
November 2008
Harald Rønneberg, IDI
Einar Landre, StatoilHydro
Jørn Ølmheim, StatoilHydro

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Comparison between JACK Intelligent
Agents and JACK Teams Applied in
Teamwork

Øystein Spillum

Problem Description
Is it easier to develop teamwork in JACK Teams than in JACK Agents, when building a decision-
support system? Is it possible to develop a similar system in JACK Intelligent Agents and JACK
Teams? Will JACK Teams be a more feasible platform than JACK Intelligent Agent, when
developing teamwork?
The reference problem and system design made to test the two modelling paradigms, shall be
based on and continue the work made in the author’s depth study.

Assignment given: 15. June 2008
Supervisor: Harald Rønneberg, IDI

Abstract

Modern technology enables the oil industry to develop smarter solutions that improve their work

processes. Cheap network bandwidth results in improved communication between offshore and

onshore. The availability of sensor data is increasing. Toghether, this will enable a more optimal

decision making in oil production. Three challenges have to be dealt with to optain this: information

overload of signals generated by equipment, shared situation awareness between technical experts,

and mutually-agreed timeframe for action. These challenges are addressed in human-centric

systems, which have an extensive use of teamwork. Research in teamwork focuses on the human-

machine interactions, and getting humans included in teamwork processes. This will cause increased

situation awareness capability for humans when dealing with unknown or hostile environments. The

environment of oil production has a similar characterization. Teamwork can therefore be a possible

improvement in the decision-making regarding oil production. The construction of teamwork is

examined in this thesis through the two modeling paradigms contained in the JACK framework. The

two modeling paradigms are JACK Intelligent Agents and JACK Teams.

This report investigates JACK Intelligent Agents and JACK Teams, and makes a comparison between

the two. The main object was to find indications that point out which modeling paradigm that results

in least development effort, and which one that is creating the most feasible platform regarding

teamwork construction. The application domain is decision-support systems used in oil production.

The aspects evaluated are development effort, degree of coupling, encapsulation of functionality,

abstraction level, delegation of autonomy, and scalability. The solutions developed in the comparison

had static team formations that included few teammembers. This caused less development effort by

using JACK Intelligent Agents, and was the main reason why it was considerate to be the preferred

modeling paradigm in this case. This was partly experienced because reasoning based on the actual

team membership was not used in the JACK Teams version. The use of roles was used instead,

causing more JACK entities where it could have been avoided. Dynamic team formations during

runtime were not needed due to the reference problem introduced. Maintaince during runtime, for

instance introducing new subteams and changing the role structure was not looked into. Introducing

teams in large scale was not performed. These four factors could have caused a different result. The

question is if JACK Teams shows its potential through the oil production system designed in this

report.

i

Preface

This project report documents my work in the graduate level course TDT4900 Program and

Information Systems, Master Thesis. The course is a part of the Master program at Department of

Computer and Information Science (IDI) at the Norwegian University of Science and Technology

(NTNU)

The subject of this report has been carried out in collaboration with StatoilHydro. The supervisors of

this project have addressed the subject as a research area of their company, and have contributed

with knowledge and feedback during the experiment conducted and the writing process.

I would like to thank my supervisors Harald Rønneberg, Einar Landre, and Jørn Ølmheim for

introducing an interesting field of research, and for sharing their knowledge and support during the

project.

Trondheim, 15. November 2008

Øystein Spillum

ii

Contents

Preface ..i

Contents ... ii

List of Tables .. vi

List of Figures .. vii

1 Introduction ...1

1.1 Motivation...1

1.2 Problem definition ...2

1.3 Project goal ...2

1.4 Approach ...2

1.5 Use of terms ..3

1.6 Project context ..3

1.7 Report outline ...3

2 Towards human-centric systems ..7

2.1 Human and machine as mutually dependent ...7

2.2 Changing perspective in software development...8

2.3 Agent-centric system ...9

2.4 Human-centric systems ... 10

2.4.1 Overview ... 10

2.4.2 Delegation of autonomy .. 10

2.4.3 Principles ... 11

2.4.4 Benefits ... 12

2.5 Teamwork ... 12

2.5.1 Teamwork and Collaboration ... 13

2.5.2 Coordination techniques .. 13

2.5.3 Team variables ... 14

2.5.4 Challenges in teamwork ... 15

3 Framework and tools.. 17

3.1 Modelling paradigms compared .. 17

3.1.1 Overview ... 17

3.1.2 JACK Agents ... 17

3.1.3 JACK Teams .. 18

3.2 Previous experiences ... 19

iii

3.2.1 JACK Agents ... 20

3.2.2 JACK Teams .. 20

3.3 JACK Development Kit ... 21

3.4 Eclipse Integrated Development Environment ... 21

4 Approach ... 25

4.1 Quantitative approach ... 25

4.1.1 Experiment type .. 25

4.1.2 Experiment process ... 25

4.1.3 Experiment definition .. 26

4.1.4 Experiment planning .. 27

4.1.5 Experiment construction .. 31

4.2 Qualitative approach ... 32

5 Defining a reference problem ... 35

5.1 Oil production system .. 35

5.2 Reference model ... 35

5.3 Assumptions .. 36

5.4 Optimal and maximal production... 37

5.5 Previous experiences ... 37

5.5.1 Oil production systems .. 37

6 System design .. 41

6.1 Layers .. 41

6.2 Processes .. 42

6.3 System operation .. 43

6.3.1 Global optimization.. 43

6.3.2 “Steps of action”-scenarios .. 44

6.4 Simulated environment ... 45

6.5 Applied teamwork and implications ... 46

6.6 Towards a human-centric system .. 47

7 JACK Agents solution .. 49

7.1 System structure ... 49

7.2 Teamwork ... 50

8 JACK Teams solution... 53

8.1 System structure ... 53

8.2 Teamwork ... 54

9 Quantitative results .. 59

iv

9.1 Testing of hypotheses .. 59

9.1.1 Hypothesis 1 .. 59

9.1.2 Hypothesis 2 .. 61

9.1.3 Hypothesis 3 .. 64

9.1.4 Hypothesis 4 .. 65

9.1.5 Hypothesis 5 .. 67

9.1.6 Hypothesis 6 .. 70

9.2 Summary of results .. 71

9.3 A bug in the framework ... 72

9.4 Validity Concerns ... 72

10 Qualitative results .. 73

10.1 Autonomy ... 73

10.1.1 System design .. 73

10.1.2 JACK Agents ... 73

10.1.3 JACK Teams .. 74

10.1.4 Comparison ... 75

10.2 Scalability .. 75

10.2.1 System design .. 76

10.2.2 JACK Agents ... 76

10.2.3 JACK Teams .. 76

10.2.4 Comparison ... 76

11 Summary of work ... 79

12 Conclusion.. 81

13 Future work.. 83

Appendix A “Steps of action”-scenarios ... 87

A.1 “Steps of action”-scenario one - Planned and predicted production................................... 87

A.2 “Steps of action”-scenario two - Unpredicted changes according to planned production ... 88

Appendix B Design .. 91

B.1 JACK Agents solution ... 91

B.1.1 Generate production-scenarios .. 91

B.1.2 Choose production-scenario .. 92

B.1.3 Monitor production against production-scenario ... 94

B.1.4 Start reactive ” well choke settings” state .. 95

B.1.5 Monitor reactive” well choke settings” state .. 96

B.2 JACK Teams solution .. 98

v

B.2.1 Generate production-scenarios .. 98

B.2.2 Choose production-scenario .. 99

B.2.3 Monitor production against production-scenario ... 101

B.2.4 Start reactive ” well choke settings” state .. 103

B.2.5 Monitor reactive” well choke settings” state .. 105

Appendix C Notation ... 109

C.1 Sequence diagram ... 109

C.2 JACK Development Environment graphical notation .. 110

Bibliography.. 111

vi

List of Tables

Table 1: Human - Agent autonomy taxanomy ... 11

Table 2: Formulated hypotheses ... 28

Table 3: Benefits, hypotheses, and metrics ... 32

Table 4: Results for M1: Lines of Code (LOC) ... 60

Table 5: Results for M2: Number of Entities (NOE) .. 62

Table 6: Results for M3: Number of Functions (NOF) ... 64

Table 7: Results for M4: Number of Couplings between Entities (NOCBE) ... 66

Table 8: Results for M5: Number of External Activations (NOEA) ... 68

Table 9: Autonomy comparison .. 75

Table 10: Scalability comparison ... 77

Table 11: Sequence diagram notation ... 109

Table 12: JDE notation .. 110

vii

List of Figures

Figure 1: Human - agent teaming ..9

Figure 2: Agent - Agent autonomy taxanomy ..9

Figure 3: Experiment principles ... 29

Figure 4: Physical infrastructure of an oilfield .. 36

Figure 5: Architectual layers .. 37

Figure 6: System structure .. 39

Figure 7: Architectual layers – Ideal architecture & Simplified architecture 41

Figure 8: System processes ... 42

Figure 9: Path of information flow... 44

Figur 10: Graphical User Interface ... 45

Figure 11: System structure - JACK Agents solution ... 49

Figure 12: Generate production-scenarios .. 50

Figure 13: Subsea Template - FindSubseaTemplateScenarios-plan .. 51

Figure 14: Well - FindWellScenarios-plan .. 51

Figur 15: System structure - JACK Teams solution ... 53

Figure 16: Generate production-scenarios .. 55

Figure 17: SubseaTemplate - FindSubseaTemplateScenarios-plan ... 56

Figure 18: Well - FindWellScenarios-plan .. 56

Figure 19: Measurements of Metric M1 (LOC) ... 60

Figure 20: Measurements of Metric M2 (NOE) .. 63

Figure 21: Measurements of Metric M3 (NOF) .. 64

Figure 22: Measurements of Metric M4 (NOCBE) .. 66

Figure 23: Measurements of Metric M5 (NOEA) .. 69

Figure 24: JACK entities involved in the "Generate production-scenarios"-scenario........................... 92

Figure 25: Choose production-scenario ... 93

Figure 26: JACK entities involved in the "Choose production-scenario"-scenario 93

Figure 27: Monitor production against production-scenario .. 94

Figure 28: JACK entities involved in the "Monitor production against production-scenario"-scenario 95

Figure 29: Start reactive ”well choke settings” state .. 95

Figure 30: JACK entities involved in the "Start reactive well choke settings state"-scenario 96

Figure 31: Monitor reactive ”well choke settings” state .. 97

Figure 32: JACK entities involved in the "Monitor reactive well choke settings state"-scenario 98

Figure 33: JACK entities involved in the "Generate production-scenarios"-scenario........................... 99

Figure 34: Choose production-scenario ... 100

Figure 35: JACK entities involved in the "Choose production-scenario"-scenario 101

Figure 36: Monitor production against production-scenario .. 102

Figure 37: JACK entities involved in the "Monitor production against production-scenario"-scenario

 ... 103

Figure 38: Start reactive ”well choke settings” state .. 104

Figure 39: JACK entities involved in the "Start reactive well choke settings state"-scenario 105

Figure 40: Monitor reactive” well choke settings” state .. 106

Figure 41: Monitor reactive well choke settings state .. 107

viii

ix

1

 Chapter 1

Introduction

This introduction chapter deals with the main objectives and context of the report. The first section

explains the motivation for conduction the work of this report. Based on this, the problem definition

addresses the area of research. An extraction of the important goals based on the problem definition

is shown later in the chapter, followed by the approach to these goals. At the end, a short description

for each of the following chapters can be found.

1.1 Motivation
Modern technology enables the oil industry to develop smarter solutions that improve their work

processes. Cheap network bandwidth results in improved communication between offshore and

onshore. The availability of sensor data is increasing. Toghether, this will enable a more optimal

decision making (1). Three important aspects of this development are

 Information overload of signals generated by equipment. The control room and human

operators cannot focus on all signals, when each well and processing equipment generates

several signals at any time.

 Shared situation awareness between technical experts. The different experts can have

different perspectives of priority and criticality in different situations.

 Mutually-agreed timeframe for action. A rapid response time ensure optimization of oil

production.

The three aspects listed require support from information systems to be able to make the

appropriate abstraction, and to have tools for automation and decision support. Some academic

studies from the Norwegian University of Science and Technology (NTNU) on initiative from

StaoilHydro have documented research related to these aspects. StatoilHydro also shows

experiences made by earlier developments of relevant multi-agents in the report written by the

authors Ølmheim, Landre, & Quale (2). This report also describes the basis of future systems, and

research areas related to it. Their work leads towards human centric systems.

The depth study by Spillum (3) was motivated by the work towards human centric systems, and

forms the fundament of the work in this report. The depth study mentioned was written by the same

author as this report, and will therefore have a natural continuation in this work. The reference

problem1 and system design that are used in this report is based on the depth study. By inheritating

these two elements, so will the limitations they create. The depth study considers a stronger use of

teamwork in such a production system. The team concept is examined in this report by using both

modelling paradigms, JACK Intelligent Agents and JACK Teams. A comparison between the two will

explore the applicability and suitability for teams of agent-instances (in JACK Agents) and teams-

1
 Specified problem found in the application domain: decision-support systems used in oil production. The

reference problem is described in Chapter 5.

 CHAPTER 1. INTRODUCTION

2

instances (in JACK Teams) in the development of a decision-support system used in oil production.

This comparison is the main goal for this report and the motivation for StatoilHydro.

1.2 Problem definition
Based on the motivation presented in the last section, the problem definition was formulated in

collaboration with the supervisors:

”Is it easier to develop teamwork in JACK Teams than in JACK Agents, when building a decision-

support system? Is it possible to develop a similar system in JACK Intelligent Agents and JACK

Teams? Will JACK Teams be a more feasible platform than JACK Intelligent Agent, when developing

teamwork?

The reference problem and system design made to test the two modelling paradigms, shall be

based on and continue the work made in the author’s depth study (3).”

1.3 Project goal
Extracted from the problem definition, the project goals define what to look for as important results

in the proposed solutions. The main goals are to:

1. Compare the easiness and results of developing a production system in the two modelling

paradigms.

2. See how to construct an oil production system that makes it easy to maintain and replace

software-components.

3. See how to produce oil volumes according to the long term production targets (a production

plan) given the system within the equipment’s capacities.

4. See how to handle unexpected situations caused by the complex and dynamic oil production

environment.

5. See how to construct a scalable solution (looking at the aspect of system development, and

not necessarily performance), with the ability to contain hundreds of wells and other physical

components used in oil production (real life realistic).

1.4 Approach
This section describes how to approach the project goals from Section 1.3. Some of the important

approaches to fulfil the goals are to:

 Create a production system with the same architecture, rules, and capabilities in both

modelling paradigms.

 Predict the future production in order to create a long term optimization plan that the

system can follow, in order to reach the production targets of a given period of time.

 Make proactive decisions (about adjusting well chokes) when the system has knowledge

about how the environment will react to its decisions, due to forecasting. This makes it easier

to optimize in long term, knowing when to make adjustments and what the effects will be.

 Conduct compensating actions if a production well stops producing or decreases production

because of technical failure or unpredicted changes reservoir- and/or well condition.

Compensating actions will be if one well takes over production for another well, because

they are assumed to have a better oil/waste production rate at the moment. Although this

might not be the best wells to choose over a longer period, as changing well chokes rapidly

 CHAPTER 1. INTRODUCTION

3

does not make immediate changes in the production. Fluids and other substances need some

time to react to the changed choke settings. If the best oil/waste production rates were

known in advance, the well settings could have been changed before the oil/waste

production rates changes (proactive behaviour), and not afterwords like this reactive

behaviour causes.

 Create cooperation between autonomous units (agent-instances, teams-instances and

human operators), with different levels of authority and autonomy.

1.5 Use of terms
The team-construct will use the notation team-construct or team-instance, if it is not clear if the term

is used in context of JACK Teams or as a team in context of teamwork. In JACK Agents a team is an

agent being a team-commander, with teammembers being agents connected to it. In JACK Teams a

team-instance forms a team, with teammembers being other team-instances connected to it.

The modelling paradigm JACK Intelligent Agents will be abbrivated to JACK Agents.

JACK Agents and JACK Teams are referred to as both modelling paradigms and programming

languages in this report.

1.6 Project context
This project is conducted in collaboration with StatoilHydro, as a part of the graduate level course

TDT4900 Program and Information Systems, Master Thesis. StatoilHydro operates in about 40

countries and has about 31,000 employees. The company is one of the largest operators in the

Norwegian oil- and gas production, and the international production is increasing (4). In order to be

competitive and flexible according to the market and oil production, a more optimal production is

wanted.

1.7 Report outline
The report is divided into following chapters:

Chapter 2, Towards human centric systems This chapter introduces the context of the system

design. Human and machine are mutual dependent in complex and changing environments, and will

lead towards a human centric system. Teamwork and delegation of autonomy are two important

elements in this trend, and will be described in depth in this chapter.

Chapter 3, Framework and Tools This chapter introduces the development tools and the modelling

paradigms JACK Agents and JACK Teams made use of to design and implement the system used in

the experiment conducted in this report.

Chapter 4, Approach This chapter introduces the approach that will test JACK Agents and JACK

Teams regarding their applicability and suitability to implement teamwork. The approach is described

as an experiment to be evaluated quantitative and qualitative. The experiment is designed in this

chapter.

Chapter 5, Defining a reference problem This chapter introduces the type of system that JACK

Agents and JACK Teams shall be tested against. The reference problem creates the context to test

teamwork within, and will therefore create both possibilities and limitations on how teamwork can

be tested.

 CHAPTER 1. INTRODUCTION

4

Chapter 6, System design This chapter constructs a system design presenting the different

architectual layers, control processes, and “steps of action”-scenarios that address the reference

problem described in Chapter 5. The system design presented in this chapter is used as a basis in the

the JACK Agent version and JACK Teams version, and to create similar and comparable versions of

the system.

Chapter 7, JACK Agents solution Based on the system design in Chapter 6, this chapter describes the

specialized design and implementation of the JACK Agents version of the system. The design shows

the system structure of all the agents that will be instanciated, and how the different kinds of agent-

instances interact with eachother to enable teamwork.

Chapter 8, JACK Teams solution Based on the system design in Chapter 6, this chapter describes the

specialized design and implementation of the JACK Teams version of the system. The design shows

the system structure of all the agents-instances and teams-instances that will be instanciated, and

how the different kinds of agent-instances and team-instances interact with eachother to enable

teamwork.

Chapter 9, Quantitative results This chapter contains results from the quantitative part of the

experiment conducted in this report. The JACK Agents solution and the JACK Teams solution are

evalutated in a quantitative manner in accordance to the differenct quantitative evalutation aspects

defined in Chapter 4.

Chapter 10, Qualitative results This chapter describes advantages and disadvantages created by

JACK Agents and JACK Teams when constructing teamwork. The evaluation is given in accordance to

the differenct qualitative evalutation aspects defined in Chapter 4.

Chapter 11, Summary of work This chapter contains a summary of experiences made during the use

of the new programming techniques JACK Teams introduced compared to JACK Agents.

Chapter 12, Conclusion This chapter draws the conclusion about which modelling paradigm that is

most applicable and suitable in teamwork construction.

Chapter 13, Future work This chapter deals with areas in the JACK Teams modelling paradigm that

should be further investigated, and suggested improvements of the proposed system that is used as

relevant test-object.

5

Part I

State of the art

6

7

Chapter 2

Towards human-centric systems

This chapter introduces the trend towards human-centric systems. Human-centric systems are

important in decision-support needed in complex and changing environments like oil production.

Humans and machines are mutual dependent in such kind of environments. This chapter describes

how the decision-support development will move towards human-centric systems, and creates new

software demands. The focus of the report is how teamwork addresses these new demands.

Teamwork is described in depth in Section 2.5.

2.1 Human and machine as mutually dependent
Decision-support system requires two actors, the human operator and the machine. The machine

system is in this report reffered to as a multi-agent system. The term agent2 does not have a

universal definition in the literature. A common defition is made by Wooldridge (3):

“An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives. An intelligent agent is

in addition reactive, proactive, and social.”

Agent-oriented development can be considered as the successor of objectoriented development

when applied in artificial intelligence problem domains (5). More information about agents and their

application areas can be found in the author’s depth study (3).

