
December 2008
Pauline Haddow, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Flexible Platform for Comparison of
Artificial Development Models
Ngene - An Artificial Development Framework

Tommy Anh Tuan Nguyen

Abstract

In recent years, artificial development has been introduced to evolutionary al-
gorithms as a means to overcome the scalability problem. Though in its early stages,
it has been showing a lot of promise. Many studies have been conducted to improve
our understanding of this methodology. Though many has been successful, there
have been contradicting results. Further studies have been difficult because the
results were obtained using not only different models, but on different platforms as
well. Any comparison at this point will be full of uncertainties simply because there
are too many factors to consider.

I wish to contribute to the field of artificial development with this thesis. How-
ever, there will be no comparisons of various development models, or invention of
a new model. I will leave these types tasks to better people. Instead, a platform
to build development models will be introduced. The purpose of this platform will
be made clear in course of the thesis. Two prominent models will be picked out
to be ported to this platform, and it will be shown that not only is it possible to
re-implement these models, it is also possible to reproduce the results. This feat
will demonstrate the flexibility of the framework as well the benefits of using it.

1

Acknowledgements
My deepest gratitude goes to my supervisor for her seemingly infinite wisdom and pa-
tience, and my parents for their unconditional love and support. I would also like to thank
my friends for the days I didn’t feel like working, and my girlfriend for being so patient
with me.

Last but not least, Haruhi and Chii, without whom this thesis would be nigh impossible.

2

CONTENTS 3

Contents

1 Introduction 5
1.1 Biological Development . 6
1.2 Motivation . 6
1.3 Where do we go from here? . 7

2 Development Models 8
2.1 ArtDev3D . 8

2.1.1 Concepts . 8
2.1.2 Development . 10

2.2 Artificial Development (ADCGP) . 10
2.2.1 Concepts . 10
2.2.2 Development . 12

2.3 A generic development framework . 12

3 Implementation 15
3.1 About Ngene . 15

3.1.1 Modular Design . 15
3.1.2 Why C++? . 16
3.1.3 Boost C++ Libraries . 16
3.1.4 Brief System Overview . 17

3.2 Ngene Development Framework . 19
3.2.1 Using the Framework . 22
3.2.2 ArtDev3D . 23
3.2.3 Artificial Development (ADCGP) 24

4 Experiments 27
4.1 Developing 3D shapes using ArtDev3D’s model 27

4.1.1 Sphere . 28
4.1.2 X-mas tree . 29
4.1.3 Summary . 29

4.2 Developing the French flag using artificial development 30
4.3 Performance Benchmarks . 31

5 Using the Framework to Study Models 34
5.1 Design . 34
5.2 Stability . 34

6 Conclusion 36
6.1 Further Work . 36

6.1.1 Improvements to Ngene and the Development Framework 36

A Implementing an Ngene Module 40
A.1 Fitness . 40
A.2 Genotype . 41
A.3 Mating . 42
A.4 Mutator . 42
A.5 Selector . 43

LIST OF FIGURES 4

List of Figures

1 Genotype representation in ArtDev3D . 9
2 Parameters representation in ArtDev3D 9
3 Genotype representation in artificial development 11
4 Overview of Ngene . 18
5 Overview of Ngene Development Framework 19
6 A common message implementation should let users easier distinguish the

differences in intercellular communication between different models. 20
7 Albeit different, all three models still use the same implementation of a

cell, chemicals and proteins, and receive the same messages. 21
8 An example of how one can implement MyDevExperiment. 22
9 On the left, original ArtDev3D flow. The changed flow on the right. 25
10 ArtDev3D: Sphere results . 28
11 ArtDev3D: X-mas tree results . 29
12 ArtDev3D vs. ArtDev3D.N: Speed . 32
13 ArtDev3D vs. ArtDev3D.N: Memory usage 33
14 ADCGP vs. ArtDev3D: Use of messages 34

1 INTRODUCTION 5

1 Introduction

Humans have always been limited in their capacity and knowledge. There are problems
that we cannot solve by brain power alone. The first computers came therefore into
existence, made to do tasks that we found too heavy, tedious or even difficult. Today, this
has become more of a reliance than ever. Computers has not only become ridiculously
faster but are also practically everywhere. Whether we like it or not, it has become
essential for a modern society.

However, the problem with computers, just like it was aeons ago, is that it still needs
to be told what to do. If a problem is too difficult for us to describe precisely, it cannot
solve it. Even if we do manage to program it to solve a very difficult problem, it may
use too much resources. Sometimes, it is better to get an estimation of the answer. A
genetic algorithm is a search method that has this ability. It may not find optimal results
but more often than not, the results are sufficiently satisfactory for given problem. This
comes in handy when thorough search is too costly or not possible.

While this method has been applied in many applications already, there are still aspects
of it that need to be addressed. One major concern is that of scalability. The most
common way to map a genotype to phenotype, as it was back in the beginning, is often
directly. An alteration in a single trait in the genotype had a direct effect on traits in
the phenotype. For small applications, this method is sufficiently efficient. However, as
problems increase in size and complexity, the genotype too will grow larger and more
complex. Eventually, it will become computationally infeasible as well.

Since genetic algorithms are inspired by natural selection, it is only obvious that
possible solutions to the scalability problem could also stem from biology. If we look at
how some organisms came to be, we know that most of these start out as a single cell. The
cell divides and become two cells. These cells divides once more two become four, and
this process is kept going until it reaches maturity. The whole process is coordinated with
the help of the DNA and some interactions. This is nature’s way to tackle the scalability
problem. Drawing inspiration from genome and cellular activities, many development
models have been created. Whether they make use of a DNA or applies a different
approach, they all inherit the idea of a single entity, duplicating itself until a whole
organism is grown to a satisfactory size and shape. As it turns out, it was difficult to
learn from these models. It was hard to determine what worked, or didn’t. It seemed
that every model had its own quirks, showing that some properties are beneficial while
others claimed the opposite. How do we then know what is right and what is wrong?
What factors had an effect on the models? How do we know it is not the model that is
at fault but a smaller detail somewhere else?

This thesis does not seek to answer such questions. Instead, it wishes to make them
disappear by introducing a common platform on which models can be implemented. If all
models utilized a common platform, many trivial factors will disappear simply because of
the fact that any model implemented within this framework will use the same implement-
ation for anything that is common in artificial development, save the model itself. As the
thesis goes on, this will hopefully become much clearer. By providing a common ground,
the focus will shift away from the underlying structure, to the models themselves. The
requirements of such a framework will come to light in the following chapters.

1 INTRODUCTION 6

1.1 Biological Development

Biological development is a term used to describe the process where organisms grow and
develop. In humans, for example, the process in which a fertilized egg grows and develops
into a fetus is an area that is studied in biological development. This process can be
applied to computer science but instead of organisms, it may be a picture, a solution to
a problem, or even software to control a robot.

The following listing is compiled words, and their meaning, that are commonly used
when discussing artificial development in general and particularly in this thesis.

• ADCGP or artificial development is the shorter name for artificial development
using Cartesian genetic programming. Method and model invented by Dr. Julian
F. Miller. A cell program based model.

• ArtDev3D is the other model discussed in this thesis. Written by Johan Høye for
his master’s thesis. A DNA based model.

• Cell program is the program of a cell. However, it is loosely used as a term for all
the cellular activities that take place in a development step when talking about the
framework.

• Artificial/computational development are the terms used to describe biological
development applied to computers.

• Development step or tick is a single unit of growth. With each step, cells partake
in activities that contribute to the growth of an organism.

• Evolutionary algorithm is a search method inspired by biology and applies con-
cepts of reproduction, mutation and selection to computers.

• Genetic algorithm is a class of evolutionary algorithms that are often used to
solve optimization problems

• Genetic programming is another class of evolutionary algorithms. This technique
is applied when trying to find an algorithm that is able to solve some predefined
tasks.

• Genotype is the genetics of an organism. It is the “recipe” for an organism.

• Organism refers to the entity that contains a genotype and cells. The state of an
organism starts out with a single cell to “fully” grown.

• Phenotype is the end result of a genotype. It is the resultant organism that we
see when it is fully grown.

1.2 Motivation

While evolutionary computation has been around for a while, artificial development is
still at an early stage. There is still a lot to study in this field. Though researchers
have already made great progress in this field, there are things that aren’t quite figured
out yet. When ArtDev3D was presented two years ago, it created a controversy because
it showed that chemicals weren’t all that beneficial to development. This was direct
contradiction to other articles in the field. For a couple of years already, chemicals have
shown to be beneficial when working with artificial development. However, it was then
later discovered that chemicals were used differently in these models. While chemicals
were used to exchange information between cells, ArtDev3D only used it internally to

1 INTRODUCTION 7

activate proteins. There may also have been other factors that affected this outcome,
though it was fairly difficult to determine. This only raised more questions than there
were answers for. Of course, more thorough studies could have been done but these
models were built on different platforms as well. Any study of these would have to take
into account too many factors to give reliable results.

