes with
more to the feature than a rock at the edge of the house. For a rock to be guarded
it needs to be in the house, and have another rock in front of it that lies at most
one half rock-width to either side, there by making it harder to take the guarded
rock out. In other words, if a player stands at the other end of the ice looking at a
guarded rock, it is at least partially concealed by another rock. A center guard is
a rock that lies in front of the house, at most two feet from the center line, while
a corner guard is a rock that lays in front of the house, at least 2 feet from the
center line.

21

Theories behind Skippy agents

4.2.2 Defining the V Function

The V function needs to be defined so that it gives a good measure of the desir-
ability of the different states in the game. For a final state (i.e. at the end of a
round) the function will be defined explicitly as positive if you win and negative
if you loose, with some modifications if the round is tied. For all other states,
an approximation of the V function, V̂ is introduced. It is calculated as a linear
combination of the state vector with a set of weights as follows

V̂ psq � w0 � w1x1 � w2x2 � w3x3 � w4x4 � w5x5 � w6x6 � w7x7 (4.1)

where the weights wi are numerical coefficients, that we will discuss how to learn
in Section 4.2.3. The weight w0 is included to provide an additive constant to the
state value. The problem now becomes how to adjust there weights so that a good
state is given a high value and a bad state a lower or negative value. In general
we will use that a state that leads to a good state is itself a good state and vice
versa for a bad state.

In detail we define the following five rules for the behavior of the V function.

Rule 1. If s is a final winning state, then V psq � 100 � points.

Rule 2. If s is a final losing state, then V psq � �100 � points.

Rule 3. If s is a final tie state, and the player has the last stone, then V psq � 150.

Rule 4. If s is a final tie state, and the opponent has the last stone then V psq �
�150

Rule 5. Otherwise, V psq � V pŝq, where ŝ is the highest scoring state that is
achieved starting from state s and playing optimal until the end of the game.

Rules 1 and 2 are straight forward, it is positive to win and negative to loose. The
points in these rules denotes the number of points awarded in the round regardless
of who won. Rules 3 and 4 deal with the situation where a round ends in a tie.
There rules ensure behavior in accordance with the strategies discussed in section
1.3.3. In short, it is more valuable to force a tie and keep the last stone, rather than
take just one point. Rule 5 deals with all states that are not final, i.e. not at the
end of a round. This rule is the most difficult to implement. It has a look-ahead
approach for finding optimal play sequences, and this quickly becomes virtually
impossible to compute. Even more so in the non-deterministic environment found
in curling. To handle the difficulty of this rule we will use the V̂ function as an
estimate for finding states with good score.

22

4.2.3 Training

We want to train the weights used by the V̂ function, so that it correctly classifies
states as good or bad. To do this we will use the gradient decent rule as described
by Tom Mitchell [13, Ch.4.4]. This technique works by adjusting the weights in
the direction that minimizes the error between the output of the V̂ function and
a training value. We start by defining the training value for the estimate of the V̂
function as follows

Vtrainpsq � V̂ psuccessorpsqq (4.2)

where successorpsq is the next state where the player can set a rock. We want to
adjust the weights of the V̂ functions so that the difference between Vtrain and V̂ is
as small as possible. Using this setup we capture the idea that a state that leads
to a good state is itself a good state. In other words, if a round of curling ends
with a win, the weights for all the states visited during the course of the game are
adjusted such that the estimate of those states become higher, and vice versa if
the game resulted in a loss.

To arrive at a rule for updating the weights we start by defining a measure for the
error of a weight vector. There are many ways to define this error but we shall see
that the following will be convenient.

Epwq �
1

2
pVtrainpsq � V̂ psqq2 (4.3)

E is defined as a function of w since the V̂ function depends on this weight vector.
What we want is to find the weight vector with minimum error (the one with
lowest E value). If a weight vector only consists of two vectors we can visualize
a space with the two vectors along the x and y axis and the associated E values
along the z axis. The error then becomes a surface in this space and the task is
to find its minimum. This is the same for vectors of any length but it is easier
to visualize in 3 dimensions. Having found this minimum means that the corre-
sponding weight vector is the one that causes the V̂ to give an estimate that is as
close as possible to the desired value. In other words, when testing all actions in
a particular state, the action that gives the highest estimate from the V̂ function
is the one that results in the most desirable next state. To find the minimum of
the error surface we can use the gradient descent rule. The gradient descent rule
works by first starting with an arbitrary weight vector, then repeatedly modifying
it in small steps. At each step the weight vector is altered in the direction that
produces the steepest decent along the error surface.

23

Theories behind Skippy agents

The direction of the steepest descent along the error surface can be found by
computing the derivative of E with respect to each component of the vector ~w.
The training rule for updating the weights thus becomes

wi Ð wi �∆wi (4.4)

where

∆wi � �η
δE

δwi
(4.5)

The negative sign is there because we want the steepest descent not ascent and η
is a positive constant called the learning rate, which determines the step size in
the gradient descent search. To obtain δE

δwi
we differentiate E from Equation (4.3)

as follows

δE

δwi
�

δ

δwi

1

2
pVtrainpsq � V̂ psqq2

�
1

2

δ

δwi
pVtrainpsq � V̂ psqq2

�
1

2
2pVtrainpsq � V̂ psqq

δ

δwi
pVtrainpsq � V̂ psqq

� pVtrainpsq � V̂ psqq
δ

δwi
pVtrainpsq �wTxq

� pVtrainpsq � V̂ psqqp�xiq

(4.6)

Substituting the result of Equation (4.6) into Equations (4.4) and (4.5) yields the
weight update rule for gradient descent.

∆wi � ηpVtrainpsq � V̂ psqqxi
wi Ð wi � ηpVtrainpsq � V̂ psqqxi

(4.7)

where η is the learning rate. By using this algorithm the weights are adjusted
in such a way as to minimize the error between the training value Vtrain, and the
predicted estimate value, V̂ . Care must be taken when choosing the learning rate
η, a too small value might make the algorithm terribly slow, and a too large value
might make it inaccurate such that it ‘overshoots’ the minimum it is searching for.
A good idea is to have the learning rate decay over time so that it becomes more
accurate as it approaches the target.

We can see that a weight will not be adjusted if either Vtrainpsq � V̂ psq or xi � 0,
which is just as we want it. In the first case the weights can be considered properly
trained, and in the second case the feature represented by xi is not present in the

24

given state and the weights should not be adjusted based on that training example.

4.2.4 Trade-offs

There is a trade-off between the level of detail (expressiveness) of a representation
for a state (size of features) and the ease of learning. The more detailed a represen-
tation, the better it will be at approximation the value of a state; however, more
details requires more training example in order to learn an accurate estimation.
More complex and training demanding representation will also create problem of
overfitting, where features may be adjusted to very specific random features of the
training data, which have no causal relation to the target function. Overfitting the
features will in generally create lower performance, especially for unseen situations.

The technique requires also some level of expert knowledge when designing the
representation in order to recognize key features that is needed to effectively reduce
the problem of expressiveness versus ease of learning.

4.2.5 Expectation for the agent

Our expectations for the agent using Linear Target Functions are based on how we
defined the state vector and the V function. Some of the features in the state vec-
tor are mirrored for both the agent and the opponent. We hope that the weights
for there features will be adjusted positively for those concerning the agent and
negatively for those of the opponent. Specifically that it is a good thing for the
agent to have rocks in the house while it is a bad thing if the opponent has. Sim-
ilarly that it is good if the agent has guarded rocks but not if the opponent has
that. If this becomes the case, we expect to see behavior where the agent will try
to take out rocks belonging to the opponent and probably also try to let its own
rock stay behind in the house to potentially score more points.

One interesting aspect is that of guarding. It might become the case that the agent
will be reluctant to set guards because a guard in itself does not score points. How-
ever, having guards significantly increases the chance for other rocks to score. We
can also see that there is a difference between placing a guard in front of a stone
that is already in the house, and placing a guard in front of an empty house in
order to play a stone behind that guard later. In the second case the guard does
not get its real value until later and it might be difficult for the agent to be able
to learn this strategy.

25

Theories behind Skippy agents

The Last Stone Strategies described in Section 1.3.3 is one example of a strategy
that the agent will have problem to capture. We included the rules 3 and 4 in
the V function in an effort to capture some of the essence of the strategy, but the
effect will be limited by the agents “one-step-lookahead”. The strategy can only
be used effectively in cases where the agent can plan multiple steps ahead and
knows where in the game it is (what step and what round). The knowledge about
the round is necessary to avoid using the strategy in the last round. Our agent
has no such capabilities and will therefore not be able effectively use the strategy.

To address the problem with “one-step-lookahead” for strategies such as Last Stone
we will in Section 4.3 describe a technique that can resolve some of the problems.

4.3 Reinforcement Learning

Reinforcement learning addresses the problem with how an agent that can sense
and act in an environment can learn to choose optimal actions to achieve their
goals. This technique differs from supervised learning in many ways. The most
important difference is that the learning is achieved without using input/output
pairs. Instead, after an action is selected the agent is given a reward and the new
state, but it is not told which action would be in its best long-term interest.

The technique is will be used to address the problem described in Section 4.2.5
related to “one-step-lookahead”. In this section we will focus on the learning algo-
rithm called Q learning that can achieve optimal control strategies from delayed
rewards.

Markov decision process (MDP) provides a framework for how we can formulate
the problem of learning sequential control strategies. An MDP consist of a set
of discrete states, S and has a set of actions, A, that it can perform. At each
time step t , the agent knows its current state st and selects and action at and
executes it. The environment responds to the action by giving the agent a reward,
rt � rpst, atq, and producing a new environment, st�1 � δpst, atq. Both δ and r
function are determined by the environment which can be unknown to the agent.
For sake of simplicity we will only illustrate the reinforcement learning on a case
in which S and A are both finite. The general rule is that both δ and r can be
nondeterministic, but we start by consider the deterministic case first.

The goal of the agent is to learn a decision function π : S Ñ A, mapping states to
actions that result in the greatest future reward. One solution is to use a policy
that produces the greatest cumulative reward for the agent, named V πpstq.

26

V πpstq � rt � γrt�1 � γ2rt�2 � ...