Challenges in multi-agent systems3 are (3) that they have no existing global system control, data is

decentralized, and that the computation is asynchronous. Teamwork is taken into consideration to

address these challenges. By definition, teamwork is a group of agents that works towards a common

goal. Such work requires the system to consider the challenges mentioned. Another element that can

be problematic for a multi-agent system is the interface against human operators. The human

operator has to build a relationship of trust to the system, since most human operators are not

comfortable giving away their authority. Teamwork will include human operators in the team

formations and in the team processes, and possibly cause an increase of trust.

The agent architecture considered in this report through the JACK framework is called Belief-Desire-

Intention (BDI architecture). This architecture makes use of a human-like intelligence- and decision

making behavior (6). This behaviour makes the agents a possible substitution for humans in

teamwork. The BDI architecture contains both reactive and deliberative properties, and models the

mental states of an agent. These mental states are belief, desire, and intentions. The different states

will cause behavior on an abstraction level closer to human intelligence. This kind of behavior is

realized through an event-driven execution model; wich enables both reactive and proactive

behavior (7). Belief is defined as the agent’s view about the environment. The belief will change over

2
 The term agent refers in this chapter to an agent-instance in JACK Agents and as a team-instance in JACK

Teams. A team-instance is an extension of an agent-instance, in the JACK Teams modelling paradigm.
3 Multi-agent systems are composed of multiple interacting agents who may be distributed (24).

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

8

time in order to be consistent with the environment. The desire is goals the agent wants to achieve.

Desire has to be consistent with the agent’s belief, because there can for instance not be a goal of

flying if the agent does not believe it can fly. Intentions are commitments the agent takes towards

achieving a desire (8).

2.2 Changing perspective in software development
Complex and changing environments create new software demands. This report focuses on the oil

production domain and has to deal with following challenges (3):

 The oil production domain is complex and dynamic, and monitoring will cause large

continuously amounts of different data.

 Increased instrumentation and the use of “smart” well technology will generate a large

amount of data to be utilized in the control room.

 To meet local- and global constraints in oil production. Sub-optimization does not necessarily

lead to globally optimization.

 To have actions being effective within a certain time limit.

 Difficult and complex interpretation of data to support improved decision-making.

 Detection of potentially dangerous situation.

The challenges mentioned can be derived into motivational factors to create new types of software.

Ølmheim, Landre, & Quale (2) pointed out three main three motivational factors: decreased

information load on the human operator, shared situation awareness between technical experts, and

mutually-agreed timeframe for action. Lack of shared situation awareness can for instance cause a

less optimal4 oil production. The plans and long term forecast of an optimal solution might not be

followed because of different understanding on how to put the plans into operation. Priorities and

perceptions about what is critical may differ as well (2).

The existing and traditional generation of software systems, are more or less centralized decision

making systems (1). This support typically one kind of equipment, and are mostly data-driven. The

use of intelligent software agents addresses these issues. These systems are capable of handling

large amounts of data in a physically distributed environment, and have the ability to make

autonomously local decisions by reasoning about these data (1). They are capable of handling

changes in the environment and react to them continuously. Software agents can also work together

with the existing systems (1).

Teamwork is an approach that possibly can create some of the claimed benefits software agents

have. The applicability and suitability of teamwork is explained in this chapter, and in the former

depth study made by the author of this report (3). This depth study claims that teamwork is well

suited for decision support in the oil production domain. Teaming can be divided into agent-centric

4
 Optimization is about maximizing the oil production in the long term, taking the extraction of oil in reservoir

into consideration.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

9

and human-centric, described in Section 2.3 and Section 2.4. Research in teamwork focuses on

moving towards human-centric system and to include human in the team processes. The paradigm

shift is shown in Figure 1.

Figure 1: Human - agent teaming (6)

Relevant for both agent-centric and human-centric teaming is the the system’s computational

elements. This is an important element in complex and dynamic environments with many psycial

elements. A type of system called cyber-physical system (CPS) features a tight combination and

coordination between the system’s computational and physical elements (9). This is often referred to

as embedded systems, but differs from traditional embedded systems. The elements involved will

interact with eachother instead of being standalone devices. For example, many wireless sensor

networks monitor some aspect of the environment and forward the processed information to a

central node. This type of system focuses on important aspects relevant to the oil production

domain. Teamwork can be used to coordinate and create cooperation between the physical

components. The distribution of computational elements on different abstraction levels are looked

into and realized through the experiment documented in this report.

2.3 Agent-centric system
The teamwork performed in agent-centric system depends on the delegation of autonomy between

agents. The degree of autonomy is determined by how the agent achieves its goals and the authority

it is willing to delegate in order to complete the goals. The delegation of autonomy between agents

plays an important role in the work documented later in this report, because it says something about

the distribution of computation. The delegation of autonomy also influences the achievement of

having either a local- or global optimization when solving a problem. These factors are important in

the construction of the system design described Chapter 6.

Agent to agent degree of autonomy is shown in Figure 2.

Figure 2: Agent - Agent autonomy taxanomy (10)

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

10

An agent’s autonomy increases from left to right shown in the figure. The categories are:

 Command-driven: The agent does not plan and must obey orders given by another (master)

agent (11).

 Consensus: The agent serves as a team member, sharing planning decisions equally with

other agents (11).

 Locally Autonomous / Master: The agent plans alone and may (if master) or may not give

orders to other agents (11).

2.4 Human-centric systems
This section defines what human-centric is and runs through some important aspects related to it.

2.4.1 Overview

Research in teamwork focuses on the human-machine interactions, and how to get humans included

in teamwork (5). The effect will be increased situation awareness for humans dealing with unknown

or hostile environments (12). It can also help to decrease the information load on the human

operator and to arrange mutually-agreed timeframe for action. Ølmheim, Landre, & Quale (2)

examined the involvement of humans in the oil production domain which will most likely benefits

from such research.

Human-centric system possesses the ability of having the agent system to learn from humans. The

learning process enables agents to become so-called human-centric smart agents (5). This kind of

system can have interaction in both directions. Agents can advise humans, and humans can advise

and influence the agent’s reasoning process. Shared plans and joined intentions between humans

and agents is something that should be emphasized in a human-centric system.

The following subsections describe how autonomy can be delegated between human operator and

the agent system, benfits by using human centric systems, and principles to the creation of such

systems. These elements play an important role in the work of creating shared plans and joined

intentions between humans and the agents. The mutual learning process that exists in human-centric

systems is not considered in this report.

2.4.2 Delegation of autonomy

The delegation of autonomy describes how human operators are involved in the teamprocesses. The

degree of autonomy is determined by how the human operator chooses to achieve his/her goals, and

the authority he/her is willing to delegate in the process of reaching the goals.

The degree of autonomy that a team or teammember have should be able to vary during runtime.

Different system states and environmental situations should require different types of autonomy

delegation. The trust the human operator has to the system at the moment should reflect the level

of delegated autonomy. The degree of autonomy should be based on automatic escalation or de-

escalation, and the human operator should be able to change it manually. Learning can build a

trustrelationship between the human operator and the agent system. Learning is therefore an

important element of escalating or de-escalating the level of autonomy. The learning process should

be performed in both directions, causing the agent system to have a chance to learn from the human

operator and opposite.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

11

Different degrees of autonomy cause different actions to be made by the human operator and the

agent system. Table 1 shows a taxonomy of delegated autonomy defined by PACT-levels (Pilot

Authority and Control Tasks). Related to an oil production system, the pilot could be a production

engineer, while the computer would represent for instance a field manager or other agents

contained in an oil production system.

PACT Locus of authority PACT
Level

Sheridan & Verplank Levels of HMI

Computer monitored by
pilot

5b Computer does everything autonomously

 5a Computer chooses action, performs it and informs
human

Computer backed up by
pilot

4b Computer chooses action and performs it unless human
disapproves

 4a Computer chooses action and performs it if human
approves

Pilot backed up by
computer

3 Computer suggests options and proposes one of them

Pilot assisted by computer 2 Computer suggests options to human

Pilot assisted by computer
only when requested

1 Human asks computer to suggest options

Pilot 0 Whole task done by human except for actual operation
(autopilot)

Table 1: Human - Agent autonomy taxanomy (13)

2.4.3 Principles

One should distinguish humans and agents when implementing a human-centric system. Humans

and agents are not comparable, but they are complementary in a human-agent team.

Principles made by Tweedale et al. (6) describe how humans and agents are complementary, and are

listed as follows:

 Humans are responsible for the output in human-agent teams

 The humans have the mainresponsibility and is therefore in command

 The humans must be activiliy involved in the team processes

 The humans must be adequate informed

 The humans must be able to monitor agent behavior

 The agents’ activities must be predictable, so the humans can monitor their activities

 The agent must be able to monitor the performance of the human.

 Each team member (humans and agents) must have knowledge of eachother’s commitments

towards achieving a goal (intentions).

The principles presented serve as a foundation in the construction of the objects to be study in this

report. The system design that reflects some of the principles can be found in Chapter 6.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

12

2.4.4 Benefits

The BDI architecture constructs a human-like intelligence (6). This enables the agents to substitute

humans. The disadvantage is that the human-like substitute could fail at a critical point without

leaving any choice to the human for regaining control of the situation. The results will be impaired

situation awareness. Inclusion of the human operator in the team-processes leads to human-centric

systems and shared situation awareness (5).

Interaction between machine and human in human-centric systems enables customized decision

support in the decision making process. Interaction does not only consist of a communication

language, but adds the elements of observation and adaption. Truly smart agents can be

complementary to a human by adopting skills similar to a human, and may include communication,

learning and coordination, rather than being a simple replacement to a human (5). Learning is not

discussed in this report. Communication and coordination are described in Subsection 2.5.1.

Human-centric systems make use of delegating autonomy between human and agents. The

delegation of autonomy describes how human operators are involved in the teamprocesses. Lucas &

Shepherdson (14) list the following advantages moving towards systems with an architecture based

on delegation of autonomy:

 Lines of authority and communications are clearly defined. This makes surrounding

comprehensible.

 Decision-making is delegated where possible, and ensures that workload is shared

appropriately among the managers and members of the organization. Delays resulting from a

too high a workload are then minimized.

 Greater responsiveness, because decision do not always need to go to the top of an authority

hierarchy.

 Improved communications. The involved parties only receive information necessary for the

role, causing less irrelevant and distracting details.

 Decisions are made at the appropriate level in the organization, because of already

established paths of authority and criteria for escalation.

 Productivity is higher as the agents are able to make many decisions locally, causing less

waiting time for decisions.

 Reduced workload on Human operators that could help the operator to focus on the critical

situations, which could lead to better decisions and less mistakes.

 Creates a higher level of local decisions, and avoid “bad” decisions propagate through the

system.

 Enable distributed reasoning which creates feasibility of parallel computations and

modularity causing better and easier maintenance of the system. The parallelism could help

creating a more scalable system.

2.5 Teamwork
This section clearifies the difference between teamwork and collaboration between agents. The

section also describes coordination techniques, team variables, and challenges in teamwork.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

13

2.5.1 Collaboration and teamwork

Agents’ social ability makes them able to communicate with eachother. This ability can be used in

their achievement of goals. When achieving goals in groups, they will achieve more than they can do

as individuals. This is analog to human groups. They will get a lot more done if they work together.

They can share information and work in a coordinated manner, and make eachother more efficient

and competent (12). There are two possible ways agents work together: collaboration and

teamwork.

Collaboration is to communicate, cooperate, and coordinate. Coordination is referring to agents that

are freely allowed to communicate and enforce agreements prior taking decisions (15). These

agreements do not have to work towards a common goal, but can be an agreement as a result of

negotiation. The agents are voluntariliy entering the relationship with eachother to achieve a system

derived goal (16). Coordination is the ability to manage the interdependencies of activities between

agents (16). Coordination prevents for instance two soccerplayers in kicking the ball at the same

time. An agent can also coordinate its actions with another agent unaware of its presence.

Coordination does not imply cooperation (17). Communication is interteraction, typically a two-way

process, where all agents can potentially be senders and receivers of messages (15). Communication

can be used for coordination among cooperative agents or for negotiation among self-interested

agents (15).

Teamwork is a more structured type of collaboration. It is more than agents communicating and

acting in a simultaneous and coordinated manner, or agents asking for and providing services to

eachother (12). Teamwork has one additional requirement. The team of agents works towards

something together, such as an achievement of a team goal (12). A team can be defined as a set of

agents that has a shared objective and a shared mental state (18). The aims of agent teamwork

research are to improve the concept understanding, to develop some reusable algorithms, and to

build high-performance teams in dynamic and possibly hostile environments (18). Coordination and

cooperation are necessary for agents in a team to achieve a common goal (18).

An example can help to illustrate some of the differences between collaboration and teamwork (12).

The car traffic has cars that work as autonomously units trying to avoid crashes and to reach their

destinations. In order to do this, they have to avoid eachother, stop for eachother, etc. They will have

to coordinate their actions to achieve their goals and finally reach their destination. If a car breaks

down, they will just drive by it and keep on going to they reach their destinations. For a convoy

represented as a team, things are a bit different. Their goal is to reach the destionation together. If a

car breaks down in the convoy, all cars in the convoy are affected by it. They want to achieve their

team goal, but cannot do so if one car breaks down. If a car breaks down they have to fix the car or

change it, in order to achieve their team goal.

2.5.2 Coordination techniques

Coordination is required when agents are interdependent, for example, when agents share tasks or

avoid resource conflicts (19). Many approaches exist in the work of coordination of agent systems.

Nwana, Ndumu, Lee & Collis (20) define four broad categories that will be presented in this

subsection. The four categories are called organizational structuring, contracting, multi-agent

planning, and negotiation.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

14

The first technique is named organizational structuring. This is a coordination technique that exploits

the structure of the society, the role of the different agents; and their relationships with each other.

This is for instance a client-server system. Another type is the master/slave coordination approach.

Here, the master generates the plans, and distribute fragments of the plan to the slaves. Conducting

the plans, the slaves have to report to the master. The master then has full autonomy and the slaves

have only partial autonomy (21).

The second technique is named Contracting. First the manager agent announces a contract, receives

bids from other agents, evaluates the bids, and finally awards the contract to the winner. The

contract-net protocol is a typical contracting technique. Other various auction protocols exist (21).

The third technique is named Multi-agent planning. This coordination technique resolves any

foreseen conflicts between the agents’ plans. There are two types of multi-agent planning, which are

described as:

 Centralized multi-agent planning: A central agent performs planning on behalf of the society.

It receives receipts of all partial or local plans from individual agents, and analyzes them in

order to find potential inconsistencies and conflicting interactions. Next, the planning agent

modifies the partial plan and combines them into a multi-agent plan, without inconsistencies

and conflicting interactions (21).

 Distributed multi-agent planning: the agents exchange partial sub plans which progressively

build the multi-agent plan without inconsistencies and conflicting interactions (21).

The fourth technique is named Negotiation. Nwana, Lee & Jennings (21) defines negotiation as

following: “...negotiation is the communication process of a group of agents in order to reach a

mutually accepted agreement on some matter.” This agreement take place after a dialogue between

the parties, where they exchange proposals with each other, evaluate the proposals, and exchange

counterproposals until an agreement between the agents is reached.

2.5.3 Team variables

Different aspects of teamwork can vary from system to system. The team variables identified here

will have different focus later in the report. They have different importance and variations, as we will

see later in the implementations of the reference problem defined in Chapter 5. The team variables

identified are:

 Team size: Number of agents involved as teammembers.

 Team structure: Formation of the team. “Flat” structure with all agents on the same level, or
hierarchical structure where agents are situated on more than on level. In order to achieve
different goals at specific conditions, different team formations are needed. The team life
cycle (12) to achieve a goal is as follows:

1. Team formation:

a) Find potential team members
b) Recruit team members

2. Team task execution:

a) Decompose task into sub-tasks

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

15

b) Distribute/delegate sub-tasks to appropriate team members

c) Each team member performs its allocated task in a coordinated fashion

3. Disband team:

a) Each member leaves and is no longer committed to the team

 Differentiation and specialization: A hetergenous team of agents contains agents that can

fulfil only specific roles. To repair such a team by using the team’s member is not possible. To

solve this problem, an agent from outside the team has to fulfil the role, or else the team will

fail. A homogenous team contains agents that can fulfil different kind of roles, and can

therefore possibly repair it if an agent has failed.

 Failure handling: Who shall handle the failure if a team fails? The failure can be handled by

trying another approach to achieve the goal, or the incapsulated team has to handle the

failure.

 Authority delegation: This aspect can be divided into the two cateogories of machine to

machine delegation, and human to machine delegation. The delegation looks at how the

machine or human is involved in teamprocesses according to authority they are delegated.

2.5.4 Challenges in teamwork

Tweedale et al. list three primary challenges (5) that teamwork should overcome: communication,

negotiation, and trust.

Communication is the first challenge. It enables agents to understand eachother. The communication

must be efficient and robust to recover from errors, and provide the possibility of asking and

providing services. Facilitator agents can provide matching the available services and request.

Another approach is mobile agents that can move from one environment to another. A third

approach is hierarchical structures that will lay constraints on how to communicate with eachother.

Negotiation is the second challenge. Teams have requirements, and so has the individual agents. A

negotiation process is needed for the team to achieve it goals, and at the same time have the

individual agents having their autonomy.

Trust is the third challenge. This is for example if an agent should trust another agent receiving

correct information, or that the agent can perform a particular task. This is not easily measured, but

should is reflected on the delegation of autonomy.

 CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

16

17

Chapter 3

Framework and tools

This chapter introduces the framework and development tools used in the work of conducting the

experiment constructed in Chapter 4. The development tools are used for system design and

implementation of the system used in the experiment. The framework tested in the experiment

contains the modelling paradigms JACK Agents and JACK Teams. The framework is described in

Section 3.1.

3.1 Modelling paradigms compared
The two modelling paradigms JACK Agents and JACK Teams were used in the work documented in

this report. They were used to develop a system, which resulted in two versions of the same system

so they could easily be compared. The comparison shows the applicability and suitability for the two

modelling paradigms regarding teamwork, which is the main objective of this report.

3.1.1 Overview

JACK Agents has been developed to provide agent-oriented programming. JACK Teams is an

extension to JACK Intelligent Agents that provides a teamoriented modelling framework (22). JACK

Agents and JACK Teams are extensions to the Java programming language. JACK Agents and JACK

Teams source code is first compiled into regular Java code before being executed.

3.1.2 JACK Agents

The JACK Agent Language introduces six class-level constructs. These constructs are:

 Agent: The agent-construct is used to define the behaviour of a BDI5 intelligent software

agent. This includes the agent’s capabilities, what type of messages and events it responds

to/sends, and which plans it will use to achieve its goals (23). The agent provides reasoning

behaviour under both proactive and reactive stimuli (24).

 Capability – The capability-construct is used by an agent to aggregate and reuse functional

components to give it certain abilities (23). A capability can be made up of plans, events,

beliefsets, and other capabilities (23).

 BeliefSet: The beliefset-construct represents agent beliefs using a generic relational model

(23). The beliefset is designed in a way that allows it to be quieried about, using logical

members. Logical members are like normal data members, except that they follow the rules

of logic programming (like Prolog for instance) (23).

 View: The view-construct allows general purpose queries to be made about an underlying

data model (23). The data model can integrate a wide range of data sources such as JACK

beliefset, Java data structures, and legacy systems (23).

5 Belief-Desire-Intention

 CHAPTER 3. FRAMEWORK AND TOOLS

18

 Event: The event-construct is an occurrence that triggers the agent to take some sort of

action. There are several types of events. All types of events can be carriers of goals that the

agent shall try to achieve (2). The key difference between the two main categories normal

events and BDI events is how an agent selects plans to execute. At a conceptual level, the BDI

reasoning models goal-directed behaviour in agents, rather than plan-directed behaviour

(23).

 Plan: The plan-construct generates instructions the agent follows to respond to an event

received. The plans are analogous to functions. First, a check is done to determine if the plan

is relevant for exactly that specific instance of the event. Checking for relevance provides the

agent with a filter to exclude plans that will definitely not be able to handle the event. If the

plan is relevant, an applicability check takes place. To check for applicability, the current

circumstances (values of respective members and data structures) and the agent’s current

beliefs (represented by its beliefset relations) are evaluated to check if the plan is applicable

to the current conditions. The plan will execute its steps of action if it is relevant and

applicable (23).

