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Abstract

From the discovery of DNA by Francis H. C. Crick and James D. Watson
in 1953 there have been conducted a lot of research in the field of DNA. Up
through the years technological breakthroughs has made DNA sequencing
more faster and more available, and has gone from being a very manual task
to be highly automated.

In 1990 the Human Genome Project was started and the research in
DNA skyrocketed. DNA was sequenced faster and faster throughout the
1990s, and more projects with goals of sequencing other specie’s DNA was
initiated.

All this research of DNA led to vast amounts of DNA sequences, but the
techniques for searching through these DNA sequences was not developed
at the same pace. The need for new and improved methods of searching in
DNA is becoming more and more evident.

This thesis explores the possibilities of using content based information
retrieval to search through DNA sequences. This is a bold proposition but
can have great benefits if successfully implemented. By transforming DNA
sequences to images, and indexing these images with a content based in-
formation retrieval system it can be possible to achieve a successful DNA
search.

We discover that this is possible but further work has to be done in order
to solve some discovered issues with the transforming of the DNA sequences
to images.

Keywords: DNA search, spatial data representation, content based in-
formation retrieval
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Chapter 1

Introduction

1.1 The problem and why should we solve it

The increased attention to bioinformatics and genome research has led to
a higher demand of information technologies to support this research. In
DNA searching today, the techniques used are mainly text-matching and
full text indices. This proves to be a very precise search method, but is very
computational intensive and slow.

The demand of new and more computational effective ways of searching
in DNA sequences are crucial in order to bring DNA search out to the people.
This thesis tries to use existing technologies in new ways, mainly multimedia
retrieval techniques with genome data retrieval. There has been done very
little research in this field.

The issues of searching in genome databases are many, they contain very
high amounts of data, there is a lot of unnoticed data replication, and a lot
of the useful data is surrounded by junk data. Techniques used today are
not that good at approximate searches. An approximate search is a search
where the system tries to find items that are not exactly like the query
item, but similar. There are techniques in genome searching that use wild
card searching and some that support it directly, but these are slow and
exhaustive.

The nature of multimedia information retrieval, and especially content
based information retrieval(CBIR), is that in order to work, they have to
support approximate searching. In this thesis we1 will try to use the prop-
erties of CBIR to my advantage and employ CBIR techniques to achieve

1Throughout the thesis, when it is referred to ”we”, it is referring to the author, this
makes reading easier.

1
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genome search in order to solve some big problems in genome searching.

CBIR is the field of searching in the content of non-text media, especially
in images. In order to do a search through the content of non-text media,
you have to use approaches that are good at approximation searches, mainly
because a user never searches for the exact query, but something that is
similar. So the search has to be fuzzy. Also CBIR systems are more useful
the more images they can search through, so a good CBIR system can search
approximately through large amounts of data, in a fast manner.

1.1.1 Applications and benefits

There are many applications for achieving better/faster approximate search.

Scalability of existing approaches

The two main approaches used today in DNA sequence comparison/retrieval
namely, the variations of BLAST and FASTA, were developed in the very
beginning of the ”DNA-era”. These are both approaches that uses heuristics
for quick DNA sequence comparison with strings. They are reasonably fast
and very precise, but they have serious drawbacks. The algorithms have not
seen any major improvements since their release, and since they both rely on
string comparison they have limited amounts of potential improvement. The
only way to achieve higher performance is to enable the hardware they run
on, to run faster. This fact combined with the increased speed in sequencing
of DNA and the interest in DNA research, makes the amount of data to
process very large.

If we can utilize the properties of CBIR to search in DNA or at least
provide a CBIR search as a filtering step before passing it on to BLAST or
FASTA to achieve higher performance.

Genome research fields

In genome research the ability to find DNA sequences that are related to each
other is crucial in order to discover the function of a gene. The homology
search is at the center of genome research. The homology search is a search
where a scientist uses an existing DNA sequence containing a gene with a
known function as a query to a DNA search. The search gives the scientist
the possibility to find related genes and maybe undiscovered genes and map
their functions.
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CBIR used in a genome context shows very promising properties, that
can allow speedy homology search, and a homology search that can provide
new ways of finding related genes.

Disease discovery

There are many diseases and dysfunctions that are proven to be heredi-
tary(diabetes, cancer, heart disease etc.), that these kinds of diseases are
transferred through the DNA from child to their parents. If it is possible
to increase the performance of searching and the broadness of the homology
search, the search can be used on all newborn children. If every child that
is born on a hospital has a full DNA search of their entire DNA sequence,
prohibitive measures can be taken to deal with known diseases2.

Police investigations

DNA is becoming more and more used in police investigation of crime scenes,
it is taking over for the much used and proven fingerprint. But the time
between an submission of a DNA sample and a result takes about 30 days
at minimum[34], if we can decrease the time spent on a search for a suspect’s
DNA crimes could be solved faster. And if we could make a DNA search
run on slower hardware it could be possible to do such a search in the field,
by a police officer.

1.2 Problem specification

The title, ”A Multimedia Approach to Medical Information Retrieval”, is
unspecific and not very descriptive. So some definitions are in order. We
define multimedia approach as multimedia information retrieval or content
based information retrieval. We can then continue with defining medical
information retrieval and define it as DNA retrieval or, DNA search. So, in
other words; using content based information retrieval to search in DNA.

Two central questions arise from the definition above:

1. Is it possible to translate a DNA sequence to an image?

2. Is it possible to use this image in a content based information retrieval
system to find DNA sequences?

2There are several moral implication with this, we mention this only as a possible
application.
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1.3 Scope

In order to answer the questions asked in Section 1.2 we chose to focus the
scope of this thesis and make some limitations on the work done.

As stated both in Section 1.1 and Section 1.1.1 performance is used as
a central argument to why we should seek new approaches to DNA search.
But in this thesis we will not focus on measuring the performance of CBIR
systems and comparing them with state of the art DNA search systems. We
will focus on the task of using a general purpose CBIR system for searching
in DNA data. Albeit, we have a notice of the performance with regards to
data sizes and index sizes in Section6.5.

1.4 Thesis structure

The thesis is structured in 6 chapters;

Chapter 1

This chapter contains the motivation, and the problem specification for the
thesis, and defines the scope in which we try to solve the problems defined.

Chapter 2

Chapter 2 gives the theoretical framework for being able to understand our
work, and understand what this thesis tries to solve. We give some theory
about information retrieval, evaluation of information retrieval systems, con-
tent based information retrieval, a brief introduction to biology and DNA,
and last an introduction to bioinformatics.

Chapter 3

Chapter 3 deals with the state of the art both in DNA search and CBIR
systems. We describe the FASTA and BLAST algorithms and also describe
some popular indexing techniques for proficient storage of DNA sequence
indices. The second half of the chapter deals with CBIR systems, it gives
an overview of many popular CBIR systems and their properties.

Chapter 4

There are two main parts in Chapter 4, first we present the issues with DNA
spatial data representation, and possible solutions for these problems, then
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we continue with describing the approaches we have selected as the most
promising. We then continue with illustrating how we used LIRE to index
and search the images generated from the proposed methods.

Chapter 5

The results are presented in Chapter 5, where we show how the different
approaches performed, and compare them. We also try to evaluate the
strengths and weaknesses of the approaches, and give a brief analysis of the
results.

Chapter 6

In Chapter 6 we try to apply the results gathered in Chapter 5 to come
to some conclusions on how our approaches work, and what we could have
done differently.
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Chapter 2

Background research

This chapter will present relevant research fields in information retrieval,
evaluation of information retrieval systems, content based information re-
trieval, biology and bioinformatics.

In order to describe content based information retrieval systems and
techniques, we need to look at the regular information retrieval system and
terms used in this field. And to understand the different fields in bioin-
formatics we need a quick biology primer. The monolithic data amounts
involved in DNA search is also illustrated.

2.1 Information Retrieval

The term Information Retrieval can be defined as: the part of computer
science witch studies the retrieval of information from a collection of doc-
uments. Information retrieval aim at satisfying a user’s information need,
this need is expressed in a form of a query which the information retrieval
system understands[7]. So, Information retrieval, or short IR, is the study
of filling a user’s information need.

The normal way of meeting the users need is to provide an interface
where the user can ask or query for relevant information. There are many
types of queries used, but the most used is keyword based, where the user
provides some keywords in the query interface. And a list of relevant docu-
ments are presented to the user.

For a system to be able to do this, the collection of the documents must
be searchable. A very naive way of searching in documents is of course to
just scan through all documents and look for occurrences of the keywords
specified, but as the amount of documents and the amount of information

7
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in these documents increases, this novel approach will take very much time
to complete. Therefore indexes as been introduced. An index is basically a
list of in which documents some piece of information occurs.[7]

2.1.1 The document

The term ”document” is central in information retrieval, and in a digital
library context. In the digital library, an object is a document when it is[9];

• There is materiality: Physical objects and physical signs only;

• There is intentionality: It is intended that the object be treated as
evidence;

• The objects have to be processed: They have to be made into docu-
ments; and, we think,

• There is a phenomenological position: The object is perceived to be a
document.

In information retrieval we facilitate the retrieval of documents. But
regularly the document is considered as a piece of information; a webpage,
a book, an article, a image, a movie, a sound file etc.

All these things are considered as a document, and the goal of informa-
tion retrieval is to give the user the possibility to retrieve the information
stored in a digital library or a database in a quick and easy way without
knowing the exact location of the document.

2.1.2 Indexing and searching in documents

Data retrieval, in the context of an IR system, consists mainly of determining
which documents of a collection contain the elements specified in the user’s
query, however this is often not enough to satisfy the user’s information
need.[7]

To increase the efficiency of information retrieval, the data collection
needs to be processed, we have to transform the collection so that it is
searchable. This is called indexing.

In regular ,text based, information retrieval, where the data collection
consist of textual documents ,the process usually consists of removing stop
words. Stop words are words that have a high frequency across all documents
in the collection, and therefore does not add any information that can be
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Figure 2.1: Overview of traditional document indexing.[7]

used to distinguish between documents. It enables the index to be greatly
reduced in size and thus making it more efficient.[7].

Stemming [7] is an often used technique. Stemming consists of taking a
word and removing prefixes and suffixes to it, i.e. ”talking” becomes ”talk”,
”fishing” becomes ”fish”. This enables the search engine to find documents
that are related to the query terms.

The documents are then transformed in to a data structure for easy
access and searching. There are three main techniques[7]; inverted files,
suffix arrays and signature files. The details on how these techniques work
will not be discussed, but the jist of it is that the processed documents
are organized in such a way so that keywords from a query can point to
which documents that specific keyword exists in, and usually where in that
particular document the keyword appears in.

As outlined in Figure 2.1, the indexing process of regular textual doc-
uments consists of several (optional) steps, where each step either outputs
some kind of information used directly in the indexing process and or out-
puts information to be used in later steps in the indexing process. In Figure
2.1 we see 7 steps;

1. Document: this is the input to the indexing process.

2. Structure recognition: looks at the structural parts of the document,
and extracts the structural properties of the document and information
about these structures, and then passes the text to the indexing engine.

3. Accents, spacing, etc: removes characters with very low information
value.

4. Stop-words: removes stop-words.
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5. Noun groups: you can identify nouns, and take special care of these,
for increased information in the index.

6. Stemming: reduce words to their grammatical root.

7. Automatic or manual indexing: based on the information extracted in
the previous steps, create some kind of searchable index.

The output from this process is a finished index, ready for use in a
search engine[7].

2.1.3 Querying

Generally in an information retrieval system one or more query languages
are used. A query language is basically a compromise between a user’s need
to express a demand for information and the system’s ability to parse this
language and make sense of it. It is the way the user asks the system for
information. The query language is determined before the indexing starts, so
that indexing methods and data structures used are optimized for a certain
type of query language.

In text-based information retrieval systems, we generally have five dif-
ferent query languages; keyword-based, single-word, boolean and natural lan-
guage.

The most known of these is keyword-based or single-word querying,
the query language we know from most web search engines like Google,
Yahoo and AltaVista. The user supplies one or more keywords, and the
search engine processes these and returns the result set. The way results
are presented in may vary, this is more closely discussed in Section 2.1.3.

Single-Word

Single-word queries are quite simply single words as a query. In both single-
word queries and context queries, sentences are viewed as strings of charac-
ters. A word in the sentence is a consecutive sequence of words surrounded
by delimiters or separators usually spaces, commas, periods, question marks
etc. When the words are extracted from the documents they are added to
the index.

The index then contain a link from a specific word and the document(s)
it occurs in. It is also possible to have more specific information in order to
locate the word inside the document.

When a user then searches for a word the process is quite simple; the
system scans the list of words and then retrieve the documents it resides
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in. To support multiple words you use the same scheme for each word and
the system then only retrieves the documents that are similar for all query
words.

Context

A context query allows the user to specify a context where a certain word
appears, or the context between a list of words. The queries are usually
divided into two categories, phrase and proximity queries.

The phrase query is a collection of multiple single words queries, but
their relative positions from each other are central.

The words in the phrase should be close together so if you search for the
phrase ”information retrieval is fun”, and you find the word ”information” at
position 30 in a document, then the successive words must occur at position
31, 32 and 33.

For a proximity query the user specifies the context, for example the
query can look something like; ”information NEAR retrieval”. This means
that the search engine looks for documents where the word ”information”
appears in some distance from ”retrieval”. The distance can usually be
specified by the user, but in our case the distance should be 1.

Boolean

The boolean query is the most basic query to process. The user specifies
some words separated with boolean operators, usually AND, OR and NOT,
that describes the document the user is seeking. If you have an index as
specified in Table 2.1.3

Anthony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Table 2.1: Example of index for supporting boolean queries[32]

Each of the words in the index specified in Table 2.1.3 have signatures,
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the word Brutus will have the signature 110100. This signature defines what
documents it exists in, as shown in Table 2.1.3 it exists in ”Anthony and
Cleopatra”, ”Julius Caesar” and ”Hamlet”, but not in the rest.

Since the user specifies queries in boolean operators, we can use these
operations on the queries as well. Take the query ”Anthony AND worser”,
translate that query to the signatures; 110001 AND 101110, apply the bi-
nary operator AND and the results are; 100000. This indicates that only
”Anthony and Cleopatra” contains both the words ”Anthony” and ”worser”.

The processing of boolean queries are very simple, you only use binary
operators to calculate the results and these operations are possible to do
entirely in hardware, thus yielding very high speeds.

Natural Language

Natural language, is the language you use to communicate, its what you say
and what you write. You write some query in a natural language, i.e. ”Who
wrote the book Introduction to Information Retrieval?”, then the query
processor interprets this language and translates it into some query language
that a computer understands, i.e. structured query language(SQL), and
you actually get the answer to your question; ”Christopher D. Manning,
Prabhakar Raghavan and Hinrich Schütze”.

