
TDT4510 Data and Information Management, Specialization Project
Fall 2008

Developing a SPARQL parser
for .NET

Authors:
Ole Petter Bang and Tormod Fjeldskår

Supervisors:
Professor Svein Erik Bratsberg and

Fast representative Øystein Torbjørnsen

NTNU

Norwegian University of Science and Technology
Department of Computer and Information Science

June 3, 2009

Abstract

The Semantic Web is growing, both in size and popularity. At the core of the
Semantic Web is the Resource Description Framework (RDF). RDF allows for
encoding of information in web-based applications. The SPARQL Protocol
and RDF Query Language is a SQL-like query language, recommended by
W3C for querying RDF data.

A SPARQL parser front-end, called SharQL, has been created for the
Microsoft .NET Framework using the MPLex and MPPG tools from Mi-
crosoft’s Managed Babel package. The parser is capable of transforming
textual SPARQL queries into abstract syntax trees (ASTs) representing the
queries.

The parser has been tested using syntax tests for the SPARQL language
released by the Data Access Working Group of W3C. The test suite contains
categorized tests focusing on different aspects of the SPARQL grammar. All
relevant tests pass using the SharQL parser, indicating the level of confor-
mity with the SPARQL specification.

In order to utilize the results of the project, a back-end is needed in
order to perform analysis, transformations and actual data queries against
an RDF data store.

i

ii

Preface

This report is the result of the course “TDT4510 Data and Information Man-
agement, Specialization Project” at the Norwegian University of Science
and Technology (NTNU), during fall 2008. It is a response to the following
task description:

RDF is a schema for encoding information in web-based appli-
cations and SPARQL is a W3C standard query language similar
to SQL that is used to query such RDF data. The task of the
project is to build a parser for SPARQL that will generate an ab-
stract syntax tree (AST). The project can use open-source com-
ponents but the resulting code should be written in C# and not
be limited by license terms blocking commercial use.

We would like to thank our supervisors, professor Svein Erik Bratsberg at
NTNU and Øystein Torbjørnsen at FAST, for feedback and guidance during
the course of this project.

Trondheim, December 2008

Ole Petter Bang Tormod Fjeldskår

iii

iv

Contents

1 Introduction 1

2 RDF and SPARQL 3
2.1 RDF Essentials . 3
2.2 Introduction to SPARQL . 5
2.3 SPARQL Testimonials . 6

3 Architectural Decisions 9
3.1 Choosing a Parser Generator 9

3.1.1 ANTLR . 9
3.1.2 Coco/R . 10
3.1.3 MPLex and MPPG . 10
3.1.4 Our Choice . 11

3.2 Further Architectural Choices 11

4 Implementation 13
4.1 Setup of the Development Environment 13
4.2 AST Preparations . 18

4.2.1 Designing the AST Class Hierarchy 18
4.2.2 Working With MPPG’s ValueType 21

4.3 Specifying the Grammar . 22
4.3.1 EBNF and BNF . 22
4.3.2 The Scanner Specification 23
4.3.3 The Parser Specification 23

4.4 The Visitor Pattern . 26
4.4.1 Visitor Example . 27

4.5 Error Handling . 29
4.5.1 Traditional Parser Error Handling 29
4.5.2 Adapting the Grammar Definition 29
4.5.3 Tracking Token Locations 30
4.5.4 Collecting Errors . 30

4.6 Handling Escape Sequences 32
4.6.1 Codepoint Escape Sequences 32

v

4.6.2 Common Escape Sequences 33
4.7 The Parser Facade Class . 34
4.8 Creating the SharQL Test Client 36

5 Testing 41
5.1 Unit Testing . 41
5.2 Automated Testing in Visual Studio 2008 42
5.3 W3C SPARQL Test Suite . 43

5.3.1 Omission of Semantic Tests 44
5.4 Automating the Test Suite . 45
5.5 Custom Tests . 46

5.5.1 Scanner Tests . 46
5.5.2 Escape Tests . 47

6 Results 49
6.1 A Simple Example . 49

6.1.1 Example Query . 49
6.1.2 The Scanner Token Generation 50
6.1.3 The AST generation 50

6.2 Test Results . 51
6.2.1 W3C SPARQL Test Suite 54

6.3 Specification Nonconformities 55
6.3.1 Unsupported Unicode Codepoints 55
6.3.2 Semantic Specifications 55

7 Conclusion and Further Work 57
7.1 Conclusion . 57
7.2 Further Work . 58

References 59

Glossary 61

A XML for Project File 65

B Scanner Specification 67

C Parser Specification 73

D NodeBase Class 97

E The W3C SPARQL Test Suite 101

F Source Code and Report 105

vi

List of Tables

2.1 SPARQL sample query result set 5

3.1 Summary of parser generators 10

4.1 Codepoint escape sequence formats supported by SPARQL [1] 33
4.2 Common escape sequences supported by SPARQL [1] 34

5.1 Methods available in Assert class 43
5.2 Failing Semantic Tests Omitted From the W3C SPARQL Test

Suite [2]. 45

E.1 Tests included in the W3C Test Suite part 1 101
E.2 Tests included in the W3C Test Suite part 2 102
E.3 Tests included in the W3C Test Suite part 3 102
E.4 Tests included in the W3C Test Suite part 4 103
E.5 Tests included in the W3C Test Suite part 5 103

vii

viii

List of Figures

2.1 RDF sample (graph) . 4
2.2 RDF sample (XML) . 4
2.3 RDF sample (Turtle) . 5
2.4 SPARQL sample query . 5

4.1 Creating the Visual Studio project 14
4.2 Choosing the right encoding 15
4.3 Visual Studio solution after adding initial items 15
4.4 Open the Visual Studio project file for editing 16
4.5 Actions for MPLex and MPPG 16
4.6 Build actions reflected in Properties explorer 17
4.7 An empty scanner declaration 17
4.8 An empty parser declaration 18
4.9 Adding necessary references 19
4.10 The INode interface . 19
4.11 The NodeBase abstract class . 20
4.12 This project’s %union specification 21
4.13 Building the AST via ValueType 21
4.14 Implicit casting between ValueType and NodeBase 21
4.15 Building the AST using implicit casting 22
4.16 EBNF sample rules . 22
4.17 BNF translation from Figure 4.16 23
4.18 SPARQL Grammar Conditional Symbol Sample 24
4.19 SPARQL Grammar List Symbol Sample 25
4.20 SPARQL Grammar Reduce/Reduce Sample 26
4.21 The IParserVisitor interface . 27
4.22 Basic implementation of visitor pattern from NodeBase 27
4.23 Sample AST node . 28
4.24 Sample visitor implementation 28
4.25 Scanner grammar definition extension 30
4.26 Specifying the Token Location Type 30
4.27 CustomLexLocation class replacing the LexLocation class. . . . 31
4.28 Tracking Token Location . 31
4.29 yyerror method. 32

ix

4.30 Usage examples of codepoint escape sequences 33
4.31 Algorithm for processing codepoint escape sequences 34
4.32 Extract from SharQL.Ast.Visitor.EscapeSequenceResolverVisitor 35
4.33 The Parser facade class . 36
4.34 UML sequence diagram showing parser facade class operation 37
4.35 Necessary references for the test client 38
4.36 The test client user interface 39
4.37 Code snippet from TreeBuilderVisitor 39

5.1 Creating a test class . 42
5.2 Creating a test method . 42
5.3 The syntax-basic-01 test from W3C 43
5.4 The syntax-form-construct03 test from W3C 44
5.5 The syn-bad-bnode-dot test from W3C 44
5.6 The syn-blabel-cross-graph-bad test from W3C, semantically in-

correct due to the use of the blank node who across basic
graph patterns. 44

5.7 C# Caller Method Name Extraction 46
5.8 Test Method Sample . 46
5.9 Custom Scanner Test . 47
5.10 Common escape sequence resolver test 47

6.1 SPARQL example query, identical to the query presented in
Figure 2.4 . 49

6.2 SPARQL example query scanner generated token stream . . 50
6.3 PNAME_NS Token Parser Rule 51
6.4 IRI_REF Token Parser Rule . 51
6.5 Prefix Parser Rule . 51
6.6 Example generated AST . 52
6.7 Relationships between the parser context entities 53
6.8 Test Suite Results . 54

x

Chapter 1

Introduction

“The Semantic Web is a web of data.” - W3C [3]

The Semantic Web attempts at a transition from the traditional web of
application-centric data, to a web of interconnected data from various data
sources. A corner stone of the Semantic Web is the Resource Description
Framework (RDF). RDF allows for representation of metadata about web
resources, or entities that can be identified by web resources. [4]

Describing web resources is one thing. To leverage the power of inter-
connected data, however, one needs a way of querying them. If e.g. a photo
sharing application and a calendar sharing application both publish RDF
data, it might be of interest to find all photos taken while the photographer
was attending a certain photography conference.

SPARQL (SPARQL Protocol and RDF Query Language) is the language
proposed by the RDF Data Access Working Group for querying RDF datasets.
On January 15th 2008, the SPARQL specification reached the status of W3C
Recommendation, the highest maturity level possible for W3C specifications.
With SPARQL, queries like the aforementioned photography case are easy
to express. [1]

Information Access Disruptions (iAD) is a constellation between FAST,
two Norwegian enterprises and different research environments. Their
goal is to develop the best search technology in the world. As part of this
research, it is desirable to be able to query several different types of infor-
mation from various data sources, including RDF.

The underlying search technology used by FAST is called MARS. The
goal of this project is to create a parser for the SPARQL language, written
in C# and running on Microsoft’s .NET Framework. The SPARQL parser
produced as part of this project should in turn be able to facilitate querying
against RDF data sources using the .NET based MARS technology.

In Chapter 2, a brief introduction to RDF and SPARQL is given. Follow-
ing this introduction, Chapter 3 presents the architectural decisions made
while developing the SPARQL parser. This mainly concerns the choice of

1

parser generator, but also explains briefly the class hierarchy facilitating
AST creation. Chapter 4 describes the steps of creating the SPARQL parser,
all the way from the setup of the development environment to the encapsu-
lation of the resulting parser. Chapter 5 explains the methods used to test
the resulting parser, to ensure that it behaves according to the specification.
In Chapter 6, the results of the project are presented, both in terms of how
the parser operates and how well it conforms with the specification. Fi-
nally, Chapter 7 concludes and summarizes the findings of the project and
presents further work necessary for this parser to facilitate iAD research.

2

Chapter 2

RDF and SPARQL

RDF is a schema for encoding information in web-based applications and
SPARQL is a W3C standard query language similar to SQL that is used to
query RDF data. This chapter gives a short introduction to the nature of
RDF data, followed by an introduction to SPARQL.

2.1 RDF Essentials

RDF (Resource Description Framework [4]) data represents information
(particularly metadata) about resources in the World Wide Web. The con-
cept of a “resource” is typically generalized, allowing for information not
directly retrievable on the Web to be represented. Thus, it is entirely up to
the producers and consumers of the RDF data to agree upon the seman-
tics of the information, as long as it is represented according to the RDF
schema. Different efforts have been made in order to standardize such se-
mantics, including The Dublin Core Initiative [5].

RDF is intended for situations in which information needs to be pro-
cessed by applications and exchanged without loss of meaning. Resources
are identified using URIs1, and described in terms of properties and their
corresponding values. The properties are also identified using URIs, and
their values are identified either by URIs or data typed literals. Altogether,
resources and their properties are represented as triples, consisting of a sub-
ject (the resource), a predicate (the property), and an object (the property
value). This enables RDF to represent simple statements about resources as
a graph of nodes with arcs representing the resources, their properties and
corresponding values.

1Actually, the term URI in the context of both RDF and SPARQL always refers to Inter-
nationalized Resource Identifiers (IRIs), a generalization of the Uniform Resource Identi-
fier (URI), which may contain characters form the Universal Character Set (Unicode/ISO
10646).

3

Figure 2.1: RDF sample (graph)

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description
rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">

<dc:title>Tony Benn</dc:title>
<dc:publisher>Wikipedia</dc:publisher>

</rdf:Description>
</rdf:RDF>

Figure 2.2: RDF sample (XML)

Figure 2.1 illustrates a sample RDF graph. The resource in question is a
Wikipedia web-page about the British politician Tony Benn, represented by
the elliptic node labeled with the web-page URI. The standardized proper-
ties used to describe the resource are gathered from Dublin Core [5], each
represented by an arc pointing at the corresponding rectangular property
value node.

The XML-based representation of the very same information is given
in Figure 2.2. A few, just as common, non-XML-based representations ex-
ist as well, like the Turtle [6] representation illustrated in Figure 2.3. The
most obvious advantage non-XML-based representations like Turtle have
over XML-based representations, is the strongly reduced level of verbosity.
Also, both the Turtle and SPARQL languages are subsets of the Notation 3
[7] language, making the two syntactically very much alike.

4

@prefix dc: <http://purl.org/dc/elements/1.1/>.

<http://en.wikipedia.org/wiki/Tony_Benn>
dc:title "Tony Benn";
dc:publisher "Wikipedia".

Figure 2.3: RDF sample (Turtle)

2.2 Introduction to SPARQL

SPARQL (SPARQL Protocol and RDF Query Language [1]) is a query lan-
guage designed to meet the use cases and requirements identified by the
RDF Data Access Working Group [8].

SPARQL queries may consist of triple patterns, conjunctions, disjunc-
tions and optional patterns. Most forms of queries contain a set of triple
patterns, which are just like RDF triples except that each of the subject,
predicate and object may be a variable. Such triple patterns match an RDF
subgraph when an equivalent graph may be constructed from the triple
pattern by substituting all variables with the corresponding terms from the
subgraph.

Given the RDF data illustrated in Figure 2.2, the SPARQL query illus-
trated in Figure 2.4 matches the RDF subgraph describing the title prop-
erty. This is done by substituting the ?title variable with the property value
“Tony Benn”, which is also bound to the variable and then returned as il-
lustrated in Table 2.1.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title
WHERE
{

<http://en.wikipedia.org/wiki/Tony_Benn> dc:title ?title
}

Figure 2.4: SPARQL sample query

title
Tony Benn

Table 2.1: SPARQL sample query result set

Each solution gives one way in which the selected variables can be bound to
an RDF subgraph so that the query pattern matches the data. When literals
are matched, the data type is also considered. In addition to common data

5

types, strings may be suffixed with a language tag, and custom data types
may be used.

To further restrict the matches, filters can be used to restrict common
data type values as well as to test different kinds of conditions using test
functions. Restrictions on common data types include regular expressions
on strings and arithmetic expressions for numeric values.

In an RDF triple the subject and object may be blank nodes, which are
nodes without any identification other than a label to differentiate nodes
from each other. Generally, blank nodes in a result set are not required to
have the same labels as their corresponding blank nodes from the SPARQL
query. The blank nodes simply act as non-distinguished variables in the
query, not as references to specific blank nodes. Thus, an application writer
should not expect a blank node in a query to refer to a particular blank
node in the data.

Specific triple patterns may be marked as being optional, allowing for
solutions to exist where the optional triple patterns does not match any
RDF subgraph. Further, alternative triple patterns may be given, allowing
for only one of several alternative graph patterns to match. If more than
one of the alternatives match, all the possible pattern solutions are found.
Also, several RDF graphs may be included and merged in a query, to allow
query of several RDF stores.

The solution sequence of a SPARQL query may be influenced by a set of
modifiers, most of which are familiar from languages like SQL. The mod-
ifiers available allow for ordering, projecting, selecting distinct solutions
only, setting an offset defining the element position in the solution sequence
from which to retrieve elements, as well as limiting the number of elements
to be retrieved, starting from the beginning of the solution sequence unless
an offset is stated explicitly. In addition a REDUCED modifier exists. The
cardinality of any set of variable bindings in a reduced solution set is at
least one and not more than the cardinality of the solution set with no DIS-
TINCT or REDUCED modifiers.

SPARQL has four query forms. SELECT queries return all, or a subset
of, the variables bound in a query pattern match. CONSTRUCT queries
return RDF graphs constructed by substituting variables in a set of triple
templates. An ASK query returns a boolean value indicating whether a spe-
cific query pattern matches or not. DESCRIBE queries return RDF graphs
describing the resources found.

2.3 SPARQL Testimonials

Many companies have taken an interest in SPARQL. Following the press
release announcing the publication of SPARQL [9], several early adopters
responded with testimonials about W3C’s new specification [10]. Among

6

these were both smaller and larger companies. To give an impression of
how SPARQL is received in the communities, some of the testimonials are
quoted below.

Computas AS:

Computas AS is currently building systems for its customers where
SPARQL is a fundamental core component. When conducting feasi-
bility studies, we found that there are allready many high quality off-
the-shelf components that puts the vision of the data web within reach,
also for smaller enterprises.

We are pleased to see SPARQL promoted to a W3C Recommenda-
tion, as it provides a stable platform for further work. We are allready
experimenting with extensions to SPARQL, and will work with the
W3C and its membership in the work that lies ahead.

– Kjetil Kjernsmo, Senior Knowledge Engineer, Computas
AS

Hewlett-Packard:

Hewlett-Packard is pleased to support the SPARQL Recommen-
dations.

SPARQL is a key element for integrated information access across
information silos and across business boundaries. HP customers can
benefit from better information utilization by employing semantic web
technologies.

HP’s Jena Semantic Web framework has a complete implementa-
tion of query language, protocol and result set processing. Jena is
open-source, freely available, with a large and active developer com-
munity.

HP is pleased to announce the first full release of SDB, a new
SPARQL database system for Jena that leverages existing database
installations to give enterprise-grade storage and query of RDF.

– Jean-Luc Chatelain, CTO HP Software Information Man-
agement

Oracle:

Oracle congratulates the W3C on achieving ’Recommendation’
status for SPARQL. As an active participant in this working group,
Oracle believes the standardization of SPARQL will play an instru-
mental role in achieving the vision of the Semantic Web. The commu-
nity’s work is intended to help organizations more effectively discover,
automate, integrate and re-use data across various applications.