Reasoning statements are JACK Agent Language specific statements that can only appear in

reasoning methods. They describe actions that the agent can perform to execute behaviour. Actions

such as posting events, sending messages to other agents or waiting until a particular condition is

true are expressed using reasoning method statements. The important communication reasoning

method statements (@-statements) between agents, and emphasized statements due to teamwork

are:

 @send(agent_name, message_event): The @send statement is used to send a message

event to another agent from within a reasoning method (23).

 @reply(original_event, reply_event): The @reply statement is used by an agent to reply to a

message event that it has received from another agent (23).

3.1.3 JACK Teams

The JACK Teams extension introduces the new constructs team, role, teamdata, and teamplan. The

JACK Teams model includes all the programming contstructs contained in the JACK BDI Agent model,

but with an extended semantics for some constructs. Note that an agent-instance has to be renamed

to be a team-instance when it is compiled using JACK Teams. The behaviour of the newly created

team-instance will still act as an agent-instance, because a team-construct is only an extension of the

agent-construct. The extendend and additional constructs are:

 Team: The team-construct is an extension of the JACK Agents’s agent-construct. This

reasoning entity is characterised by the roles it performs and/or the roles it requires other

teams to perform (22). Attaching subteams capable to fulfil the required roles create the

team formation. Teams and subteams are both made from the team-construct. Subteams

may also require roles to be fulfilled, and will cause a hierarchy (ies) of roles as a result. Note

that a subteam can fulfil more that one role at the same time. The team are automatically

provided with objects to hold the actual role/sub-team selections. These objects are known

as role containers (22).

 CHAPTER 3. FRAMEWORK AND TOOLS

19

 Role: The role-construct defines a relationship between teams and subteams. The role

relationship is expressed in terms of the event and belief exchanges implied by the

relationship (22).

 Teamdata: The teamdata-contstruct is similar to the JACK Agents’s beliefset, but contains the

ability for belief propagations in addition. The propagation is going in both directions

between team and subteam, so-called belief propagation and belief inheritation. The use of

teambelief, in addition to the team coordination statement (see reasoning statement

@teamAchieve), enables sophisticated team behaviours to be implemented (22).

 Teamplan: The teamplan-construct is an extension of the JACK Agents’s plan-construct. A

teamplan specifies how a task is achieved in terms of one or more roles (22). The process of

determine what teams to perform the different roles are known as team formation in the

framework. The behaviour specified in terms of roles decouples the team’s behaviour from

the subteam’s behaviour (22). It is however possible to perform reasoning based on the

actual team membership if needed, because the team can access its possible sub-teams

through the role container.

 Initialisation file (not a JACK entity-construct): The file is used to build the so-called role

obligation structure (22). The overall lifetime of a team has two phases (22). The first phase is

for setting up an initial role obligation structure. That is the declaration of which teams are

capable to perform which roles for the specific teams. The second phase constitutes the

actual operation of the team during runtime to solve a specific task. The first phase is

handled by the initialisation file, which is generated in JACOB6 format. Note that it is possible

to modify this structure during runtime (22).

Reasoning statements are JACK Teams Language specific statements that can only appear in

reasoning methods. They describe actions that the team can perform to execute behaviour.

Additional reasoning method statement (@-statements) compared to JACK Agents, which is an

important statements due to teamwork:

 @teamAchieve Statement: The @teamAchieve statement is used to activate a sub-team by

sending an event to the role fulfilled by the subteam. The team that sent an event through

the @teamAchieve statement waits until the event has been processed by the sub-team. If

the event succeed or fails, so will the @teamAchieve statement. In combination with the

JACK @parallel statement, a wide range of team behaviours can be implemented (22). The

@parallel statement is the same as contained in JACK Agents, and is therefore not used

during the work documented in this report.

3.2 Previous experiences
This section describes previous experiences made by using JACK Agents and JACK Teams.

6 The JACOB™ Object Modeller (JACOB) is a system providing machine and language independent
object structures (42).

 CHAPTER 3. FRAMEWORK AND TOOLS

20

3.2.1 JACK Agents

StatoilHydro has a relatively long history with multi-agent systems and JACK Agents (2), described in

the paper made by Ølmheim, Landre, & Quale (2). The paper shows for one thing the suitability of

JACK Agents in the development of an oil production system.

The domain is the same as the reference problem defined in this report, and will therefore be a

contribution in the shaping of the system design described in Chapter 6.

3.2.2 JACK Teams

 Jarvis et al. emphasize the following advantages by using JACK Teams in their work (25):

 Behaviour in the different teams is clearly separated. This makes it easier to change

components, since the behavior is defined according to roles, and not teams. How different

teams fulfil the same role, is therefore not important. Teams can therefore be replaced, as

long as they fulfil the role they were set to do.

 The plan describing the steps actions is written in terms of roles, not specific sub-teams, thus

making the plan resource independent.

 Behaviour of teams can be understood independently because plans are written in terms of

roles.

 The role concept in JACK Teams enables team structures and behaviours to be specified

independently of the eventual members of the team. Thus it provides the flexibility for team

formation to occur dynamically and in response to changing circumstances.

 A team is able to subtask its sub-teams and propagate beliefs to its sub-teams through the

role instances. If required, the actual sub-team instances that are available to perform a role

are accessible through the role obligation structure.

Bisht et al. (26) are using JACK Teams in the simulation of battlefields, used by the military. This

paper mentiones the following experiences made:

 JACK Teams gives a clear and concise description of coordinated activities and allows the

abstraction of what needs to be done from how it is done, i.e., the responsibilities of the

team can be written down without consideration of how the roles would be fulfilled and

implemented by the team members.

 A relatively simple team programs become complex. For example, to implement this

scenario, the authors had 4 agent files, 3 capability files, 6 team files, 4 role files, 37 plan files

and 25 event files.

 The resultant code was highly modular and maintainable, which would not have been

possible otherwise.

Cheong (12) describes two different kinds of Collaborative Agent Architectures which provides

support for agent teamwork: Yellow Pages service to locate agents by their capabilities, a Facilitator

agent to facilitate agent coordination or a team class which can be extended to create agent-teams.

A team class will function like JACK Teams with its team-construct.

 CHAPTER 3. FRAMEWORK AND TOOLS

21

A Facilitator agent coordinates tasks for the multi-agent system. When all agents start up, they are

required to register with the Facilitator agent. Registration involves informing the Facilitator agent of

the tasks that they can perform. When an agent requires a service from the community (i.e. the

team), it sends a query to the Facilitator. The Facilitator agent uses agent registration details to

determine which agents can help to solve the query. The Facilitator delegates the tasks to all agents

that can help solve the query. They will then perform the tasks and return the results to the

Facilitator agent. The Facilitator then sorts all the results and returns them to the Requesting Agent.

This report documents two systems developed to perform as objects of study in the experiment

designed in Chapter 4. The first system constructed uses JACK Agents to construct the structure with

a Facilitator agent described above. The second system constructed uses JACK Teams and with a

team class as described above.

The paper written by Daren (27) contains a comparison between JACK Agents and JACK Teams. This

project used a JACK Agents implementation of two agent-instances that communicated and

coordinated with eachother. The JACK Team solution had a team-instance coordinating all

communication between the two agents-instances. The question is if an extra agent-instance could

have performed the same type of coordination if it substituted the team-instance. To build the

system with an agent-instance substituting the team-instance could resulted in the same flexibility

and correctness. This remark is also noted in the paper.

3.3 JACK Development Kit
The JACK Development Environment (JDE) is a cross-platform graphical editor suite written entirely in

Java for developing JACK agent and team based applications (28). The JDE is a toolkit that allows

construction of detailed design, construction of JACK entities, and it supports reuse of components

(28). The editor uses drag-and-drop to to create detailed design. The editor generates a skeleton of

JACK code derived from this design. The JACK compiler compiles the JACK code into regular Java

source code before execution (28).

JDE was used in the work of designing the JACK Agents and JACK Teams systems to be made, due to

the possibility of graphical modelling for both of them. The sourcecode was written in both JDE and

Eclipse IDE (see Section 3.4). The JACK Agents solution was implemented in Eclipse IDE, and the JACK

Teams solution in JDE. The original plan was to use Eclipse for both modelling paradigms, but the

plugin for the JACK framework in Eclipse did not work properly for JACK Teams.

3.4 Eclipse Integrated Development Environment
Eclipse Integrated Development Environment (IDE) is a software platform comprising extensible

application frameworks, tools, and a runtime library for software development and management

(29). What most people associate with Eclipse IDE is Eclipse’s Java development environment (30).

The Eclipse extensible software framework allows users to extend its capabilities by installing and

writing their own plugins (29).

Eclipse IDE was selected to be the code-editor instead of JDE (see Section 3.3), because it is familiar

for the author, and it supports incremental code compilation. A plugin was installed in Eclipse IDE to

support development using the JACK framework. This worked only properly when JACK Agents was

used, and not with JACK Teams. JDE was therefore used to develop the system in JACK Teams.

http://en.wikipedia.org/wiki/Software_platform
http://en.wikipedia.org/wiki/Application_framework
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Plugin

 CHAPTER 3. FRAMEWORK AND TOOLS

22

23

Part II

Own contribution

24

25

Chapter 4

Approach

This chapter describes the approach this project uses to compare the JACK Agents and the JACK

Teams modeling paradigms. The approach is to conduct an experiment designed in this chapter. The

approach is divided in two parts. The first part is a quantitative approach. The second part is a

qualitative approach that will give more depth in the comparison, in addition to the quantitative

approach. The result of the approaches is described in Chapter 9 and Chapter 10.

4.1 Quantitative approach
Experiments are used when we want control over the situation and manipulate behaviour directly,

precisely, and systematically (24). An experiment is performed in order to be able to decide empirical

that one method is better that the other. This inspection involves use of methods for statistical

inference with the purpose of showing with statistical significance that one method is better than the

other (31). To carry out an experiment, several steps of construction have to be followed. The

process to conduct an experiment contains the steps of defining, planning, operation, analysis and

interpretation, presentation and package. The following subsections will elaborate these steps.

4.1.1 Experiment type

The results of the experiment are evaluated quantitative by using statistical analysis to to draw

conclusions. The experiment conducted in this report is of type quasi experiment. It cannot be called

a true experiment, because it is impossible to perform random assignment of the subjects to the

different treatments. A treatment is one particular value of a factor, modelling paradigms (JACK

Agents and JACK Teams) in this case. The subjects to be evaluated in this experiment are two

implemented solutions of the same type of oil production system.

4.1.2 Experiment process

The steps in the experiement process are suggested by Claes Wohlin et al. (31), and are described as

follows:

 Experiment definition: The foundation of the experiment is determined by its definition. The

purpose is to define the purpose of the experiment in terms of the objective, purpose,

quality focus, perspective, and context.

 Experiment planning: The experiment definition explains why the experiment is conducted.

The planning prepares how the experiment is conducted. This step determines the context,

state hypotheses, design experiment, and evaluates possible threats.

 Experiment operation: The subjects are prepared and made ready for evaluation. The

experiment is executed and data is collected.

 Analysis and interpretation: Measured data is gathered in statistical analysis.

The steps above will serve as guidelines in how this experiment will be conducted, to ensure good

quality on the findings. The definition step and operation step will be handled in the following

 CHAPTER 4. APPROACH

26

subsections. The operation, which is the system development, will take place in Chapter 7 and

Chapter 8. The analysis and interpretation will find place in Chapter 9.

4.1.3 Experiment definition

Before planning and execution takes place, the experiment needs to be defined. The purpose of the

experiment definition is to ensure that importart aspects of the experiment are defined. This is done

through using the “Goal Question Metric” (GQM) template described by Claes Wohlin et al. (31). The

goal template is:

Analyse <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>

in the context of <Context>

The different elements in the template are related to the experiment contained in this report as

follows:

 Objects of Study: The objects of study are the entities that are studied in the experiment. The

experiment conducted in this report will have two objects that are the two different

solutions made by using JACK Agents and JACK Teams.

 Purpose: The purpose defines the intention of the experiment. The intention of the

experiment will in this report be to look the applicability and suitability of JACK Agents and

JACK Teams when constructing teamwork. The author believes that the applicability and

suitability can be measured and evaluated by having a finished JACK Agents version

converted into a JACK Teams version, only changing the necessary code to convert the

application using JACK Teams constructs.

 Quality Focus: This is the primary effect being studied in the experiment. Quality focus in this

experiment will be applicability and suitability of teamwork.

 Perspective: Perspective is the viewpoint the results are interpreted according to. This

experiment has the perspective of a software developer.

 Context: The context is the environment in which the experiment runs. The environment in

this experiment consists of the personell (subjects) involved in the experiment and the

software artifacts (objects) involved. The author (a student with experience at university

level) will be the subject. The objects of context are the JACK framework containing the two

modeling paradigms JACK Agents and JACK Teams and the application domain that is

decision-support systems used in oil production.

The definition for the experiment then turns out as follows:

Analyse two different implementations of an oil production system

for the purpose of evaluation

with respect to applicability and suitability of teamwork

 CHAPTER 4. APPROACH

27

from the point of view of software developers

in the context of the student using JACK Agents and JACK Teams to implement the system.

4.1.4 Experiment planning

This subsection will handle the planning phase. The planning prepares for how the experiment is

conducted. The context selection selects the environment in which the experiment will run. The next

two steps are to formulate hypotheses and select variables to look at in the experiment. These step

are followed by the selection of subjects, experiment design, and validity evaluation.

Context selection

A specific reference problem of application domain that is decision-support systems used in oil

production shall be implemented in two versions. One made by using JACK Agents, and the other

using JACK Teams. A comparsion will be based on the two versions, doing the same work, but in a

different way. The two versions are as follows:

 JACK Agents version: Physical components from the reference problem in Chapter 5 are

represented as agents. The design of the system can be found in Chapter 7. The JACK Agents

paradigm is described in Subsection 3.1.2

 JACK Teams version: Some of the physical components from the reference problem in

Chapter 5 are represented as team-instances. The rest of the system will remain as agent,

same as in the JACK Agents version. The design of the system can be found in Chapter 8. The

JACK Teams paradigm is described in Subsection 3.1.3.

Both versions have the same graphical user interface (GUI). The two different versions will be

compared to discover differences to find their possible applicability and suitability in teamwork, used

in a system designed (see Chapter 6) based on the reference problem (see Chapter 5).

The context can be characterized according to four dimensions (31). The four dimensions are listed

with explanations as follows:

 Offline vs. Online: The experiment conducted is offline. The devolped systems will not be

deployed in a real oil field, only as simplificated simulated oil production system.

 Student vs. Proffesional: The two solutions developed are constructed by the student that

made this report.

 Toy vs. Real problems: The oil production system designed does not reproduce the

complexity a real oil production system has to handle. The main cause-effect relationships of

the challenges addressed is however maintained in the solutions.

 Specific vs. General: The experiment is made specific for oil production systems which are

built in a similar hierarchical structure as designed in Chapter 6, based on the reference

problem. The findings can possibly indicate applicability and suitability in similar domains

with the same hierarchical structure.

Hypothesis formulation

Hypothesis testing is the basis for the statistical analysis of the experiment. A hypothesis is stated

formally and comfirmed or rejected by data collected.

 CHAPTER 4. APPROACH

28

To evaluate JACK Agents and JACK Teams applicability and suitability regarding teamwork in an oil

production system. To address this evaluation and comparison between the two versions, Table 2

contains several hypotheses to evaluate this. The null hypothesis states that there are no real

underlying trends or patterns in the experiment settings (31). The alternative hypothesis in the table

is the hypothesis in favour of which the null hypothesis is rejected (31). The formulation of the

hypothesis is done on background of the problem definition formulated in Chapter 1. Some of the

hypotheses formulated require objective measure, a value dependent only from the measured

object. Hypothesis 6 requires subjective measure, which depends on human judgement.

Id Hypothesis

H01

The functionality of the the two versions will be implemented with approximately the
same number of code lines

HA1.1 The JACK Teams version will implement the same functionality as JACK Agents version
with fewer lines of code.

HA1.2 The JACK Teams version will implement the same functionality as JACK Agents version
with more lines of code.

H02 The number of entities will be the same for the two oil production system versions.
HA2.1 The JACK Teams version will have more entities than JACK Agents version.
HA2.2 The JACK Teams version will have fewer entities than JACK Agents version.

H03 Both versions will use the same number of functions to complete the designed oil
production system given in Chapter 6.

HA3.1 The JACK Teams version will complete the designed oil production system (see
Chapter 6) with fewer functions than JACK Agents version.

HA3.2 The JACK Teams version will complete the designed oil production system (see
Chapter 6) with a larger number of functions than JACK Agents version.

H04

Both versions will have the same number of couplings between the components in the
system.

HA4.1 The JACK Teams version will have fewer couplings between the components than JACK
Agents version.

HA4.2 The JACK Teams version will have more couplings between the components than JACK
Agents version.

H05 JACK Agents version and The JACK Teams version have the same number of external
operations changing their internal state.

HA5.1 The JACK Teams version has a fewer external operations changing the internal state
than JACK Agents version.

HA5.2 The JACK Teams version has larger amount of external operations changing the
interna state than JACK Agents version.

H06

Use of JACK Teams will not provide a higher abstraction level for modeling and
implementation of teamwork in an oil production system, compared to JACK Agents.

HA6.1 Use of JACK Teams will provide a higher abstraction level for modeling and
implementation of teamwork in an oil production system, compared to JACK Agents.

Table 2: Formulated hypotheses

Variable selection and experiment design

Variables are divided into independent- and dependent variables. Independent variables are

variables that we can control and change in the experiment. The dependent variables are variables

that can be measured to see the effect of the treatments (one particular value of a factor).

This experiment consists of one factor, which is the oil production system. Further, two treatments

are compared to eachother. The treatments are two versions of the oil production system, the JACK

 CHAPTER 4. APPROACH

29

Agents version and the JACK Teams version. The dependent variable is the software engineering

regarding teamwork between the physical components represented in the oil production system.

The dependent variable from the two different versions will be compared in order to choose the

appropriate hypotheses from Table 2.

Validity evaluation

The validity threats should be examined in the early planning phase in order to address them in a

satisfying manner. Adequate validity is that the results should be valid for the population of interest.

First, the results should be valid for the population from which the sample is drawn. That is the

specific oil production system design in this report (see Chapter 6). Secondly, the results may be in

interest to generalize about in order to be valid for the whole population. The population in this

experiment is defined to be oil production system in general.

This experiment will use a scheme from Cook & Campell (28) with classification of four threats. The

classification scheme consists of the categories conclusion-, internal-, construct- and external vailidity

(31). Figure 3 shows how the different categories relate to the different parts of the experiment

process.

Figure 3: Experiment principles (31)

The figure is divided into a Theory area and an Observation area. The observations made in the

experiment shall conclude the theory in the hypothesis. The different categories of validity threats

are described as follows (31):

1. Conclusion validity: Concerned with the relationship between the treatment and the

outcome. There shall be a statistical relationship with a given significance.

2. Internal validity: Concerned with observed relationship between the treatment and the

outcome. The treatment shall cause the outcome, and not by some factor that is under no

control or by a factor that has not been measured.

3. Construct validity: Concerned with the relationship between the theory and observation. If

the relationship is causal, the treatment reflects the construct of cause and the outcome

reflects the effect construct.

4. External validity: Concerned with generalization. If there is a causal relationship between the

construct of the cause and the effect, external validity is if the results can be generalized

outside the study achieving the same results.

 CHAPTER 4. APPROACH

30

Threats identified in this experiment are divided into the different categories mentioned above. The

threats to category 1, conclusion validity are:

 Low statistical power: The power of the statistical test is the ability of the test to reveal a true

pattern in the data. The two systems implemented in this experiment does not contain the

size of a physical components involved in realistic production system. When constructing the

JACK Teams version, not all agent-teams are replaced with teams-instances from JACK

Teams, but they are used in a combination in the JACK Teams version. We accept this risk

and take it into consideration that some of the conclusions made can be erroneous.

 Fishing: The experiment performed is a quasi-experiment. This means that the evaluated

objects are not selected randomly. When constructing the two versions, no specific outcome

should be in mind when constructing and implementing the two versions to get a desired

result.

 Reliability of measures: When measuring a phenomen twice, the outcome shall be the same.

Human judgement can affect the reliability, since they do things different from time to time.

This threat is addressed by using metrics that involve a small degree of human judgement.