One may then ask if there isn’t anything that can be done to make these uncertainties
go away. First of all, it is nearly impossible to remove any uncertainty, as this will always
be present to some extent. However, it is entirely possible to reduce the number of factors
such that the equation balances out. This can be achieved by introducing a common
ground that every model will share except for what makes it unique. Just like how an
operating system provides all the necessary infrastructure so that different softwares can
be useful to us, a similar platform should also exist to provide any development model
what is needed. Such a platform will not eliminate factors but make the factors not
matter because they are the same for all models. All cells will have the same definition in
all models. All models will use the same development algorithm. The focus shift to the
models will clearly show what the differences are, hopefully making studies of this nature
even more fruitful than it has been thus far.

1.3 Where do we go from here?

In the following chapter, we will have a look at the two models that have been chosen
for this project. We will look at the idea behind them and see how they work. We will
also discuss their differences and explain why a framework is necessary. We will also
be looking at requirements for such a framework. In chapter 3, we shall take a look
at the implementation of the framework and the porting of mentioned models over to
the framework. This section will describe the most important details that is relevant to
their re-implementation. Any changes made during this process will be highlighted and
explained. With chapter 4, it will be shown that it is possible to reproduce the results
gotten in past experiments. Some experiments will be picked out and tested on the new
implementations of two models. The results are then compared and discussed. This is a
necessary step in order to prove that it is in fact possible to implement different models
within the framework.

2 DEVELOPMENT MODELS 8

2 Development Models

There are many development models in the field that are inspired by nature. Though
the concept of biological development does not change much, it is very much still a topic
under discussion and there are still uncharted territories. It is therefore not surprising
that these models differ not only in implementation, but also the biological ideas behind
it. In this chapter, we will take a look at two models. We’ll see how they work, and discuss
their differences. These models are important for this thesis because they are believed
to represent the greatest difference in development models to date. The reason behind
this is to make sure the framework will cover as much ground as possible. Because it is
intended to be generic, it would be sad if a model did not fit in. This chapter will only go
into the concepts that these models are based. More detailed and technical walkthrough
will be saved for the next chapter, where they are re-implemented.

2.1 ArtDev3D

In 2006, Johan Høye handed in his master’s thesis[1] based on his own model of biological
development. Its aim was to draw inspiration from biology but simplify concepts to avoid
dwelling too deep into the underlying and less understood concepts. His model relies on
DNA with a small control program in the cells.

2.1.1 Concepts

To understand this model, we will have to touch a few topics in biology. Like with humans,
everything starts out with a single cell, the zygote. The zygote divides and the organism
has grown to consist of two cells. These cells divide again to become four cells. This
process repeats itself in a controlled fashion with the help of the DNA, the recipe of life.
It tells which proteins to synthesize, how and when. The proteins, in turn, carry out all
the actual work inside the cell. In his model, only four such tasks were defined at the
time, though more could have been added:

• Change the type of the cell

• Regulate chemical levels

• “Request” cell division in several directions

• Synthesize/transcribe more proteins

I use “request” here because of the way this model works. The proteins queue a request
for the cell to perform division in some directions. These requests are accumulated and
if the stimuli levels are above a given threshold, it will be actualized. The accumulation
works like a voting system, once there are enough votes for a particular direction, cell
division will occur in that direction. The only difference is, instead of voting, the proteins
assert a certain amount of stimuli for a direction and the sum of all assertions must be
above a threshold to activate that action. Note that division can occur simultaneously in
many directions. Likewise, the proteins also request for a cell type change in the same
manner. In order to be old enough to vote, proteins must activated. This will be explained
momentarily.

The cell is also “programmed” to perform a number of tasks independent of the DNA.
Implemented functions include exchange of information with nearby cells, and performing

2 DEVELOPMENT MODELS 9

the actual cell division in requested directions. This set of functions are fixed for every
cell and is not subject to evolution like the DNA is.

Protein Sequence

life

meta

type

 GeneGeneGeneGene

 parameterparameterparameterparameter

 chemicalschemicalschemicalschemicals

 parameterparameterparameterparameter

Figure 1: Genotype representation in ArtDev3D

The genotype of this model (see fig 1), the DNA, is an array with genes. The genes
carry a recipe for a protein and a genetic sequence. The gene sequence is used to find genes
with desired proteins to synthesize. The protein type determines what its function is. If
a protein that changes the cell’s type is a type, then proteins that regulate chemicals are
another. How the protein is activated, is stored in the neighbours and chemicals array. The
neighbours array stores the desired types of nearby cells. The neighbourhood in this model
is defined to be the cells that a cell are in direct contact with in free space. That is above,
below, left, right, front and back. The chemicals array stores the desired chemical levels
in the cell. Once nearby cells’ types correspond to the neighbourhood criteria, and the
chemical levels in the cell are equal to or above the criteria of the protein, it is activated.
Data in meta contains only one of two things, a cell type or a genetic sequence. These are
used by the cell-type-changing and transcribing proteins respectively. The regulating and
growth proteins only use the parameters. Figure 2 shows how the parameters are used to
store the values to adjust the chemicals in a cell. Likewise, the proteins can store stimuli
for each direction it wishes the cell to duplicate to.

2.8121.0020.4521.243

0.000-0.2001.3370.028

2.8120.8021.7891.271

+

=

Chemical levels in cell:

Parameters of a regulating protein:

New chemical levels in cell:

Figure 2: Parameters representation in ArtDev3D

The genes are implemented this way in order to make it possible to copy whole genes
during cross over, while at the same time, opening up the possibility to mutate any of
these properties.

2 DEVELOPMENT MODELS 10

2.1.2 Development

Development starts with an “empty” organism. The genotype, or the DNA, is copied
into a cell, which is then inserted into the organism. The organism now contains a single
cell with DNA. Since this is the first cell, there is a special routine that will take place.
The cell will “scan” through the DNA and synthesize all proteins it can find. This is the
initialization stage. Once completed it is ready for development. Every development step,
all cells will execute the same set of operations as follows:

1. Determine which proteins are active.

2. Have all active proteins request an action.

3. Accumulate actions and execute them.

Note that while the DNA indirectly requests actions upon the cell through the proteins,
the cell performs the real work like regulating the chemicals and proteins behind the scene.
The cell functions limit what the DNA can do, but at the same time, the DNA can affect
both the cell and its surroundings using proteins as its proxy.

The development ends when a number of steps have passed, and the organism is rated
based on how similar it is to the target phenotype. In this case, the targets are usually
simple three-dimensional shapes.

While working with this model, it was discovered that the development algorithm does
not develop all cells simultaneously. Usually, all cells must receive or gather information
on nearby cells before any actions are executed. This is not the case here. Every cell
gathers information and executes action in one go. So when the next cell gathers inform-
ation, there will be “new” information mixed in. This flow is described in more detail in
chapter 3.2.2. However, the model seem to work rather well regardless. Besides being able
to develop target shapes, Høye’s experiments also showed a number of interesting things.
The initial number of don’t-care-neighbours, i.e. the number of neighbours that can be
of any type, had a negative impact on the growth of an organism when lowered. It was
clearly best to make the first few cells indifferent to the neighbouring cells’ types. It was
also shown that having a higher number of chemical types in the cells only contributed to
making it harder to correctly develop the target shapes. This is most interesting because
this is a clear contradiction to the results achieved by the model we are going to discuss in
the following section. It is inspired by intercellular communication by means of chemicals
and types of nearby cells, and has been shown to work very well.

2.2 Artificial Development (ADCGP)

Artificial development using Cartesian genetic programming is built on a genetic program
invented by Julian Miller in 1998. The following description of what the model is and
how it works is based on a number of articles, but mostly from [2] and [3]. There may
therefore be discrepancies compared to his latest work. The model is based on developing
a feed-forward graph that maps an input to an output, or a digital circuit in a layman’s
term.

2.2.1 Concepts

The model focuses a great deal on intercellular communication. In biology, this is achieved
by means of secreting chemicals through the cell’s membrane. The same membrane is also

2 DEVELOPMENT MODELS 11

used to receive chemicals from other cells. Based on the presence of some chemicals and
the types of nearby cells, a cell will perform a set of operations to see if a change in cell
type is needed, and in which directions it should divide itself to.

10: XOR10: XOR

2: AND2: AND

Input: 0-90

0

...

89

.

.

.

0

...

.

.

.

Layer 1 Layer 2

...461032507

Genotype

Figure 3: Genotype representation in artificial development

The genotype of this model (fig. 3) is a string of numbers that make up a feed forward
circuit. This is represented as a set of four numbers where the first three point to a node,
and the last number denotes which function to perform. The input to this function is
the output of the nodes that the first three point to. We will see what this means in a
moment.

In the simplified figure above (some gates aren’t connected to avoid clutter), the input
string consists of 90 bits, denoted 0 up to and including 89. Every gate, or node, are
denoted 90-n, where n is the number of nodes. This means that the first gate we see
in layer 1, is denoted 90, and the one under it is 91. Now we look at the genotype. As
mentioned, it consists of four numbers. 7, 50, and 32 point to the corresponding bits in
the input string, i.e. 7th, 50th and 32nd bits of the input string on the left. These bits are
fed to the gate with a function identified by the fourth number. In this case, it is 10, or
an XOR gate. If an input number was higher than 89, it would be pointing to the output
of a gate instead of the input string. The second node in layer two, gets its inputs from
two nodes in the first layer. The last few numbers of a genotype do not describe a circuit.
They still point to different bits, but they are no longer inputs to a function. These bits
will make up the output string instead. Note that the number of inputs to any gate, can
be of any number as long as it is greater than 2, and is consistent.