�
8̧

i�0

γirt�i
(4.8)

The future reward, rt�i in Equation (4.8), is generated by beginning in state st and
repeatedly using the π decision function to select optimal action (at�1 � πpst�1q).
In the equation p0 ¤ γ 1q, γ is a constant that regulates the relative value of
delayed versus immediate rewards.

Given the V πpstq defined we can specify the optimal decision policy, the agent’s
learning task as stated in Equation (4.9).

π�psq � arg max
π

V πpstq, p@sq (4.9)

4.3.1 Q-Learning

A simple example extracted from Mitchell [13, p.372] illustrates the basic concepts
of Q-learning (Figure 4.3). We define the notation Qps, aq as the expected dis-
counted reinforcement of taking action a in state s, where the value of Q is the
reward immediately received upon executing the action a on the environment s
plus the value of following the optimal action strategy (discounted by γ).

Qps, aq � rps, aq � γV �pδps, aqq (4.10)

With the close relationship between Q and V �,

V �psq � max
a
Qps, aq,

makes the task of learning Q correspond to learning the optimal policy and we can
rewrite the Equation (4.10) as

Qps, aq � rps, aq � γmax
a
Qps, aq (4.11)

where the optimal policy is:

π�psq � arg max
a
Qps, aq

27

Theories behind Skippy agents

rps, aq (immediate reward) values. Qps, aq values.

V �(s) values. One optimal policy.

Figure 4.3: A simple deterministic grid world is used to demonstrate the basic
principles of Q-learning. Each cell represents a distinct state, each arrow a distinct
action. The reward function rps, aq gives reward 100 for actions entering goal state
G and zero otherwise. Values of V � and Gps, aq follow from rps, aq and the discount
factor γ � 0.9. The optimal policy figure corresponds to actions with maximal Q
values.

28

Q-Learning Algorithm

When describing the algorithm we will use the notation Q̂ps, aq for the agent’s
estimate of the actual Q function. In the learning algorithm the agent store the
Q̂ps, aq values in a large table containing the entries for each possible state-action
pair. The initial table can be filled with random values or set all to zero. After
creating the initial table the agent will iterate over choosing a state, selecting and
executing some action and observing the new state and the received reward. The
updating rule of the Q̂ table can be expressed accordingly:

Q̂tps, aq Ð rps, aq � γmax
a
Q̂t�1pδps, aq, aq (4.12)

The training rule expressed in Equation (4.12) applies only on deterministic en-
vironment where executing action a in a state s will always result in the same
state δps, aq and the same reward rps, aq. Since we are planning to create a non-
deterministic environment in the Curling simulator we need a learning rule that is
generalized to work on nondeterministic environments.

Q̂tps, aq Ð p1� αtqQ̂t�1ps, aq � αtprps, aq � γmax
a
Q̂t�1pδps, aq, aqq (4.13)

where

αt �
100 � ρ

100� Ttps, aq

where

• Ttps, aq is the number of times action a has been used in state s at time t.

• ρ is the maximum learning rate.

The updated rule updates the Q̂ values with a decaying weighted average of the
current Q̂.

Both Equation (4.12) and Equation (4.13) can be proven to converge to the correct
Q function under certain assumptions. One of them is that the agent must select
its actions in such way that it will visit every possible state-action pair infinitive
often. However, this can be very problematic in a large state and/or action space,
and could slow the convergence to a good policy.

Action Selection

When the Q function has converged to the correct, action selection is simply:

π�psq � arg max
a
Qps, aq (4.14)

29

Theories behind Skippy agents

where π�psq is the optimal action given a state s. However, while the Q function
has not converged, a less greedy approach is necessary to ensure that optimal
actions can be learned. One one of the simplest way to “balance” exploration and
exploitation is to use the greedy action selection ε-Greedy.

As �

"
π�psq with probability 1� ε
random action with probability ε

(4.15)

However, ε-Greedy has the problem of neglecting the action values, which can de-
lay convergence unnecessary.

In Section 4.6 a more detailed description of the problem of exploration versus
exploitation is given, including the description of the algorithm used by our agent.

4.4 State and Action space

The continuous environment found in curling (see Section 4.1.1) presents a prob-
lem for the Q-learning described in Section 4.3.1. As described earlier, the main
idea with the Q-learning is to use experience to gradually learn the optimal value
function, which is the function that predicts the outcome that an agent could re-
ceive given a state and when an action is applied. The continuous environment
creates a problem for the learning because the value function must operate in a
space where states and actions are represented by real-valued values, which means
that the value function must be able to evaluate an infinite number of state and
actions. Learning in such conditions becomes very difficult because it is very un-
likely that an agent could be able to experience exactly the same situation it has
before.

A common approach to the problem is to discretize the state and action space
into a finite number of discrete state and actions. It is one of the simplest forms
for generalization, but has the drawback of compromising between accuracy and
efficiency. In order to achieve accuracy, the discrete states must be defined fine
enough to prevent aliasing, where functionally different situations map to the same
state and are thus indistinguishable. Efficiency is achieved by using a rough quan-
tization of the state and action space in order to reduce the computational load,
and thereby fastening the learning time. However, rough discretization is often the
cause for bad performance, or the divergence of the learning policy. The process
of reducing the state space by experience and expertise (designed) is also very
strenuous because of the difficulty of foreseeing the impacts the design could have
on the learning. There are several studies on how the drawbacks of quantization
can be reduced. Tuyls et al. [12] have used Bayesian networks for quantization of

30

large state space and Uchibe et al. [23] proposes modular reinforcement learning
as an effort to account for the compromise between learning and performance.

Other approximation techniques

There are other approaches to the problem of using Q-learning in a continuous
environment. One important approach is to avoid the problem associated with
quantifying state and action space by using other types of approximations when
generalizing the value function needed by the Q-learning.

Several attempts in extending the Q-learning framework to include continuous
state and action space suggest other options that can possibly avoid the drawbacks
of quantization [22, 8, 19]. The next four paragraphs describes a selection of
techniques that allow real-valued state and action in the Q-learning.

Q-Kohonen Touzet [22] describes a Q-learning method that uses artificial neural
network to improve the learning. The method uses Kohonen’s [10] self organizing
map where the state, action and expected value are the elements of the feature
vector. Action is selected by choosing the node that matches the state and the
possible max value.

Neural Field Q-learning Gross et al. [8] describes the use of dynamic neural
fields to distribute reinforcement learning in continuous state and action space. A
neural field can be viewed as a recurrent neural network that receives topographi-
cally organized information. Neural field were used to encode the expected action
values and similar states were clustered by using neural vector quantizer (Neural
gas).

CMAC Based Q-learning Ram et al. [19] have used Cerebellar Model Articu-
lation Controller or CMAC [1] in continuous Q-learning. The input or state-action
pair activates a specific set of memory location and the arithmetic sum of whose
contents is the value of the stored Q-value. The technique is a compromise between
a weight-based and a look-up table based approximation.

Curling State Model

We have previous in this section described options available for Q-learning in con-
tinuous environment. Because of the uncertainties about possible gains versus
the risk of adding more complexity to the learning by using the other approxi-
mation techniques, we have chosen to design our model by quantizing the space
into discrete states using experience and expertise. To model the game we need to

31

Theories behind Skippy agents

define a series of states, that is both detailed enough to clearly illustrate curling
but at the same time be brief enough that the problem does not become infeasible.

There exists little literature about analytical models for the curling sport, com-
pared to other sports such as Baseball (D’Esopo and Lefkowitz [5, p.55-62]),
Cricket (Clarke and Norman [4]), and Snooker (Percy[14]). Kostuk et al. [11]
suggested modeling curling as a Markov process, MP, using a round by round
representation. The paper suggested that there are two types of natural represen-
tations in curling; a shot by shot model of the game’s progression, or a round by
round representation. The model suggested by Kostuk was round by round.

Their model is describing two pieces of information that all competitive strategies
in curling should depend upon, namely, the score and whether or not the team
has the hammer. The MP model uses a state space described by the vector ti, ju
where i is the difference in score and j indicates the possession of the hammer.
Picture that we have teams A and B, and B is selected as our reference. Whenever
B is leading, i is positive, and in reversed, if A is selected and B is leading, i is
negative. For the second part of the tuple, if the j value is positive, j � 1, B has
the hammer. Figure 4.4 show the state transitions with k defined as the number
of points scored in a round.

Figure 4.4: Markov chain representation of scoring transition from state ti, ju with
k defined as the number of points scored in a state.

The model is capable of analyzing end-by-end results as a curling progress.

However, we want to build a model that can be examined during a round, where
we can use RL in selecting with the current state to select an appropriate strat-
egy (action group). Kostuk’s representation may contain enough information for
planning strategies over rounds, but not for a rock-by-rock strategy.

32

Our State Space To keep the complexity of our model as low as possible we
decided to use the same features described in Section 4.2.2, with some minor
modifications. The state used is defined by the vector showed in Equation (4.16)
and in Table 4.1 for ease of reference.

S � tx1, x2, x3, x4, x5, x6, x7, x8, x9u (4.16)

State vector description.
x1 the points in a state (equal to attribute i).
x2 the number of rocks the player has in house.
x3 the number of rocks the opponent has in house.
x4 the number of rocks belonging to the player that is guarded.
x5 the number of rocks belonging to the opponent that is guarded.
x6 the number of corner guards.
x7 the number of center guards.
x8 the rock the player is setting (0-7, 0 is first rock).
x9 the agent has the hammer.

Table 4.1: The description of the vectors in the state model.

Not that we have two real numbered features, namely x2 and x3 that would if used
directly created a infinite number of possible states to evaluate. Note also that x8

is not part of the features found in Section 4.2.2, but was included to enable the
RL to distinguish the parts of a round (e.g. beginning, middle and end) and hence
select action propitiate to the progress of a round. This attribute is needed for
allowing the agent to possibly recognize the importance of last rock in a round,
and possibly strategic advantages early in a round (e.g. place guards early in a
round).

State Complexity Table 4.2 shows the number of distinct state descriptions we
can have. The number of distinct states for our model has an upper boundary of
5.2 � 108. The precise number is expected to be lower because of the dependency
between the features excludes many states. For example, it is not possible to have
a state where all rocks are guarded and take points simultaneously, so the state
x1 ¡ 0, x4 � 16, x5 � 16 does not exist.
The state is more complex than the model suggested by Kostuk [11], but we believe
the added complexity is needed when we want the agent to learn rock-by-rock
strategies.