7

Oracle Database 11g Semantic Store provides native support for
efficient and scalable storage, bulk loading, inferencing, and graph-
pattern based querying of semantic data represented using W3C’s RDF,
RDFS, and OWL languages. The Oracle Jena adaptor allows querying
of semantic data stored in Oracle using the SPARQL query language
while leveraging the performance and scalability of Oracle’s Semantic
Store.

– Don Deutsch, vice president Standards Strategy and Ar-
chitecture, Oracle

8

Chapter 3

Architectural Decisions

This chapter presents the architectural decisions made. This mainly in-
volves choosing a suitable parser generator, but the class hierarchy facil-
itating AST creation is also explained. Various alternatives are presented
along with the rationale behind the final decisions.

3.1 Choosing a Parser Generator

The main architectural decision for this project was the choice of parser
generator. A parser generator is a program that reads a language specifica-
tion formatted using a certain syntax. Based on this specification, a parser
is created. Different generators create different parser types. Some create
top-down (recursive descent) LL(k) parsers, while others create bottom-up
LALR parsers. LALR parsers can handle a wider range of grammars than
LL(k) parsers [11].

Given that the resulting parser of this project is to be written in C#, the
parser generator has to be able to generate C# source code. According to
the SPARQL specification, “The SPARQL grammar is LL(1) when the rules with
uppercased names are used as terminals.” [1]. This section discusses some of
the alternatives that were considered, and presents the rationale behind the
choice.

3.1.1 ANTLR

ANTLR (ANother Tool for Language Recognition) is an open source parser
generator, written in Java. It is considered mature and has reached version
3.1 at the time of writing.

The parsers created by ANTLR are recursive descent LL(k) parsers which
are less expressive than LR/LALR parsers, but the generated source code
is more intuitive. Source code can be generated in several programming

9

ANTLR Coco/R MPLex/MPPG
Rules definition EBNF Attributed

EBNF
Yacc-like BNF

Parser type LL(k) LL(k) LALR
AST generation Automatic Manual Manual
Supported by Community Community Microsoft
Visual Studio in-
tegration out-of-
the-box

No No Yes (requires
manual edit-
ing of project
file)

Table 3.1: Summary of parser generators

languages, such as Java, C++ and C#. Rules are defined in a format similar
to EBNF. [12]

3.1.2 Coco/R

Coco/R (Compiler compiler/Recursive descent) is similar to ANTLR in that
is creates recursive descent LL(k) parsers. However, while ANTLR is writ-
ten in Java with the possibility of generating source code in various lan-
guages, Coco/R comes in different versions supporting different languages.
To generate C# code, the C# version of Coco/R is required. Rules are de-
fined as an attributed EBNF grammar [13].

3.1.3 MPLex and MPPG

MPLex (Managed Package Lex) and MPPG (Managed Package Parser
Generator) are provided by Microsoft as part of their Visual Studio SDK.
The scanner generator MPLex and the parser generator MPPG are part of
the Managed Babel package aimed at Visual Studio extension developers.
[14]

MPLex and MPPG are closely related to the Queensland University of
Technology open source projects Gardens Point Scanner Generator (GPLEX)
[15] and Gardens Point Parser Generator (GPPG) [16]. The parsers generated
by MPPG are C# only, bottom-up LALR parsers.

Being part of the Visual Studio SDK, integrating the actions of MPLex
and MPPG into a Visual Studio project is relatively easy. This is an advan-
tage over GPLEX and GPPG. Rules for MPLex and MPPG are specified in
a format largely based on the syntax used by tools like Lex and Yacc [17].

10

3.1.4 Our Choice

The various properties of the different parser generators are listed in Ta-
ble 3.1. In cooperation with the supervisors, the choice of parser generator
ultimately fell on MPLex/MPPG. The LALR parsers created by MPPG are
more expressive than the LL(k) parsers created by the two other alterna-
tives [11]. This could be a future advantage if changes to the SPARQL lan-
guage require such expressiveness. Even though ANTLR and Coco/R have
large communities and good testimonials, the fact that MPLex and MPPG
are provided and supported by Microsoft [14] was decisive. The ease of
integration with the Visual Studio environment is an advantage as well.

3.2 Further Architectural Choices

As the actual code performing the lexical analysis and the parsing itself is
generated using MPLex and MPPG, the remaining functionality subject to
architectural decisions is the construction and representation of the abstract
syntax tree (AST) representing the parsed queries.

If the parser was to be generated using Lex and Yacc [17], before the en-
try of object oriented languages, the abstract syntax tree would most likely
have been constructed and represented using C variable pointers to structs,
imitating objects. The C programming language has no knowledge of ob-
jects, making this approach the only viable option for implementations of
notable size and complexity.

Inspired by its predecessors, the C# programming language still retains
knowledge of structs. C# variables always represent structs by value; a
struct may never be represented by reference, though it may be passed by
reference between methods [18]. When reassigning a variable holding a
C# struct, the entire content of the struct is copied to the memory location
references by the variable. A variable referencing a class object would in-
stead have changed the destination of the reference to where the class object
already resides. Also, C# structs can only implement interfaces, they can-
not inherit other classes or structs. Not being able to exploit the powerful
concept of inheritance makes C# structs even less suitable for AST repre-
sentation.

An AST is by nature based on references between tree nodes. Thus class
objects are the only viable option for representing AST nodes. Using class
objects, a suitable class hierarchy may be built, benefiting from important
properties of object orientation like inheritance and shared interfaces in or-
der to generalize the hierarchy.

For this project, the planned architecture involves using C# objects in-
stantiated to represent the abstract syntax tree. Common base functionality
should be implemented in a single base node, from which all other nodes

11

inherit. This is further discussed in Section 4.2.

12

Chapter 4

Implementation

This chapter describes the steps of creating the SPARQL parser. First, the
setup of the development environment is explained. Then the process of
translating W3C’s SPARQL specification to a format that MPLex and MPPG
understand is described. Error handling, along with some necessary pre-
and post-processing is then explained, as well as how the entire implemen-
tation is encapsulated in a facade class. Finally, a test client for visual in-
spection of resulting ASTs is presented.

4.1 Setup of the Development Environment

MPLex and MPPG are designed to easily integrate with Microsoft Visual
Studio 2008. A Visual Studio solution can be configured to automatically
generate source files for the scanner and parser, and then compile them
along with the rest of the source files.

Before configuring the development environment, the following soft-
ware had to be installed.

Microsoft Visual Studio 2008 The IDE used during the entire development,
provided via MSDN Academic Alliance [19]. A 90-day trial version is
available from http://msdn.microsoft.com/en-us/vstudio/
products/aa700831.aspx.

Visual Studio 2008 SDK 1.1 Contains the tools MPLex and MPPG. Avail-
able from http://www.microsoft.com/downloads/details.
aspx?FamilyID=59ec6ec3-4273-48a3-ba25-dc925a45584d.

The setup of a Visual Studio solution for autogeneration of the parser
involves manual editing of the corresponding project file. A project file in
Visual Studio is similar in semantics to a makefile in Unix development.
It describes the various sub-actions performed as part of the main build
action.

13

http://msdn.microsoft.com/en-us/vstudio/products/aa700831.aspx
http://msdn.microsoft.com/en-us/vstudio/products/aa700831.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=59ec6ec3-4273-48a3-ba25-dc925a45584d
http://www.microsoft.com/downloads/details.aspx?FamilyID=59ec6ec3-4273-48a3-ba25-dc925a45584d

Figure 4.1: Creating the Visual Studio project

First, the Visual Studio solution with the parser project was created by
clicking File → New → Project... and then choosing a C# Class Library, as
shown in Figure 4.1.

The autogenerated file Class1.cs was deleted, and two new text files
were added, called Scanner.lex and Parser.y. These two files were the ones
that would later contain the SPARQL language specifications and dictate
the generation of the parser. In order for these files to be handled prop-
erly by MPLex and MPPG, their encoding had to be set by clicking File
→ Advanced Save Options.... In the dialog that appeared, Western European
(Windows) - Codepage 1252 had to be set as the encoding as shown in Figure
4.2.

The scanner also requires an interface called IErrorHandler in order to
communicate any irregularities in the input. Thus, an empty interface IEr-
rorHandler was created and assigned public visibility. The solution layout
now looked like shown in Figure 4.3.

At this point, the solution would build, but no parser would be gen-
erated. In order to set up MPLex and MPPG to process Scanner.lex and
Parser.y, the project file had to be edited manually. To edit the project file,
the project must first be unloaded. This was done by right-clicking the
project root and selecting Unload Project. With the project unloaded, the
project file can be edited by right-clicking the project root again and select-
ing Edit [ProjectName].csproj as shown in Figure 4.4.

14

Figure 4.2: Choosing the right encoding

Figure 4.3: Visual Studio solution after adding initial items

15

Figure 4.4: Open the Visual Studio project file for editing

Towards the end of the project file, an ItemGroup element contained
the scanner and parser specification files. Because both Parser.y and Scan-
ner.lex was placed inside None-elements, no action would be applied to
them. To let MPLex and MPPG handle these files, Parser.y had to be placed
in an MPPGCompile element and Scanner.lex in an MPLexCompile element,
as shown in Figure 4.5. When reloading the project by right-clicking the
project root and selecting Reload Project, the changes made were reflected in
the Properties explorer as shown in Figure 4.6; for Parser.y, the build action
was set to MPPGCompile and for Scanner.lex it was set to MPLexCompile.

Also at this point, the solution would build, but no parser was gener-
ated. Setting the appropriate build actions was not sufficient for Visual Stu-

Figure 4.5: Actions for MPLex and MPPG

16

Figure 4.6: Build actions reflected in Properties explorer

%namespace SharQL

%%

Figure 4.7: An empty scanner declaration

dio to perform the actual parser generation. The assembly
Microsoft.VsSDK.Build.Tasks.dll from the Visual Studio SDK was needed,
and had to be copied into the project. A lib folder was created as part
of the project. The assembly was added by right-clicking the new folder
and selecting Add → New Item.... The file is usually located in the folder
%PROGRAMFILES%\MSBuild\Microsoft\VisualStudio\v9.0\VSSDK.

The final step in setting up the integration of MPLex and MPPG with
the Visual Studio solution was to hook up the project file to the newly
added assembly. This was done by opening the project file for manual edit-
ing once again and pasting the XML from Appendix A immediately before
the closing tag of the Project element.

Reloading the project and attempting to build the project at this point
yielded an error message from MPLex: “Parser error <syntax error, unex-
pected EOF>”. This was good news, as MPLex was obviously trying to
parse the Scanner.lex file, but was unable to do so because the file was
empty. Adding the code from Figure 4.7 to Scanner.lex fixed the error. At
the same time, the code from Figure 4.8 was added to Parser.y to ensure a
(quite useless) parser would be generated.

While this fixed the syntax error of Scanner.lex, three new errors arose,
this time in the file Scanner.cs. These errors were all due to missing refer-
ences. To resolve this issue, two more files had to be added to the lib folder
of the project. MPLex.exe and MPPG.exe were copied from the
[SDK Root]\VisualStudioIntegration\Tools\Bin folder. These are the tools

17

%namespace SharQL

%start Query

%%

Query :;

%%

Figure 4.8: An empty parser declaration

that generate the scanner and the parser, but they also contain some of the
data types necessary for the scanner and parser to operate. With these files
copied to the lib folder, a reference was added to each of them by right-
clicking the Reference folder and selecting Add Reference.... On the Browse
tab, MPLex.exe and MPPG.exe was added as shown in Figure 4.9.

With these references resolved, the solution was now building properly.
Source code for both a scanner and a parser was automatically generated,
resulting in a .dll-file readily compiled to the output directory. The gener-
ated scanner and parser source code is temporarily stored in the obj folder
during a build, and is left there for later inspection if desired.

4.2 AST Preparations

MPLex and MPPG have no notion of an abstract syntax tree per se. In
order for the resulting parser to produce an AST, node objects have to be
created and structured as part of the semantic actions of the grammar pro-
ductions. Node objects are created from node classes, and these classes
constitute the AST class hierarchy. All the entities of this hierarchy reside
in the SharQL.Ast namespace.

4.2.1 Designing the AST Class Hierarchy

At the root of the AST class hierarchy is a simple interface, INode, shown in
Figure 4.10. This interface supports the construction of a tree structure, nav-
igable in both directions through the Parent and Children properties. The
Accept method is part of the Visitor interface, explained in Section 4.4.

Below the INode interface in the class hierarchy is the abstract class
NodeBase, shown in Figure 4.11. The complete implementation of NodeBase
is provided in Appendix D. The purpose of this class is to provide a basic
implementation of the INode interface. All these implementations are vir-
tual, allowing for subclasses to override them if necessary. Although this

18

Figure 4.9: Adding necessary references

+ Accept(visitor:IParserVisitor)

+ Parent:INode {get;set;}

+ Children:IList<INode> {get;}

«interface»

INode

SharQL.Ast

Figure 4.10: The INode interface

19

+ NodeBase()

+ NodeBase(children:«params» NodeBase[])

+ «virtual» Accept(visitor:IParserVisitor)

+ «override» ToString():string

+ «virtual» ToString(prefix:string):string

parent:INode

children:IList<INode>

+ «virtual» NodeType:string

+ «virtual» Parent:Inode {get;set;}

+ «virtual» Children:IList<INode> {get;}

«abstract»

NodeBase

INode

SharQL.Ast

Figure 4.11: The NodeBase abstract class

class has no abstract members, it is marked as abstract to prevent instanti-
ation, and to allow for future abstract members.

The public Parent and Children properties expose the protected parent
and children fields respectively. The NodeType read-only property is a unique
identifier for each class, used as part of the Visitor pattern. The basic imple-
mentation uses reflection to retrieve the full name of the class. This prop-
erty should be overridden by subclasses if performance is critical.

NodeBase provides two constructors. The default parameterless con-
structor makes sure the children field is initialized as an empty collection,
while a second constructor allows for initializing the children field with ini-
tial NodeBase objects.

The Children property of NodeBase is exposed as an IList<INode> in-
terface, and implemented as a custom NodeCollection class. This class is
marked as internal and is thus not exposed by the API. A custom IList im-
plementation was chosen over the standard ones to allow for customiza-
tion.

The concrete AST classes all reside in the SharQL.Ast.Nodes namespace.
Ultimately, they are all descendants of NodeBase and thus implement the
INode interface.

20

%union { public NodeBase Value; }

Figure 4.12: This project’s %union specification

Prologue : BaseDecl PrefixDeclList
{

$$.Value = new PrologueNode($1.Value, $2.Value);
}

Figure 4.13: Building the AST via ValueType

4.2.2 Working With MPPG’s ValueType

MPPG creates a struct called ValueType which is used for the implicit objects
($$, $1, $2 etc.) available in the grammar productions. The %union con-
struct is used in the parser specification file to specify which fields should
be available in the ValueType struct. In this project, this %union construct is
specified as shown in Figure 4.12, adding one single field: our AST node
base type.

Without any further modifications, the AST can now be constructed as
part of the semantic specification for all the productions, as shown in Figure
4.13.

Because our ValueType contains only one field, it would make the code
more readable if the implicit objects of each production represented Node-
Base objects rather than ValueType objects. Using the operator overloading fea-
ture of C#, it is possible to allow implicit casting between the ValueType and
NodeBase types. This is done as shown in Figure 4.14. Note that ValueType
is defined as a partial struct, making it trivial to extend.

With implicit casting enabled between ValueType and NodeBase, it is pos-
sible to assign a NodeBase object to a ValueType variable and vice versa.

public partial struct ValueType
{

public static implicit operator NodeBase(ValueType t)
{
return t.Value;

}
public static implicit operator ValueType(NodeBase t)
{
return new ValueType() { Value = t };

}
}

Figure 4.14: Implicit casting between ValueType and NodeBase

21

Prologue : BaseDecl PrefixDeclList
{
$$ = new PrologueNode($1, $2);

}

Figure 4.15: Building the AST using implicit casting

list1 ::= list_item*
list2 ::= list_item+
list_item ::= OPTIONAL_PART? REQUIRED_PART

Figure 4.16: EBNF sample rules

Thus, the production in Figure 4.13 could be rewritten as shown in Figure
4.15.

4.3 Specifying the Grammar

W3C specifies the SPARQL grammar using an Extended Backus-Naur Form
(EBNF) based notation [20]. Since the MPLex and MPPG scanner and parser
generators are two separate generators, the grammar must be split into a
scanner part and a parser part. Further, the generators do not support spec-
ifying grammars directly using EBNF. Instead the grammar must be spec-
ified using specification languages closely resembling the BNF-based Lex
and Yacc [17] specification languages.

These specification languages lack many of the extensions of EBNF, re-
quiring several measures to be taken in the translation of the grammar.

4.3.1 EBNF and BNF

EBNF is an extended version of BNF, notably introducing the modifiers
? (zero-or-one), * (zero-or-more) and + (one-or-more). Consider the rules
in Figure 4.16. Two types of lists are specified, one that can be empty, and
one that can not be empty. Further, list items have an optional part and a
required part.

BNF lacks the aforementioned modifiers. Thus, to describe the same
grammar using BNF, some translation is needed. Figure 4.17 shows how
this is typically done (ε denoting the empty string). The * and + modifier
from EBNF are achieved recursively in BNF, shown in the list_tail rule. The
? modifier is achieved either by enumerating all legal combinations of re-
quired and optional elements, or by introducing a new non-terminal which
may produce the optional part or the empty string.

22

list1 ::= list_tail
list2 ::= list_item list_tail
list_tail ::= list_item list_tail | ε
list_item ::= REQUIRED_PART | OPTIONAL_PART REQUIRED_PART

alternatively :
list_item ::= optional_part REQUIRED_PART
optional_part ::= OPTIONAL_PART | ε

Figure 4.17: BNF translation from Figure 4.16

4.3.2 The Scanner Specification

The grammar tokens are defined in the scanner specification using regular
expressions. Each token that should be returned to the parser also defines a
belonging snippet of code for returning the corresponding token enumer-
ation item recognized by the parser. Additionally, helper tokens used to
build other tokens may be defined, to avoid repeating regular expressions.

Order of declaration

Token declaration order is of significance and must be taken into account.
During token matching, the scanner will attempt to match the longest token
possible. If there is a tie between two or more tokens, the one defined first
is returned to the parser.