As opposed to ArtDev3D, every cellular activity is evolved. Nothing is programmed
directly into the cell. Consequently, the evolved cell program can be difficult to analyze.
The gates seen in the figure, if written down, are just a series of Boolean operations with
no apparent meaning to the average human mind.

2 DEVELOPMENT MODELS 12

2.2.2 Development

There are several ways to start development with this model. One way is to represent
the organism as a 2d grid filled with cells and alternately give them maximum and no
chemicals. If the grid was a chess board, the white cells will have maximum chemicals
and the black ones have none. The other way, and the way it is implemented here, is to
start like ArtDev3D with a single cell in the centre and give it a maximum amount of
chemicals. The cell program can then be executed. As the cell program is implemented
entirely by evolution (and chance), explanation of what happens inside the cell is nearly
impossible. Whatever happens in the cell, the output will determine whether or not the
type of the cell should change, whether the cell should perform division in a direction,
and how much chemicals the potentially new cell should be given.

2.3 A generic development framework

Clearly, there are many differences that can make it difficult to compare these two models.
As can be seen above, there are many biological concepts used in the models that do not
overlap. They are based entirely on different ideas, and on top of that, are implemented
differently. In one model the cell program is evolved through many generations to achieve
intended effect, while in the other, the cell does not have a program in the same sense.
It is present only to do the DNA’s bidding. The program is not subject to change, only
the DNA is. The most prominent difference between the two, however, is perhaps how
cellular interaction takes place, and the results they’ve been given.

In ADCGP, the cells communicate with each other using chemicals. The amount of
chemicals exchanged, along with nearby cells’ types determine what will occur in the cell
in a development step. In ArtDev3D, communication happens without the chemicals.
The state of the neighbourhood alone make up the external signals that contribute to
determine whether or not some proteins are activated. Chemicals in ArtDev3D are used
internally only and are not exchanged. Furthermore, it has shown that the number of
chemical types is inversely related to fitness. Quite the opposite of how ADCGP is
reported to work. One can place these models in their own end of the scale. Because of
this controversy, there are discussions as to whether chemicals really are necessary.

These are only two models in a relatively new field where a lot of research is still
ongoing. How can we tell why something is working for one model, and not for the other?
What will happen when a third model gives a third result? These kinds of questions can
be difficult to answer to any degree of certainty with so many factors to consider. But
these are the kinds of questions that one may want answers for.

To solve this problem, one can try and nullify the impact these factors. In order to
do so, there is a need to identify which factors are in fact having this kind of an effect on
a model. Once identified, these factors can be nullified by making it equal for all models.
This means, for instance, that a definition or concept used in artificial development, must
be the very same in all models. As long as the definitions and/or concepts are generic
enough, this should pose no problem for any model. This thesis proposes a framework
that will provide such a structure, and that is generic enough for any development model,
all without forcing any comprimises. Any model implemented within this framework will
have a much clearer structure, making it much easier to make comparisons and studies.
The following points are requirements for what such a model should include, and why
they are identified as a difference factor:

2 DEVELOPMENT MODELS 13

• An evolutionary algorithm

Using a common algorithm will eliminate discussions on whether or not a certain
algorithm is better than another. The focus should be on the development model,
and not the genetic algorithm that doesn’t work very well for one model.

• A development algorithm

Most of the models use the same basic algorithm for development, i.e. with every
development step, every cell in an organism is told to execute their program. This
occurs for a configurable number of steps, and varies very little from model to
model. Hence, there is no need to implement this algorithm every time, making
models different for no good reason. In cases such as with ArtDev3D, this will
automatically address the issue with simultaneous cell development as well.

• A common messaging system

Especially with these two models, there are different things that go into a message
that is sent to nearby cells. A common message should be able to contain most
of a cell’s properties while constrict the messages to just that and nothing more.
The user can just choose the relevant parts of a message for his or her model.
When comparing, one should be able to say that two models differ because one uses
chemicals while the other uses both chemicals and cell types. This is made possible
because they are both still using the same message, only not all parts of it.

• Common implementation of concepts

It is important that a cell is always a cell, regardless of which model we are talking
about. The definition of a cell should not change because a model wants it differently.
Likewise, there should be only one definition for chemicals, organisms and proteins.
While they are restricted and enforced on the user, it should also be generic enough
to implement any model.

• Protecting the organism

Access to the organism should be limited to avoid accidental tampering. Cell divi-
sion should occur by telling the organism, through a function call, to add a cell in
a particular location. All information regarding the cellular neighbourhood should
already be available through the messaging system. As such, mechanisms should
also be available to check whether a cell in a particular location exists or if it will
be occupied by a new cell. This is to enable checks prior to performing cell division.

There are several benefits to using such a framework. First and foremost, it will cut
down on implementation time. Such a model will allow a user to concentrate wholly on
their model and not spend time implementing the most suitable evolutionary algorithm,
or finding out whether or not the messaging system was implemented correctly. Instead,
the user need only use what is already there and just fill in the blanks. Secondly, the
implementation can be guaranteed to work. As the framework matures, the user can be
assured that if something does not work, it is most likely their model and not because of a
bug elsewhere in the system. This is a typical scenario with independent implementations.
Finally, and probably most importantly, the framework will hopefully be able to reduce
the number of factors that have an effect on the outcome of a model. This reduction will
consequently lead to clearer studies and better results.

2 DEVELOPMENT MODELS 14

We’ve seen that these two models are quite different from one another, which is why
they will serve as an excellent starting point to implement the framework. As one of
the criteria for the framework is to be generic, this will form the first step towards that
important requirement. However, being able to implement these models does not mean
everything. It should also be able to perform just as well as these did originally. There is
no point in having a fancy framework like this, if it cannot deliver as well. We will take
a look at this later. First, we will have a look at the implementation of the framework,
and re-implement these two models within the framework.

3 IMPLEMENTATION 15

3 Implementation

In this chapter, we will introduce the genetic engine that will form the basis for the
development framework. Much of the focus will lie on performance and making things
logical. A brief introduction to using the framework will be held. We will also have a
closer look at the two models discussed in the previous chapter. This time around, it will
be a little more technical.

3.1 About Ngene

Ngene is a flexible, generic, multi-purpose genetic algorithm engine written in C++
with heavy emphasis on performance and flexibility. The engine is divided into logical
modules that can easily be interchanged or extended upon in order to fit the inten-
ded purpose. A sub-goal of this engine is also portability. Anybody should be able to
use this engine on their platform of choice, regardless of whether they are sitting on
Microsoft R©WindowsTMor Unix, and hardware based on Intel R©Architecture or Power
Architecture.

The prototype for this engine started out as an assignment for a sub-symbolic artificial
intelligence course. It was written in Python, which later proved to be too slow for this
kind of application, and later partially ported to C++ because I wanted to learn the
language at the time. The project got lost in a pile of other assignments and was never
heard from again. The engine was finally picked up again, re-designed and completed for
the purpose of this thesis.

3.1.1 Modular Design

The modular design of Ngene is the heart of it all. In order to achieve maximum flexibility,
the engine should be able to change any of its parts without having to do anything special.
Should the user feel like changing the mutation method, this should be as easy as changing
a single line in a configuration file. This is most useful because different experiments
may require different genotypes or any other modules. With that in mind, the design is
therefore broken into the following logical modules:

• Core - The genetic algorithm itself

• Fitness - Assesses the fitness of a genotype

• Genotype - Generates the genotype and translates them to phenotype

• Mating - Crosses two genotypes

• Mutator - Mutates a genotype

• Selector - Randomly selects a genotype

Each of these modules are like the parts of a car. Roulette selection can be exchanged
for tournament selection, just like how the motor can be exchanged for another to enhance
its performance. Of course, without the technical difficulties involved when changing a car
engine. This modular design will allow users to swap a module without prior knowledge
of programming. In fact, writing code will not be needed at all unless a new module is
required. This design will also keep the code much cleaner and easier to maintain.

3 IMPLEMENTATION 16

3.1.2 Why C++?

In a sense, one can say that this project was made possible because of my prototype
in Python. It taught me many higher level concepts that is practically non-existent in
lower level languages such as C++. Without it, I probably wouldn’t have been able to
bring the project to the level it is today. Especially without the concept of a dynamic
type, the idea of a container that can contain anything from an integer, to a string, to a
floating type number, I would still have trouble trying to compensate for it with complex
algorithms to deal with raw data pointers. Most importantly, it taught me the importance
of optimization and use of libraries.