Ranking

Ranking is the process of deciding what documents to return to the user, in
a database with millions of documents there are often very many seemingly
relevant matches for some query. I.e. the query ”information retrieval” in
google has 4, 150, 000 hits, but only the first 10 are presented to me, how to
decide what documents to return?

For phrase and single-word queries an often used scheme is term fre-
quency, for each document you count the occurrences of the query terms
and sum them, and then sort the returned documents based upon the value
that is returned. Also inverse document frequency, which is a measure on
how many documents a term occurs in, can be used for ranking.

The ranking process can be greatly increased by using relevance feed-
back, this is a way for the system to map the actual relevance by asking
the user which of the documents returned actually were relevant. And by
storing this information, weights can be attached to a document in a certain
query context, so when another user submits the same query, the system
knows that certain documents are more relevant than others.[7]
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Query expansion

Query expansion is used to help the user find other relevant documents than
those returned by the initial result. This is a task where the search engine
can analyze the top scoring returned documents in order to extract new
query terms from these, and then query the collection again to produce a
greater amount of returned documents and more relevant hits.

Another way is to use a thesaurus to extend the query with similar
words and then perform the query. [7, 32]

2.2 Evaluation of information retrieval systems

Evaluation of IR-systems is crucial to satisfy the user’s information needs.
As stated in Section 2.1 the goal of information retrieval is to give the user
the information the user wants. The evaluation of information retrieval is
measuring how good we meet the user’s need of information.

2.2.1 Test collections

In order to determine how good a certain query is we need to know what
documents are relevant for that query. This is usually done by using a
controlled test document collection. These test collection are collections
created for evaluation, and benchmarking of information retrieval. They
consist of a document collection, a set of queries and what documents are
relevant for the different queries[32].

Cranfield

The Cranfield collection is considered as the first test-collection. It was cre-
ated in the United Kingdom in the 1950s. It contains 225 queries with a
lot of relevance statistics for the results and 1398 documents about aerody-
namics.

TREC

TREC, or Text Retrieval Conference, is an initiative started by the American
National Institute of Standards(ANSI) in 1992. It contains 1.89 million
documents and 450 queries, which are documented with relevance statistics.
It is considered by many as the de-facto standard for retrieval evaluation.
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GOV2

GOV2 is also a initiative of the ANSI. It is a collection of 25 million web
pages, and it is the largest web collection for research purposes.

CLEF

CLEF or Cross Language Evaluation Forum is a collection for testing cross
language information retrieval. It has different test collection with relevance
statistics for testing IR-systems against specific languages.

2.2.2 Precision and Recall

Precision and recall is a widely metric used for evaluating IR-systems, and
gives a good measure on how a users information need is met.

Precision

Precision[7] (illustrated in Figure 2.2.2) is defined as the relationship be-
tween the number of relevant items retrieved and the total number of re-
trieved documents, or the percentage of the retrieved documents that are
relevant. If I is defined as a certain information need(query). |A| is de-
fined as the total number of retrieved documents and |Ra| is the number of

relevant documents retrieved then precision is defined as: Precision = |Ra|
|A|

Recall

Recall[7] (illustrated in Figure 2.2.2) is a measure illustrating the relation-
ship between the number of relevant documents which has been retrieved
for a certain query and the number of relevant documents retrieved, in other
words, the fraction between the number of relevant documents to the query
and the relevant documents returned. If I is defined as a certain information
need(or query), and |R| is the number of relevant documents available in the
database for I, and |Ra| is the number of relevant documents retrieved for

I, then recall is defined as: Recall = |Ra|
|R|

2.2.3 F-Measure(F1 score,F-Score)

The f-measure gives a value of the relationship between precision and recall,
it is a weighted average of precision and recall. It is defined as;
f = 2(precision∗recall)

(precision+recall)
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Precision and Recall

Collection

|R|                          |A|

Figure 2.2: Illustration of precision and recall[7]

the resulting value gives a single point basis of evaluation, which can be
good to have instead of multiple values of precision and recall for a range of
queries.

2.3 Content Based Information Retrieval

Content based information retrieval (CBIR) is a collective term for informa-
tion retrieval where the user query the actual content of the images,audio
and video and not the metadata or some form of annotation. The techniques
for images, video and audio are quite different and in this thesis we do not
focus on sound and video, only images.

The way we search in the content of images is usually done is by per-
forming an special kind indexing on the document collection. Where some
properties of the image is chosen to be searchable, these properties are called
features.

These properties are then extracted from all the images in the document
collection and put into a searchable index.

When the user then wants to query the document collection, the user
could do it in a couple of ways. Either supply a sample image as the query,
which the system then extracts the same features from as stored in the index.
Then these extracted properties are used as the query.

The other way is for the user to enter the desired properties of the image,
it could be percentage of pixels in a certain color, it could be the roughness,
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the contrast, the regularity etc.
In some CBIR systems the shape of objects in the image are extracted

as a features. If this information is present, the user could supply a query
in the form of shapes and their colors, or the user can use a sketch interface
to query the system.[1]

2.3.1 Feature extraction

Feature extraction is the process where the properties of the image that are
selected for storing in the index is gathered and processed. The extraction
is often performed on a processed image to retrieve distinct values that are
easy to store, some of the most used features are; color information or color
histogram, texture and shape features.[7]

Color Information

Color information (color histogram or color vector) is the most used feature,
if we look at Table 3.3 most of the systems described use color information
of some sort as a feature. It is easy to extract from images and gives fairly
good results.

The actual information extracted is the color distribution of the image,
it is usually represented as an n-dimensional vector where n is the wanted
resolution of the color vector. Then the system iterates over all the pixels
present in the picture and counts the colors in each pixel and adds this to
the vector(see Figure 2.3). The vector is then added to the index.

Color information need a complete iteration over all the pixels in the
image to extract information, but when it first is extracted and stored in the
index, it is very fast to compute the distance between two color vectors.[7]

(3,3,4,6)

Figure 2.3: Image to vector conversion (yellow=3,red=3,green=4,blue=6)

One of the problems with using color information as a searchable feature
is that it does not take in to account the spatial nature of images, it merely
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counts the pixel values of the images, so the results can be very ambiguous.
If the user supplies a sample image as a query, the images returned as

results can be very visually different from the query image.
In Figure 2.4 two different images are displayed, one depicting a heart,

and one with some squares. To a human they are totally distinct and very
different from each other and a human sees no or little similarity between
them(other than the similar colors). But, to the system they are totally
identical. Albeit, the simplicity of the algorithm and the speed makes this
a very popular approach in CBIR systems.

Some systems like WISE[54], also use localized color information to
overcome these flaws, so the user can roughly specify the layout of the color
in the images. This is done by dividing the image into sub-images and
performing the color feature extraction on these sub-images.

(48,52) (48,52)

A B

Figure 2.4: Two images that have equal color vectors but are different

Texture Information

Texture information is a good measure for measuring the similarity between
two images. Because the features extracted are spatial, we overcome some
of the problems of using color information. Texture is the tactile-visual
properties of the image; the pattern of the image.

The texture can be extracted by various means, usually by thresholding
a gray-scale version of the image. There are also versions where the image is
transformed to the frequency plane[2] and the texture is studied as a signal.
The metrics used for measuring texture are usually; coarseness, contrast,
directionality, linelikeness and regularity.[12, 51, 24]
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Coarseness is the difference in the variance between the highest gray values
and the lowest, and the transition between these values, if they are very
short the texture is more coarse, this can be sampled on a sub-image level
across the image, or just at some regular interval to form a vector.

Contrast is the ratio between a certain pixel’s color value and the aver-
age color value, and is usually sampled a number of times across the image,
or from sub-images of the image.

Driectionality directionality is the measuring of lines and their angles in
a texture, you first process the image to extract the lines, and then you
measure their angle, and then you can produce a histogram of their angles,
or a general angle which is the global texture direction.

Line-likeness is the measure of how the angle of the different lines are when
compared with each other, you weight the lines with low similarity with neg-
ative weights and the ones with high similarity with high positive weights,
then a scalar value is produced representing how much the lines are alike.

Regularity is computed by looking at sub-images, and tracking the pat-
terns arising in directionality, line-likeness and coarseness and comparing
the values from each sub-image with each other, and if they are similar you
can determine a regularity in the texture.

Shape Information

If you are able to segment the image and determine the shapes of the ex-
tracted regions, you have come a long way.

In ImageScape[25] this is done, and the system goes so far that it tries
to find regions of water, sky and grass, so you can search images specifying
regions with these properties.

Shape properties are hard to extract. And require lots of computation.
If you search for a certain shape, the system should be able to search for a
similar shape but in a different size, different rotation or different transla-
tion(position). There are two main approaches for extracting shape features;

Segmentation is a term used to describe the process of dividing the
image into segments or regions based upon some common feature(texture
or color). There are multiple algorithms for doing this, some popular are
watershed, k-clustering and region growing. Then a tracer algorithm is run
to extract these segments into polygons which can be easily compared to
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provide some measure of likeness.

In the example below, we see that we have two prominent segments
extracted from the algorithm, and the shape of these can then be indexed
as a set of polygons[18].

(a) Sample image of oilrig (courtesy of
ntnu)

(b) Segmented image of oilrig

Figure 2.5: Example of segmentation

In Edge detection, we apply image processing filters to extract prominent
edges of regions.

The most popular algorithms are, the Canny algorithm, the Nalwa al-
gorithm, the Iverson algorithm, the Bergholm algorithm and the Rothwell
algorithm. [18][29]. The details of these algorithms will no be discussed in
this thesis. But the jist of the algorithms are that the prominent edges of
the image are enhanced to such a degree that only they are visible in the
image.

The lines extracted from the algorithms are then traced and represented
as a vector of coordinates. Figure 2.6 shows a typical result of an edge
detection algorithm.

Figure 2.6: Edge detection on same image as in 2.5
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2.3.2 Querying in CBIR

Querying content in images introduces some new issues; how do we query
the information we have extracted from the images? Below we discuss some
of the most popular methods of providing a query interface.

Query-By-Example

Query-by-example is a huge advantage in CBIR, and it is one of the goals
that CBIR tries to achieve. When a user wants to search the CBIR system
the user can just provide an image that is similar to the one desired. Then
the system processes the query image. And uses the extracted features from
the image to query the system.

Text

A text query in a CBIR system is quite different than from a regular IR
system. It can be done by textually specifying some value of a feature
extracted from an image. An example is, ”contrast:0.2”, or by smarter
systems that actually can distinguish objects in the image, i.e. ”blue sky”.

The query text is then translated to a searchable feature, in the example,
”blue sky”, the color histogram can be set to have a very high value of blue
in the top half part of the image.

Query by Sketch

The query by sketch interface is probably the most elaborate query scheme,
both for the implementers of the system and for the user. It has high
demands on the user to be able to draw what the user is looking for. The
query interface must be easy to use, and the resulting query must be more
flexible than query-by-example, because we must assume that the user are
not able to create a sketch in a way that is as good as a regular image.

2.3.3 Partial Image Retrieval

When we talk about partial image retrieval it is in the sense of querying
spatial features like texture and/or shape information. The process of in-
dexing the document collection in such a way that makes this possible is not
mundane.

In order for a system to query specific parts of an image, the image
has to be segmented. There are many things to take into account when
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doing this; should the system segment the image regularly based on some
constant? Should we look for regions of interest and then choose a segment
size based upon the most prominent features in the image? Or should we
just define that every image in the document collection is to be segmented
into n segments?

All these different approaches gives different results, and have different
needs with regards to computational power. There is no obvious answer, but
specialized CBIR systems often select approaches to fit the system’s need.

2.4 Genomics/Biology

In this section we give a primer on biology and genomics in order to be able
to understand the motivation and the challenges involved in DNA search.

2.4.1 DNA

Deoxyribonucleic Acid, or DNA, is the building blocks of all known living
organisms and some viruses. It is a program running inside them dictating
the development and activity of the organism’s body.[17]

The DNA molecule resides inside the cell-nucleus, where it is protected
from the hostile environment inside the cell by the nuclear membrane. The
primary function of the DNA is to be a vessel for heraditary trait, it basically
provides the ability for different features to pass from one generation to the
next in a certain specie, thus facilitating evolution.

A DNA molecule is a long linear molecule consisting of messages coded
by four types of molecules called nucleotides. These are; adenine, cytosine,
guanine and thymine or shorted down to A for adenine, C for cytosine, G
for guanine and T for thymine and this makes up the alphabet of DNA.

The shape of the DNA molecule is the famous double helix. The
3D structure consists of the nucleotides which are connected to a sugar-
phosphate backbone. An illustration of this spiral is shown in Figure 2.8.

In the molecule the two spirals intertwine to make up the double helix,
and between these spirals the nucleotides form pairs, adenine with thymine
and cytosine with guanine, are called base pairs.

Some parts of the DNA-molecule will contain information that code the
creation of a certain protein. These are called genes and are the parts of the
DNA molecule of interest to researchers, because they dictate the function
of the organism.[44]
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Cell membrane

Nucleus

Mitochondria

Chromosomes

Figure 2.7: The cell

Figure 2.8: The double helix(courtesy of Lister Hill National Center for
Biomedical Communications)

In order for a cell to produce a certain protein,enzymes in the cell nucleus
”travel” along the backbone of the DNA molecule and read the nucleotides
and make a temporary molecule called mRNA, this is a molecule that can
travel through the nucleus’ membrane, and out to the cell body, where the
mRNA is used to put together the amino acids that make up the protein.
There are 20 types of known amino acids and they can be combined into a
vast amount of different proteins.

The DNA strands are organized in chromosomes. The chromosome
contains about 60% protein and about 40% DNA. The mixture of DNA
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Table 2.2: Brief history of the human genome project
Human Genome Project started 1990

Human chromosome mapping data repository created 1991

First detailed genetic-mapping achieved 1 1994

First non viral genome fully sequenced 1995

Gene Map 98 released, contained 30,000 markers 1998

First human chromosome sequenced 1999

Human genome working draft published 2001

Completed sequencing the human genome 2003

and protein in the chromosome is called chromatine. The chomosome has a
central core of protein where loops of chromatine attach. In the chromatine
loops the DNA strands are wound around proteins(histones). These are
believed to further loop and coil to make up the shape of the chromosome.
The human body has 46 chromosomes or 23 chromosome pairs.[44]

2.4.2 The Human Genome Project

The Human Genome Project (HGP) was started in 1990 and aimed at map-
ping, the then estimated, positions of the around 100 000 genes of the human
genome. In 1991, after a year, about 5,000,000 base pairs was mapped, esti-
mated to be around 2 percent of the entire human genome. In 2001, a rough
draft of the human genome was presented, and finally, in 2003 the HGP was
declared as finished. By then 3,400,000,000 base pairs was sequenced with
a accuracy of 99.99 percent[3, 37]

1

2.4.3 Evolution

Over time species change to adapt to their living condition[44], this is a
genetic change and is the foundation of the diversity of all life.

