@ NTNU

Norwegian University of
Science and Technology

A Comparison between JACK Intelligent
Agents and JACK Teams Applied in
Teamwork

@ystein Spillum

Master of Science in Computer Science

Submission date: November 2008

Supervisor: Harald Rgnneberg, IDI

Co-supervisor: Einar Landre, StatoilHydro
Jorn @lmheim, StatoilHydro

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Is it easier to develop teamwork in JACK Teams than in JACK Agents, when building a decision-
support system? Is it possible to develop a similar system in JACK Intelligent Agents and JACK
Teams? Will JACK Teams be a more feasible platform than JACK Intelligent Agent, when
developing teamwork?

The reference problem and system design made to test the two modelling paradigms, shall be
based on and continue the work made in the author’s depth study.

Assignment given: 15. June 2008
Supervisor: Harald Rgnneberg, IDI

Abstract

Modern technology enables the oil industry to develop smarter solutions that improve their work
processes. Cheap network bandwidth results in improved communication between offshore and
onshore. The availability of sensor data is increasing. Toghether, this will enable a more optimal

decision making in oil production. Three challenges have to be dealt with to optain this: information
overload of signals generated by equipment, shared situation awareness between technical experts,
and mutually-agreed timeframe for action. These challenges are addressed in human-centric
systems, which have an extensive use of teamwork. Research in teamwork focuses on the human-
machine interactions, and getting humans included in teamwork processes. This will cause increased
situation awareness capability for humans when dealing with unknown or hostile environments. The
environment of oil production has a similar characterization. Teamwork can therefore be a possible
improvement in the decision-making regarding oil production. The construction of teamwork is
examined in this thesis through the two modeling paradigms contained in the JACK framework. The
two modeling paradigms are JACK Intelligent Agents and JACK Teams.

This report investigates JACK Intelligent Agents and JACK Teams, and makes a comparison between
the two. The main object was to find indications that point out which modeling paradigm that results
in least development effort, and which one that is creating the most feasible platform regarding
teamwork construction. The application domain is decision-support systems used in oil production.
The aspects evaluated are development effort, degree of coupling, encapsulation of functionality,
abstraction level, delegation of autonomy, and scalability. The solutions developed in the comparison
had static team formations that included few teammembers. This caused less development effort by
using JACK Intelligent Agents, and was the main reason why it was considerate to be the preferred
modeling paradigm in this case. This was partly experienced because reasoning based on the actual
team membership was not used in the JACK Teams version. The use of roles was used instead,
causing more JACK entities where it could have been avoided. Dynamic team formations during
runtime were not needed due to the reference problem introduced. Maintaince during runtime, for
instance introducing new subteams and changing the role structure was not looked into. Introducing
teams in large scale was not performed. These four factors could have caused a different result. The
question is if JACK Teams shows its potential through the oil production system designed in this
report.

Preface

This project report documents my work in the graduate level course TDT4900 Program and
Information Systems, Master Thesis. The course is a part of the Master program at Department of
Computer and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU)

The subject of this report has been carried out in collaboration with StatoilHydro. The supervisors of
this project have addressed the subject as a research area of their company, and have contributed
with knowledge and feedback during the experiment conducted and the writing process.

I would like to thank my supervisors Harald Rgnneberg, Einar Landre, and Jgrn @lmheim for
introducing an interesting field of research, and for sharing their knowledge and support during the
project.

Trondheim, 15. November 2008

@ystein Spillum

Contents

0= 1ol T TP PP PPPPPPPPPPPROS i
L0101 1T | PP PPTPPPPPTPR i
R o] B 1T o [P PP UPPPTPPPPTRNS Vi
LISt O FIgUIES e vii
i [14 oY [VTo1 AT o IO O PP UPPPPPPPPPPOt 1
1.1 MOTIVALION. ...ttt e 1
1.2 Problem definitioN..........eeii i e 2
1.3 Project B0al .o 2
14 APPIOACKH e, 2
1.5 USE OF TOIMIS ..ottt e et e st e e st e e s s e e e e s e e e e s anneeeeeane 3
1.6 PrOJECE CONTOXE ceuuiiiie ettt e e et e s e et s e eeaa s e seaaa s e eaaranseaannnnans 3
1.7 REPOITt OULIING oo 3

2 Towards human-centric SYSTEMS ...ccciiiiiiiii 7
2.1 Human and machine as mutually dependent...........ccccci 7
2.2 Changing perspective in software development...........cccccciiiiiiiiiiiiicccc e 8
2.3 A ENT-CONTIIC SYSTOM ettt st e e et s s e eet s e e eaa s e eear s e eeaaanes 9
2.4 HUMAN-CENTIIC SYSTEMS it s e e e s e e e e s e e eaan s eeeaaaes 10
241 OVEIVIBW .eiiiiiiiiiiiiiiiiiiiiiii s 10
2.4.2 Delegation of aULONOMY ...ccoeiiiiiiiii 10
2.4.3 PrINCIPIES oo 11
244 BENETIES ettt e e eee e 12

2.5 TEAMWOIK ettt ettt ettt e et e e s e s s e e st e e st e e e aabaeee s 12
251 Teamwork and Collaboration ... 13
2.5.2 Coordination tECANIGUES.......uuueiii s 13
253 TEAM VAriables.eeiieiieee et 14
254 Challenges iN tEAMWONIKuuuueii s 15

3 Framework and TOOIS. ...cooouuiiieiiie e s e e e e 17
3.1 Modelling paradigms compared ... 17
3.1.1 OVEIVIEW i s 17
3.1.2 Y O QY =T o} £ 17
3.1.3 JACK TRAMS. e 18

3.2 3V ToT U R =N o T=] 4 1T o Lol T 19

3.2.1 JACK ABENTS ..ottt ettt e e et e e et e e e et s e e et e e e eaa s e e eena e e e rena e e eeen e eeenaans 20

3.2.2 JACK TOAMS oottt er et s e e s et e e e e e 20

3.3 JACK Development Kit ..o, 21
3.4 Eclipse Integrated Development Environment ..., 21

Y oo] o Y- Yol o T 25
4.1 QUANLItAtIVE APPIOACK ... ueeiiiiiiiiit s 25
4.1.1 EXPEIIMENT TYPE ittt ettt e ettt e s e e e e e e e eaba s e s e eeeeeesaaneeeeeeaes 25
4.1.2 EXPEIIMENT PrOCESS oeivviiiieeeiiiiiiiiiiiee e et e etettiiee s s e e e eee ittt e e e e e eeeetssaaaseseeeeeeesnaaasssaeeaes 25
4.1.3 Experiment definition ... 26
4.1.4 EXperiment planning. ... 27
4.1.5 EXPErimeNnt CONSTIUCTION ...uuiiiiiiiiiiiiiie et e e e e et e eabes s s s e e e eeeeaaseeeseaeens 31