33

Theories behind Skippy agents

Attrib. x1 x2 x3 x4 x5 x6 x7 x8 x9

Values 17 9 9 9 9 17 17 8 2
Number of combinations: 173 � 94 � 8 � 2 � 5, 2 � 108

Table 4.2: Description of the attributes in the state model.

Curling Action Model

The effectors used in curling can be described by a real-valued vector u with the
following elements:

• u1: the x value of the aiming point.

• u2: the y value of the aiming point.

• u3: the split time (the time the rock use on traveling between the two hog
lines).

• u4: the curling direction, either out- or in-curling (see Section 1.3.2 setting
a rock).

The dimensionality of the space is much smaller compared to the dimensional-
ity of the state space, but its real-valued elements presents the same problem as
continuous state space for both the linear target function in Section 4.2 and the
Q-learning in Section 4.3.1 with infinite number of variations.

To solve the problem of infinite number of action variations we decided to reduce
the space by limiting both the boundary and granularity of the elements u1, u2,
u3 and u4.

When discretizing the effector vector we must apart from accuracy and perfor-
mance account for the nondeterministic environment (see Section 4.1.1) when de-
signing the action space. The nondeterministic behavior of the environment can
be observed as noise being randomly added to the effectors. Having this noise or
“random behavior” lowers the boundary for where accuracy gains is outgrown by
the performance cost. Operating with noise creates a point where finer granularity
has lesser impact on accuracy but still the same negative impact on performance.

The following paragraphs describes the finite action space created for both the
linear target function learning and the Q-learning.

34

Linear Target Action The granularity of the action and the size of the actions
space will be found by adjusting the granularity of both the x-value and the split-
time independently in an effort to provide a satisfactory ration between accuracy
and performance (subjectively through testing in the curling simulator).

The y-value has because of both its properties and the nondeterministic environ-
ment little impact on the result of an action, and will therefore be set to a constant
value.

The size of the action space is:

2 �
xupper � xlower

∆x
�
supper � slower

∆s
(4.17)

where ∆x and ∆s is the granularity selected for the x value and split time value,
respectively.

Q-Learning Action The action space for the Q-learning will be created by
further discretization. However, the discretization will not be done by adjusting
∆x or ∆s in Equation (4.17) but by first sup-group the environment into action
zones (Figure 4.5)

Figure 4.5: The Area the different action groups operates in.

35

Theories behind Skippy agents

Action Groups

1. Guards

2. In House

3. Take out

It can be arguments for creating more action groups, one example and maybe a
natural choice could be to split the Guard group into Center- and Corner-guard,
and similarly splitting the In House into Front- and Back-House. However, the
branching factor has a significant negative impact on the time required to train
the Q-values and can not be ignored. High branch factor, i.e. more action groups
and finer granularity creates more options at each state that needs to be tested,
and thereby will prolongs the training period.

The three groups selected play an important role in curling as they capture some
of the key aspects of both offensive and defensive play. For example, if an agent
is of a defensive mind, it will prefer to keep the opponents rocks out of play and
hence leads to selecting Take out over Guard actions. Offensive minded will in
similar way select Guard action over Take out throughout a round to protects
its rocks and hence create opportunity for high reward. The foundation for a
curling playing agent is to recognize the situations where offensive, and vise versa,
defensive strategies are appropriate. We believe that the agent will be able to learn
and recognize the difference, and apply them efficiently against its opponents with
our model.

4.5 MDP and our Q-Learning agent

Markov decision process or MDP have three important presumptions that must be
present in the domain being modeled. In this section we will shortly describe how
the presumptions are represented in the models used by our Q-learning agent. A
reinforcement learning task (including Q-learning) that satisfies the Markov prop-
erty is called a MDP.

MDP comprises of the following three presumptions:

• that the policy π is a direct function of the states S.

• the Markov property

• that the probability P pst�1|st, atq is independent of t

36

Is π a direct function of S?

The first presumption states that for every state s there is a single action a that
maximizes the expected cumulated discounted future reward. In the curling do-
main this means that there is a single action for every state that maximizes the
chance of winning.

It is difficult to determine if this is the case for all possible states. However, if
we assume that for all opposing strategies there exist an optimal series of actions
to perform that maximizes the winning chance, the presumption will hold. This
assumption is supported by the fact that most strategies in curling are based on
such series of actions.

The Markov Property

The second presumption or the Markov property states that the result state st�1

depends only on the current state s and action a (st�1 � δpst, atq).

The presumption depends on how we defined our state description. Our state
description (see Section 4.4) is a rock-by-rock model that will in the boundary of
a round fulfill this presumption. However, in the first state in all rounds after
first round we will have the exception where the result state of the first action
(setting first rock) could be dependent on the final state in previous round and the
current state. This is a result from the relationship found between rounds related
to playing a hammer round.

PpSt�1|st, atq independent of t?

The presumption states that the probability of ending up in a state s when taking
action a will be the same for independently for what point in time the the action
is used.

For our rock-by-rock model the answer will depend on the opposition. Playing
against an agent that has knowledge about the total score and rounds played
could use such knowledge to its advantage and hence show different behavior in
equal round states resulting in a P pSt�1|st, atq that is dependent on time.

However, for our experiments we will use opponents that does not change theirs
behavior between rounds. But against opposition showing such behavior it will
be necessary to reassess the defined states so they can include the results from all
previous actions.

37

Theories behind Skippy agents

Consequences

When creating the state model that will be used by the Q-learning agent we had
to accommodate the three presumptions stated. From our description of how our
model manages to represent the presumption we can see that the model does not
completely pass as MDP. The difficulties arise when trying to both limit the state
space size while simultaneously making the models expressive enough to fulfill the
MDP presumptions.

However, we believe that not fully capturing the last presumption (P pSt�1|st, atq
independent of t) will have little consequence for our results related to the Q-
learning.

4.6 Exploration vs Exploitation

In a non-deterministic, partially observable, dynamic and sequential environment,
how should decisions be made? Two paths can be followed to obtain good strate-
gies:

Exploit: act optimally accordingly to our current beliefs.

Explore: learn more about the environment.

The environment must for both options be taken under consideration. For exam-
ple can nondeterministic environments create cases where a state-action pair is
wrongly valued. That is, cases where “noise” skews the result of an action, and
hence skewing the value of the action. We can also find similar problems when
operating in a partially observable environment, where wrong assumptions or an
outdated state model could lead to similar skewing of the estimated value of an
action. However, in any environment it has been considered that neither exploita-
tion nor exploration can be pursued exclusively without failing at the task [21, p.4].

4.6.1 The K-armed bandit problem

The bandit problem is maybe one of the most generic ways to model an exploitation-
exploration. The k-armed bandit is a slot machine with k-arms, each arm with
an unknown expected return. The objective of the gambler is to maximize the
sum of rewards through iterative plays. The problem in bandit is to find a bal-
ance between reward maximization based on the knowledge already acquired and
attempting to further increase knowledge.

38

A K-armed bandit (first described in Robbins [16], 1956) problem is defined by
random variables Xi,n for 1 ¤ i ¤ K and n ¥ 1, where each i is the index of a
gambling machine (i.e. the “arm” of a bandit). Playing a machine i in succession
yield the rewardsXi,1, Xi,2..., which are independent and identically distributed but
with an unknown distribution ui. The independency holds also across machines;
i.e. Xi,s and Xj,t are independent for each 1 ¤ i, j ¤ K and each s, t ¥ 1.

Proposed solutions to the bandit problem The bandit problem has many
proposed solutions. Four examples are:

• ε-greedy exploration: choose apparent best action with probability 1� ε,
or random action with probability ε.

• Boltzmann exploration: is a more sophisticated exploration strategy that
does not force two choices like ε-greedy, its selection is based on the Boltz-
mann distribution. At each time step t each action ai has the following
probability to be selected.

P pπpsq � aq �
expp 1

τ
�Qtps, aqq°n

j�1 expp 1
τ
�Qtps, aqq

where:

– n is the number of actions.

– Qtps, aq is the Q-value of the state-action pair in current time step t.

– τ (τ P R and τ ¥ 0) is the temperature.

• Optimistic exploration: choose an arm that has a possibility of being the
best.

• Bayesian exploration: assign prior to the arm distributions and based
on the rewards, choose the arm with best posterior mean, or with highest
probability of being the best.

4.6.2 The UCB algorithm

Upper Confidence Bounds (UCB) algorithm (Auer et al. [2]) is another proposed
solution to the bandit problem. The algorithm must first be initialized by playing
each arm once. After the initialization we have at each time n, select an arm using
Equation (4.18).

a � arg max
k
Bk,nk,n, (4.18)

39

Theories behind Skippy agents

with

Bk,nk,n �
1

nk

nķ

s�1

xk,sloooomoooon
X̂k,nk

�

c
2 log n

nkloooomoooon
cnk,n

(4.19)

where

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward obtained when pulling arm k.

The idea behind the algorithm is to select an arm that has a high probability of
being the best, given what has been observed so far.
The size of the confidence interval cnk,n decreases as the number of times an arm
k, (nk) is pull and is increased if the arm is pulled significantly less than the other.
The confidence interval guarantees that all arms, independently of its expected
reward will be tested again and again, but at exponentially longer intervals.
The term regret is often used as a measure when comparing action-selection algo-
rithm. Regret for an algorithm is defined as the amount lost by using the algorithm
rather than selecting the optimal solution (arm) each time. An algorithm that has
a regret that grows no more than logarithmically is proven to be optimal [3].

Using the regret measurement, UCB has been proven to achieve logarithmic regret
without requiring any preliminary knowledge about the reward distribution (apart
from the fact that they are all inside a bounded interval) making it an optimal
solution.

Q-learning and UCB Using Q-learning in the reinforcement learning allows us
to simplify the equation and notation stated in Equation (4.18) and (4.19) to:

a � arg max
a

t Qps, aq � Q̂s � CTt�1paq,Tt�1psq u (4.20)

where

• Tt�1paq and Tt�1psq, is the number of times the action and state has been
used, respectively.

• Q̂s is the average Q-value for state s. We choose to use the value to scale
the confidence interval to match Qps, aq values.

