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Abstract

We define triangulated and tensor triangulated categories, and classify the thick subcate-
gories of a specific tensor triangulated category using Paul Balmer’s theory on the cate-
gorical spectrum.

Sammendrag

Vi definerer triangulerte og tensortriangulerte kategorier, og klassifiserer de tjukke under-
kategoriene til en spesifikk tensortriangulert kategori ved hjelp av Paul Balmers teori om
det kategorielle spekteret.
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Notation

⊂ = Strict inclusion
⊆ = Inclusion
Z = The ring of integers
Zn = The ring of integers modulo n
Mod(R) = The category of modules over the ring R
mod(R) = The category of finitely generated modules over the ring R
proj(R) = The category of finitely generated projective modules over the ring R
Db(R) = The bounded derived category of the ring R
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Chapter 1
Introduction

Fantastic and improbable things happen
simultaneously all the time, but mostly
we never get to know about it. It takes
place hidden away from us, but in this
very case we are granted insight, and
that should please even the most
tenacious cynic.

Erlend Loe, Volvo Lastvagnar

Triangulated categories, discovered simultaneously and independently, by Verdier and
Puppe in the 60’s, are popular structures in today’s mathematical disciplines. Finding con-
nections and similarities between the triangulated structures of two categories has proven
to be fruitful to better understand the categories in question. In the upcoming chapter we
will deal with triangulated categories, define thick subcategories, and present results that
will prove useful throughout the thesis. Then we follow up with a presentation of homo-
topy categories, and the chapter concludes with an example showing that the homotopy
category of chain complexes over an additive category is a triangulated category. Even
though the triangulated structure is sufficient in many cases, additional structure might
be necessary to uncover further details. This is where the tensor product comes into the
picture.

Equipping a triangulated category with a tensor product, or a monoidal symmetric
structure, gives a tensor triangulated category, and opens the door for us to classify thick
subcategories. Balmer’s article on the categorical spectrum of tensor tensor triangulated
[2], which the thesis is largely based on, takes on the tensor triangulated category and
makes use of the work of Hopkins [5], Neeman [11, 12, 13] to classify its thick subcate-
gories with ideas from commutative algebra.

Balmer introduces the notion of thick tensor ideals, and uses this to define prime ideals
in a familiar fashion. The spectrum of a tensor triangulated category, K, is named Spc(K),
and consists of these prime ideals. Balmer then continues by defining the Zariski topology
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Chapter 1. Introduction

and categorical support of an object in the category. Balmer then uses these ideas to
generalize and introduce the support data on a tensor triangulated category K. With this
in place, Balmer presents a bijection between radical thick tensor ideals of K and subsets
of Spc(K), where these subsets are unions of support. Although the bijection does not
specifically classify the thick subcategories of a tensor triangulated category, it proves to
be a useful tool. This theory and some examples are covered in Chapter 3.

Understanding the structure of thick subcategories of mod(R) reveals information
about the commutative, noetherian ring R, and these subcategories are related to the thick
subcategories of Db(R) which is a triangulated category. These sort of connections make
thick subcategories interesting to work with, and classifying them has applications across
several fields of mathematics. In Chapter 4 we introduce the Hopkins-Neeman bijection
[12] and the category we are working with, namely Kb(proj(Zn)). The ring Zn will be
further investigated, along with its spectrum and support. We then look at what a product
of two tensor triangulated categories is, and how we can use that to our advantage. Finally,
we begin to apply the theory we have presented on said tensor triangulated category, and
classify its thick subcategories.

In this thesis it is assumed that the reader has a basic knowledge of category theory, as
well as homological and commutative algebra.
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Chapter 2
Triangulated categories

Even though my father wasn’t called
Bongo, I’ll name the calf Bongo after
him. Sometimes you’ve got to be open
to associations of this kind.

Erlend Loe, Doppler

The following chapter will go through the axioms of triangulated categories, some
geometric associations related to triangulated categories and the definition of thick sub-
categories will be presented. Then some useful results will be proved before looking at
homotopy categories and why they are triangulated.

2.1 Defining triangulated categories
Definition 2.1.1. A triangulated category is an additive category K, together with an
autoequivalence [1] : K → K, and a class ∆ of diagrams of the form

A
f−−→ B

g−→ C
h−−→ A[1] such that

(TR1) • For any morphism f : A −→ B in K, there is a diagram

A
f−−→ B −→ C −→ A[1] in ∆.

• For any object A, the diagram
A

1A−−→ A −→ 0 −→ A[1] is in ∆.

• The class ∆ is closed under isomorphisms. 1

(TR2) For any diagram A
f−−→ B

g−→ C
h−−→ A[1] in ∆, the diagrams

1Being closed under isomorphism means that for any triangle T in ∆, if there exists an isomorphism
φ : T −→ T ′ where T ′ is another triangle in K, then T ′ is also in ∆.
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Chapter 2. Triangulated categories

B
g−→ C

h−−→ A[1]
−f [1]−−−→ B[1], and

C[−1]
−h[−1]−−−−−→ A

f−−→ B
g−→ C are in ∆.

(TR3) Given the solid part of a diagram

A B C A[1]

A′ B′ C ′ A′[1]

u v w u[1]

where the leftmost square commutes, and the rows are in ∆, one can always find a
morphism w as indicated such that the entire diagram becomes commutative.

(TR4) Octahedral axiom: Given the solid part of the following diagram, where the two
upper rows and the second column are in ∆,

A B C ′ A[1]

A C B′ A[1]

A′ A′ B[1]

B[1] C ′[1]

f

w

g

w◦f

f [1]

h g[1]◦h

h

g[1]

there are morphisms as indicated by the dashed arrows, such that also the third
column is in ∆, and the entire diagram commutes.

The triangles in ∆ are called distinguished triangles, and the triangulated structure
becomes apparent when remarking that the morphism C → A[1] can be denoted by the
arrow

C A.|

Then the distinguished triangle A
f−−→ B

g−→ C
h−−→ A[1] can be depicted as

4



2.1 Defining triangulated categories

A B

C

f

g|h

The reason that the last axiom is called the octahedral axiom is, not surprisingly, due
to the fact that the corresponding diagram can be drawn like an octahedron. With our new
geometric understanding of the triangle, the octahedron can be drawn like this:

C

B′

A A′

B

C ′

|

|
|

|

in which all oriented triangles are in ∆, and all non-oriented triangles and squares com-
mute. If the first three axioms are fulfilled one can swap the Octahedral axiom for another
axiom called the Mapping Cone Axiom, which was proved by Neeman [11, 13].

Axiom 2.1.2. (Mapping Cone Axiom).
Given a commutative diagram

A B C A[1]

A′ B′ C ′ A′[1]

u

f

v

g h

u[1]

f ′ g′ h′

whose rows are distinguished triangles, there exists a map w : C −→ C ′ such that the
diagram commutes, and the mapping cone

B ⊕A′
(
−g 0

v f′
)

−−−−−−−→ C ⊕B′
(
−h 0

w g′
)

−−−−−−−→ A[1]⊕ C ′
(
−f[1] 0

u[1] h′
)

−−−−−−−−→ B[1]⊕A′[1]
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Chapter 2. Triangulated categories

is a distinguished triangle.

Whether the Octahedral axiom is necessary for a category to be triangulated or not, is
a widely discussed topic. Now, the Mapping Cone axiom does not resolve the discussion,
but rather works as a useful tool if one is having a hard time showing that the traditional
Octahedral axiom holds. It is worth mentioning that there are other equivalent versions the
axioms, but these will not be covered here2.

Now, when studying additive categories we often come across additive functors, which
are functors between additive categories that preserve finite coproducts, i.e. the additive
structure. Analogously we have functors between triangulated categories called triangu-
lated functors, which we will now define.

Definition 2.1.3. A triangulated functor is an additive functor

F : K → L

between two triangulated categories, which commutes with the translation, [1], and takes
distinguished triangles to distinguished triangles.

With triangulated categories you also get a substructure, namely triangulated subcate-
gories.

Definition 2.1.4. Let L be an additive subcategory of the triangulated category K. L is a
triangulated subcategory when it is closed under isomorphism and translation, and is such

that whenever two out of the objects A,B,C in a distinguished triangle A
f−−→ B

g−→
C

h−−→ A[1] belong to L, then so does the third.

This the latter condition of the definition is often called the "two out of three"-condition.
An interesting observation is that this very requirement can be reformulated to demanding

that for a distinguished triangle A
f−−→ B

g−→ C
h−−→ A[1], then, for example, A,B ∈ L

implies that C ∈ L. This comes down to the subcategory being closed under translation
and (TR2). We can now define one of the structures that will be focused on throughout the
thesis, namely the thick subcategories.

Definition 2.1.5. (Thick subcategory). A subcategory L of a triangulated category K
is thick if it is a triangulated subcategory and for any object A ∈ L which splits, i.e.
A ∼= B ⊕ C, we have that B,C ∈ L.

2.2 Some useful results
We will now explore some of the traits that the triangulated category structure exhibits.
The first result deals with the composition of morphisms in a distinguished triangle.

Lemma 2.2.1. Let K be a triangulated category, and A
f−−→ B

g−→ C
h−−→ A[1] a

distinguished triangle. Then g ◦ f = 0, h ◦ g = 0 and f [1] ◦ h = 0.
2The interested reader is referred to the work of May[9, 10].
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2.2 Some useful results

Proof. Let us begin by taking our distinguished triangle, A
f−−→ B

g−→ C
h−−→ A[1] and

pair it up with the following distinguished triangle: A 1−→ A −→ 0 −→ A[1]. This gives
us the following diagram:

A A 0 A[1]

A B C A[1]

1

1 f f [1]

f g h

Since this is in a triangulated category, and the first square commutes, we have from
(TR3) that there exists a map from 0 to C which makes the entire diagram commute. That
implies that the composition g ◦ f = 0. Using the shift axiom, (TR2), and the very same
argument for the resulting diagrams, we get that h ◦ g = 0 and f [1] ◦ h = 0 as well. This
completes the proof.