4.2 QUALTLAtiVE QPPIOACK ...ueieiiiiiiiit s 32

5 Defining a reference ProblEMi.... ... e ittt e e e e e aaereareaeasaaaraaraaraaaaarararane 35
5.1 Oil ProdUCLION SYSTEMuuuiiiiiiiiiiiiiiti s 35
5.2 REfErenCe MOElcoooneiiiiiiieee et e s 35
5.3 FAX U1y o] o] { o] s [T OO PP 36
5.4 Optimal and Maximal ProdUCiON............ueuue s 37
5.5 PrOVIOUS EXPEITENCES ... iiiiiieeeeiiee ettt et et e e ettiie s e ettt e s e tati s e eeatasetastasseaesasseenerasseeeenanseeennnns 37
5.5.1 Oil ProduUCtioN SYSTEIMSuuuueiiiiiiiiiiii s 37

(oI S =T 1o [T = TP PPPPPPPPRt 41
6.1 I Y= PP PPPPT PR 41
6.2 PrOCESSES oiiiiiiiiiiiiiii 42
6.3 SN =]l eT o 1] - | o o OO PPUPIN 43
6.3.1 Global OPtIMIZATION. .. .uueieiiiii s 43
6.3.2 B (] oo] = Yot o o Yol o =Y o To L3P PPPPPPPPRS 44

6.4 Simulated eNVIFONMENToiiiiiiiii ettt e s e e s 45
6.5 Applied teamwork and implications............coooeeeiiiii 46
6.6 Towards a human-centric SYSTEMcoooeeiiiiiiii i 47

Y YO QY=L ol (Y o] 1] o PP PPPPPPPPRS 49
7.1 N =] 0 0 T o U ot U] = SRR 49
7.2 TEAMWOIK ceeeeetiteeeettte ettt ettt et e e e et e e e s b bt e e e eabb e e e e sbb e e e e eaabeeeeeenbeeeesanrees 50

8 JACK TEAMS SOIULION.....eiiiiiiiiieiee ettt ettt e st e e s st e e e st e e e e e e e e smnees 53
8.1 3 =] 0 TS o U ot U] = PPN 53
8.2 TEAMWONK ceetttee ettt ettt ettt e s e bt e e e s bt e e e abb e e e s sttt e e e aab et e e e e nbe e e e earees 54

9 QUANTITATIVE MESUITS ...ttt e e e s e e e e e e e s e b r e e e e e e e e s esnnrneeeas 59

9.1 Testing of NYPOtheSES..ccoovveeeeeeeeeeeeee 59

9.1.1 HYPOthESIS L., 59
9.1.2 HYPOthESIS 2. 61
9.1.3 HYpOothesis 3. 64
9.1.4 HYPOthESIS 4 ..o 65
9.1.5 HYPOtheSiS 5., 67
9.1.6 HYPOthESIS 6. 70

9.2 SUMMATY Of FESUIES...uuttiiiiiiiitiitt s 71
9.3 Abuginthe framework......ccccoo i 72
9.4 Validity CONCEINS ..o 72
10 QUANTATIVE FESUILS ..eeeeeiiieeiiiiee ettt e e st e e s s e e e s et e e s snneeeenans 73
FO.1 AULONOMY iitiiiiiiiiiee ettt e ettt e e ettt s e ettt s e ettt e e eeaaaseatanansesasanssasennnseessnnssesesnnseensnnnsesennnns 73
10.1.1 SYSteM deSIgN .., 73
10.1.2 JACK ABENES ..eeiiiiiiieeeeiiee ettt ettt et et e s st e e st e e s snr e e s s et e e anreee e e 73
10.1.3 JACK TOAMS..uetieiiiiiee ettt e ettt ettt e s st e e st e e sttt e e sab e e e s aab et e e s sambeeessnraeeesanneeesnans 74
T10.1.4 COMPAIISON tuutiiiiiiieeeiiieeettieeeettiee e ettt s e ettt seterua e ettt sesessasserarasseessnnsseresnnseesnnnnseeesnnns 75

T Yor- | =1 o 11 1 Y PP PPPPPPIRt 75
10.2.1 SYSteM deSIZN.cciieee e, 76
10.2.2 JACK ABENES ..eeiiiiiiiee ettt ettt ettt et e st e e s e e st e e s snr e e e s e e e anreeeeean 76
10.2.3 JACK TOAMS..eetieiiiiiee ettt e ettt e ettt e s sttt e e sttt e s et e e sab e e e e saab et e e s snbeeeesnraeeesanneeesaans 76
10.2.4 COMPAIISON Luutiiiiiiieiiiiiie ettt e ettt e e ettt s e eeate e e tetteeetatasseteasasseaasasseaessaseresnnseeennnnseresnnns 76

11 SUMMANY OFf WOTK e, 79
A 6o 3Tl (U1 [DO O PP O PP PPOPPPPPOPPPPPR 81
13 FULUNE WOTK..eeeeitiieeeet ettt e et e e st e e s st e e s eab b et e e snbe e e e sambeeeesaanneeeenans 83
Appendix A “Steps Of ACtiON”-SCENAMIOS .. .uuuuuuuuueiieiii e aan 87
A1l “Steps of action”-scenario one - Planned and predicted production................................... 87

A.2 “Steps of action”-scenario two - Unpredicted changes according to planned production ...88

N0 07T g Vo D= TR 1T T o 91
B.1 JACK AZENTS SOIUTION c.eeeiiiiiiiiiiiiiiieeiiiieeee ettt e eeeeeeeeeeeeseeeeeeeseessessssssssssasssssssssssssssssssssssssnnnnes 91
B.1.1 Generate ProduCtioN-SCENAMIOSuuuuuuuuuuuennuei e nan 91
B.1.2 ChooSe ProdUCtiON-SCENATIOuuuuuuueunnniiiii e nan 92
B.1.3 Monitor production against production-sCENAriOuuueieiiiiirieiiiiiiee e e eeens 94
B.1.4 Start reactive ” well choke settings” STateccccceceieiiiiiiiiiiiccc e 95
B.1.5 Monitor reactive” well choke settings” state...........ccccc 96

B.2 JACK TEAMS SOIULIONeeiiiieiiiiiiiiiiie e ettt e et e e e e et e e e e e e e e s s rreeeeeeeeeesnnnnee 98

B.2.1 Generate ProduCtioN-SCENAMIOS uuuuuuuiuiii s 98

B.2.2 ChooSe ProdUCION-SCENATIO ...uuuuuuuuiiiiiiiii s 99
B.2.3 Monitor production against production-scenario.........ccccccciiiiiiiiiiii 101
B.2.4 Start reactive ” well choke settings” statecccceveioiiiiiiiiiiicc 103
B.2.5 Monitor reactive” well choke settings” state........ccccccciii 105
APPENAIX C NOTALION ettt s 109
Cc1 SEQUENCE TIABIAIM .uuuuiiiiiiiiiiiiiiiiiiititt s 109
C.2 JACK Development Environment graphical notationccccc 110