For the SPARQL grammar, however, the declaration order is not an is-
sue. All tokens sharing a common prefix differ in length, thus a tie will
never occur.

4.3.3 The Parser Specification

The grammar rules are declared in the parser specification. A rule defines
one or more belonging productions, which are either non-empty defining
a belonging snippet of code returning a token value or AST node to its
superior production, or empty allowing for the production to be absent in
the input string.

Grammar Constructs

The modifiers *, + and ? are absent in the BNF-based parser specification
language, and must be realized as discussed in Section 4.3.1. Figure 4.18
shows a production from the SPARQL grammar specification containing a
conditional grammar symbol, namely the WHERE keyword. In this spe-
cific case an additional production not specifying the WHERE keyword is

23

[13] WhereClause ::= 'WHERE'? GroupGraphPattern

/* [13] */
WhereClause
: WHERE GroupGraphPattern
{
$$ = new WhereClauseNode($2);

}
| GroupGraphPattern
{
$$ = new WhereClauseNode($1);

}
;

Figure 4.18: SPARQL Grammar Conditional Symbol Sample

specified. The bracketed numbers correspond to the rule numbers in the
W3C SPARQL grammar specification.

Declaration of lists of grammar symbols (one-or-more and zero-or-more
instances) requires the introduction of a replacement rule, allowing for a
recursive list of grammar symbols to be constructed during parsing. Figure
4.19 shows the realization of the DataSetClause* zero-or-more instances list
using the recursive list rule DataSetClauseList. The rule may result in an
empty production (zero instances) or a production consisting of the non-
terminals DataSetClause and DataSetClauseList (more instances).

Conflicts

MPPG creates shift-reduce parsers, consisting of a stack holding gram-
mar symbols and an input buffer holding the rest of the input string to
be parsed. The parser shifts input symbols onto the stack until it is ready to
reduce a string of grammar symbols on the top of the stack into a superior
grammar production. This process is repeated until an error is detected or
until the stack contains the predefined grammar start symbol and the input
is empty. [11]

Two types of conflicts may occur during shift-reduce parsing: shift/re-
duce conflicts and reduce/reduce conflicts. Shift/reduce conflicts occur
when the parser cannot decide whether to shift input symbols onto the
stack or to reduce grammar symbols on top of the stack. Reduce/reduce
conflicts occur when the parser cannot decide which superior production
to reduce the grammar symbols on top of the stack into. The former con-
flict typically occurs as a result of an ambiguous grammar, and is critical.
The latter easily occurs when creating the parser specification from a gram-
mar specification like the SPARQL grammar specification, because of the
required rewriting from an EBNF-based grammar to a BNF-based gram-

24

[6] ConstructQuery ::= 'CONSTRUCT' ConstructTemplate
DatasetClause* WhereClause
SolutionModifier

/* [6] */
ConstructQuery
: CONSTRUCT ConstructTemplate DatasetClauseList WhereClause

SolutionModifier
{

$$ = new ConstructQueryNode($2, $3, $4, $5);
}
;

DatasetClauseList
: DatasetClause DatasetClauseList
{

$$ = new DatasetClauseListNode($1, $2);
}
| /* empty */
{

$$ = null;
Debug.WriteLine("Empty DataSetClauseList");

}
;

Figure 4.19: SPARQL Grammar List Symbol Sample

25

/* [2] */
Prologue
: BaseDecl
{
$$ = new PrologueNode($1, null);

}
| BaseDecl PrefixDeclList
{
$$ = new PrologueNode($1, $2);

}
| PrefixDeclList
{
$$ = new PrologueNode(null, $1);

}
|
{ /* empty */ }
;

PrefixDeclList
: PrefixDecl PrefixDeclList
{
$$ = new PrefixDeclListNode($1, $2);

}
|
{ /* empty */ }
;

Figure 4.20: SPARQL Grammar Reduce/Reduce Sample

mar.
Figure 4.20 addresses a reduce/reduce conflict encountered in translat-

ing the SPARQL grammar specification into parser grammar productions.
In this specific case, both the Prologue and PrefixDeclList rules contain an
empty production. In the context of a Prologue grammar rule, whenever
the parser encounters an empty input string, it cannot decide whether to
reduce the empty production to a PrefixDeclList rule or to a Prologue rule.

This reduce/reduce conflict may be prevented simply by removing the
empty production belonging to the Prologue rule, since a Prologue rule may
still produce an empty production via the PrefixDeclList rule.

4.4 The Visitor Pattern

The basic idea of the Visitor pattern is to separate the algorithm from the
data structure. The Visitor pattern allows for defining new operations on
the elements of an object structure, without changing the classes of the ele-
ments on which it operates. [21]

The Visitor pattern is commonly used to traverse and perform opera-

26

SharQL.Ast.Visitor

+ this[nodeType:string] {get;} : Action<INode>

«interface»

IParserVisitor

Figure 4.21: The IParserVisitor interface

public virtual void Accept(IParserVisitor visitor)
{

foreach (INode child in children)
{
if (child != null)

child.Accept(visitor);
}
visitor[NodeType](this);

}

Figure 4.22: Basic implementation of visitor pattern from NodeBase

tions on abstract syntax trees. Each node in the ASTs produced by SharQL
has an Accept method which takes a single IParserVisitor object. The IParserVis-
itor interface is shown in Figure 4.21.

The only member of this interface is an indexer which takes a string
identifier as input and returns an Action<INode> delegate. A delegate is es-
sentially a type-safe method pointer, and the Action<INode> delegate may
point to any method which accepts a single INode argument and returns
void. The AST node that accepts a visitor will access this indexer, provide
its NodeType string as the identifier and invoke the delegate it gets in return,
providing a reference to itself. An implementation snippet of this is shown
in Figure 4.22. Note that the visitor will traverse the tree in a depth-first
manner; before being applied to a node, it is applied to any child nodes.

4.4.1 Visitor Example

Consider a sample AST node as shown in Figure 4.23. A visitor implemen-
tation that traverses the AST and performs a task on all instances of this
class is shown in Figure 4.24.

27

public class SampleNode : NodeBase
{
public static readonly string SampleNodeType
= "SampleNodeIdentifier";

public override string NodeType
{
get { return SampleNode.SampleNodeType; }

}
}

Figure 4.23: Sample AST node

public class ParserVisitor : IParserVisitor
{
public Action<INode> this[string nodeType]
{
get
{

if (nodeType == SampleNode.SampleNodeType)
return VisitSampleNode;

else
return NoOp;

}
}

public void VisitSampleNode(INode node)
{
SampleNode n = node as SampleNode;
if (n != null)
{
// Do something
}

}

public void NoOp(INode node)
{
// Ignore unrecognized node
}

}

Figure 4.24: Sample visitor implementation

28

4.5 Error Handling

The purpose of error handling in the context of the SharQL parser, is iden-
tification and reporting of error conditions concerning the syntactical cor-
rectness of a SPARQL input query. The scanner basically looks for defined
tokens in the input stream and passes them on to the parser, which in turn
puts a set of tokens in the context of a defined production rule. On the oc-
currence of an undefined, missing or unexpected token, an error condition
is present.

4.5.1 Traditional Parser Error Handling

In a traditional scanner-parser combination like Lex and Yacc [17], either
the scanner immediately reports an error on the occurrence of an unex-
pected input stream character, or the character is passed on to the parser,
possibly in the form of a special error token, which is in turn reported as
unexpected by the parser. As the scanner only knows what characters to ex-
pect on a per-token basis, the informational value of a scanner error report
is limited compared to a parser error report. The parser not only knows
which unexpected token that was encountered, but reports back what it
expected as well.

Combining token location information from the scanner with token con-
text information from the parser would offer an improved informational
value for the error reports, and is the approach taken for the SharQL parser.
Achieving such error handling requires some further extensions to both the
scanner and parser.

4.5.2 Adapting the Grammar Definition

Section 4.3 describes the specification of the scanner and parser grammars.
To support error handling, the scanner grammar definition must be ex-
tended further.

After translating the W3C SPARQL grammar, undefined tokens encoun-
tered during scanning of the input stream were simply ignored, and were
not reported to the parser. Figure 4.25 shows the additional token definition
needed for handling identification of undefined tokens. The token defini-
tion simply matches any single character, and returns the character itself to
the parser. It is important to place the token definition below all other reg-
ular token definitions in the scanner grammar definition. This is the only
way to have all valid single-character token definitions remain unaffected,
as described in Section 4.3.2.

29

. { return (int)yytext[0]; }

Figure 4.25: Scanner grammar definition extension

%YYLTYPE CustomLexLocation

Figure 4.26: Specifying the Token Location Type

4.5.3 Tracking Token Locations

When the scanner matches tokens from the input stream, token location
information is available for every token matched. Even undefined tokens
will get matched thanks to the adaption of the grammar as described in
Section 4.5.2. This means that location information will be available for
each and every token, defined or undefined, passed on to the parser.

Location information is available through global variables in the context
of the scanner. The information of interest is stored in the integer variables
yyline, yycol and yyleng. These values represent the line, column and length,
respectively, of the currently identified token.

A special variable yylloc also exists, that holds all the location informa-
tion of the current token. When this variable is set, it may be retrieved by
the parser for further use. The type of this variable is defined in the parser
specification using the %YYLTYPE operator, as shown in Figure 4.26. The
type used by SharQL for storing the token location information is Custom-
LexLocation, a custom class replacing the LexLocation class supplied with
MPPG. The only reason a custom class is needed is due to a bug in the
LexLocation class occuring when two instances are merged using the be-
longing Merge method. Our CustomLexLocation class simply corrects this
bug, and otherwise acts just as the LexLocation class would, as shown in
Figure 4.27. When the parser reduces tokens on the stack into a produc-
tion, the CustomLexLocation objects for all the tokens involved are merged
to represent the location information for the production as a whole.

The scanner specification is altered to call a LoadYylval method every
time a token is identified. This method constructs an instance of the Cus-
tomLexLocation class, supplying it with the necessary location information
available from the scanner, and assigns it to the yylloc variable, making it
available to the parser, as shown in Figure 4.28.

4.5.4 Collecting Errors

When the parser encounters an unexpected token or when an expected
token is missing, it calls the yyerror method on the scanner instance. An
empty yyerror method is already declared, which is overridden in the scan-

30

public class CustomLexLocation : IMerge<CustomLexLocation>
{

public int sLin; // Start line
public int sCol; // Start column
public int eLin; // End line
public int eCol; // End column

public CustomLexLocation()
{
}

public CustomLexLocation(int sl, int sc, int el, int ec)
{
sLin=sl;
sCol=sc;
eLin=el;
eCol=ec;

}

public CustomLexLocation Merge(CustomLexLocation last)
{
// This part is missing from the MPPG LexLocation class
if (last == null)
{

return this;
}

return new CustomLexLocation(sLin, sCol, last.eLin,
last.eCol);

}
}

Figure 4.27: CustomLexLocation class replacing the LexLocation class.

// Called each time a token has been returned.
internal void LoadYylval()
{
// Collects token location information and makes it available
// for the parser through the yylloc variable.
yylloc = new CustomLexLocation(yyline, yycol, yyline, yycol

+ yyleng);
}

Figure 4.28: Tracking Token Location

31

// Called by the parser on the occurrence of an unexpected or
// missing token.
public override void yyerror(string s, params object[] a)
{
// Adds the reported error to the error handler.
handler.AddError(s, new MPLEX.Parser.LexSpan(tokLin, tokCol,
tokLin, tokECol, tokPos, tokEPos, new ScanBuffProxy(buffer)));

}

Figure 4.29: yyerror method.

ner specification. This method is used to collect the errors reported.
The generated scanner provides a property for supplying an error han-

dler, which must implement an IErrorHandler interface. The interface itself
is not defined, it is just referenced. Thus, an IErrorHandler interface has
been defined, as decribed in Section 4.1.

MPPG supplies an ErrorHandler class providing basic error handling.
For some reason, this class does not implement the IErrorHandler interface
referenced by the scanner. In order to re-use the existing functionality in
compliance with the scanner, a custom SharQLErrorHandler class inheriting
the ErrorHandler class and implementing the IErrorHandler interface is used.

Figure 4.29 shows the yyerror method which uses the error handler to
collect errors reported. The arguments to the AddError method includes an
error message generated by the parser and an MPLEX.Parser.LexSpan object
representing the location of the error as well as the input stream buffer in
which the error token is located.

The errors collected are available through a collection property on the
Parser facade class, as described in Section 4.7.

4.6 Handling Escape Sequences

The chapters A.2 and A.7 of the SPARQL specification[1] describes code-
point escape sequences and common escape sequences respectively. An
escape sequence is merely a substitute representation of an actual charac-
ter. In SPARQL, all escape sequences start with a backslash (\) followed by
en escape specifier.

The processes of handling escape sequences are described in the next
sections and the invocation of these processes are made by the Parser facade
class described in Section 4.7.

4.6.1 Codepoint Escape Sequences

The Unicode standard specifies unique identifiers for an inconceivable
amount of characters and symbols. These positive integer identifiers are

32

Escape Codepoint
\uxxxx A Unicode codepoint in the range [0,FFFF16] corre-

sponding to the hexadecimal value (xxxx)
\Uxxxxxxxx A Unicode codepoint in the range [0,10FFFF16] corre-

sponding to the hexadecimal value (xxxxxxxx)

Table 4.1: Codepoint escape sequence formats supported by SPARQL [1]

<ab\u00E9xy> # 00E916 is Latin small e with acute - <abéxy>
\u03B1:a # 03B116 is Greek small alpha - α:a
a\u003Ab # 003A16 is colon - a:b

Figure 4.30: Usage examples of codepoint escape sequences

commonly referred to as Unicode codepoints [22]. Anywhere in a SPARQL
query, a codepoint escape sequence may occur as a substitute for the char-
acter represented by that codepoint. Such an escape sequence can take two
forms, as shown in Table 4.1. Figure 4.30 shows examples of codepoint
escape sequence usage. Note that this implementation only supports code-
points in the range [0,FFFF16] in both forms, for the reasons explained in
section 6.3.1.

Given that these codepoint escape sequences may occur anywhere in a
SPARQL query, they should be processed and resolved before the query is
being parsed. A preprocessor was developed to analyze a string input, re-
placing all occurrences of codepoint escape sequences with the actual char-
acter corresponding to the codepoint.

Two methods for resolving codepoint escape sequences were consid-
ered: regular expression (regex) transformation and manual analysis. While
a regex transformation would result in less code, the regex pattern would
be rather complex and result in poor performance compared to manual
string analysis. Thus, the latter method was chosen. The algorithm used is
roughly summarized in Figure 4.31.

The actual implementation was made in the method ResolveCodepoint-
EscapeSequences of the class SharQL.Utils.EscapeSequenceResolver. Argument-
Exceptions are thrown if the codepoint is not recognized. Escape sequences
that do not start with \u or \U are ignored and left for later processing,
described next.

4.6.2 Common Escape Sequences

Common escape sequences are shorthand notations for the most common
codepoint escape sequences and may only occur within string literals of a
SPARQL query. Eight different common escape sequences are available, as

33

1. Create an empty string S.
2. For each character in input string I:

2.1. If not a backslash, append character to S.
2.2. If backslash, read next character:

2.2.1 If lowercase 'u', read next 4 characters,
resolve codepoint and append to S.

2.2.2 If uppercase 'U', read next 8 characters,
resolve codepoint and append to S.

2.2.3 Else, append backslash and character to S
for later processing.

3. Return S.

Figure 4.31: Algorithm for processing codepoint escape sequences

Escape Corresponding codepoint escape
\t \u0009 (tab)
\n \u000A (line feed)
\r \u000D (carriage return)
\b \u0008 (backspace)
\f \u000C (form feed)
\" \u0022 (quotation mark, double quote mark)
\' \u0027 (apostrophe-quote, single quote mark)
\\ \u005c (backslash)

Table 4.2: Common escape sequences supported by SPARQL [1]

shown in Table 4.2.
Given that these escape sequences may only occur within string literals,

they are most easily processed after parsing is completed. An algorithm
similar to the one from Figure 4.31 was implemented in the method Resolve-
CommonEscapeSequences of the class SharQL.Utils.EscapeSequenceResolver.

To traverse the resulting AST and resolve all common escape sequences
in string literals, a visitor class was developed. The class SharQL.Ast.-
Visitor.EscapeSequenceResolverVisitor implements the interface IParserVisitor
and applies the aforementioned method for resolving common escape se-
quences to all string literals. An extract of the class is shown in Figure 4.32.

4.7 The Parser Facade Class

The MPLex and MPPG tools generate a scanner and a parser, respectively.
In order for the end-user to perform any parsing, a scanner and a parser
have to be instantiated and the parser has to be aware of the existence of
the scanner instance in order to read its output. The scanner, in turn, needs
to know what input to tokenize.

34

public Action<INode> this[string nodeType]
{

get
{
if (nodeType == new StringLiteralNode().NodeType)

return resolveEscapeSequence;
else

return noOp;
}

}

private void resolveEscapeSequence(INode node)
{

StringLiteralNode n = node as StringLiteralNode;
if (n != null)
{
string escapedString = n.Value;
string resolvedString = Utils.EscapeSequenceResolver.

ResolveCommonEscapeSequences(escapedString);
n.Value = resolvedString;

}
}

private void noOp(INode node)
{

// Ignore
}

Figure 4.32: Extract from SharQL.Ast.Visitor.EscapeSequenceResolverVisitor

35

SharQL

+ Parser()

+ Parse(source:string):bool

+ Parse(source:string, offset:int):bool

+ Errors:Collection<Error> {get;}

+ AstRoot:INode {get;}

Parser

Figure 4.33: The Parser facade class

To encapsulate all this plumbing, a parser facade class, as shown in Fig-
ure 4.33, was developed. The intention of this class is to let the end-user
instantiate it once, and make successive calls to one of its Parse methods
without needing to have a notion of a scanner at all. When a parsing suc-
ceeds, the resulting AST is made available through the AstRoot property.
Additionally, the parser facade reports any errors that may occur, through
its Errors property.