Choosing a programming language depends on what kind of application you want to
write. A simple program with no special requirements can be written in any language.
For instance, a mail client written in Python will perform equally well as any other
client because the focus lies on fetching and displaying e-mails and the ability to manage
them in an easy way. The features are more important than the extra two milliseconds
it takes to perform a query. However, there are applications for which performance is
more important than anything. Arguably, such programs should be written in one of
two ways: In assembly (or machine code) or C/C+. While assembly is rarely used these
days due to being practically unreadable for mortals, C and C++ is often used for time
critical applications. Unlike languages that depend on a virtual machine (C#, Java), or
an interpreter (some LISP dialects, Python), code written in C/C++ is compiled directly
to machine code before executed, often yielding much better performance.

C++ is thought of as being a middle level language. It has the advantages of both
the lower (machine code) and higher level languages, but also the inherent disadvantages.
For example, all memory management must be explicitly handled in the code. C++ does
not have a garbage collector typically found in higher level languages. This means that
we have to be extra careful of de-allocating memory to avoid leaks, and prevent access
of invalid memory addresses. Furthermore, C++ doesn’t come with as big a convenience
library as those found in aforementioned languages. Such libraries save a lot of time,
eliminating rewriting often used algorithms and the headache of debugging faulty code.
Fortunately, efforts are being made to ease the implementation through external libraries.

3.1.3 Boost C++ Libraries

Boost1 is a collection of libraries which complement the C++ Standard Library (STL).
Ngene makes use of this collection, saving time and effort, and guaranteeing that such
code works as it should.

Boost.Any [4] A problem with writing a generic genetic algorithm in a strongly typed
programming language, is that different studies require different data types to be passed
around the system. ADCGP, for instance, uses integers to implement its genotype, while
ArtDev3D uses a custom defined type. In other models, there may even be a mix of
different types. It is impossible to foresee what may or may not be used, and we are thus
forced to abstract this away. Unfortunately, C++ will not allow an integer variable to
store any other data type than an integer. In a higher level language like Python, there
exists a container that can store any type of data:

>>> foo = 1 + 2

1http://www.boost.org/

3 IMPLEMENTATION 17

>>> print foo

3

>>> foo = "awesome"

>>> print foo

awesome

>>> _

Doing something similar in C++ would simply give us a syntax error. To make
such a container in C++, will require some coding. Fortunately, this has already been
implemented and is freely available as part of Boost. The modular design would otherwise
not work without it, at least not within given time constraint. The container, called
Boost.Any, does not differ much from the one found in Python and comes only at the
cheap cost of requiring a type-casting before the data can be handled as normal.

Boost Random Number Library [5] Another problem with genetic algorithms and
development in general is implementing a good pseudo-random number generator. Ngene
uses the implementation of Mersenne twister pseudo-random number generator also found
in the Boost libraries. This generator was chosen for its long period (219937− 1 or approx-
imately 4.3 ∗ 106001), and because it is relatively fast compared to other algorithms. It
also passes a number of tests for randomness, including Diehard2 and most of the stricter
TestU01 Crush3 randomness tests.

3.1.4 Brief System Overview

Figure 4 shows a brief overview of how Ngene is put together. At start-up, three of these
parts are responsible for what must take place before anything can be run in accordance
with the user’s parameters. ConfigManager takes care of reading the configuration file and
creating a settings object that every other parts have access to. Once the configuration
file has been parsed, PluginManager will use this object to find out which modules it’s
going load. If the user specified tournament selector, it will load the tournament module
and make it ready for the genetic engine. When every module is loaded, Logger will use
the same settings object to find out how it should log the current run, whether it should
plot a fitness/generation graph or just print out the progress on the screen. By now, the
genetic algorithm will start. It is a very simple algorithm:

1. An initial population is randomly generated.

2. Specimens are randomly selected for crossover.

3. Mutate an offspring at random.

4. Repeat step 2 until the offspring population is of satisfactory size.

5. Replace adult population with offspring population.

6. Repeat process from step 2 until the maximum number of generations is reached,
or a perfect Specimen is found.

7. Write log/graph and final Specimen to disk.

2A collection of tests to measure the quality of the randomness of the generator, developed by George
Marsaglia.

3Another collection of tests, developed by Pierre L’Ecuyer and Richard Simard.

3 IMPLEMENTATION 18

Ngene

+parse() : const Config

-conf_file : const char *

ConfigManager

+plot()

«interface»
IPlotter

+get_plotter() : IPlotter *

-config : const Config *
-modules : std::vector<const char *> *
-plotter : IPlotter *
-log_file : string

PlotterFactory

PluginManager

+log()

-timestamp : char[]
-plotter : IPlotter *

Logger

+next() : double
+next_int() : int

Random
-age : mutable unsigned int
-fitness : double
-genotype : Genotype

Specimen

1

1

1

1

1

1

+assess()
+assign_phenotype_function()
+initiate()
+name() : const char *

«interface»
Fitness

+initiate()
+phenotype()
+seed()
+species() : const char *
+str() : const char *

«interface»
Genotype

+initiate()
+mate()
+name() : const char *
+offspring() : const unsigned int

«interface»
Mating

+initiate()
+mutate()
+name() : const char *

«interface»
Mutator

+initiate()
+gene_select()
+name() : const char *

«interface»
Selector

«uses»

«uses»

«uses»

«uses»
«uses»

«uses»

Figure 4: Overview of Ngene

The final step is the responsibility of Logger. Logger has no knowledge of what format
the Specimen should be written as. Be it a text file, an image or a proprietary format,
it will simply request the Genotype module to give it some data to write to disk. The
output format is actually coded in each Genotype module because it rarely changes for a
single experiment and/or model. Otherwise, a new module must be written anyway.

PluginManager, along with the responsibilities of loading and releasing modules, will
also act as a layer between the modules and the genetic engine itself. The engine will
never have to bother with the specifics of each module. It should be able to just tell what
a module ought to do. Of course, this requires that the modules implement a predefined
interface in order to be compatible with this layer. These are described in more detail in
the appendix.

3 IMPLEMENTATION 19

3.2 Ngene Development Framework

+genotype : const Genotype
+cells : map<Coordinates, Cell>

Organism

+type : int
+proteins : list<Protein>
+chemicals : vector<double>
+coords : Coordinates
+messages : vector<Message>

Cell

1

1..*

+type : int
+chemicals : vector<double>
+coords : Coordinates

Message
«uses»

-exchange()
-flush()
#divide_cell()
#execute()
#exists() : bool
#initialize()
#queued() : bool
+evolve()
+get_organism() : map<Coordinates, Cell> &

-organism : Organism *
-cell_buffer : map<Coordinates, Cell>
#ticks : const unsigned int

AbstractDevelopment

+life : int
+meta : int
+type : int
+neighbourhood_criteria : vector<int>
+chemical_criteria : vector<double>
+parameters : vector<double>

Protein

1

*

Figure 5: Overview of Ngene Development Framework

The downside of having such a flexible design, is that users are given too much free-
dom to implement their own modules. In fact, the engine itself is just a generic genetic
algorithm that can be used for any purpose, not just computational development. This
will be taken care of by the framework proposed in this thesis.

As mentioned in chapter 2.3, the framework will provide a code base that will sat-
isfy each and every requirement listed: A development algorithm, message exchange al-
gorithm, and implementations of common concepts such as cells and proteins. The genetic
algorithm is already provided for by Ngene. The idea of having such a platform, is to
eliminate differing factors that does not have anything to do with the models themselves,
and yet does effect the outcome. These are the factors that we need to remove in order
to make reliable studies of computational development.

Figure 5 shows how the common concepts are defined. We see that a cell is defined to
have a type, some proteins, chemicals and a message storage. These properties may be
fixed but users can choose to not use them. ADCGP, for instance, does not make use of
proteins. AbstractDevelopment is the class that implements development algorithm. In
accordance with the requirements listed in chapter 2.3, it implements functions that will
allow access to the organism while protecting it: divide cell(), exists(), queued().
Respectively, they add a new cell, checks if a cell exists in given location and checks if

3 IMPLEMENTATION 20

there will be a new cell in given location. These functions are already implemented and
ready to use except for two. Only initialize() and execute() are not. These are the
functions that the users will implement their model with. This will be described in more
detail in the following subsection.

An intercellular communication algorithm is also included. This works by providing
a number of information that can be exchanged. In figure 6, we see that a message can
consist of cell type and chemicals. Some models, say model A may only use the chemicals
part of the message while discarding everything else. For model B or C, this might not be
the case. As we saw earlier with ArtDev3D and ADCGP, the communication between the
two differs a lot. It is important that the message system can provide what is needed for
any system and still be able to clearly distinguish the differences so that we can easily take
this into consideration when comparing the two models. Use of this code base is enforced
in order to ensure that all comparison made between different development models are
based on a common ground.

+type : int
+chemicals : vector<double>
+coords : Coordinates

Message

Model A Model B Model C

«uses» «uses»
«uses»

Figure 6: A common message implementation should let users easier distinguish the differences
in intercellular communication between different models.

Figure 7 demonstrates this requirement. We can see right away that all three models
differ because model A and B use chemicals, while C uses proteins. We also see that model
B and C require a control program in addition to their cell programs. When models are
implemented using the framework, we will be able to clearly see which parts a model uses
and why it is unique compared to another model. Since a common code base is used, you
can, for example, no longer say that these models produced different results because they
ran through different development algorithms. This was the whole point with a common
code base from the beginning, it forces users to use it, thus removing this factor.