The threats to category 2, internal validity are:

 Maturation: The effect of that the subjects react differently as time passes. The two versions

of the program will be developed at different times in the work of this project. The threat is

addressed by developing the JACK Agents version first, and then converting it into a JACK

Teams version. The JACK Team version then reuses the structure and algorithms that

functions in both modelling paradigms.

 Selection: The effect of natural variation in human performance. There is only one person

developing both versions. Coding style and motivation at the development time, and

timepressure will play a role according to this threat. This risk is accepted, and addressed by

reusing as much as possible between the two versions to ensure a coding style as similar as

possible.

The threats to category 3, construct validity are:

 Inadequate preoperational explication of constructs: This means that the constructs are not

sufficiently defined, before they are translated into measures and treatments. The problem

definition formulated in Chapter 1 has to be clear on what to expect of results, and the

theory on teamwork and the system design should address teamwork with its properties laid

out in Section 2.5 as a foundation.

 Mono-operation bias: If the experiment under-represent the construct and may not give the

full picture of the theory. Only one program of each version is made. The programs are also

constructed from a specific design that does not represent the complexity a real oil

production system has to handle. We accept this threat and and take into consideration

when generalizing the result and findings.

 CHAPTER 4. APPROACH

31

 Confounding constructs and levels of constructs: The effect of the presence of the construct is

confounded with the effect of the level of the construct. No experience has been made using

JACK Agents or JACK Teams before the work of this project was carried out. The use of some

abilities the frameworks offer is therefore maybe not used to its full potential, and a higher

level of experience would maybe change the coding to be more suited to fit the two different

versions. This threat is accepted and is addressed in some degree by using the one version as

basis for the development of the other versions. The things that are changed, is the things

that can be done in a way that is characterized and mainconstructs in the other framework.

The threats to category 4, external validity are:

 Interaction of selection and treatment: Generalizing the results, the author may not be

representative for the representative population, namely the software developers. The

threat is accepted, and the lack of experiences the author has as a student is recognized.

 Interaction of setting and treatment: The effect of not having the experimental setting of

industrial practice. This threat is address by using development tools and methods that are

up to date.

4.1.5 Experiment construction

The experiment construction connects hypotheses and metrics with the benefits that will show

applicability and suitability of JACK Agents and JACK Teams doing teamwork in an oil production

system.

Benefits

The benefits recognized and examined are the same benefits mentioned for agent technology (32),

with emphasizing reduced development effort and high abstraction level when implementing

teamwork in an oil production system. Reduced development effort will reduce amount of code,

number of entities and functions. The benefits are pointed out as follows:

 Reduced development effort

 Reduced coupling

 Encapsulation of functionality

 High abstraction level

Metrics

The experiment is a quantitative research method. The relationship and comparison between the

two versions of the oil production system shall be measured and analysed according to the metrics

given in this subsection. The following metrics will be used in the evaluation:

 M1 Lines of Code (LOC): The number of written code-lines. Code-lines will be counted as the

number of semicolons in the source-code.

 M2 Number of Entities (NOE): In the JACK Agent solution this will be the events, plans,

capabilities, agents, views, beliefset, and Java classes. The addition constructs in JACK Teams

are teamplans, roles, and teams.

 CHAPTER 4. APPROACH

32

 M3 Number of Functions (NOF): The number of JACK-methods, Java-metods, and

plans/teamplans used by the agents and teams and their plans/teamplans.

 M4 Number of Couplings between Entities (NOCBE): Couplings in the JACK Agents version will

in addition to in- and out going method-calls, be events sent and received by the agents.

Couplings in the JACK Teams version will in addition to in- and out going method-calls, be

events sent and received by the teams. Method calls from plans to its belonging agent/team

and posted events within the agent/team are not counted. Instanciating Java objects and and

JACK objects are not counted either.

 M5 Number of External Activations (NOEA): External activations in the JACK Agents version

will be external method-calls and received events. External activations in the JACK Teams

version will be external method-calls and received events.

The relationship between benefits, hypotheses and metrics

There exists a relationship between the four benefits mentioned above, the hypotheses (see

Subsection 4.1.4) and metrics (see above). Metrics are used to find the correct hyphothesis to

confirm, which will represent different benefits according to which hypothesis that is confirmed. The

relationships between the three elements are shown in Table 3. This table will be used to find the

wanted results and conclude with findings according to it.

Benefit Hypothesis Metric

Development Effort H01/HA1.1/HA1.2
H02/HA2.1/HA2.2
H03/HA3.1/HA3.2

M1(LOC)
M2(NOE)
M3(NOF)

Reduced coupling H04/HA4.1/HA4.2 M4(NOCBE)
Encapsulation of functionality H05/HA5.1/HA5.2 M5(NOEA)
High abstraction level H06/HA6.1 Qualitative Result

Table 3: Benefits, hypotheses, and metrics

4.2 Qualitative approach
The qualitative approach compares the JACK Agents and JACK Teams solutions developed in the work

of the experiment described in Section 4.1. Advantages and disadvantages between the two

modelling paradigms are identified and explained. This will give more depth in the comparison of the

two modelling paradigms, in addition to the quantitative approach.

Interpretation of the qualitative data is more closely tied to the researcher (their identity,

backgournds, assumptions and beliefs) than in quanitative data analysis. This means that their

conclusion must be much more tentative than those from quantitative data analysis (33).

The qualitative analysis compares advantages and disadvantages JACK Agents and JACK Teams have

compared to eachother, looking at the following aspects:

 Autonomy: Lucas & Shepherdson (14) define autonomy as “the need for decisions to be made

at any time, with some appreciation for the circumstance of the current situation (often

referred to as situation awareness).” Delegation of autonomy can be divided into the two

cateogories machine to machine delegation, and human to machine delegation. The

delegation looks at how the machine and/or human is involved in teamprocesses. The aspect

covers challenges related to distribution of reasoning needed and storage.

 CHAPTER 4. APPROACH

33

 Scalability: Scalability indicates the system’s ability to either handle growing amounts of

work in a graceful manner, or to be readily enlarged (34). This quality attribute looks at

development effort when expanding the system with more instances of the different agent-

or teams constructs.

 CHAPTER 4. APPROACH

34

35

 Chapter 5

Defining a reference problem

This chapter describes a case that is considered to benefit from using teamwork. The problem

specified in accordance to the application domain decision-support systems used in oil production.

The reference problem described will create the foundation for the system design in Chapter 6. The

reference problem put restrictions on how teamwork can be included and evaluated in the

experiment.

5.1 Oil production system
Hydrocarbon production and processing are processes in production field have to be dealt with on

daily basis. The production is concerned with extracting hydrocarbons from the production wells, and

processing is associated with separating hydrocarbons from water and sand. The processing also

includes the uniting of the production from different wells, in order to maximize market value (3).

This report will refer to the production and processing system as oil production system, since oil will

be assumed to be the wanted substance. Gas is defined as waste in order to reduce the number of

parameters taken into consideration in the system design of the oil production system constructed in

this project.

The oil production system is about optimizing the oil production. The human operator plans and

monitors the asset with respect to meet the production goals for the asset, and implement the

production plan and monitor the process state and the general performance on a continuous basis.

Production targets are the amount of oil and the amount of waste. Different oil quality is not taken

into consideration in the work documented in this report. Waste is defined to be water, sand, and

gas.

The system designed is a distributed multiagent system which can perform analysis of sensor data

and take actions based on its findings in order to optimise the production of a simulated oil field.

Agent-instances and team-instances should be capable of adjusting the production in a globally

optimized manner. Global optimizion is performed when the oil field at all times produces with the

wells that have the best oil/waste-ratio. This type of optimization is an optimal production, which is

defined in Section 5.4 to be maximizing of the oil production in the long term, taking the extraction

of oil in reservoir into consideration.

5.2 Reference model
To represent an oil field, Figure 4 shows the physical infrastructure with two geographical areas

(equivalent to reservoir) which each contain two subsea templates. Subsea templates (four in total)

contain three wells each (twelve in total).

 CHAPTER 5. DEFINING A REFERENCE PROBLEM

36

Figure 4: Physical infrastructure of an oilfield

The field has no injection-wells, only production wells. A decrease in oil production due to loss of

pressure can therefore not be handled by injection to increase the pressure. To reach the wanted

production, causes the production of the different wells to compensate lost production between

each other, or the total production target has to be changed according to the current situation.

The field is “process-limited”. That is, the production facilities are a potential bottleneck. The wells

are also potential bottleneck, called “well-limited”. The one of the two limitations preventing the

field from reaching its production target varies from time to time. Sometimes it can be the capacity

of the processing facilities, and other times it can be that the wells do not deliever enough according

to the field production target. The reference problem defined in this chapter assumes “well”-

limitation to be the reason if a production target is not achieved.

5.3 Assumptions
This section contains different assumption about the environment and concerns of the system

design, that influence how the architecture is built. The assumptions are the following (3):

 A well cannot influence the reservoir pressure and reservoir properties nearby another well.

Their influence on each other is assumed to be in little extent, and is therefore neglected

within a short period of time. This simplifies the calculation of each well’s production, since

all well’s production forecast calculation is not depending on each other for this period. After

this period, the new reservoir pressure and reservoir properties are recalculated and

updated.

 Sensor data is cleansed and filtered causing access to valid data.

 The processing plant has no oil capacity limit

 The processing plant has a known fixed gas-, sand- and water capacity.

 CHAPTER 5. DEFINING A REFERENCE PROBLEM

37

 The manageable sand limit in the well is known.

 The agent system has access to adjust the chokes.

 The reservoir pressures and properties nearby the wells are known, in order to have the

ability to forecast well production.

 Oil is the preferred substance over gas, water, and sand.

 Wells connected to Subsea templates have to have the same wellhead pressure in order to

avoid affecting eachother’s production.

5.4 Optimal and maximal production
The terms “optimize” and “maximize” are often used in an inseparable manner. Regarding oil

production, a distinction must be made between these terms since they are not synonymous (4).

Optimization will have as goal to maximize the oil production, the time horizon is different.

Optimization is about maximizing the oil production in the long term, taking the extraction of oil in

reservoir into consideration. To perform this optimization, long term plans and decision should align,

and not maximizing the oil production at the current moment. This alignment can be performed

faster than before because of the increased real-time data available, enabling adjustments and

forecasts in a more frequently manner.

5.5 Previous experiences
This section describes previous experiences made when developing oil productions systems with

agents.

5.5.1 Oil production systems

Ølmheim, Landre & Quale (2) suggested concepts for inclusion in the next generation production

support systems. The system is based on use of delegated and variable autonomy. The suggested

architecture is shown in Figure 5. It is divided into three distinct layers illustrating the business

concerns at each layer.

Figure 5: Architectual layers

The layers are described as follows:

 Reservoir Management: Responsible for the long term objectives for each reservoir and

defines the goals for the lower levels to implement. Uses reservoir models and supports

what-if analysis of different scenarios. Determines how each reservoir should be drained for

the purpose of maximizing long term value in each reservoir and between reservoirs in a

geographical area.

 CHAPTER 5. DEFINING A REFERENCE PROBLEM

38

 Field Operation: Responsible for the day-to-day operation of a single field. Uses field flowline

models and simulations to find the “best possible” configuration. Receives production goals

for each of its reservoirs from reservoir management, and develops plans for how to manage

the wells based on actual well state and designated production goals.

 Well Monitoring & Control: Responsible for monitoring and control of the individual wells.

Captures the uniqueness found in each individual well. Compared with more traditional use

of layers in software engineering, this approach differs as the components located in each

layer will negotiate contracts as part of the delegated autonomy.

Interpreting the algorithms presented in this report, reaching a common goal for a group of agents

(teamwork) is here realized through the “commander-agent” of the group knowing what it would like

the team-member’s contribution to be. The next step is for the “commander-agent” ask all the team-

members to make that contribution as best as possible and negotiates to make it work as best as

possible. If there exists several wells, negotiation with each of them would cause a large amount of

messages going back and forth to settle a production target for the group well, especially if the

contribution should be globally- and locally optimized at the same time. If one well cannot meet the

planned production target, this can mean renegotiation for the wells who already settle their

production target in order to compensate to reach the common production target for the whole

group. The system proposed in this report will hav all wells telling the field about their possible

contributions and the field (commander of the group of wells) can therefore decide which well shall

make what contributions. The focus will be how to reach a common goal (common production

target) for the whole group of wells, which implies use of teamwork.

The project preparing for this master thesis (3) designed a system structure that shows a hierarchy

with the Human operators and Operator Assistant (OA) on the top, with the Optimizing Field Oil

Production System (OFOPS) team underneath (Plant Monitor is a sub-team of OFOPS), who further

delegates the work through the Subsea Template Collection (STC) (same as a geographical area

mentioned in the system goals), Subsea Template (ST), and finally at the bottom level, the Well (W).

The hierarchy is bound together with contracts between the different levels in the hierarchy. In order

for the operator to be able to take actions, he/she has to follow the authority lines, so contracts are

not broken between teams in an uncontrolled manner.

 CHAPTER 5. DEFINING A REFERENCE PROBLEM

39

Figure 6: System structure (3)

All teams will have the ability to deal with decisions within their scope of delegated authority. All

teams consist of a number of sub-teams which have agreed to work together toward a common goal.

The team tries to reach the team goal rather than the local goals of the sub-teams. To support the

overall team goal, the sub-teams need to collaborate with each other. The coordination is achieved

trough communication, showed in the system structure by arrows between the different teams.

The physical infrastructure in this system structure will be used as a basis for this report. The

teamstructure will also be explored and examined. The human operator shall be more directly

involved in the different team’s processeses, in a new system. This will for instance possibly result in

a relationship of trust between the human operator and the machine system.

 CHAPTER 5. DEFINING A REFERENCE PROBLEM

40

41

 Chapter 6

System design

This chapter explains the basic software layers that have to exist in a system that address the

reference problem from Chapter 5. The different control processes and “steps of action”-scenarios

this type of system is going to handle are described in the following subsections. These elements will

generate a core system design that will be the foundation when implementing the JACK Agent

version and the JACK Teams version.

6.1 Layers
The suggested architecture is divided into five distinct layers illustrating the encapsulation of

functionalities. The layers are shown in Figure 7 in two versions. The ideal architecture has one layer

that is placed vertical and is able to interact with all horizontal layers directly. The simplified

architecture used in this report has only a user interface towards the “Field Planning & Monitoring”-

layer, in order to be able to realize the system within the workhours available in this project.

Figure 7: Architectual layers – Ideal architecture & Simplified architecture

• Operator Assistant: This layer is involved in the selection of production-scenarios at the

different layers to be able building the field production-scenarios. It is involved in selecting

the field production-scenario to plan the production according to, and has the ability to

monitor production hour by hour.

• Field Planning & Monitoring: This layer is responsible for the long term production target,

and defines the goals for the geographical area levels to implement. It determines how each

geographical area should be drained for the purpose of maximizing long term value of the oil

field.

• Geographical Area Planning & Monitoring: This layer selects the different the production

levels for the subsea template connected to each physical geographical area, after consulting

with the “Subsea Template Planning & Monitoring”-layer. It coordinates the production

levels of the subsea template connected to the geographical area, and captures the

information about each individual geographical area.

 CHAPTER 6. SYSTEM DESIGN

42

• Subsea Template Planning & Monitoring: This layer selects the different the production

levels for the wells connected to each physical subsea template, after consulting with the

“Well Planning & Monitoring”-layer. It coordinates the production levels of the well

connected to the subsea templates, and captures the information about each individual

subsea template.

• Well Planning & Monitoring: This layer contains prediction models and productiondata for

each individual well, used in the planning phase and during the production phase. It is

responsible for monitoring and control of the individual wells, and captures the information

about each individual well.

6.2 Processes
The production system constructed run three processes: Proactive planning, Reactive adjustment,

Monitoring & Control. The processes run in a serialized manner, one at a time. The different

processes are shown is Figure 8.

Figure 8: System processes

Proactive planning depends on Monitoring & Control to see if the system has reached the production

targets, or if it shall switch from Proactive planning to the Reactive adjustment process.

The Reactive adjustment process is dependent on Monitoring & Control to see if the system has

reached the production targets. Figure 8 shows the system going from Reactive planning, and back to

Proactive planning. This is the ideal interaction between the processes. To simplify the system being

built, a transition from Proactive planning to Reactive planning is the only one being allowed, and not

the opposite transition. The following processes are described as follows:

 Proactive planning: The objective of the Planning process is to establish the best possible

well choke settings for a period of time and to reach production targets specified by the

human operator. This configuration will be challenged when it put into operation due to the

dynamics in the real world. Equipment will fail and situations emerge and the Reactive

adjustment process has to be performed in such case. The generation of possible production

 CHAPTER 6. SYSTEM DESIGN

43

targets within a specified period of time is built bottom-up, because each well is telling the

subsea template how much it can contribute at different production levels. The subsea

template is combining the best combinations (highest oil/waste ratio) of well-contributions,

and generates subsea template contribution plans. This repeated on geographical area-level,

and at last at the field-level. The field-level uses the human operator-level to communicate

with the human being that chooses the total production target for the whole field for the

period of time.

 Reactive adjustment: The objective of reactive adjustment is to establish a best possible

configuration for the next hour constrained by a production target and the current situation.

Because the production system wants to ensure that the production target is reached,

maximizing the oil production at the current moment is performed. This may increase the

amount of waste produced in each and every moment while producing. Since a maximizing is

performed every moment, the production target will possibly be produced faster, but with a

larger load at the equipment during those hours. Well choke settings are tuned after

environmental changes have occured, instead of changing the well settings in advance.

Depending on how fast a change in the environment is detected in the environment, this

could cause some extra time to adjust accordingly. Reactive adjustment is top-down, where

the field-level asks for the best oil/wast-ratio subsea templates, then adjusting and selecting

which subsea template to produce at what levels. This is done at subsea template-level

because all wells connected to a subsea template have to have the same well-head pressure

to avoid producing into one another. This causes the all the wells connected to it to run with

the same well choke settings.

 Monitoring & Control: The production is being monitored and controlled after each time

step in both the Proactive planning process and the Reactive adjustment process. The

Monitoring & Control process decides the system state (proactive or reactive) for the next

hour. Note that the system design is simplified and can only change from the proactive state

to the reactive state, and not the opposite.

6.3 System operation
This section describes how the system implements global- and local optimization and steps of

action”-scenarios the system shall be able to do.

6.3.1 Global optimization

The system processes presented in Figure 8 will be described using “steps of action”-scenarios,

where one “steps of action”-scenario describes normal production (equal to the Proactive planning

process) and the second “steps of action”-scenario describes how to deal with unexpected change

(equal to the Reactive adjustments process).

The system emphasizes the use of global optimization, while still having every component producing

within its limits and restrictions. Global optimization will cause production levels with the highest

oil/waste ratio in total and with the lowest total amount of waste as possible, which is important for

the production facilities in order to avoid using unnecessary resources and capacities.

The production system constructed in this report asks every well component in the lowest level in

the physical infrastructure hierarcy shown in reference problem presented in Chapter 5. They report

 CHAPTER 6. SYSTEM DESIGN

44

back to the subsea template they are connected to, telling what amounts of oil and waste they are

able to produce (within a zone of local optimization). This process is repeated at the different levels

until reaching the field-level in the hierarchy. A global optimization for the whole field will take place

at this moment. At every level in the hierarchy a few production-scenarios are removed because of

local optimization. Within this zone, the globally optimized production-scenario is chosen. Every

possible combination of well settings is generated because of the process of building a globally

optimized set of well production bottom-up. The bottom-up approach performed in this project will

create a globally optimized set of well settings, while a top-bottom approach would have created

approximately globally optimized and make the lower levels do local optimizations.

All processes in the system are initiated at the top level. Figure 9 shows how the initiation of actions

starts on the top level and propagates downwards, while returning to the top level after reaching the

bottom level. Reaching the top level, a globally optimized decision is ready to be made.

Figure 9: Path of information flow

6.3.2 “Steps of action”-scenarios

The “steps of action”-scenarios described in this section represent the work that the implemented

system shall do during runtime are. The system can be represented by two main “steps of action”-

scenarios. The pseudo-algoritms realizing these “steps of action”-scenarios can be found in Appendix

A. The two “steps of action”-scenarios are described as follows:

 “Steps of action”-scenario one - Planned and predicted production: The “steps of action”-

scenario involves the Proactive planning- and the Monitoring & Control control processes.