Naming the facade class Parser for clarity was highly desirable. How-
ever, this crashed with the name that MPPG by default assigns its generated
parser. Our solution to this was to modify the parser specification file by
including a %parsertype specifier, thus renaming the resulting type of the
parser class.

A UML sequence diagram showing parser facade class operation dur-
ing parsing is shown in Figure 4.34.

4.8 Creating the SharQL Test Client

The intention of the SharQL Test Client is to have easy access to the SharQL
parser library at any given time, and to be able to visualize the abstract
syntax trees produced by the parser.

Given that SharQL is a .NET library, Windows Forms was chosen as plat-
form for the test client. Visual Studio has great Windows Forms support,
and creating graphical user interfaces is easily accomplished. So, a new
Windows Forms project was created inside the SharQL solution, and the
references required by SharQL where added, as shown in Figure 4.35.

The user interface was then designed as shown in Figure 4.36. The idea
is that, once the query is parsed, the AST is displayed in the TreeView control
to the left. When one of the nodes in the tree view is selected, details for

36

:Parser

User

:ParsingEngine

new

new

:Scanner

Parse(source:string)
new

:SharQLError-

Handler

new

Escape-

Sequence-

Resolver

ResolveCodepointEscapeSequences(source:string):string

unescapedSource:string

SetSource(unescapedSource:string)

Handler = :SharQLErrorHandler

scanner = :Scanner

Parse()

success ResolveCommonEscapeSequences()

Performed via a

visitor object that

only handles string

literal nodes.

true

error

false

AddError(:Error)

Figure 4.34: UML sequence diagram showing parser facade class operation

37

Figure 4.35: Necessary references for the test client

that node is displayed in the text box to the right. Any errors reported by
the parser is shown in the lower pane.

The test client can also perform a scan-only operation on the input file.
By clicking the Scan button instead of the Parse button, the input is scanned
and the stream of tokens produced by the scanner is displayed in a separate
window.

Visualizing the abstract syntax tree is a matter of translating it to a tree
of TreeNode objects. Once such a tree is created, it can be assigned to the
Nodes property of the tree view in the test client.

Translating a node from the AST to a TreeNode object was done using
the Visitor pattern explained in Section 4.4. Using this pattern, the trans-
lation was very simple. The TreeBuilderVisitor class first creates dictionary
mapping INode objects to TreeNode objects. Remember that the visitor is
traversing the tree depth-first. This means that when the visitor is applied
to a node, it is safe to assume that the visitor has already been applied to
all its child nodes.

Our visitor will not distinguish between different types of nodes. Thus,
the same delegate is returned through the visitor indexer, regardless of the
node type string provided. The implementation of the method represented
by this delegate is shown in Figure 4.37. The TreeNode constructor accepts
a textual caption as parameter. In this case, the class name is obtained from
the NodeType property, assuming its default behavior of returning the full
name of the class.

By assigning a reference to the actual AST node to the Tag property of
the corresponding TreeNode object, detailed information about the node

38

Figure 4.36: The test client user interface

private void constructTreeNode(INode node)
{

NodeBase nb = node as NodeBase;
if (nb != null)
{
// TreeNodes maps INode objects to TreeNode objects
TreeNodes[node] = new TreeNode(nb.NodeType.Split('.').Last());
TreeNodes[node].Tag = node;
foreach (INode child in nb.Children)
{

if (child != null && TreeNodes.ContainsKey(child))
{

TreeNodes[node].Nodes.Add(TreeNodes[child]);
}

}
}

}

Figure 4.37: Code snippet from TreeBuilderVisitor

39

may be obtained later. Such information is needed when a node is selected.
Then, a detailed description of the node is created and displayed in the
right half of the user interface.

40

Chapter 5

Testing

The notion of testing is important in all software development projects. Af-
ter all, without doing any kind of testing, one has no means of assessing
whether the software works as it should. There are numerous ways of test-
ing software. Black box testing is one way of performing tests, where the
system as a whole is tested and its behavior compared to a reference of how
it should behave. Another popular method is unit testing.

5.1 Unit Testing

Unit testing is a method of individually testing small parts, or units, of a
larger system. Unit tests are usually based on a specification of how these
units should behave. Often, the tests are even written before the work on
implementing the unit has even begun. This is possible by defining inter-
faces that the units have to implement, and write tests against those inter-
faces.

It is important to write tests that cover as much as possible of the spec-
ification of how the unit should behave. After all, the intention of testing
the behavior of the small units is to rule out subtle errors originating from a
faulty part of a bigger system. By assuring that the individual units behave
according to the specification, debugging integration errors in a later phase
becomes more comprehensible.

Sometimes, the units are easily identified in the system specification.
Otherwise, these units are usually identified and specified in the design
phase. The SPARQL specification from W3C specifies the language, but
does not consider the implementation of parsers. In this project, MPLex and
MPPG generates a scanner and a parser, respectively. Thus, it is natural to
consider the scanner as one unit and the parser as another unit. Testing the
parser is a matter of feeding it with queries and to see that it parses those
that are valid and refuses to parse queries that contain errors. Testing the
scanner is a matter of verifying that it lexically separates queries into the

41

using Microsoft.VisualStudio.TestTools.UnitTesting;

(...)

[TestClass]
public class MyUnitTests
{
(...)

}

Figure 5.1: Creating a test class

[TestClass]
public void MyUnitTest1()
{
MyClass myObj = new MyClass();
myObj.DoSomething(1, 2, 3);
Assert.IsTrue(myObj.SomeProperty == 5);
Assert.IsFalse(myObj.AnotherProperty > 0);

}

Figure 5.2: Creating a test method

appropriate tokens in the correct order.

5.2 Automated Testing in Visual Studio 2008

Visual Studio 2008 has integrated support for automated testing. By adding
a Test Project to a Visual Studio solution, one can write tests in one of several
programming languages and benefit from automatic execution and report-
ing based on the results.

To create unit tests in a test project, start by creating a public class and
tag it with the TestClass attribute, as shown in Figure 5.1. The using state-
ment shown resolves the namespace where the TestClass attribute resides.
When Visual Studio is instructed to run the tests of the test projects, it uses
reflection to decide which of the classes that are test classes.

Within a test class, an arbitrary number of test methods can be defined.
These are methods that perform specific tasks and assert that the states and
output of the tested objects are as expected. Similar to test classes, test
methods require a TestMethod attribute. Assertions are performed using
one of several static methods of the Assert class. An example test method is
shown in Figure 5.2. This example creates an object and performs a specific
operation to alter its state. Successively, the test performs two assertions on
its state, according to some specification.

The static Assert class provides test authors with several assertions meth-

42

Method name Description
Are[Not]Equal Verifies whether or not two objects are

equal.
Are[Not]Same Verifies whether or not two object vari-

ables refer to the same object.
Is[Not]InstanceOfType Verifies whether or not an object is an in-

stance of a specific type.
Is[Not]Null Verifies whether or not an object is null.
IsFalse Verifies that a condition is false.
IsTrue Verifies that a condition is true.
Fail Unconditionally fails the test.
Inconclusive Indicates that an assertions can not be

proved either true or false.

Table 5.1: Methods available in Assert class

SELECT *
WHERE { }

Figure 5.3: The syntax-basic-01 test from W3C

ods. These methods are summarized in Table 5.1. Most of the assertion
methods are overloaded in order to support various data types and/or to
let test authors provide optional error messages for the test reports. Where
the test names in the table contains a “[Not]” part, a pair of methods exist,
one containing “Not” and one that does not.

Visual Studio offers several ways of organizing tests and the execution
of tests. For small projects like this one, however, it is typically desirable to
run all the tests. This is done by clicking Test→ Run→ All Tests in Solution.

5.3 W3C SPARQL Test Suite

The Data Access Working Group of W3C has released a set of test cases, in-
cluding syntax tests for the SPARQL language [2]. All in all, the test suite
contains 199 SPARQL queries which should either parse or fail to parse.
These tests are listed in Appendix E. While such tests do not fully test all
aspects of a SPARQL parser, they constitute a solid foundation.

The tests vary from simple select queries as shown in Figure 5.3, to more
complex queries as the one shown in Figure 5.4. Invalid queries, as in Fig-
ure 5.5, are also provided. Together, these queries cover most of the syntax
that a SPARQL parser could encounter.

The test queries do not specify how a resulting AST should look like.
After all, the structure of an AST depends on the application. Thus, it is

43

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
CONSTRUCT { [] rdf:subject ?s ;

rdf:predicate ?p ;
rdf:object ?o }

WHERE {?s ?p ?o}

Figure 5.4: The syntax-form-construct03 test from W3C

SELECT * WHERE {[] . }

Figure 5.5: The syn-bad-bnode-dot test from W3C

not possible to verify the correctness of the ASTs produced by our parser,
based on these tests alone. The tests neither provide any means of testing
the scanner isolatedly. Such tests have to be authored by manually iden-
tifying the token stream that should be produced. Once again, this is a
natural constraint, given that the tokens chosen, like the AST, depends on
the application.

5.3.1 Omission of Semantic Tests

Some of the syntax tests from the test suite actually test semantic matters.
Table 5.2 lists the tests in question. All the tests are negative tests supposed
to fail, but due to the current state of the parser, they all succeed. The reason
why they should fail, is that the same blank node label is used across basic
graph patterns, as shown in Figure 5.6. The parser is not supposed to care
about semantics in this phase, and is for that reason handling the tests in
questions as it should.

The fact that the tests listed in Table 5.2 are in fact semantic tests as well
as syntactic tests, makes them unsuitable for testing the parser. For this
reason, these tests have been omitted from the set of tests run when testing
the parser. Of the total of 199 tests supplied, this leaves 188 tests that are
still performed.

PREFIX : <http://xmlns.com/foaf/0.1/>

ASK { _:who :homepage ?homepage
GRAPH ?g { ?someone :made ?homepage }
_:who :schoolHomepage ?schoolPage }

Figure 5.6: The syn-blabel-cross-graph-bad test from W3C, semantically in-
correct due to the use of the blank node who across basic graph patterns.

44

Test File Reason for failing
syntax-sparql3\syn-blabel-cross-graph-bad.rq Blank node who

reused across basic
graph patterns

syntax-sparql3\syn-blabel-cross-optional-bad.rq
syntax-sparql3\syn-blabel-cross-union-bad.rq
syntax-sparql4\syn-bad-34.rq

Blank node a reused
across basic graph
patterns

syntax-sparql4\syn-bad-35.rq
syntax-sparql4\syn-bad-36.rq
syntax-sparql4\syn-bad-37.rq
syntax-sparql4\syn-bad-38.rq
syntax-sparql4\syn-bad-graph-breaks-BGP.rq
syntax-sparql4\syn-bad-opt-breaks-BGP.rq
syntax-sparql4\syn-bad-union-breaks-BGP.rq

Table 5.2: Failing Semantic Tests Omitted From the W3C SPARQL Test Suite
[2].

5.4 Automating the Test Suite

Using the integrated support for automated testing in Visual Studio 2008,
the W3C SPARQL Test Suite may be completely automated. The running of
the test suite is essential in determining the parser’s level of conformance
with the SPARQL grammar specification, and because of the great impor-
tance of running such tests, this should be as easy to carry out as possible.

The goal of automating the test suite is to be able to run all the tests in a
single operation, and to receive a report stating the result of each and every
test. The test suite contains 188 syntax tests relevant for the parser, each
of which must be implemented by a corresponding test method as shown
in Figure 5.2. The tests only differ in which syntax test file to parse. Thus,
a great amount common code was identified, extracted and generalized to
build a small framework for automating this specific test suite.

Using reflection features available in the C# programming language,
a method is able to determine the name of the caller method. Figure 5.7
shows the code snippet necessary for accessing the caller stack and fetching
the second top-most stack frame to extract the caller method name. By
naming each test method according to the corresponding test syntax file
and having each test method call a common method, this latter method
may determine which test syntax file to load and can carry out the test on
its own.

Naming the test methods according to the file names of the test syntax
files supplied in the W3C SPARQL Test Suite is advantageous since the cor-
responding test syntax file for a failing test can very quickly be determined.
In addition, since the test syntax file may be derived from the test method’s
name, the code necessary for calling the common test method from each

45

StackFrame stackFrame = new StackFrame(1, true);
MethodBase methodBase = stackFrame.GetMethod();
string methodName = methodBase.Name;

Figure 5.7: C# Caller Method Name Extraction

[TestMethod]
public void sparql1__basic_01() { Assert.IsTrue(
ParseQueryFile("syntax")); }

Figure 5.8: Test Method Sample

test method may be reduced to a minimum. Figure 5.8 shows an actual test
method calling the common ParseQueryFile method. The test method name
is actually a composition of the test set name followed by the specific test
name. Thus, sparql1__basic_01 corresponds to the basic_01 syntax test in the
sparql1 test set.

With syntax tests mapped to test methods as described, the entire test
suite containing the 188 syntax tests distributed over five tests sets, may be
performed by a single operation.

5.5 Custom Tests

In addition to the tests in the W3C SPARQL Test Suite [2], a set of custom
tests have been implemented to test other aspects of the parser. The tests
supplied in the test suite test the parser as a whole without drilling down
on a specific component. The purpose of the custom tests are to test com-
ponents independently, allowing for more fine grained testing.

5.5.1 Scanner Tests

As the purpose of the scanner is to identify tokens in the input stream, a
natural approach for testing the scanner separately is to assure that the cor-
rect tokens are identified in the correct order. The test suite tests are roughly
split into categories, each of which focus on a certain aspect of the SPARQL
grammar. For each such category a custom test has been implemented that
feeds a specific test to the scanner and validates the tokens returned. Both
token types and positions should be correct in order for the test to succeed.

Figure 5.9 shows the custom scanner test for the SPARQL query shown
in Figure 5.3. The tokens returned should be SELECT, *, WHERE, { and }, in
that order.

46

[TestMethod]
public void Scanner_1_basic_01()
{

Assert.IsTrue(assertScannerOutput(
@"..\..\..\Tests\syntax-sparql1\syntax-basic-01.rq",
new Tokens[]
{

Tokens.SELECT,
(Tokens)((int)'*'),
Tokens.WHERE,
(Tokens)((int)'{'),
(Tokens)((int)'}')

})
);

}

Figure 5.9: Custom Scanner Test

string escapedString = @"\u0061";
string expected = "a";
string actual;
actual = EscapeSequenceResolver.ResolveCodepointEscapeSequences(

escapedString);
Assert.AreEqual(expected, actual);

Figure 5.10: Common escape sequence resolver test

5.5.2 Escape Tests

As described in Section 4.6, escape sequences are processed and resolved
both ahead of and after the parsing. A set of custom tests have been im-
plemented for testing this functionality separately as well. The escape se-
quence resolvers and the escape visitor are all tested separately.

Figure 5.10 shows an extract from the test for the common escape se-
quence resolver test

47

48

Chapter 6

Results

This chapter starts by illustrating, step by step, how the resulting SharQL
parser handles a sample SPARQL query. Next, the results from running the
SharQL parser against the W3C SPARQL Test Suite are presented. Finally,
known nonconformities with the W3C SPARQL specification are explained.

6.1 A Simple Example

This section presents a complete example involving all essential steps in
the parse process, beginning with the input SPARQL query and resulting
in the AST generated by the parser.

Most implementation-specific details have been left out to as these are
described in Chapter 4. The purpose of this example is to present a higher-
level view of the parser and its usage.

6.1.1 Example Query

The example SPARQL query used is a rather simple query, as shown in
Figure 6.1. The complexity of the query is reasonable in order to highlight
the essential parsing steps at the desired level of detail.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title
WHERE
{

<http://en.wikipedia.org/wiki/Tony_Benn> dc:title ?title
}

Figure 6.1: SPARQL example query, identical to the query presented in Fig-
ure 2.4

49

PREFIX
PNAME_NS
IRI_REF
SELECT
VAR1
'{'
IRI_REF
PNAME_LN
VAR1
'}'

Figure 6.2: SPARQL example query scanner generated token stream

6.1.2 The Scanner Token Generation

Given the example query in Figure 6.1 the scanner generates the token
stream shown in Figure 6.2. The tokens are passed to the parser one by
one in the order of appearance. This process is described in Section 4.3.2.

6.1.3 The AST generation

As the parser receives the tokens from the scanner, it collects tokens until a
rule in the parser specification is matched by the tokens available. When a
rule is matched, a corresponding AST class is instantiated to represent the
rule. The AST class hierarchy is described in Section 4.2.

In this example the PREFIX token is the first one collected. As this does
not match any rule by itself, the parser simply keeps hold of it while fetch-
ing the next token from the scanner.

The second token identified by the scanner is the PNAME_NS token,
which has a corresponding rule in the parser specification, shown in Figure
6.3. When the rule is matched, a PrefixDeclNode object is created represent-
ing the token. The sc.yytext expression represents the textual representation
of the token, being the namespace name "‘dc"’.

The third token is the IRI_REF token. The rule matched for this token is
shown in Figure 6.4. The corresponding object created for this token is an
IriRefNode object.

Both the objects created replace their corresponding tokens in the parser
collection of tokens received from the scanner, both represented as the match-
ing rule from which they were constructed. At this point, the collection con-
tains a PREFIX token, a PrefixDeclNode represented by the Pname rule and
an IriRefNode represented by the IriRef rule. Those three elements match
the Prefix rule, shown in Figure 6.5.

The Prefix rule is handed the elements in the parser collection and uses
them to compose its corresponding object. The remaining tokens are han-
dled in a similar manner, until the entire token stream has been processed

50

Pname
: PNAME_NS
{

$$ = new PrefixDeclNode(sc.yytext, null);
}
;

Figure 6.3: PNAME_NS Token Parser Rule

IriRef
: IRI_REF
{

$$ = new IriRefNode() { Value = sc.yytext };
}
;

Figure 6.4: IRI_REF Token Parser Rule

resulting in one QueryNode object representing the entire query. This node
is the root of the generated AST, as shown in Figure 6.6.

The relationships between the entities involved in the parsing of a SPARQL
query is shown in Figure 6.7.