Since the framework is going to be used by many users, speed is also a concern when
designing it. It is important that the framework is not only flexible and easy to use, but
also perform relatively well compared to other implementations. The bottle-neck in these
types of systems are usually the representation of the organism. Since lots of CPU time
is spent accessing and modifying this object, effort has been spent to figure out how to
best represent these organisms. In the current implementation, a C++ Standard Library
(STL) <map> is used to store the cells using their coordinates as the key value. It is
believed that it keeps the best balance between insertion and lookup time. Alternatives
were considered and compared against each other before this decision became final.

3 IMPLEMENTATION 21

Model A Model B Model C

+type : int
+proteins : list<Protein>
+chemicals : vector<double>
+coords : Coordinates
+messages : vector<Message>

Cell

+type : int
+proteins : list<Protein>
+chemicals : vector<double>
+coords : Coordinates
+messages : vector<Message>

Cell

+type : int
+proteins : list<Protein>
+chemicals : vector<double>
+coords : Coordinates
+messages : vector<Message>

Cell

1

*

+value : double

Chemicals

Model C::ControlModule

+value : double

Chemicals

1

*

1

*

*

*

*

*

*

*

+life : int
+meta : int
+type : int
+neighbourhood_criteria : vector<int>
+chemical_criteria : vector<double>
+parameters : vector<double>

Protein

Model B::ControlModule

«implements» «implements»

Figure 7: Albeit different, all three models still use the same implementation of a cell, chemicals
and proteins, and receive the same messages.

STL <map> STL <vector> STL <ext/hash map>

element access O(log n) O(1) O(1)
insertion O(log n) O(1) O(1)

search O(log n) O(n) O(1)

At first glance, it may seem like the hash map is the best choice to implement the
organism with. However, there are some drawbacks that must be taken into consideration.
A hash map creates a unique key based on a number of properties found in the value to
be stored. The key is used to retrieve the value at some later point. Since the key is
meant to be unique for every stored element, the lookup time will be constant (O(1)) for
any element, regardless of where it is actually stored. This key is creating by a hashing
algorithm. The hashing algorithm is essential in both that it determines how uniform the
distribution will be over an array, and how well the hash table will perform overall. A too
simple hashing algorithm will often experience collisions, i.e. a lot of values will be using
the same key. When this occurs, there are several ways to handle it. Such a solution is
called a collision resolution. One such resolution is to keep values with the same key in a
list. This means that when a user wants to retrieve a value, the hash table will have to look
through every value in that list. In the worst case scenario, all values will have the same
key, suddenly making lookup time linear (O(n)) as opposed to theoretical constant time.
On the other hand, an overly complex hashing algorithm will also deteriorate performance
because more CPU cycles is spent calculating a good hash value. However, regardless of
how good the hashing algorithm is, collisions will always occur. The birthday paradox
predicts that it doesn’t take many elements before the chance of a collision exceeds 95%,

3 IMPLEMENTATION 22

even for very big arrays. It is clear that the hash table cannot guarantee its performance
advantage over the other containers. Besides, for the experiments conducted in this thesis,
the number of cells rarely exceeded 1000. If we use a <map>, which is the case here, it
will take at most ten comparisons to find an element by its key value. A good hashing
algorithm will use approximately the same number of operations to calculate a key value,
perform lookup, and resolve any collisions.

The problem with <vector> is that it is one-dimensional. A drawback is that it will
take O(n) time to look for neighbours. This can be worked around by maintaining an up
to date neighbours list for every cell. This will make lookup O(1) but increase insertion
time to O(n). <map> offers easier facilities to perform such tasks more efficiently. Later,
in chapter 6.1.1, we will discuss a custom implementation that will theoretically perform
better than mentioned containers.

3.2.1 Using the Framework

AbstractDevelopment(string parameters)
{

p = parse(parameters);
this.ticks = p.ticks;

}

void evolve(Genome g)
{

if (this->organism != 0)
delete this->organism;

this->organism = new Organism(g);
initialize();
for (unsigned int i = 0; i < ticks; i++)
{

exchange();
execute();
flush();

}
}

+initiate()
+phenotype()
+seed()
+species()
+str()
+execute()
+initialize()

MyDevExperiment

Genotype

-exchange()
-flush()
#divide_cell()
#execute()
#exists() : bool
#initialize()
#queued() : bool
+evolve()
+get_organism() : map<Coordinates, Cell> &

-organism : Organism *
-cell_buffer : map<Coordinates, Cell>
#ticks : const unsigned int

AbstractDevelopment

void execute()
{

input = exec_control_program();
output = exec_genome_program(input);

}

void initialize()
{

interpret();
generate_first_cell(this->organism);

}

Figure 8: An example of how one can implement MyDevExperiment.

The framework was designed to ease the implementation effort as much as possible.
To start implementing a model, there are some things that need to be considered. First
of all, these are the elements that no longer need to be implemented.

• An evolutionary algorithm (provided by Ngene)

• A development algorithm (provided by the framework)

• Messaging (provided by the framework)

3 IMPLEMENTATION 23

• Cells, chemicals, organisms, proteins, and other concepts (provided by the frame-
work)

The whole code base already provides the basic implementation for any model. The user
only needs to focus the following things:

• What does my organism need before development can start? This can be
everything from translating the genotype into a more functional representation (in
ADCGP, for example, to make the circuit), creating the first cell(s), to synthesizing
proteins (like in ArtDev3D), or setting the chemical level (like in ADCGP). This
is what we call the initialization step, and will be implemented in initialize().
This function will be called everytime a new organism is being developed by the
framework. The user will never have to concern themselves with how or when to
call this function.

• What does my cell do in a single development step? This is a focus on
a single cell and what it does in a single development step only. For example,
with ADCGP, cells create an input string from external signals (received through
messages) and feeds the program with the input to get an output that will determine
the cells’ actions. This is what will go into execute(). Again, as with the other
function, this will be called by the framework.

As can be clearly seen, the focus has now shifted on to the models themselves.
Currrently, in order to prevent accidental tampering, there is no way to directly access

the organism. A convenience few functions were therefore implemented to remedy this.

• divide cell() lets you tell the organism to add a cell at a given location. These
types of calls will be queued up and new cells will not be added before all cells have
been executed.

• exists() checks if there is a cell at given location in the organism

• queued() checks if any other cell has queued a cell to be added at given location,
i.e. if it has called divide cell().

For external signals, the messages array will store information from nearby cells. Note
that these are always updated before a development step, and is therefore always up to
date.

For the purpose of this thesis, two models were implemented within this framework
not only to test the flexibility and performance of this framework but also to see what is
missing and what areas need improvement. It is therefore important that these models
represent the widest spectrum of computational development.

3.2.2 ArtDev3D

Porting Johan Høye’s master’s thesis[1] to Ngene’s framework has been a matter of finding
out what occurs in a cell during a development step, and whether or not there are external
processes that needs to be accounted for. As described in chapter 2.1, the genotype of
the model does not do all the work in a cell. The cell has its own control program as well.
The program can be summarized as the following steps:

1. Clear all queued actions.

3 IMPLEMENTATION 24

2. For every active protein, queue their action requests.

3. Accumulate actions (add them together to execute in one go).

4. Execute action #1: Transcribe proteins.

5. Execute action #2: Regulate chemical levels.

6. Execute action #3: Perform cell division.

7. Execute action #4: Change cell type.

8. Remove dead proteins.

The implementation of the model might seem overwhelming at first impression. There
is a heavy use of biological concepts in the code and the simplest operation may span
across many classes, and files, as a result. This alone makes it hard to follow the code
flow, but the little system documentation that does exist, fortunately, does provide some
help although it consists mainly of commentaries in the source files themselves. While
his efforts in making it understandable are visible, it might be beneficial to flatten the
structure a bit and get rid of some of the redundant structures that are inspired by nature.
There is another reason for why this was altered as well.

In theory, such an implementation can have a negative impact on performance. When
a simple operation performed must call a function to call another function to call yet
another function and so on, can put the calling stack under strain. This may occur
because this does not happen only once, but several times every development step in a
single cell. And as we know, there are plenty of cells in an organism. Since the model is
not concerned with remodeling biology, flattening the structure as mentioned, will reduce
the number of calls and potentially improve performance.

There was also an issue that was identified and patched in the port. This was men-
tioned briefly in 2.1. In most models, cells are developed simultaneously. In order to
achieve this, information must be exchanged between all cells before a cell can execute
its functions. This is to ensure that the control program and DNA will execute based on
the current state of the organism without interfering for other cells. In ArtDev3D, this is
not properly implemented. The left logical flow in figure 9 shows the original ArtDev3D
implementation. Upon execution, the cell will start collecting requests from its proteins.
The proteins can request an action when they are activated, i.e. when the state of the cell
and its neighbours are above a threshold. The requests are queued up and then executed.
The problem with this, is that it all happens in a single step. Thus, cells that already have
had their turn before the current cell, will have an altered state. Actions are therefore
based on a mix of “newer” information from these cells, and “old” information from the
rest. When porting this code to the new framework, the cell will no longer have direct
access to other cells. Instead, it will receive messages from (or a snapshot of) nearby cells
before the development step takes place in any cell. The right logical flow in figure 9 is the
altered flow of ArtDev3D. Messages are exchanged before any cells are given control. Any
action requests are then based on information that does not change as previously. This
change may alter the outcome of the model but was addressed because the development
algorithm of the framework is already implemented. The model is merely a user of it now.