Proposition 2.2.2. Given a triangulated category K and a distinguished triangle

A
f−−→ B

g−→ C
h−−→ A[1], if we apply the functor Hom(D,−) := HomK(D,−) for any

object D on the distinguished triangle we obtain a long exact sequence of abelian groups:

· · · → Hom(D,A[i])→ Hom(D,B[i])→ Hom(D,C[i])→ Hom(D,A[i+ 1])→ · · ·

Similarly for the contravariant functor Hom(−, D).

Proof. Since we are in a triangulated category, it suffices to show that

Hom(D,A)
f∗−−→ Hom(D,B)

g∗−−→ Hom(D,C)

is exact, since we can make use of the rotation axiom. For this sequence to be exact we
need Im(f∗) = Ker(g∗). Since g◦f = 0, g∗◦f∗ = 0 and we have that Im(f∗) ⊂ Ker(g∗).
The other inclusion follows from looking at a map u ∈ Ker(g∗) and the following diagram

0 D D 0

C[−1] A B C

1

u

−h[−1] f g

By (TR1) and (TR2) the two rows are distinguished triangles, also the right square com-
mutes by choice of u. Now, by (TR2) and (TR3) we have a morphism v : D → A making
the whole diagram commute. This means that f ◦ v = u and hence u ∈ Im(f∗). So
Im(f∗) = Ker(g∗) and the sequence is exact.

In a triangulated category there are several variants of triangles not necessarily equipped
with a classifying adjective and properties. The distinguished triangles are such that when
we apply the Hom-functor the result is a long exact sequence. In general, there are tri-
angles that do the exact same thing, but are not distinguished. These are called exact
triangles.
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Chapter 2. Triangulated categories

Lemma 2.2.3. Consider the triangulated category K and the following commutative dia-
gram consisting of two exact triangles

A B C A[1]

A′ B′ C ′ A′[1] .

f

u

g

v

h

w u[1]

f ′ g′ h′

If the morphisms u and v are isomorphisms, then so is w.

Proof. We take our diagram and apply the functor HomK(−, C). This results in the fol-
lowing diagram, where (A,C) = HomK(A,C) for the purpose of space saving:

(A,C) (B,C) (C,C) (A[1], C) (B[1], C)

(A′, C) (B′, C) (C ′, C) (A′[1], C) (B′[1], C)

u∗ v∗ w∗ u∗[1] v∗[1]

Now this is an exact sequence of abelian groups, so w∗ is an isomorphism by the familiar
five lemma for abelian categories. Now, since w∗ is an isomorphism, and hence an epi-
morphism, we know there exists a left inverse p ∈ HomK(C ′, C) such that p ◦ w = idC .
Applying the HomK(C,−)-functor on the same diagram, and using the same argument,
we get that w is an isomorphism.

Most structures require closedness under various binary operations like addition or
multiplication. The following result shows us that adding two distinguished triangles using
direct sum gives us another distinguished triangle.

Proposition 2.2.4. Adding two distinguished triangles through direct sum yields a distin-
guished triangle.

Proof. Let A
f−−→ B

g−−→ C
h−−→ A[1] and A′

f ′−−−→ B′
g′−−−→ C ′

h′−−−→ A′[1] be
distinguished triangles, and consider the following diagram:

A⊕A′ B ⊕B′ D (A⊕A′)[1]

A B C A[1]

(
f 0

0 f′
)

(r,r′)

(
s

s′
)

f

(
1
0

)
g

(
1
0

)
h

(
1
0

)
[1]

where r : B → D, r′ : B′ → D, s : D → A[1], and s′ : D → A′[1] are maps between
objects, and (r, r′) : B⊕B′ → D and

(
s

s′
)

: D → A⊕A′ are the canonical maps that rises
from the previously defined maps. (TR1) assures us that the D ∈ K is such that the upper
row is a distinguished triangle. Now, (TR3) gives us the morphism u : C → D which
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2.3 Homotopy categories

makes the diagram commute. By the same argument we get a morphism u′ : C ′ → D for
the second distinguished triangle. This gives us two morphisms of distinguished triangles,
which we add together using the natural isomorphism φ : A[1] ⊕ A′[1] → (A ⊕ A′)[1].
This now results in the following diagram:

A⊕A′ B ⊕B′ D (A⊕A′)[1]

A⊕A′ B ⊕B′ C ⊕ C ′ (A⊕A′)[1] .

(
f 0

0 f′
)

(r,r′)

(
s

s′
)

(
f 0

0 f′
) (

g 0

0 g′
) (

h 0

0 h′
)(u,u′)

This diagram commutes. The bottom row is an exact triangle since it is the direct sum
of two distinguished (hence exact) triangles. By Proposition 1.2.2, the map (u, u′) is an
isomorphism, so by (TR1) the bottom row is distinguished.

2.3 Homotopy categories
Now we move on to homotopy categories and what makes the homotopy category of chain
complexes triangulated.

Definition 2.3.1. Let A be an additive category and C(A) be the category of chain com-
plexes over this additive category. In C(A) we construct a translation functor [1] by shift-
ing any complex one degree to the left. More precisely, for an object A = (An, d

A
n )n∈Z in

C(A) we set A[1] := (A[1]n, d
A[1]
n )n∈Z with A[1]n = An−1 and dA[1]

n = −dAn−1.

The category of chain complexes is not triangulated. In order to construct a triangu-
lated category, we look at the homotopic maps in C(A) and define the homotopy category
of chain complexes.

Definition 2.3.2. The homotopy category of chain complexes, K(A), consists of the same
objects as C(A), and its morphisms are maps of chain complexes modulo homotopy. This
means that we define an equivalence relation for homotopic maps, such that f ∼ g if
f is homotopic to g. Summarized: Ob(K(A)) = Ob(C(A)), and HomK(A)(A,B) =
HomC(A)(A,B)/ ∼ for chain complexes A and B.

If we are to have a triangulated structure in a category we need to have a class of
triangles. The natural class of triangles in K(A) need the construction of mapping cones.

Definition 2.3.3. Let f : A→ B be a morphism of complexes in C(A)

A : · · · An+1 An An−1 · · ·

B : · · · Bn+1 Bn Bn−1 · · ·

f fn+1

dAn+1

fn

dAn

fn−1

dBn+1 dBn

9



Chapter 2. Triangulated categories

and consider the following diagram

B : · · · Bn+1 Bn Bn−1 · · ·

M(f) : · · · An ⊕Bn+1 An−1 ⊕Bn An−2 ⊕Bn−1 · · ·

A[1] : · · · An An−1 An−2 · · ·

α(f)
(
0
1

)
dBn+1

(
0
1

)
dBn

(
0
1

)

β(f) (1 0)

d
M(f)
n+1

(1 0)

dM(f)
n

(1 0)

−dAn −dAn−1

The middle row, M(f), is the mapping cone of f where

dM(f)
n : An−1 ⊕Bn

(
−dAn−1 0

fn−1 dBn

)
−−−−−−−−−−→ An−2 ⊕Bn−1,

while

α(f) : B →M(f), α(f)n :=

(
0

1Bn

)
and

β(f) : M(f)→ A[1], β(f)n := (1An−1
0)

are canonical maps.

With this in place we can construct standard triangles in K(A).

Definition 2.3.4. A sequence of objects and morphisms in the homotopy category K(A)
of the form

A
f−−→ B

α(f)−−−→M(f)
β(f)−−−→ A[1]

is called a standard triangle.

We want to show that K(A) is a triangulated category. First, we define our class ∆
of distinguished triangles: if a triangle, T , in K(A) is isomorphic to a standard triangle
in K(A), then T is a distinguished triangle. This class of distinguished triangles is closed
under isomorphism by definition. Now, let us check the axioms.

(TR1) For any morphism of complexes f : A −→ B in K(A) we canonically have a
standard triangle

A
f−−→ B

α(f)−−−→M(f)
β(f)−−−→ A[1]

which is in our class of distinguished triangles ∆. Also, for A 1A−−→ A we obtain the
diagram

A
1A−−→ A −→M(1A) −→ A[1].
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2.3 Homotopy categories

Now, the identity morphism on the mapping cone M(1A) is actually homotopic to zero

via s = (sn)n∈Z, where sn =

(
0 1An
0 0

)
in C(A). This becomes obvious through the

following diagram

M(1A) : · · · An ⊕An+1 An−1 ⊕An An−2 ⊕An−1 · · ·

M(1A) : · · · An ⊕An+1 An−1 ⊕An An−2 ⊕An−1 · · ·

1M(1A)

d

1 sn
1

d

sn−1
1

d d

Namely:

dn+1 ◦ sn + sn−1 ◦ dn =
(
−dAn 0

1An
dAn+1

)
◦
(
0 1An
0 0

)
+
(

0 1An−1
0 0

)
◦
(
−dAn−1 0

1An−1
dAn

)
=
(

1An−1
0

0 1An

)
This means that the identity 1M(1A) equals the zero map in K(A), hence M(1A) is iso-

morphic to the zero complex. So the triangle A 1A−−→ A→ 0→ A[1] is in ∆.

(TR2) For this axiom we need to show that for an arbitrary triangle in ∆, the shifted
triangles, both left and right, are also in ∆. It suffices to show rotation for a single direction
as the proofs are analogous. So we pick a standard triangle

A
f−−−→ B

α(f)−−−−→M(f)
β(f)−−−−→ A[1]

and look at the shifted triangle

B
α(f)−−−−→M(f)

β(f)−−−−→ A[1]
−f [1]−−−−→ B[1]

to see if it is isomorphic to the following standard triangle

B
α(f)−−−−→M(f)

α(α(f))−−−−−→M(α(f))
β(α(f))−−−−−−→ B[1].