The changes happen on a genetic level, and are changes on the nucleotide
sequences in the DNA. The fact that two different species has evolved from
a common ancestor is a well known fact, and a useful tool in biology.

1Genetic mapping or linkage mapping provides evidence of disease being transmitted
from one generation to the next, it also provide helpful information about the position of
a certain gene on the chromosome
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If a scientist is working on mapping the functions of the DNA of some
species, lets say a rice species, and is unable to determine the function of a
certain gene. The scientist can look at a different specie of rice. If a sequence
that is very similar to the sequence the scientist is studying is present in the
other specie, it can be deduced that they have the same function.

This fact is crucial in the field of genome research, and crucial in the
world of DNA search. The scientist perform what is called a homology
search when looking for the gene in that other specie of rice. This is the
bread and butter in DNA search.

When measuring likeness between two sequences the term evolutionary
distance is used. It is the number of changes that has happened on the gene
in form of substitutions, additions or removals of either, amino acids if we
are studying protein sequences or nucleotides when looking at nucleotide
sequences.

2.4.4 The Rice Genome Research Program

The Rice Genome Research Project (RGP)[41] was started in 1991, with the
aims at sequencing different rice cultivars to foster the ability to create new
cultivars that have higher yield, and can grow in new environments. The
project was started by the Japanese Ministry of Agriculture, Forestry and
Fisheries and is the leading contributor to the International Rice Genome
Sequencing Project (IRGSP)[43], and together they completed the sequenc-
ing of the rice genome in 2004, its size was about 420,000,000 base pairs,
relatively small compared to the human genome.

2.5 Bioinformatics

As mentioned in Section 2.4.4, there is put a lot of effort towards sequencing
the human genome, and a lot has been achieved. One problem arises when
having collected all this data; what to do with it?

There are vast amounts of data, as you can see from 2.3, the small-
est human chromosome is nearly 51,000,000 base pairs, that is 103,922,194
distinct values in a sequence databank.

Not only the shear size of the chromosomes is a problem, the data is
also very homologous. This presents large problems to bench scientist who
wants to use this data in his or her work. There is just too much data
to wade through it manually to look for regions of interest,instead there
must be automated search tools that can do the labour intense jobs for the
scientists.
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When a scientist has located a gene at some location in the DNA and
want to explore its function a homology search is in order. This is usually
done in a protein database and not in a nucleotide database.

There are some simple reasons for this; the homologous nature of nu-
cleotides (only four different types) gives a high probability when studying
short sub-sequences that repeat themselves throughout the sequence, and
that you get false positives when querying with short query-sequences.

As mentioned in Section 2.4.1, the protein sequences contains 20 dif-
ferent amino acids that gives a higher diversity and lower homology in the
data than nucleotide databases, which in turn lowers the chances of false
positives.

When querying a nucleotide database, the computational power needed
is much greater. Since the data sets are many orders of magnitude larger.
It increases not only the data stored in the database itself, but it also means
that the query sequences given are much larger in a nucleotide database
than in a protein database.

The results from a protein database search are much more easy to an-
alyze since there has been a greater effort towards evaluating results in an
protein database search than in results from a nucleotide database search.
Therefore the theoretical frameworks for analyzing such results have been
established.

One problem when querying protein databases is that the protein databases
are never as updated as the nucleotide databases. This is due to the nature
of the DNA-sciences. All DNA material that is sequenced is first stored
as nucleotide-sequences. Since the conversion over to protein databases re-
quires a lot of manual labour there can be significant delays, and errors in
the protein databases[8].

The homology search gives a good indication on wether a given gene is
present in some species, and it can also determine if that gene has mutated
from one generation to another.

The search can be carried out in different ways. The user can supply
wild-card characters in the query sequence, which tells the search engine
that these characters can be replaced with any of the legal characters in
the given alphabet(nucleotides or amino acids). Or the user can let the sys-
tem automatically determine the similarity between two sequences without
entering the wild-cards, this also means that you have to parameterize the
allowed evolutionary distance between two studied sequences.
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Human Chromosome Sequence Length Rice Chromosome Sequence Length

1 245,203,898 1 58,438,333

2 243,315,028 2 49,173,368

3 199,411,731 3 44,894,443

4 191,610,523 4 42,702,029

5 180,967,295 5 39,417,126

6 170,740,541 6 42,019,208

7 158,431,299 7 40,173,439

8 145,908,738 8 39,854,202

9 134,505,819 9 31,509,377

10 135,480,874 10 28,385,764

11 134,978,784 11 35,887,929

12 133,464,434 12 33,460,123

13 114,151,656 - -

14 105,311,216 - -

15 100,114,055 - -

16 89,995,999 - -

17 81,691,216 - -

18 77,753,510 - -

19 63,790,860 - -

20 63,644,868 - -

21 46,976,537 - -

22 49,476,972 - -

X 152,634,166 - -

Y 50,961,097 - -

Table 2.3: Overview of the length of human and rice chromosomes (in base
pairs) [28, 42]

2.5.1 Indexing and Searching in Genetic (DNA) Content

As illustrated earlier indexing of information is not trivial, it is a science
in itself. It provides access structures that can drastically reduce the time
needed to search trough immense amounts of information.

Indexing in a traditional sense, tries to reduce the amount of data to be
searched and in a way extract the essence of the information into a small
compact package that is faster to read. We do this by removing elements that
are unnecessary, i.e. words that does not give the document any information.
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It is not possible to remove as much data as we see fit without loosing
the information stored in that data. The results from queries will be less
relevant, and the overall usefulness of the IR system will deteriorate.

When dealing with DNA, the data is very heterogenous and its very
hard to remove any data from the collection without making the querying
worse. The information contained in a DNA sequence is mostly undocu-
mented, processes like discovering protein coding regions, annotation and
gene functions is used to document these.

There are many techniques[23] used to index and search DNA sequences.
The most used are string based and uses what is called sequence alignment.

2.5.2 Sequence alignment

As mentioned above, a big motive for searching within genome sequence is
to determine evolutionary relations between two studied sequences, or just
to determine some gene function by doing a homology search. Sequence
alignment has an excellent way of measuring and proving a relationship
between two or more sequences. As mentioned in the Section 2.4.3, changes
in the DNA happen all the time, some of the changes are persistent and
some are not. These changes can be translated to insertion, deletion and
replacement of nucleotides in the DNA-sequence.

The whole idea of aligning sequences is to shift one of the studied strings
over the other to find the best matching position. There is almost no chance
of having a perfect alignment, so we need approximate alignment. We first
align the sequence on a position where it matches best, and then we look
at the number of changes that has to be made on the query sequence in
order to get a perfect alignment. These changes are insertions, deletions
and replacement. The number of changes reflects the evolutionary distance.

By scoring the parts where the two strings match exactly with a positive
score, and where they don’t match with a negative score, a ranking system
is achieved, and we can quickly sort sequences by their similarity.

There are several different algorithms who use alignment to find the
best matches and they are discussed in more detail below.

Global vs local alignment

When doing alignments there are two; global and local alignment (you also
have a hybrid between these two sometimes mentioned as glocal alignment).

Global alignment works by trying to match a complete sequence, this
works only if the ,two or more, studied sequences are of roughly the same



28 CHAPTER 2. BACKGROUND RESEARCH

length. Then the system tries to align the sequence from start to end.

Local alignments can be used on sequences that differ very much in
length. Here you try to align only parts of the sequence to prove some
similarity. The hybrid method tries to align the start and the end of the
sequences and then continue with local alignments throughout the rest of
the sequence.

The most used method is local alignment. This lies with the fact that a
sequence does not have a distinct starting or and end, it only has a length
and a position on the DNAs strand.

So in order align two whole sequences with each other will not give any
proficient results.

Also, when researching genes you are not looking for totally similar
sequences, but rather sequences that can look quite dissimilar on the face
but have some evolutionary relationship.

Heuristics

The Merriam-Webster’s dictionary defines heuristic as ”involving or serving
as an aid to learning, discovery, or problem-solving by experimental and
especially trial-and-error methods”, and many algorithms use heuristics to
increase their speed. This is usually done by generating some kind of support
data structure which can, at an early stage, be used to filter out sequences,or
regions of sequences, that are of little interest.

2.5.3 Searching

Searching in DNA is hard, the system must align a lot of sequences, and it
must be done fast. We here present two of the founding approaches of DNA
search.

Needleman-Wunsch The Needleman-Wunsch algorithm guarantees to
make an optimal global alignment of two strings. It uses a similarity matrix
to score each alignment in order to find the optimal sequence alignment.

The algorithm starts with creating a scoring table, where the first col-
umn is the first sequence to be compared. The first row consists of the
second sequence to be compared. Thus the height is Length(Sequence1)
and width Length(Sequence2).

The algorithm then creates a so called trace-back table of the same
size, it is used to store the ”path” through the scoring table that gives the
optimum alignment. This is done by starting in the lower hand corner and
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following the pointers given in the trace-back table, and adding together the
corresponding scores in the scoring table.

(a) The scoring table

S E N D

0 -10 -20 -30 -40

A -10

N -10

D -10

(b) The trace-back table

S E N D

տ ← ← ← ←
A ↑
N ↑
D ↑

Table 2.4: The two initialized tables used in the Needleman-Wunsch algo-
rithm

It then continues to initialize the scoring table by giving the top and
left edge cells scores that ensures that we achieve a global alignment this
differs with what kind of similarity matrix is used.

When the scoring table is initialized we start filling the scoring matrix.
We calculate the score of each cell from a predefined scoring scheme. We
then fill in the substitution matrix, by checking witch score up/diagonal/left
is the lowest and then store a pointer to that cell. When all scores are
computed and the trace-back table is full we simply follow the path to find
the optimal alignment.

When traversing the trace-back table there are three possible pointers,
a pointer that points; upwards, diagonal and left. If we encounter a diagonal
pointer the two characters are perfectly aligned, if we encounter a upwards
pointer a gap is introduced in the first sequence. If we encounter a left
pointer, a gap is introduced in the second sequence.

(a) The finished scoring table

S E N D

0 -10 -20 -30 -40

A -10 1 -9 -1 -29

N -10 9 -1 -3 -13

D -10 -19 -11 2 3

(b) The finished trace-back ta-
ble,colored cells indicate the
traversal

• S E N D

տ ← ← ← ←
A ↑ տ ← ← ←
N ↑ տ տ տ ←
D ↑ ↑ տ տ տ

Table 2.5: Scoring and trace back table from Needleman-Wunsch
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1 Create scoring table

2 Initialize scoring table (w/negative edge scores)

3 Calculate score for current cell

4 Update trace-back table

5 Repeat steps 3 and 4 for all cells

6 Traverse trace-back table

Table 2.6: The basic Needleman-Wunsch algorithm

Smith-Waterman The Smith-Waterman algorithm performs a local align-
ment, it works both on nucleotide and protein sequences, and it is based
upon the Needleman-Wunsch algorithm and the algorithms are similar but
they give quite different results.

As seen in the paragraph above about the Needleman-Wunsch algo-
rithm, the edge cells of the scoring table is initialized with negative scores
in order to achieve a global alignment of the two compared sequences. The
Smith-Waterman initializes the the edge cells are initialized with 0, this
opens up the possibility of making local alignments on the sequences.

The algorithm then continues to search for the cell with the highest
score, and makes it the starting point for the backwards traversal of the
trace-back table, it then continues to traverse until the score stops growing.

The algorithm can also be expanded to e.g. traverse from the 5 highest
cells.

1 Create scoring table

2 Initialize scoring table (w/edge scores of 0)

3 Calculate score for current cell

4 Update trace-back table

5 Repeat steps 3 and 4 for all cells

6 Traverse trace-back table to find optimal alignment

Table 2.7: The basic Smith-Waterman algorithm



Chapter 3

State of the art

In this chapter we explore the different techniques that is used to day in
genome search, both alignment algorithms, and data structures for storing
indices of DNA sequences. By studying these methods we can shed light on
the complexity involved in the most used approaches for achieving homology
search in genomes. The FASTA and BLAST algorithms are discussed in
detail.

3.1 DNA search as we know it

3.1.1 FASTA(FASTP)

The FASTA algorithm, derived from the FASTP algorithm, was developed
by David J. Lipman and William R. Pearson[39, 40]. FASTA is an heuristic
approach to sequence comparison. The algorithm starts with creating a
lookup table of the query sequence. The creation of this lookup table is
parameterized with a parameter, K. K defines the length of the entries in
the lookup table. To create the table the query string is split into K-sized
tuples. For protein databases it is generally 1 or 2, for nucleotide databases
it can be up to 6.

In the lookup table all the occurrences of the tuples in the query se-
quence are stored. To generate an initial score of the different sequences
a diagonal dot-plot is used to find consecutive matching K-tuples. And
thereby can give a positive score for connected matching K-tuples and a
negative where there are gaps.

The 10 best matched sequences are then forwarded to the next step,
which is a closer rescan through the remaining sequences. Here the K value is

31
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Figure 3.1: Overview of the dot-plot in FASTA, borrowed from [50].

often dismissed and the sequences are studied in more detail. The sequences
are rescored using a scoring matrix (BLOSUM/PAM/Identity matrix).

The sequences with a higher score than the parameter S (cutoff value),
they are forwarded to the next step, where we try to join misaligned se-
quences by approximating the alignment with gaps, then a banded Smith-
Waterman algorithm[50] is used to calculate the optimal score for the dif-
ferent alignments.

3.1.2 BLAST

BLAST[4] or Basic Local Alignment Search Tool is an approach to increase
the speed of sequence comparison with alignment. The BLAST algorithm
works by first splitting the query sequence and the sequence to compare
against into so called words. Words are sequence fragments of a given length.
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1 Create lookuptable of length K

2 Score with diagonal dot-plot

3 Rescore 10 highest scoring sequences

4 Join misaligned sequences with score higher than S

5 Use banded Smith-Waterman algorithm to calculate optimal score

Table 3.1: The basic FASTA algorithm

These words are then stored in a word list and compared with the subject-
sequence in a substitution matrix i.e. BLOSUM[21]. A substitution matrix
is a two dimensional matrix containing the probability of one amino acid
being replaced by another, thereby giving a statistical chance of two words
having some evolutionary relationship.