40

4.6.3 UCT (UCB applied to Trees)

UCT is a bandit based tree search method based on UCB suggested in Kocsis [9].
The method has shown its strength in problems with huge trees, e.g. in the game
of Go [7], with its effective exploration of the trees. UCT treats each node (state)
in the tree as an independent bandit, with its child-nodes as independent arms.
The algorithm is rollout-based, which means that instead of handling each node
iteratively, it simulates playing a sequence of bandits within limited time each
starting in the root and ending at one leaf.

The pseudocode of a generic Monte-Carlo planning algorithm is given in Figure 4.6,
which shows how the algorithm builds a lookahead tree by repeatedly sampling
episodes from the initial state. An episode is a sequence of state-action-reward
triplets. We can see that the algorithm iteratively generates sequences (line 3)
and returns the highest average long term reward (line 5). The method selectAc-
tion (line 9), would be a method that uses UCB to select an action when using
UCT.

1: function MonteCarloPlanning(state)
2: repeat
3: search(state, 0)
4: until Timeout
5: return bestAction(state, 0)

6: function search(state, depth)
7: if Terminal(state) then return 0
8: if Leaf (state, d) then return Evaluate(state)
9: action:= selectAction(state, depth)

10: (nextState, reward) := simulateAction(state, action)
11: value := reward + γ search(nextstate, depth + 1)
12: UpdateValue(state, action, q, depth)
13: return q

Figure 4.6: The pseudocode of a generic planning algorithm.

Simulating Curling The environment description of curling (see Section 4.1.1)
is a complex environment where lookahead planning is very difficult. There are
several factors that make the planning (e.g. running search(state, depth) with
depth ¡ 1, line 3) toilsome. One key factor is the combination of being dynamic

41

Theories behind Skippy agents

and nondeterministic. Planning several rocks ahead in one round introduces an
unknown level of uncertainty.

When planning in environment such as curling it is important to address the
following problems:

Opponent strategy Knowing the opponents strategy is an important compo-
nent when planning. Without such knowledge it becomes more difficult to find
and commit to an effective strategy since they are often dependent on the other
opponents goals and behavior. Exploration such information will require the agent
to adapt the observed behavior of the opponent into a behavior model that can
predict the opposition.

Continuous Environment Operation in such environment removes the option
of directly searching through the state space. The infinite size makes such task
unsuitable. Discretizing and hierarchical decomposition (top-down planning) is
example of techniques that can help the planning.

Round and Match The curling relation between a round and a match further
complicates the planning task. Curling strategies are no necessarily restricted to
the scope of a round. We expect that in order to predict an agent strategy (assum-
ing that the opposing agent is rational) it would be necessary to both determine
round based strategies and long term match strategies.
Evaluating the difficulty of planning in the scope of our simulator and curling
environment it was decided not feasible in this project. The agent implemented and
described in Section 5.3.2 (Q-learning + UCT) will therefore execute no planning
when selecting bestAction. This is equal to remove the recursive search in line 11
in Figure 4.6.

42

Chapter 5

SkippySimulator

In this chapter a detailed description of SkippySimulator and the curling-playing
agents is given. This entails describing the architecture, main component pro-
cesses, and the main part of their implementation.

5.1 Architecture

The purpose of this section is to present an abstract overview of the architecture
using UML models to visualize the main elements of SkippySimulator’s architec-
ture and reason about how the elements and their relationships support the goals
and constraints stated in Chapter 3.

The main purpose of the simulator is to provide a basic, underlying
system for testing curling playing agents.

Section 3.2 describes both the requirements and constraints for the simulator.
They will be addressed by creating a curling simulator framework named Skip-
pySimulator. Creating this framework presents both advantages and disadvan-
tages

Advantages

• The process of creating a framework forces us to develop a clear picture of
what features and requirements are wanted and required.

• It facilitates code reuse. There is no sense in “reinventing the wheel”. By
providing the simulator as a framework it can be used in future projects.

43

SkippySimulator

Disadvantages

• Framework design is difficult. It is hard to structure the system in such a
way that it can fit into someone else’s program and still perform the task it
is designed to do.

• A proper framework should have all the functionality that a user needs,
something that is very difficult to achieve.

5.1.1 Design

The architecture for SkippySimulator is characterized by its use of the Model-View-
Control pattern (Reenskaug [15]). Figure 5.1 illustrates the components and their
dependency relationships. The task of creating new agents is simplified by sepa-
rating the agent from the simulator and providing a unified agent interface. With
this architecture new agents can be created without having acquired knowledge
about the inner workings of the system.

Figure 5.1: Software Architecture of SkippySimulator

44

Agent: This is the only package a user of the simulator framework needs to think
about. It contains the class BasicAgent, that new agents needs to inherit from.
As well as a set of hook methods that must be implemented when creating agents.

Control: This package contains control classes. The two most important classes
here are SimulatorApp which creates and controls the GUI, and the SimulatorTask
which manages curling simulations. It is responsible for setting up, manipulating,
and driving a simulation.

View: Has the class for viewing a curling game.

Model: This package contains the different types of data-structures used by the
framework. The class RockCollection is the structure used to manage the curling
rocks.

Util: The utilities package contains a variety of utility classes used both inter-
nally by the controllers and by the views. For example Zoomable that contains a
number of static methods that allows views to zoom and pan.

External Dependencies: Figure 5.1 shows the two main dependencies Skip-
pySimulator has. AppFramework provides application infrastructure and JCurl
handles rock collision and graphics.

5.1.2 Architectural Rationale

In this section we explain our architectural design decisions.

JCurl Framework: The framework comes with many typical curling concepts
out of the box. Its comprehensive support for important features such as curl,
collision, storage and display allows us to focus more on the agent interaction
in Skippy. It will allow us to use more time on agent development rather than
implementing the SkippySimulator framework.

AppFramework - Swing Application Framework API: The framework
simplifies the building of SkippySimulator by having a defined infrastructure com-
mon to most applications that we can base our framework on. Strong points are
managing application lifecycle (startup, shutdown), loading resource and action
binding (also asynchronously). The use of this framework will shorten the time
needed for implementation.

45

SkippySimulator

Patterns Rationale: By using the MVC pattern throughout the framework we
will get a system with low coherence. This will greatly reduce the difficulty of
changing or adding functionality at a later time, but it also makes it easier to
cooperate when there are several people working on the same project.

5.2 Main Components

In this section we will describe the main components of the SkippySimulator. A
screenshot can be seen in Figure 5.2. The five main components of the application
are; the main playing area, the scoreboard, a birds eye view of the house, the menu
bar and the interactive controls.

Figure 5.2: Screenshot of SkippySimulator’s user interface.

46

The Main Playing Area(1): The main playing area is a zoomable view of the
ice. The player is able to pan and zoom as he sees fit to get the best view for the
shot. At any given time the location of all rocks in play are shown. After a shot
have been made, paths are drawn to better visualize how the rocks moved across
the ice. The icon marked 5 in the screenshot is the broom. The player uses the
broom to aim when making shots.

The Scoreboard(2): Situated in the upper right corner of the screen is the
scoreboard. This is a listing showing how many points were awarded in each
round of the game. The totals for both players at any given time are shown at the
bottom of the board.

The Bird’s-eye View(3): Below the scoreboard is the bird’s-eye view. This
is just to aid the player during the game. While the main playing field can be
zoomed and panned at will, the bird’s-eye view always shows just the area where
stones are in play. This includes the area from the hog line to the back line at the
playing end of the ice.

The Menu bar(4): The menu bar, situated at the very top of the screen in-
cludes options for starting the game with human players or computer agents or
any combination thereof. There are options for zooming that are designed to help
the player. You can for example automatically zoom in on the house.

The Interactive controls(5) The interactive controls for human players are
all encompassed in the “broom” seen in the lower right area of the playing field
on the screenshot. The broom is shaded in the color of the player whose turn it
currently is. By moving the broom around the player indicates where he wishes to
aim and the direction the stone will curl is indicated by the thick black line on the
broom. The direction the stone will curl can be switched by double clicking on the
broom. The purple slide just below the broom is used to adjust the strength of
the throw. Finally, clicking the send button located at the bottom of the window
will send the rock when the player is satisfied with his/her aim.

5.3 Implementation

In this section we discuss how SkippySimulator and its curling agents are imple-
mented.

47

SkippySimulator

5.3.1 SkippySimulator

This section describes the most important aspects of the implementations of the
simulator.

BasicAgent

The class is abstract and consists of a set of hooks methods implemented from the
Agent and InterActive interfaces (see Figure 5.3). The class implements resource
management (getResource, addResource) This enables agents to read data from
disk. Agents should use the loadResouces method for queuing what resources the
simulator should load before calling the agent’s setup method.

Agents that subclass BasicAgent will have the option of overriding one or more
of the remaining methods provided by its interface. So, for example, if you want
to create an agent that use the mouse to set rocks you would simply override the
isInterActive method (see example in Listing 5.1).

The methods setup and tearDown are pre/post game methods that are only called
before and after a curling match. These methods are meant for one time tasks
such as reading data from disk, initializing agent properties and writing data to
disk.

Figure 5.3: BasicAgent class

48

The methods onTurn and afterTurn are the pre and post methods for setting a
rock. In onTurn the agent get access to the rock positions, and are able to set its
rock. The afterTurn allows the agent to see the results of its actions before the
other agent sets a rock.

c l a s s HumanAgent extends BasicAgent {
pub l i c boolean i s I n t e r A c t i v e () {

r e turn true ;
}

}
Listing 5.1: HumanAgent example code

Application control

The control of the simulator is handled by several classes; the most important
ones are SimulatorApp, SimulatorTask and RockBroomControl. SimulatorApp is
the main entry point of the program. This class holds all the important compo-
nents of the game such as the broom and the rocks model, also it ensures that the
GUI is drawn properly.

When a game of curling is ready to begin, SimulatorApp creates an instance of
SimulatorTask with the appropriate players. A player is an instance of a subclass
of BasicAgent as described in the previous section. The SimulatorTask class han-
dles the progress of a curling match, ensuring that the players get to take their
turns and that the score is calculated correctly at the end of each round. This
class also handles sending notifications to the players about events in the game,
but this is only relevant for the automated agents as the human players will simply
see what happens on their screen.

SimulatorTask utilizes the class RockBroomControl to ensure that the correct rock
is placed at the hack when a player is about to take his/her turn and that the rocks
behave correctly when collisions occur on the ice.