This ultimately means that we need to construct an isomorphism between the latter two
triangles. Using the identity map between the first, second and fourth entries, the problem
boils down to proving that A[1] ∼= M(α(f)) via an isomorphism that gives a commutative
diagram. Recall that M(α(f)) is the complex

· · · →M(α(f))n+1

d
M(α(f))
n+1−−−−−→M(α(f))n

dM(α(f))
n−−−−−→M(α(f))n−1 → · · ·

where M(α(f))n = Bn−1 ⊕ An−1 ⊕ Bn. So we need to define a pair of morphisms
between the two complexes and show that their composition is the identity map for each
complex, respectively. We define

φ = (φn) : A[1]→M(α(f))

11



Chapter 2. Triangulated categories

by setting φn = (−fn−1, 1An−1 , 0), and conversely

ψ = (ψn) : M(α(f))→ A[1]

by setting ψn = (0, 1An−1
, 0). This gives us the following diagram:

B M(f) A[1] B[1]

B M(f) M(α(f)) B[1]

α(f)

1B 1M(f)

β(f)

φ

−f [1]

1B[1]

α(f) α(α(f)) β(α(f))

ψ

in which we have that β(α(f)) ◦ φ = −f [1], by definition, and φ ◦ β(f) ∼ α(α(f)) via
the homotopy given by0 −1

0 0
0 0

 : M(f)n = An−1 ⊕Bn →M(α(f))n+1 = Bn ⊕An ⊕Bn+1,

so (1B , 1M(f), φ) is a morphism of triangles. Looking at ψ we find that ψ ◦ α(α(f)) =
β(f) and −f [1] ◦ ψ ◦ β(α(f)) via the homotopy

(0, 0,−1) : M(α(f))n → B[1]n.

Now, for conclusion we show that ψ and φ are isomorphisms in our category. We have by
definition that ψ ◦ φ = 1A[1] and we have that φ ◦ ψ ∼ 1M(α(f)) via the homotopy map0 0 −1

0 0 0
0 0 0

 : M(α(f))n →M(α(f))n+1 = Bn−1 ⊕An−1 ⊕Bn.

This proves that the axiom holds for K(A).

(TR3) Assume that we have a diagram in K(A)

A B M(u) A[1]

A′ B′ M(u′) A′[1]

u

f

α(u)

g

β(u)

f [1]

u′ α(u′) β(u′)

where the left square commutes. This ultimately means that there exist homotopy maps
sn : An → B′n+1 such that gn ◦ un − u′n ◦ fn = dBn+1 ◦ sn + sn−1 ◦ dAn for all n ∈ Z.
Now, we define a map h = (h)n : M(u)→M(u′), where

hn =

(
fn−1 0
sn−1 gn

)
: M(u)n →M(u′)n,

12



2.3 Homotopy categories

andM(u)n = An−1⊕Bn andM(u′)n = A′n−1⊕B′n, respectively. Since we showed the
existence of s, we have that this is a morphism of complexes by the homotopy property
of s. This means that the completed diagram gives us a morphism of triangles, and the
diagram commutes by the following equalities h ◦ α(u) = α(u′) ◦ g and β(u′) ◦ h =
f [1] ◦ β(u). Note that these are proper equalities, and not only up to homotopy. This
proves that the axiom holds for K(A).

(TR4) For the final axiom we start with two morphisms u : A → B and v : B → C,
and look at the corresponding standard triangles:

A
u−−−→ B

α(u)−−−−→M(u)
β(u)−−−−→ A[1]

and

B
v−−−→ C

α(v)−−−−→M(v)
β(v)−−−−→ B[1].

With the composition v ◦ u : A→ C we get the following standard triangle:

A
vu−−−−→ C

α(vu)−−−−→M(vu)
β(vu)−−−−→ A[1].

This gives us the following diagram

A B M(u) A[1]

A C M(vu) A[1]

M(v)

B[1]

u α(u)

v

β(u)

vu α(vu)

α(v)

β(vu)

β(v)

To show that (TR4) is fulfilled, we need to show that there exist dashed arrows that
make the following diagram commute:

13



Chapter 2. Triangulated categories

A B M(u) A[1]

A C M(vu) A[1]

M(v) M(v) B[1]

B[1] M(u)[1]

u α(u)

v

β(f)

f

vu α(vu)

α(v)

β(vu)

g u[1]

β(v)

β(v)

(α(u)[1])◦β(v)

α(u)[1]

Moreover, the triangle M(u) → M(vu) → M(v) → M(u)[1] must be shown to
be distinguished. Let f = (fn) : M(u) → M(vu) be given in degree n by fn =(

1An−1 0
0 vn

)
and set g = (gn) : M(vu)→ M(u) to be given by gn =

(
un−1 0

0 1Cn

)
.

Finally, we define h : M(v) → M(u)[1] as the composition α(u)[1] ◦ β(v), so that it

is given by
(

0 0
1Bn−1 0

)
. This leaves us with a complete diagram, in which all squares

commute by definition of our new maps. Now, we have a situation where we have to show
that

M(u)
f−−→M(vu)

g−→M(v)
h−−→M(u)[1],

is a distinguished triangle in K(A). This means showing that our triangle is isomorphic to
the standard triangle

M(u)
f−−−→M(vu)

α(f)−−−−→M(f)
β(f)−−−−→M(u)[1].

We observe that only the triangles’ third entries differ from the rest, hence we only
need to find morphisms σ and τ such that the diagram

M(u) M(vu) M(v) M(u)[1]

M(u) M(vu) M(f) M(u)[1].

f g h

σ

f σ(f) β(f)

τ

commutes in K(A). Define therefore σ and τ by

σn :


0 0

1Bn−1 0
0 0
0 1Cn

 and τn :

(
0 1Bn−1 un−1 0
0 0 0 1Cn

)
.
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2.3 Homotopy categories

Let us first check if σ and τ make the diagram commute in both directions.
By definition we get that τ ◦ α(f) = g; where in fact both maps are given in degree n

by (
un−1 0

0 1Cn

)
: An−1 ⊕ Cn → Bn−1 ⊕ Cn.

Also, we have that β(f) ◦ σ = h by definition, where both maps are given by(
0 0

1Bn−1 0

)
: Bn−1 ⊕ Cn → An−2 ⊕Bn−1.

All of the remaining commutations will now only hold up to homotopy. The map α(f)−
σ ◦ g : M(vu)→M(f) , is in degree n given by

0 0
−un−1 0
1An−1 0

0 0

 : An−1 ⊕ Cn → An−2 ⊕Bn−1 ⊕An−1 ⊕ Cn.

This map is homotopic to zero using the homotopy map s = (sn), where sn : M(vu)n →
M(f)n+1 is given by

1An−1
0

0 0
0 0
0 0

 : An−1 ⊕ Cn → An−1 ⊕Bn ⊕An ⊕ Cn+1.

Now we consider the map β(f)− h ◦ τ : M(f)→M(u)[1] which is given by(
1An−2

0 0 0
0 0 −un−1 0

)
: An−2 ⊕Bn−1 ⊕An−1 ⊕ Cn → An−2 ⊕Bn−1.

Using the homotopy map s = (sn), where(
0 0 1An−1 0
0 0 0 0

)
: An−2 ⊕Bn−1 ⊕An−1 ⊕ Cn → An−1 ⊕Bn,

all of this can be verified using the differential of the mapping cone M(f) which is given
as

dM(f)
n =


dAn−2 0 0 0
−un−2 −dBn−1 0 0
1An−2 0 −dAn−1 0

0 vn−1 (vu)n−1 dCn

 .

Now all that remains is showing that τ and σ are isomorphisms in the homotopy category.
By definition we have that τ ◦ σ = 1M(v). Now we check the composition σ ◦ τ , and in
degree n it is given by 

0 0 0 0
0 1Bn−1

un−1 0
0 0 0 0
0 0 0 1Cn

 .

15



Chapter 2. Triangulated categories

We then define the homotopy maps sn : M(f)n →M(f)n+1 with

sn :=


0 0 −1An−1

0
0 0 0 0
0 0 0 0
0 0 0 0


we get that σ◦τ−1M(f) = d

M(f)
n+1 ◦sn+sn−1◦dM(f)

n . Some easy, but lengthy, calculations
using the differential of M(f) confirms this. This shows that σ ◦ τ = 1M(f) in the
homotopy category, and thus K(A) is a triangulated category.
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Chapter 3
Tensor triangulated categories

The only question that really counts,
must be this one: are things getting
better or are they getting worse?

Erlend Loe, Naïve. Super

In this chapter we are going to define tensor triangulated categories, present an exam-
ple, and look at some central definitions in tensor triangular geometry. The concept of
tensor triangulated categories may be thought of as a categorical equivalent of a ring, and
we can also translate the notions of ideals and prime ideals in a categorical setting. Some
of the central results in Balmer’s article [2] will also be presented and proved.

3.1 Defining tensor triangulated categories

The triangulated categories in this section will be essentially small, i.e. every category is
equivalent to a small category in which the collection of objects form a set.

Definition 3.1.1. A tensor triangulated category is a triple (K,⊗, 1), where K is a trian-
gulated category, ⊗ is a symmetric monoidal tensor product ⊗ : K × K −→ K which is
a triangulated functor in every variable, while 1 denotes the unit.

We will often denote a tensor triangulated category asK, instead of the triple (K,⊗, 1).
In this case it will be made explicitly clear that K is tensor triangulated, and not only
triangulated.

Definition 3.1.2. A tensor triangulated functor F : K → L is a triangulated functor
respecting the monoidal structures and mapping the unit to the unit, i.e. F (1K) = 1L.

Let us now look at an example of a tensor triangulated category.

17
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Example 3.1.3. Let us look at an example of a tensor triangulated category, namely K(A),
whereA = Mod(R), andR is a commutative noetherian ring. We have already shown that
K(A) is triangulated. So, to see if this actually is a tensor triangulated category, we need
to check if there is an identity object, as well as the symmetric, monoidal and functorial
triangulated properties of the tensor product. Let A,B be complexes in K(A). The tensor
product in degree n is defined as

(A⊗R B)n :=
⊕
i∈Z

(Ai ⊗R Bn−i)

with the differential, using homogeneous elements a ∈ A, b ∈ B:

dA⊗Bn (ai ⊗ bn−i) := dAi (ai)⊗ bn−i + (−1)iai ⊗ dBn−i(bn−i).

The symmetric property is shown using the definition:

(A⊗R B)n =
⊕
i∈Z

(Ai ⊗R Bn−i)

∼=
⊕
i∈Z

(Bn−i ⊗R Ai)

=
⊕
j∈Z

(Bj ⊗R An−j)

= (B ⊗R A)n.