3.2.3 Artificial Development (ADCGP)

This model was implemented from scratch with help from Dr. Julian F. Miller. The model
is rather simple because the whole cell program is in the genotype. The implementation

3 IMPLEMENTATION 25

Cell program start

For every protein

Active?

No

Yes

Request action

Perform action

Development step

Check neighbours /
Exchange messages

Exchange messages

For every cell:
Cell program start

For every protein

Perform action

Active?

Request action

No

Yes

Cell program flow:
ArtDev3D

Cell program flow:
ArtDev3D (Ngene)

Figure 9: On the left, original ArtDev3D flow. The changed flow on the right.

should only need to translate the genotype into a working digital circuit and be able to
use it.

As we saw in figure 3, the genotype is an array of integers. The number of integers
depend on the number of layers and how many nodes each layer consists of. The number
of layers and nodes per layer is static. This will keep it simple, and also make the crossover
less complicated. As far as I know, this should be in line with Dr. Miller’s implementation
as well. Each node consists of four integers - three that will serve as connection points
to other nodes while the last one will point to a specific function. The function will get
its input from the connected nodes’ output. The functions implemented here are basic
Boolean operations, in addition to the four elementary mathematical operations.

• AND, MUX, NAND, NOR, OR, XNOR, XOR

• addition, division, multiplication, subtraction

Upon initialization, the engine will receive the genotype and will start translating it into
a digital circuit. The cell program is then executed:

• An input bit-string is generated from the chemical levels and types of the current
cell together with its neighbours.

• The bit-string is sent to the cell program.

• The output bit-string is parsed. Some bits will give the cell a new type, the rest
will tell the cell to divide in particular directions and how much chemicals these will
receive.

3 IMPLEMENTATION 26

• The number of chemicals in the cell is adjusted using this formula

(cij)new = 1
2
(cij)old + 1

16

∑
k,l∈N(ckl)old,

where (cij)old is the current chemical level, (cij)new is the new chemical level and∑
k,l∈N(ckl)old is the sum of the chemical levels in nearby cells (defined as the eight

immediate neighbours in 2D grid space).

The input bit-string consists of 90 bits. The first 72 bits are the chemical levels in the
cell and its eight immediate neighbours (8 bits each). The last 18 bits are the types of
the cell and its eight immediate neighbours (2 bits each).

The output bit-string consists of 74 bits. 2 bits denotes the type that the cell changes
into. The following 8 bits tells which directions the cell will duplicate itself to (1 bit for
each direction). How much chemicals these cells will have are determined by the last 64
bits (8 bits for each direction).

Dr. Miller has also provided with important information regarding his implementation
of the model. His implementation actually contains a bug that causes the program to only
read the most significant bit from the chemical bits in the neighbours. The other bits are
set to zero. When he later identified and patched this bug, he found that the bug was
actually beneficial to the model. This bug was also re-implemented in order to make it
closer to the original implementation.

4 EXPERIMENTS 27

4 Experiments

Porting the models to the new framework is only the first part of this thesis. Once the
models have been ported, I have only shown that the framework is flexible enough to
embody these models. However, without being able to reproduce the same results, it
would be like shoving the triangular piece down the square slot. It will fit eventually, but
completely defeats the purpose. It is important that for the framework to be viable, it
should be able to show that the outcome has not changed. The model should produce
the same results regardless of the fact that it has been ported to a new platform. As you
might’ve guessed, this chapter is about reproducing past results. A few experiments will
be re-conducted and the results represented and compared to the old results. We will
also be looking at the small improvements made to ArtDev3D, and see how they perform
compared to the original implementation.

4.1 Developing 3D shapes using ArtDev3D’s model

For this model, the sphere and the x-mas tree was chosen to test the new implementation
of ArtDev3D. The reason for choosing these two, is because the sphere is a relatively
simple shape to evolve and easily achieve perfect fitness. It will be perfect for testing the
accuracy of the re-implementation. The reason the normal tree is not chosen is because
it is very similar to the x-mas tree in shape, and it is almost as complex. On top of that,
ArtDev3D does equally well on both of these. The purpose of the second test is to see
how well the new implementation will do on difficult shapes.

Both of these experiments were conducted with different settings in Høye’s paper[1]
in order to see how various parameters would affect the fitness of the individuals. In this
thesis, however, a fixed set of parameters was used for simplicity’s sake. The numbers may
therefore deviate from the original results because this decision. However, the experiments
were run with settings as close to the original experiments as possible:

• Population: 1 000

• Generations: 500

• Mating rate: 90%

• Mutation rate: 10%

• Crossover: Single point

• Selection: Tournament (size=4, pressure=0.8)

And the parameters used for development:

• Development time: 12 ticks

• Protein lifespan: 5 ticks

• Cell types: 1 (sphere) / 12 (x-mas tree)

• Chemical types: 1

• Don’t-care-neighbours: 6

The experiments were run 200 times. Høye reported to have run these experiments
980 times each but with varying parameters. Considering there are many set-ups he could
have run them with, a smaller number was chosen now because only one set-up is used.
200 runs should be enough to demonstrate the point of this chapter.

4 EXPERIMENTS 28

4.1.1 Sphere

This shape seems the simplest to evolve as it is entirely symmetrical and much less complex
than other shapes. Since these experiments are about verifying that everything runs as
it should, they will always use the same parameters. The number of perfect specimens
found was recorded and presented in figure 10.

87,30 %

99,50 %

80 % 85 % 90 % 95 % 100 %

ArtDev3D (original)

ArtDev3D.N (Ngene)

Sphere: Perfect specimens evolved

Perfect specimens
evolved

Figure 10: ArtDev3D: Sphere results

Original ArtDev3D managed to evolve perfect fitness in 856 out of 980 experiments.
It is important to remember that these were run with different settings whereas we are
using the best settings available here. That is why we see a much higher percentage (199
out of 200) than the original experiments. Had we known what these parameters were
beforehand and used them, the number would probably have been much closer to the
original results. Regardless, it does show that the development framework can perform
equally well.

4 EXPERIMENTS 29

4.1.2 X-mas tree

This experiment is of a different nature than the previous one. It may not be very
scientific but should demonstrate how well Ngene performs on complex shapes compared
to ArtDev3D. No perfect specimens are expected here because ArtDev3D had a hard time
evolving one, and it is not expected for Ngene to outperform it. The highest fitness after
each run was recorded for figure .

0,98

0,95

0,00 0,20 0,40 0,60 0,80 1,00

ArtDev3D (original)

ArtDev3D.N (Ngene)

X-mas tree: Best fitness

Fitness

Figure 11: ArtDev3D: X-mas tree results

It seems that Ngene is performing rather well. Note that the highest fitness achieved
in ArtDev3D only occurred once in the 980 test runs. This experiment is but a fifth of
that, and it is not inconceivable that Ngene might be able to achieve higher fitness with a
larger sample. Interestingly, Ngene only managed to evolve fitness above 0.9 in 57 out of
200 runs. The rest were above 0.8 however. This tells us how well the model copes with
complex shapes.

4.1.3 Summary

We’ve seen that the new implementation of ArtDev3D can evolve on an equal level as the
original implementation. In chapter 3.2.2, I’ve mentioned that there was a fix applied to
the model when it was ported to the framework. From what can be seen above, it would
seem that this patch has not affected the model in any perceivable way. Whether or not
the fix is beneficial in any way, is difficult to see. It may very well be that the bug is
dormant.

4 EXPERIMENTS 30

4.2 Developing the French flag using artificial development

For the re-implementation of ADCGP model, the French flag experiment was picked out.
The purpose of this experiment is to evolve a grid of cells that resembles the French flag.
Each cell is given a type of either blue, red or white. For every cell that corresponds with
the target, one point is rewarded. The fitness is calculated from the total points scored
divided by maximum score achievable. The engine ran with the following settings:

• Population: 100

• Generations: 10 000

• Mating rate: 90%

• Mutation rate: 30%

• Crossover: Single point

• Selection: Tournament (size=4, pressure=0.8)

The target phenotype used:

Finding the right development time for this particular problem proved to be rather
difficult. It would seem that setting the development time too high not only slowed down
the whole process, it also made it harder for the organisms to evolve correctly. The
experiments started out with development time of 10 ticks and was slowly decremented
as the results were not satisfactory. The following are the best evolved organisms using 4
ticks.

It seemed odd that setting the development time one step longer would have any saying
in how the organisms would grow. To ensure that the results weren’t purely coincidental,
the experiment was repeated once more for five ticks.