5.3.2 Agent implementation

With the usage of the new framework two main agents where created, SkippyA-
gent and RLSkippyAgent, where’ the latter one builds upon the foundation of the
former.

49

SkippySimulator

SkippyAgent

SkippyAgent (see Figure 5.4) is the implementation of the Linear Agent described
in Section 4.7. The most important function is doBestMovepq, which is called
when it is the agents turn to set a rock. It uses a Linear Target function to deter-
mine where to set the next rock. The best move is found by testing a multitude
of actions, then analysing the top three to see which one is the best alternative
after the probability of missing/failing is accounted for. The best action with least
chance of missing is then selected and comunicated to the simulator. Then it is
the oponents turn. When a round is ended (when either onWin, onLoose or onTie
is called), the feature weights are adjusted in accordance with the result.

Figure 5.4: UML diagram for SkipppyAgent.

The superclass AbstractAgent was created to handle pre and post functionality. It

50

mainly support easy access to loading and saving an agents knowledge. The class
extends from BasicAgent.

API This is the package that contains the interfaceS used to facilitate and sim-
plify the implementation of an agent. The following paragraphs describes their
purpose and main properties.

Action The interface that handles the agents output. The implementation of
getSubAction makes it possible to create a hierarchy of actions, where sub-action
can for example be lower level actions. The execute method sets the output as
specified in the action.

AgentAction is the implementation created for SkippyAgent.

State The interface for implementing the input from the environment that an
agent perceives. The getDoubleArray should return an array with the information
captured in the state. Any two states are identical if and only if they return iden-
tical arrays.

AgentState is the implementation used by SkippyAgent, it implements the features
described in Section 4.2.2.

Featurizer The interface used for describing a state as a series of features with
weights. SkippyAgent uses an implementation of this interface, AgentStateFea-
tures, for estimating the value of a state by using Equation (4.7) as described
Section 4.2.

RLSkippyAgent

RLSkippyAgent (see Figure 5.5) is the name of the agent that was implemented
to use Reinforcement Learning as described Section 4.3.

The agent uses RL to learn the value of a set of action groups1 given its current
curling state. UCT as described in Section 4.6 is used by the agent to control its
explorative versus exploitive behavior.

API RLSkippyAgent is dependent on the following classes and packages.

1Action group is a collection of actions that share similar properties.

51

SkippySimulator

Figure 5.5: UML diagram for RLSkippyAgent.

RLAgentState This is the implementation of the state model described in Sec-
tion 4.4. The class share the properties found in AgentState except it is modified
to use only discrete properties and it has an additional feature that describes what
rock is next.

QLearning Implements the Q-learning algorithm described in Section 4.3.1.
The two most important methods in this class are selectAction and updateValue.
The method selectAction implements UCT as described in Section 4.6.3. However,
it does not use a lookahead approach, thereby making the selection equal to UCB
using Equation (4.20). Method updateValue uses the nondeterministic Q-learning
rule, Equation (4.13) for updating the value of tstate, actionu pairs in the Q-table.
setReward is only used on final states (e.g. after the last rock in a round), where
the reward is set based on the outcome from the round.

DB package This is a support package used by the Qlearning class to manage
the Q-table. The size of the state space made it necessary to provide a solid
and self managed data model for the large Q-table. This package provides the
Q-Learning with access to a database for creating, retrieving and updating entries
in the Q-table. The database also enables us to easily run distributed training of
the agent, since the database can be accessed from anyywhere.

ActionFactory The ActionFactory provides the set of action groups that QLearn-
ing selects from.

52

The method getAllActions returns a set containing the following groups:

• Guard Actions that tries to set guards.

• Take Out Actions that can be used to take out rocks.

• In House Actions that can place the rock in house.

53

SkippySimulator

54

Chapter 6

Results

This chapter lists the experiments done using the curling simulator. Each exper-
iment is described by its setup and potential weaknesses/expectations. For all
experiments we will give a discussion of the results and a conclusion.

6.1 Experiment 1 - Linear Target Function

– Single Weight Set

The first experiment concerns SkippyAgent as described in Section 5.3.2 and in-
volves training the feature weights (Section 4.2), as well as running simulations
against opponents to see how the agent performs.

6.1.1 Setup

The training of the agent will hold two parts:

• Part 1 - Train SkippyAgent against a random agent, named AKA.

• Part 2 - Train SkippyAgent against a version of itself where the weights have
been frozen.

For both training phases we will use a decaying learning rate that is initialized
with η � 0.005 (see Section 4.2.3). The learning rate will have decayed to half
its value after 200 rounds of training. The feature weights will be initialized with
random values in the interval �10 wi 10.

The opposing agent in Part 1, AKA, is an agent that has one goal; set all its rock
in the house. However, that agent has random noise added to its effectors to create
diverse situations that SkippyAgent can learn from. AKA is stateless and does not

55

Results

evaluate its input before commencing to set a rock. The opposing agent in Part 2
will use the trained weights from Part 1, but they will be frozen (i.e. the learning
rate is set to 0).

Upon completing the two phases of training we will test SkippyAgent in a 5-match
tournament. The opponents in the tournament will be AKA and an agent named
Scott. Scott is a simple agent that has a more defensive strategy (when compared
to AKA) that uses take-out actions to keep the ice empty of rocks.

6.1.2 Weaknesses/Expectations

Before we initialized the first training we tried to identify possible weaknesses with
our setup, including the assumptions that the agent is built upon and the envi-
ronment it operates in.

The most important weakness is the feature vector used by the agent. The set
of features selected makes the agent incapable of separating all functionally equal
states. This means that many different situations will be regarded as being in the
same state, which could make it more difficult for the target function to converge.

Another issue is the discrete features Corner- and Center-Guard. The problem is
that it is difficult to differentiate guard actions when the ice is empty, because all
actions have the same value. The value of a guard action will only differ if the
action changes the feature set by either guarding a new rock or moving/removing
an already set rock. The result of selecting a guard action when the ice is empty
will be to try to set the rock to a fixed guard position (for example first or last
guard action checked). This behavior could disable the agent from learning the
advantages of setting guards early in a round in an effort to control access to the
house.

The third weakness we identified is related to Last Stone Strategies described in
Section 1.3.3. The feature set does not capture the difference between rounds
where the agent has the last rock, and rounds where it does not. This could make
it difficult to train weights that accommodates both situations.

We also discussed an issue related to how the features are trained. Equation (4.2)
and Equation (4.3) states that we will update the features after a round by suc-
cessively adjusting the weights using the successor state.

The possible problem that we discovered can be described as follow:

56

• We could have rounds where both parties play “perfect” rounds where the
opponent always creates a negative valued state for the agent, and the agent
creates a positive valued state afterward. This will for the agent result in a
state trajectory that alternates from positive to negative valued states.

• Updating such trajectory using the successor state would mean that the
agents “perfect” states will be adjusted negatively based on the value of the
successor, independently of whether or not the outcome of the round was
positive or not.

• The same problem could also occur if both parties play “poor” rounds, which
could create the result that negative valued states (and bad states) are up-
dated positively.

The most basic thing to learn is the advantage of setting rocks in house and taking
points. We expect that the training of the agent’s features will result in weights
that favor setting a rock in house and take points. But we hope that the agent
will also realize the value of guarding, even if it does not win consistently.

6.1.3 Results

This section presents the result from Experiment 1. For training, the agent played
a total of 40 matches, 20 against AKA and 20 against Scott. In total this amounted
to 402 rounds (including tie-breakers) to adjust the weights. Figure 6.1 show how
the different weights were adjusted throughout the rounds.

Finally the weights of SkippyAgent was frozen and a 5-match tournament was
played against both AKA and Scott, the results of which can be seen in Table 6.1.
More detailed descriptions of the results are shown in Table A.1 and Table A.2 in
the Appendix.

Opponent Victories for Skippy Total Points Avg. pr. Round
Aka 5 141-8 2.82
Scott 5 23-15 0.44

Table 6.1: Results from 5-Matches tournament.

6.1.4 Discussion

Discussing the learned weights independently may be difficult, but it is possible
to extrapolate possible explanations and causes for the learned order and value of

57

Results

0 50 100 150 200

-4
0

-2
0

0
20

40
60

80
10
0

Round

W
ei

gh
t V

al
ue

w1
w2
w3
w4
w5
w6
w7

(a) Training against AKA, training 20 match a 10 rounds.

0 50 100 150 200

-4
0

-2
0

0
20

40
60

80

Round

W
ei

gh
t V

al
ue

w1
w2
w3
w4
w5
w6
w7

(b) Training against itself, 20 match a 10 rounds

Figure 6.1: Weights for SkippyAgent, Figure (a) shows the weights when training
against AKA, and Figure 6.1(b) shows the weights when training against itself
(opponent uses constant weights) initialized with the previous trained weights.

58

some of the weights.

The first important issue is how the weights are ordered and whether or not if
some weights change order and sign multiple times in the course of the training.
The later case would tell that the agent had significantly problem with learning
from the training situations.

From Figure 6.1(a) we can see that SkippyAgent was quick to learn both the order
and sign of the weights. After completing 75 rounds we can see that both the
order and sign remained unchanged.

The learned value of the two weights w1 and w2 (Points and Rocks in house)
tells us that the agent was able to learn the advantage of setting rocks in house
and take points. That both weights are positive can indicate that the agent has
learned a very offensive strategy, where it wants to take as many points as possible.

Learning to guard was not as easily achieved. The training result in a positive w7

(center guard) feature, but we argue that it failed to exploit the full potential of
the guards related features w4, w5, w6 and w7. We believe that to fully exploit
guarding actions the agent must recognize the value of guarding other rocks (w4).
The trained values of the guard related features tell us that the agent was not able
to see the value of using guard actions and having guarded rocks. The ordering of
the guard weights confirms our suspicion that our agent does not fully comprehend
the usage of guarding action. For example, with the weight order w5 ¡ w4 the
agent will have a behavior that chooses to guard opposition’s rocks over its own
rock, a behavior that is not wanted.

However, evaluating the features separately is colored by our design ideas for the
features, and it could be the case that we have yet to see the full advantage of the
currently trained features.

The result from the tournament (Table 6.1) shows that the training resulted in an
agent that had no problem competing against our selected opponents. The lower
score against the defensive Scott agent confirms that the agent has problem to
effectively use guards against defensive agents.