Note that the isomorphism allowing commutativity is an isomorphism of complexes,
which in degree n is given as

(A⊗R B)n
φn−−→ (B ⊗R A)n

ai ⊗ bn−i 7→ (−1)i(n−i)bn−i ⊗ ai

where ai⊗bn−i ∈ Ai⊗RBn−i. It is straight-forward to show that this is an isomorphism.
The monoidal property is shown similarly:

((A⊗R B)⊗R C)n =
⊕
i∈Z

(A⊗R B)i ⊗R Cn−i

=
⊕
i∈Z

(⊕
j∈Z

Aj ⊗R Bi−j
)
⊗R Cn−i

=
⊕
i,j∈Z

Aj ⊗R Bi−j ⊗R Cn−i

=
⊕
i∈Z

Ai ⊗R
(⊕
j∈Z

Bi−j ⊗R Cn−i
)

=
⊕
i∈Z

Ai ⊗R (B ⊗R C)n−i

= (A⊗R (B ⊗R C))n.
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3.1 Defining tensor triangulated categories

The identity element is the stalk complex R, as A⊗R R ∼= A. Now to show that −⊗R D
is triangulated for an arbitrary object D ∈ K(A). Let A

f−−→ B
g−−→ C

h−−→ A[1] be
a distinguished triangle in K(A) on which we apply the functor −⊗R D. We then obtain
the following triangle

A⊗R D
f⊗R1−−−−→ B ⊗R D

g⊗R1−−−−→ C ⊗R D
h⊗R1−−−−→ A[1]⊗R D

and if this turns out to be a distinguished triangle, we are done. Now, consider the follow-
ing distinguished triangle

A⊗R D
f⊗R1−−−−→ B ⊗R D

α(f⊗R1)−−−−−−→M(f ⊗R 1)
β(f⊗R1)−−−−−−→ (A⊗R D)[1]

which we will pair up with the former triangle to get the following diagram

A⊗R D B ⊗R D C ⊗R D (A⊗R D)[1]

A⊗R D B ⊗R D M(f ⊗R 1) (A⊗R D)[1].

f⊗R1 g⊗R1 h⊗R1

f⊗R1 α(f⊗R1) β(f⊗R1)

So if we have that C ⊗R D ∼= M(f ⊗R 1) we are good. Also, note that for every X,Y ∈
K(A) we have (X ⊗R Y )[1] = X[1]⊗R Y = X ⊗R Y [1]. The cone of f ⊗R 1 is defined
as

(M(f ⊗R 1))n := (An ⊕Bn+1)⊗R Dn,

also, from K(A) being triangulated, we have that

φn : Cn
∼−−→ (M(f))n = An ⊕Bn+1

implies that

φn ⊗R 1: Cn ⊗R Dn
∼−−→ (M(f ⊗R 1))n = (An ⊕Bn+1)⊗Dn.

where the map φ consist of (φ)n in each degree n, and analogously for the map φ⊗R1.
Now what remains is checking that the following diagram commutes:

A⊗R D B ⊗R D C ⊗R D (A⊗R D)[1]

A⊗R D B ⊗R D M(f ⊗R 1) (A⊗R D)[1].

f⊗R1 g⊗R1

φ⊗R1

h⊗R1

f⊗R1 α(f⊗R1) β(f⊗R1)

We check the maps:

(φ⊗R 1) ◦ (g ⊗R 1) = (φ ◦ g)⊗R 1 = α(f)⊗R 1 = α(f ⊗R 1)

and

β(f ⊗R 1) ◦ (φ⊗R 1) = β(f)⊗R 1 ◦ (φ⊗R 1) = (β(f) ◦ φ)⊗R 1 = h⊗R 1
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Chapter 3. Tensor triangulated categories

so the diagram commutes. Hence the functor is triangulated, and the corresponding func-
tor, D ⊗R −, is also triangulated by the symmetry property. So K(Mod(R)) is a tensor
triangulated category.

Definition 3.1.4. Let K be a tensor triangulated category. A thick tensor ideal A of K is a
thick subcategory such that if A ∈ A and B ∈ K then A⊗B also belongs to A.

We see that this is very much like the definition of an ideal for rings, and follow up this
definition with an example.

Example 3.1.5. We will show that if F : K → L is a tensor triangulated functor between
two tensor triangulated categories, then the kernel of F , Ker(F ), is a thick tensor ideal of
K. We know that Ker(F ) := {A ∈ K | F (A) ∼= 0L}, so all that remains is checking the
axioms. Let

A
f−−→ B

g−→ C
h−−→ A[1]

be a distinguished triangle in K and A,B ∈ Ker(F ). We apply the triangulated functor F
and get a new distinguished triangle in L:

F (A)
F (f)−−−−→ F (B)

F (g)−−−−→ F (C)
F (h)−−−−→ F (A)[1]

which we know is the distinguished triangle

0L → 0L → F (C)→ 0L,

so C ∈ Ker(F ). LetA ∈ Ker(F ) such thatA ∼= B⊕C. Then F (A) ∼= F (B)⊕F (C) ∼= 0
which clearly implies that B,C ∈ Ker(F ). Let A ∈ Ker(F ) and B ∈ K and consider the
tensor product A⊗B. Then F (A⊗B) ∼= F (A)⊗ F (B) since F is a tensor triangulated
functor. This in turn means that F (A)⊗F (B) ∼= 0L ⊗F (B) = 0L, so A⊗B ∈ Ker(F ).
So Ker(F ) is a thick tensor ideal of K.

3.2 Prime ideals and the spectrum of a category
From the realm of commutative algebra one might already be familiar with the notions of
prime ideals and spectrums of commutative rings. Balmer took these ideas and reissued
them in the world of categories.

Definition 3.2.1. Let P ⊂ K be a proper thick tensor ideal. P is called prime if

A⊗B ∈ P =⇒ A ∈ P or B ∈ P.

The set of all primes of K is called the spectrum of K, and is denoted by Spc(K). This
is analogous to the spectrum for rings that we know from commutative algebra. Among
other things, the fact that 1 /∈ p,∀ p ∈ Spec(R) and 0 ∈ p,∀ p ∈ Spec(R) for a commuta-
tive ring R analogously hold in Spc(K) for a tensor triangulated category K. This means
that any prime ideal P ∈ Spc(K) contain the zero object, but not the identity object, of K.
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Another important analogy are the subsets of Spc(K) which we will look at now. Let
S ⊂ K be any family of objects, and consider the following subset of Spc(K), denoted as
Z(S):

Z(S) = {P ∈ Spc(K) | S ∩ P = ∅ }.

These subsets have the following main properties:

(1)
⋂
j∈J

Z(Sj) = Z(
⋃
j∈J
Sj) for any index set J

(2) Z(S1)∪ Z(S2) = Z(S1 ⊕ S2), where S1 ⊕ S2 := {a1 ⊕ a2 | ai ∈ Si, i ∈ {1, 2}}

(3) Z(K) = ∅ and Z(∅) = Spc(K).

This shows that the collection {Z(S) ⊂ Spc(K) | S ⊆ K } defines the closed subsets of a
topology on Spc(K) called the Zariski topology. The open complement of Z(S) is

U(S) := Spc(K)/Z(S) = {P ∈ Spc(K) | P ∩ S 6= ∅}.

With this in place, we can define the support of an object.

Definition 3.2.2. For any object A ∈ K we define the support of the object to be

supp(A) := Z({A}) = {P ∈ Spc(K) | A /∈ P}.

Viewing tensor triangulated categories as rings is useful for one’s intuition, where we
think of the coproduct and tensor product of two objects of the category as adding and
multiplying two elements of a ring. Note that this is not a precise analogy, as rings have
additive inverses and we do not have inverses with respect to coproduct. Regardless, we
need to define and understand tensor multiplicativity.

Definition 3.2.3. A collection of objects S ⊂ K is called tensor multiplicative if 1 ∈ S
and if A1, A2 ∈ S =⇒ A1 ⊗A2 ∈ S.

We have now defined and presented important notions in the world of tensor triangu-
lated categories. The first result we prove concerning these notions shows how we can
locate prime ideals using thick tensor ideals and tensor multiplicative families of objects.

Lemma 3.2.4. Let K be a non-zero tensor triangulated category. Let J ⊂ K be a thick
tensor ideal and S ⊂ K a tensor multiplicative family of objects such that S ∩ J = ∅.
Then there exists a prime ideal P ∈ Spc(K) such that J ⊂ P and P ∩ S = ∅.

Proof. We begin constructing a set of objects, F , where the elements are thick tensor
ideals A ⊂ K such that A∩S = ∅, J ⊆ A and for C ∈ S, A ∈ K with A⊗C ∈ A then
A ∈ A. To show that F 6= ∅, consider the following subcategory of K:

A0 := {A ∈ K | ∃ S ∈ S with A⊗ C ∈ J }.

We now show that this is a thick tensor ideal. Consider a triangle A→ B → C → A[1] in
K where A,B ∈ A0 and A[1] ∈ A0 trivially. For the entries A and B, we know that there
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are elements SA, SB ∈ S such that A ⊗ SA ∈ J and B ⊗ SB ∈ J . Let S := SA ⊗ SB
and apply the functor −⊗ S on the mentioned triangle. This yields the triangle

A⊗ S → B ⊗ S → C ⊗ S → A[1]⊗ S

in which we find that A ⊗ S = A ⊗ (SA ⊗ SB) = (A ⊗ SA) ⊗ SB which implies that
A ⊗ S ∈ J , A[1] ⊗ S ∈ J and analogously that B ⊗ S ∈ J . Since J is a thick tensor
ideal we have that C ⊗ S ∈ J , which implies that C ∈ A0.