211 o] [ToT={ = o] o1V USSP PRI 111

List of Tables

Table 1: Human - Agent autonomy taXxanomyccooeeeeiiiiiiiiiiiie e 11
Table 2: Formulated hypothesesccoooeeeeieeeiieeeee 28
Table 3: Benefits, hypotheses, and MELIiCSuuieiiiiiiiiiiiiiiie e e et e e e e eeeaaaaas 32
Table 4: Results for M1: Lines of COAe (LOC) ...uueiiiiiiiiiiiiieiie e ettt e e e e e ecitree e e e e e e e arareaee e e e e enaanes 60
Table 5: Results for M2: Number of Entities (NOE)cccuuveiiieieiiiiiiieeeee et ee e e e eevrree e e e e e e 62
Table 6: Results for M3: Number of FUNCEIONS (NOF)uviiiiiiiiiiiiieeeee ettt eerreee e e e e 64
Table 7: Results for M4: Number of Couplings between Entities (NOCBE)cceveeeiiviciiieieeeeeeeeens 66
Table 8: Results for M5: Number of External Activations (NOEA).........ccccccviiiiiiiiiiiii 68
Table 9: AULONOMY COMPATISON ..cceeeeeeeee e e e e e e e e e e e e 75
Table 10: Scalability COMPAriSON c.ccceeeeeeeeeeeeeeeeeeeeee 77
Table 11: Sequence diagram Notationcooeeiiiiiii i, 109
Table 12: JDE NOTAtION ..evtiiiiiiiiiiiiiiieeee ettt ettt e e e s e sttt e e e e e s s bbb beeeeeeeesssanbbbaeeeasesas 110

Vi

List of Figures

Figure 1: HUMan - @8Nt TEAMING c.cciiiiiie ettt e e ettt e e e e e et e e eba e e e e e eeaeeenaas 9
Figure 2: Agent - Agent aUtONOMY TaX@NOMY ...uuuiriiiiiiiiiiiiiee e eeeeiiie e e e e e e eeeaaaae s e e eeeeeaanaaasseeeeeeessnnns 9
Figure 3: EXperiment PrinCiples ..., 29
Figure 4: Physical infrastructure of an oilfield............cco 36
Figure 5: ArchiteCtual [ayers. ..o e ee e, 37
FISUIE 6: SYSTEM STIUCTUIE ...uiiiiiieeiiiiie ettt e e et ettt s e e e e e e e e aaba s e s e e e eeeeessaaseeeaeaensnnnn 39
Figure 7: Architectual layers — Ideal architecture & Simplified architecture 41
FISUIE 8: SYSTEM PrOCESSES ..uueiiiiiiiiiiiiieeeeetettiiiiae e e e e eetttutiaseeeeeteeataaaseseeteeessnsssseseseeessssnnnseseeeeessnnns 42
Figure 9: Path of information flow...........oooo o 44
Figur 10: Graphical User INterface.......cccceeeeeeiiii e 45
Figure 11: System structure - JACK Agents solution.........cccoeeeii 49
Figure 12: Generate production-SCENAIIOScceeeeeeeiiiii e, 50
Figure 13: Subsea Template - FindSubseaTemplateScenarios-plan..........ccccccciiiii . 51
Figure 14: Well - FindWellScenarios-plan ... 51
Figur 15: System structure - JACK Teams solution ..., 53
Figure 16: Generate production-SCENAIIOSccceeeeeeeiiiie e, 55
Figure 17: SubseaTemplate - FindSubseaTemplateScenarios-plan.............cccccc . 56
Figure 18: Well - FindWellScenarios-plan ..., 56
Figure 19: Measurements of Metric M1 (LOC)........cooeiiiiiiiiiiii e, 60
Figure 20: Measurements of Metric M2 (NOE)ccoooeiiiiiiiii e, 63
Figure 21: Measurements of Metric M3 (NOF)cooeiiiiiiiiiii e, 64
Figure 22: Measurements of Metric M4 (NOCBE)ccooiiiiiiiiiii e, 66
Figure 23: Measurements of Metric M5 (NOEA) ..., 69
Figure 24: JACK entities involved in the "Generate production-scenarios"-scenario........................... 92
Figure 25: Choose production-SCENAIio.........cceeeeee e e, 93
Figure 26: JACK entities involved in the "Choose production-scenario"-scenario...............ccccceeeeee. 93
Figure 27: Monitor production against production-scenario..........ccccccceeeiiiiiiiii 94
Figure 28: JACK entities involved in the "Monitor production against production-scenario"-scenario95
Figure 29: Start reactive "well choke settings” state.........ccccceeiiii 95
Figure 30: JACK entities involved in the "Start reactive well choke settings state"-scenario 96
Figure 31: Monitor reactive "well choke settings” statecccoeeeeii 97
Figure 32: JACK entities involved in the "Monitor reactive well choke settings state"-scenario.......... 98
Figure 33: JACK entities involved in the "Generate production-scenarios"-scenario.......................... 99
Figure 34: Choose production-SCENAIio.........cceeeeiieii i, 100
Figure 35: JACK entities involved in the "Choose production-scenario"-scenario............................. 101
Figure 36: Monitor production against production-scenario...........cccccceeeeeiiiiii 102
Figure 37: JACK entities involved in the "Monitor production against production-scenario"-scenario

... 103
Figure 38: Start reactive "well choke settings” state...........cccceeeeiiiiii 104
Figure 39: JACK entities involved in the "Start reactive well choke settings state"-scenario 105
Figure 40: Monitor reactive” well choke settings” stateccccoeeeeii 106
Figure 41: Monitor reactive well choke settings state............ccccccceeeiiiiiiii 107

Vii

viii

Chapter 1

Introduction

This introduction chapter deals with the main objectives and context of the report. The first section
explains the motivation for conduction the work of this report. Based on this, the problem definition
addresses the area of research. An extraction of the important goals based on the problem definition
is shown later in the chapter, followed by the approach to these goals. At the end, a short description
for each of the following chapters can be found.

1.1 Motivation

Modern technology enables the oil industry to develop smarter solutions that improve their work
processes. Cheap network bandwidth results in improved communication between offshore and
onshore. The availability of sensor data is increasing. Toghether, this will enable a more optimal
decision making (1). Three important aspects of this development are

e Information overload of signals generated by equipment. The control room and human
operators cannot focus on all signals, when each well and processing equipment generates
several signals at any time.

e Shared situation awareness between technical experts. The different experts can have
different perspectives of priority and criticality in different situations.

e Mutually-agreed timeframe for action. A rapid response time ensure optimization of oil
production.