6.1.5 Conclusion

The experiment setting shows good potential, at least against the opposition used.
We observed that the agent was able to learn a sensible order of the weights.
However, it was not able to exploit the full potential of the guard related features

59

Results

(w4, w5, w6 and w7). To address the problem of learning the guard features, we
will replace the single feature set with two sets, one set for rounds when the agent
has the last rock (hammer rounds) and one set for when the opposition has the
last rock (normal rounds) in Section 6.3.

6.2 Experiment 1b

To address the a possible weakness described in the first experiment (Section 6.1.2)
with how the feature weights are updated when training, we will in this experi-
ment test an alternative updating policy: Instead of updating the weights with the
estimated value of the successor state as described in Equation (4.2) and Equa-
tion (4.3) we will replace successor(s) with endState(s):

Vtrainpsq � V̂ pendStatepsqq (6.1)

The goal with the alternative updating policy is to train the weights more directly
to the estimate of a rounds end state, instead of the indirect way by using successor
states.

6.2.1 Setup

This experiment only differs from the first experiment with its alternative policy for
updating its feature weights. All parameters, training, opponents and tournament
match will be done exactly as described in the previous experiment in Section 6.1.1.

6.2.2 Weaknesses/Expectations

The similarity to the first experiment means that this experiment shares all the
weaknesses we discussed in Section 6.1.2, apart from the one describing the prob-
lem of using the successor state to update the weights.

If the experiment is successful, it should prevent fluctuation in the features weights
when training and enable a more steady convergence of the feature weights. How-
ever, our expectation for this experiment is divided. We hope that the alternative
updating policy will enhance the learning, but it could also create the opposite
effect, delaying the convergence of the weights or even prolong the training indef-
initely.

60

6.2.3 Results

After training 250 rounds, the agent had won 179 and lost 76 times with an average
of scoring 1.3 points pr. round. Figure 6.2 shows how the weights were adjusted
throughout the training.

0 50 100 150 200 250

-2
0

-1
0

0
10

20

Round

W
ei

gh
t V

al
ue

w1
w2
w3
w4
w5
w6
w7

Figure 6.2: SkippyAgent weights from training while using alternative update
policy.

Table 6.2 shows the result from the 5-match tournament played after complet-
ing the training. In the tournament the agent also played against the SkippyA-
gent from Experiment 1a. More results from the tournament are given in Ta-
bles A.3, A.4 and A.5 in the Appendix.

Opponent Victories Total Points Avg. pr. Round
Aka 5 124-9 2.58
Scott 5 22-14 0.44
SkippyAgent 1 31-43 0.62

Table 6.2: Results from 5-Matches tournament.

61

Results

6.2.4 Discussion

If we compare the result of the training of the feature weights showed in Figure 6.2
with the results from the previous experiment (Figure 6.1) we can conclude that
the alternative updating policy did not have the wanted effect of easier convergence.

Figure 6.2 shows weights that display little signs of convergence after 200 rounds.
We can for example observe that the weights w3, w6 and w7 have changed their
value sign multiple times throughout the training. This is a clear indication of the
problem the agent has when adjusting the feature weights using the alternative
update policy. Using the end states introduces too much instability, which results
in much more weight fluctuation compared to the result from the previous exper-
iment.

Since we cannot observe convergence in this experiment all discussion around the
trained feature values and their internal order becomes much more uncertain.
However, there is one important difference to the weights in Figure 6.1 that we
will mention. Through the whole training we can observe that w3 ¡ w2. This
means that the agent prefers having the opposition’s rocks in the house over its
own. Still w1, which is the number of points taken, is the most positive of all
states. We interpret this to mean that that agent likes to have stones in the house
(including the oppositions) so that takeouts become difficult, and the stone closest
to the button belonging to the agent so that it scores points.

The results from the tournament (Table 6.2) highlights the issue with the order
of the weights. Learning a set of features values where w3 ¡ w2 created a curling
agent that was not as competent to take point against AKA and Scott when
compared to the agent from the previous experiment (Table 6.1). The result from
the match with the previous agent further confirms that the alternative policy is
less effective on the curling problem.

6.2.5 Conclusion

The experiment was a failure; the alternative update policy had a severe effect on
the convergence of the weights. For the remaining experiments we will go back to
the updating policy used in the first experiment.

62

6.3 Experiment 2 - Linear Target Function

– Double Weight Set

Experiment 2 involves modifying SkippyAgent to use an extra set of weights. The
two sets will be used independently of each-other depending of whether the agent
has the hammer or not. An agent that uses only one set of weights will have the
same behavior with and without the hammer. However, this behavior will not
always give the same result depending on who has the hammer. This will lead to
problems for the agent with regards to learning, as a good move at one point might
be really bad another time. We will refer to this agent as SkippyAgentHammer.

6.3.1 Setup

SkippyAgentHammer will be trained against a clone of itself. We will modify the
simulator a bit for this training only so that one clone always gets the first shot,
and then the other clone always has the hammer. Using this setup we ensure that
both sets of weights get the same amount of training, and it also becomes easier
to keep track of how the weights are adjusted as the training progresses. Once
the training is finished, one agent will use both sets of weights in accordance with
whether it has the hammer or not.

The training of both sets of weights will be done with a learning rate initialized at
η � 0.005, which will decay to half its value every 200 rounds. All weights will be
randomly initialized with values in the range �10 wi 10.

6.3.2 Weaknesses/Expectations

With SkippyAgentHammer we hope to address some of the weaknesses for Skip-
pyAgent. By using two separate sets of weights we hope that the agent will adopt
separate strategies for when it has the hammer and not, and that it will be better
in both cases. Still there are some strategies that are beyond the scope of this
agent, specifically those that span an entire match. A match of curling usually
consists of ten rounds, and the best strategy in a round often depends on the result
of previous rounds. This is especially true at the end of a game. For example in a
situation where an agent can win the whole game by taking one point, that would
be the smart thing to do, although its strategy might say that it should force a tie
in order to keep the last stone for the next round.

63

Results

6.3.3 Results

Figure 6.3 shows how both sets of weights were adjusted during 200 rounds of
training. Table 6.1 shows the results of five matches against SkippyAgent from
experiment 1. See Table A.6 in the Appendix for more details of these matches.

Opponent Victories Total Points Avg. pr. Round
SkippyAgent 4 49-31 0.98

Table 6.3: Results from 5-Matches tournament.

6.3.4 Discussion

For both sets of weight we can see that there is quite a bit of movement at the be-
ginning of the training. However it only takes about 25 rounds before the weights
seem to have converged. There are some movement after this but that can be
attributed to noise from the simulator which adds a bit of uncertainty to each
throw, or to the fact that the agent is unable to estimate all possible actions.

For the weights without the hammer, the convergence seems quite good and the
weights stay about the same for the rest of the training, however in the case of
the hammer weights, some of the weights seem to decrease continually after the
initial convergence. This led us to suspect that the training after round 25 might
be over fitting the weights. We tested this by running several matches against
SkippyAgent with both sets of weights trained for 200 rounds. There did not seem
to be much improvement for SkippyAgentHammer, and both agents won an equal
amount of times. We then tried to roll back the hammer weights to what they
were after 25 rounds of training and the results improved quite a bit. We conclude
that the hammer weights were in fact over fitted and the results seen in Table 6.1
are obtained using hammer weights that are trained for 25 rounds.

We can se that both sets are similar when it comes to the weights: score (w1),
the agent’s rocks in house (w2), and the opponents rocks in house (w3). For both
sets it is the case that the opponents rocks in house is very negative, while the
agents rocks in house is very positive, and score is even more positive. The key
difference between the two sets is that while the non-hammer weights value the
agents guarded rocks (w4) and center guards (w7) as positive, the hammer weights
value these as negative together with the opponents guarded rocks (w5) and corner
guards (w6).

64

0 50 100 150 200

-2
0

-1
0

0
10

20
30

Round

W
ei

gh
t V

al
ue

w1
w2
w3
w4
w5
w6
w7

(a) Weights without hammer

0 50 100 150 200

-4
0

-3
0

-2
0

-1
0

0
10

20

Round

W
ei

gh
t V

al
ue

w1
w2
w3
w4
w5
w6
w7

(b) Weights with hammer

Figure 6.3: Weights for SkippyAgent, Figure 6.3(a) shows the weights that the
agent uses when it does not have the hammer. Figure 6.3(b) shows the weights
that are used when the agent is playing with the hammer.

65

Results

When it comes to the 5-match tournament against SkippyAgent we se that Skip-
pyAgentHammer won 4 out of 5 matches. It scored 37% more points than its
opponents for an average of 0.98 points per round. By studying Table A.6 some
interesting patterns emerge. We see that both agents seem to take points every
other round. This is of course because the take turns having the last stone, and we
get a clear example of the advantage this gives. However there is one important
difference: SkippyAgentHammer is able to take several points when having the
last stone while SkippyAgent often only manages to take one point. The strategies
we discussed in Section 1.3.3 say that it is better to force a tie than take one
point when having the last stone. SkippyAgent does this a total of 14 times while
SkippyAgentHammer only does it 3 times. Another important measure of success
in curling is the ability to steel points, which is to take points when not having
the last stone. We see that both agents manage to do this three times each, so no
difference there.

6.3.5 Conclusion

The experiment is considered a success. SkippyAgentHammer shows improvement
over SkippyAgent. The weights have converged after only a small amount of
training, and the values of the weights seem sensible. The observed behavior of
the agent largely coincides with what is considered good strategy in curling. Still
there are some aspects that this agent is unable to capture. It is very good at
placing individual rocks but it lacks the ability to see broader strategies over a
whole round or even from one round to the next. We hope that the Q-learning
agent described in the next experiment in Section 6.4 will be better at this.

6.4 Experiment 3 - Q-learning

The previous experiment (Section 6.3) was a good improvement to the first exper-
iment described in Section 6.1. In this experiment we will expand on the previous
agent by using Q-Learning in an effort to enable the agent to treat a curling round
as a sequence of episodes (Section 4.1.1). This should make it possible for the
agent to learn better strategies.

The implementation of the agent (RLSkippyAgent) used is described in Section 5.3.2.
The most significant difference from the previous experiment is the use of Q-
learning and the new state space (Section 4.4) that should enable the agent to
plan curling strategies within whole rounds, as opposed to just individual stones.