6.2 Test Results

Testing has been an important tool in the development of the SharQL parser,
both as a measure of correctness and as a bug tracking mechanism. The
W3C SPARQL Test Suite [2] has been a great resource for validating the
correctness of the parser as a whole through black box testing. The tests
from W3C are listed in Appendix E. Custom tests have helped testing sin-
gle components through unit testing.

/* [4] */
PrefixDecl
: PREFIX Pname IriRef
{

PrefixDeclNode pn = (PrefixDeclNode)$2;
$$ = new PrefixDeclNode(pn.Namespace, $3);

}
;

Figure 6.5: Prefix Parser Rule

51

QueryNode

PrologueNode

PrefixDeclListNode

PrefixDeclNode

Namespace: dc IriRefNode

IRI Reference:

<http://purl.org/dc/elements/1.1/>

SelectQueryNode

StarVarListNode

VarNode

Variable Name: title

WhereClauseNode

GroupGraphPatternNode

TriplesBlockNode

TriplesSameSubjectNode

PropertyListNode

ObjectListNode

VarNode

Variable Name: title

PrefixedNameNode

Namespace: dc

Local Name: title

IriRefNode

IRI Reference:

<http://en.wikipedia.org/wiki/Tony_Benn>

Figure 6.6: Example generated AST

52

SELECT *
WHERE { … }

Scanner

Character stream

Parser

Token stream

AST node

classes

Token sequence

recognized

New AST

node

Complete AST

Entire query

recognized

Figure 6.7: Relationships between the parser context entities

53

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5

Failed 0 0 3 8 0

Succeeded 81 53 48 4 2

0

10

20

30

40

50

60

70

80

90

Figure 6.8: Test Suite Results

6.2.1 W3C SPARQL Test Suite

The tests described in Section 5.3 were run against our parser, resulting in
a parse success or parse failure. Test queries that should parse, but did
not, indicated errors in our parser. During development, quite a few errors
were located by means of valid queries which did not parse successfully.

On the occurrence of a test failing, the test query in question has been
examined and used as a basis for tracking the creation of the corresponding
AST during parsing to help identifying the point of failure. In most cases
this has lead to an error being identified and corrected.

A small amount of tests were identified as semantical tests as well as
syntactical tests, despite being classified as syntax tests in the test suite.
However, the parser does currently not operate on a semantical level, and
the tests in question have thus been excluded, as discussed in Section 5.3.1.

The test suite is divided into five test sets, each containing a number
of single test queries. Figure 6.8 shows the results of running all the tests
supplied in the test suite, grouped by test set. The failing tests represent
the semantical tests that have now been excluded from the test setup.

54

6.3 Specification Nonconformities

6.3.1 Unsupported Unicode Codepoints

A SPARQL query string is a Unicode character string [1]. As discussed
in Section 4.6.1, the Unicode standard specifies unique identifiers (called
codepoints) for all Unicode characters. The set of defined codepoints is
divided into different planes. Each plane consists of 65,536 (216) codepoints.
Plane 0 is the range [000016,FFFF16], Plane 1 is [1000016,1FFFF16] etc. Plane
0 is called the Basic Multilingual Plane (BMP), while codepoints from the
remaining planes are called Supplementary Code Points. [23]

The basic unit recognized by the MPLex generated scanner is the .NET
System.Char type. This type represents a 16 bit integer value. Thus, a sin-
gle System.Char object can only represent a Unicode character in the Basic
Multilingual Plane. To represent Unicode characters from the remaining
planes, two successive System.Char objects are required. This leads to un-
defined behavior by the MPLex generated scanner.

While a SPARQL query, according to W3C’s specification, may contain
characters from all Unicode planes, the SharQL parser developed in this
project only has a defined behavior for queries containing characters from
the Basic Multilingual Plane. While this violates the SPARQL specification,
we consider it a minor issue, as the majority of common-use characters fit
into the BMP [22].

6.3.2 Semantic Specifications

According to the SPARQL specification, Section A.6: “The same blank node
label may not be used in two separate basic graph patterns with a single query”
[1].

As discussed in Section 5.3.1, this requirement is considered a semantic
rule and thus outside the scope of this project. The SharQL parser will
not yield any errors when parsing SPARQL queries reusing the same blank
node label in two separate basic graph patterns.

55

56

Chapter 7

Conclusion and Further Work

This chapter briefly discusses the course of the project in terms of key in-
gredients and decisions, resulting in the final outcome. Also, the planned
further work is presented, placing the project in its superior context.

7.1 Conclusion

The project has been greatly influenced by the tools used, being Visual Stu-
dio and the Managed Babel package containing the MPLex and MPPG lexer
and parser generator. Allowing for the lexer and parser generator to be in-
tegrated in the SharQL project itself has greatly simplified the parser gen-
eration by, in reality, making it completely transparent.

As the SPARQL grammar is defined on Extended Backus-Naur Form
(EBNF), it had to be translated into the BNF-based specification languages
used by MPLex and MPPG. This has introduced quite a few additional
grammar rules to compensate for the lack of expressive power in the spec-
ification languages. Besides being the most time-consuming task in the
project altogether, this translation has been the number one source of bugs
during the development.

Conformance with the SPARQL grammar is essential, as well as keep-
ing the implementation free of bugs in general. The W3C SPARQL Test
Suite has been an important tool in the strive for correct behaviour. The
suite contains nearly 200 tests relevant for the SharQL parser, testing differ-
ent aspects of the grammar. However, despite being classified as syntactic
tests, a rather small amount of the tests actually tested semantic matters as
well. As such matters are not taken into account at this stage, the tests in
question have been left out from the set of tests used to validate the confor-
mity of the parser.

The outcome of the project is the SharQL parser. It runs on the Microsoft
.NET framwork, and generates abstract syntax trees from SPARQL queries.
The only nonconformity with the SPARQL specification is the lack of sup-

57

port for Unicode characters that exceed 16 bits in size. All relevant tests
from the W3C SPARQL Test Suite pass without exceptions, indicating the
level of conformity with the SPARQL specification.

7.2 Further Work

This project and its outcome directly prepares for a master thesis for the
iAD Research Centre in spring 2009. The thesis will be part of the MARS
project, and addresses the following two problems:

• Efficiently transforming RDF data to, and representing it in, the rep-
resentation used in MARS engine.

• Generating an executable query plan from a SPARQL query for the
MARS .NET engine.

RDF is verbose by nature, especially in its XML-based representation.
Regardless of the representation used, triples still mainly consist of URIs,
causing a great deal of redundancy. Also, RDF data represents a graph of
nodes, which is quite different from typical relational data representations.
These properties may call for a different approach in storing and indexing
the data in order to allow for queries to be executed efficiently.

When a scheme for representing the RDF-data has been defined, the
next step is to generate executable query plans. The outcome of this project
is the SharQL parser currently generating abstract syntax trees from SPARQL
queries. The ASTs serve as a basis for such query plans, and should be
transformed from the current tree of nodes to a tree of query elements de-
fined by the MARS .NET project.

58

References

[1] W3C. SPARQL query language for RDF. http://www.w3.org/TR/
2008/REC-rdf-sparql-query-20080115/, Jan. 2008.

[2] W3C. DAWG Testcases. http://www.w3.org/2001/sw/
DataAccess/tests/r2.

[3] W3C. W3C semantic web activity. http://www.w3.org/2001/
sw/, July 2008.

[4] W3C. RDF primer. http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/, Feb. 2004.

[5] DCMI-Libraries Working Group. Library application pro-
file. http://dublincore.org/documents/2004/09/10/
library-application-profile/, Sept. 2004.

[6] Turtle - Terse RDF Triple Language. http://www.w3.org/
TeamSubmission/2008/SUBM-turtle-20080114/, Jan. 2008.

[7] Notation 3. http://www.w3.org/DesignIssues/Notation3.
html, Mar. 2006.

[8] W3C. RDF Data Access Use Cases and Requirements. http://www.
w3.org/TR/2005/WD-rdf-dawg-uc-20050325/, Mar. 2005.

[9] W3C. W3C Opens Data on the Web with SPARQL. http://www.
w3.org/2007/12/sparql-pressrelease, January 2008.

[10] W3C. Testimonials for "W3C Opens Data on the Web with
SPARQL" Press Release. http://www.w3.org/2007/12/
sparql-testimonial, 2008.

[11] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Addison Wesley, 2nd edition,
2006.

[12] ANother Tool for Language Recognition (ANTLR). http://www.
antlr.org/, Oct. 2009.

59

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/2001/sw/DataAccess/tests/r2
http://www.w3.org/2001/sw/DataAccess/tests/r2
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://dublincore.org/documents/2004/09/10/library-application-profile/
http://dublincore.org/documents/2004/09/10/library-application-profile/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/
http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/
http://www.w3.org/2007/12/sparql-pressrelease
http://www.w3.org/2007/12/sparql-pressrelease
http://www.w3.org/2007/12/sparql-testimonial
http://www.w3.org/2007/12/sparql-testimonial
http://www.antlr.org/
http://www.antlr.org/

[13] Compiler compiler/Recursive descent (Coco/R). http://www.ssw.
uni-linz.ac.at/Research/Projects/Coco/, Oct. 2009.

[14] Microsoft. Managed babel. http://msdn.microsoft.com/
en-us/library/bb165037(VS.90).aspx, Nov. 2007.

[15] Queensland University of Technology. The Gardens Point Scanner
Generator (GPLEX). http://plas.fit.qut.edu.au/gplex/,
Jan. 2007.

[16] Queensland University of Technology. The Gardens Point Parser Gen-
erator (GPPG). http://plas.fit.qut.edu.au/gppg/, Jan. 2007.

[17] The Lex & Yacc page. http://dinosaur.compilertools.net/.

[18] Microsoft. Structs (C#). http://msdn.microsoft.com/en-us/
library/saxz13w4(VS.85).aspx, Nov. 2008.

[19] Microsoft. MSDN Academic Alliance. http://msdn.microsoft.
com/en-us/academic/, Nov. 2008.

[20] W3C. Extensible Markup Language (XML) 1.1. http://www.w3.
org/TR/2004/REC-xml11-20040204/#sec-notation, Febru-
ary 2004.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994.

[22] The Unicode Consortium. About the Unicode Standard. http://
www.unicode.org/standard/standard.html, Nov. 2008.

[23] The Unicode Consortium. Glossary of Unicode Terms. http://
unicode.org/glossary/, Nov. 2008.

60

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/
http://msdn.microsoft.com/en-us/library/bb165037(VS.90).aspx
http://msdn.microsoft.com/en-us/library/bb165037(VS.90).aspx
http://plas.fit.qut.edu.au/gplex/
http://plas.fit.qut.edu.au/gppg/
http://dinosaur.compilertools.net/
http://msdn.microsoft.com/en-us/library/saxz13w4(VS.85).aspx
http://msdn.microsoft.com/en-us/library/saxz13w4(VS.85).aspx
http://msdn.microsoft.com/en-us/academic/
http://msdn.microsoft.com/en-us/academic/
http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-notation
http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-notation
http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html
http://unicode.org/glossary/
http://unicode.org/glossary/

Glossary

AST Abstract Syntax Tree, a tree representation of the syntax of some source
code.

BNF Backus-Naur Form, a metasyntax used to express context-free gram-
mars.

C# One of the programming languages supported by Microsoft for creat-
ing applications that execute on the .NET Framework.

EBNF Extended Backus-Naur Form, an extension to BNF containing sev-
eral shorthand notations.

Escape Sequence In the context of this project, an escape sequence is a way
of representing Unicode characters by appending a character specifier
to an escape character.

Grammar Production A grammar production specifies possible substitu-
tions for a specific grammar symbol.

iAD Information Access Disruptions, a constellation between FAST, two
Norwegian enterprises and different research environments with a
goal to develop the best search technology in the world.

IRI Internationalized Resource Identifier, a generalization of the Uniform
Resource Identifier (URI), allowing Unicode character rather than be-
ing restricted to a subset of ASCII characters.

LALR Parser Lookahead LR parser, produces the rightmost derivation, read-
ing the input from left to right.

LL(k) Parser Produces the leftmost derivation, reading the input from left
to right, using at most k tokens lookahead.

Managed Babel A package for integrating new languages into Microsoft’s
Visual Studio software. Contains tools that may also be used for gen-
eral parsing purposes.

61

.NET Framework A software technology available from Microsoft which
provides a library of pre-coded components and a virtual machine
for managing application execution.

Parser A program that performs syntactical analysis on a sequence of to-
kens to determine the grammatical structure. A parser usually pro-
duces an Abstract Syntax Tree (AST) for further analysis.

RDF Resource Description Framework, a model for representing informa-
tion about resources on the World Wide Web.

Scanner A program that reads a sequence of characters and produce a se-
quence of tokens which represent one or more characters. A scanner
performs the first step (the lexical analysis) when parsing input in a
given language.

Semantic Web An extension of the World Wide Web in which the seman-
tics of information and services on the web is defined, making it pos-
sible for the web to understand and satisfy the requests of people and
machines to use the web content.

SharQL The SPARQL parser created in this project.

SPARQL SPARQL Protocol And RDF Query Language, a query language
for RDF data.

Token A categorized block of text, recognized by a scanner. A scanner
outputs an array of tokens which may be interpreted by a parser.

Turtle A serialization format for RDF, resulting in a less verbose output
than the equivalent XML serialization.

Unicode A specification assigning unique code points to symbols from
most of the world’s writing systems.

Unit Test A test that verifies that an individual unit of source code is work-
ing properly.

URI Uniform Resource Identifier, a compact string of characters used to
identify or name a resource on the Internet.

Visitor Pattern A way of separating an algorithm from an object structure
upon which it operates.

Visual Studio An integrated development environment (IDE) from Mi-
crosoft with support for developing .NET Framework applications.

W3C World Wide Web Consortium, the main international standards or-
ganization for the World Wide Web.

62

W3C SPARQL Test Suite A set of tests provided by SPARQL to help en-
sure that a SPARQL parser behaves according to the specification.

63

64

Appendix A

XML for Project File

1 <UsingTask TaskName="MPLex"
2 AssemblyFile="lib\Microsoft.VsSDK.Build.Tasks.dll" />
3 <UsingTask TaskName="FindVsSDKInstallation"
4 AssemblyFile="lib\Microsoft.VsSDK.Build.Tasks.dll" />
5 <!--Set the general properties for this installation of the SDK-->
6 <PropertyGroup>
7 <VsSDKVersion>9.0</VsSDKVersion>
8 <VSSDKTargetPlatformVersion>9.0</VSSDKTargetPlatformVersion>
9 <VSSDKTargetPlatformRegRoot>

10 Software\Microsoft\VisualStudio\$(VSSDKTargetPlatformVersion)
11 </VSSDKTargetPlatformRegRoot>
12 </PropertyGroup>
13 <Target Name="FindSDKInstallation"
14 Condition="'$(VsSDKInstall)'==''">
15 <FindVsSDKInstallation SDKVersion="$(VsSDKVersion)">
16 <Output TaskParameter="InstallationPath"
17 PropertyName="VsSDKInstall" />
18 <Output TaskParameter="IncludesPath"
19 PropertyName="VsSDKIncludes" />
20 <Output TaskParameter="ToolsPath"
21 PropertyName="VsSDKToolsPath" />
22 </FindVsSDKInstallation>
23 </Target>
24 <PropertyGroup>
25 <TargetVSVersion Condition="'$(TargetVSVersion)' == ''">
26 $(VSSDKTargetPlatformVersion)
27 </TargetVSVersion>
28 </PropertyGroup>
29 <!--
30 ==
31 Generate code from LEX files
32 ==
33 -->
34 <PropertyGroup>
35 <!--Make sure that the lexer runs before the C# compiler-->
36 <CoreCompileDependsOn>
37 $(CoreCompileDependsOn);GenerateCodeFromLex
38 </CoreCompileDependsOn>
39 </PropertyGroup>
40 <Target Name="GenerateCodeFromLex"
41 Condition="'$(BuildingProject)'!='false'"
42 Inputs="@(MPLexCompile);$(LexFrameFile)"
43 Outputs="@(MPLexCompile->'$(IntermediateOutputPath)%(FileName).cs')"

65

44 DependsOnTargets="$(GenerateCodeFromLexDependsOn)">
45 <MPLex InputFile="@(MPLexCompile)"
46 OutputFile="@(MPLexCompile->'$(IntermediateOutputPath)%(FileName).cs')"
47 CompressTables="$(CompressTables)" FrameFile="$(LexFrameFile)"
48 SDKVersion="$(VsSDKVersion)">
49 <Output TaskParameter="OutputFile" ItemName="Compile" />
50 <Output TaskParameter="OutputFile" ItemName="FileWrites" />
51 </MPLex>
52 </Target>
53 <!--
54 ===
55 Generate parser code from Y files
56 ===
57 -->
58 <PropertyGroup>
59 <GenerateParserCodeFromGrammarDependsOn>
60 $(GenerateParserCodeFromGrammarDependsOn);FindSDKInstallation
61 </GenerateParserCodeFromGrammarDependsOn>
62 <CoreCompileDependsOn>
63 $(CoreCompileDependsOn);GenerateParserCodeFromGrammar
64 </CoreCompileDependsOn>
65 </PropertyGroup>
66 <Target Name="GenerateParserCodeFromGrammar"
67 Condition="'$(BuildingProject)'!='false'"
68 Inputs="@(MPPGCompile)"
69 Outputs="@(MPPGCompile->'$(IntermediateOutputPath)%(FileName).cs')"
70 DependsOnTargets="$(GenerateParserCodeFromGrammarDependsOn)">
71 <!--Check if there are .lex files in the project because in
72 this case mppg should generate the base classes
73 used by the code generated by MPLex-->
74 <CreateProperty Value="-mplex" Condition="'@(MPLexCompile)' != ''">
75 <Output TaskParameter="ValueSetByTask"
76 PropertyName="__GenerateForMPLex" />
77 </CreateProperty>
78 <!--Run the command line tool that generates the cs files.-->
79 <!--Exec Command attribute should not span several lines in actual
80 project file-->
81 <Exec Command=""$(VsSDKToolsPath)\MPPG.exe"
82 $(__GenerateForMPLex) @(MPPGCompile->'"%(Identity)"') >
83 @(MPPGCompile->'"$(IntermediateOutputPath)%(FileName).cs"')" />
84 <!--Add the generated files to the list of the files to compile.-->
85 <CreateItem
86 Include="@(MPPGCompile->'$(IntermediateOutputPath)%(FileName).cs')">
87 <Output TaskParameter="Include" ItemName="Compile" />
88 <Output TaskParameter="Include" ItemName="FileWrites" />
89 </CreateItem>
90 </Target>