When querying BLAST, you give it a threshold parameter, T . This
parameter defines how much a word have to match the subject-sequence in
order to continue investigating the similarities. If the score is T or higher,
the word size is extended in order to find high scoring segment pairs (HSP’s).
A HSP is a (local) aligned segment with no gaps, i.e. insertions or deletions,
that has one of the top scores of the aligned sequences. This extension of
the segment is continued until the HSP score begins to decrease. The score
which the HSP’s are rated with is, what BLAST calls, raw score. Here
a simple scoring scheme is used, complete matches in the aligned range is
given a positive score and gaps are given a negative score.

All the remaining HSP’s that have a higher score than the S parameter,
the cutoff score, is put in a list and the significance of the HSP score is
evaluated.

This is usually done manually by a human, but to make it easier for the
users of BLAST some filtering can be done to remove some of the hits. This
is done by filtering out repetitive regions and regions with low complexity.
The results are then verified by a human.

There is also a method of evaluating the result, by using the Gumbel
extreme value distribution(Gumbel EVD), witch is a function that calculates
the probability of a high scoring region appearing just by chance. If the HSP
scores better than the EVD function it can, most probably, be considered
as a real similarity.

There are also optimizations to be made in the input query, where the
low complexity regions can be removed before further processing of the query
continues.
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1 Remove low complexity/repeating regions*

2 Split the query sequence into words

3 Search for words that have a higher score than T

4 Repeat for all words in the query sequence

5 Extend the matching words to create the HSP’s

6 Generate list with HSP’s scoring higher than S

7 Manual or automatic evaluation of HSP list

Table 3.2: The basic BLAST algorithm, *optional

The flavors of BLAST

The BLAST algorithm has some variations, its different settings where it is
used[27, 5];

• BLASTN - searches through a specified nucleotide database and re-
turns the most significant hits.

• BLASTP - searches through a specified protein database and returns
the most significant hits.

• BLASTX - translates (six frame translation1) the nucleotide input to a
protein sequence and searches a specified protein database and returns
the most significant hits.

• TBLASTX - translates (six frame translation) the nucleotide input
to a protein sequence and searches against a specified translated (six
frame translation) database.

• TBLASTN - searches through a specified translated nucleotide database
with a protein sequence.

• MEGABLAST - searches trough a specified database with multiple
queries by concatenating the sequences.

• PSI-BLAST - searches through a database with a query sequence,
then takes the most similar sequences from the query and generates
a new sequence based on their most prominent features and uses the
generated query to search the database again to find distantly related
sequences.

1Frame translation is a way to determine the resulting protein sequence from looking
at a nucleotide sequence
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3.1.3 Indexing approaches

As described in Section 2.1.2 indexing techniques are widely used in reg-
ular information retrieval, it primarily does two things; relieve the search
algorithms by decreasing the amount of information to be searched through
and it provides the search algorithms with data structures that increases the
performance of the search algorithms. As mentioned in Section 2.5.1 there
are some problems with the removal of information, but we can decrease
the sheer amount of data stored in the data structures, and we can optimize
these structures in order to search faster. Below are some of the approaches
to achieve indexing of DNA databases.

Suffix tree

The suffix tree[22] has some good properties when it comes to searching. As
its name reflects, it uses the suffixes of a string to generate a tree. This prop-
erty means that there is less data to be searched through, and by traversing
the tree you can easily determine a match or a mismatch.

To create a suffix tree for a string S you begin by inserting an empty root
node. Then you create a list of the suffixes in S, sort them by size (longest
first). Continue with the top element of the list, and for each suffix you
insert all characters of the current suffix into the tree by starting at the root
node as the current node, and iterate through the tree. For each character
of the suffix you check if the current node has any children containing that
character, if it does, that node is then set to be the current node, if there
are no node containing that character a new node is inserted and that node
is set to be the current node.

When you reach the end of the current suffix the last node visited is set
to be the index of that suffix.

To search a suffix tree T for a certain string S. Start with the root node
as the current node, then you compare the first character,C of S with the
child nodes of the root node, if C has a match in the child node then C is
removed from S and that child node is then set to be the current node.

This is repeated until you have examined all characters in S, when the
end of S is reached you know that T contains S. If you at some point have
no child nodes of the current node that contains the current character then
T does not contain S.

In order to make suffix trees work in a database setting, you will have
to generate trees for all stored sequences, and for all queries to the database
you would have to use the procedure described above.
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Figure 3.2: Example suffix tree of sequence: ACATCTTA

Q-grams

A q-gram[11, 33] or an n-gram, is a subsequence of length q of a given se-
quence. In order to explain DNA indexing with q-grams we have to define
a new term, the edit distance. The edit distance is ”the minimum num-
ber of edit operations (ie. insertions, deletions and substitutions) of single
characters needed to transform the first string into the second”[11].

So, given a sequence S, you can get all its q-grams by sliding a ”window”
of length q over the entire sequence and stopping at the end, thus the number
of q-grams is: |S| − q + 1.

X. Cao. et. al. proposes an indexing scheme where the database index
consist of two levels. All q-grams that are possible to make in the sequences
are devided into clusters. In the second level a transformation is applied to
the sequences to form what they call c-signatures based on their q-grams.
These c-signatures are then inserted into a tree structure called c-signature
trees(c-trees). The qClusters are quite straight forward to build, first all
the q-grams of the sequence is generated, then you gather them into groups
based upon some likeness parameter.

The hash table is created with hash function whos parameters are both
the q-grams themselves but also which qCluster it belongs to. Then a sig-
nature of each q-gram is created, the signature is a bitmap, where each bit
in the bitmap represents what positions the different q-grams exist at.

To illustrate this we give an example taken from[11]: Take the sequence
P=”ACGGTACT”. P’s signature will then be [01 00 00 11 00 11 10 00](for
q=2). If we then take a q-gram from P, ”AC”, we see that it occurs twice at
position 0 and 5, thus those bits are set to 1. With the matematical formula;

SDist(sigc(S), sigc(P )) =
∑k

i=0−1|ui − vi|
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where v is the bits in the signature of sequence S and u is the bits in
the signature of sequence P we can calculate the distance between the two
signatures. The signatures of the sequence is then generated into c-tree, a
rooted tree optimized for searching. We will not go into details regarding
the construction of such a tree, it is similar to suffix tree building, we show
an example is shown in 3.1.3.

     0                       1

     0               1      2                             0              1  

     1                     0            0                          1                  0

    1                          1                  0                      0                        0

   S1                       S2                     S0                       S3                       S4

Figure 3.3: Signature tree for sequences: S0=”ACGGT”, S1=”CTTAG”,
S2=”ACGTT”, S3=”TAAGC” and S4=”GACGT”[11]

The interesting part here is the query process, when given a query se-
quence S, a hash key is generated based on the q-grams present in the query
string. The hash key is looked up in the hash table built in the indexing
process, and the neighbors of the hash key in the hash table are gathered,
and encoded. If their edit distance is within the specified range, the algo-
rithm continues to store them in a candidate set C. This concludes the first
level of filtering. In the second level, the signature of the query sequence
is computed and the signature is then used to search through the signature
trees built in the indexing process.

R-trees

R-trees as well as suffix trees are well used data structures in information
retrieval. While suffix trees are good for indexing sequential data, R-trees
are constructed for indexing spatial data, or multi-dimensional data. A
problem to overcome, is the one dimensional nature of the DNA strands, if
we can represent the DNA sequence in a multi dimensional matter we can
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use R-trees as an index.

W.C Kim et. al.[19] proposes an algorithm for doing this. First you
allocate a window of a specified size on every position of the sequence to be
indexed. For each window a signature of that window is created. This signa-
ture is represented as a four dimensional rectangle. The following formula is
used: BS(Wi) = (([mina,maxa], [minc,maxc], [ming,maxg], [minT ,maxT ]), i)
Where theminx andmaxx represent the minimum and maximum occur-
rences of the nucleotide characters of the window to be indexed. For a
sequence there are bound to be signatures that overlap partially or totally.
Some of these sequences can be removed in order to save storage space.

In an R-tree, a subtree compose a n-dimensional shape, and its size
determines new insertions into the tree, also the R-tree has a limited number
of child nodes ( two or three are often used). When building the R-tree,
you take the first window, this window becomes the root node. You then
continue with going to the next window. If that window can be inserted
under the root without making its bounding box bigger than the root node
itself you insert it there, if the node itself becomes the root node. So the
general algorithm for inserting nodes into the R-tree, you traverse the tree
until you find all the nodes where there is free space for an insertion, and
select the one that creates the smallest bounding box for that subtree.

W.C Kim et. al.[19] mention three different ways of searching in the R-
tree, for an exact match query you construct a 4-dimensional query rectangle
of size ([mina,maxa], [minc,maxc], [ming,maxg], [minT ,maxT ]). The same
is done for a wildcard match query, but here allmaxx variables are increased
with the number of wild cards in the query sequence. For a k-mismatch

query, a query where you tolerate a edit distance of k, the query rectangle
is constructed by adding k to the maxx values, and subtracting k from the
minx values, if the minx value becomes negative, it is set to 0.

We begin the actual query process by searching for all index rectangles
who overlap the query rectangle and add them to a candidate set. A verifi-
cation step is done for each of the candidates where that window is looked
up and checked if it actually matches. If it does it is returned as a hit.
W,-C Kim et. al.[19] also proposes a more complex index structure where
the rectangles of the index are spread more eavenly in the vector space,
this involves weighting the windows and extracting more properties of the
windows to make them more unique, we will not go into those details here.
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Figure 3.4: Example r-tree(inspiration from[45])

Wavelets

A wavelet[15] is a way of dividing a continuous signal into components in
order to analyze them. You look at the genome sequence as a signal, for in-
stance you take the sequence ”a c a a t t a c t t a a t a g a a a a” and you view
that as a continuous signal, and apply a wavelet transformation function to
it, Elharti et. al. proposes the HAAR wavelet transform function which is
represented by; Wjk(x) = W (2jx− k). By applying this transformation, we
can use variance measuring methods to measure the similarity between two
given sequences. We will not go into the details on how this is done, as it is
far out of the scope of this thesis.

3.2 CBIR today

Here we will present a selection of current CBIR solutions in use, the features
they extract, and how these features are used in a query context.
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3.2.1 Alexandria Digital Library(ADL)

Developed by the University of California the ADL(now known as the Na-
tional Geospatial Digital Archive) was made to be used with the vast data-
sets of geo referenced information[31], from maps created in medieval times
to recent satellite imagery the ADL was constructed to make all this data
browsable and searchable.

To search in the ADL, the user is presented a two dimensional map and
with this map, the user zooms in/out and pans around to select a region of
interest. The user can also select what kind of image he/she wants, and also
have a textual query to filter out wanted resources.

The indexing of this database is fairly manual, there are few or none
features extracted from the images and the query process is also manual,
the user must browse around until the wanted resources are found. Whether
or not this is a CBIR system, can be discussed, in[31] there are feature
extraction tactics discussed, but as far as the user interface goes, there are
no sign of possibilities for a user specified query within these features.

3.2.2 Content-Based Image Retrieval from Digital Libraries

The CBIRD[35] system was created at the school of computing science,
Simon Fraser university in Canada. It is a true CBIR system, it uses a color
histogram, color layout, and texture layout. When querying the database
the users have interfaces for specifying the most prominent colors in the
images, the texture layout and the color layout or you can search with the
features of a specified image. The user can select anyone of the features,
or none. When the search is complete the user is presented with a list of
matches where the images are represented with thumbnails and can browse
through the hits.

3.2.3 Diogenes

Diogenes[6] is a web search CBIR system for retrieving images of persons,
portraits, group photos etc. It scans through web pages and looks for images
with people in them, it then associates that page with the person’s photo.

It uses two main features to accomplish this, the first one is a facial
recognition algorithm which determines whether the image at hand is of a
person. The second feature is the context of the webpage around the image,
which is parsed from the HTML page. The system only supports textual
queries for the persons name, and it then retrieves all photos indexed of this
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(a) Search results

(b) Example texture search parameter

Figure 3.5: Screenshots from CBIRD

person. The results are then presented as a list with thumbnails sorted by
relevance.

3.2.4 DrawSearch

DrawSearch[46] is a web-based search util, exploring the possibilities of
query-by-drawing/query-by-example. It indexes shape, color and texture
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features. The color features are calculated by splitting the image into 4
smaller images and calculating the color features from these four images.
The shape information is obtained by calculating fourier descriptors and the
texture information is obtained by Gaussian Markovian Random Fields.[52]

The query process in DrawSearch3.6 is really interesting, the user is
presented with a user interface where the user can sketch an image that
looks somewhat like the desired image and this image is then processed and
used in the query. The results are then displayed in a list with thumbnails
ordered by similarity.

Figure 3.6: The query input in DrawSearch(illustration from http://aa-
lab.cs.uu.nl/cbirsurvey/cbir-survey/node14.html)

3.2.5 Excalibur Visual RetrievalWare(EVRW)

Excalibur[53] is a library for indexing in a CBIR system. It has an im-
pressive list of feature extraction methods; color, shape, texture, brightness,
color structure and aspect ratio. The system is based upon neural network
methods, and automatically indexes binary patterns in digital information.
There are little information about the specifics on EVRW.
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3.2.6 Fast Object Color-based Query System(FOCUS)

FOCUS[30] was developed at the Department of Computer Science, Uni-
versity of Massachusetts. The images are indexed by extracting a color
histogram feature. Each image is divided into blocks of 100x100 pixels, and
each of those blocks have their color histogram in the HSV color space, and
some clever math is employed to extract all the unique peaks of all the
blocks. These peaks are then combined into a list and makes up the image’s
index. All the index elements are stored in a B+ tree, with their hue value
as the primary key. The querying consists of a user selecting an entire ex-
isting image from the database, or the user can create a custom query by
selecting a region of interest in one of the images in the database. The user
is then presented with a list of all the images matching the query, ordered
by relevance. The user can now select to perform a refined query, where the
returned images are queried on the 100x100 pixel blocks initially created,
and thereby spatial color information can be matched.

3.2.7 Finding Regions in the Pictures(FRIP)

Developed at the Yonsei University in Korea, FRIP[26] is designed to seg-
ment regions in images. When an image is segmented, the different regions
in the image is then processed to extract, color, texture and shape features.
The texture is extracted by using a biorthogonal wavelet frame[26], which
then the direction is extracted from. The shape features are extracting
centroid-boundary distances( see Section2.3.1).

The color feature is the average color value represented in RGB color
space. When querying, the user selects an image from the database as the
basis of the query, the system then segments the image into distinct regions,
and then the user selects the region of interest which is then used as the
query, the relevant images are then retrieved and shown in a list sorted by
similarity to the query.