These results seem to suggest that the model is not stable. Colours appear in areas
they shouldn’t be in as opposed to the previous results where the colours at least stayed
closer to each other. Note that there is a hole in the middle flag, next to the red cell in the
blue area. One can theorize that the growth continues even after target phenotype has
been evolved, hence resulting in a worse fitness. This seems to be backed up by the fact
that the engine would more frequently obtain fitness above 0.9 when using development
time of four when compared to five. Using development time of 10 also raised the number
of cells above 200.

To further investigate this issue, the phenotype was altered so that it would have a
border around the flag.

4 EXPERIMENTS 31

This new phenotype will hopefully show whether or not the model does continue to grow,
or if it manages to maintain a status quo to some extent. No changes were made to the
settings above. The tests were repeated using the new target phenotype.

Development time: 4 ticks

Development time: 5 ticks

As suspected, the average fitness dropped due to the increased size and complexity of
the phenotype. With the exception of the first flag in the second row that “bleeds” into
the border (two cells: blue on the left and white cell above the one blue cell in red cells
zone), all of them are missing cells for some reason. It seems like the model compensates
by either growing less cells or initiating cell death more often. Unfortunately, the results
can’t be called conclusive due to the nature of test. One will have to look into how the
organisms change in each development step. The tools necessary for this is unavailable
at the moment.

Another interesting thing to note is that the bug mentioned in section 3.2.3 had little
to no effect on any of the results above. In fact, the no-bug version seem to achieve higher
fitness more frequently than the bugged version by a small margin. This conflicts with
what Dr. Miller reported.

4.3 Performance Benchmarks

With regards to what has been written about ArtDev3D up to this point, I’ve only dis-
cussed the potential performance gain of this framework without showing anything con-
crete. We shall now put these claims under scrutiny, and see how fast the new ArtDev3D,
cleverly dubbed ArtDev3D.N (N for Ngene or N-hanced), really is. This simple bench-
mark test was run on an Intel R©CoreTM2 Duo E6300 with 2 GB of DDR2-RAM under
Linux 2.6.27-7. The conditions of the programs under run:

• ArtDev3D ran with JavaTMSE Runtime Environment 6 Update 10 build 33.

• ArtDev3D.N was compiled with GCC 4.3.2, with optimization flags: -O3.

• Additionally, ArtDev3D.N was also compiled with Intel R©C++ Compiler (ICC) 11.0
build 069, with optimization flags: -xHost -fast.

The same settings were used for both engines:

4 EXPERIMENTS 32

• Population: 100

• Generations: 100

• Mating rate: 90%

• Mutation rate: 30%

• Development time: 12 ticks

• Target: Sphere

Perfect termination was disabled so that the engines would not exit when perfect fit-
ness was found. This is to ensure that both engines ran for the exact same number of
generations. The test was repeated 100 times and the average time was then calculated.

00:23:24

00:19:01

00:14:42

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48

ArtDev3D (original)

ArtDev3D.N (GCC)

ArtDev3D.N (ICC)

Sphere: Average of 100 runs

Time

Figure 12: ArtDev3D vs. ArtDev3D.N: Speed

The speed gained (fig. 12) here is quite significant considering that the sample is
relatively small to perform a benchmark on. Using an open source compiler such as
GCC, Ngene is faster than ArtDev3D by 4.13 seconds. This is to be expected as C++ is
faster than Java. We also see that switching to a better compiler like ICC shaved off an
additional 4.59 seconds, making the gap 8.72 seconds. The optimizations flags were not
experimented with so the gap could potentially be increased even more. The framework
itself can still be optimized further as well. We will have a discussion regarding this topic
in chapter 6.1.1. Speed aside, it is also interesting to see how they perform memory-wise.
These numbers were taken during the experiments above.

Figure 13 shows that ArtDev3D peaks at a staggering 650 MB! The average is only a
few MB less. The main culprit for this is JavaTMVirtual Machine. It has been criticized[6]
for the garbage collector because of its ridiculous memory consumption. The reason
behind is that during allocation and de-allocation, it leaves the memory very fragmented
and has a hard time filling the gaps in between, resulting in more memory allocated
without being used entirely. Memory usage is important because lowering memory use can
also increase overall performance. The computer that these experiments were conducted
on has 2 MB of L2 cache. If a program fit into this cache, it would run significantly faster
than a program that doesn’t. Ngene peaks out at 11 MB but averages at around 7 MB
during a run.

4 EXPERIMENTS 33

650

11

0 100 200 300 400 500 600 700

ArtDev3D (original)

ArtDev3D.N (Ngene)

Sphere: Peak memory usage

MegaBytes

Figure 13: ArtDev3D vs. ArtDev3D.N: Memory usage

5 USING THE FRAMEWORK TO STUDY MODELS 34

5 Using the Framework to Study Models

By now, it has been established that the new framework is able to not only re-implement
the models but also reproduce the results. Up to now, we have only seen what is possible
technically but has yet to touch the topics that is the true purpose of the framework - the
perform studies of development models. Keep in mind that the scope of this thesis does
not include a thorough analysis of ADCGP and ArtDev3D. The following chosen topics
were picked out to demonstrate what is possible with the framework, without having to
worry about interfering factors.

5.1 Design

The design of ADCGP is very elegant. It is based on a very simple system of a digital
circuit. The cell does not need to do much other than generating input and parsing
output. In contrast, ArtDev3D handles much more complex, lower level activities such
as protein synthesis and protein requests. It is deeper rooted in biology, a property that
is reflected in the original code. On the other hand, it is possible to analyze the inner
workings of a cell in ArtDev3D because the control program is rather simple. As the
cellular activities are not evolved, it is easier to see what it does because it is of human
design. ADCGP lacks this quality because the machine gradually finds out what works
in the end. This makes it harder to predict what it is going to do.

With regards to the framework, the design choices of these two models can be easily
presented. In this example (fig. 14), I’ve chosen to compare the use of messages in both
models. This particular example was chosen because it easily demonstrates the strength
of a common platform.

+type : int
+chemicals : vector<double>
+coords : Coordinates

Message

Used by ADCGP Used by ArtDev3D

Figure 14: ADCGP vs. ArtDev3D: Use of messages

Because the framework enforces use of common yet generic definitions of concepts,
we can easily spot their differences. As with the example here, we clearly see that the
difference between the two models is the fact that only one model uses chemicals when
exchanging information. In fact, that is one of the reasons why chemicals have been
reported to complicate things. If everything else had been the same, we could definitely
say that this was the cause.

5.2 Stability

From the results we’ve seen so far, there are a number of things that can be said about
these models. Most prominently, we see that ArtDev3D is able to evolve perfect specimens
within relatively short time. With the sphere experiment, perfect fitness was achieved
within just 500 generations. What can’t be seen from the results is that it would achieve
this typically within 50 generations! In contrast, the ADCGP model requires a lot of
generations in order to reach higher fitness. At 10 000 generations, fitness rarely exceeded

5 USING THE FRAMEWORK TO STUDY MODELS 35

0.9. Even when doubling that number, the population was still improving. Obviously,
one cannot set it to run forever. The problem seemed to lie in the development method
used in the models.

In ArtDev3D, the development or growth would stop after a certain amount of steps
regardless of how long the development time. This ensures that the organisms will grow
to target shape without overgrowing. Høye demonstrated this property in his thesis[1],
and this is reflected by the model’s ability to achieve high fitness fast. From the res-
ults obtained, it seemed that it is difficult to correctly evolve desired phenotype without
knowing how many development steps will be needed. For instance, with the French flag
experiment, using four development steps was optimal compared to three or five. Three
was obviously not enough because the cells do not have the time to grow properly, while
five was too much because the cells started to “deform”. The new test showed this tend-
ency as well, but it is difficult to state anything for certain with these results. As I’ve
mentioned, one will have to develop a tool to look into each development step to ascertain
this behaviour.

6 CONCLUSION 36

6 Conclusion

Ngene Development Framework is a platform for implementing computational develop-
ment model. It was designed to enable the user to shift its focus from the technical
details of implementation to the model itself. The purpose of this framework is to provide
a common ground for different models so that any less significant differences are elimin-
ated, making a comparison more accurate as well as easier.

We have seen that it is entirely possible to implement two completely different models
using the same code base provided by the framework. As can be seen from the results,
the new implementations are able to perform just as well as the original implementations
did. We also saw that, with some changes, a model can be made to run more efficiently.

The most important part about being able to port these two models, is that we can
clearly see their differences. We can simply put them up side by side, and see, for instance,
that ArtDev3D uses only the cell type information of the messages a cell receives, whereas
ADCGP reads both cell types and chemicals. We don’t have to worry about minor details,
such as the evolutionary algorithms used or the way development was implemented. These
are already provided by the framework. The models need only use them.

6.1 Further Work

Regretfully, more experiments could have been conducted in order to perform a more
thorough comparison between ArtDev3D and ADCGP. It would be interesting to see what
the chemicals’ real role is. What would happen if chemicals were not used in ADCGP?
This is but one of the issues that can be investigated on this platform. It would also have
been beneficial to the framework to implement a third model. With only two models,
the framework may have easily been “tailored” to just these. When more models use the
framework, it will become more apparent which parts aren’t generic enough for future
models. As the purpose of this framework is to be able to compare different models, it is
quite essential that it is able to provide for any model. It shouldn’t be constricted to just
a handful of models.