The scenario starts when the length of the period of time is selected. Knowing the length on

the period of time, different production-scenarios with different production targets is

generated. The selected production target for the period of time is the production target

selected from the predicted field production-scenarios. Selecting a predicted production-

scenario is performed by a human operator defining the period of time he/she wants to

produce within. The objective is to achieve the amount of oil and waste (defined as gas,

 CHAPTER 6. SYSTEM DESIGN

45

water, and sand in this project) specified in the production-scenerio, which is done by

following the planned well choke settings hour by hour.

 “Steps of action”-scenario two - Unpredicted changes according to planned production: The

“steps of action”scenario involves the Reactive adjustment- and the Monitoring & Control

control processes. The scenario starts when the predicted field production-scenario does not

fit the actual production. The objective now is to deal with the unpredictability of the

environment, while optimizing globally at the next timestep. The prime goal is to reach the

production target within acceptable production levels, but may cause intensive production

(same amount of production, but in less time) that could cause a greater extent of corrosion

on equipment, and increase the risk of technical failures. The process is repeated hour by by

hour to the end of the period of time selected, or until the production targets have been

reached.

6.4 Simulated environment
The graphical user interface (GUI) used in this project is shown in Figur 10. It is used to generate

proactive plans with different possible production targets, during a specified period of time. Another

feature is to look at the actual well choke settings that the agent system will use when following a

specific plan. The agent system will follow the proactive production plan set for the production-

scenario when the human operator selects a production-scenario. A change to reactive state will be

made if the actual production does not follow this plan. This is not shown in the GUI, but is

performed in the automatically in machine system.

Figur 10: Graphical User Interface

The environmental variables are predicted oil-, gas-, water-, and sand production/hour in each well.

The numbers are contained in a textdocument that draw an interface towards calculations of

proactive production-plans. Production data to monitor is also given by a textdocument, to represent

the sensor values hour by hour. The values are not selected randomly, because this it is irrelevant to

the experiment conducted.

 CHAPTER 6. SYSTEM DESIGN

46

6.5 Applied teamwork and implications
The system designed in this chapter has teamwork at field-, geographical area-, and subsea template

level. The common teamgoals for the teams was made out from a combination of what amount of

production the teammembers can offer during the period of time or the next hour. The field team is

the only team having the same teamgoal for the whole period of time selected and the possibility to

change the system state. The other teams have a common teamgoal for the whole period of time if

in proactive state, and a common teamgoal substituted every hour if the system is in a reactive state.

Subsection 2.1 indicates three challenges regarding multi-agent systems: there exists no global

system control, data is decentralized, and that the computation is asynchronous. Teamwork was

pointed out a possible solution addressed to these challenges. The system designed contains global

system control due to the hierarchy built. The data being desentralized challenge is not an issue here

since the data that is desentralized on different hierarchical levels belongs to different abstraction

levels. Asynchronous computation creates computation at different abstraction levels. Different

abstraction levels will create a good decomposition and less calculations necessary, in order to create

a global optimal solution.

Many approaches exist in the work of coordination of agent systems. Subsection 2.5.2 described

several coordination techniques that can be used in a multi-agent system. Contracting is the

coordination technique used to realize the teamwork in the designed oil production system of this

report is named. First the team announces a contract, receives bids from its teammembers,

evaluates the bids, and finally awards the different contracts to the subteams. Analogous the team

announces a contract of produciton for a specified period of time, receives production-scenarios

from its teammembers, evaluates the production-scenarios, and finally awards the different

contracts (id of the production-scenario to follow) to the subteams. Awarding contracts (id of the

production-scenario to follow) happens after after the finding of the best composition of all

production-scenarios received.

Subsection 2.5.3 went through team variables. The different team variables are addressed in this

design as follows:

 Team size: Team size is chosen on background of the reference problem from Chapter 5. One

field team contains two geographical areas subteams. A geographical Area team contains

two subsea template subteams (totally four in the whole system structure). A subsea

template team contains three well subteams (totally twelve in the whole system structure).

 Team structure: The teamstructure is static during runtime due to the static relationship the

physical components has to eachother in the reference problem defined. Solving a teamtask,

all the subteams will be given the same type of sub-tasks since they behave in the exact same

way on the different hierarchical levels. Since the subteams represent different physical

components, the tasks will be solved according to that unique instance of the physical

component.

 Differentiation and Specialization: The teams are homogenous. This causes teammembers to

take over and fulfil a role for a teammember that is temporary out of function, if all beliefs

needed are available. This was however not included in the system design.

 CHAPTER 6. SYSTEM DESIGN

47

 Failure handling: The system is designed with a fixed step of actions, with strict control

exercised from the team on the highest hierarchical level (field team). If a well cannot

produce according to its contract it will have consequences for the whole system, because

the system tries to achieve a globally optimal production solution. The field team will initiate

a check everyhour to examine all contracts in the system, to see if they still are sustained. If a

contract is violated, a violation report will propagate to the field team that will change the

system state from proactive to reactive and initiate an adjustment.

 Authority delegation: The team on the highest hierarchical level (field team) initate all

control processes in the system. This creates a global control, which delegate subteams to

filtrated and monitor information on lower abstraction levels. The human operator has

delegated to the machine system everything except choosing the length on the period of

time to produce, the selection of field production-scenario, and production monitoring.

6.6 Towards a human-centric system
Human operator is able to influence the machine system in the planning phase of the oil production,

as described in Section 6.5. Interference from the human operator is not possible from the human

operator when actual production has started. Some of the human-centric principles from Subsection

2.4.3 have been used as background for this involvement of human operator. This is not the

mainfocus of the report and is not prioritized. The main focus is to compare JACK Agents and JACK

Teams and to evaluate their applicability and suitability in teamwork construction.

 CHAPTER 6. SYSTEM DESIGN

48

49

 Chapter 7

JACK Agents solution

This chapter runs through the design and implementation used to construct the JACK Agent version

of the program to be developt. The design shows the system structure of all the agents that will be

instanciated, and how the different kinds of agents realize teamwork. How the teamwork is done in

the actual implementation, is looked into by studying the primitives used by agents and plans, and

how they function.

7.1 System structure
The system structure of agent-instances used in the particular program developt is shown in Figure

11. The structure consists of 1 operator assistant, 1 field, 2 geographical areas, 4 subsea templates,

and 12 wells. The numbers of agents are the same as physical components given in the reference

problem described in Chapter 5. The interaction follows the same path as in a military structure. All

commandoes and enquiries have to follow a hierarchical path. The different levels in the hierarchy

represent different levels of abstraction levels. This will eventually lead to global optimization and

put the operator assistant in control and represent information on a suitable level of abstraction.

Figure 11: System structure - JACK Agents solution

The conceptual/intended teamstructure in the JACK Agent solution is as following starting with the

smallest teams:

 The Subsea Template team has Wells as teammembers.

 The Geographical Area team has Subsea Templates as teammembers.

 CHAPTER 7. JACK AGENTS SOLUTION

50

 The Field team has Geographical Areas as teammembers.

 The operator assistant is involved in the teamprocesses regarding the Field team.

7.2 Teamwork
Two “steps of action”-scenarios were defined in Subsection 6.3.2: “Planned and predicted

production” and “Unpredicted changes according to planned production”. These scenarios represent

the work that the system does. The same “steps of action”-scenarios are implemented in the JACK

Teams solution, and create a foundation that makes the two versions suitable for comparison. The

parts that will be different in the two versions are the subsea template- and well levels, and is

therefore the main-focus in this section.

The two “steps of action”-scenario are divided into several interaction sequences to easier see what

happens during the scenario. The “Generate production-scenarios”-scenario is part of the “Planned

and predicted production”-scenario, and is representative what concerns teamwork. This section will

therefore describe it in details. For more information about the other interaction sequences, see

Appendix B.

The “Generate production-scenarios”-scenario will show how teamwork was built in JACK Agents. The

scenario begins when the proactive planning process receives a period of time, for which different

production-scenarios with different production targets is fulfilled. Figure 12 shows all agents, plans,

and events involved in this process.

Figure 12: Generate production-scenarios

The human operator has to specify a valid period of time through the operator assistant agent. The

number of hours is propagated downwards the system. When the event containing the number of

hours reaches the hierarchical bottom-level well, well production-scenarios are generated.

 CHAPTER 7. JACK AGENTS SOLUTION

51

Propagating to the the subsea template team (with well as teammember), well production-scenarios

are combined into subsea template production-scenarios. The same process is repeated for the

geographical area team, with subsea template production-scenarios. The final repetition of this

process generates field production-scenarios, being ready to be choosed among with different

production targets.

The implementation of the subsea template teamwork is shown in Figure 13. To reach the well

teammembers, a list containing the addresses to all connected well teammembers are accessed. This

list was established in the main Java-method.

Communication is implemented by using the @send and @reply statements. Cooperation is getting

all teammembers to create the best subsea template production-scenarios. They have to use the

same well choke settings at all times. Coordination is that all well teammembers asked each time the

subsea template is asked for subsea template production-scenarios. The well teammembers is asked

in a serial fashion, but this could have been done in parallel as well. The common team goal in this

proactive state is the different subsea template production-scenarios’ production goals hour by hour.

One of these subsea template goals has to be selected by the geographical area.

Figure 13: Subsea Template - FindSubseaTemplateScenarios-plan

Figure 14: Well - FindWellScenarios-plan

public plan FindWellScenarios extends Plan {

(...)

#reasoning method

body()

{

wellScenarios = findWellScenarios();

@reply(ev, ev1.scenariosGenerated(wellScenarios));

}//end body()

(...)

}//end plan

public plan FindSubseaTemplateScenarios extends Plan {

(...)

#reasoning method

body()

{

(...)

 for(int i=0; i<connectedWells.size(); i++) {

 GenerateScenarios q = ev2.generateWellScenarios(hoursValidity);

 @send((String)connectedWells.get(i), q);

 @waitFor(q.replied());

ScenariosGenerated wev = (ScenariosGenerated) q.getReply();

Scenarios wellScenarios = wev.scenarios;

generatedWellScenarios.add(wellScenarios);

 }//end for-loop

subseaTemplateScenarios = generateSubseaTemplateScenarios(generatedWellScenarios);

 self.setSubseaTemplateScenariosList(subseaTemplateScenarios);

@reply(ev, ev1.scenariosGenerated(subseaTemplateScenarios));

}//end body()

(...)

}//end plan

 CHAPTER 7. JACK AGENTS SOLUTION

52

53

 Chapter 8

JACK Teams solution

This chapter runs through the design and implementation used to construct the JACK Teams version

of the program to be developt. This version has changes made in the subsea template and well

compared to the JACK Agents solution in Chapter 7. The design shows the system structure of all the

agents and teams that will be instanciated, and how the different kinds of agent realize teamwork.

How the teamwork is done in the actual implementation, is looked into by studying the primitives

used by agents and plans, and how they work. The structure and elements in this chapter is the same

as the design used in the JACK Agents solution.

8.1 System structure
This section shows the system structure used in the JACK Teams solution. Figur 15 shows the system

structure consisting of 1 operator assistant, 1 field, 2 geographical areas, 4 subsea templates, and 12

wells. The numbers of agents/teams are set according to the reference problem in Chapter 5. The

hierarchy is build the same way as the JACK Agents solution and communication has to follow the

communicationpaths it implies. Each level deals with a different abstraction level, and the top-level

agent handles the initiation of the different sequences of actions described through the “steps of

action”-scenarios in Section 6.3.2. All initiation of action will therefore lead global optimization

dealing with the highest abstraction level of information composite from the abstraction levels lower

in the hierarchy.

Figur 15: System structure - JACK Teams solution

 CHAPTER 8. JACK TEAMS SOLUTION

54

Some of the teamwork is represented by using agent-instances from JACK Agents to form teams, and

the subsea template and wells are using the team-construct from JACK Teams. The teamstructures in

the JACK Teams version are as follows:

 The Subsea Template team (using the team-construct) has Wells as teammembers (using the

team-construct).

 The Geographical Area team (using the agent-construct) has Subsea Templates as

teammembers (using the team-construct).

 The Field team (using the agent-construct) has Geographical Areas as teammembers (using

the agent-construct).

 The operator assistant (using the agent-construct) is involved in the teamprocesses regarding

the Field team (using the agent-construct).

8.2 Teamwork
Two “steps of action”-scenarios were defined in Subsection 6.3.2: “Planned and predicted

production” and “Unpredicted changes according to planned production”. These scenarios represent

the work that the system does. The same “steps of action”-scenarios are implemented in the JACK

Agents solution, and create a foundation that makes the two versions suitable for comparison. The

parts that will be different in the two versions are the subsea template- and well levels, and is

therefore the main-focus in this section.

The two “steps of action”-scenario are divided into several interaction sequences to easier see what

happens during the scenario. The “Generate production-scenarios”-scenario is part of the “Planned

and predicted production”-scenario, and is representative what concerns teamwork. This section will

therefore describe it in details. For more information about the other interaction sequences, see

Appendix B.

The “Generate production- scenarios”-scenario will show how teamwork was built in JACK Teams,

and will be described in details in this section. The scenario begins when the proactive planning

process receives a period of time, for which different production-scenarios with different production

targets is fulfilled. Figure 16 shows all teams, agents, plans, and events involved in this process.

 CHAPTER 8. JACK TEAMS SOLUTION

55

Figure 16: Generate production-scenarios

The scenario starts with the human operator specifying a valid period of time through the operator

assistant agent. The number of hours is propagated downwards the system. When the event

containing number of hours reaches the hierarchical bottom-level well, well production-scenarios are

generated. Propagating to the the subsea template team (with well as teammember), well

production-scenarios are combined into subsea template production-scenarios. The same process is

done for the geographical area team, with subsea template production-scenarios. The final repetition

of this process generates field production-scenarios, being ready to be choosed among with different

production targets.

Figure 17 shows the teamwork for the subsea template team consisting of well subteams as

teammembers. The implementation of the well’s plan is shown in Figure 18. Communication is

implemented by using the the event sent from subsea template using the @teamAchive statement.

The well will change an attribute on the event sent, by using the setScenarios()-method (user defined

method) on the event.

The @teamAchieve statement will maintain the event it sent for any updated attributes after the

subsea template has succeded to respond to the event. Cooperation is having the teammembers

(wells) to work towards the common team goal. The common team goal is to have the subsea

template production-scenario to produce every hour with the production-scenarios inititially

selected by the field. To reach this goal a team-subgoal is generate subsea template production-

scenarios performed during these steps of actions. Coordination is having the well teammembers

asked in a serial fashion what amount of oil and waste the can produce, but this could have been

done in parallel as well. The subteams fulfilling the required roles needed by the team are fulfilled by

the establish()-method used by the framework. This establish()-method can been seen in Figure 17.

 CHAPTER 8. JACK TEAMS SOLUTION

56

Figure 17: SubseaTemplate - FindSubseaTemplateScenarios-plan

Figure 18: Well - FindWellScenarios-plan

public teamplan FindWellScenarios extends TeamPlan {

(...)

#reasoning method

body()

{

wellScenarios = findWellScenarios();

 ev.setScenarios(wellScenarios);

}//end body()

(...)

}//end plan

public teamplan FindSubseaTemplateScenarios extends TeamPlan {

(...)

#reasoning method

establish()

{

Vector busy = new Vector();

wellAss1= (WellAssistant1) pickRole(busy, wa1);

wellAss1!= null;

wellAss2= (WellAssistant2) pickRole(busy, wa2);

wellAss2!= null;

wellAss3= (WellAssistant3) pickRole(busy, wa3);

wellAss3!= null;

}

#reasoning method

body()

{

 (...)

 find(wellAss1);

 find(wellAss2);

 find(wellAss3);

 (...)

}//end body()

#reasoning method

find(Role wellAss)

{

(...)

 if(wellAss instanceof WellAssistant1) {

 WellAssistant1 wellAssCasted = (WellAssistant1)wellAss;

 GenerateScenarios q = wellAssCasted.gs.generateWellScenarios(hoursValidity);

 @teamAchieve(wellAssCasted, q);

 wellScenarios = q.scenarios;

 }

 else if(wellAss instanceof WellAssistant2) {

 WellAssistant2 wellAssCasted = (WellAssistant2)wellAss;

 GenerateScenarios q = wellAssCasted.gs.generateWellScenarios(hoursValidity);

 @teamAchieve(wellAssCasted, q);

 wellScenarios = q.scenarios;

 }

 else if(wellAss instanceof WellAssistant3) {

 WellAssistant3 wellAssCasted = (WellAssistant3)wellAss;

 GenerateScenarios q = wellAssCasted.gs.generateWellScenarios(hoursValidity);

 @teamAchieve(wellAssCasted, q);

 wellScenarios = q.scenarios;

 }

 else {

(...)

 }

 (...)

}//end find()

(...)

}//end plan

57

Part III

Results and conclusions

58

59

Chapter 9

Quantitative results

This chapter contains results from the quantitative part of the experiment documented in this report.

The JACK Agents solution (see Chapter 7) and the JACK Teams solution (see Chapter 8) are evalutated

according to the metrics defined experiment. Metrics from Chapter 4 are used to make

measurements that either confirm or reject hypotheses formulated in the experiment. The validity of

the result is discussed at the end of the chapter, where some of the validity threats have been

addressed, while others have been accepted.

9.1 Testing of hypotheses
The measurements made in the experiment are done according to the metrics presented in

Subsection 4.1.5. These metrics have the purpose of getting measurements that are needed test the

hypotheses. The hypotheses described in the following subsections are confirmed or rejected in

accordance to measurements shown followed by a discussion.

9.1.1 Hypothesis 1

The hypothesis

Hypothesis 1 is concerned with lines of code and is given as follows:

 H01: The functionality of the the two versions will be implemented with approximately the

same number of code lines.

 HA1.1: The JACK Teams version will implement the same functionality as JACK Agents version

with fewer lines of code.

 HA1.2: The JACK Teams version will implement the same functionality as JACK Agents version

with more lines of code.

Measurements

Metric M1 Lines of Code (LOC) is used in the testing of hypothesis 1. This metric represent the total

number of code-lines in the code written by the system developer. All entities in the different

packages will be counted. The packages that are included in the counting process are only the

packages that contain differences in JACK Agents solution and the JACK Teams solution. The packages

excluded are: Operator assistant, Field, Geographical area, and the GUI package. The measurements

of the metric will be found by counting the number of semicolons using Microsoft Word’s counting

function. The results can be found in Table 4. The result is presented in a diagram in Figure 19 that

illustrates the measurements related to each version.

 CHAPTER 9. QUANTITATIVE RESULTS

60

M1: Lines of Code (LOC)

Package JACK Agents version JACK Teams version

Operator assistant - -
Field - -
Geographical area - -
Subsea template 453 582
Well 448 429
GUI - -
Scenario structures 156 156
System events 10 13
Main-method 108 130

Total Lines of Code 1175 1310

Table 4: Results for M1: Lines of Code (LOC)

Figure 19: Measurements of Metric M1 (LOC)

Discussion

The diagram in Figure 19 shows that the subsea template package varies a lot between the two

solutions. The difference is caused by the extra code needed to establish teams in the JACK Teams

solution, while the JACK Agents solution has more reuse of code. The JACK Agents solution use for-

loops and repeat the work that needs to be done for each connected teammember. The JACK Teams

solution does not use a for-loop, but specify work to each teammember in separate codelines. Using

a for-loop was found difficult since the object will not be of the same type, because each well-role is

a separate Java-class.

The system events package had some attributes added because of the data exchange by using

@teamAchieve in the JACK Teams solution. The main-method package had some extra code-lines

because of a bug in the framework, and the instances had to be checked if they were finished being

instanciating before moving on. The connection between team and teammembers is not needed in

the main-method package to build the structure, since the JACK Teams version uses a .def-file

instead to build the possible team structures. The JACK Teams version’s

SetSubseaTemplateScenarioChosen-plan (from the subsea template package) registrered its

teammembers too. This was not done because it needed the addresses to find the teammembers,

but it was necessary to be able to find the right production-scenarios for the right teammember.

 CHAPTER 9. QUANTITATIVE RESULTS

61

The JACK Agents version has 1175 lines of code to realize the teamwork, while the JACK Teams

version has 1310 lines of code. This is an increase of 11.49%.

Conclusion

The results from the measurements of metric M1 shown in Table 4 indicate that the JACK Teams

version has more lines of code than the JACK Agents. Hypothesis H01 is therefore rejected and the

alternative hypothesis HA1.2 is chosen.