The three aspects listed require support from information systems to be able to make the
appropriate abstraction, and to have tools for automation and decision support. Some academic
studies from the Norwegian University of Science and Technology (NTNU) on initiative from
StaoilHydro have documented research related to these aspects. StatoilHydro also shows
experiences made by earlier developments of relevant multi-agents in the report written by the
authors @lmheim, Landre, & Quale (2). This report also describes the basis of future systems, and
research areas related to it. Their work leads towards human centric systems.

The depth study by Spillum (3) was motivated by the work towards human centric systems, and
forms the fundament of the work in this report. The depth study mentioned was written by the same
author as this report, and will therefore have a natural continuation in this work. The reference
problem® and system design that are used in this report is based on the depth study. By inheritating
these two elements, so will the limitations they create. The depth study considers a stronger use of
teamwork in such a production system. The team concept is examined in this report by using both
modelling paradigms, JACK Intelligent Agents and JACK Teams. A comparison between the two will
explore the applicability and suitability for teams of agent-instances (in JACK Agents) and teams-

! Specified problem found in the application domain: decision-support systems used in oil production. The
reference problem is described in Chapter 5.

CHAPTER 1. INTRODUCTION

instances (in JACK Teams) in the development of a decision-support system used in oil production.
This comparison is the main goal for this report and the motivation for StatoilHydro.

1.2 Problem definition
Based on the motivation presented in the last section, the problem definition was formulated in
collaboration with the supervisors:

”Is it easier to develop teamwork in JACK Teams than in JACK Agents, when building a decision-
support system? Is it possible to develop a similar system in JACK Intelligent Agents and JACK
Teams? Will JACK Teams be a more feasible platform than JACK Intelligent Agent, when developing
teamwork?

The reference problem and system design made to test the two modelling paradigms, shall be
based on and continue the work made in the author’s depth study (3).”

1.3 Project goal
Extracted from the problem definition, the project goals define what to look for as important results
in the proposed solutions. The main goals are to:

1. Compare the easiness and results of developing a production system in the two modelling
paradigmes.

2. See how to construct an oil production system that makes it easy to maintain and replace
software-components.

3. See how to produce oil volumes according to the long term production targets (a production
plan) given the system within the equipment’s capacities.

4. See how to handle unexpected situations caused by the complex and dynamic oil production
environment.

5. See how to construct a scalable solution (looking at the aspect of system development, and
not necessarily performance), with the ability to contain hundreds of wells and other physical
components used in oil production (real life realistic).

1.4 Approach
This section describes how to approach the project goals from Section 1.3. Some of the important
approaches to fulfil the goals are to:

e Create a production system with the same architecture, rules, and capabilities in both
modelling paradigms.

e Predict the future production in order to create a long term optimization plan that the
system can follow, in order to reach the production targets of a given period of time.

e Make proactive decisions (about adjusting well chokes) when the system has knowledge
about how the environment will react to its decisions, due to forecasting. This makes it easier
to optimize in long term, knowing when to make adjustments and what the effects will be.

e Conduct compensating actions if a production well stops producing or decreases production
because of technical failure or unpredicted changes reservoir- and/or well condition.
Compensating actions will be if one well takes over production for another well, because
they are assumed to have a better oil/waste production rate at the moment. Although this
might not be the best wells to choose over a longer period, as changing well chokes rapidly

CHAPTER 1. INTRODUCTION

does not make immediate changes in the production. Fluids and other substances need some
time to react to the changed choke settings. If the best oil/waste production rates were
known in advance, the well settings could have been changed before the oil/waste
production rates changes (proactive behaviour), and not afterwords like this reactive
behaviour causes.

e Create cooperation between autonomous units (agent-instances, teams-instances and
human operators), with different levels of authority and autonomy.

1.5 Use of terms

The team-construct will use the notation team-construct or team-instance, if it is not clear if the term
is used in context of JACK Teams or as a team in context of teamwork. In JACK Agents a team is an
agent being a team-commander, with teammembers being agents connected to it. In JACK Teams a
team-instance forms a team, with teammembers being other team-instances connected to it.

The modelling paradigm JACK Intelligent Agents will be abbrivated to JACK Agents.

JACK Agents and JACK Teams are referred to as both modelling paradigms and programming
languages in this report.

1.6 Project context

This project is conducted in collaboration with StatoilHydro, as a part of the graduate level course
TDT4900 Program and Information Systems, Master Thesis. StatoilHydro operates in about 40
countries and has about 31,000 employees. The company is one of the largest operators in the
Norwegian oil- and gas production, and the international production is increasing (4). In order to be
competitive and flexible according to the market and oil production, a more optimal production is
wanted.

1.7 Report outline
The report is divided into following chapters:

Chapter 2, Towards human centric systems This chapter introduces the context of the system
design. Human and machine are mutual dependent in complex and changing environments, and will
lead towards a human centric system. Teamwork and delegation of autonomy are two important
elements in this trend, and will be described in depth in this chapter.

Chapter 3, Framework and Tools This chapter introduces the development tools and the modelling
paradigms JACK Agents and JACK Teams made use of to design and implement the system used in
the experiment conducted in this report.

Chapter 4, Approach This chapter introduces the approach that will test JACK Agents and JACK
Teams regarding their applicability and suitability to implement teamwork. The approach is described
as an experiment to be evaluated quantitative and qualitative. The experiment is designed in this
chapter.

Chapter 5, Defining a reference problem This chapter introduces the type of system that JACK
Agents and JACK Teams shall be tested against. The reference problem creates the context to test
teamwork within, and will therefore create both possibilities and limitations on how teamwork can
be tested.

CHAPTER 1. INTRODUCTION

Chapter 6, System design This chapter constructs a system design presenting the different
architectual layers, control processes, and “steps of action”-scenarios that address the reference
problem described in Chapter 5. The system design presented in this chapter is used as a basis in the
the JACK Agent version and JACK Teams version, and to create similar and comparable versions of
the system.

Chapter 7, JACK Agents solution Based on the system design in Chapter 6, this chapter describes the
specialized design and implementation of the JACK Agents version of the system. The design shows
the system structure of all the agents that will be instanciated, and how the different kinds of agent-
instances interact with eachother to enable teamwork.

Chapter 8, JACK Teams solution Based on the system design in Chapter 6, this chapter describes the
specialized design and implementation of the JACK Teams version of the system. The design shows
the system structure of all the agents-instances and teams-instances that will be instanciated, and
how the different kinds of agent-instances and team-instances interact with eachother to enable
teamwork.

Chapter 9, Quantitative results This chapter contains results from the quantitative part of the
experiment conducted in this report. The JACK Agents solution and the JACK Teams solution are
evalutated in a quantitative manner in accordance to the differenct quantitative evalutation aspects
defined in Chapter 4.