66

6.4.1 Setup

Since RLSkippyAgent is built upon the SkippyAgentHammer, it will use the fea-
ture weights trained in the previous experiment (Section 6.3). However, when
training the RLSkippyAgent we will disable further training of the feature weights
by setting the learning rate (η) to zero.

The only training in this experiment will be within the scope of the Q-learning
algorithm, that is the training and learning of Qps, aq values. The Q-learning used
by the agent was initialized with the following setup shown in Table 6.4. The
experiment will be kick started with a non-empty Q(s,a) table that was created
when implementing the RLSkippyAgent.

Discount Factor, γ 0.90
Maximum Learning Rate, ρ 0.80
Qps, aq table size, |Qps, aq| 567084
Number of non-zero Qps, aq-values 56338

Table 6.4: RLSkippyAgent setup.

Training RLSkippyAgent will be done by alternating between playing against the
following agents.

• AKA

• Scott

• SkippyAgent

• SkippyAgentHammer

AKA and Scott will be used early in the training where speed is favored, and
where RLSkippyAgnet is largely just exploring the state space. As the training
progresses SkippyAgent will be used to provide a more challenging opponent. Skip-
pyAgentHammer will be used to continuously test the progress of the experiment.
SkippyAgentHammer is so far the best agent, and hence provides the best refer-
ence point to measure the curling capabilities of RLSkippyAgent as the learning
progress.

6.4.2 Weaknesses/Expectations

The large state space used in the Q-Learning present a high risk for the efficiency
of the learning. A worst case scenario for this experiment will result in an incom-
plete Qps, aq table that contains a high ratio of zero entries. This would make it

67

Results

impossible for the agent to select appropriate actions for the states it encounters
during play.

If the training results in a Qps, aq table with a sufficient number of nonzero entries,
we should get a result where the agent is able to select “optimal” actions to any
of the occurring states. However, there might remain some points of weakness.
One issue relates to the action groups used by the Q-learning (see Figure 4.5).
Using only three action groups may not provide the Q-learning with enough gran-
ularities to effectively select appropriate behavior to the states played.
Another potential weakness is related to how the RLSkippyAgent uses feature
weights after selecting one of the action groups. The guard action group does not
share a similar evaluation function used for the in house weight (Section 4.2.1).
This makes it difficult to use the guard group since the current feature represen-
tation fails to capture functionally different guard situation.

We believe that a successful training will result in a curling agent requiring fewer
resources (faster response) and an agent capable of applying curling strategies
throughout curling rounds. Knowing where (start, middle, end) in a curling round
the RLSkippyAgent is should provide the agent with a key advantage that enables
the agent to win with all the opponents from the previous experiments.

6.4.3 Results

Figure 6.4 show the distribution between the total number of Qps, aq values and the
number of Qps, aq values equaling zero throughout the training of RLSkippyAgent.
Figure 6.5 show the ratio between matches won and the total number of match
played for various opponents. (3500 match played against AKA was omitted from
the figured since the ratio remained more or less constant after 1500 matches
played.) Figure B.1 includes the omitted results.

6.4.4 Discussion

Training RLSkippyAgent proved to be very difficult. Figure 6.4 shows the distri-
bution between state-action pairs created as the agent visits states, and how many
of these state-action pairs that had zero values after playing over 7500 matches.
Comparing the two lines in the graph we can see that the growth of zero valued
state-action pair is slower compared to the growth of new state-action pairs. This
tells us that the training is nowhere near completing. At this point in the training
a desired behavior would be a dissipating growth of new state-action pairs and a

68

0 2000 4000 6000

52
00
00

54
00
00

56
00
00

58
00
00

Number of played match

N
um

be
r o

f Q
(s

,a
) v

al
ue

s

Total Number of Q(s,a) values
Zero valued Q(s,a) values

Figure 6.4: The Qps, aq size as training progressed

69

Results

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Match played

w
in
/to
ta
l AKA

SkippyAgent
SkippyAgent Hammer
Scott

Figure 6.5: The ratio of wins against various agents.

70

decrease in zero valued state-action pairs.

The match ratio showed in Figure 6.5 further confirms the problem we had with
training RLSkippyAgent sufficiently. We can see that RLSkippyAgent shows poor
results when playing against opponents other than AKA. Against SkippyAgen-
tHammer the winning rate is 20%, this confirms our problem with learning a
sufficient number of state-action pairs which is needed to outperform the oppo-
nents.

The large state-space used created a much larger problem than expected. Failing
to train RLSkippyAgent sufficiently within the time allocated to the experiment
makes it very difficult to evaluate our idea of using Q-learning. However, we
also suspect that the nondeterministic environment contributed to the learning
problem.

6.4.5 Conclusion

The experiment was a failure. The resources needed to train RLSkippyAgent far
exceeded our expectations. For future work on this problem there are steps that
can be taken in order to get better results. One approach is to simplify the de-
scription of states in a game of curling. This would greatly reduce the size of the
state space, and in turn the time needed for training. The state description cannot
be too small as this would reduce the expressiveness of the model to a point where
it fails to capture the strategies we want the agent to learn. Another approach
is to spend more resources, by optimizing the code and utilizing more computing
power. The key is probably to find the right balance between a simpler model and
more resources.

There might be other techniques within the field of Artificial Intelligence that can
be interesting to try on this problem. But after working on this project we still
feel that Q-learning looks like a promising approach. Unfortunately we failed to
prove that point this time around.

71

Results

72

Chapter 7

Discussion

In this chapter we will discuss the results of this project as a whole. The chapter
is divided into two sections, one concerning the curling simulator, and one about
the agents.

7.1 Curling Simulator

At the start of this project we sat ourselves the goal of creating a computer pro-
gram capable of adequately simulating a game of curling. We feel that we have
largely achieved this goal. With this curling simulator one can play a game, either
against another human player or against an automated computer agent. It is also
possible for to computer agents to play against each other. There are however
some potential for improvement which we will discuss next.

As mentioned in Section 5.1.2 the simulator is using the JCurl framework. Having
this was a lot of help during implementation, but there are some issues. As it is
now, the core application logic is to tightly bound to the graphical user interface.
This makes testing more difficult and running large simulations takes more time
since the graphics cannot be turned off.

When it comes to the interfaces against the curling playing agents, we are quite
satisfied. The interfaces are rich and well defined, and they allow for a wide range
of agents to be implemented.

The core application of the simulator could have been structured a bit better. This
also applies to the separation of core logic and user interface as mentioned earlier.
For our needs in this project the simulator has worked satisfactorily, but it might
require some effort to get acquainted with for future potential users.

73

Discussion

7.2 Curling Playing Agents

We implemented several agents using the interfaces provided by the curling simu-
lator. Some were very simple consisting of only a few lines of code, while others
grew to be quite sophisticated utilizing advanced techniques from the field of Ar-
tificial Intelligence. At any rate, all these agents turned out to be great tools for
weeding out bugs in the simulator.

The performance of the agents was both very satisfactory and disappointing. We
found that the agents that utilize a Linear Target Function as their basis for se-
lecting actions, performed quite well. See Sections 6.1 and 6.3 for details about
the experiments concerning these agents. However, even though these agents are
adept at placing individual rocks, we soon realized that they were unable to lay
good strategies over the course of a whole round, or even just a few moves ahead.

Our effort to remedy this problem was to expand on these agents using Q-learning.
The idea being that this new agent would use Q-learning to capture the wider
strategies of curling, such as when to set guards, when to take out rocks, and so
on. Then it would use the Linear Target Function to find the best way to execute
these moves. Unfortunately this did not work as planed. The time required to train
the Q-learning part of the agent far exceeded our expectations. The training of
the agent should converge if it is allowed to run indefinitely, but that is impractical
with the current implementation. For future work on this problem one could try
a more narrow representation of the state in a game of curling. The key will be
to find a balance where the representation is expressive enough to capture the
strategies of curling, while at the same time simple enough that the learning will
converge within a reasonable amount of time.

74

Chapter 8

Conclusion

At the start of this project we sat ourselves the following goals

• Design a curling simulator (using an adequate physical model) that curling-
playing agents can interface with.

• Explore knowledge representation in the curling domain.

• Build a curling-playing agent and test it in the simulator.

The first goal we feel that we have accomplished. The simulator works very well
for the purposes of this project, but there is always room for improvement. The
second goal is a bit tricky. We chose to use a linear state vector to describe states
in a game of curling. Given the continuous nature of curling there is virtually an
endless amount of information needed to describe all situations. Using a linear
state vector we were able to abstract this information into something a lot more
manageable. Our third goal concerns creating curling playing agents. Here we
had mixed success. Our first attempt was to use a Linear Target Function as a
basis for selecting good moves. This agent worked quite nice for placing individual
rocks but lacked the ability for advanced strategy. In an effort to improve this
agent, we expanded it using Q-learning that we hoped would capture some of
these advanced strategies. Unfortunately this agent did not work as intended.
Nonetheless we have created agents that are capable of playing curling and they
do provide a fair challenge when played against by humans.

8.1 Further Work

For potential future work on the problems discussed in this project we see several
things that can be improved upon. The simulator is functional as it is now but

75

Conclusion

it can be made more efficient. This especially concerns the separation of the core
application logic and the graphical user interface. The simulator can also be ex-
panded to use animation thereby making it easier to understand what is happening
on the screen as the game progresses.

For the agents there is also room for improvement. The agent using Q-learning is
not viable as it is now but we believe it could be made to work using a different
state representation that requires less time to learn. It could also be interesting
to try other techniques besides Q-learning, for example Case Based Reasoning.

76

Appendix A

Tournament Results

SkippyAgent - AKA

Match 1
0 1 4 1 5 4 2 2 0 5 24
1 0 0 0 0 0 0 0 1 0 2

Match 2
4 3 3 4 4 6 0 3 0 4 31
0 0 0 0 0 0 1 0 1 0 2

Match 3
1 4 2 6 0 2 6 5 0 2 28
0 0 0 0 1 0 0 0 1 0 2

Match 4
4 1 2 1 4 6 0 4 5 5 32
0 0 0 0 0 0 2 0 0 0 2

Match 5
2 6 3 1 1 2 7 2 1 1 26
0 0 0 0 0 0 0 0 0 0 0

Table A.1: Result from five matches between SkippyAgent and AKA.