9.1.2 Hypothesis 2

The hypothesis

Hypothesis 2 concerns the number of entities in each version and is given as follows:

 H02: The number of entities will be the same for the two oil production system versions.

 HA2.1: The JACK Teams version will have more entities than JACK Agents version.

 HA2.2: The JACK Teams version will have fewer entities than JACK Agents version.

Measurements

Metric M2 Number of Entities (NOE) is used in the testing of hypothesis 2. This metric represent the

number of JACK entities. In the JACK Agent solution this will be the events, plans, capabilities, agents,

views, beliefset, and Java classes. The additional constructs in JACK Teams are teamplans, roles, and

teams. Plans and teamplans, and agents and teams will fall in the same category. Roles will be a

separate entity category. The measurements of the metric will be found by counting the number of

JACK entities. The result of the countingprocess is found in Table 5. The result is presented in a

diagram in Figure 20 that illustrates the measurements related to each version.

 CHAPTER 9. QUANTITATIVE RESULTS

62

 M2: Number of Enities (NOE)

Entity Package JACK Agents version JACK Teams version

Events Operator assistant 2 2
Field 8 8
Geographical area 7 7
Subsea template 7 7
Well 3 0
System events 2 2

Total number: 29 26

Plan/teamplan Operator assistant 3 3
Field 5 5
Geographical area 5 5
Subsea template 5 5

 Well 5 5

Total number: 23 23

Role Operator assistant - 0
Field - 0
Geographical area - 0
Subsea template - 0

 Well - 3

Total number: 0 3

Capabilities - -

Total number: 0 0

Agents/Teams Operator assistant 1 1
Field 1 1
Geographical area 1 1
Subsea template 1 1
Well 1 1

Total number: 5 5

Views - -

Total number: 0 0

Beliefset - -

Total number: 0 0

Java classes GUI 7 7
Main-method 1 1
Scenario structures 4 4
Subsea template 2 2
Well 1 1

Total number: 15 15

Total Number of entities 72 72

Table 5: Results for M2: Number of Entities (NOE)

 CHAPTER 9. QUANTITATIVE RESULTS

63

Figure 20: Measurements of Metric M2 (NOE)

Discussion

The differences between the two solutions lays the event package and in the role package, as shown

in Figure 20. The JACK Teams solution has fewer events than the JACK Agents solution. This is caused

by the data exchange through the @teamAchieve statement, instead of using an extra event sent by

the @reply statement as in the JACK Agents solution. The role package is only used by the JACK

Teams version.

The JACK Agents version has 72 entities to realize the teamwork, while the JACK Teams version has

also 72 entities. The difference in the number of entities between the two versions is therefore 0.0%.

This is caused by the number of events and roles neutralizing eachother in this experiment. Increased

data exchange using the same number of roles, will however decrease the number of event-entities

in the JACK Teams version compared to the JACK Agents version.

Conclusion

The result from the measurements of metric M2 is shown in Table 5, and indicates that the number

of entities will be the same for the two solutions. Adding more teammembers to a team, which

functions together at the same time without data exchange, was experienced during developement

phase to cause that HA2.1 would be the chosen hypothesis. Increased data exchange between team

and teammembers was experienced during developement phase to cause that hypothesis HA2.2

would be the chosen hypothesis. There is no proven or unproven proportional dependency between

event-entities and role-entities in this experiment, and their unproven dependency (in any) makes it

hard to generalize about the results. The null hypothesis H02 is chosen since the number of entities is

the same in both solutions used in this experiment.

 CHAPTER 9. QUANTITATIVE RESULTS

64

9.1.3 Hypothesis 3

The hypothesis

Hypothesis 3 concerns the number of functions in each version and is given as follows:

 H03: Both versions will use the same number of functions to complete the designed oil

production system given in Chapter 6.

 HA3.1: The JACK Teams version will complete the designed oil production system (see

Chapter 6) with fewer functions than JACK Agents version.

 HA3.2: The JACK Teams version will complete the designed oil production system (see

Chapter 6) with a larger number of functions than JACK Agents version.

Measurements

Metric M3 Number of Functions (NOF) is used in the testing of hypothesis 3. This metric represent

the total number of JACK-methods, Java-metods, and plans/teamplans used by the agents, teams,

and their own plans/teamplans. The JACK methods are methods defined specially by the framework

in the agents/teams and plans/teamplans. The Java-methods are the number of user defined Java-

methods in the agent/teams and plans/teamplans. The packages looked into are the subsea template

package and well package that realize teamwork differently in the two solutions. The results can be

found in Table 6. The result is presented in a diagram in Figure 21 that illustrates the measurements

related to each version.

M3: Number of Functions (NOF)

Functions JACK Agents version JACK Teams version

JACK-methods 30 40
Java-methods 47 41
Plans 10 10
Total Lines of Functions 87 91

Table 6: Results for M3: Number of Functions (NOF)

Figure 21: Measurements of Metric M3 (NOF)

 CHAPTER 9. QUANTITATIVE RESULTS

65

Discussion

The diagram in Figure 21 shows that the subsea template package varies a lot between the two

solutions. This is caused by JACK Agents solution having for-loops reusing code running through all

teammembers. The JACK Teams solution reuses code by introducing a JACK-method to have

repeated calls, working like a for-loop.

The JACK Agents version has 87 functions to realize the teamwork, while the JACK Teams version has

91 functions. This is an increase of 4.60%.

Conclusion

The result from the measurements of metric M3 shown in Figure 21 indicates that the number of

functions will increase using JACK Teams compared to JACK Agents. Hypothesis H03 is therefore

rejected and the alternative hypothesis HA3.2 is chosen.

9.1.4 Hypothesis 4

The hypothesis

Hypothesis 4 concerns the number of couplings between entities in each version and is given as

follows:

 H04: Both versions will have the same number of couplings between the components in the

system.

 HA4.1: The JACK Teams version will have fewer couplings between the components than

JACK Agents version.

 HA4.2: The JACK Teams version will have more couplings between the components than

JACK Agents version.

Measurements

Metric M4 Number of Couplings between Entities (NOCBE) is used in the testing of hypothesis 4. This

metric represent the number of couplings between the agent/team and other entities. The packages

looked into are the subsea template package and well package that realize teamwork differently in

the two solutions. Coupling is defined in Subsection 4.1.5 to be in- and out going method calls and

events. Method calls from an agent’s own plan or posted events within the agent are not counted.

Instanciating Java objects and JACK objects are not counted either. Events from the System events

package sent from agents/teams/plans/teamplans are counted as they were included in these

packages. The result of the measurements is found in Table 7.

 CHAPTER 9. QUANTITATIVE RESULTS

66

M4: Number of Couplings between Entities (NOCBE)

External
package

Entities JACK Agents version JACK Teams version

Coupling to
subsea

teamplate
agent

Coupling
from

subsea
template

agent

Coupling
to well

agent

Coupling
from well

agent

Coupling to
subsea

template
team

Coupling
from

subsea
template

team

Coupling
to well

team

Coupling
from well

team

Subsea
template

Agent - - 0 0 - - 0 0

Plans - - 5 5 - - 5 0

Roles - - 0 0 - - 0 0

Java
classes

- - 0 0 - - 0 0

Total Number
of Couplings

 - - 5 5 - - 5 0

Well Agent 0 5 - - 0 0 - -

Plans 5 0 - - 0 0 - -

Roles 0 0 - - 0 15

Java
classes

0 13 - - 0 15 - -

Total Number
of Couplings

 5 18 - - 0 30 - -

Scenario
structures

Java
classes

0 27 0 35 0 27 0 35

Total Number
of Couplings

 0 27 0 35 0 27 0 35

Main-method Java
classes

20 0 48 0 40 0 72 0

Total Number
of Couplings

 20 0 48 0 40 0 72 0

Java library Java
classes

0 74 0 136 0 92 0 139

Total Number
of Couplings

 0 74 0 136 0 92 0 139

All packages 25 119 53 176 40 149 77 174

Table 7: Results for M4: Number of Couplings between Entities (NOCBE)

Figure 22: Measurements of Metric M4 (NOCBE)

 CHAPTER 9. QUANTITATIVE RESULTS

67

Discussion

The diagram in Figure 22 shows that the different packages vary regarding couplings between the

two solutions.

Coupling to the subsea template agent/team varies between the JACK Agents version and the JACK

Teams version. The well package has no couplings because of the use of @teamAchieve. The JACK

Teams version does not need to send an event to return data, because of the data exchange through

the @teamAchieve statement. The result is no coupling. This is a decrease of 100%. The JACK Teams

require more couplings to Java libraries mainly because of checking the status when instanciating

teams. This is caused by a bug in the framework (see Section 9.3). This is an increase of 100%.

Coupling from subsea template agent/team varies between the JACK Agents version and the JACK

Teams version. In the well package, this is mainly caused by using @teamAchieve statements to each

role, instead of using a for-loop to run through all receivers. This is an increase of 66.67%. The Java

library package has more couplings in the JACK Teams solution because of the establishment of

teams and teammembers. This is an increase of 24.32%.

Coupling to well agent/team varies between the JACK Agents version and the JACK Teams version.

The JACK Teams require more couplings to Java libraries mainly because of checking the status when

instanciating teams, caused by a bug in the framework (see Section 9.3). This is an increase of 50%.

Coupling from well agent/team varies between the JACK Agents version and the JACK Teams version.

The subsea template package has no coupling in the JACK Teams version, because it uses the

@teamAchieve statement which creates no extra return-event like JACK Agents when doing data

exchange. This is cause a decrease of 100% in number of couplings. The Java library package is

slightly different in the two versions compared. The JACK Teams version causes an increase of 2.21%.

The small difference in the Java library package is of no significance, and is probably caused by

different coding style or inaccurate measurement.

Conclusion

The results from the measurements of metric M4 are shown in Figure 22. The important thing is to

look at the JACK couplings and not at the Java couplings counted in the Java library package, Scenario

structures package and the Main-method package. The data-exchange in JACK Teams creates fewer

couplings, but the role-use creates more couplings. They approximately neutralize eachother in this

experiment, and the null hypothesis H04 is therefore chosen. There is no proven or unproven

proportional dependency between the two types of entitites in this experiment, and that makes it

hard to generalize about.

9.1.5 Hypothesis 5

The hypothesis

Hypothesis 5 concerns the number of couplings between entities in each version and is given as

follows:

 H05: The JACK Agents version and The JACK Teams version have the same number of

external operations changing their internal state.

 CHAPTER 9. QUANTITATIVE RESULTS

68

 HA5.1: The JACK Teams version has a fewer external operations changing the internal state

than JACK Agents version.

 HA5.2: The JACK Teams version has larger amount of external operations changing the

interna state than JACK Agents version.

Measurements

Metric M5 Number of External Activations (NOEA) is used in the testing of hypothesis 5. This metric

represents the incoming couplings that activated the subsea template agent/team and the well

agent/team. The results are shown in Table 8. The couplings were defined as external method-calls

and received events in Subsection 4.1.5. The result is presented in a diagram in Figure 23 that

illustrates the measurements related to each version.

M5: Number of External Activations (NOEA)

External
package

Entities JACK Agents version JACK Teams version

External
activations

of subsea
teamplate

agent

External
activations

of well
agent

External
activations

of subsea
template

team

External
activations

of well
team

Subsea
template

Agent - 0 - 0

Plans - 5 - 5

Roles - 0 - 0

Java
classes

- 0 - 0

Total Number
of Activations

 - 5 - 5

Well Agent 0 - 0 -

Plans 5 - 0 -

Roles 0 - 0

Java
classes

0 - 0 -

Total Number
of Activations

 5 - 0 -

Scenario
structures

Java
classes

0 0 0 0

Total Number
of Activations

 0 0 0 0

Main-method Java
classes

20 48 40 72

Total Number
of Activations

 20 48 40 72

Java library Java
classes

0 0 0 0

Total Number
of Activations

 0 0 0 0

All packages 25 53 40 77

Table 8: Results for M5: Number of External Activations (NOEA)

 CHAPTER 9. QUANTITATIVE RESULTS

69

Figure 23: Measurements of Metric M5 (NOEA)

Discussion

The diagram in Figure 23 shows that the different packages vary regarding external activations.

External activations of the subsea template agent/team vary between the JACK Agents version and

the JACK Teams version. The well package has no couplings because the use of the @teamAchieve

statement. It causes no return-event to exchange data, and therefore results in no coupling. This is a

decrease of 100% in the JACK Teams version. The JACK Teams require more couplings to Java

libraries mainly because of checking the status when instanciating teams, caused by a bug in the

framework (see Section 9.3). This is an increase of 100%.

External activations of the well agent/team vary between the JACK Agents version and the JACK

Teams version. The JACK Teams version requires more couplings to Java libraries mainly because of

checking the status when instanciating teams, caused by a bug in the framework (see Section 9.3).

This is an increase of 50% in the JACK Teams version.

Conclusion

The result from the measurements of metric M5 is shown in Figure 23. The Main-method package in

the JACK Teams version has an increased number of external operations, mainly caused by a bug in

the framework (see Section 9.3). The number to put into focus is therefore the number of external

operations between JACK-entities. The JACK Teams version will have fewer external operations

changing the internal state regarding JACK-entities, compared to the JACK Agents version. Hypothesis

H05 is therefore rejected and the alternative hypothesis HA5.1 is chosen.

 CHAPTER 9. QUANTITATIVE RESULTS

70

9.1.6 Hypothesis 6

The hypothesis

Hypothesis 6 concerns about the level of abstraction in each version and is given as follows:

 H06: Use of JACK Teams will not provide a higher abstraction level for modeling and

implementation of teamwork in an oil production system, compared to JACK Agents.

 HA6.1: Use of JACK Teams will provide a higher abstraction level for modeling and

implementation of teamwork in an oil production system, compared to JACK Agents.

Measurements

A quantifying metric cannot be used to test hypothesis 6. Qualitative assessment is therefore used.

The modelings of the two versions are considered according to the following definition for

abstraction:

“…abstraction of a system that suppresses details of elements that do not affect how they use, are

used by, relate to, or interact with other elements. In nearly all modern systems, elements interact

with each other by means of interfaces that partition details about an element into public and private

parts (35).”

When implementing the two versions, the term “abstraction level” substituted by the term “level of

programming language7 ”. The “level of programming language” is defined as follows:

“In computing, a high-level programming language is a programming language with strong

abstraction from the details of the computer. In comparison to low-level programming languages, it

may use natural language elements, be easier to use, or more portable across platforms. Such

languages hide the details of CPU operations such as memory access models and management of

scope. A high level language isolates the execution semantics of a computer architecture from the

specification of the program, making the process of developing a program simpler and more

understandable with respect to a low-level language. The amount of abstraction provided defines

how 'high level' a programming language is. (36)”

Discussion

JACK Teams has constructs that are made to support teamwork. It uses for instance belief

propagation/inheritation and can use the @teamAchieve statement to exchange data between

team-instances. Details are hidden, demanding no events doing the data exchange. The role-

construct creates an extra encapsulation that can create reuse. The terminology used is more

intuitive than JACK Agents when constructing teamwork. The possible composition of team

formation is separated into a .def-file which hides the initial team structures from the rest of the

code.

JACK is a cross-platform development environment written in Java. The programming language is far

from CPU operations, which can be seen in the code structure. Source code must be contained in

7
 JACK Agents and JACK Teams are referred to as both modelling paradigms and programming languages in this

report.

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Scope_(programming)

 CHAPTER 9. QUANTITATIVE RESULTS

71

JACK entities. JACK Teams is an extension of JACK Agents, extending the support of contstructing

teamwork. JACK Teams has therefore higher-level programming constructs than JACK Agents in

construction of teamwork.

Conclusion

Based on the experiences made when developing the two versions, hypothesis HO6 is rejected and
hypothesis HA6.1 is chosen.

9.2 Summary of results
Subsection 4.1.5 draws the connections between the hypotheses and benefits, which will be used to

summarize the results of the hypotheses.

The development effort is concerned with the hypotheses 1-3. The JACK Agents version has 1175

lines of code to realize the teamwork, while the JACK Teams version has 1310 lines of code. This is an

increase of 11.49%. The JACK Teams version will have more entities than the JACK Agents version.

This is due to the increased number of role-entities when adding more teammember. The JACK

Agents version has 87 functions to realize the teamwork, while the JACK Teams version has 91

functions. This is an increase of 4.60%. This increase of functions is due to extra functions needed to

establish teams in JACK Teams. The experiment indicates that JACK Teams will cause a larger

development effort than JACK Agents.

Reducing coupling is the concern in hypothesis 4. The data-exchange in JACK Teams creates fewer

couplings, but the role-use creates more couplings. They approximately neutralize eachother in this

experiment. This makes it hard to generalize about, but this experiment showed both versions having

the same degree of couplings.

Encapsulation of functionality is concerned with the hypothesis 5. The number to put into focus is the

number of external operations between JACK-entities. The JACK Teams version will have fewer

external operations changing the internal state regarding JACK-entities, compared to the JACK Agents

version. The well package has no couplings because of the use of the @teamAchieve statement. It

does not have to send an event to return data, which leads to no coupling.

High abstraction level is the concern in hypothesis 6. JACK Teams has constructs made to support

teamwork. It uses for instance belief propagation/inheritation and the @teamAchieve statement to

exchange data between teams-instances. Details are hidden, needing no return-events doing data

exchange. The role creates an extra encapsulation that can create reuse. The terminology used is

more intuitive than JACK Agents when constructing teamwork. The possible composition team

formation, is separated into an own .def-file which hides the possible team structures from the rest

of the code. JACK Teams has therefore a higher-level programming constructs than JACK Agents in

construction of teamwork.

Summarized, JACK Teams have the advantages of better encapsulation of functionality and higher

abstraction level. If much data, more than the amount of required roles needed, is exchanged

through the use of the @teamAchieve statement, the reduced coupling can be an advantage. If a

large amount of roles are needed and less data exchange is done through @teamAchieve, this is a

disadvantage using JACK Teams. The disadvantages are higher development effort, and possibly a

higher amount of couplings.

 CHAPTER 9. QUANTITATIVE RESULTS

72

9.3 A bug in the framework
A bug was discovered in JACK Teams during development of the JACK Teams solution. There was a

problem assigning subteams to roles. AOS, the company developing the JACK framework, found a

race condition in the framework causing the failure. A solution to work around the problem was to

check that all the team-instances have instanciating before moving on in the main-method executing

the program. The condition was checked by looking at the state of instanciation: team.getState() !=

Team.INITIAL_STATE.

9.4 Validity Concerns
Validity threats were described in Subsection 4.1.4. Some threats were accepted and other

addressed to handle. The validity of the final results is as follows:

 Conclusion Validity

o Low statistical power: Only one version of each modeling paradigm was compared.

Some of the conclusion may therefore be made with lack of data.

o Reliability of measures: Metrics are used testing the hypotheses. They are

quantitative and therefore objective, except hypothesis 6.

 Internal Validity

o Selection: The selection of objects may not be representative for all possible

outcomes.

 Construction Validity

o Experiment construction: The experiment is constructed with define measurements,

hypotheses and treatments. The relation between theory and observation is tried to

be clearified.

o Mono-operation bias: The quasi-exeriment constructed in this report may not show

the whole picture of the theory.

 External Validity

o Interaction of selection and treatment: A student has constructed and performed the

experiment, and may not be representative for the software developer population

the results are generalized about.

o Interaction of setting and treatment: Development tools and method used are up to

date in order to make the experimental setting representative for the software

industry.

73

 Chapter 10

Qualitative results

This chapter describes differences in JACK Agents and JACK Teams in accordance to challenges set by

the reference problem presented in Chapter 5. The qualitative approach compares the JACK Agents

and JACK Teams solutions developed in the work of the experiment described in Section 4.1.

Advantages and disadvantages between the two modelling paradigms are identified and explained.

This will give more depth to the comparison of the two modelling paradigms, in addition to the

quantitative approach. The evaluation considered the two aspects defined in Section 4.2, autonomy

and scalability.

10.1 Autonomy
Autonomy is evaluated according to the construction of teamwork. The following subsections run

through how the system design is related to autonomy, how it is constructed using JACK Agents and

JACK Teams, and at the end a comparison of advantages/disadvantages between the two solutions

implementing autonomy. Autonomy is defined in Subsection 4.2 to be “the need for decisions to be

made at any time, with some appreciation for the circumstance of the current situation (often

referred to as situation awareness).”