Chapter 10, Qualitative results This chapter describes advantages and disadvantages created by
JACK Agents and JACK Teams when constructing teamwork. The evaluation is given in accordance to
the differenct qualitative evalutation aspects defined in Chapter 4.

Chapter 11, Summary of work This chapter contains a summary of experiences made during the use
of the new programming techniques JACK Teams introduced compared to JACK Agents.

Chapter 12, Conclusion This chapter draws the conclusion about which modelling paradigm that is
most applicable and suitable in teamwork construction.

Chapter 13, Future work This chapter deals with areas in the JACK Teams modelling paradigm that
should be further investigated, and suggested improvements of the proposed system that is used as
relevant test-object.

Part |
State of the art

Chapter 2

Towards human-centric systems

This chapter introduces the trend towards human-centric systems. Human-centric systems are
important in decision-support needed in complex and changing environments like oil production.
Humans and machines are mutual dependent in such kind of environments. This chapter describes
how the decision-support development will move towards human-centric systems, and creates new
software demands. The focus of the report is how teamwork addresses these new demands.
Teamwork is described in depth in Section 2.5.

2.1 Human and machine as mutually dependent

Decision-support system requires two actors, the human operator and the machine. The machine
system is in this report reffered to as a multi-agent system. The term agent’ does not have a
universal definition in the literature. A common defition is made by Wooldridge (3):

“An agent is a computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives. An intelligent agent is
in addition reactive, proactive, and social.”

Agent-oriented development can be considered as the successor of objectoriented development
when applied in artificial intelligence problem domains (5). More information about agents and their
application areas can be found in the author’s depth study (3).

Challenges in multi-agent systems’ are (3) that they have no existing global system control, data is
decentralized, and that the computation is asynchronous. Teamwork is taken into consideration to
address these challenges. By definition, teamwork is a group of agents that works towards a common
goal. Such work requires the system to consider the challenges mentioned. Another element that can
be problematic for a multi-agent system is the interface against human operators. The human
operator has to build a relationship of trust to the system, since most human operators are not
comfortable giving away their authority. Teamwork will include human operators in the team
formations and in the team processes, and possibly cause an increase of trust.

The agent architecture considered in this report through the JACK framework is called Belief-Desire-
Intention (BDI architecture). This architecture makes use of a human-like intelligence- and decision
making behavior (6). This behaviour makes the agents a possible substitution for humans in
teamwork. The BDI architecture contains both reactive and deliberative properties, and models the
mental states of an agent. These mental states are belief, desire, and intentions. The different states
will cause behavior on an abstraction level closer to human intelligence. This kind of behavior is
realized through an event-driven execution model; wich enables both reactive and proactive
behavior (7). Belief is defined as the agent’s view about the environment. The belief will change over

? The term agent refers in this chapter to an agent-instance in JACK Agents and as a team-instance in JACK
Teams. A team-instance is an extension of an agent-instance, in the JACK Teams modelling paradigm.
* Multi-agent systems are composed of multiple interacting agents who may be distributed (24).

7

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

time in order to be consistent with the environment. The desire is goals the agent wants to achieve.
Desire has to be consistent with the agent’s belief, because there can for instance not be a goal of
flying if the agent does not believe it can fly. Intentions are commitments the agent takes towards
achieving a desire (8).

2.2 Changing perspective in software development
Complex and changing environments create new software demands. This report focuses on the oil
production domain and has to deal with following challenges (3):

e The oil production domain is complex and dynamic, and monitoring will cause large
continuously amounts of different data.

¢ Increased instrumentation and the use of “smart” well technology will generate a large
amount of data to be utilized in the control room.

e To meet local- and global constraints in oil production. Sub-optimization does not necessarily
lead to globally optimization.

e To have actions being effective within a certain time limit.
e Difficult and complex interpretation of data to support improved decision-making.
e Detection of potentially dangerous situation.

The challenges mentioned can be derived into motivational factors to create new types of software.
@lmheim, Landre, & Quale (2) pointed out three main three motivational factors: decreased
information load on the human operator, shared situation awareness between technical experts, and
mutually-agreed timeframe for action. Lack of shared situation awareness can for instance cause a
less optimal® oil production. The plans and long term forecast of an optimal solution might not be
followed because of different understanding on how to put the plans into operation. Priorities and
perceptions about what is critical may differ as well (2).

The existing and traditional generation of software systems, are more or less centralized decision
making systems (1). This support typically one kind of equipment, and are mostly data-driven. The
use of intelligent software agents addresses these issues. These systems are capable of handling
large amounts of data in a physically distributed environment, and have the ability to make
autonomously local decisions by reasoning about these data (1). They are capable of handling
changes in the environment and react to them continuously. Software agents can also work together
with the existing systems (1).

Teamwork is an approach that possibly can create some of the claimed benefits software agents
have. The applicability and suitability of teamwork is explained in this chapter, and in the former
depth study made by the author of this report (3). This depth study claims that teamwork is well
suited for decision support in the oil production domain. Teaming can be divided into agent-centric

* Optimization is about maximizing the oil production in the long term, taking the extraction of oil in reservoir
into consideration.

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

and human-centric, described in Section 2.3 and Section 2.4. Research in teamwork focuses on
moving towards human-centric system and to include human in the team processes. The paradigm
shift is shown in Figure 1.

=S

team(s)
simulation ot

agent C.ml training ‘_ m
li-
=k . o)
==
human
@I h‘ desired human-agent
intelligent shift team(s)

assistant

team(s)
Figure 1: Human - agent teaming (6)

Relevant for both agent-centric and human-centric teaming is the the system’s computational
elements. This is an important element in complex and dynamic environments with many psycial
elements. A type of system called cyber-physical system (CPS) features a tight combination and
coordination between the system’s computational and physical elements (9). This is often referred to
as embedded systems, but differs from traditional embedded systems. The elements involved will
interact with eachother instead of being standalone devices. For example, many wireless sensor
networks monitor some aspect of the environment and forward the processed information to a
central node. This type of system focuses on important aspects relevant to the oil production
domain. Teamwork can be used to coordinate and create cooperation between the physical
components. The distribution of computational elements on different abstraction levels are looked
into and realized through the experiment documented in this report.

2.3 Agent-centric system

The teamwork performed in agent-centric system depends on the delegation of autonomy between
agents. The degree of autonomy is determined by how the agent achieves its goals and the authority
itis willing to delegate in order to complete the goals. The delegation of autonomy between agents
plays an important role in the work documented later in this report, because it says something about
the distribution of computation. The delegation of autonomy also influences the achievement of
having either a local- or global optimization when solving a problem. These factors are important in
the construction of the system design described Chapter 6.