3.2.8 ImageRover

ImageRover[47] is developed at the Computer Science Department at Boston
University. ImageRover uses texture and color features to query images. The
system divides the image into five sub-images where the color histograms
are calculated, and the texture orientation is calculated using steerable pyra-
mids. The user is prompted with a text input, where keywords are entered.
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Figure 3.7: Shows a query and the result presentation of FRIP (from
http://cvpr.yonsei.ac.kr/cvpr/frip/version.html)

Relative images are then retrieved, and the user selects images that are sim-
ilar to what the user is looking for, then those images make up the query.

3.2.9 ImageScape

ImageScape[25], developed at the Department of Computer Science at Lei-
den University is another search by skecthing system. The system extracts
the edges prominent in the image, and stores these as vectors, in addition
to average color information, gradients and areas of turbulence are stored.
The user queries the system by sketching an image, the user is instructed
to just draw the contours of the image he/she is looking for. The user can
also drag certain icons onto the canvas to illustrate i.e. water/tree/face 3.8.
The user the gets the results as a list sorted by relevance.

3.2.10 Leiden 19th Century Portrait Database(LCPD)

The LCPD[36] is also developed at the Leiden University, and its main goal
is to index portraits. The main feature here is the color values. The system
has multiple indexes where the user selects what index to use. There are
one index for the intensity of the pixels in the image, there is one binary
(threshold) index, and there is one gradient index. There are also variations
on these different indexes, where some of the indexes(projected indexes) has
reduced index-sizes, by not applying a pixel-per-pixel index, but rather using
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Figure 3.8: Shows the sketch window from ImageScape

larger portions of the image. The query process consist of the user selecting
the desired search index, and then browsing to an image to select one that
is fitting as a query. 13 of the matching results are returned plus the search
image, and you can continue the search process by clicking one of the result
images.

3.2.11 Lucene Image Retrieval(LIRE)

Lucene Image Retrieval is an open source project, and is an extension to
Lucene[20] search engine. It extends the document type in Lucene to not
only include text-documents, but also images. Tt indexes images with a
color histogram, color layout, and edge outline information. As it is a pro-
gramming library, Lucene does not provide any user interfaces for querying
and indexing, but it provides API’s for interfacing with it from Java. It is
easy to implement and can be included in a project with little extra code.

3.2.12 Multimedia Analysis and Retrieval System(MARS)

MARS system was developed at the Department of Computer Science at the
Univiersity of Illinois, and then development continued at the Department
of Information and Computer Science at the University of California.[38]
It supports color, texture and shape features, and also textual annotation
of the images. The color is represented in HSV color space by histograms,
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the texture is represented by one coarseness histogram and one histogram
for the direction of the texture. There is also a scalar value representing
the contrast. The system supports layout information of these features, in
order to do this, the image is divided into 25 sub-images, and the features
are extracted from all these images. The user queries by a boolean query,
and the feature values are specified either by using an example image, or by
setting the values directly with for instance a color selecting control.

3.2.13 Multimodal Information Retrieval System(MIR)

MIR[49] has a more traditional approach to searching, it employs text mining
techniques and natural language processing to analyze captions of images,
in order to determine the content of the image. It also uses face detection to
further study the content of the image, if any faces are detected, the detected
faces are removed from the image and a color histogram is computed from
the rest of the image. The user queries the system either with a text string,
an image topic which is selected from a predefined list, or with an image.

3.2.14 Picasso

Picasso[10], developed at the Visual Information Processing Lab at the Uni-
versity of Florence, uses color regions and shapes and the relationships be-
tween them to measure image similarity. It segments the image based on the
shape, and then measures the colors in these regions. It repeats this process
on the image at different resolutions. The user can query the system in
three ways, either by drawing a shape(outline) and then paint the shapes
with colors (this can also be done automatically with a sample image). Or
the user can sketch and image and lastly the user can select a sample image
from the database, and use the texture from that image to query the system
with.

3.2.15 PicHunter

PicHunter[13] developed by NEC Research Institute, it is a quite novel
search algorithm based upon color histograms in different color spaces. The
user queries with an example picture, but the smart part about the system
is the relevance feedback. It looks at the action of the user when the initial
results are presented and when the user marks images as relevant the system
then uses these images to further refine the search. This way the system
learns from the user, and this knowledge is put back in the system, so the
system gets smarter and smarter.
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3.2.16 IBM Query By Image Content(QBIC)

Developed by IBM Alamaden Research center, computes average color vec-
tors, and color histograms in Lab, Munsell, RGB and YIQ color space, the
color histograms are created by averaging the colors in groups of 3xn pixels.
The system also computes texture direction, contrast and coarseness. The
system also supports shape features, where the area of the shapes in the
image are calculated, the central axis of the shapes are determined, also
properties as circularity and irregularity are indexed. The query process in
QBIC is either by selecting an existing image in the database, or the user
can sketch an image, and there are interfaces for constructing texture and
color queries by selecting swatches from a library.

3.2.17 Similarity-based Multimedia Retrieval Framework

Developed by Center for Geometry, Imaging, and Virtual Environments at
the University of Utrecht in the Netherlands, the Similarity-Based Multi-
media Retrieval Framework, SMURF indexes color histograms, texture and
quite advanced shape information. The system is capable of polygon match-
ing, and they have a test suite where hieroglyphs are indexed as an example
and it retrieves them with great success. The query process is simple, you
start out with a random selection of images and select one as your query
source and the results are then shown, this query process can be repeated
as many times as the user wants.

3.2.18 Octagon Java CBIR System

Octagon is a java CBIR system, developed by Jukka Viitala. It indexes
images based with color histograms and structure, the documentation is
somewhat lacking, and does not go into details on how the images are in-
dexed. The interesting thing is the query system, the user can either query
by selecting an existing image in the database, but can also supply an im-
age. Before the user queries the system, the user can tweak the balance on
how the color and structure feature is weighted, by moving a slider you can
choose to prioritize either one of them more than the other.

3.2.19 Gnu Image Finding Tool

Gnu Image Finding Tool or GIFT, was developed at the University of Geneva
under the name Viper. It is now maintained by the Free Software Foundation
and is an open source CBIR framework. it supports textual annotation, color
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histogram and average color. The query interface is highly implementation
specific, but GIFT supports an open XML-based protocol for easy front-end
implementations.

3.2.20 VisualSEEk

VisualSEEk[48] is developed at the Image and Advanced Television Lab at
Colombia University in New York, USA. The system segments the images
into regions with similar color compositions, and for each of these regions
their positions and sizes are marked and some sub-region color information
is also stored. When a user queries the system, he creates regions of the
desired size, and then specifies the color of these regions, the regions can
also overlap.

3.2.21 WebSeer

WebSeer[16] is developed at the Department of Computer Science at the
University of Chicago and is a CBIR system for web content. It crawls the
internet in search of images, and it tries to separate photographs and draw-
ings. The images are separated by measuring the numbers of colors used in
the image, and gradients and saturation of the color. Photographs are then
processed with face detection and they employ text filtering techniques to
extract keywords, captions and other textual information about the image.
The user queries by supplying keywords, also properties as how many faces
in the image.

3.2.22 Wavelet Image Search Engine(WISE)

WISE[54] is developed at the Department of Computer Science at Stanford.
It uses wavelet transforms to store color layout information extracted from
the image. The image is scaled to 128x128 pixels, and transformed to a
custom color space. It then uses wavelet transforms on all pixels, and uses
the properties of this wavelet transform to only extract some of the wavelets
and stores these as the index. The user can query the system either by an
example image, or by sketching.
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3.2.23 Overview and discussion

In Table 3.3 the features of the CBIR systems described above are listed. To
fit the table on one page we had to condense the text a bit so we start with
giving some explanations to the abbreviations used in the table headings;

• Text is textual information, context of appearance etc.

• Tex.dir. is texture direction

• Tex.prop. is texture properties, that is properties other than direction
or layout.

• Tex.lay. is texture layout

• Clr.hist. is color histogram

• Avg.clr. is average color

• Clr.lay. is color layout

• Shp.prop. is shape properties.

• Shp.vec. is shape vectors, that is complete shapes are indexed

• Face.reco. is facial recognition.

The table shows that color information, both as color histogram, average
color and color layout is prominent in all systems. Texture properties are
also used alot. The table also illustrates the diversity of CBIR systems in use
today, and how specialization of CBIR systems is possible, also it illustrates
that no CBIR system uses all features, and this is for a simple reason; the
more features you have to extract, index and search through the slower the
system is.

Table 3.4 shows the different possibilities of query interfaces, most of
the systems require that the user uses an image that is already indexed.
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WebSeer X X X

WISE X X

T
ab

le
3.

3:
O

ve
rv

ie
w

of
th

e
fe

at
u
re

s
ex

tr
ac

te
d

in
C

B
IR

sy
st

em
s



3.2. CBIR TODAY 51

Text Image from database User supplied image Sketch Browsing

ADL X X

CBIRD X X

Diogenes X X

DrawSearch X

EVRW N/A N/A N/A N/A N/A

FOCUS X

GIFT X X

FRIP X X

ImageRover X X

ImageScape X

LCPD X X

LIRE N/A N/A N/A N/A N/A

MARS X X X

MIR X

Picasso X X

PicHunter X

IBM QBIC X

SMURF X

Octagon X X

VisualSEEk X

WebSeer X

WISE X X X

Table 3.4: Overview of the different query methods in CBIR systems
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Chapter 4

Construction of Algorithms

As mentioned in the introduction, the goal of this thesis is to apply CBIR
techniques to DNA sequence comparison, and try to achieve a performance
boost. The main idea here is to use an out-of-the-box CBIR system to index
a set of images generated from DNA nucleotide sequences.

This involves two steps; creating an algorithm for visualizing the infor-
mation stored in a nucleotide sequence as an image. Basically translating
the one dimensional sequence into a two dimensional picture, where the val-
ues of the sequence represents a color value in the RGB color space. And
then index these images in a general purpose CBIR system.

4.1 Generate images based on genome-sequences

The sequence translation proposes some challenges to solve and some con-
siderations that have to be made.

4.1.1 Challenges

The image generating process proposes many challenges that have to be
solved. The first one is the homogeneity of the information stored in a
nucleotide sequence, the nucleotide sequence only has a alphabet of four
characters. Item by item a nucleotide sequence can seem pretty uniform
and repetitive. The second challenge is to take this uniform information
and try to represent it in such a way that we create differences that are
traceable(in a CBIR system). The third, and a very hard, challenge is the
differences in size of the sequences, to be able to match sequences, you have
to have a somewhat similar size. The final and hardest challenge is to encode

53
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the information in such a way that you can discover sub-sequence matches.

Encoding information

The encoding of the information is the core of the algorithm. The key
thing is to figure out how we can translate Adenine, Cytosine, Thymine and
Guanine to color values and represent this in an image.

First, we need an image that is substantially different from the other
images generated, and the differences has to be represented in such a way
that they can be measured in a CBIR system. As mentioned in Section 3.2.23
the most used features of CBIR systems are texture and color histograms, so
in order to be able to succeed in retrieving images at least these two features
has to be prominent in the images. The color histogram is the easiest thing
to overcome, if you directly map the nucleotides of groups to RGB values
and these directly represent the contents of the sequence, the histogram will
be quite descriptive of the sequence.

Problems do arise with using the color histogram. As mentioned in 2.3.1,
the histogram does not take into account the position of the pixels. One
other problem is the error rate of sequencing combined with evolutionary
distance, the histograms for two sequences that should be matched will be
quite different, and therefore may not match in the CBIR system. But, with
some fuzzy matching, it can be a good indicator for the similarity of two
images.

The texture of the images when blindly translated from nucleotide values
to RGB values will be very uniform, due to the small alphabet of values in
the sequences. We have to find a way to translate the values of the sequence
in order to generate a texture that is descriptive of the actual content of the
sequence.

One solution is to post process the images with a threshold (binariza-
tion) filter, where the pixels with lower color intensity than a specific thresh-
old value will be set to zero and all pixels with higher values will be set to
the maximum allowed value in the specific color space. We can also use
a contrast enhancing filter to simply increase the higher color values and
decrease the color values. One also have to consider other features that can
be used in the indexing of these images. Shape and color layout are two
that can produce great results.
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Creating differences

As mentioned above, the color histograms can be similar for two different
images, so solely to depend on color histograms are not enough. The algo-
rithm must be able to have regions which are significantly different. And
that can be detected by studying a histogram. Such regions in nucleotide
sequences are in such a low level, that they are very hard to efficiently de-
tect using a CBIR system. And as the size of the sequences grow the small
irregularities in the sequence become more and more distant when viewed
as an image in two dimensions.

DNA spectrography[14] proposes some techniques that can be used.
DNA spectrography tries to use spatial visualization techniques in order to
detect protein coding regions. And they are able to create such differences
that they actually succeed in discovering these regions. This knowledge is
transferrable to our approach, and can be used to create an algorithm for
visualizing DNA sequences.

Differing sizes

The size differences in a database of nucleotide sequences are staggering,
out of our selected test database5.1 we saw that the average length of the
sequences was about 9000 bp (basepairs), the smallest one is 239 bp and the
longest sequence was 227420 bp. Figure 4.1 contains a scatterplot where the
huge differences in sequence length are illustrated. These differences poses
some issues. We have to try to create images that are able to be compared
unaffected by the size of the sequence.

There are some possible solutions to this problem, but none of them are
optimal. Since it is impossible to increase the size of a sequence in a way that
does not affect the comparison. We can try to reduce the size of the large
ones to normalize the sizes. As we see it, there are two different approaches,
either you can remove base pairs before the sequence is translated to an
image, or you can scale the image after the translation has happened. Either
way you loose information, and you can loose information that is essential
for two sequences to be considered similar(DNA wise).

One advantage of scaling the image after the translation, is that you
can scale the image down, or you can scale the image up. And the results
will be similar across the sequence database. Another approach is to use
a run-length encoding scheme where you try to use lossy text-compression
methods, and then process the output of that encoder.
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Figure 4.1: Plot of the sequence sizes in the dataset

Achieving sub-sequence matching

The hardest challenge to overcome is to enable the CBIR system with sub-
sequence matching. Say that you have a 200 bp sequence you want to
run through the system, and in a 10,000 bp long sequence that particular
query-sequence exists. Well, looking at CBIR systems in general, one way
to accomplish this is to use some kind of shape feature, and translate the
image so that these shapes are uniform regardless of the size of the image.
It can also be solved with layout color or texture information, but this will
ruin performance figures.

4.1.2 Considerations

There are some considerations to be made, before designing the algorithms
and deciding on what CBIR system we have to use.