66

Appendix B

Scanner Specification

1 %using SharQL.Utils;
2

3 /* Defines the generated scanner namespace. */
4 %namespace SharQL
5

6 /* Enables unicode characters. */
7 %option unicode
8

9 %{
10

11 // Called each time a token has been returned.
12 internal void LoadYylval()
13 {
14 // Collects token location information and makes it available for the
15 // parser through the yylloc variable.
16 yylloc = new CustomLexLocation(yyline, yycol, yyline, yycol + yyleng);
17 }
18

19 // Called by the parser on the occurence of an unexpected or missing
20 // token.
21 public override void yyerror(string s, params object[] a)
22 {
23 // Adds the reported error to the error handler.
24 handler.AddError(s, new MPLEX.Parser.LexSpan(tokLin, tokCol, tokLin,

tokECol, tokPos, tokEPos, new ScanBuffProxy(buffer)));
25 }
26

27 // Proxy class for the MPLEX.Lexer.ScanBuff class to allow for the
28 // MPLEX.Parser.LexSpan class to be used with the generated
29 // SharQL.ScanBuff class.
30 public class ScanBuffProxy : MPLEX.Lexer.ScanBuff
31 {
32 private ScanBuff buffer;
33

34 public override int Pos
35 {
36 get { return buffer.Pos; }
37 set { buffer.Pos = value; }
38 }
39

40 public override int Read()
41 {
42 return buffer.Read();

67

43 }
44

45 public override int Peek()
46 {
47 return buffer.Peek();
48 }
49

50 public override int ReadPos
51 {
52 get { return buffer.ReadPos; }
53 }
54

55 public override string GetString(int b, int e)
56 {
57 return buffer.GetString(b, e);
58 }
59

60 public ScanBuffProxy(ScanBuff buffer)
61 {
62 this.buffer = buffer;
63 }
64 }
65

66 %}
67

68 /*
69 * SPARQL Query Language for RDF
70 * W3C Recommendation 15 January 2008
71 *
72 * http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
73 *
74 */
75

76 iri_ref <([^<>"{}|^`\\\u0000-\u0020])*>
77 langtag @[a-zA-Z]+(\-[a-zA-Z0-9]+)*
78 exponent [eE][\+\-]?[0-9]+
79 integer [0-9]+
80 integer_positive \+{integer}
81 integer_negative \-{integer}
82 decimal [0-9]+\.[0-9]*|\.[0-9]+
83 decimal_positive \+{decimal}
84 decimal_negative \-{decimal}
85 double [0-9]+\.[0-9]*{exponent}|

\.([0-9])+{exponent}|([0-9])+{exponent}
86 double_positive \+{double}
87 double_negative \-{double}
88 echar \\[tbnrf\\"']
89

90 /* Range 10000-EFFFF is left out, as MPLEX currently only supports 16-bit
unicode characters. */

91 pn_chars_base [A-Z]|[a-z]|[\u00C0-\u00D6]|[\u00D8-\u00F6]|
[\u00F8-\u02FF]|[\u0370-\u037D]|[\u037F-\u1FFF]|
[\u200C-\u200D]|[\u2070-\u218F]|[\u2C00-\u2FEF]|
[\u3001-\uD7FF]|[\uF900-\uFDCF]|[\uFDF0-\uFFFD]

92

93 pn_chars_u {pn_chars_base}|_
94 pn_chars {pn_chars_u}|\-|[0-9]|\u00B7|

[\u0300-\u036F]|[\u203F-\u2040]
95 pn_prefix {pn_chars_base}(({pn_chars}|\.)*{pn_chars})?
96 pn_local ({pn_chars_u}|[0-9]) (({pn_chars}|\.)*{pn_chars})?
97 pname_ns {pn_prefix}?:
98 pname_ln {pname_ns}{pn_local}

68

99 blank_node_label _:{pn_local}
100 varname ({pn_chars_u}|[0-9])({pn_chars_u}|[0-9]|

\u00B7|[\u0300-\u036F]|[\u203F-\u2040])*
101 var1 \?{varname}
102 var2 \${varname}
103 string_literal1 '(([^\u0027\u005C\u000A\u000D])|{echar})*'
104 string_literal2 \"(([^\u0022\u005C\u000A\u000D])|{echar})*\"
105 string_literal_long1 '''(('|'')?([^'\\]|{echar}))*'''
106 string_literal_long2 \"\"\"((\"|\"\")?([^\"\\]|{echar}))*\"\"\"
107 ws \u0020|\u0009|\u000D|\u000A
108 nil \({ws}*\)
109 anon \[{ws}*\]
110 eq "="
111 less "<"
112 greater ">"
113 or "||"
114 and "&&"
115 not "!="
116 lessorequal "<="
117 greaterorequal ">="
118 hats "^^"
119 comment #[^\n]*
120

121 /*
122 * A.8 Grammar
123 *
124 * (...) Keywords are matched in a case-insensitive manner with the
125 * exception of the keyword 'a'.
126 */
127 base [Bb][Aa][Ss][Ee]
128 prefix [Pp][Rr][Ee][Ff][Ii][Xx]
129 select [Ss][Ee][Ll][Ee][Cc][Tt]
130 distinct [Dd][Ii][Ss][Tt][Ii][Nn][Cc][Tt]
131 reduced [Rr][Ee][Dd][Uu][Cc][Ee][Dd]
132 construct [Cc][Oo][Nn][Ss][Tt][Rr][Uu][Cc][Tt]
133 describe [Dd][Ee][Ss][Cc][Rr][Ii][Bb][Ee]
134 ask [Aa][Ss][Kk]
135 from [Ff][Rr][Oo][Mm]
136 named [Nn][Aa][Mm][Ee][Dd]
137 where [Ww][Hh][Ee][Rr][Ee]
138 orderby [Oo][Rr][Dd][Ee][R]\u0020[Bb][Yy]
139 asc [Aa][Ss][Cc]
140 desc [Dd][Ee][Ss][Cc]
141 limit [Ll][Ii][Mm][Ii][Tt]
142 offset [Oo][Ff][Ff][Ss][Ee][Tt]
143 optional [Oo][Pp][Tt][Ii][Oo][Nn][Aa][Ll]
144 graph [Gg][Rr][Aa][Pp][Hh]
145 filter [Ff][Ii][Ll][Tt][Ee][Rr]
146 union [Uu][Nn][Ii][Oo][Nn]
147 str [Ss][Tt][Rr]
148 lang [Ll][Aa][Nn][Gg]
149 langmatches [Ll][Aa][Nn][Gg][Mm][Aa][Tt][Cc][Hh][Ee][Ss]
150 datatype [Dd][Aa][Tt][Aa][Tt][Yy][Pp][Ee]
151 bound [Bb][Oo][Uu][Nn][Dd]
152 sameterm [Ss][Aa][Mm][Ee][Tt][Ee][Rr][Mm]
153 isiri [Ii][Ss][Ii][Rr][Ii]
154 isuri [Ii][Ss][Uu][Rr][Ii]
155 isblank [Ii][Ss][Bb][Ll][Aa][Nn][Kk]
156 isliteral [Ii][Ss][Ll][Ii][Tt][Ee][Rr][Aa][Ll]
157 regex [Rr][Ee][Gg][Ee][Xx]
158 true [Tt][Rr][Uu][Ee]
159 false [Ff][Aa][Ll][Ss][Ee]

69

160

161 %%
162

163 {base} {return (int)Tokens.BASE;}
164 {prefix} {return (int)Tokens.PREFIX;}
165 {select} {return (int)Tokens.SELECT;}
166 {distinct} {return (int)Tokens.DISTINCT;}
167 {reduced} {return (int)Tokens.REDUCED;}
168 {construct} {return (int)Tokens.CONSTRUCT;}
169 {describe} {return (int)Tokens.DESCRIBE;}
170 {ask} {return (int)Tokens.ASK;}
171 {from} {return (int)Tokens.FROM;}
172 {named} {return (int)Tokens.NAMED;}
173 {where} {return (int)Tokens.WHERE;}
174 {orderby} {return (int)Tokens.ORDERBY;}
175 {asc} {return (int)Tokens.ASC;}
176 {desc} {return (int)Tokens.DESC;}
177 {limit} {return (int)Tokens.LIMIT;}
178 {offset} {return (int)Tokens.OFFSET;}
179 {optional} {return (int)Tokens.OPTIONAL;}
180 {graph} {return (int)Tokens.GRAPH;}
181 {filter} {return (int)Tokens.FILTER;}
182 {union} {return (int)Tokens.UNION;}
183 {eq} {return (int)'=';}
184 {less} {return (int)'<';}
185 {greater} {return (int)'>';}
186 {or} {return (int)Tokens.OR;}
187 {and} {return (int)Tokens.AND;}
188 {not} {return (int)Tokens.NOT;}
189 {lessorequal} {return (int)Tokens.LESSOREQUAL;}
190 {greaterorequal} {return (int)Tokens.GREATEROREQUAL;}
191 {str} {return (int)Tokens.STR;}
192 {lang} {return (int)Tokens.LANG;}
193 {langmatches} {return (int)Tokens.LANGMATCHES;}
194 {datatype} {return (int)Tokens.DATATYPE;}
195 {bound} {return (int)Tokens.BOUND;}
196 {sameterm} {return (int)Tokens.SAMETERM;}
197 {isiri} {return (int)Tokens.ISIRI;}
198 {isuri} {return (int)Tokens.ISURI;}
199 {isblank} {return (int)Tokens.ISBLANK;}
200 {isliteral} {return (int)Tokens.ISLITERAL;}
201 {regex} {return (int)Tokens.REGEX;}
202 {true} {return (int)Tokens.TRUE;}
203 {false} {return (int)Tokens.FALSE;}
204 {hats} {return (int)Tokens.HATS;}
205 {iri_ref} {return (int)Tokens.IRI_REF;}
206 {langtag} {return (int)Tokens.LANGTAG;}
207 {exponent} {return (int)Tokens.EXPONENT;}
208 {integer} {return (int)Tokens.INTEGER;}
209 {integer_positive} {return (int)Tokens.INTEGER_POSITIVE;}
210 {integer_negative} {return (int)Tokens.INTEGER_NEGATIVE;}
211 {decimal} {return (int)Tokens.DECIMAL;}
212 {decimal_positive} {return (int)Tokens.DECIMAL_POSITIVE;}
213 {decimal_negative} {return (int)Tokens.DECIMAL_NEGATIVE;}
214 {double} {return (int)Tokens.DOUBLE;}
215 {double_positive} {return (int)Tokens.DOUBLE_POSITIVE;}
216 {double_negative} {return (int)Tokens.DOUBLE_NEGATIVE;}
217 {echar} {return (int)Tokens.ECHAR;}
218 {pname_ns} {return (int)Tokens.PNAME_NS;}
219 {pname_ln} {return (int)Tokens.PNAME_LN;}
220 {blank_node_label} {return (int)Tokens.BLANK_NODE_LABEL;}
221 {var1} {return (int)Tokens.VAR1;}

70

222 {var2} {return (int)Tokens.VAR2;}
223 {string_literal1} {return (int)Tokens.STRING_LITERAL1;}
224 {string_literal2} {return (int)Tokens.STRING_LITERAL2;}
225 {string_literal_long1}{return (int)Tokens.STRING_LITERAL_LONG1;}
226 {string_literal_long2}{return (int)Tokens.STRING_LITERAL_LONG2;}
227 * {return (int)'*';}
228 \{ {return (int)'{';}
229 \} {return (int)'}';}
230 \({return (int)'(';}
231 \) {return (int)')';}
232 , {return (int)',';}
233 ; {return (int)';';}
234 \. {return (int)'.';}
235 a {return (int)'a';}
236 \[{return (int)'[';}
237 \] {return (int)']';}
238 \+ {return (int)'+';}
239 \- {return (int)'-';}
240 \! {return (int)'!';}
241 \/ {return (int)'/';}
242 {ws} {/*IGNORE*/}
243 {nil} {return (int)Tokens.NIL;}
244 {anon} {return (int)Tokens.ANON;}
245 {comment} {/*IGNORE*/}
246

247 /*
248 * Match for any single character not matching any other token definition.
249 * (Makes parser aware of undefined tokens.)
250 */
251 . {return (int)yytext[0];}
252

253 /* Special-case match for end of file. */
254 <<EOF>> {return (int)Tokens.EOF;}
255

256 %{
257 // Called each time a token has been returned.
258 LoadYylval();
259 %}
260

261 %%

71

72

Appendix C

Parser Specification

1 %using SharQL.Ast.Nodes
2 %using SharQL.Ast
3 %using SharQL.Utils
4 %using System.Globalization
5 %using System.Diagnostics
6

7 /* Defines the generated parser namespace. */
8 %namespace SharQL
9

10 /* Makes the generated parser class a partial class. */
11 %partial
12

13 /* Defines the generated parser class name. */
14 %parsertype ParsingEngine
15

16 /* Defines the token location object type name. */
17 %YYLTYPE CustomLexLocation
18

19 %{
20

21 // Provides access to the generated Scanner class instance.
22 private Scanner sc { get { return scanner as Scanner; } }
23

24 %}
25

26 /*
27 * SPARQL Query Language for RDF
28 * W3C Recommendation 15 January 2008
29 *
30 * http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
31 *
32 */
33

34 %start Query
35

36 %token IRI_REF PNAME_NS PNAME_LN BLANK_NODE_LABEL VAR1 VAR2 LANGTAG
37 %token INTEGER DECIMAL DOUBLE INTEGER_POSITIVE DECIMAL_POSITIVE
38 %token DOUBLE_POSITIVE INTEGER_NEGATIVE DECIMAL_NEGATIVE
39 %token DOUBLE_NEGATIVE
40 %token EXPONENT STRING_LITERAL1 STRING_LITERAL2 STRING_LITERAL_LONG1
41 %token STRING_LITERAL_LONG2 ECHAR NIL ANON
42 %token BASE PREFIX SELECT DISTINCT REDUCED CONSTRUCT DESCRIBE ASK FROM
43 %token NAMED WHERE ORDERBY ASC DESC LIMIT OFFSET OPTIONAL

73

44 %token GRAPH FILTER
45 %token UNION OR AND NOT LESSOREQUAL GREATEROREQUAL STR LANG LANGMATCHES
46 %token DATATYPE BOUND SAMETERM ISIRI ISURI ISBLANK
47 %token ISLITERAL REGEX TRUE
48 %token FALSE HATS
49

50 %union { public NodeBase Value; }
51

52 %%
53

54 /* Bracketed numbers refer to SPARQL grammar rule numbers. */
55

56 /* [1] */
57 Query
58 : Prologue SelectQuery
59 {
60 this.AstRoot = new QueryNode($1, $2);
61 }
62 | Prologue ConstructQuery
63 {
64 this.AstRoot = new QueryNode($1, $2);
65 }
66 | Prologue DescribeQuery
67 {
68 this.AstRoot = new QueryNode($1, $2);
69 }
70 | Prologue AskQuery
71 {
72 this.AstRoot = new QueryNode($1, $2);
73 }
74 ;
75

76 /* [2] */
77 Prologue
78 /* REDUCE/REDUCE
79 : BaseDecl
80 {
81 $$ = new PrologueNode($1, null);
82 } */
83 : BaseDecl PrefixDeclList
84 {
85 $$ = new PrologueNode($1, $2);
86 }
87 | PrefixDeclList
88 {
89 $$ = new PrologueNode(null, $1);
90 }
91 /*
92 | REDUCE/REDUCE
93 {
94 $$ = null;
95 Debug.WriteLine("No Prologue");
96 }*/
97 ;
98

99 PrefixDeclList
100 : PrefixDecl PrefixDeclList
101 {
102 $$ = new PrefixDeclListNode($1, $2);
103 }
104 | /* empty */
105 {

74

106 $$ = null;
107 Debug.WriteLine("End of PrefixDeclList");
108 }
109 ;
110

111 /* [3] */
112 BaseDecl
113 : BASE IriRef
114 {
115 $$ = new PrefixDeclNode($2);
116 }
117 ;
118

119 /* [4] */
120 PrefixDecl
121 : PREFIX Pname IriRef
122 {
123 PrefixDeclNode pn = (PrefixDeclNode)$2;
124 $$ = new PrefixDeclNode(pn.Namespace, $3);
125 }
126 ;
127

128 Pname
129 : PNAME_NS
130 {
131 $$ = new PrefixDeclNode(sc.yytext, null);
132 }
133 ;
134

135 IriRef
136 : IRI_REF
137 {
138 $$ = new IriRefNode() { Value = sc.yytext };
139 }
140 ;
141

142 /* [5] */
143 SelectQuery
144 : SELECT DistinctReducedModifier StarVarList DatasetClauseList

WhereClause SolutionModifier
145 {
146 $$ = new SelectQueryNode($2, $3, $4, $5, $6);
147 }
148 ;
149

150 DistinctReducedModifier
151 : DISTINCT
152 {
153 $$ = new DistinctReducedModifierNode()
154 {
155 Modifier = DistinctReducedModifierNode.Modifiers.Distinct
156 };
157 }
158 | REDUCED
159 {
160 $$ = new DistinctReducedModifierNode()
161 {
162 Modifier = DistinctReducedModifierNode.Modifiers.Reduced
163 };
164 }
165 | /* empty */
166 {

75

167 $$ = null;
168 Debug.WriteLine("No DistinctReducedModified");
169 }
170 ;
171

172 StarVarList
173 : '*'
174 {
175 $$ = new StarVarListNode();
176 }
177 | Var VarList
178 {
179 $$ = new StarVarListNode($1, $2);
180 }
181 ;
182