Agent to agent degree of autonomy is shown in Figure 2.

SPECTRUM OF AUTONOMY

—————

c d Locally
emmand- Consensus Autonomous /
driven Master

Figure 2: Agent - Agent autonomy taxanomy (10)

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

An agent’s autonomy increases from left to right shown in the figure. The categories are:

e Command-driven: The agent does not plan and must obey orders given by another (master)
agent (11).

e (Consensus: The agent serves as a team member, sharing planning decisions equally with
other agents (11).

e locally Autonomous / Master: The agent plans alone and may (if master) or may not give
orders to other agents (11).

2.4 Human-centric systems
This section defines what human-centric is and runs through some important aspects related to it.

2.4.1 Overview

Research in teamwork focuses on the human-machine interactions, and how to get humans included
in teamwork (5). The effect will be increased situation awareness for humans dealing with unknown
or hostile environments (12). It can also help to decrease the information load on the human
operator and to arrange mutually-agreed timeframe for action. @lmheim, Landre, & Quale (2)
examined the involvement of humans in the oil production domain which will most likely benefits
from such research.

Human-centric system possesses the ability of having the agent system to learn from humans. The
learning process enables agents to become so-called human-centric smart agents (5). This kind of
system can have interaction in both directions. Agents can advise humans, and humans can advise
and influence the agent’s reasoning process. Shared plans and joined intentions between humans
and agents is something that should be emphasized in a human-centric system.

The following subsections describe how autonomy can be delegated between human operator and
the agent system, benfits by using human centric systems, and principles to the creation of such
systems. These elements play an important role in the work of creating shared plans and joined
intentions between humans and the agents. The mutual learning process that exists in human-centric
systems is not considered in this report.

2.4.2 Delegation of autonomy

The delegation of autonomy describes how human operators are involved in the teamprocesses. The
degree of autonomy is determined by how the human operator chooses to achieve his/her goals, and
the authority he/her is willing to delegate in the process of reaching the goals.

The degree of autonomy that a team or teammember have should be able to vary during runtime.
Different system states and environmental situations should require different types of autonomy
delegation. The trust the human operator has to the system at the moment should reflect the level
of delegated autonomy. The degree of autonomy should be based on automatic escalation or de-
escalation, and the human operator should be able to change it manually. Learning can build a
trustrelationship between the human operator and the agent system. Learning is therefore an
important element of escalating or de-escalating the level of autonomy. The learning process should
be performed in both directions, causing the agent system to have a chance to learn from the human
operator and opposite.

10

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

Different degrees of autonomy cause different actions to be made by the human operator and the
agent system. Table 1 shows a taxonomy of delegated autonomy defined by PACT-levels (Pilot
Authority and Control Tasks). Related to an oil production system, the pilot could be a production
engineer, while the computer would represent for instance a field manager or other agents
contained in an oil production system.

PACT Locus of authority PACT Sheridan & Verplank Levels of HMI

Level
Computer monitored by 5b Computer does everything autonomously
pilot
5a Computer chooses action, performs it and informs
human
Computer backed up by 4b Computer chooses action and performs it unless human
pilot disapproves
4a Computer chooses action and performs it if human
approves
Pilot backed up by 3 Computer suggests options and proposes one of them
computer
Pilot assisted by computer | 2 Computer suggests options to human
Pilot assisted by computer | 1 Human asks computer to suggest options
only when requested
Pilot 0 Whole task done by human except for actual operation
(autopilot)

Table 1: Human - Agent autonomy taxanomy (13)

2.4.3 Principles
One should distinguish humans and agents when implementing a human-centric system. Humans
and agents are not comparable, but they are complementary in a human-agent team.

Principles made by Tweedale et al. (6) describe how humans and agents are complementary, and are
listed as follows:

e Humans are responsible for the output in human-agent teams

e The humans have the mainresponsibility and is therefore in command

e The humans must be activiliy involved in the team processes

e The humans must be adequate informed

e The humans must be able to monitor agent behavior

e The agents’ activities must be predictable, so the humans can monitor their activities

e The agent must be able to monitor the performance of the human.

Each team member (humans and agents) must have knowledge of eachother’s commitments
towards achieving a goal (intentions).

The principles presented serve as a foundation in the construction of the objects to be study in this
report. The system design that reflects some of the principles can be found in Chapter 6.

11

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

2.4.4 Benefits

The BDI architecture constructs a human-like intelligence (6). This enables the agents to substitute
humans. The disadvantage is that the human-like substitute could fail at a critical point without
leaving any choice to the human for regaining control of the situation. The results will be impaired
situation awareness. Inclusion of the human operator in the team-processes leads to human-centric
systems and shared situation awareness (5).

Interaction between machine and human in human-centric systems enables customized decision
support in the decision making process. Interaction does not only consist of a communication
language, but adds the elements of observation and adaption. Truly smart agents can be
complementary to a human by adopting skills similar to a human, and may include communication,
learning and coordination, rather than being a simple replacement to a human (5). Learning is not
discussed in this report. Communication and coordination are described in Subsection 2.5.1.

Human-centric systems make use of delegating autonomy between human and agents. The
delegation of autonomy describes how human operators are involved in the teamprocesses. Lucas &
Shepherdson (14) list the following advantages moving towards systems with an architecture based
on delegation of autonomy:

e Lines of authority and communications are clearly defined. This makes surrounding
comprehensible.

e Decision-making is delegated where possible, and ensures that workload is shared
appropriately among the managers and members of the organization. Delays resulting from a
too high a workload are then minimized.

e Greater responsiveness, because decision do not always need to go to the top of an authority
hierarchy.

e Improved communications. The involved parties only receive information necessary for the
role, causing less irrelevant and distracting details.

e Decisions are made at the appropriate level in the organization, because of already
established paths of authority and criteria for escalation.

e Productivity is higher as the agents are able to make many decisions locally, causing less
waiting time for decisions.

e Reduced workload on Human operators that could help the operator to focus on the critical
situations, which could lead to better decisions and less mistakes.

e Creates a higher level of local decisions, and avoid “bad” decisions propagate through the
system.

e Enable distributed reasoning which creates feasibility of parallel computations and
modularity causing better and easier maintenance of the system. The parallelism could help
creating a more scalable system.

2.5 Teamwork
This section clearifies the difference between teamwork and collaboration between agents. The
section also describes coordination techniques, team variables, and challenges in teamwork.

12

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

2.5.1 Collaboration and teamwork

Agents’ social ability makes them able to communicate with eachother. This ability can be used in
their achievement of goals. When achieving goals in groups, they will achieve more than they can do
as individuals. This is analog to human groups. They will get a lot more done if they work together.
They can share information and work in a coordinated manner, and make eachother more efficient
and competent (12). There are two possible ways agents work together: collaboration and
teamwork.