4.1. GENERATE IMAGES BASED ON GENOME-SEQUENCES 57

Image dimensions

The image dimensions are hard to determine, the translation from a one
dimensional list of values to a two dimensional matrix of pixels. Since you
have no logical width parameter on the image you just have to set one. But
the width of the image will affect the appearance of the image a great deal,
so you have to do something that is uniform and that can work for sequences
of all lengths.

As far as we can conceive there are two options. The first is trying to
derive a static width parameter from the data set you are working on, or use
some function of each sequence. One approach is to use the average length
of the data, and then you can apply a function to that value to derive some
value for the width of the image. The second options is to use the length
of the sequence to be translated and apply a function to that. Either way
you will get images that are very different in shape, and, most likely, you
will have no control over the visual aspects of how the width of the sequence
affects the visual presentation.

We decided to go ahead and use the square root of each sequence, this
gives us the same aspect ratio for all images, and thus enables me to scale
them uniformly.

What to emphasize

Should the system be able to facilitate weighting of one single nucleotide
type? In that case we have to export four images for every sequence, and it
will have a major impact on the speed of the system, both when indexing
sequences but also in the retrieval process, regardless of which CBIR system
we use. Another possibility is to have some vectors that are user adjustable
when creating the images, so that the nucleotides can be individually ad-
justed for prominence in the resulting picture.

Nucleotide or protein sequences

In order to construct an algorithm we had to make a choice on whether to
support nucleotide sequences or protein sequences. There are both techni-
cal and non-technical implications that point us to the selection of using
nucleotide sequences.

On the technical side, we chose nucleotide sequences because they are
easier to visualize, due to the limited set of values, we can simply map the
different values to each of the four color components in the RGBA color
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space and use that as a basis for the image representation. Also it gives us a
signal we can use with the frequency methods used in DNA spectrography.

On the non-technical side, we have the argument that nucleotide se-
quences are available at a earlier stage due to the time it takes to annotate
and translate them, so if we can provide a broader and faster search with
nucleotide sequences its a obvious choice.

However, there are some drawbacks. The limited set of values in nu-
cleotide sequences compared to the 20 amino acids in protein sequences has
some positive effects on the simplicity of the translation algorithm, but it
gives us less diversity in the color spectrum. Another drawback of the uni-
formity of a nucleotide sequence, is when it is translated to a color value,
the color values produced are inhibited by the low diversity of the nucleotide
sequence, so a comparison of color histograms will be hard, if not impossible.

Choosing a CBIR system

One of the goals of this thesis is to use a general purpose CBIR system
to test the possibilities of DNA sequence comparison in a multimedia con-
text. There are multiple systems out there as discussed in Section 3.2. One
requirement for us was that the system must support texture feature ex-
traction and color information. Also the system should have fairly high
performance (there is no need for a system that does not outperform exist-
ing technologies). The performance of a CBIR system is a function of how
many features the system extracts, the complexity of the features and how
many features are used when searching.

As stated in Section 3.2.23 most of the CBIR systems studied support
a subset of the possible feature, and as mentioned above we need texture
features and color features. The choice fell on the Lucene image retrieval
system, it is well documented, easy to use and is written in Java. Also it
has a low set of features that makes it speedy, and it supports texture and
color feature extraction. Lucene also has parameterization on the different
features, so you can fine tune the system with weights on what features to
emphasize.

4.1.3 Methods

Since there are little or no existing work in this field of computer science,
we did not have any research to base our work on. So we tried to look at
research fields in spatial data representation and from DNA spectrography,
to achieve a visualization of DNA nucleotide sequences. The process is
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somewhat based on trial and error to see what can be achieved.

Technologies used

We four main technologies for the implementation of this system.

LIRE[20] was used for the feature extraction and generation of the
index for all the pictures, LIRE also includes a search class for searching
with an image as example.

Java was chosen because LIRE is written in Java, and it is the easiest
language to interface against LIRE with. Also there are many bioinformatics
library written in Java witch are open source and readily available, the
NCBI(National Center for Biotechnology Information) BLAST web service
for example is a Java implementation.

MySQL was used as a data storage device for the nucleotide sequences,
since the nucleotide databases are distributed as text flat files, they are slow
to traverse and makes testing a hassle since you must iterate through a lot
of text that is, in essence, unnecessary for us. So instead we parse the file
once, and store it in a MySQL database. In this way we can easily extract
the nucleotide sequences we need.

BLAST2 was used on a Linux platform, it is released by NCBI and is
quite faster than the web service that NCBI provide.

4.2 The algorithms

I here propose two algorithms for generating images. The first is a novel
approach where the nucleotides are directly translated to pixel values, the
second algorithm is more advanced and uses a fourier transformation on the
frequency of the nucleotides to calculate the frequency spectrum values of the
nucleotides, and a formula used in DNA spectrography[14] for translating
the spectral values to RGB color space.

4.2.1 The ”RGBA” approach

This approach uses a grouping of 10 nucleotides to calculate each pixel. And
for each for every occurrence of either adenine, cytosine, thymine or guanine
a value, k is added to the red, green, blue and alpha channel of the pixel. k
is calculated from dividing the maximum value possible in the color space
(255) by 10, so that no pixel value will exceed the allowed value. Next
when these pixels has been generated the width and height is calculated by
√

length(pixels). The simplicity of the algorithm is its main advantage, it
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is very quick, and is implemented with very few lines of code, and it is also
very memory efficient as you only have to have parts of the genome sequence
in memory.

A huge drawback is that the size of the resulting image is a direct
function of the length of the sequence, so it can be hard to do a good
comparison between two images. Experiments with scaling of the input were
done, an algorithm for a pseudo-lossy-compression algorithm was devised,
but the resulting sequence was so unlike the original sequence that they were
impossible to compare at an image-level. The pseudocode for the algorithm
is written in Algorithm 4.2.1

Algorithm 1 ConvertDNAToImageRGBAApproach(DNASequence S)

1: Input: a dna sequence of length n
2: Output: an array of RGBA values
3: dnaseq = input;
4: n = length of dnasequence
5: col = array of length n/10
6: count = 0
7: w = 10;
8: k = Round(maximum value of color spacew)
9: for i = 0 to n; i = i + w do

10: for all S = subsequence(i*w,w) do
11: for all C as char in S do
12: if C = ”A” then
13: color.R += k
14: else if C = ”C” then
15: color.G += k
16: else if C = ”T” then
17: color.B += k
18: else if C = ”G” then
19: color.A += k
20: end ifcount ++
21: end for
22: col[count] = color
23: end for
24: end for

The algorithm takes a genome sequence as an input, and calculates a
constant k, by dividing the maximum value allowed in each color channel in
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the selected color space with the constant w. w is the desired ”window” size,
it is how many nucleotides you want to represent with one pixel. Then the
algorithm iterates over the entire sequence in blocks of size w. An iteration
is made over each of these blocks, checking the nucleotides, if you encounter
adenosine, the red component of that blocks respective pixel is increased
with k, for cytosine the green component is increased, for thymine the blue
component is increased, and for guanine the alpha component (representing
the transparency) is increased. This results in a pixel with a valid color
intensity for the color space, representing that block.

Example images of two gene sequences are shown in Figure 4.2. As we
see, their respective sizes are quite different, and not easily comparable with
any extracted feature without normalizing the feature descriptors.

First of all in Figure 4.2 b, there are no prominent features of that
image. The pixel values appear chaotic, like confetti, and also there are no
significant texture feature to extract. The actual implementation in Java
can be seen A.6

4.2.2 RGB algorithm with scaling of images

Due to some of the problems stated in Section 4.1.1, both with very differ-
ent lengths of the nucleotide sequences, and the chaotic appearance of the
images, a second algorithm was devised.

The basis of the algorithm is the same as the RGBA approach, but
after converting the nucleotide sequences to RGBA values, the images are
uniformly scaled, with a common percentage. For the testing we used a 300%
scale and a 700% scale. The scaling was done to get larger representations of
the color information extracted with the CBIR system, and hopefully better
results.

4.2.3 The ”frequency” approach

The frequency approach is by far the most complex and computational in-
tensive, it is inspired by the algorithm described in [14], and takes its basis
upon translating a nucleotide sequence into four discrete signals S1 . . . S4.
This signal is obtained by first initializing four lists with the same length
as the nucleotide sequence with 0, one for each nucleotide value. Then it-
erating through the nucleotide sequence i = 0 . . . n, on each iteration you
check which nucleotide is on that position, and tag that nucleotides’ list at
that position with 1 (Algorithm 2). When the iteration is done, the results
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(a) Image of short sequence

(b) Example of long sequence

Figure 4.2: Sample images from the RGBA approach. a) is 1000 bp long,
b) is 25,000 bp long)

are four lists with values of 0 and 1, depicting the frequency of the different
nucleotides in the sequence

We then define a value W which is the window size, this window we
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Algorithm 2 generateBinaryCount(DNASequence S)

1: n = length(S)
2: bis = [1. . . 4]
3: bis[1] = [1. . .n] = 0
4: bis[2] = [1. . .n] = 0
5: bis[3] = [1. . .n] = 0
6: bis[4] = [1. . .n] = 0
7: for i = 0 to n do
8: char = S[i]
9: if char = ”a” then

10: bis[1] = 1
11: else if char = ”c” then
12: bis[2] = 1
13: else if char = ”t” then
14: bis[3] = 1
15: else if char = ”g” then
16: bis[4] = 1
17: end if
18: end for
19: return bis
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slide over the genome sequence as shown in 4.3.

ACTGCTGCTACAGTATCGATAGATCTAGATCGGATACAGCAATACTGCATCAGTACCAGTCA

Figure 4.3: The window sliding over a sequence, w = 16

For each of these windows we calculate the discrete fourier transform
(Algorithm 3), for each of the nucleotides.

Algorithm 3 1D-FourierTransform(Signal M)

1: for u = 0 to M − 1 do
2: F [u].real = 0
3: F [u].imag = 0
4: for x = 0 to M − 1 do
5: F [u].real = F [u].real + (F [X] ∗ COS(2 ∗ π ∗ u ∗ x ∗ x/M))
6: F [u].imag = F [u].imag - (F [X] ∗ SIN(2 ∗ π ∗ u ∗ x ∗ x/M))
7: end for
8: F [u].real = F [u].real/M
9: F [u].imag = F [u].imag/M

10: end for
11: return F

We then iterate over the results from this window. and for each of the
nucleotide frequencies we calculate the spectrum component with the for-
mula;

spectrum =
√

(F.imag2) + (F.real2)).

We then use a formula from [14], which allows us to, from the spectrum
values, calculate a RGB color space value, that formula is defined as;

Color = ((adenineweightcolor∗specadenine)+(thymineweightcolor∗specthymine)+
(cytosineweightcolor∗speccytosine)+(guanineweightcolor+specguanine)).

There are weights for each nucleotide in each color, these weights allows
us to tweak the resulting image on emphasizing different colors or different
nucleotides. We repeat this process for all the possible windows of size w on
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the whole sequence. The result is a set of pixels depicting the frequency of
the different nucleotides.

Algorithm 4 ConvertDNAToImageFrequencyApproach(DNASequence S)

1: W = 120
2: B = generateBinaryCount(S)
3: N = length(B[1])
4: pixels = [1 . . . f loor(((N −W ) + 1)/2)]
5: //the color weights for adjusting the image
6: awr, awg, awb, twr, twg, twb, cwr, cwg, cwb, gwr, gwg, gwb = 1
7: count = 0;
8: for i = 1 to N −W do
9: A = 1D − FourierTransform(subsequence(B[1], i,W ))

10: C = 1D − FourierTransform(subsequence(B[2], i,W ))
11: T = 1D − FourierTransform(subsequence(B[3], i,W ))
12: G = 1D − FourierTransform(subsequence(B[4], i,W ))
13: for k = 1 to length(A) do
14: //calculate the spectrum values of the elements
15: speca =

√

((A[k].imag2) + (A[k].real2))
16: specc =

√

((C[k].imag2) + (C[k].real2))
17: spect =

√

((T [k].imag2) + (T [k].real2))
18: specg =

√

((G[k].imag2) + (G[k].real2))
19: //calculate the RGB values
20: pixels[count].R = ((awr ∗ speca) + (twr ∗ spect) + (cwr ∗ specc) +

(gwr + specg))
21: pixels[count].G = ((awg ∗ speca) + (twg ∗ spect) + (cwg ∗ specc) +

(gwg + specg))
22: pixels[count].B = ((awb ∗ speca) + (twb ∗ spect) + (cwb ∗ specc) +

(gwb + specg))
23: count + +
24: end for
25: end for
26: return pixels

Figure 4.4 shows a result sequence processed with the algorithms in the
frequency approach, there are prominent features that are more suited for
extraction.

The nature of the algorithm, with its sliding window (Figure 4.3), ex-
ploits the shifting of this window to make significant areas of a nucleotide
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sequence, that in themselves can be fairly short, appear more prominent.

In the picture there are bright lines, across the image, these are regions
of high frequency of all the nucleotides so that the color values of the pixels
in these areas are higher.

Figure 4.4: Example image of a nucleotide sequence translated with the
frequency approach
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One problem with this approach is the angle of the prominent lines
and our approach to calculate the size of the image. The size of the image
is directly derived from the length of the sequence. This means that if
a user supplies a sequence that is equal to an indexed sequence, only a
bit shorter, the angle of these lines, and their position in the image will
also change. From a CBIR systems point of view, this differentiates the
images substantially, especially if line-likeness or texture direction is used as
a feature. The true implementation in Java can be seen in, code listing A.5

4.3 Indexing the generated images through a CBIR

system

The chosen CBIR system for the task of indexing was LIRE. To begin index-
ing we constructed two modules, one module reads a flat-file of nucleotide
sequences and parses this file and wrote them to a SQL database. The mod-
ule also has a system for reading the database and processing the sequence
input to images and writing these images to disk. The second module in-
dexes the images with LIRE, and it has a Java Swing user interface for
querying the database and visualizing the query sequences with the results
from LIRE.

4.3.1 The indexing process

The process of indexing the nucleotide sequences consists of two steps, the
first is generating the images, and the second is indexing these images with
LIRE.