183 VarList
184 : Var VarList
185 {
186 $$ = new VarListNode($1, $2);
187 }
188 | /* empty */
189 {
190 $$ = null;
191 Debug.WriteLine("Empty VarList");
192 }
193 ;
194

195 DatasetClauseList
196 : DatasetClause DatasetClauseList
197 {
198 $$ = new DatasetClauseListNode($1, $2);
199 }
200 | /* empty */
201 {
202 $$ = null;
203 Debug.WriteLine("Empty DataSetClauseList");
204 }
205 ;
206

207 /* [6] */
208 ConstructQuery
209 : CONSTRUCT ConstructTemplate DatasetClauseList WhereClause

SolutionModifier
210 {
211 $$ = new ConstructQueryNode($2, $3, $4, $5);
212 }
213 ;
214

215 /* [7] */
216 DescribeQuery
217 : DESCRIBE StarVarOrIRIrefList DatasetClauseList ConditionalWhereClause

SolutionModifier
218 {
219 $$ = new DescribeQueryNode($2, $3, $4, $5);
220 }
221 ;
222

223 StarVarOrIRIrefList
224 : '*'
225 {
226 $$ = new StarVarOrIRIrefListNode();

76

227 }
228 | VarOrIRIref VarOrIRIrefList
229 {
230 $$ = new StarVarOrIRIrefListNode($1, $2);
231 }
232 ;
233

234 VarOrIRIrefList
235 : VarOrIRIref VarOrIRIrefList
236 {
237 $$ = new VarOrIRIrefListNode($1, $2);
238 }
239 | /* empty */
240 {
241 $$ = null;
242 Debug.WriteLine("Empty VarOrIRIrefList");
243 }
244 ;
245

246 ConditionalWhereClause
247 : WhereClause
248 {
249 $$ = new ConditionalWhereClauseNode($1);
250 }
251 | /* empty */
252 {
253 $$ = null;
254 Debug.WriteLine("Empty ConditionalWhereClause");
255 }
256 ;
257

258 /* [8] */
259 AskQuery
260 : ASK DatasetClauseList WhereClause
261 {
262 $$ = new AskQueryNode($2, $3);
263 }
264 ;
265

266 /* [9] */
267 DatasetClause
268 : FROM DefaultOrNamedGraphClause
269 {
270 $$ = new DatasetClauseNode($2);
271 }
272 ;
273

274 DefaultOrNamedGraphClause
275 : DefaultGraphClause
276 {
277 $$ = new DefaultOrNamedGraphClauseNode($1)
278 {
279 Type = DefaultOrNamedGraphClauseNode.Types.Default
280 };
281 }
282 | NamedGraphClause
283 {
284 $$ = new DefaultOrNamedGraphClauseNode($1)
285 {
286 Type = DefaultOrNamedGraphClauseNode.Types.Named
287 };
288 }

77

289 ;
290

291 /* [10] */
292 DefaultGraphClause
293 : SourceSelector
294 {
295 $$ = new DefaultGraphClauseNode($1);
296 }
297 ;
298

299 /* [11] */
300 NamedGraphClause
301 : NAMED SourceSelector
302 {
303 $$ = new NamedGraphClauseNode($1);
304 }
305 ;
306

307 /* [12] */
308 SourceSelector
309 : IRIref
310 {
311 $$ = new SourceSelectorNode($1);
312 }
313 ;
314

315 /* [13] */
316 WhereClause
317 : WHERE GroupGraphPattern
318 {
319 $$ = new WhereClauseNode($2);
320 }
321 | GroupGraphPattern
322 {
323 $$ = new WhereClauseNode($1);
324 }
325 ;
326

327 /* [14] */
328 SolutionModifier
329 : OrderClause
330 {
331 $$ = new SolutionModifierNode($1, null);
332 }
333 | LimitOffsetClauses
334 {
335 $$ = new SolutionModifierNode(null, $1);
336 }
337 | OrderClause LimitOffsetClauses
338 {
339 $$ = new SolutionModifierNode($1, $2);
340 }
341 | /* empty */
342 {
343 $$ = null;
344 Debug.WriteLine("Empty SolutionModifier");
345 }
346 ;
347

348 /* [15] */
349 LimitOffsetClauses
350 : LimitClause

78

351 {
352 $$ = new LimitOffsetClausesNode($1, null);
353 }
354 | LimitClause OffsetClause
355 {
356 $$ = new LimitOffsetClausesNode($1, $2);
357 }
358 | OffsetClause
359 {
360 $$ = new LimitOffsetClausesNode(null, $1);
361 }
362 | OffsetClause LimitClause
363 {
364 $$ = new LimitOffsetClausesNode($2, $1);
365 }
366 ;
367

368 /* [16] */
369 OrderClause
370 : ORDERBY OrderCondition OrderConditionList
371 {
372 $$ = new OrderClauseNode($2, $3);
373 }
374 ;
375

376 OrderConditionList
377 : OrderCondition OrderConditionList
378 {
379 $$ = new OrderConditionListNode($1, $2);
380 }
381 | /* empty */
382 {
383 $$ = null;
384 Debug.WriteLine("Empty OrderConditionList");
385 }
386 ;
387

388 /* [17] */
389 OrderCondition
390 : AscOrDesc BrackettedExpression
391 {
392 $$ = new OrderConditionNode($1, $2, null, null);
393 }
394 | Constraint
395 {
396 $$ = new OrderConditionNode(null, null, $1, null);
397 }
398 | Var
399 {
400 $$ = new OrderConditionNode(null, null, null, $1);
401 }
402 ;
403

404 AscOrDesc
405 : ASC
406 {
407 $$ = new AscOrDescNode()
408 {
409 Order = AscOrDescNode.Orders.Ascending
410 };
411 }
412 | DESC

79

413 {
414 $$ = new AscOrDescNode()
415 {
416 Order = AscOrDescNode.Orders.Descending
417 };
418 }
419 ;
420

421 /* [18] */
422 LimitClause
423 : LIMIT INTEGER
424 {
425 $$ = new LimitClauseNode()
426 {
427 Limit = Convert.ToInt32(sc.yytext)
428 };
429 }
430 ;
431

432 /* [19] */
433 OffsetClause
434 : OFFSET INTEGER
435 {
436 $$ = new OffsetClauseNode()
437 {
438 Offset = Convert.ToInt32(sc.yytext)
439 };
440 }
441 ;
442

443 /* [20] */
444 GroupGraphPattern
445 : '{' ConditionalTriplesBlock GroupGraphPatternBlockList '}'
446 {
447 $$ = new GroupGraphPatternNode($2, $3);
448 }
449 ;
450

451 ConditionalTriplesBlock
452 : TriplesBlock
453 {
454 $$ = $1;
455 }
456 | /* empty */
457 {
458 $$ = null;
459 Debug.WriteLine("No TriplesBlock");
460 }
461 ;
462

463 GroupGraphPatternBlockList
464 : GroupGraphPatternBlock GroupGraphPatternBlockList
465 {
466 $$ = new GroupGraphPatternBlockListNode($1, $2);
467 }
468 | /* empty */
469 {
470 $$ = null;
471 Debug.WriteLine("End of GroupGraphPatternBlockList");
472 }
473 ;
474

80

475 GroupGraphPatternBlock
476 : GraphPatternNotTriples ConditionalDot ConditionalTriplesBlock
477 {
478 $$ = new GroupGraphPatternBlockNode($1, null, $3);
479 }
480 | Filter ConditionalDot ConditionalTriplesBlock
481 {
482 $$ = new GroupGraphPatternBlockNode(null, $1, $3);
483 }
484 ;
485

486 ConditionalDot
487 : '.'
488 {
489 Debug.WriteLine("Dot");
490 }
491 | /* empty */
492 {
493 Debug.WriteLine("No Dot");
494 }
495 ;
496

497 /* [21] */
498 TriplesBlock
499 : TriplesSameSubject ConditionalDottedTriplesBlock
500 {
501 $$ = new TriplesBlockNode($1, $2);
502 }
503 ;
504

505 ConditionalDottedTriplesBlock
506 : '.'
507 {
508 $$ = null;
509 }
510 | '.' TriplesBlock
511 {
512 $$ = $2;
513 }
514 | /* empty */
515 {
516 $$ = null;
517 Debug.WriteLine("No ConditionalDottedTriplesBlock");
518 }
519 ;
520

521 /* [22] */
522 GraphPatternNotTriples
523 : OptionalGraphPattern
524 {
525 $$ = $1;
526 }
527 | GroupOrUnionGraphPattern
528 {
529 $$ = $1;
530 }
531 | GraphGraphPattern
532 {
533 $$ = $1;
534 }
535 ;
536

81

537 /* [23] */
538 OptionalGraphPattern
539 : OPTIONAL GroupGraphPattern
540 {
541 $$ = new OptionalGraphPatternNode($2);
542 }
543 ;
544

545 /* [24] */
546 GraphGraphPattern
547 : GRAPH VarOrIRIref GroupGraphPattern
548 {
549 $$ = new GraphGraphPatternNode($1, $2);
550 }
551 ;
552

553 /* [25] */
554 GroupOrUnionGraphPattern
555 : GroupGraphPattern GroupGraphPatternUnionList
556 {
557 $$ = new GroupOrUnionGraphPatternNode($1, $2);
558 }
559 ;
560

561 GroupGraphPatternUnionList
562 : UNION GroupGraphPattern GroupGraphPatternUnionList
563 {
564 $$ = new GroupGraphPatternUnionListNode($2);
565 }
566 | /* empty */
567 {
568 $$ = null;
569 Debug.WriteLine("End of GroupGraphPatternUnionList");
570 }
571 ;
572

573 /* [26] */
574 Filter
575 : FILTER Constraint
576 {
577 $$ = new FilterNode($2);
578 }
579 ;
580

581 /* [27] */
582 Constraint
583 : BrackettedExpression
584 {
585 $$ = $1;
586 }
587 | BuiltInCall
588 {
589 $$ = $1;
590 }
591 | FunctionCall
592 {
593 $$ = $1;
594 }
595 ;
596

597 /* [28] */
598 FunctionCall

82

599 : IRIref ArgList
600 {
601 $$ = new FunctionCallNode($1, $2);
602 }
603 ;
604

605 /* [29] */
606 ArgList
607 : NIL
608 {
609 $$ = new ArgListNode();
610 }
611 | '(' Expression ExpressionList ')'
612 {
613 $$ = new ArgListNode($2, $3);
614 }
615 ;
616

617 ExpressionList
618 : ',' Expression ExpressionList
619 {
620 $$ = new ExpressionListNode($2, $3);
621 }
622 | /* empty */
623 {
624 $$ = null;
625 Debug.WriteLine("End of ExpressionList");
626 }
627 ;
628

629 /* [30] */
630 ConstructTemplate
631 : '{' ConditionalConstructTriples '}'
632 {
633 $$ = $2;
634 }
635 ;
636

637 ConditionalConstructTriples
638 : ConstructTriples
639 {
640 $$ = $1;
641 }
642 | /* empty */
643 {
644 $$ = null;
645 Debug.WriteLine("No ConstructTriples");
646 }
647 ;
648

649 /* [31] */
650 ConstructTriples
651 : TriplesSameSubject ConditionalConstructDottedTriples
652 {
653 $$ = new ConstructTriplesNode($1, $2);
654 }
655 ;
656

657 ConditionalConstructDottedTriples
658 : '.'
659 {
660 $$ = new ConditionalConstructDottedTriplesNode(null);

83

661 }
662 | '.' ConstructTriples
663 {
664 $$ = new ConditionalConstructDottedTriplesNode($2);
665 }
666 | /* empty */
667 {
668 $$ = null;
669 Debug.WriteLine("No ConstructTriples");
670 }
671 ;
672

673 /* [32] */
674 TriplesSameSubject
675 : VarOrTerm PropertyListNotEmpty
676 {
677 $$ = new TriplesSameSubjectNode($1, null, $2);
678 }
679 | TriplesNode PropertyList
680 {
681 $$ = new TriplesSameSubjectNode(null, $1, $2);
682 }
683 ;
684

685 /* [33] */
686 PropertyListNotEmpty
687 /* REDUCE/REDUCE
688 : Verb ObjectList
689 {
690 $$ = new PropertyListNode($1, $2, null);
691 }*/
692 : Verb ObjectList PropertyListTail
693 {
694 $$ = new PropertyListNode($1, $2, $3);
695 }
696 ;
697

698 PropertyListTail
699 : ';' PropertyListTail
700 {
701 $$ = $2;
702 }
703 | ';' Verb ObjectList PropertyListTail
704 {
705 $$ = new PropertyListNode($2, $3, $4);
706 }
707 | /* empty */
708 {
709 $$ = null;
710 Debug.WriteLine("End of PropertyList");
711 }
712 ;
713

714 /* [34] */
715 PropertyList
716 : PropertyListNotEmpty
717 {
718 $$ = $1;
719 }
720 | /* empty */
721 {
722 $$ = null;

84

723 Debug.WriteLine("End of PropertyList");
724 }
725 ;
726

727 /* [35] */
728 ObjectList
729 /* REDUCE/REDUCE
730 : Object
731 {
732 $$ = new ObjectListNode($1, null);
733 } */
734 : Object ObjectListTail
735 {
736 $$ = new ObjectListNode($1, $2);
737 }
738 ;
739

740 ObjectListTail
741 : ',' Object ObjectListTail
742 {
743 $$ = new ObjectListNode($2, $3);
744 }
745 | /* empty */
746 {
747 $$ = null;
748 Debug.WriteLine("End of ObjectListTail");
749 }
750 ;
751

752 /* [36] */
753 Object
754 : GraphNode
755 {
756 $$ = $1;
757 }
758 ;
759

760 /* [37] */
761 Verb
762 : VarOrIRIref
763 {
764 $$ = $1;
765 }
766 | 'a'
767 {
768 $$ = new IriRefNode()
769 {
770 Value = "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
771 };
772 }
773 ;
774

775 /* [38] */
776 TriplesNode
777 : Collection
778 {
779 $$ = $1;
780 }
781 | BlankNodePropertyList
782 {
783 $$ = $1;
784 }

85

785 ;
786

787 /* [39] */
788 BlankNodePropertyList
789 : '[' PropertyListNotEmpty ']'
790 {
791 $$ = new BlankNodePropertyListNode($2);
792 }
793 ;
794

795 /* [40] */
796 Collection
797 : '(' GraphNode GraphNodeList ')'
798 {
799 $$ = new CollectionNode(new GraphNodeListNode($2, $3));
800 }
801 ;
802

803 GraphNodeList
804 : GraphNode GraphNodeList
805 {
806 $$ = new GraphNodeListNode($1, $2);
807 }
808 | /* empty */
809 {
810 $$ = null;
811 Debug.WriteLine("End of GraphNodeList");
812 }
813 ;
814

815 /* [41] */
816 GraphNode
817 : VarOrTerm
818 {
819 $$ = $1;
820 }
821 | TriplesNode
822 {
823 $$ = $1;
824 }
825 ;
826

827 /* [42] */
828 VarOrTerm
829 : Var
830 {
831 $$ = $1;
832 }
833 | GraphTerm
834 {
835 $$ = $1;
836 }
837 ;
838

839 /* [43] */
840 VarOrIRIref
841 : Var
842 {
843 $$ = $1;
844 }
845 | IRIref
846 {

86

847 $$ = $1;
848 }
849 ;
850

851 /* [44] */
852 Var
853 : VAR1
854 {
855 $$ = new VarNode(sc.yytext.Substring(1));
856 }
857 | VAR2
858 {
859 $$ = new VarNode(sc.yytext.Substring(1));
860 }
861 ;
862

863 /* [45] */
864 GraphTerm
865 : IRIref
866 {
867 $$ = $1;
868 }
869 | RDFLiteral
870 {
871 $$ = $1;
872 }
873 | NumericLiteral
874 {
875 $$ = $1;
876 }
877 | BooleanLiteral
878 {
879 $$ = $1;
880 }
881 | BlankNode
882 {
883 $$ = $1;
884 }
885 | NIL
886 {
887 $$ = null;
888 }
889 ;
890

891 /* [46] */
892 Expression
893 : ConditionalOrExpression
894 {
895 $$ = $1;
896 }
897 ;
898

899 /* [47] */
900 ConditionalOrExpression
901 : ConditionalAndExpression ConditionalOrExpressionList
902 {
903 $$ = new ConditionalOrExpressionNode($1, $2);
904 }
905 ;
906

907 ConditionalOrExpressionList
908 : OR ConditionalAndExpression ConditionalOrExpressionList

87

909 {
910 $$ = new ConditionalOrExpressionListNode($2, $3);
911 }
912 | /* empty */
913 {
914 $$ = null;
915 Debug.WriteLine("End of ConditionalOrExpressionList");
916 }
917 ;
918

919 /* [48] */
920 ConditionalAndExpression
921 : ValueLogical ConditionalAndExpressionList
922 {
923 $$ = new ConditionalAndExpressionNode($1, $2);
924 }
925 ;
926

927 ConditionalAndExpressionList
928 : AND ValueLogical ConditionalAndExpressionList
929 {
930 $$ = new ConditionalAndExpressionListNode($2, $3);
931 }
932 | /* empty */
933 {
934 $$ = null;
935 Debug.WriteLine("End of ConditionalAndExpressionList");
936 }
937 ;
938

939 /* [49] */
940 ValueLogical
941 : RelationalExpression
942 {
943 $$ = $1;
944 }
945 ;
946

947 /* [50] */
948 RelationalExpression
949 : NumericExpression
950 {
951 $$ = $1;
952 }
953 | NumericExpression '=' NumericExpression
954 {
955 $$ = new RelationalExpressionNode(Constants.Operators.Equal, $1, $3);
956 }
957 | NumericExpression NOT NumericExpression
958 {
959 $$ = new RelationalExpressionNode(Constants.Operators.Not, $1, $3);
960 }
961 | NumericExpression '<' NumericExpression
962 {
963 $$ = new RelationalExpressionNode(Constants.Operators.Less, $1, $3);
964 }
965 | NumericExpression '>' NumericExpression
966 {
967 $$ = new RelationalExpressionNode(Constants.Operators.Greater, $1, $3);
968 }
969 | NumericExpression LESSOREQUAL NumericExpression
970 {