The ideal is thick since for a direct sum A ⊕ B ∈ A0 there exists a C ∈ S such that
(A ⊕ B) ⊗ C ∈ J . We have that (A ⊕ B) ⊗ C = (A ⊗ C) ⊕ (B ⊗ C), meaning that
(A ⊗ C) and (B ⊗ C) sit in J since J is thick, which in turn means that A,B ∈ A0.
Finally, assume A ∈ A0 and B ∈ K. We now want to show that A ⊗ B ∈ A0. A is such
that there is a C ∈ S such that A ⊗ C ∈ J . Now, (A ⊗ B) ⊗ C = B ⊗ (A ⊗ C) ∈ J
which implies A⊗B ∈ A0. This shows that A0 is a thick tensor ideal, and the properties
for belonging to the family F are trivial by construction of A0. This means that the family
F is non-empty, and by Zorn’s Lemma there exists a maximal element, P of this family.
We want to show that this maximal element is prime. We assume that A ⊗ B ∈ P and
B /∈ P , so we want to show that this leads to A ∈ P . Consider the following thick tensor
ideal

A1 := {D ∈ K | A⊗D ∈ P}.
We see that P ⊆ A1, since B ∈ A1 but not in P . Since P is the maximal element of F ,
A1 cannot be a part of this family. Now, J ⊂ A1 and any tensor product A ⊗ C ∈ A1

with A ∈ K, C ∈ S implies that A ∈ A1, so two of our three conditions are fulfilled. This
means that A1 ∩ S 6= ∅, so there exists a D ∈ S such that A⊗D ∈ P . Since P ⊂ F we
have that A ∈ P by the properties of F . This completes the proof.

This result is essential for further developing the theory of prime ideals and the cate-
gorical spectrum.

Proposition 3.2.5. The following claims hold for a non-zero tensor triangulated category
K.

i) If S is a tensor multiplicative collection of objects not containing zero, then there
exists a prime ideal P ∈ Spc(K) such that P ∩ S = ∅.

ii) If J ⊂ K is a proper thick tensor ideal, then there exists a maximal proper thick
tensor ideal such that J ⊆M ⊂ K.

iii) Maximal proper thick tensor ideals are prime.

iv) The spectrum of K is non-empty.

Proof. i) follows directly from looking at the thick tensor ideal J = 0 and Lemma 3.2.4.
ii) also is a direct consequence of 3.2.4, namely the case of S = {1} where we obtain
a proper maximal ideal P which contains J . For iii) we assume S = {1} and that our
proper thick tensor ideal J is maximal. From Lemma 3.2.4 we get that there exists a prime
P containing J , but since J is maximal they have to be equal. iv) trivially follows from
i).
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3.2 Prime ideals and the spectrum of a category

Proposition 3.2.6. The following hold for A,B,C ∈ K :

i) supp(0) = ∅ and supp(1) = Spc(K).

ii) supp(A⊕B) = supp(A) ∪ supp(B)

iii) supp(A⊗B) = supp(A) ∩ supp(B)

iv) supp(A[1]) = supp(A)

v) supp(A) ⊆ supp(B) ∪ supp(C) for a distinguished triangle A→ B → C → A[1].

Proof. For i) we use the fact that every additive subcategory includes the 0-element, and
hence every prime has 0 in it and supp(0) = ∅. If any proper thick tensor ideals contains
1 it must generate the whole category and hence cannot be proper. So supp(0) = Spc(K).

For ii) we take a P ∈ supp(A ⊕ B) and use that A ⊕ B /∈ P which means that A
and B cannot both be in P . This means that either P ∈ supp(A) or P ∈ supp(B) which
implies P ∈ supp(A) ∪ supp(B). Now, if P /∈ supp(A ⊕ B) we have that A ⊕ B ∈ P
which by thickness of P implies that P /∈ supp(A) ∪ supp(B).

For iii) we look at a P ∈ supp(A ⊗ B). This means A ⊗ B /∈ P so neither of
A or B could be in P by its tensor property. So P ∈ supp(A) ∩ supp(B). Now, for
P /∈ supp(A⊗B) we know that A⊗B ∈ P so either A ∈ P or B ∈ P since P is prime.
Either case concludes with P ∈ supp(A) ∩ supp(B).

For iv) we use that triangulated categories are closed under translation. This includes
primes.

For v) we use the triangulated property of P . This means that for a distinguished
triangle A → B → C → A[1], if A,B ∈ P then C ∈ P . From this the deduce that if
P ∈ supp(A) then P ∈ supp(B) ∪ supp(C). This completes the proof.

Remark 3.2.7. Since {supp(A) | A ∈ K} forms a basis of closed subsets, we can under-
stand what the closure of a subset S ⊆ Spc(K) is. From [2, Proposition 2.8] we learn that
if S ⊆ Spc(K), then its closure, S, is the smallest closed subset of Spc(K) which includes
S. This means that

S :=
⋂

A∈K s.t.
S⊂supp(A)

supp(A)

and we can understand the closure of a prime ideal, or point, P in the categorical spectrum.

Proposition 3.2.8. The closure of a point P ∈ Spc(K) is {P} = {Q ∈ Spc(K) | Q ⊆ P}.

Proof. Let S0 := K \ P , with Z(S0) = {P ∈ Spc(K) | P ∩ S0}. Then P ∈ S implies
S ⊆ S0, which in turn implies Z(S0) ⊆ Z(S), so Z(S0) is the smallest closed subset
containing P . Hence {P} = {Q ∈ Spc(K) | Q ⊆ P}.

The closure of a point also admits another nice property. If P1,P2 ∈ Spc(K), and
{P1} = {P2}, then P1 = P2. Now, the next definition deals with the relationship between
a topological space and a function associating objects of a tensor triangulated category
to a closed subset of said topological space, called the assignment. The pairing of the
topological space and the assignment is called a support data.
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Definition 3.2.9. [2, Definition 3.1] A support data on a tensor triangulated category
(K,⊗, 1) is a pair (X,σ) where X is a topological space and σ is an assignment which
associates to any object A ∈ K a closed subset σ(A) ⊂ X subject to the following rules:

i) σ(0) = ∅ and σ(1) = X.

ii) σ(A⊕B) = σ(A) ∪ σ(B).

iii) σ(A[1]) = σ(A).

iv) Given any distinguished triangle A→ B → C → A[1], σ(A) ⊆ σ(B) ∪ σ(C).

v) σ(A⊗B) = σ(A) ∩ σ(B).

Example 3.2.10. Let K be a tensor triangulated category. Then (Spc(K), supp) is a sup-
port data on K. This falls on Spc(K) being a topological space and Proposition 3.2.6.

With this in place it might prove useful to define what a morphism between two support
data is.

Definition 3.2.11. Let K be a tensor triangulated category, and (X,σ) and (Y, τ) be two
support data on K. Then a morphism of support data, f : (X,σ)→ (Y, τ), is a continuous
map f : X → Y such that σ(A) = f−1(τ(A)) for all objects A ∈ K.

Note that this morphism is an isomorphism if and only if f is a homeomorphism.

Lemma 3.2.12. For a set X , if we have two maps f1, f2 : X → Spc(K) such that
f−11 (supp(A)) = f−12 (supp(A)) for all A ∈ K, then f1 = f2.

Proof. The relation f−11 (supp(A)) = f−12 (supp(A)) tells us that f1(x) ∈ supp(A) ⇐⇒
f2(x) ∈ supp(A). Then, look at the closure of f1(x):

{f1(x)} =
⋂

A∈K s.t.
f1(x)∈supp(A)

supp(A) =
⋂

A∈K s.t.
f2(x)∈supp(A)

supp(A) = {f2(x)}

which means that f1(x) = f2(x) by Proposition 3.2.8. Hence f1 = f2.

Lemma 3.2.13. Let (X,σ) be a support data on K, and Y ⊆ X any subset. Then the full
subcategory {A ∈ K | σ(A) ⊆ Y } of K is a thick tensor ideal.

Proof. Let I := {A ∈ K | σ(A) ⊆ Y }. For objectsA ∈ I,B ∈ K, we obtain σ(A⊗B) =
σ(A) ∩ σ(B) ⊆ Y , hence A ⊗ B ∈ I. For thickness, consider A ⊕ B ∈ I. This means
that σ(A ⊕ B) = σ(A) ∪ σ(B) ⊆ Y , and so σ(A) ⊆ Y and σ(B) ⊆ Y , i.e. A,B ∈ I.
For the triangulated part, consider a distinguished triangle A → B → C → A[1], where
A,B,A[1] ∈ I. Now, shifting the distinguished triangle to C → A[1] → B[1] → C[1]
we have σ(C) ⊆ σ(A) ∪ σ(B) and so C ∈ I which completes the proof.

We now arrive at the universal property of the spectrum, which explains the relation
between a support data (X,σ) on a tensor triangulated categoryK, and the spectrum ofK.
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Theorem 3.2.14. (Universal property of the spectrum)[2, Theorem 3.2]
Let K be a tensor triangulated category. The spectrum (Spc(K), supp) is the final support
data on K. This means that (Spc(K), supp) is a support data, and for any support data
(X,σ) on K there exists a unique continuous map f : X → Spc(K) such that σ(A) =
f−1(supp(A)) for any object A ∈ K. Explicitly, the map f is defined, for all x ∈ X , by

f(x) = {A ∈ K | x /∈ σ(A)}.

Proof. First, we note that (Spc(K), supp) is a support data by Proposition 3.2.6. Now, let
(X,σ) be a support data on K and f : X → Spc(K) be a morphism of support data such
that f(x) := {A ∈ K | x /∈ σ(A)}. By Lemma 3.2.12 we have that f is unique. For
continuity, we have to show that f−1(supp(A)) = σ(A) by the definition of continuity
of topological maps. The definition of supp(A) gives that f(x) ∈ supp(A) ⇐⇒ A /∈
f(x) ⇐⇒ x ∈ σ(A), which means that f−1(supp(A) = σ(A) and we have continuity.
Moreover, by Lemma 3.2.13 with Y \ {x} we have that f(x) is a thick tensor ideal. For
primality, consider A ⊗ B ∈ f(x). This means that x /∈ σ(A ⊗ B) which implies that
x /∈ σ(A) or x /∈ σ(B), so A ∈ f(x) or B ∈ f(x).

Remark 3.2.15. Shortly, we will talk about the spectrum being functorial, and in that
regard we need to specify our notation to avoid confusion. We denote the support of an
object A ∈ K by suppK(A) := supp(A) ⊆ Spc(K) to emphasize the support’s depen-
dency on K.