Collaboration is to communicate, cooperate, and coordinate. Coordination is referring to agents that
are freely allowed to communicate and enforce agreements prior taking decisions (15). These
agreements do not have to work towards a common goal, but can be an agreement as a result of
negotiation. The agents are voluntariliy entering the relationship with eachother to achieve a system
derived goal (16). Coordination is the ability to manage the interdependencies of activities between
agents (16). Coordination prevents for instance two soccerplayers in kicking the ball at the same
time. An agent can also coordinate its actions with another agent unaware of its presence.
Coordination does not imply cooperation (17). Communication is interteraction, typically a two-way
process, where all agents can potentially be senders and receivers of messages (15). Communication
can be used for coordination among cooperative agents or for negotiation among self-interested
agents (15).

Teamwork is a more structured type of collaboration. It is more than agents communicating and
acting in a simultaneous and coordinated manner, or agents asking for and providing services to
eachother (12). Teamwork has one additional requirement. The team of agents works towards
something together, such as an achievement of a team goal (12). A team can be defined as a set of
agents that has a shared objective and a shared mental state (18). The aims of agent teamwork
research are to improve the concept understanding, to develop some reusable algorithms, and to
build high-performance teams in dynamic and possibly hostile environments (18). Coordination and
cooperation are necessary for agents in a team to achieve a common goal (18).

An example can help to illustrate some of the differences between collaboration and teamwork (12).
The car traffic has cars that work as autonomously units trying to avoid crashes and to reach their
destinations. In order to do this, they have to avoid eachother, stop for eachother, etc. They will have
to coordinate their actions to achieve their goals and finally reach their destination. If a car breaks
down, they will just drive by it and keep on going to they reach their destinations. For a convoy
represented as a team, things are a bit different. Their goal is to reach the destionation together. If a
car breaks down in the convoy, all cars in the convoy are affected by it. They want to achieve their
team goal, but cannot do so if one car breaks down. If a car breaks down they have to fix the car or
change it, in order to achieve their team goal.

2.5.2 Coordination techniques

Coordination is required when agents are interdependent, for example, when agents share tasks or
avoid resource conflicts (19). Many approaches exist in the work of coordination of agent systems.
Nwana, Ndumu, Lee & Collis (20) define four broad categories that will be presented in this
subsection. The four categories are called organizational structuring, contracting, multi-agent
planning, and negotiation.

13

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

The first technique is named organizational structuring. This is a coordination technique that exploits
the structure of the society, the role of the different agents; and their relationships with each other.
This is for instance a client-server system. Another type is the master/slave coordination approach.
Here, the master generates the plans, and distribute fragments of the plan to the slaves. Conducting
the plans, the slaves have to report to the master. The master then has full autonomy and the slaves
have only partial autonomy (21).

The second technique is named Contracting. First the manager agent announces a contract, receives
bids from other agents, evaluates the bids, and finally awards the contract to the winner. The
contract-net protocol is a typical contracting technique. Other various auction protocols exist (21).

The third technique is named Multi-agent planning. This coordination technique resolves any
foreseen conflicts between the agents’ plans. There are two types of multi-agent planning, which are
described as:

e (Centralized multi-agent planning: A central agent performs planning on behalf of the society.
It receives receipts of all partial or local plans from individual agents, and analyzes them in
order to find potential inconsistencies and conflicting interactions. Next, the planning agent
modifies the partial plan and combines them into a multi-agent plan, without inconsistencies
and conflicting interactions (21).

e Distributed multi-agent planning: the agents exchange partial sub plans which progressively
build the multi-agent plan without inconsistencies and conflicting interactions (21).

The fourth technique is named Negotiation. Nwana, Lee & Jennings (21) defines negotiation as
following: “...negotiation is the communication process of a group of agents in order to reach a
mutually accepted agreement on some matter.” This agreement take place after a dialogue between
the parties, where they exchange proposals with each other, evaluate the proposals, and exchange
counterproposals until an agreement between the agents is reached.

2.5.3 Team variables

Different aspects of teamwork can vary from system to system. The team variables identified here
will have different focus later in the report. They have different importance and variations, as we will
see later in the implementations of the reference problem defined in Chapter 5. The team variables
identified are:

e Team size: Number of agents involved as teammembers.

e Team structure: Formation of the team. “Flat” structure with all agents on the same level, or
hierarchical structure where agents are situated on more than on level. In order to achieve
different goals at specific conditions, different team formations are needed. The team life
cycle (12) to achieve a goal is as follows:

1. Team formation:

a) Find potential team members
b) Recruit team members

2. Team task execution:

a) Decompose task into sub-tasks

14

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

b) Distribute/delegate sub-tasks to appropriate team members
¢) Each team member performs its allocated task in a coordinated fashion

3. Disband team:
a) Each member leaves and is no longer committed to the team

e Differentiation and specialization: A hetergenous team of agents contains agents that can
fulfil only specific roles. To repair such a team by using the team’s member is not possible. To
solve this problem, an agent from outside the team has to fulfil the role, or else the team will
fail. A homogenous team contains agents that can fulfil different kind of roles, and can
therefore possibly repair it if an agent has failed.

e Failure handling: Who shall handle the failure if a team fails? The failure can be handled by
trying another approach to achieve the goal, or the incapsulated team has to handle the
failure.

e Authority delegation: This aspect can be divided into the two cateogories of machine to
machine delegation, and human to machine delegation. The delegation looks at how the
machine or human is involved in teamprocesses according to authority they are delegated.

2.5.4 Challenges in teamwork
Tweedale et al. list three primary challenges (5) that teamwork should overcome: communication,
negotiation, and trust.

Communication is the first challenge. It enables agents to understand eachother. The communication
must be efficient and robust to recover from errors, and provide the possibility of asking and
providing services. Facilitator agents can provide matching the available services and request.
Another approach is mobile agents that can move from one environment to another. A third
approach is hierarchical structures that will lay constraints on how to communicate with eachother.

Negotiation is the second challenge. Teams have requirements, and so has the individual agents. A
negotiation process is needed for the team to achieve it goals, and at the same time have the
individual agents having their autonomy.

Trust is the third challenge. This is for example if an agent should trust another agent receiving
correct information, or that the agent can perform a particular task. This is not easily measured, but
should is reflected on the delegation of autonomy.

15

CHAPTER 2. TOWARDS HUMAN-CENTRIC SYSTEMS

16

Chapter 3

Framework and tools

This chapter introduces the framework and development tools used in the work of conducting the
experiment constructed in Chapter 4. The development tools are used for system design and
implementation of the system used in the experiment. The framework tested in the experiment
contains the modelling paradigms JACK Agents and JACK Teams. The framework is described in
Section 3.1.