10.1.1 System design

The delegation of autonomy machine to machine is depending on the level of hierarchy one is looking

at. The hierarchy presented in the oil production system is shown in the layered arhictecture

presented in Figure 7. The field has the autonomy to choose between proactive and reactive system

states, and initiate all sequences of actions accordingly. All teams below have a more limited

autonomy, but are able to choose its production-contribution in proactive state. This selection and

aggregation of production-scenarios reduce the volume of data on the production-scenarios

presented for the human operator to pick among. A second effect is that production-scenarios are

formatted into production-scenarios at different abstraction levels, for instance well production-

scenario and subsea template production scenarios. The top-level team makes all decisions if the

system state is in a reactive state. This is done in order to maintain a globally optimized solution.

The delegation of human to machine autonomy is more relevant in the planning phase than during

the production phase, in the system design documented in this report. Input from the human

operator is required in the planning phase, and the only feedback from the machine to the human

operator during the production phase, is only the actual production hour by hour.

10.1.2 JACK Agents

The task that is being delegated to the teammembers cannot fail in the system designed in the work

documented in this report. The @send statement is that is used to communicate between teams will

always succeeds (because the event is sent asynchronously), and does not pick up failure of

subteams. To wait for the event to be handled by the subteam, the @wait_for statement should be

used in the team. The team will then wait for the subteam to return a message-event using the

@reply statement. Delegation of autonomy is therefore depending on the trust that subteams does

 CHAPTER 10. QUALITATIVE RESULTS

74

not fail. The @wait_for statement has to be used in order to check for some condition, if a team shall

notice a failure among the teammembers.

An agent-address is needed in order to send events to it. The agent-address of the event-receiver can

be found by registering the address inside the sender-agent at some point. Delegation of autonomy

is used by sending events to the same agents every time, since the team structure is static due to the

reference problem described. The psysical components in the reference problem will have the same

dependencies to eachother, and therefore creating a static team structure.

The operator assistant uses the @waitFor() statement to get the human operator involved team

processes. JACK Teams is not used towards the human operator in the solutions developt. Only JACK

Agents are, or teams-instances used exactly like an agent-instance. A team-instance is an extension

of an agent-instance because the JACK Teams modelling paradigm is an extension of the JACK Agents

modelling paradigm. JACK Teams was decided to focus on machine to machine autonomy delegation

between the subsea template and well level, since it was perceived to be a better way to show the

potential of JACK Teams in this experiment. The interface towards human operators was considered

during development to be implemented in the same way in both JACK Agents and JACK Teams.

10.1.3 JACK Teams

A team-instance has subteams-instances to fulfil the different roles, and is responsible to coordinate

the action of the teammembers. The team-instance uses a teamplan to get subteams-instances to

fulfil its teamgoals and subtasks. The @teamAchieve statement is used to send a message event to

the subteams-instances, through the roles. When the subteam-instance that fulfil a role fails to do

the task, it can propagate (if not handled in the subteam) the exception back to the team-instance by

using the @teamAchieve statement. This was not used in the system designed in this report, because

all agents/teams are programmed not to fail by a fixed sequence of serial actions. The

@teamAchieve(roleinstance_ref.peer, EventInstance) statement is used to send event back from the

subteam-instance to the team-instance.

Delegation of work is done through roles, which the subteams-instances fulfil. The team formations

need to be static in order to access the data regarding a specific physical component, because the

different subteams-instances contain the needed datastructures to store data about the specific

physical component. Each role can just be fulfilled by one subteam-instance at the time. Each

subteam-instance therefore has to fulfil seperate roles in the teams-instances, which created extra

role-entities needed. Creating extra teams-instances during runtime and add them as new

teammembers would be a problem since role-entities are defined at compilation time. Adding new

teams-instances fulfilling roles in the .def-file (contains all possible team formations) was

experienced to be possible. Adding new teams (not removing) was tested in a small example besides

the experiment. A team-instance should also be able to change what roles it can perform during

runtime. However, the author of this report did not examine this during the use of the JACK

framework.

One thing that was observered that could benefit dynamic teams was belief propagation and

inheritation between teams-instances and teammembers-instances. The software developer does

not have to care with implementing all the event-traffic data exchange causes. The data exchange is

coded more or less straight into the beliefset. This could be a suited way to copy data back and forth

to give the subteam-instances all the data needed to fulfil the role, if different teams-instances fulfil

 CHAPTER 10. QUALITATIVE RESULTS

75

the same role at different times during runtime. This type of data exchange solves the problem of

distributed data needed by others. This was tried implemented in the solutions documented in this

report, but it failed to run properly. The cause of the failure was not identified, and should be further

investigated. Example-code that came along with the JACK framework product showed how belief

propagation/inheritation could be implemented in smaller example, and indicated some of the

benefits described in this paragraph.

10.1.4 Comparison

The comparison with advantages and disadvantages given in this subsection are based on the system

design (see Chapter 6) documented in this report, and not necessarily valid in the general case. Table

9 shows the advantages and disadvantes between the two solutions developed.

 JACK Agents version JACK Teams version

Advantages Supports a static team structure with having
address-lists in the team, containing the
addressed of the connected teammembers.

Built-in support to construct a teamstructure of roles
and to declare what subteam-instance that can fulfil
what roles needed by a specific team-instance.

 Built-in propagation of exception from
teammembers.

 Using a JACK Teams .def-file type to set up possible
teamstructures, instead of Java-methods gives a
better overview of the team-hierarchy.

 Propagation and inheritance of beliefs do not create
any extra events to be sent.

 Built-in support for dynamically allocate teams to
roles. Copy data needed by the new teammember by
using belief propagation and inheritance.

 Roles work as interfaces and make it easier to see
what is needed of events to be sent and to be
handled.

 The @teamAchieve statement waits until it is either
successful or not (asynchronously). Does not need to
wait for another event in return.

Disadvantages Asynchronously has to wait for (using the
@wait_for statement) a returned event after
using the @send statement. The return-event is
sent by using the @reply statement. The
@teamAchieve statement in JACK Teams gives
better team-support because it is synchronously.

Using a simple texteditor to generate the .def-file is a
bit difficult in the work of getting all the special
symbols typed correctly. JACOB8 could have been
used, but was not in this work.

 Implementing human operator interaction
requires what was considered to be relatively
much coding, and could possibly been made
simpler in an improved framework.

Implementing human operator interaction probably
has to done usin the same approach as in the JACK
Agents modeling paradigm.

Table 9: Autonomy comparison

10.2 Scalability
Scalability is evaluated according to scalability related to construction of teamwork. The following

subsections run through how the system design is related to scalability, how it is realized using JACK

Agents and JACK Teams, and at the end a comparison of advantages/disadvantages between the two

solutions. Scalability is defined in Subsection 4.2 to be the development effort when expanding the

system with more instances of the different agent- or teams constructs.

8
 The JACOB™ Object Modeller (JACOB) is a system providing machine and language independent object

structures (42).

 CHAPTER 10. QUALITATIVE RESULTS

76

10.2.1 System design

The reference problem defined in this report contains the number of physical compontents the

system design should handle. The structure is hierarchical, and if new physical components are

added will they be placed in one of the hierarchical levels that already exist. The performance is not

supposed to decrease much because the distributed work enables parallel reasoning. The team-

commander has to do more work if it has more teammembers connected to it. A quantitative

evaluation on how an increased number of teammembers affects the performance is not performed

in this work. This is however an important issue in order to get global optimization. A large amount of

computations that generates the production-scenarios are needed, and an increased number of

teammembers will affect the performance of the system.

10.2.2 JACK Agents

Adding agent-instances to the different hierarhical levels requires registration of the new agent-

address in its belonging team-commander agent. Scaling the system therefores create little extra

work and can occur during compilation and runtime.

10.2.3 JACK Teams

A few things need to be done in order to add new teams into the different hierarchical levels of the

existing team structure. An increased number of role-entities are needed when more teammembers

are introduced. This is a result of each role only being fulfilled by one team-instance at the time, and

teammembers working in parallel have to fulfil their own separate role. It is however possible to

perform reasoning based on the actual team membership if needed, because the team can access its

possible sub-teams through the role container. This will cause a type of interaction more like the one

JACK Agents uses.

Adding new teams-instances fulfilling roles has to be updated in the .def-file (contains all possible

team formations). This was experienced to be possible. Adding new teams (not removing) was tested

in a small example besides the experiment. A team-instance should be able to change what roles it

can perform during runtime, but the author did not experience if this could be done in a satisfying

manner.

10.2.4 Comparison

The comparison with advantages and disadvantages given in this subsection are based on the system

design (see Chapter 6) constructed in this report, and not necessarily valid in the general case. Table

10 shows the advantages and disadvantes between the two solutions developed.

 CHAPTER 10. QUALITATIVE RESULTS

77

 JACK Agents version JACK Teams version

Advantages Only register a new teammember in the team-
commander.

A team-instance can perform several roles at the
same time.

Disadvantages Difficult to keep track on what teammember is
allowed to do what kind of work.

Needs extra role entities when new teammembers
working in parallel are introduced. It is however
possible to perform reasoning based on the actual
team membership if needed.

 Each role can only be fulfilled by one team at a time.
Since roles are defined at compile time, this limits
the number of teammembers operating at the same
time.

 Updating what team that is allowed to fulfill which
roles, can be a possibly limitations of the JACK Team
modeling paradigm. This was not examined in the
work documented in this report and should be
further investigated.

Table 10: Scalability comparison

 CHAPTER 10. QUALITATIVE RESULTS

78

79

Chapter 11

Summary of work

This project was motivated by the applicability and suitability using JACK Agents or JACK Teams to

construct teamwork. It was expected that JACK Teams would be more feasible than JACK Agents,

because it is a modelling paradigm specially designed to support the costruction of teamwork. JACK

Teams is an extension of JACK Agents, and can be used in the same way as JACK Agents if wanted.

The elements extended to JACK Teams can be listed as follows:

o Teamdata

o Belief propagation and inheritance

o Exception propagation

o Dynamic team formations

o Use of @teamAchieve

Teamdata enables beliefs to be propagation and inheritation between teams and subteams.

Subteams can propagate belief to the the team, and subteam can inheritate beliefs from a team.

Teamdata is contained in the team and shall reflect the common beliefs that will be consistent with

the subteams’ belief. Propagation and inheritation of beliefs in JACK Agents, would propably create

extra event-traffic if beliefs were distributed in the system.

Belief propagation was tried implemented, but did not work in the JACK Teams solution constructed.

The cause of failure was not discovered. An example that came along with the JACK framework

product showed that belief propagation and belief inheritance in JACK Teams run asynchronously.

Asynchronously means that beliefs are propagated or inheritated while the user-plan is still running.

This creates parallelism that can possibly be exploited in for instance distributed systems that runs

large amouts of computation. The belief propagation and inheritation also enables beliefs to be

copied back and forth between teams and subteams. Copy of beliefs is needed when different teams

fulfil a role during runtime. The teams will then have access to the needed data to fulfil the role, by

using belief propagation and inheritation.

Exception propagation propagates Java exceptions to the team if not handled in the subteam. Note

that this is not the same as a plan failing. This feature was not examined.

Team formation consists of two things: the possible teamstructures defined at compile time, and task

teams established within these teamstructures to solve a tasks during runtime. The possible

teamstructures has to be defined in a .def-file at compile time (it can possibly be updated during

runtime, but this was not tested). Task teams are dynamic teams that have the ability to change what

subteam that fulfils what role, during runtime. The relationships between the physical components in

the reference problem are static, and did not use this feature to the fully extend.

 CHAPTER 11. SUMMARY OF WORK

80

A role only can be fulfilled by one team at the time. Subteams that want to operate at the same time

within the team need to fulfil different roles to be able to work simultaneously. In JACK Teams, this

created several role-entities. It is however possible to perform reasoning based on the actual team

membership if needed, because the team can access its possible sub-teams through the role

container.

The @teamAchieve statement activates subteams by sending an event to the subteam. The team

that sent event by using the @teamAchieve statement then waits until the event has been processed

by the subteam. Changes in the event made by the subteam can be maintained by the team when

the @teamAchieve statement is finished. This feature therefore enables data exchange, whitout any

returning event that contains the data.

81

Chapter 12

Conclusion

The problem definition described in Chapter 1 presented three questions:

1. Is it easier to develop teamwork in JACK Teams than in JACK Agents, when building a

decision-support system?

2. Is it possible to develop a similar system in JACK Agents and JACK Teams?

3. Will JACK Teams be a more feasible platform than JACK Agent, when developing teamwork?

The first question is looking at the aspects of development effort. The experience is that JACK Teams

require a bit extra development effort compared to JACK Agents. This extra effort is caused by extra

lines of code. An increase of 11.49% of code lines in the JACK Teams version was measured. The

increase of functions was measured to be 4.60%. The extra number of functions was a result of the

additional functions needed to establish teams in JACK Teams.

The second question looks at the output for the two versions developed. Both versions had the same

static composition of teams and teammembers. The algorithms performing all the computations that

resulted in the output-values, shown in the graphical user interface, were the same in both versions.

The teamstructure and distribution of work was the same in both versions. The most important

difference between the two versions was how the communication was performed between team-

instances and agent-instances. The JACK Teams version required less event-trafic doing data

exchange, but needed extra JACK entities because of the introduction of the role-entities. It is

however possible to perform reasoning based on the actual team membership if needed, because

the team can access its possible sub-teams through the role container. This was not implemented in

the JACK Teams version, and therefore causing a different result. Both version did however

implement the same type of system, and performed the same results.

The third question asked if JACK Teams is a more feasible platform for development than JACK

Agents, when implementing teamwork. The data-exchange in JACK Teams creates fewer couplings,

but the role-use creates more couplings. They approximately neutralize eachother in this

experiment. Introducing more teammembers, could have caused a large number of role-entities

needed and therefore extra couplings. The external operations between JACK entities decreased, and

resulted in better encapsulation of functionality. JACK Teams has constructs specially design to

support teamwork construction. It uses for instance belief propagation/inheritation and uses

@teamAchieve to exchange data between teams. Details are hidden, demanding no events for the

data exchange. The role creates an extra encapsulation that can enable reuse. The terminology used

is more intuitive than JACK Agents when constructing teamwork. The possible composition of team

formations is separated to be contained in a special .def-file. This declaration hides the possible

formations from the rest of the code. JACK Teams is therefore considered by the author to provide a

higher-level programming constructs than JACK Agents. Introducing teams in large scale was not

performed, and could have caused a problem if each team is supposed to fulfil its own separate role

defined in a role-entity. Considering all the above-mentioned elements, and the increase

 CHAPTER 12. CONCLUSION

82

development effort needed in the use of JACK Teams, caused JACK Agents to be considerate as the

most feasible platform for development of teamwork in this case.

The main conclusion is that systems with static team formation will cause JACK Agents to be the

preferred modeling paradigm. Dynamic team formations during runtime were not needed due to the

reference problem introduced. Maintaince during runtime, for instance introducing new subteams

and changing the role structure was not looked into. Introducing teams in large scale was not

performed. These four factors could have caused a different result. The question is if JACK Teams

shows its potential through the oil production system designed in this report.

83

 Chapter 13

Future work

This report has looked at teamwork created by JACK Agents and JACK Teams, using the reference

problem described in Chapter 5 as application area. Future work on the oil production system design

is to implement parallel and continous working process-loops, not serial and discrete as the present

one (one by one hour). The system should be able to have parts of the system running in proactive

state and having other parts running in a reactive state at the same time. Different levels of

predictability should also be taken into account. The global optimization technique with all the

computation on the different abstraction levels needed should be validated with a more realistic

number of physical components and real life data model used. Prediction of production used in the

proactive state should be continuously updated, to be as precisely as possible. The possible

advantage created by the use of proactive planning compared to reactive adjustements should be

investigated.

Human-centric systems possess the possibility for the agent system to learn from humans, and

therefore enable agents to become so-called human-centric smart agents. These systems can have

interaction in both directions. A future system should look at how this learning process can be

implemented to take a new step towards human-centric systems.

What concerns JACK Teams is how parallelism can be increased by using the belief propagation and

inheritation supported. The belief propagation and inheritation also enables beliefs to be copied back

and forth between teams and subteams. Copy of beliefs is needed when different teams fulfil a role

during runtime. The teams will then have access to the needed data to fulfil the role, by using belief

propagation and inheritation. This should be examined and confirmed.

The roles a team can fulfil were static and remained the same during runtime. How to make change

this role-structure during runtime should be investigated. A well can for example change from being

a production well to being an injection well during runtime. The well should therefore loose its

possibility of fulfing a production role, and be able to fulfil an injection role.

The human operator can operate with different levels of autonomy. Further work should look into

how the human operator can operate towards teams contained in different hierarchical levels in the

system. An important question is how different roles affect eachother in combination with different

degrees of autonomy varying during runtime. Several human operators should be able to use the

system at the same time. How they work together with different levels of autonomy must be looked

into in order to realize this simulatenous work between human operators. The agent system shall

also vary the degree of autonomy itself, and human operator should be able to manually adjust the

delegation of autonomy. The escalation and de-escalation of the level of autonomy is import in the

work to involve the human operator a satisfying manner in the right situations on the right point in

time.

Dynamic teams should be looked into, using human operators (with different delegation of

autonomy), and also other elements like of economy and oil transportation can be taken into

consideration. This may show the full potential of JACK Teams.

 CHAPTER 13. FUTURE WORK

84

85

Part IV

Appendices

86

87

Appendix A

“Steps of action”-scenarios

This appendix describes pseudo algorithms of the “steps of action”-scenarios presented in Subsection

6.3.2.

A.1 “Steps of action”-scenario one - Planned and predicted production
Objective: Plan a configuration that meets the production target within a fixed period of time.

Situation: Production is being planned and put into action.

Algorithm:

1. Operator Assistant sends a number of hours the production shall be reached within.

2. Field Planning & Monitoring asks Geographical Area Planning & Monitoring to generate

possible production-scenarios of geographical areas, within the period of time chosen by

Operator Assistant.

3. Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to

generate possible production-scenarios of subsea templates, within the period of time

chosen by Operator Assistant.

4. Subsea Template Planning & Monitoring asks Well Planning & Monitoring to generate

possible production-scenarios of wells, within the period of time chosen by Operator

Assistant.

5. Well Planning & Monitoring sends predicted well production-scenarios to Subsea Template

Planning & Monitoring.

6. Subsea Template Planning & Monitoring combines all well production-scenarios, and chooses

the three (number of production-scenarios is set to three to simplify and decrease the

number of combinations) best production-scenarios. These are sent to Geographical Area

Planning & Monitoring.

7. Geographical Area Planning & Monitoring combines all subsea template production-

scenarios, and chooses the nine (amount of production-scenarios is set to nine to simplify

and decrease the number of combinations) best production-scenarios. These are sent to

Field Planning & Monitoring.

8. Field Planning & Monitoring generates field production-scenarios, and sends all production-

scenarios to Operator Assistant.

9. Operator Assistant chooses a field production-scenario. The production-scenario chosen is

told Field Planning & Monitoring.

 APPENDIX A. “STEPS OF ACTION”-SCENARIOS

88

10. Field Planning & Monitoring tells Geographical Area Planning & Monitoring which

production-scenario that is chosen.

11. Geographical Area Planning & Monitoring tells Subsea Template Planning & Monitoring

which production-scenario that is chosen.

12. Subsea Template Planning & Monitoring tells Well Planning & Monitoring which production-

scenario that is chosen.

13. Well Planning & Monitoring implements the production-scenario chosen, start the

production according to the well settings required by the production-scenario chosen.

14. Field Planning & Monitoring asks Geographical Area Planning & Monitoring to monitor the

production after one timestep.

15. Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to

monitor the production after one timestep.

16. Subsea Template Planning & Monitoring asks Well Planning & Monitoring to monitor the

production after one timestep.

17. Well Planning & Monitoring checks if production is according to the well production-set. If

yes, step 14-17 are repeated until until production target is reached, or the period of time

selected is finished. If no, the system switchs to production-scenario number two:

“Unpredicted changes according to planned production”.

A.2 “Steps of action”-scenario two - Unpredicted changes according to

planned production
Objective: Meet production target within the period of time set.