The functoriality of the spectrum follows from looking at a tensor triangulated functor
F : K → L with a map

SpcF : Spc(L)→ Spc(K)

S 7→ F−1(S).

which is well-defined, continuous and for all objects A ∈ K

(SpcF )−1(suppK(A)) = suppL(F (A))

in Spc(L). The latter part means that we can tie knots between the support of objects in
different categories using the functor F . To get a better look at how the inverse Spc-functor
actually works, consider the following:

F : K → L
=⇒ SpcF : Spc(L)→ Spc(K)

Q 7→ F−1Q = {x ∈ K | F (x) ∈ Q}

Nothing new here, and we remind ourselves that for A ∈ K the support of A is such that
suppK(A) = {P ∈ Spc(K) | A /∈ P} ⊆ Spc(K). This gives us the following when we
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apply (SpcF )−1:

(SpcF )−1(suppK(A)) := {Q ∈ Spc(L) | (SpcF )(Q) ∈ suppK(A)}
= {Q ∈ Spc(L) | F−1(Q) ∈ suppK(A)}
= {Q ∈ Spc(L) | A /∈ F−1(Q)}
= {Q ∈ Spc(L) | F (A) /∈ Q}
= suppK(F (A))

Hence the inverse Spc-functor occur naturally. Note that Spc(−) is a contravariant functor
between the 2-category of tensor triangulated categories and the category of topological
spaces. It is also worth mentioning that if the functor F : K → L is dense3, then we
have that the smallest thick tensor triangulated subcategory generated by F (F−1(P)) is
P . Hence F−1(P1) = F−1(P2) implies that P1 = P2, and Spc(F ) is injective.

The following definitions will help us understand the radical in a categorical sense, as
well as the support in various manners.

Definition 3.2.16. The radical
√
J of a thick tensor ideal J ⊂ K is defined to be

√
J := {A ∈ K | ∃ n ≥ 1 such that A⊗n ∈ J }.

Moreover, a thick subcategory J is called radical if
√
J = J .

We note that the radical of J ,
√
J , can be written as an intersection of the prime ideals

containing J .

Lemma 3.2.17.
√
J =

⋂
P∈Spc(K)
J⊆P

P .

Proof. Indeed,
√
J ⊆ P for any P containing J since P is prime, so

√
J ⊂

⋂
P∈Spc(K)
J⊆P

P .

Also, for reverse inclusion, consider an element A ∈ K such that A ∈ P for all P ⊇ J .
The multiplicative set S := {A⊗n | n ≥ 1} is such that S ∩ J 6= ∅ since Lemma 3.2.4
says that if S ∩ J = ∅ then there is a prime ideal P such that J ⊆ P , but A /∈ P , which
is a contradiction. Hence the equality holds.

Definition 3.2.18. Let E ⊆ K be a collection of objects. The support of E is the union of
the support of its elements:

supp(E) =
⋃
A∈E

supp(A) ⊆ Spc(K).

This means, by definition of the support, that supp(E) = {P ∈ Spc(K) | E * P}. Also,
let Y ⊆ Spc(K) be a subset. The subcategory supported on Y, KY is defined to be

KY = {A ∈ K | supp(A) ⊆ Y } ⊆ K.
3A functor F : K → L is dense if every B ∈ L is isomorphic to F (A) for an object A ∈ K.
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The subcategory KY is a thick tensor ideal by Lemma 3.2.13. Also, by the nature of
the support, it is clear that KY =

⋂
P∈Spc(K)\Y

P .

Proposition 3.2.19. For any thick tensor ideal J ⊆ K we have that Ksupp(J ) =
√
J .

Proof. By Definition 3.2.18 we have that P /∈ supp(J ) is equivalent to J ⊂ P . Hence
Ksupp(J ) =

⋂
P∈Spc(K)\supp(J )

P) =
⋂

P /∈supp(J )

P =
⋂

P∈Spc(K)
J⊆P

P =
√
J .

With all this in place, we are ready to present Balmer’s bijection. The bijection lets us
establish a connection between the thick tensor ideals of a tensor triangulated category K
and the subsets of Spc(K). These subsets are unions of supports on objects.

Theorem 3.2.20. [2, Theorem 4.10] Let S be the set of those subsets Y ⊆ Spc(K) of
the form Y =

⋃
i∈I

Yi for closed subsets Yi of Spc(K) with Spc(K) \ Yi quasi-compact4

for all i ∈ I . Let R be the set of radical thick tensor ideals of K. Then there is an
order-preserving bijection S ∼−−→ R given by

Y 7→ KY := {A ∈ K | supp(A) ⊆ Y }

whose inverse is
J 7→ supp(J ) :=

⋃
A∈J

supp(A).

Proof. Our maps need to be well-defined. KY is a thick tensor ideal and is in fact radical as
supp(A⊗n) = supp(A)∩· · ·∩supp(A) = supp(A) which we learn from Proposition 3.2.6.
Now, [2, Proposition 2.14] tells us that supp(J ) is a union of closed subsets with quasi-
compact complements Spc(K)\ supp(A) = U(A). Both maps also preserve inclusions, so
the maps are well-defined.

To complete the proof we need to show that the two compositions of the maps equal
the identity. From Proposition 3.2.19 we see that J 7→ supp(J ) 7→ Ksupp(J ) =

√
J = J

for J radical, so the first composition is okay. The second composition Y 7→ KY 7→
supp(KY ) is such that supp(KY ) ⊆ Y for any subset Y ⊆ Spc(K) by definition, so we
need to show the reverse inclusion to finish up the proof.

We pick a P ∈ Y , and by the nature of Y there exists a Yi ⊂ Y such that P ∈ Yi and
Spc(K) \ Yi is quasi-compact. We know from [2, Proposition 2.14 b)] that there exists an
object A ∈ K such that Spc(K) \Yi = U(A) from which we conclude that Yi = supp(A),
so P ∈ supp(A). Then P ∈

⋃
A∈KY

= supp(KY ), which completes the proof.

4For us this means that for a topological space X , for each open covering of X , there is a finite subcover.
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Chapter 4
Application

One can’t know what one doesn’t
know. One can just hope that lucky
associations over time bring us
forward. Personally my only hope is
that I’m prone to get such associations.
So far it doesn’t look too promising.

Erlend Loe, L

Here we will look at a specific derivation of the main result of the previous chapter,
called the Hopkins-Neeman-bijection. This result was first presented in [12] and will be
used in classifying the subcategories of our chosen category Kb(proj(R)), with R being a
commutative noetherian ring. We will show an isomorphism of support data in this very
category, before we choose a specific commutative noetherian ring to work with.

4.1 Classifying subcategories
To obtain the Hopkins-Neeman-bijection, we need to redefine the notions of spectrum and
support in a ring theoretical manner. If not stated otherwise,K will be a tensor triangulated
category and R will be a commutative, noetherian ring.

Definition 4.1.1. A subset Y ⊆ Spec(R), is called specialization closed if p ∈ Y and
p ⊆ q implies q ∈ Y .

The spectrum of R is as known from commutative algebra, while the support needs a
clearer definition.

Definition 4.1.2. The support of a finitely generated module M over the commutative,
noetherian ring R, is given as

SuppRM := {p ∈ Spec(R) |Mp 6= 0}.
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First, with our category being Kb(proj(R)), we want to show that every thick subcat-
egory J ⊂ Kb(proj(R)) is actually a radical tensor ideal. To show this we will use the
bijection of Hopkins-Neeman [12]:

Theorem 4.1.3. There is a bijection of sets{
Thick subcategories

of Kb(proj(R))

} S−−→
←−−
T

{
Specialization closed
subsets of Spec(R)

}
where the maps are defined as

S : T 7→
⋃
M∈T

SuppRM

T : V 7→ {M ∈ Kb(proj(R)) | SuppRM ⊂ V},

where T is a thick subcategory of Kb(proj(R)) and V is a specialization closed subset of
Spec(R).

This has proved to be a useful tool in developing new theory in several branches of
algebra. We will now also make use of this beautiful theorem, showing that every thick
subcategory of Kb(proj(R)) is a radical thick tensor ideal.

Proposition 4.1.4. Every thick subcategory of Kb(proj(R)) is a radical thick tensor ideal.

Proof. For the sake of keeping things simple, we let our category Kb(proj(R)) = K. First,
we take a thick subcategory J ⊂ K and run it through the Hopkins-Neeman-bijection:

J S7−−−→
⋃
M∈J

SuppRM
T7−−−→ {N ∈ K | SuppRN ⊆

⋃
M∈J

SuppRM} = J .

Since J is assumed to be thick, we go directly to the tensor property. We show this
by taking an A ∈ J and a B ∈ K and look at SuppR(A ⊗R B). We know that
SuppR(A⊗R B) = SuppRA ∩ SuppRB from [3, Chapter 2.1.2 - Property (5)], in which
SuppRA ⊆

⋃
M∈J

SuppRM , hence SuppR(A⊗R B) ⊂
⋃

M∈J
SuppRM so A⊗R B ∈ J .

Recall that a thick tensor ideal is called radical if
√
J = J . So we take an A ∈

√
J ,

and since
√
J = {A ∈ K | ∃ n ≥ 1 s.t. A⊗n ∈ J } we know that A⊗n ∈ J for some n.

Now, since SuppRA
⊗n = SuppRA ∩ SuppRA ∩ · · · ∩ SuppRA = SuppRA, it is evident

that
√
J = J and so J is a radical thick tensor ideal.

This will ultimately lead us to a useful result where we get an isomorphism of support
data, namely (Spc(Kb(proj(R)), supp) ' (Spec(R),SuppR), but before we get there we
need to define what a classifying support data is, and present a theorem from Balmer
stating the relationship between a noetherian topological space X and the spectrum of K.
We begin with the classifying support data.

Definition 4.1.5. (Classifying support data) [2, Definition 5.1]
A support data (X,σ) on a tensor triangulated category K is a classifying support data if
the following two conditions hold:
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(a) The topological space X is noetherian and any non-empty irreducible closed subset
Z ⊆ X has a unique generic point: ∃! x ∈ Z with {x} = Z.