Generating the images

A simple test bench was set up to quickly test new algorithms, where we
constructed a common interface, which if implemented, that allows for more
generic testing of the algorithms. If any class implements this interface it
can act as a nucleotide to image generator. We then created a class that
reads the database and processes all the sequences to images and saves
these images to disc. We used the filenames to store information about the
accession number and the number of base pairs, so its easy to determine
a hit if you have the accession number for a query sequence. We did this
process for the four algorithms described above, and saved the images to
different folders.
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Figure 4.5: The user interface of our application

Indexing with LIRE

For indexing the images with LIRE, we created a simple class. Its input is
a folder(the input), and a file path which is the location of the index. And
we used the default SimpleAnalyzer included in the distribution of LIRE to
analyze the images. For each of the algorithms we created a separate index.
The code for this can be seen in code listing A.2

4.3.2 Searching

Searching was implemented with two modules, one module that included
the user interface shown in Figure 4.5 and one for batch processing the
algorithms for testing. The batch processing module included a method for
manipulating the query sequences to create evolutionary distance between
the query sequence and the sequence we want to find. The implementation
can be seen in code listing A.3
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The application

In Figure 4.5 the user interface for our implementation of the search with
LIRE is shown. It is quite simply a window in which the user can load
an arbitrary index from disk (we have no user interface for generation of
an index, it must be done with Java code). When this image is loaded
the user can specify a query with a nucleotide sequence. When the search
button is pressed, the nucleotide sequence in the input box is processed and
generated into an image, and sent to the LIRE search engine. The results
are then parsed and returned to the user in form of a list-box. There is also
a settings menu, where the user can tweak the weighting of witch features
to emphasize.
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Chapter 5

Evaluation and Results

The evaluation of our proposed algorithms are crucial to determine if this
is in fact a possible combination. Our testing consist of parallel testing of
each algorithm, with the same data set and the same queries and comparing
the results with BLAST.

5.1 The test data set

When we selected our data set, we looked at its size in number of se-
quences and the lengths of the sequences. This was to get an average looking
database. We selected a databank from EMBL, the WGS (whole genome
shotgun, a sequencing technique) release of Oryza sativa (indica cultivar-
group), the genome of a rice specie.

5.1.1 The genome data

The actual genome data is a good test subject. Because we have high vari-
ance in sequence length, as shown in Figure 4.1, the diversity of the lengths
are clearly illustrated. And in Section 4.1.1, we state that the shortest se-
quence was 239 base pairs and the longest was 227420, this will put our
algorithms to the test to see if the cope with the diversity in the genome
world.

This database was then converted with the algorithms presented in Sec-
tion 4.2 for the RGBA scaling approach we post processed the images with
300% scaling and 700% scaling.
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5.1.2 The queries

The queries was selected randomly by using the random() function of MySQL
in the query;

SELECT accesion_number,sequence_data

FROM genomeEntity

ORDER BY RAND() LIMIT 50;

. The genome sequences returned was written to a file, which we later
loaded in our batch query processor. We used the same 50 queries for all
the approaches.

5.1.3 Evolutionary distance and sequence length

To really test the approaches we devised a modification function. This func-
tions transforms the input before querying the system. The function takes a
nucleotide sequence S and an integer n as parameters and then proceeds to
change n nucleotides in S to a different nucleotide. This function simulates
evolution, and with the easy parameterization we can tweak the values to
find the threshold evolutionary distance that our system can endure.

5.1.4 Reference system

In order to test the proposed system, we constructed a batch query processor
which uses the National Center for Biotechnology Information’s web service
for querying their database with BLAST. All the queries was processed
through this, it took roughly a day to process all the 50 queries. Since
BLAST is the de facto standard, these results gives us a baseline in which
we can compare the results from our approach with.

5.2 Evaluating a CBIR system in a genome con-
text

As mentioned in section2.2 there are two measures used in information re-
trieval, precision and recall. But, in order to calculate these values, we
need a measure of the total number of relevant documents. This proves to
be harder than first imagined. Finding all relevant genome sequences to a
query is near impossible, what we did was to query BLAST with few pa-
rameters to get as many hits as possible returned, and used these hits as
our relevant document collection for all the queries.
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We had a problem with the number of returned results from LIRE, at a
certain level in the result list, the score was so low that the returned images
basically does not have anything in common. So we determined a common
cutoff value to produce a more realistic computation of precision and recall,
the cutoff value was determined to be 15, this both hurts and inflicts on the
credibility of the values.

5.3 The results

Here we present the different results, starting with the number of hits on the
different algorithms. The number of hits is compiled from first querying the
NCBI BLAST server, and then querying the respective LIRE indices with
the same queries.

5.3.1 A note about precision and recall

In Section 2.2 we describe precision and recall as the most used measure
when evaluating information retrieval systems, but since neither BLAST
nor FASTA does guarantee the best alignment we cannot include the values
for precision and recall. They do not give any meaning since we cannot be
sure that the returned hits from BLAST (our reference set) are relevant or
not. So these result are not presented as the result in the thesis itself but
as a curiosity it will be included as a part of the appendix.

5.3.2 Number of hits per mutation

Our result set is measured by querying the system with 50 queries, and
for all queries we had 10 levels of mutation, and in each an increasingly
amount of the nucleotides was changed. And a measure is calculated on the
performance of the approaches on how many correct hits they have compared
to BLAST.

RGBA approach

With the standard RGBA approach we did not have any high hopes, due to
the small size of the images and the problems with distinguishing low-level
features. In Figure 5.1 the results of the algorithm is shown, and the simple
algorithm performed fairly well. And it has good tolerance to evolutionary
distance. But it only had an average of 12 hits per 50 queries, this is a hit
percentage of 24, which is under a quarter of the expected hits.
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Figure 5.1: Number of hits on different levels of evolutionary distance

RGBA scaled 300%

In the first scaled index, we see a decrease in number of hits(fig: 5.2),
compared to the regular RGBA approach. With only an average of 5,4
hits of 50 queries. This equals a 10.8 hit percentage. In other words, very
low performance, but it still manages to find some of the sequences. We
thought that scaling the images would help on the issue with low-level feature
extraction of small images, but we may have mistaken.

RGBA scaled 700%

A surprising result from the second approach, with 700% scaling we see a
definite rise in number of hits, the results from this approach led us to create
a new index to test if we scaled the images even more, if we get even better
results. As illustrated in Figure 5.3 the average hits per 50 queries is 15.8,
which is a 29.2 percent increase from the 300% scaling approach, and a 31.6
hit percentage compared to the reference system.
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Figure 5.2: Number of hits on different levels of evolutionary distance

RGBA scaled 1000%

As shown in Section 5.3.2, scaling of the images 700% gave a significant rise
in number of hits, and stable results across the mutations. But scaling of the
images even more did not increase the number of hits, rather it decreased.
Illustrated in Figure 5.4, we have an average of 10.7 hits per 50 queries, and
a hit percentage of 21.4 across all queries.

Frequency approach

The frequency approach is the most elaborate and produces the most sig-
nificant images compared to the other approaches. And as shown in Figure
5.5 it outperforms all the other approaches at least at the low range of evo-
lutionary distance. With the initial average of 23 and 18 hits per 50 queries,
its far better than the others. But we see that the hits quickly decreases
with the increase of evolutionary distance, and it ends up with an average
of 10.6 and an average percentage of 21.5. But it still is promising with the
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Figure 5.3: Number of hits on different levels of evolutionary distance

high hit-counts in the lower evolutionary distances.

Average number of hits compared

In Figure 5.6 a comparison between the proposed approaches is shown, and
we see on the low scale of mutations that the performance of the frequency
approach is far better than the others. But after 10 mutations the number
of hits quickly drop.

This illustrates the issues with the algorithm, that central defining char-
acteristics of the image changes very quickly with only a small amount of the
nucleotides changes. This can to some extent be avoided by selecting lower
values of the window-width parameter, but it illustrates the weaknesses of
the algorithm very good.

As for the RGBA approach we see a good stability across the levels of
mutation. All though the levels are low, they are stable. With the scaled
RGBA approaches we see an increase in number of hits between a 300%
scaling and the 700% scaling, and the 700% scaling outperforms the regular
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Figure 5.4: Number of hits on different levels of evolutionary distance

RGBA approach. But when we reach a 1000% scaling the numbers of hits
drops across the board, and we can conclude that scaling of the images are
not linear with the increase of hits.

5.3.3 Number of hits across sequence length

As stated in section 5.3.2, there are some varying results on the different
approaches. But we do not say much about the distribution of the hits in
relation to the actual query sequence. Figure 5.7 shows the number of hits
compared with the length of the sequences.

It seems like the longer sequences in the data set, clearly gets better
results, and especially with the fact that there are only 7 sequences with a
length of over 20,000 bp. This means that the approaches generally favors
long sequences. We have not specified graphs for all the separate approaches,
but the trend was the same for all the approaches.
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Figure 5.5: Number of hits on different levels of evolutionary distance
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Figure 5.7: Number of hits compared to sequence length

5.3.4 Homogeneity vs Hits

We also made a measure on how the homogeneity of the sequence affects the
number of correct hits returned, it is shown in Figure 5.8. The homogeneity
measure was created by counting the number of the different nucleotides.
And given that we define a heterogenous sequence as a sequence that con-
tains 25% adenine, 25% cytosine 25% thymine and 25% guanine we add all
the percentages deviating from this. If a sequence contains 20% adenine,
30% cytosine, 10% thymine and 50% guanine the homogeneity measure will
be 50, we subtract 25 from all percentages and take the absolute value from
the subtraction and then add them together. This gives us a simple measure
on how the diversity of the query sequence is.

The measure does not take into account where in the sequence the nu-
cleotides appear.
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Chapter 6

Conclusion

In this chapter we present our conclusions, based upon the findings in the
evaluation chapter.

6.1 Research questions

In the beginning of this thesis we asked two questions, the first was ”is it
possible to translate a DNA sequence to an image?”. The answer for this
is clearly, yes. As presented in chapter 4 there was two main algorithms
presented that could translate a DNA sequence to an image.

The second question was, ”is it possible to use this image in a content
based information retrieval system to find DNA sequences?”, this answer to
this question is a bit faceted. We did succeed to create images and index
these images in a CBIR system, and we were able to search this system with
a genome sequence and get results.

The significance of these results are the central point in answering the
question. As mentioned we presented two different algorithms for translat-
ing the nucleotide sequences to images. The most novice approach simply
translated blocks of n-nucleotides to a pixel value and added that to an
image. This approach performed far better than first imagined, and it per-
formed even better with some post-processing of the images (especially with
700% scaling).

The second approach was much more complex, and was a bit slower in
the translation process than the first, it outperformed the novice approach
on low evolutionary distances between the subject sequence and the query
sequence, but the number of hits quickly dropped.

The both approaches show great promise, especially the frequency ap-

81



82 CHAPTER 6. CONCLUSION

proach, but it has some quirks that have to be worked out before implement-
ing a system to ”compete” with the currently used nucleotide searching sys-
tems. The frequency approach is too sensitive to changes in the nucleotide
sequences(mutation), and also it has an expected sensitivity of genome se-
quence length. The novel RGBA approach is not as sensitive to mutation as
the frequency approach, but did not preform nearly as good as the frequency
approach.

The results from all approaches show that, yes, it is possible to retrieve
genome sequences, translated to an image, with a general purpose CBIR
system.

6.2 Implications

As we have stated, it is in fact possible to query a CBIR system with images
generated from DNA sequences, so, what implications does this make?

First of all it shows that there is a field of DNA searching that shows
some potential, by default a CBIR system should outperform the popular
DNA search methods in terms of speed.

Secondly, the fuzziness of the search in a CBIR system is far greater
than the ones in BLAST/FASTA by default, and to achieve this fuzziness
in those systems you have to trade it off with performance.

6.3 Drawbacks

Although we can achieve broader searches with higher performance with a
CBIR approach, there are some drawbacks. One of the clear drawbacks is the
lack of distinct distance measures between two sequences in our approach,
and this is quite central in determining if there are some relationship between
two sequences.

6.4 Limitations

In the approaches outlined in this thesis there are some clear limitations and
issues which are not addressed. The first issue, is the way we calculate the
image dimensions,

√
sequencelength, especially in the frequency approach,

this will change the image quite much when you adjust the length of the
sequence. In both approaches it will change in the texture feature dimen-
sion, but in the frequency approach it will also change in the color feature
dimension.
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Another issue is the favoritism of longer DNA sequences versus short
ones, in the results presented in Chapter 5 we showed a graph displaying
this. And this is a huge limitation of the approaches, but with some further
work it can most probably be solved.

6.5 Contribution

As shown, genome search in a CBIR system is a viable concept, and it chal-
lenges the current techniques, and the current usages of genome searching
systems, this in it self is a contribution. If one could create a system that
performs as well (in terms of finding the genes) as the current methods,
but only faster and with better broadness of the search one could in fact
make such systems more available to run on non-specialized hardware with
low performance and it still is quite fast. One huge advantage is also the
index sizes, in a BLAST/FASTA index you have to store the sequences in
their entirety, this results in huge indexes and thus slower speeds. In our
test data the BLAST index was a total of 521 Megabytes the corresponding
index in the CBIR system was 25 Megabytes, this gives greater speeds but
also greater portability of the systems.

6.6 Future work

Since this thesis only deals with the possibility of using CBIR in a DNA
search context there are some ”wrinkles” to iron out, and for further devel-
opment of this approach we have some thoughts.

6.6.1 Sequence length normalization

As mentioned in Section 4.1.1, the homology in size between the sequences
has been a problem. This is a issue that should be addressed, and as we see it
there are two possible solutions for solving this problem, input normalization
or output normalization.

Input normalization is the process of reducing the size of the large input
sequences to the system, by means of a lossy compression algorithm. This
will give less differing sizes of the resulting images.

Output normalization will try to do the same thing, but instead of
reducing the size of the actual DNA sequences we scale the larger images
down to a more normalized size.
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6.6.2 Post processing of images

Post processing can make great improvements on the uniqueness of the im-
ages created, especially with our frequency approach. Typical post process-
ing algorithms will include image filters like, thresholding, bleeding, blurring
and noise reduction.

Thresholding will reduce areas of low color values. This would prob-
ably fit nicely with the frequency approach, and especially compared with
bleeding.

Bleeding will make the prominent regions of a certain color become
bigger. Blurring will also reduce some noise aswell as the typical noise
reduction algorithms like sobel masks.

6.6.3 Sub-picture matching

The ability to match subsequences in images is also something that has to
be explored before publishing a finished system, this means that you have to
figure out a new technique for calculating the image dimensions, and maybe
a different process when submitting a query DNA sequence.

6.6.4 Custom CBIR systems/Multiple CBIR systems

One should also look into CBIR systems with other feature descriptors and
other techniques for feature extraction in order to get the best results, or
one could in fact construct a custom CBIR system, based upon findings in
this report, that can tackle the issues in a better way than a general purpose
CBIR system such as LIRE.

6.6.5 Other translation approaches

The most important work is to take the experiences made in this report
and use these to construct new algorithms for the translation of the DNA
sequences, and maybe look into also translating protein sequences.