77

Appendix A

SkippyAgent - Scott

Match 1
1 0 0 1 0 0 0 1 0 1 4
0 0 1 0 0 0 1 0 0 0 2

Match 2
1 0 1 0 0 0 0 0 0 1 4
0 1 0 1 0 0 0 0 0 0 2

Match 3
1 0 0 0 0 0 0 0 0 2 (1) 4
0 0 0 0 0 0 0 0 3 0 (0) 3

Match 4
1 0 0 1 0 1 0 1 0 1 5
0 0 1 0 1 0 1 0 0 0 3

Match 5
1 0 1 0 0 1 0 0 0 2 (1) 6
0 2 0 0 1 0 0 0 1 0 (0) 5

Table A.2: Result from five matches between SkippyAgent and Scott.

SkippyAgent Mod - AKA

Match 1
2 0 2 7 1 3 1 0 4 0 20
0 1 0 0 0 0 0 1 0 1 3

Match 2
2 1 2 2 0 5 3 3 3 5 26
0 0 0 0 1 0 0 0 0 0 1

Match 3
0 3 1 4 5 5 2 0 3 5 28
1 0 0 0 0 0 0 2 0 0 3

Match 4
8 1 3 1 0 1 2 5 3 1 25
0 0 0 0 1 0 0 0 0 0 0

Match 5
6 2 1 0 4 1 2 5 2 2 25
0 0 0 1 0 0 0 0 0 0 1

Table A.3: Result from five matches between SkippyAgent Mod and AKA.

SkippyAgent Mod - Scott

Match 1
0 1 0 0 0 0 0 1 0 1 3
0 0 1 0 0 0 0 0 1 0 2

Match 2
0 1 0 0 1 0 0 1 0 1 (1) 6
1 0 0 1 0 0 1 0 1 0 (0) 5

Match 3
0 0 0 0 0 1 0 1 0 1 (1) 4
0 0 1 0 0 0 1 0 1 0 (0) 3

Match 4
1 0 1 0 0 1 0 0 1 1 5
0 1 0 0 1 0 0 1 0 0 3

Match 5
1 0 0 0 1 0 1 0 0 1 4
0 1 0 0 0 0 0 0 0 0 1

Table A.4: Result from five matches between SkippyAgent Mod and Scott.

78

Tournament Results

SkippyAgent Mod - SkippyAgent

Match 1
0 1 0 1 0 1 0 2 0 1 6
1 0 3 0 1 0 2 0 3 0 10

Match 2
2 0 1 0 0 0 2 0 2 1 8
0 1 0 1 1 1 0 1 0 0 5

Match 3
0 0 1 0 2 0 1 0 0 2 6
2 1 0 1 0 3 0 0 2 0 9

Match 4
1 0 1 0 1 0 1 0 2 0 6
0 1 0 2 0 2 0 1 0 1 7

Match 5
0 1 0 1 0 2 0 0 1 0 5
2 0 1 0 3 0 4 1 0 1 12

Table A.5: Result from five matches between SkippyAgent Mod and SkippyAgent.

SkippyAgentHammer - SkippyAgent

Match 1
4 0 2 0 2 0 3 0 1 0 12
0 1 0 1 0 2 0 1 0 1 6

Match 2
0 2 0 3 1 0 4 0 1 0 11
1 0 1 0 0 1 0 1 0 1 5

Match 3
0 2 0 0 2 0 0 2 0 1 7
3 0 1 0 0 1 1 0 2 0 8

Match 4
3 0 2 1 0 0 0 3 1 0 10
0 1 0 0 2 0 1 0 0 1 5

Match 5
0 3 0 0 3 0 0 2 0 1 9
1 0 2 1 0 0 1 0 2 0 7

Table A.6: Result from five matches between SkippyAgentHammer and SkippyA-
gent.

79

Appendix A

80

Appendix B

Q-Learning Results

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Match played

w
in
/to
ta
l AKA

SkippyAgent
SkippyAgent Hammer
Scott

Figure B.1: The ration of wins against various agents including the omitted data
not showed in Figure 6.5

81

Appendix B

82

Bibliography

[1] Albus, J. S. A new approach to manipulator control: the cerebellar model
articulation controller (CMAC). Journal of Dynamic Systems 97 (Sep 1975).

[2] Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of
the multi-armed bandit problem. Machine Learning 47 (Jan 2002), 235 – 256.

[3] Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret bounds for
reinforcement learning. Advances in Neural Information Processing Systems
21 (Jan 2009), 89–96.

[4] Clarke, S., and Norman, J. To run or not?: Some dynamic programming
models in cricket. Journal of the Operational Research Society 50 (Jan 1999),
536–545.

[5] D’Esopo, D., and Lefkowitz, B. The distribution of runs in the game of
baseball. in: Optimal strategies in sports. North-Holland (Jan 1977).

[6] Federation, W. C. http://www.worldcurling.org/, 2009.

[7] Gelly, S., Wang, Y., Munos, R., and Teytaud, O. Modification of
UCT with patterns in Monte-Carlo Go. hal.inria.fr (November 2006).

[8] Gross, H., Stephan, V., and Krabbes, M. A neural field approach to
topological reinforcement learning in continuous action spaces. Proc. 1998
IEEE World Congress on Computational Intelligence, WCCI’98 and Interna-
tional Joint Conference on Neural Networks, IJCNN’98 3 (May 1998), 1992–
1997.

[9] Kocsis, L., and Szepesvári, C. Bandit based monte-carlo planning. Lec-
ture Notes in Computer Science (Jan 2006), 282–293.

[10] Kohonen, T. Self-organization and associative memory, 3rd ed. Springer,
Jan 1989.

83

http://www.worldcurling.org/

Appendix B

[11] Kostuk, K., Willoughby, K., and Saedt, A. Modelling curling as a
markov process. European Journal of Operational Research 133, 3 (September
2001), 557–565.

[12] Maes, S., and Tuyls, K. Reinforcement learning in large state spaces:
Simulated robotic soccer as a testbed. Lecture Notes in Computer Science
2752 (Feb 2002), 319–326.

[13] Mitchell, T. M. Machine Learning. McGraw-Hill Science/Engineering/-
Mat, March 1997.

[14] Percy, D. Stochastic snooker. The Statistician (Jan 1994).

[15] Reenskaug, T. Models - views - controllers. http://heim.ifi.uio.no/

~trygver/themes/mvc/mvc-index.html, 2009.

[16] Robbins, H. A sequential decision problem with a finite memory. Proceedings
of the National Academy of Sciences 42, 12 (December 1956), 920–923.

[17] Robocode. http://robocode.sourceforge.net/, 2009.

[18] Russell, S. J., and Norvig, P. Artificial Intelligence: A Modern Ap-
proach, 1st ed. Prentice Hall, January 1995.

[19] Santamaria, J. C., Sutton, R. S., and Ram, A. Experiments with
reinforcement learning in problems with continuous state and action spaces.
Adaptive Behavior 6, 2 (Jan 1997), 163–217.

[20] Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller,
M., Lake, R., Lu, P., and Sutphen, S. Checkers Is Solved. Science 317,
5844 (2007), 1518–1522.

[21] Sutton, R. S., and Barto, A. G. Reinforcement Learning : An Intro-
duction, 1st ed. Adaptive computation and machine learning. MIT Press,
1998.

[22] Touzet, C. Neural reinforcement learning for behaviour synthesis. Robotics
and Autonomous Systems 22, 3-4 (Jan 1997), 251–281.

[23] Uchibe, E., Asada, M., and Hosoda, K. Behavior coordination for
a mobile robot using modularreinforcement learning. Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (Jan 1996), 1329–
1336.

[24] XNA. http://msdn.microsoft.com/en-us/xna/, 2009.

84

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://robocode.sourceforge.net/
http://msdn.microsoft.com/en-us/xna/

	Title Page
	Problem Description
	1 Introduction
	1.1 Motivation
	1.2 Aims of the project
	1.3 About Curling
	1.3.1 History of Curling
	1.3.2 Rules
	1.3.3 Strategies

	1.4 Report Structure

	2 The Problem and Challenges
	3 Goals and Constraints
	3.1 Curling learning problem
	3.2 Curling Simulator
	3.2.1 Realism
	3.2.2 Agent
	3.2.3 Constraints

	4 Theories behind Skippy agents
	4.1 Intelligent Agent?
	4.1.1 Environment

	4.2 Linear Target Function
	4.2.1 Defining the State
	4.2.2 Defining the V Function
	4.2.3 Training
	4.2.4 Trade-offs
	4.2.5 Expectation for the agent

	4.3 Reinforcement Learning
	4.3.1 Q-Learning

	4.4 State and Action space
	4.5 MDP and our Q-Learning agent
	4.6 Exploration vs Exploitation
	4.6.1 The K-armed bandit problem
	4.6.2 The UCB algorithm
	4.6.3 UCT (UCB applied to Trees)

	5 SkippySimulator
	5.1 Architecture
	5.1.1 Design
	5.1.2 Architectural Rationale

	5.2 Main Components
	5.3 Implementation
	5.3.1 SkippySimulator
	5.3.2 Agent implementation

	6 Results
	6.1 Experiment 1 - Linear Target Function – Single Weight Set
	6.1.1 Setup
	6.1.2 Weaknesses/Expectations
	6.1.3 Results
	6.1.4 Discussion
	6.1.5 Conclusion

	6.2 Experiment 1b
	6.2.1 Setup
	6.2.2 Weaknesses/Expectations
	6.2.3 Results
	6.2.4 Discussion
	6.2.5 Conclusion

	6.3 Experiment 2 - Linear Target Function – Double Weight Set
	6.3.1 Setup
	6.3.2 Weaknesses/Expectations
	6.3.3 Results
	6.3.4 Discussion
	6.3.5 Conclusion

	6.4 Experiment 3 - Q-learning
	6.4.1 Setup
	6.4.2 Weaknesses/Expectations
	6.4.3 Results
	6.4.4 Discussion
	6.4.5 Conclusion

	7 Discussion
	7.1 Curling Simulator
	7.2 Curling Playing Agents

	8 Conclusion
	8.1 Further Work

	A Tournament Results
	B Q-Learning Results