(b) We have a bijection

S : {Y ⊆ X | Y specialization closed} ∼−−→ {J ⊆ K | J radical thick tensor ideal}

defined by Y 7→ {A ∈ K | σ(A) ⊆ Y }, with inverse Y 7→ σ(J ) :=
⋃
A∈J

σ(A).

Now, the theorem of Balmer.

Theorem 4.1.6. Let (X,σ) be a classifying support data on K. Then the universal prop-
erty of the spectrum grants a canonical map f : X → Spc(K) which is a homeomorphism.

Proof. We have from Theorem 3.2.14 that the map f is continuous and is such that
f−1(supp(A)) = σ(A) for all objects A ∈ K. Now, before we check bijectivity and
closedness, we need to prove that any closed subset Z ⊆ X is of the form Z = σ(A) for
some object A ∈ K. In lack of a better name, this will be referred to as the Z-σ-property.
We use the bijection from Definition 4.1.5, and choose an irreducible5 Z = {x} for some
x ∈ X . Now, making use of Definition 3.2.9 ii) and the fact that X is noetherian, we
have that {x} = Z = S−1(S(Z)) =

⋃
A∈S(Z)

σ(A). This means that there exists an object

A ∈ K such that x ∈ σ(A) ⊆ Z. So {x} ⊆ σ(A) ⊆ Z = {x}, so Z = σ(A), and the
Z-σ-property is proved.

For injectivity, we define for an x ∈ X that Y (x) := {y ∈ X | x /∈ {y} } which
is easily verified as specialization closed. If σ(A) ⊂ Y (x) then x /∈ σ(A), so σ(A) ⊂
Y (x) =⇒ x /∈ σ(A). Now assume that x /∈ σ(A). We know that σ(A) is specialization
closed, so for all y ∈ σ(A), x /∈ {y} and we have σ(A) ⊆ Y (x), so σ(A) ⊂ Y (x) ⇐⇒
x /∈ σ(A). Let us now look at S(Y (x)):

S(Y (x)) := {a ∈ K | σ(A) ⊆ Y (x)} = {A ∈ K | x /∈ σ(A)} = f(x).

Ultimately this means that if f(x1) = f(x2), then Y (x1) = Y (x2), which means that
{x1} = {x2} and so x1 = x2, which implies that f is injective.

For surjectivity, let P be a prime ideal in K such that P = S(Y ) for a specialization
closed subset Y ⊂ X . Since P 6= K we have a non-empty complement X \ Y . Now
let x, y ∈ X \ Y , we have by the Z-σ-property the existence of A,B ∈ K such that
{x} = σ(A) and {y} = σ(B). This means that A,B /∈ P = S(Y ) since x, y /∈ Y , so
A ⊗ B /∈ P and σ(A ⊗ B) * Y . We then have that there is a point z ∈ X \ Y such
that z ∈ σ(A ⊗ B) = σ(A) ∩ σ(B) = {x} ∩ {y}, so {z} sits in the closure of both x
and y. Hence the non-empty family of closed subsets F = {{x} ⊂ X | x ∈ X \ Y }
is such that any two elements admit a lower bound for inclusion. This lower bound is
the minimal element in F , given by X being noetherian. We now know that there exists
a point x ∈ X \ Y such that X \ Y ⊂ {y ∈ X | x ∈ {y} , and since x /∈ Y the
reverse inclusion also holds. This yields Y = {y ∈ X | x /∈ {y} }, which gives us that
P = S(Y ) = S(Y (x)) = f(x), and surjectivity is proved.

5 For a subset Z ⊂ Spc(K), being irreducible means that for any open subsets U1, U2 in Spc(K) if Z∩U1∩
U2 = ∅ then Z ∩ U1 = ∅ or Z ∩ U2 = ∅ [2, Proposition 2.18].
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Now, f−1(supp(A)) = σ(A) which in turn gives f(σ(A)) = supp(A), so f is a closed
map by the Z-σ-property. Hence f is a homeomorphism.

Corollary 4.1.7. (Spc(Kb(proj(R)), supp) and (Spec(R),SuppR) are isomorphic as sup-
port data.

Proof. It is easily verified that (Spec(R),SuppR) is a classifying support data on Kb(proj(R)),
using Proposition 4.1.4 and Theorem 3.2.20. So by Theorem 3.2.14 there exists a unique
map f : Spec(R) → Spc(Kb(proj(R)), which by Theorem 4.1.6 is a homeomorphism.
Hence Spec(R) ' Spc(Kb(proj(R)), and (Spec(R),SuppR) ∼= (Spc(Kb(proj(R)), supp)
as support data.

4.2 Picking a specific ring
We will now look at a specific commutative noetherian ring, namely Zn = Z/〈n〉, and
we will consider different variations of n. The varations of n will of course influence
the structure of Zn. So let n = pk11 p

k2
2 · · · pkmm where the pi are distinct primes for

i ∈ {1, 2, . . . ,m}. It is known that when a ring R is semi-simple, all modules over R
are semi-simple and hence every module is automatically projective and injective. What
makes this interesting is that with the ringR being semi-simple, the category mod(R) also
becomes semi-simple, i.e. global dimension 0. This means that every module in mod(R)
is projective, and hence mod(R) = proj(R). The choice of n influences Zn which has
consequences for our category, so when is Zn semi-simple?

We can factor Zn depending on what n is. So, let n = pk11 p
k2
2 · · · pkmm , such that

Zn ∼= Z
p
k1
1
× Z

p
k2
2
× · · · × Zpkmm . Zn is semi-simple when k1 = k2 = · · · = km = 1, i.e.

n is a product of distinct primes. We have that Zn ∼= Zp1 ×Zp2 × · · ·×Zpj , which means
that Zn is isomorphic to a product of fields. This is in accordance with the Wedderburn-
Artin theorem, which states that a ring is semi-simple if and only if it is isomorphic to a
product of matrix rings over division rings. Now, if we let Zn be our ring of choice, what
does the spectrum look like?

Proposition 4.2.1. Let Zn be such that n = pk11 p
k2
2 · · · pkmm , where the pi are distinct

primes, and ki ≥ 1, for i ∈ {1, 2, . . . ,m}. Then Spec(Zn) = {〈p1〉, 〈p2〉, . . . , 〈pm〉}, i.e.
the ideals generated by the residue classes of the distinct primes in the factorization of n.

Proof. We know that since Zn = Z/〈n〉, every prime ideal in Zn is of the form p/〈n〉,
where p is a prime ideal in Z and n ∈ p. Then p is of the form 〈p〉 for a prime p ∈ Z,
which implies that p/〈n〉 = 〈p〉/〈n〉. Now, n ∈ 〈p〉, so we have that p | n. Since n =
pk11 p

k2
2 · · · pkmm , p = pi, i ∈ {1, 2, . . . ,m}. So every prime ideal in Z/〈n〉 is generated by

the residue classes of one of the primes in n, which is what we wanted to show.

If we are to classify the thick subcategories of Kb(proj(Zn)), it might prove useful to
decompose the category into a product of "smaller" tensor triangulated categories, anal-
ogously to what we are doing when we decompose Zn into products of smaller rings.
Firstly, the equivalence Kb(proj(Zn)) ' Kb(proj(Zk1p1 × Zk2p2 × · · · × Zkmpm)) holds triv-
ially from the fact that Zn ∼= Z

p
k1
1
× Z

p
k2
2
× · · · × Zpkmm . Secondly, we need to show that
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Kb(proj(Zk1p1×Z
k2
p2×· · ·×Z

km
pm)) decomposes to Kb(proj(Z

p
k1
1

))×· · ·×Kb(proj(Zpkmm )),
as tensor triangulated categories. For this to be true we need to present some general re-
sults.

Let K1 and K2 be two tensor triangulated categories. We define the product cate-
gory K1 × K2 as follows: The objects of K1 × K2 are of the form (A1, A2) where
A1 ∈ K1 and A2 ∈ K2. The morphisms between two objects of the product category
are inherited componentwise from the factor categories. This means that for a morphism
f : (A1, A2)→ (A′1, A

′
2), f = (f1, f2) where f1 : A1 → A2 and f2 : A2 → A′2.

Lemma 4.2.2. Let K1 and K2 be tensor triangulated categories. Then K1 ×K2 is tensor
triangulated.

Proof. We take a triangle T1 : A1
f1−−→ B1

g1−−→ C1
h1−−→ A1[1] in K1, and a triangle

T2 : A2
f2−−→ B2

g2−−→ C2
h2−−→ A2[1] in K2 and compose them to get the following

diagram:

T1 : A1 B1 C1 A1[1]

× × × × ×
T2 : A2 B2 C2 A2[1].

f1 g1 h1

f2 g2 h2

This is a distinguished triangle in the product category. Now the axioms for triangulated
categories follows trivially, likewise the monoidal property required for the category to be
tensor triangulated.

Note that by induction this holds for any finite composition of tensor triangulated cat-
egories. By this result we know that for two noetherian commutative rings R and S,
Kb(proj(R)) × Kb(proj(S)) is a tensor triangulated category. The only thing that is
missing at this point is showing that Kb(proj(R × S)) is equivalent to Kb(proj(R)) ×
Kb(proj(S)) as tensor triangulated categories.

Proposition 4.2.3. Let R and S be two noetherian commutative rings. Then
Kb(proj(R× S)) and Kb(proj(R))×Kb(proj(S)) are equivalent as tensor triangulated
categories.

Proof. First, let us rename our categories to keep things a little cleaner. Let
Kb(proj(R× S)) = K(R× S) and Kb(proj(R))×Kb(proj(S)) = K(R)×K(S). Also,
let

F : K(R× S)→ K(R)×K(S)

be the functor such that

0→ (PnR, P
n
R)→ (Pn−1R , Pn−1S )→ · · · → (P 0

R, P
0
S)→ 0 7→ (P •R, P

•
S).