6.1.1 Improvements to Ngene and the Development Framework

There are some aspects of the engine and the framework that I would have changed or
improved upon but did not have the time to do so. These changes will further enhance
the platform, both in performance and flexibility.

• Development analysis tool

An analysis tool should be able to automatically gather information regarding mod-
els implemented within the framework. It should be able to present to the user
information such as which properties of the cell are actively changed, or which parts
of a message are used. This information should be presented in such a manner that
it is easy to compare it side-by-side with another model. In the experiments conduc-
ted with ADCGP, it was difficult to tell if the model was suffering from instability or
not. This analysis tool should also be able to aid future investigations by enabling
the user to walk through and analyze each development step.

• Further optimizations

6 CONCLUSION 37

– There is a flaw in the framework that can lead to abnormal growth. The
function that is called by cells to request a division, divide cell(), does not
who it was called by, and does not check where that location is. Theoretically,
a cell could request for a new cell in an entirely different area than directly
next to it.

– Currently, the messages are gathered by looping through the cells and finding
out what their neighbours are. This is a O(n2) algorithm and can be much
improved. One way of doing it is to take a snapshot of the organism and pass
that object to the cells. The benefit of doing it this way is that it is fast (in
the order of O(n)) and it also opens up the possibility to simulate chemical
diffusion across more cells than the immediate neighbours of a cell. This will
also lead to deprecation of some convenience functions.

– The use of <map> comes with a penalty as mentioned in chapter 3.2. A three-
dimensional implementation of a <vector> should be considered as it would
give constant lookup and insertion as opposed to O(log n). It will also remove
the need to search for neighbours, as these can be accessed directly given a
cell’s coordinates.

– Ngene has implemented OpenMP4 in order to utilize multi-core CPUs. This
feature was, however, disabled because the framework is not thread-safe. As
multi-core CPUs are becoming more common, the framework should be able
to utilize such facilities.

– The Mersenne twister is often criticized for not being very elegant. There
has been suggestions that point to other implementations of a pseudo-random
number generator that outperform the Mersenne twister while maintaining
equal or better quality of randomness. There is also a new implementation
of Mersenne twister that should be considered. It is much faster and makes
use of SIMD instructions in recent CPUs. Improvements have also been done
to increase its quality of randomness. Genetic algorithms in general are very
dependent on a good random number generator, and having a fast one is only
beneficial to the whole engine. In fact, at writing moment, Mersenne twister
2.0 has already been implemented is ready to be imported into Ngene. This
has not been done yet with regards to this thesis.

– Since the new random number generator no longer depends on Boost C++
Libraries, it is a bit excessive to make the whole project depend on this library
for the dynamic container only. At writing moment, an independent imple-
mentation is ready for import but has been held back because of this thesis.
With this, Boost is no longer a dependency, and will be removed. The new
implementation will is only minor improvement to Boost::Any, but will speed
up compilation time considerably.

• Making the core interchangeable

The genetic algorithm itself should be implemented as a separate module, making it
possible to change evolutionary algorithm depending on the experiments conducted.

• Ability to swap modules mid-experiment

4http://www.openmp.org/

6 CONCLUSION 38

The possibility to swap modules based on circumstances in a population, for in-
stance, half way through an evolution or when the population is converging may
produce interesting results. This can be used to simulate genetic drift or other
natural phenomena.

REFERENCES 39

References

[1] J. Høye, “ArtDev3D: An artificial development system,” Master’s thesis, Norwegian
University of Science and Technology, 2006.

[2] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Lecture Notes in
Computer Science, vol. 1802, pp. 121–132, Springer Verlag, Berlin, 2000.

[3] J. F. Miller, “Evolving developmental programs for adaptation, morphogenesis, and
self-repair,” in Lecture Notes in Artificial Life, vol. 2801, pp. 256–265, 2003.

[4] K. Henney, “Boost.Any.” http://www.boost.org/doc/libs/1_36_0/doc/html/

any.html, 2001.

[5] J. Maurer, “Boost Random Number Library.” http://www.boost.org/doc/libs/1_

36_0/libs/random/index.html, 2000.

[6] N. Maiorano, “Ghost in the java virtual machine.” http://java.dzone.com/

articles/ghost-java-virtual-machine, 2008.

A IMPLEMENTING AN NGENE MODULE 40

A Implementing an Ngene Module

This section will describe the technical details required to implement modules for Ngene.
The code can be downloaded from various sources, but the newest revision will always be
available at:

http://ngene.googlecode.com/

If you’ve downloaded the source code, the folder structure should be like this (unless
it’s been recently changed):

ngene/

+ bin/

+ build/

+ doc/

+ libs/

+ modules/

+ src/

+ Development/

+ Interfaces/

Don’t worry if you don’t understand the following sections. There are examples in the
modules folder as well. They implement some basic modules, including tournament se-
lection, single-point crossover, and random-swap mutation. They also include the source
code for ArtDev3D.N and the Cartesian model. Studies of these are recommended over
reading this little document as it is much easier to learn from examples.

The Interfaces folder contains all the header files that must be included with some
modules. These are specified in corresponding modules. For every module, there is one
common function that they all must implement.

/// Sets up the module and makes sure it is ready for use. Every module is

/// initiated this way.

/// \param parameters The parameters needed to correctly set up the module

void initiate(const char *parameters);

initiate is called when your module is loaded. This is where the module will recieve its
parameters and everything is set up so that it can be used later on. In addition to this,
the following sections will describe the rest of the functions that must be implemented in
order to be compatible with Ngene.

A.1 Fitness

All fitness modules must include the header (path may vary depending on where you
installed it):

#include <Interfaces/Fitness.h>

The following functions must be implemented.

/// Assess an individual. The genotype is extracted through

/// individual.genotype, and the fitness is given to individual.fitness.

/// \param[in,out] individual The individual to assess

A IMPLEMENTING AN NGENE MODULE 41

void assess(Specimen &individual);

/// Returns the name of this module.

const char *name();

assess() is called when assessing an individual. The genotype can be extracted from
individual. It is an array with generic objects and must be cast into the type that is used.
For instance, if your genotype consists of integers, it must be cast into the appropriate
data type:

std::vector<int> my_genotype;

for (int i = 0; i < individual.genotype.size(); i++)

{

// Cast a gene to an integer

int gene = *boost::unsafe_any_cast<int>(individual.genotype[i]);

// Store the integer in my own array for later use

my_genotype.push_back(gene);

}

This does not apply to fitness modules alone, but every module that wishes to make use
of the genotype. Once the fitness is calculated, it should be stored in the individual like
so:

individual.fitness = points;

The individual is now assessed.

A.2 Genotype

All genotype modules must include the header (path may vary depending on where you
installed it):

#include <Interfaces/Genotype.h>

The following functions must be implemented.

/// Returns the phenotype of given genotype.

/// \param[out] phenotype The phenotype returned

/// \param genotype The genotype of the wanted phenotype

void phenotype(boost::any &phenotype, const Genotype &genotype);

/// Generates a random genotype.

/// \param[out] genotype The newly generated genotype

void seed(std::vector<boost::any> &genotype);

/// Return the name of the species, ex. "Traveling salesman problem".

const char *species();

/// Returns the output of a genotype in desired file format.

const char *str(const std::vector<boost::any> &genotype);

A IMPLEMENTING AN NGENE MODULE 42

A random genotype is requested when seed is called. This genotype is stored in the
container that is provided with the call as parameter.

phenotype is used by the fitness module as it does not necessarily know how to develop
an organism. This function receives two parameters. The phenotype can be returned in
the first parameter. The second parameter is the genotype itself.

A.3 Mating

All mating modules must include the header (path may vary depending on where you
installed it):

#include <Interfaces/Mating.h>

The following functions must be implemented.

/// Crosses over two individuals and produces offspring.

/// \param[out] children The child(ren) produced

/// \param parentA The first individual of the cross over process

/// \param parentB The other individual of the cross over process

void mate(std::vector<Specimen> &children, const Specimen &parentA, const Specimen &parentB);

/// Returns the name of this module.

const char *name();

/// Returns the number of offspring this module/method produces

const int offspring();

mate crosses parentA’s genotype with parentB’s. The offspring produced are to be stored
in children.

A.4 Mutator

All mutator modules must include the header (path may vary depending on where you
installed it):

#include <Interfaces/Mutator.h>

The following functions must be implemented.

/// Mutates given genotype.

/// \param[in,out] genotype The genotype to mutate

void mutate(Genotype &genotype);

/// Returns the name of this module.

const char *name();

A IMPLEMENTING AN NGENE MODULE 43

A.5 Selector

All selector modules must include the header (path may vary depending on where you
installed it):

#include <Interfaces/Selector.h>

The following functions must be implemented.

/// Randomly selects an individual from a population.

/// \param[out] champ The selected individual

/// \param candidates The population to perform selection over

/// \param generation The current generation

void gene_select(Population::iterator &champ, Population &candidates, int generation);

/// Returns the name of this module.

const char *name();

gene select performs a random selection, picking out a single individual. This individual
is stored in champ.

	Title Page
	ngene - An Artificial Development Framework