88

971 $$ = new RelationalExpressionNode(Constants.Operators.LessOrEqual, $1,
$3);

972 }
973 | NumericExpression GREATEROREQUAL NumericExpression
974 {
975 $$ = new RelationalExpressionNode(Constants.Operators.GreaterOrEqual,

$1, $3);
976 }
977 ;
978

979 /* [51] */
980 NumericExpression
981 : AdditiveExpression
982 {
983 $$ = $1;
984 }
985 ;
986

987 /* [52] */
988 AdditiveExpression
989 : MultiplicativeExpression AdditiveExpressionList
990 {
991 $$ = new AdditiveExpressionNode($1, $2);
992 }
993 ;
994

995 AdditiveExpressionList
996 : '+' MultiplicativeExpression AdditiveExpressionList
997 {
998 $$ = new AdditiveExpressionListNode(Constants.Operators.Add, $1, $2);
999 }

1000 | '-' MultiplicativeExpression AdditiveExpressionList
1001 {
1002 $$ = new AdditiveExpressionListNode(Constants.Operators.Subtract, $1,

$2);
1003 }
1004 | NumericLiteralPositive AdditiveExpressionList
1005 {
1006 $$ = new AdditiveExpressionListNode(Constants.Operators.None, $1, $2);
1007 }
1008 | NumericLiteralNegative AdditiveExpressionList
1009 {
1010 $$ = new AdditiveExpressionListNode(Constants.Operators.None, $1, $2);
1011 }
1012 | /* empty */
1013 {
1014 $$ = null;
1015 Debug.WriteLine("End of AdditiveExpressionList");
1016 }
1017 ;
1018

1019 /* [53] */
1020 MultiplicativeExpression
1021 : UnaryExpression UnaryExpressionList
1022 {
1023 $$ = new MultiplicativeExpressionNode($1, $2);
1024 }
1025 ;
1026

1027 UnaryExpressionList
1028 : '*' UnaryExpression UnaryExpressionList
1029 {

89

1030 $$ = new UnaryExpressionListNode(Constants.Operators.Multiply, $2, $3);
1031 }
1032 | '/' UnaryExpression UnaryExpressionList
1033 {
1034 $$ = new UnaryExpressionListNode(Constants.Operators.Divide, $2, $3);
1035 }
1036 | /* empty */
1037 {
1038 $$ = null;
1039 Debug.WriteLine("End of UnaryExpressionList");
1040 }
1041 ;
1042

1043 /* [54] */
1044 UnaryExpression
1045 : '!' PrimaryExpression
1046 {
1047 $$ = new UnaryExpressionNode(Constants.Operators.Not, $2);
1048 }
1049 | '+' PrimaryExpression
1050 {
1051 $$ = new UnaryExpressionNode(Constants.Operators.Add, $2);
1052 }
1053 | '-' PrimaryExpression
1054 {
1055 $$ = new UnaryExpressionNode(Constants.Operators.Subtract, $2);
1056 }
1057 | PrimaryExpression
1058 {
1059 $$ = $1;
1060 }
1061 ;
1062

1063 /* [55] */
1064 PrimaryExpression
1065 : BrackettedExpression
1066 {
1067 $$ = $1;
1068 }
1069 | BuiltInCall
1070 {
1071 $$ = $1;
1072 }
1073 | IRIrefOrFunction
1074 {
1075 $$ = $1;
1076 }
1077 | RDFLiteral
1078 {
1079 $$ = $1;
1080 }
1081 | NumericLiteral
1082 {
1083 $$ = $1;
1084 }
1085 | BooleanLiteral
1086 {
1087 $$ = $1;
1088 }
1089 | Var
1090 {
1091 $$ = $1;

90

1092 }
1093 ;
1094

1095 /* [56] */
1096 BrackettedExpression
1097 : '(' Expression ')'
1098 {
1099 $$ = $2;
1100 }
1101 ;
1102

1103 /* [57] */
1104 BuiltInCall
1105 : STR '(' Expression ')'
1106 {
1107 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.Str, $3);
1108 }
1109 | LANG '(' Expression ')'
1110 {
1111 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.Lang, $3);
1112 }
1113 | LANGMATCHES '(' Expression ',' Expression ')'
1114 {
1115 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.LangMatches, $3, $5);
1116 }
1117 | DATATYPE '(' Expression ')'
1118 {
1119 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.Datatype, $3);
1120 }
1121 | BOUND '(' Var ')'
1122 {
1123 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.Bound, $3);
1124 }
1125 | SAMETERM '(' Expression ',' Expression ')'
1126 {
1127 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.SameTerm, $3, $5);
1128 }
1129 | ISIRI '(' Expression ')'
1130 {
1131 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.IsIri, $3);
1132 }
1133 | ISURI '(' Expression ')'
1134 {
1135 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.IsUri, $3);
1136 }
1137 | ISBLANK '(' Expression ')'
1138 {
1139 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.IsBlank, $3);
1140 }
1141 | ISLITERAL '(' Expression ')'
1142 {
1143 $$ = new BuiltInCallNode(BuiltInCallNode.CallType.IsLiteral, $3);
1144 }
1145 | RegexExpression
1146 {
1147 $$ = $1;
1148 }
1149 ;
1150

1151 /* [58] */
1152 RegexExpression
1153 : REGEX '(' Expression ',' Expression ')'

91

1154 {
1155 $$ = new RegexExpressionNode($3, $5);
1156 }
1157 | REGEX '(' Expression ',' Expression ',' Expression ')'
1158 {
1159 $$ = new RegexExpressionNode($3, $5, $7);
1160 }
1161 ;
1162

1163 /* [59] */
1164 IRIrefOrFunction
1165 : IRIref
1166 {
1167 $$ = $1;
1168 }
1169 | IRIref ArgList
1170 {
1171 $$ = new FunctionCallNode($1, $2);
1172 }
1173 ;
1174

1175 /* [60] */
1176 RDFLiteral
1177 : String
1178 {
1179 $$ = new RdfLiteralNode($1, null);
1180 }
1181 | String LANGTAG
1182 {
1183 $$ = new RdfLiteralNode($1, null) { LangTag = sc.yytext };
1184 }
1185 | String HATS IRIref
1186 {
1187 $$ = new RdfLiteralNode($1, $3);
1188 }
1189 ;
1190

1191 /* [61] */
1192 NumericLiteral
1193 : NumericLiteralUnsigned
1194 {
1195 $$ = $1;
1196 }
1197 | NumericLiteralPositive
1198 {
1199 $$ = $1;
1200 }
1201 | NumericLiteralNegative
1202 {
1203 $$ = $1;
1204 }
1205 ;
1206

1207 /* [62] */
1208 NumericLiteralUnsigned
1209 : INTEGER
1210 {
1211 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Int,
1212 IntValue = Convert.ToInt32(sc.yytext) };
1213 }
1214 | DECIMAL

92

1215 {
1216 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Decimal,
1217 DecimalValue = Convert.ToDecimal(sc.yytext,

CultureInfo.InvariantCulture) };
1218 }
1219 | DOUBLE
1220 {
1221 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Double,
1222 DoubleValue = Convert.ToDouble(sc.yytext,

CultureInfo.InvariantCulture) };
1223 }
1224 ;
1225

1226 /* [63] */
1227 NumericLiteralPositive
1228 : INTEGER_POSITIVE
1229 {
1230 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Int,
1231 IntValue = Convert.ToInt32(sc.yytext) };
1232 }
1233 | DECIMAL_POSITIVE
1234 {
1235 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Decimal,
1236 DecimalValue = Convert.ToDecimal(sc.yytext,

CultureInfo.InvariantCulture) };
1237 }
1238 | DOUBLE_POSITIVE
1239 {
1240 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Double,
1241 DoubleValue = Convert.ToDouble(sc.yytext,

CultureInfo.InvariantCulture) };
1242 }
1243 ;
1244

1245 /* [64] */
1246 NumericLiteralNegative
1247 : INTEGER_NEGATIVE
1248 {
1249 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Int,
1250 IntValue = Convert.ToInt32(sc.yytext) };
1251 }
1252 | DECIMAL_NEGATIVE
1253 {
1254 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Decimal,
1255 DecimalValue = Convert.ToDecimal(sc.yytext,

CultureInfo.InvariantCulture) };
1256 }
1257 | DOUBLE_NEGATIVE
1258 {
1259 $$ = new NumericLiteralNode() { Type =

NumericLiteralNode.LiteralType.Double,
1260 DoubleValue = Convert.ToDouble(sc.yytext,

CultureInfo.InvariantCulture) };
1261 }
1262 ;

93

1263

1264 /* [65] */
1265 BooleanLiteral
1266 : TRUE
1267 {
1268 $$ = new BooleanLiteralNode() { Value = true };
1269 }
1270 | FALSE
1271 {
1272 $$ = new BooleanLiteralNode() { Value = false };
1273 }
1274 ;
1275

1276 /* [66] */
1277 String
1278 : STRING_LITERAL1
1279 {
1280 string str = sc.yytext;
1281 $$ = new StringLiteralNode() { Value = str.Substring(1, str.Length - 2)

};
1282 }
1283 | STRING_LITERAL2
1284 {
1285 string str = sc.yytext;
1286 $$ = new StringLiteralNode() { Value = str.Substring(1, str.Length - 2)

};
1287 }
1288 | STRING_LITERAL_LONG1
1289 {
1290 string str = sc.yytext;
1291 $$ = new StringLiteralNode() { Value = str.Substring(3, str.Length - 6)

};
1292 }
1293 | STRING_LITERAL_LONG2
1294 {
1295 string str = sc.yytext;
1296 $$ = new StringLiteralNode() { Value = str.Substring(3, str.Length - 6)

};
1297 }
1298 ;
1299

1300 /* [67] */
1301 IRIref
1302 : IRI_REF
1303 {
1304 $$ = new IriRefNode() { Value = sc.yytext };
1305 }
1306 | PrefixedName
1307 {
1308 $$ = $1;
1309 }
1310 ;
1311

1312 /* [68] */
1313 PrefixedName
1314 : PNAME_LN
1315 {
1316 string str = sc.yytext;
1317 $$ = new PrefixedNameNode() { Pname_Ns = str.Split(':')[0], Pn_Local =

str.Substring(str.IndexOf(':') + 1) };
1318 }
1319 | PNAME_NS

94

1320 {
1321 $$ = new PrefixedNameNode() { Pname_Ns = sc.yytext.Split(':')[0] };
1322 }
1323 ;
1324

1325 /* [69] */
1326 BlankNode
1327 : BLANK_NODE_LABEL
1328 {
1329 $$ = new BlankNode(){ Value = sc.yytext };
1330 }
1331 | ANON
1332 {
1333 $$ = new BlankNode();
1334 }
1335 ;
1336

1337 %%

95

96

Appendix D

NodeBase Class

1 using System.Collections.Generic;
2 using SharQL.Ast.Visitor;
3 using System.Diagnostics;
4

5 namespace SharQL.Ast
6 {
7 /// <summary>
8 /// The base implementation of the <see cref="INode"/> interface.
9 /// </summary>

10 public abstract class NodeBase : INode
11 {
12 #region Protected Fields
13

14 /// <summary>The parent of the node.</summary>
15 protected INode parent;
16 /// <summary>The children of the node.</summary>
17 protected IList<INode> children;
18

19 #endregion
20

21 /// <summary>
22 /// Gets a string uniquely identifying the type of the node.
23 /// </summary>
24 /// <remarks>Obtains the type name by reflection. This can
25 /// be slow. For better performance, override and return a
26 /// constant.</remarks>
27 public virtual string NodeType
28 {
29 get { return this.GetType().FullName; }
30 }
31

32 /// <summary>
33 /// Default constructor.
34 /// </summary>
35 public NodeBase()
36 {
37 children = new NodeCollection();
38 }
39

40 /// <summary>
41 /// Constructs the object and adds a set of children.
42 /// </summary>
43 /// <param name="children">The children to add</param>

97

44 public NodeBase(params NodeBase[] children)
45 : this()
46 {
47 foreach (NodeBase node in children)
48 {
49 if(node != null) node.Parent = this;
50 this.children.Add(node);
51 }
52 }
53

54 /// <summary>
55 /// Gets or sets the parent of the node. Should be set to
56 /// <c>null</c> if node is root.
57 /// </summary>
58 public virtual INode Parent
59 {
60 get { return parent; }
61 set { parent = value; }
62 }
63

64 /// <summary>
65 /// Gets the list of children of the node.
66 /// </summary>
67 public virtual IList<INode> Children
68 {
69 get { return children; }
70 }
71

72 /// <summary>
73 /// Accepts a visitor. The visitor pattern can be used for
74 /// e.g. optimizing the AST.
75 /// </summary>
76 /// <param name="visitor">The visitor</param>
77 public virtual void Accept(IParserVisitor visitor)
78 {
79 foreach (INode child in children)
80 {
81 if (child != null)
82 child.Accept(visitor);
83 }
84 visitor[NodeType](this);
85 }
86

87 /// <summary>
88 /// Returns a string representation of the node.
89 /// </summary>
90 /// <returns>A string representation of the node</returns>
91 public override string ToString()
92 {
93 return NodeType;
94 }
95

96 /// <summary>
97 /// Returns a prefixed string representation of the node.
98 /// </summary>
99 /// <param name="prefix">The string prefix to which the string

100 /// representation should be appended.</param>
101 /// <returns>A prefixed string representation of the node</returns>
102 public virtual string ToString(string prefix)
103 {
104 return prefix + ToString();
105 }

98

106 }
107 }

99

100

Appendix E

The W3C SPARQL Test Suite

The tests included in the W3C SPARQL Test Suite are listed in the following
tables.

syntax-sparql1
Category Tests included
Basic syntax-basic-01...syntax-basic-06
Blank Nodes syntax-bnodes-01...syntax-bnodes-05
Expressions syntax-expr-01...syntax-expr-05
Forms syntax-forms-01, syntax-forms-02
Limit/Offset syntax-limit-offset-01...

syntax-limit-offset-04
Lists syntax-lists-01...syntax-lists-05
Literals syntax-lit-01...syntax-lit-20
Ordering syntax-order-01...syntax-order-07
Patterns syntax-pat-01...syntax-pat-04
Naming syntax-qname-01...syntax-qname-08
Structural syntax-struct-01...syntax-struct-14
Union syntax-union-01, syntax-union-01

Table E.1: Tests included in the W3C Test Suite part 1

101

syntax-sparql2
Category Tests included
Blank Nodes syntax-bnode-01...syntax-bnode-03
Dataset syntax-dataset-01...syntax-dataset-04
Escapes syntax-esc-01...syntax-esc-05
Forms syntax-form-ask-02,

syntax-form-construct01...
syntax-form-construct06,
syntax-form-describe01,
syntax-form-describe02,
syntax-form-select01,
syntax-form-select02

Function syntax-function-01...syntax-function-04
General syntax-general-01...syntax-general-14
Graphs syntax-graph-01...syntax-graph-05
Keywords syntax-keywords-01...syntax-keywords-03
Lists syntax-lists-01...syntax-lists-05

Table E.2: Tests included in the W3C Test Suite part 2

syntax-sparql3
Category Tests included
Positive Tests syn-01...syn-08, syn-blabel-cross-filter
Negative
Tests

syn-bad-01...syn-bad-31,
syn-bad-bnode-dot,
syn-bad-bnodes-missing-pvalues-01,
syn-bad-bnodes-missing-pvalues-02,
syn-bad-empty-optional-01,
syn-bad-empty-optional-02,
syn-bad-filter-missing-parens,
syn-bad-lone-list, syn-bad-lone-node,
syn-blabel-cross-graph-bad,
syn-blabel-cross-optional-bad,
syn-blabel-cross-union-bad

Table E.3: Tests included in the W3C Test Suite part 3

102

syntax-sparql4
Category Tests included
Positive Tests syn-09...syn-11,

syn-leading-digits-in-prefixed-names
Negative
Tests

syn-bad-34...syn-bad-38,
syn-bad-GRAPH-breaks-BGP,
syn-bad-OPT-breaks-BGP,
syn-bad-UNION-breaks-BGP

Table E.4: Tests included in the W3C Test Suite part 4

syntax-sparql5
Category Tests included
Reduced syntax-reduced-01, syntax-reduced-01

Table E.5: Tests included in the W3C Test Suite part 5

103

104

Appendix F

Source Code and Report

On the enclosed CD-ROM, the complete source code for the SharQL parser
is included, as well as a digital copy of this report.

105

	Title Page
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	RDF and SPARQL
	RDF Essentials
	Introduction to SPARQL
	SPARQL Testimonials

	Architectural Decisions
	Choosing a Parser Generator
	ANTLR
	Coco/R
	MPLex and MPPG
	Our Choice

	Further Architectural Choices

	Implementation
	Setup of the Development Environment
	AST Preparations
	Designing the AST Class Hierarchy
	Working With MPPG's ValueType

	Specifying the Grammar
	EBNF and BNF
	The Scanner Specification
	The Parser Specification

	The Visitor Pattern
	Visitor Example

	Error Handling
	Traditional Parser Error Handling
	Adapting the Grammar Definition
	Tracking Token Locations
	Collecting Errors

	Handling Escape Sequences
	Codepoint Escape Sequences
	Common Escape Sequences

	The Parser Facade Class
	Creating the SharQL Test Client

	Testing
	Unit Testing
	Automated Testing in Visual Studio 2008
	W3C SPARQL Test Suite
	Omission of Semantic Tests

	Automating the Test Suite
	Custom Tests
	Scanner Tests
	Escape Tests

	Results
	A Simple Example
	Example Query
	The Scanner Token Generation
	The AST generation

	Test Results
	W3C SPARQL Test Suite

	Specification Nonconformities
	Unsupported Unicode Codepoints
	Semantic Specifications

	Conclusion and Further Work
	Conclusion
	Further Work

	References
	Glossary
	XML for Project File
	Scanner Specification
	Parser Specification
	NodeBase Class
	The W3C SPARQL Test Suite
	Source Code and Report