We observe that every complex ofK(R)×K(S) is naturally derived componentwise from
the complexes of K(R× S). The functor is triangulated by construction, and 1K(R×S) 7→
(1K(R), 1K(S)). Let A,B ∈ K(R× S) where

A = 0→ (AnR, A
n
S)→ (An−1R , An−1S )→ · · · → (A0

R, A
0
S)→ 0
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and
B = 0→ (BnR, B

n
S)→ (Bn−1R , Bn−1S )→ · · · → (B0

R, B
0
S)→ 0

and take the tensor product A⊗R×S B. If we examine this complex in degree n, we have
(AnR, A

n
S) ⊗R×S (BnR, B

n
S). Since (AR × AS) ⊗R×S (BR × BS) = (AR ⊗R BR) ×

(AS ⊗S BS), we have that (AnR, A
n
S)⊗R×S (BnR, B

n
S) = (AnR ⊗R BnR, AnS ⊗S BnS). This

makes the complex

0→ (AnR, A
n
S)⊗R×S (BnR, B

n
S)→ · · · → (A0

R, A
0
S)⊗R×S (B0

R, B
0
S)→ 0

equal to

0→ (AnR ⊗R BnR, AnS ⊗S BnS)→ · · · → (A0
R ⊗R B0

R, A
0
S ⊗S B0

S)→ 0.

So F (A⊗R×S B) = (AR⊗RBR, AS ⊗S BS), and our functor is tensor triangulated. We
construct a functor

G : K(R)×K(S)→ K(R× S)

which maps

(P •R, P
•
S) 7→ 0→ (PnR, P

n
R)→ (Pn−1R , Pn−1S )→ · · · → (P 0

R, P
0
S)→ 0.

This is tensor triangulated by the same arguments as for F . Now we look at the com-
positions F ◦ G and G ◦ F , which by construction give us the identity functor for each
category respectively. This means that Kb(proj(R×S)) and Kb(proj(R))×Kb(proj(S))
are equivalent as tensor triangulated categories.

Remark 4.2.4. We observe that if Zn is a semi-simple ring such that Zn ∼= Zp1 × Zp2 ×
· · · × Zpm , then Kb(proj(Zn)) = Kb(mod(Zn)) since every module over a semi-simple
ring is projective. This also decomposes and we get that Kb(mod(Zn)) ∼= Kb(mod(Zp1))×
Kb(mod(Zp2))× · · · ×Kb(mod(Zpm)).

4.3 Consequences
Now that we have picked a specific ring, Zn, and analyzed its spectrum, we can examine
what consequences this has for the categorical spectrum of Kb(proj(Zn)). Let us give our
diagram from Theorem 4.1.3 a slight update with the knowledge we have gathered so far:{

Thick subcategories of
Kb(proj(Zn))

} S−−→
←−−
T

{
Subsets of
Spec(Zn)

}
and recall the map T : V 7→ {M ∈ K | SuppRM ⊆ V}. Here, we can specify that V
is some subset of Spec(Zn) of the form {〈p1〉, 〈p2〉, . . . , 〈pi〉}, i ∈ {1, 2, . . . ,m}. Also,
SuppZnM = {p ∈ Spec(Zn) | Mp 6= 0}. Since we did a lot of ground work in the
previous section, we can simplify things to make them more understandable. We know
that Kb(proj(Zn)) can be decomposed into factor categories, so let us pick one specific
category, Kb(proj(Zkipi)) and look at the bijection diagram:
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{
Thick subcategories of

Kb(proj(Z
p
ki
i

))

}
S−−→
←−−
T

{
Subsets of
Spec(Z

p
ki
i

)

}
We have already understood the subsets of Spec(Z

p
ki
i

), and so to generalize it:

Spec(Z
p
ki
i

) =

{
{0}, ki = 1

{〈pi〉}, ki > 1

which means that in each case (ki = 1 or ki > 1) the ring spectrum has two subsets,
namely the aforementioned subsets and ∅. Hence Kb(proj(Z

p
ki
i

)) has two thick subcate-

gories. We actually know what these subcategories are, since {0} ⊂ Kb(proj(Z
p
ki
i

)) and

Kb(proj(Z
p
ki
i

)) itself are thick subcategories and we only have room for exactly two by

our bijection, these are exactly the thick subcategories of Kb(proj(Z
p
ki
i

)).

Theorem 4.3.1. Let n = pk11 p
k2
2 · · · pkmm . Then Kb(proj(Zn)) has 2m thick subcategories,

which correspond to the thick subcategories of the equivalent product category

Kb(proj(Z
p
k1
1

))× · · · ×Kb(proj(Zpkmm )),

namely C1 × C2 × · · · × Cm, where Ci ⊆ Kb(proj(Z
p
ki
i

)) and Ci = Kb(proj(Z
p
ki
i

)) or
{0}.

Proof. The fact that Kb(proj(Zn)) has 2m thick subcategories comes down to checking
the amount of subsets of Spec(Zn). There are two subsets of Spec(Z

p
ki
i

) for each i ∈
{1, 2, . . . ,m}. Since Spec(Zn) ∼= Spec(Z

p
k1
1

) × Spec(Z
p
k2
2

) × · · · × Spec(Zpkmm ), and
since we have two subsets for each of the m different spectrums, we get 2m different
subsets in Spec(Zn), so by the bijection of Theorem 4.1.3 we have 2m thick subcategories
in Kb(proj(Zn)).

We know that a thick subcategory Ci ⊆ Kb(proj(Z
p
ki
i

)) is either the category itself
or {0}. This means that the composition of thick subcategories from each of the m factor
categories, C1 × C2 × · · · × Cm, yields a total of 2m thick subcategories, hence these
correspond to the thick subcategories of Kb(proj(Zn)).

We have now learned what the thick subcategories of Kb(proj(Zn)) look like, but it is
also interesting to see how the Hopkins-Neeman bijection works and what connections it
uncovers.

We can pick a subset of Spec(Zn) and see what it maps to, using

T : V 7→ {M ∈ K | SuppRM ⊆ V}.

Let Spec(Zn) = {〈p1〉, 〈p2〉, . . . , 〈pm〉}, choose {〈p1〉} ⊂ Spec(Zn), and map this using
T :

T ({〈p1〉}) = {M ∈ Kb(proj(Zn)) | SuppZnM ⊆ {〈p1〉} }
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This means that we have two options for what SuppZnM can be for anM ∈ Kb(proj(Zn)),
namely ∅ or {〈p1〉}. To clarify, this means that M〈p1〉 6= 0 if and only if p1 ∈ SuppZnM
which is if and only if {〈p1〉} ⊂ SuppZnM . Also, M〈p1〉 = 0 if and only if SuppZnM =

∅, which in turn implies M ∈ T ({〈p1〉}). So we are looking forM ∈ Kb(proj(Zn)) such
that M〈p1〉 6= 0 and at the same time M〈p2〉 = M〈p3〉 = · · · = M〈pm〉 = 0.

We know that a non-acyclic complex M1 ∈ Kb(proj(Z
p
k1
1

)) is still non-acyclic after
localizing it with the prime ideal 〈p1〉, i.e. M1〈p1〉

6= 0. However, this does not hold when
we localize using a prime ideal not equal to 〈p1〉, so M1〈p〉 6= 0 if and only if p = p1.
This means that if we localize M1 with 〈p2〉, then M1〈p2〉

= 0 since we cannot have that
{〈p2〉} ⊆ {〈p1〉}.

Now, if we choose a complex M ∈ Kb(proj(Zn)), we know by Proposition 4.2.3 that
this corresponds to a complexM1×M2×· · ·×Mm in Kb(proj(Z

p
k1
1

))×Kb(proj(Z
p
k2
2

))×
· · · ×Kb(proj(Zpkmm )) where Mi ∈ Kb(proj(Z

p
ki
i

)), i ∈ {1, 2, . . . ,m}. This means that
M〈p1〉

∼= M1〈p1〉
×{0}×{0}×· · ·×{0}which implies thatM ∼= M1×{0}×{0}×· · · {0}.

Hence T ({〈p1〉}) = Kb(proj(Z
p
k1
1

)) × {0} × {0} × · · · {0}. Now, let {0} ⊂ {〈p1〉} ⊂
{〈p1〉, 〈p2〉} ⊂ · · · ⊂ {〈p1〉, 〈p2〉, . . . , 〈pm−1〉} ⊂ {〈p1〉, 〈p2〉, . . . , 〈pm〉} = Spec(R) be
a chain of subsets in Spec(R). The following diagram illustrates the connection between
said chain of subsets of Spec(R) and the associated thick subcategories of Kb(proj(Zn)):

{0} {0}⋂ ⋂
{〈p1〉} Kb(proj(Z

p
k1
1

))

⋂ ⋂
{〈p1〉, 〈p2〉} Kb(proj(Z

p
k1
1
× Z

p
k2
2

))

⋂ ⋂
...

...⋂ ⋂
{〈p1〉, 〈p2〉, . . . , 〈pm−1〉} Kb(proj(Z

p
k1
1
× Z

p
k2
2
× · · · × Z

p
km−1
m−1

))

⋂ ⋂
{〈p1〉, 〈p2〉, . . . , 〈pm〉} Kb(proj(Z

p
k1
1
× Z

p
k2
2
× · · · × Zpkmm ))

Spec(R) Kb(proj(Zn))
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4.3 Consequences

Remark 4.3.2. The Erdös-Kac-theorem [4] states that for large n, the number of dis-
tinct prime divisors of n has a normal distribution with mean and variance log(log(n)).
This means that we can expect the amount of distinct prime divisors to be approximately
log(log(n)) for large n, and hence we can expect the amount of thick tensor ideals of the
category Kb(proj(Zn)) to be 2log(log(n)) for large n.
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Appendix: Norwegian
translations

Here is a list of suggested translations for terminology used in the thesis.

English Norwegian (bokmål)
categorical spectrum kategorielt spektrum
distinguished triangle distingvert triangel
Hopkins-Neeman theorem Hopkins-Neeman-teoremet
perfect complex perfekt kompleks
semi-simple semisimpel
specialization closed subset spesialiseringslukket delmengde
spectrum spektrum
support støtte
support data støttedatum
tensor triangulated category tensortriangulert kategori
thick subcategory tykk underkategori
triangulated category triangulert kategori
triangulated subcategory triangulert underkategori
Zariski topology zariskitopologien
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