6.6.6 Measure performance

A rigorous performance measuring between CBIR systems in a DNA con-
text and the popular BLAST/FASTA methods must be made to be able
to conclude if a DNA CBIR system is viable. But this can only be done if
the CBIR system is able to compete with the state of the art systems with
regards to precision.
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1 import java . i o . F i l e ;
2 import java . i o . Fi l eInputStream ;
3 import java . i o . IOException ;
4 import java . u t i l . L inkedList ;
5 import org . apache . l u cene . ∗ ;
6 pub l i c c l a s s Indexer {
7 pr i va te S t r i ng f i l e F o l d e r = ”” ;
8 pr i va te S t r i ng output ;
9

10 pub l i c Indexer ( S t r i ng f o l d e r , S t r i ng output ){
11 t h i s . f i l e F o l d e r = f o l d e r ;
12 t h i s . output = output ;
13 }
14 // bu i l d s the index with the images s p e c i f i e d in the path o f the const ructor
15 pub l i c void bui ldIndex ( ) throws IOException {
16 St r i ng f i l e sP a t h = f i l e F o l d e r ;
17 // get the path o f a l l the jpg images from a f o l d e r ( a method we const ruct ed )
18 St r i ng [ ] f i l eNames = g e tF i l e s I nFo lde r ( f i l e Fo l d e r , ” jpg” ) ;
19 St r i ng indexPath = output ;
20 // cr e at e document bu i l d e r
21 DocumentBuilder bu i l d e r = DocumentBuilderFactory .

getExtensiveDocumentBuilder ( ) ;
22 // cr e at e index wr i t e r with the s imple image ana l yze r
23 IndexWriter iw = new IndexWriter ( indexPath , new SimpleAnalyzer ( ) ,

t rue ) ;
24 f o r ( S t r i ng i d e n t i f i e r : f i l eNames ) {
25 // Build the Lucene Documents
26 Document doc = bu i l d e r . createDocument (new Fi l eInputStream (

f i l e sP a t h+i d e n t i f i e r ) , i d e n t i f i e r ) ;
27 // Add the Documents to the index
28 iw . addDocument( doc ) ;
29 }
30 //do some magic on the index f o r op t im i zat i on
31 iw . opt imize ( ) ;
32 // c l o s e the image wr i t i ng
33 iw . c l o s e ( ) ;
34

35 }
36 }

Listing A.1: An example of indexing with LIRE
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1 import java . awt . image . BufferedImage ;
2 import java . i o . IOException ;
3 import org . apache . l u cene . ∗ ;
4 pub l i c c l a s s LireGenomeIndex {
5 pr iv a te S t r i ng indexpath ;
6 pr iv a te PreProcess ingAlgor i thm alg ;
7 pr iv a te IndexReader r eader ;
8 pr iv a te f l o a t colorHistogramWeight = 0. 1 f ;
9 pr iv a te f l o a t co l orD i s t r i bu t i onWeigh t = 0. 1 f ;
10 pr iv a te f l o a t textureWeight = 1. 0 f ;
11 pr iv a te i n t numberOfHits = 100;
12

13 pub l i c LireGenomeIndex ( S t r i ng path , PreProcess ingAlgor i thm algor i thm ){
14 indexpath = path ;
15 a l g = algor i thm ;
16 }
17 pub l i c LireGenomeIndex ( S t r i ng path , PreProcess ingAlgor i thm algorithm , f l o a t

histogram , f l o a t d i s t r i b u t i o n , f l o a t t extu re ){
18 indexpath = path ;
19 a l g = algor i thm ;
20 colorHistogramWeight = histogram ;
21 co l orD i s t r i bu t i onWeigh t = d i s t r i b u t i o n ;
22 textureWeight = textu re ;
23 }
24 pub l i c void loadIndex ( ) throws IOException{
25 r eader = IndexReader . open ( indexpath ) ;
26 }
27 pub l i c S t r i ng [ ] search ( S t r i ng query ){
28 St r i ng [ ] r e s u l t s = nu l l ;
29 BufferedImage queryImage ;
30 ImageSearcher sear cher ;
31 ImageSearchHits h i t s ;
32 queryImage = al g . p roce s s Input ( query ) ;
33 sear cher = ImageSearcherFactory . createWeightedSearcher ( numberOfHits ,

colorHistogramWeight , co l orD i s t r i bu t ionWeight , textureWeight ) ;
34 h i t s = nu l l ;
35 try {
36 h i t s = searcher . search ( queryImage , r eader ) ;
37 } catch ( IOException e ) {
38 e . pr intStackTrace ( ) ;
39 }
40

41 r e s u l t s = new Str i ng [ h i t s . l ength ( ) ] ;
42 i f ( numberOfHits > h i t s . l ength ( ) ){
43 numberOfHits = h i t s . l ength ( ) ;
44 }
45 f o r ( i n t i = 0 ; i < numberOfHits ; i++) {
46 r e s u l t s [ i ] = h i t s . s cor e ( i ) + ” − ”+ h i t s . doc ( i ) . g e tF ie l d ( DocumentBuilder .

FIELD NAME IDENTIFIER) . s t r i ngValue ( ) ;
47 }
48 r e tu rn r e s u l t s ;
49 }
50 }

Listing A.2: Our LireGenomeIndex implementation



94 APPENDIX A. CODE LISTINGS

1 import java . i o . IOException ;
2

3 pub l i c c l a s s LireGenomeIndexSearcher {
4 pr i va te LireGenomeIndex [ ] i ndexes ;
5

6 pub l i c LireGenomeIndexSearcher ( S t r i ng [ ] indexpaths , PreProcess ingAlgor i thm [ ]
a l g s ){

7 i ndexes = new LireGenomeIndex [ indexpaths . l ength ] ;
8 f o r ( i n t i = 0 ; i < indexpaths . l ength ; i++){
9 i ndexes [ i ] = new LireGenomeIndex ( indexpaths [ i ] , a l g s [ i ] ) ;

10 }
11 }
12 pub l i c void loadIndex ( ) throws IOException{
13 f o r ( i n t i = 0 ; i < i ndexes . l ength ; i++){
14 i ndexes [ i ] . l oadIndex ( ) ;
15 }
16 }
17

18 pub l i c S t r i ng [ ] [ ] search ( S t r i ng input ){
19 St r i ng [ ] [ ] r e s u l t l i s t = new Str i ng [ i ndexes . l ength ] [ 1 0 0 ] ;
20

21 f o r ( i n t i = 0 ; i < i ndexes . l ength ; i++){
22 r e s u l t l i s t [ i ] = indexes [ i ] . search ( input ) ;
23 }
24

25 r e tu rn r e s u l t l i s t ;
26 }
27

28 }

Listing A.3: Our LireGenomeIndexSearcher implementation
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1 pub l i c BufferedImage Process ( BufferedImage image ){
2 LinkedList<Color> p i x e l s = new LinkedList<Color >() ;
3 f l o a t [ ] [ ] r e s = generateBISOfWholeSequence( ) ;
4 f l o a t [ ] a , c , t , g = nu l l ;
5 FloatFFT 1D f f t = new FloatFFT 1D (window ) ;
6 double awr , awg , awb , cwr , cwg , cwb , twr , twg , twb , gwr , gwg , gwb = 1 ;
7 i n t l ength = r es [ 0 ] . l ength ;
8 awr = cwr = twr = gwr = gwg = awb = cwb = twb = gwb = 10;
9 i n t i t e r = r es [ 0 ] . l ength−window ;
10 i n t numberofp ixe l s = ( in t ) Math . f l o o r ( ( ( jepp+1)∗window ) /2) ;
11 i n t s i z eo f image = ( i n t ) Math . f l o o r (Math . s q r t ( numberofp ixe l s ) ) ;
12 image = new BufferedImage ( s i z eo f image , s i z eo f image , BufferedImage .TYPE INT RGB) ;
13 i n t y = 0 ; i n t x = 0 ;
14 f o r ( i n t i = 0 ; i < i t e r +1; i++){
15 a = getSubBIS ( r e s [ 0 ] , window , i ) ;
16 c = getSubBIS ( r e s [ 1 ] , window , i ) ;
17 t = getSubBIS ( r e s [ 2 ] , window , i ) ;
18 g = getSubBIS ( r e s [ 3 ] , window , i ) ;
19 f f t . realForward ( a ) ;
20 f f t . realForward ( c ) ;
21 f f t . realForward ( t ) ;
22 f f t . realForward ( g ) ;
23 f o r ( i n t j = 1 ; j < Math . f l o o r ( a . l ength /2) ; j++){
24 // c a l cu l a t e spectrum values
25 double spec a = Math . s q r t ( ( a [ ( 2∗ j )+1]∗a [ (2∗ j ) +1])+(a [ (2∗ j ) ]∗ a [ (2∗ j ) ] ) ) ;
26 double spec c = Math . s q r t ( ( c [ ( 2∗ j )+1]∗ c [ (2∗ j ) +1])+(c [ (2∗ j ) ]∗ c [ (2∗ j ) ] ) ) ;
27 double sp e c t = Math . s q r t ( ( t [ ( 2∗ j )+1]∗ t [ ( 2∗ j ) +1])+(t [ (2∗ j ) ]∗ t [ ( 2∗ j ) ] ) ) ;
28 double spec g = Math . s q r t ( ( g [ ( 2∗ j )+1]∗g [ (2∗ j ) +1])+(g [ (2∗ j ) ]∗ g [ (2∗ j ) ] ) ) ;
29 // c a l cu l a t e c o l o r va lues
30 double c r = 255%Math . abs ( ( awr∗ spec a )+(twr∗ spe c t )+(cwr∗ spec c )+(gwr+spec g )

) ;
31 double c g = 255%Math . abs ( ( awg∗ spec a )+(twg∗ spe c t )+(cwg∗ spec c )+(gwg+spec g )

) ;
32 double c b = 255%Math . abs ( ( awb∗ spec a )+(twb∗ spe c t )+(cwb∗ spec c )+(gwb+spec g )

) ;
33 Color p ix = new Color ( ( i n t ) c r , ( i n t ) c g , ( i n t ) c b ) ;
34 image . setRGB (x , y , p ix . getRGB() ) ;
35 x++;
36 i f ( x == s i z eo f image ){
37 x = 0 ;
38 y++;
39 }
40 }
41 }
42 r e tu rn image ;
43 }

Listing A.4: Our frequency approach implementation in java
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1 pub l i c f l o a t [ ] getSubBIS ( f l o a t [ ] ar , i n t window , i n t o f f s e t ){
2 f l o a t [ ] r e t = new f l o a t [ window ] ;
3 try {
4 System . arraycopy ( ar , o f f s e t , ret , 0 , window ) ;
5 } catch ( Exception e ){
6 }
7 r e tu rn r e t ;
8 }
9 pr i va te f l o a t [ ] [ ] generateBISOfWholeSequence( ) {

10 LinkedList<GenomeEntity> l i s t = seq . g e tL i s t ( ) ; // seq i s a c l a s s member
11 i n t l en = l i s t . s i z e ( ) ∗10;
12 f l o a t [ ] a = new f l o a t [ l en ] ; f l o a t [ ] c = new f l o a t [ l en ] ; f l o a t [ ] t = new f l o a t [ l en

] ; f l o a t [ ] g = new f l o a t [ l en ] ; f l o a t [ ] [ ] r e s = new f l o a t [ 4 ] [ l en ] ;
13 i n t counter = 0 ;
14 f o r ( i n t i = 0 ; i < l i s t . s i z e ( ) ; i++){
15 GenomeEntity item = l i s t . get ( i ) ;
16 St r i ng subseq = item . decode ( ) ;
17 f o r ( i n t j = 0 ; j < subseq . l ength ( ) ; j++){
18 char ch = subseq . toLowerCase ( ) . charAt ( j ) ;
19 a [ counter ] = 0 ;
20 c [ counter ] = 0 ;
21 t [ counter ] = 0 ;
22 g [ counter ] = 0 ;
23 i f ( ch == ’ a ’ ){
24 a [ counter ] = 1 ;
25 } e l s e i f ( ch == ’ c ’ ){
26 c [ counter ] = 1 ;
27 } e l s e i f ( ch == ’ t ’ ){
28 t [ counter ] = 1 ;
29 } e l s e i f ( ch == ’ g ’ ){
30 g [ counter ] = 1 ;
31 }
32 counter ++;
33 }
34 }
35 r e s [ 0 ] = a ; r e s [ 1 ] = c ; r e s [ 2 ] = t ; r e s [ 3 ] = g ;
36 r e tu rn re s ;
37 }

Listing A.5: Our frequency approach implementation in java(continued)
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1 pub l i c BufferedImage Process ( BufferedImage image ) {
2 LinkedList<GenomeEntity> l i s t = seq . g e tL i s t ( ) ;
3 f o r ( i n t i = 0 ; i < l i s t . s i z e ( ) ; i++){
4 St r i ng part = l i s t . get ( i ) . decode ( ) ;
5 Color tmp = getColorFromString ( part ) ;
6 i n t y = ( in t ) Math . f l o o r ( i / image . getWidth ( ) ) ;
7 i n t x = ( i −(y∗ image . getWidth ( ) ) ) ;
8 image . setRGB (x , y , tmp . getRGB() ) ;
9 }
10

11 r e tu rn image ;
12 }
13 pr i va te Color getColorFromString ( S t r i ng input ){
14 i n t r = 0 , g = 0 ,b = 0 , a = 0 , co l or Inc r ement = 0 ;
15 i f ( input . l ength ( ) == 0){
16 r e tu rn new Color (0 , 0 , 0 , 0 ) ;
17 }
18 co l or Inc r ement = Math . round(255/ input . l ength ( ) ) ;
19 f o r ( i n t i = 0 ; i < input . l ength ( ) ; i++){
20 char nuc = input . charAt ( i ) ;
21 swi tch ( nuc ){
22 case ’ a ’ :
23 r += co l or Incr ement ;
24 break ;
25 case ’ c ’ :
26 g += co l or Incr ement ;
27 break ;
28 case ’ t ’ :
29 b += co l or Incr ement ;
30 break ;
31 case ’ g ’ :
32 a += co l or Incr ement ;
33 break ;
34 }
35

36 }
37

38 r e tu rn new Color ( r , g , b , a ) ;
39 }

Listing A.6: Our RGBA approach implementation in Java
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Figure B.1: Precision(a) and recall(b) values for the RGBA approach
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Figure B.2: Precision(a) and recall(b) values for the RGBA approach scaled
300%
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Figure B.3: Precision(a) and recall(b) values for the RGBA approach scaled
700%
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Figure B.4: Precision(a) and recall(b) values for the RGBA approach scaled
1000%
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Figure B.5: Precision(a) and recall(b) values for the frequency approach
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