Situation: Production is not going according to the predicted and planned production, because of

reservoir dynamics.

Algorithm:

1. Well Planning & Monitoring tells Subsea Template Planning & Monitoring it did not follow

the production-scenario it said it would produce according to.

2. Subsea Template Planning & Monitoring tells Geographical Area Planning & Monitoring it did

not follow the production-scenario it said it would produce according to.

3. Geographical Area Planning & Monitoring tells Field Planning & Monitoring it did not follow

the production-scenario it said it would produce according to.

4. Field Planning & Monitoring tells Geographical Area Planning & Monitoring to switch to

“reactive adjustement” process.

5. Geographical Area Planning & Monitoring tells Subsea Template Planning & Monitoring to

switch to “reactive adjustement” process.

 APPENDIX A. “STEPS OF ACTION”-SCENARIOS

89

6. Subsea Template Planning & Monitoring sends Geographical Area Planning & Monitoring the

oil/waste ratio for the last hour for the specific production level.

7. Geographical Area Planning & Monitoring sends Field Planning & Monitoring the subsea

template oil/waste ratio for the last hour for the specific production level.

8. Field Planning & Monitoring chooses the subsea templates with best oil/waste ratios until

the processing facility capacity is fulfilled. Field Planning & Monitoring sends the list of

chosen production levels for the different subsea templates to Geographical Area Planning &

Monitoring.

9. Graphical Area Planning & Monitoring sends the list of chosen production levels for the

different subsea templates to Subsea Template Planning & Monitoring.

10. Subsea Template Planning & Monitoring sends Well Planning & Monitoring the different

production levels to implement.

11. Field Planning & Monitoring asks Geographical Area Planning & Monitoring to monitor the

production after one timestep.

12. Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to

monitor the production after one timestep.

13. Subsea Template Planning & Monitoring asks Well Planning & Monitoring to monitor the

production after one timestep.

14. Well Planning & Monitoring checks if the production target is reached, or the period of time

selected is finished. The algorithm is then repeated if the target is not reached and period of

time is not finished.

 APPENDIX A. “STEPS OF ACTION”-SCENARIOS

90

91

Appendix B

Design

This appendix shows the detailed design of both the JACK Agents- and JACK Teams solutions

developed during the work documented in this report. The notation of the diagrams shown can be

found in Appendix C.

B.1 JACK Agents solution
This appendix contains detailed design diagrams used in the development of the JACK Agents

solution described in Chapter 7. Two “steps of action”-scenarios that were implemented in the

solution were defined in Subsection 6.3.2: “Planned and predicted production” and “Unpredicted

changes according to planned production”.

The first “steps of action”-scenario “Planned and predicted production” is divided into several

interaction sequences to easier see what happens during the scenario. The following subsections are

divided into “Generate production-scenarios”, “Choose production-scenario”, and “Monitor

production against production-scenario”.

The second “steps of action”-scenario “Planned and predicted production” is divided into several

interaction sequences to easier see what happens during the scenario. The following subsections are

divided into Start reactive ”well choke settings” state and Monitor reactive” well choke settings”

state.

B.1.1 Generate production-scenarios

The sequence diagram with description can be found in Subsection 7.2. Figure 24 shows how the

JACK entities are connected to eachother.

 APPENDIX B. DESIGN

92

Figure 24: JACK entities involved in the "Generate production-scenarios"-scenario

B.1.2 Choose production-scenario

The scenario begins when the proactive planning process (see scenario: generate production-

scenarios) has created production-scenarios with different production targets predicted. Figure 25

shows all agents, plans, and events involved in this process. Figure 26 shows how the JACK entities

are connected to eachother.

 APPENDIX B. DESIGN

93

Figure 25: Choose production-scenario

The human operator has to specify a field production-scenario id to be choosed. This production-

scenario is a composition of production-scenarios from the level belove in the system hierarchy. In

this case the geographical area. The id’s of the composite production-scenarios are found, and the

decomposing production-scenario process is repeated until reaching the bottom-level well. The

different well settings are the put into action, and production is started. The well propagates a

message saying that monitoring can now start because the actual production has started.

Figure 26: JACK entities involved in the "Choose production-scenario"-scenario

 APPENDIX B. DESIGN

94

B.1.3 Monitor production against production-scenario

Monitoring production against production-scenario begins after the selected field production-

scenario has been chosen (see scenario: choose production-scenarios) and the system is set

accordingly. Figure 27 shows all agents, plans, and events involved in this process. Figure 28 shows

how the JACK entities are connected to eachother.

Figure 27: Monitor production against production-scenario

When monitoring is ready to start since the actual production has started, a sample to check actual

production against production-scenarios planned are initiated by the field. The wanted timeinterval

to check for accumulated production is sent downwards the hierarchy to the hierarchical bottom-

level well. The amount of production and system state for the next hour is then propagated and

combined in each level reaching the field level in the end. If one or more wells want to change from

proactive to reactive, the whole system has to change to reactive. This is done by posting a

StartFieldReactive in the field. If the system remains in a proactive state, the process is repeated for

the next hour by sending a StartGeoAreaMonitoring-event, and keeps repeating if state remains

proactive until the period of time is finished.

 APPENDIX B. DESIGN

95

Figure 28: JACK entities involved in the "Monitor production against production-scenario"-scenario

B.1.4 Start reactive ” well choke settings” state

To change system state into reactive begins if the actual production and production-scenarios

selected did not match (see scenario: Monitor production against production-scenario). Figure 29

shows all agents, plans, and events involved in this process. Figure 30 shows how the JACK entities

are connected to eachother.

Figure 29: Start reactive ”well choke settings” state

 APPENDIX B. DESIGN

96

If the system state has changed from proactive to reactive, the field will ask downwards the system

to the production for the last hour. The last hour production is propagated to the subsea template

team, where it is accumulated. This accumulation will show which well level (all well must is assumed

to have the same well choke setting towards the subsea template) creates which oil/waste-ratio.

Propagating the answer to the field, the next scenario Monitor reactive” well choke settings” state

will have a look at how to choose what subsea templates will instructs its teammember with what

well choke settings.

Figure 30: JACK entities involved in the "Start reactive well choke settings state"-scenario

B.1.5 Monitor reactive” well choke settings” state

After the reactive ”well choke settings” state has started (see scenario: Start reactive ”well choke

settings” state), the newly calculated subsea template settings from field has be adjusted and have

the system produce according to the new settings. Figure 31 shows all agents, plans, and events

involved in this process. Figure 32 shows how the JACK entities are connected to eachother.

 APPENDIX B. DESIGN

97

Figure 31: Monitor reactive ”well choke settings” state

The StartFieldReactiveAdjustment-event contains oil/waste ratios for the subsea templates last

hour’s production. In addition well choke levels +/- 1 is predicted with oil/waste-ratio and amount of

production. The field then fills up the total capacity with the subsea templates having the best

oil/waste-ratio, to maximize oil production every hour. Maximization every hour will be the best way

to ensure that the production target is reached within the period of time. The field then propagates

downwards in the system the new settings. The actual production is then monitored in the wells

using the new well choke settings. The amount of production is then propagated to the field, which

make a check if the total production target set by the human operator is reached. If not, the reactive

state process is repeated again starting with the scenario: Start reactive ”well choke settings” state.

 APPENDIX B. DESIGN

98

Figure 32: JACK entities involved in the "Monitor reactive well choke settings state"-scenario

B.2 JACK Teams solution
This appendix contains detailed design diagrams used in the development of the JACK Teams solution

described in Chapter 8. Two “steps of action”-scenarios that were implemented in the solution were

defined in Subsection 6.3.2: “Planned and predicted production” and “Unpredicted changes according

to planned production”.

The first “steps of action”-scenario “Planned and predicted production” is divided into several

interaction sequences to easier see what happens during the scenario. The following subsections are

divided into “Generate production-scenarios”, “Choose production-scenario”, and “Monitor

production against production-scenario”.

The second “steps of action”-scenario “Planned and predicted production” is divided into several

interaction sequences to easier see what happens during the scenario. The following subsections are

divided into Start reactive ” well choke settings” state and Monitor reactive” well choke settings”

state.

B.2.1 Generate production-scenarios

The sequence diagram with description can be found in Subsection 8.2. Figure 33 shows how the

JACK entities are connected to eachother.

 APPENDIX B. DESIGN

99

Figure 33: JACK entities involved in the "Generate production-scenarios"-scenario

B.2.2 Choose production-scenario

The scenario begins when the proactive planning process (see scenario: generate production-

scenarios) has created production-scenarios with different production targets predicted. Figure 34

shows all agents, plans, and events involved in this process. Figure 35 shows how the JACK entities

are connected to eachother.

 APPENDIX B. DESIGN

100

Figure 34: Choose production-scenario

The scenario starts with the human operator specifying a field production-scenario id to be choosed.

This production-scenario is a composition of production-scenarios from the level belove in the

system hierarchy. In this case the geographical area. The id’s of the composite production-scenarios

are found, and the decomposing production-scenario process is repeated until reaching the bottom-

level well. The different well settings are the put into action, and production is started. The well

propagates a message saying that monitoring can now start because the actual production has

started.

 APPENDIX B. DESIGN

101

Figure 35: JACK entities involved in the "Choose production-scenario"-scenario

B.2.3 Monitor production against production-scenario

Monitoring production against production-scenario begins after the selected field production-

scenario has been chosen (see scenario: choose production-scenarios) and the system is set

accordingly. Figure 36 shows all agents, plans, and events involved in this process. Figure 37 shows

how the JACK entities are connected to eachother.

 APPENDIX B. DESIGN

102

Figure 36: Monitor production against production-scenario

When monitoring is ready to start since the actual production has started, a sample to check actual

production against production-scenarios planned are initiated by the field. The wanted timeinterval

to check for accumulated production is sent downwards the hierarchy to the hierarchical bottom-

level well. The amount of production and system state for the next hour is then propagated and

combined in each level reaching the field level in the end. If one or more wells want to change from

proactive to reactive, the whole system has to change to reactive. This is done by posting a

StartFieldReactive in the field. If the system remains in a proactive state, the process is repeated for

the next hour by sending a StartGeoAreaMonitoring-event, and keeps repeating if state remains

proactive until the period of time is finished.

 APPENDIX B. DESIGN

103

Figure 37: JACK entities involved in the "Monitor production against production-scenario"-scenario

B.2.4 Start reactive ” well choke settings” state

To change system state into reactive begins if the actual production and production-scenarios

selected did not match (see scenario: Monitor production against production-scenario). Figure 38

shows all agents, plans, and events involved in this process. Figure 39 shows how the JACK entities

are connected to eachother.

 APPENDIX B. DESIGN

104

Figure 38: Start reactive ”well choke settings” state

If the system state has changed from proactive to reactive, the field will ask downwards the system

to the production for the last hour. The last hour production is propagated to the subsea template

team, where it is accumulated. This accumulation will show which well level (all well must is assumed

to have the same well choke setting towards the subsea template) creates which oil/waste-ratio.

Propagating the answer to the field, the next scenario Monitor reactive” well choke settings” state

will have a look at how to choose what subsea templates will instructs its teammember with what

well choke settings.

 APPENDIX B. DESIGN

105

Figure 39: JACK entities involved in the "Start reactive well choke settings state"-scenario

B.2.5 Monitor reactive” well choke settings” state

After the reactive ”well choke settings” state has started (see scenario: Start reactive ”well choke

settings” state), the newly calculated subsea template settings from field has be adjusted and have

the system produce according to the new settings. Figure 40 shows all agents, plans, and events

involved in this process. Figure 41 shows how the JACK entities are connected to eachother.

 APPENDIX B. DESIGN

106

Figure 40: Monitor reactive” well choke settings” state

The StartFieldReactiveAdjustment-event contains oil/waste ratios for the subsea templates last

hour’s production. In addition well choke levels +/- 1 is predicted with oil/waste-ratio and amount of

production. The field then fills up the total capacity with the subsea templates having the best

oil/waste-ratio, to maximize oil production every hour. Maximization every hour will be the best way

to ensure that the production target is reached within the period of time. The field then propagates

downwards in the system the new settings. The actual production is then monitored in the wells

using the new well choke settings. The amount of production is then propagated to the field, which

make a check if the total production target set by the human operator is reached. If not, the reactive

state process is repeated again starting with the scenario: Start reactive ”well choke settings” state.

 APPENDIX B. DESIGN

107

Figure 41: Monitor reactive well choke settings state

 APPENDIX B. DESIGN

108

109

Appendix C

Notation

This appendix defines the notation used in the sequence diagrams and and JACK Development

Environment (JDE) design diagrams shown in the report.

C.1 Sequence diagram
Table 11 describes the notation used in the sequence diagrams shown in the report.

The blue box

represent agent or

team

The arrow with text

represent an event sent

from one agent/team to

another agent/team

The blue rectangle

with text represent

the plan/teamplan

The arrow with text

represent an event

posted within

agent/team

The arrow

represents the uses

of the JACK method

establish to form

task team, used in

JACK Teams.

Table 11: Sequence diagram notation

 APPENDIX C. NOTATION

110

C.2 JACK Development Environment graphical notation
Table 12 describes the notation used in the JDE design diagrams shown in the report.

Represent the JACK

agent entity

- Not used in this report-

Represent the JACK

event entity

- Not used in this report-

Represent the JACK

plan entity

- Not used in this report-

Represent the JACK

team entity

Represent the performs

JACK role entity

declaration

Represent the JACK

teamplan entity

Represent the JACK role

entity required

Table 12: JDE notation

111

Bibliography

1. Einar Landre, Jørn Ølmheim, Geir Owe Wærsland, Harald Rønneberg Statoil ASA. Software

Agents - An Emergent Software Technology That Enables Us To Build More Dynamic, Adaptable, and

Robust System. Texas : SPE Annual Technical Conference and Exhibition, September 2006.

2. Jørn Ølmheim, Einar Landre, Eileen A. Quale StatoilHydro. Improving Production by use of

Autonomous Systems. Texas : SPE Annual Technical Conference and Exhibition, 2008.

3. Spillum, Øystein. Delegation and coordination in autonomous oil production systems. Trondheim :

Norwegian University of Science and Technology, 2007.

4. StatoilHydro. StatoiHydro in brief. [Online]

http://www.statoilhydro.com/en/AboutStatoilHydro/StatoilHydroInBrief/Pages/default.aspx.

5. al., J. Tweedale et. Future Directions: Building a Decision Making Framework Using Agent. s.l. :

Springer-Verlag Berlin Heidelberg, 2008.

6. J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis, A. Consoli, G. Phillips-Wren. Innovations in

multi-agent systems. s.l. : Elsevier Ltd, 2006.

7. (AOS), The Agent Oriented Software Group. FAQ. [Online] [Cited: October 30, 2008.]

http://www.agent-software.com/shared/products/faq.html#commsProtocols.

8. Cheong, Christopher. A Comparison of JACK Intelligent Agents and the Open Agent Architecture.

Melbourne, AUSTRALIA : School of Computer Science and Information Technology, RMIT University.

9. Wikipedia. Cyber-physical system. [Online] http://en.wikipedia.org/wiki/Cyber-physical_system.

10. Massachusetts), Bryan Horling (University of Massachusetts) and Victor Lesser (University of. A

survey of multi-agent organizational paradigms. s.l. : Cambridge University Press, 2005.

11. Barber, K. Suzanne. Dynamic Adaptive Autonomy in Agent-based Systems. s.l. : The University of

Texas at Austin, 1999.

12. Cheong, Christopher. An Empirical Investigation of Teamwork Infrastructure for Autonomous

Agents. Melbourne, AUSTRALIA : School of Computer Science and Information Technology, RMIT

University.

13. Alan F Hill, Fiona Cayzer, Peter R Wilkinson. Effective Operator Engagement with Variable

Autonomy. s.l. : 2nd SEAS DTC Technical Conference, 2007.

14. Andrew Lucas, David Shepherdson. Architecture for Distributed Power Management for

Autonomous Unmanned Vehicles. s.l. : AOS Group, 2007.

15. Vlassis, Nikos. A Concise Introduction to Multiagent Systems and Distributed Artificial

Intelligence. s.l. : Department of Production Engineering and Management, Technical University of

Crete, 2007.

 BIBLIOGRAPHY

112

16. Angela Consoli, Jeffrey Tweedale and Lakhmi Jain. The Link between Agent Coordination and

Cooperation. Intelligent Information Processing III. s.l. : Springer Boston, 2007.

17. Durfee, Edmund H. Scaling Up Agent Coordination Strategies. s.l. : IEEE, 2001.

18. Jinsong Leng, Colin Fyfe, and Lakhmi Jain. Teamwork and Simulation in Hybrid Cognitive

Architecture. s.l. : Springer-Verlag Berlin Heidelberg, 2006.

19. Susannah Soon, Adrian Pearce, and Max Noble. A Teamwork Coordination Strategy Using

Hierarchical Role Relationship Matching. s.l. : Springer-Verlag Berlin Heidelberg, 2004.

20. Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee & Jaron C. Collis. ZEUS: A Toolkit for

Building Distributed Multi-Agent Systems. s.l. : BT Laboratories, Martlesham Heath, 1999.

21. H S Nwana, L Lee and N R Jennings. Co-ordination in software agent systems. s.l. : BT Technol J

Vol 14 No 4, 1996.

22. Agent Oriented Software Pty Ltd. JACK™ Intelligent Agents Teams Manual. s.l. : Agent Oriented

Software Pty Ltd, 2005.

23. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Agent Manual. s.l. : Agent Oriented

Software Pty. Ltd., 2005.

24. Lise Engmo, Lene Hallen. Software agents applied in oil production, Master's thesis. s.l. :

Norwegian University of Science and Technology, 2006.

25. J. Jarvis, R. Rönnquist, D. McFarlane, L. Jain. A team-based holonic approach to robotic assembly

cell control. s.l. : Elsevier Ltd., 2004.

26. Sanjay Bisht, Aparna Malhotra, and S.B. Taneja. Modelling and Simulation of Tactical Team

Behaviour. Defence Science Journal. Vol. 57, No. 6, 2007 November.

27. Daren, Yeo Huang-Yu. Automatic Protocol Generation Based on Commitment Machines. s.l. : The

University of Western Australia, 2004.

28. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Development Environment Manual.

s.l. : Agent Oriented Software Pty. Ltd., 2005.

29. Eclipse (software). [Online] http://en.wikipedia.org/wiki/Java_eclipse.

30. The Eclipse Foundation. Eclipse Newcomers FAQ. [Online]

http://www.eclipse.org/home/newcomers.php.

31. Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, Anders Wesslèn.

Experimentation in Software Engineering: An Introduction. s.l. : Kluwer Adademic Publishers, 2000.

32. Mari Torgersrud Haug, Elin Marie Kristensen. Applicability and Identified Benefits of Agent

Technology, master thesis. s.l. : Norwegian University of Science and Technology, 2006.

33. Oates, Briony J. Researching Information Systems and Computing. s.l. : Sage Publications, 2006.

 BIBLIOGRAPHY

113

34. Wikipedia. Scalability. [Online] http://en.wikipedia.org/wiki/Scalability.

35. Len Bass, Paul Clements, Rick Kazman. Software Architecture in Practice, Second edition. s.l. :

Pearson Education, Inc, 2003.

36. Wikipedia. High-level programming language. [Online] http://en.wikipedia.org/wiki/High-

level_programming_language.

37. Wooldridge, Michael. An introduction to MultiAgent Systems, 1.edition. s.l. : John Wiley & Sons

Ltd, 2002.

38. Jovanovic, Gastón Eduardo Tagni and Dejan. Comparison of Multi-Agent Systems JACK vs 3APL.

s.l. : Departamento de Inform´atica, Universidade Nova de Lisboa.

39. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Agent Practicals. s.l. : Agent Oriented

Software Pty. Ltd., 2005.

40. Bevan Jarvis, Dan Corbett, and Lakhmi C. Jain. Beyond Trust: A Belief-Desire-Intention Model of

Confidence in an Agent's Intentions. s.l. : Springer-Verlag Berlin Heidelberg, 2005.

41. Wikipedia. Scalability. [Online] http://en.wikipedia.org/wiki/Maintainability.

42. Agent Oriented Software Pty. Ltd. JACOB Manual. s.l. : Agent Oriented Software Pty. Ltd., 2006.

	Title Page
	Problem Description
	masteroppgave.pdf