3.1 Modelling paradigms compared

The two modelling paradigms JACK Agents and JACK Teams were used in the work documented in
this report. They were used to develop a system, which resulted in two versions of the same system
so they could easily be compared. The comparison shows the applicability and suitability for the two
modelling paradigms regarding teamwork, which is the main objective of this report.

3.1.1 Overview

JACK Agents has been developed to provide agent-oriented programming. JACK Teams is an
extension to JACK Intelligent Agents that provides a teamoriented modelling framework (22). JACK
Agents and JACK Teams are extensions to the Java programming language. JACK Agents and JACK
Teams source code is first compiled into regular Java code before being executed.

3.1.2 JACK Agents
The JACK Agent Language introduces six class-level constructs. These constructs are:

e Agent: The agent-construct is used to define the behaviour of a BDI® intelligent software
agent. This includes the agent’s capabilities, what type of messages and events it responds
to/sends, and which plans it will use to achieve its goals (23). The agent provides reasoning
behaviour under both proactive and reactive stimuli (24).

e Capability — The capability-construct is used by an agent to aggregate and reuse functional
components to give it certain abilities (23). A capability can be made up of plans, events,
beliefsets, and other capabilities (23).

e BeliefSet: The beliefset-construct represents agent beliefs using a generic relational model
(23). The beliefset is designed in a way that allows it to be quieried about, using logical
members. Logical members are like normal data members, except that they follow the rules
of logic programming (like Prolog for instance) (23).

e View: The view-construct allows general purpose queries to be made about an underlying
data model (23). The data model can integrate a wide range of data sources such as JACK
beliefset, Java data structures, and legacy systems (23).

> Belief-Desire-Intention

17

CHAPTER 3. FRAMEWORK AND TOOLS

e FEvent: The event-construct is an occurrence that triggers the agent to take some sort of
action. There are several types of events. All types of events can be carriers of goals that the
agent shall try to achieve (2). The key difference between the two main categories normal
events and BDI events is how an agent selects plans to execute. At a conceptual level, the BDI
reasoning models goal-directed behaviour in agents, rather than plan-directed behaviour
(23).

e Plan: The plan-construct generates instructions the agent follows to respond to an event
received. The plans are analogous to functions. First, a check is done to determine if the plan
is relevant for exactly that specific instance of the event. Checking for relevance provides the
agent with a filter to exclude plans that will definitely not be able to handle the event. If the
plan is relevant, an applicability check takes place. To check for applicability, the current
circumstances (values of respective members and data structures) and the agent’s current
beliefs (represented by its beliefset relations) are evaluated to check if the plan is applicable
to the current conditions. The plan will execute its steps of action if it is relevant and
applicable (23).

Reasoning statements are JACK Agent Language specific statements that can only appear in
reasoning methods. They describe actions that the agent can perform to execute behaviour. Actions
such as posting events, sending messages to other agents or waiting until a particular condition is
true are expressed using reasoning method statements. The important communication reasoning
method statements (@-statements) between agents, and emphasized statements due to teamwork
are:

e @send(agent_name, message_event): The @send statement is used to send a message
event to another agent from within a reasoning method (23).

e @reply(original_event, reply_event): The @reply statement is used by an agent to reply to a
message event that it has received from another agent (23).

3.1.3 JACK Teams

The JACK Teams extension introduces the new constructs team, role, teamdata, and teamplan. The
JACK Teams model includes all the programming contstructs contained in the JACK BDI Agent model,
but with an extended semantics for some constructs. Note that an agent-instance has to be renamed
to be a team-instance when it is compiled using JACK Teams. The behaviour of the newly created
team-instance will still act as an agent-instance, because a team-construct is only an extension of the
agent-construct. The extendend and additional constructs are:

e Team: The team-construct is an extension of the JACK Agents’s agent-construct. This
reasoning entity is characterised by the roles it performs and/or the roles it requires other
teams to perform (22). Attaching subteams capable to fulfil the required roles create the
team formation. Teams and subteams are both made from the team-construct. Subteams
may also require roles to be fulfilled, and will cause a hierarchy (ies) of roles as a result. Note
that a subteam can fulfil more that one role at the same time. The team are automatically
provided with objects to hold the actual role/sub-team selections. These objects are known
as role containers (22).

18

CHAPTER 3. FRAMEWORK AND TOOLS

Role: The role-construct defines a relationship between teams and subteams. The role
relationship is expressed in terms of the event and belief exchanges implied by the
relationship (22).

Teamdata: The teamdata-contstruct is similar to the JACK Agents’s beliefset, but contains the
ability for belief propagations in addition. The propagation is going in both directions
between team and subteam, so-called belief propagation and belief inheritation. The use of
teambelief, in addition to the team coordination statement (see reasoning statement
@teamAchieve), enables sophisticated team behaviours to be implemented (22).

Teamplan: The teamplan-construct is an extension of the JACK Agents’s plan-construct. A
teamplan specifies how a task is achieved in terms of one or more roles (22). The process of
determine what teams to perform the different roles are known as team formation in the
framework. The behaviour specified in terms of roles decouples the team’s behaviour from
the subteam’s behaviour (22). It is however possible to perform reasoning based on the
actual team membership if needed, because the team can access its possible sub-teams
through the role container.

Initialisation file (not a JACK entity-construct): The file is used to build the so-called role
obligation structure (22). The overall lifetime of a team has two phases (22). The first phase is
for setting up an initial role obligation structure. That is the declaration of which teams are
capable to perform which roles for the specific teams. The second phase constitutes the
actual operation of the team during runtime to solve a specific task. The first phase is
handled by the initialisation file, which is generated in JACOB® format. Note that it is possible
to modify this structure during runtime (22).

Reasoning statements are JACK Teams Language specific statements that can only appear in

reasoning methods. They describe actions that the team can perform to execute behaviour.
Additional reasoning method statement (@-statements) compared to JACK Agents, which is an

important statements due to teamwork:

3.2

@teamAchieve Statement: The @teamAchieve statement is used to activate a sub-team by
sending an event to the role fulfilled by the subteam. The team that sent an event through
the @teamAchieve statement waits until the event has been processed by the sub-team. If
the event succeed or fails, so will the @teamAchieve statement. In combination with the
JACK @parallel statement, a wide range of team behaviours can be implemented (22). The
@parallel statement is the same as contained in JACK Agents, and is therefore not used
during the work documented in this report.

Previous experiences

This section describes previous experiences made by using JACK Agents and JACK Teams.

® The JACOB™ Object Modeller (JACOB) is a system providing machine and language independent
object structures (42).

19

CHAPTER 3. FRAMEWORK AND TOOLS

3.2.1 JACKAgents

StatoilHydro has a relatively long history with multi-agent systems and JACK Agents (2), described in
the paper made by @lmheim, Landre, & Quale (2). The paper shows for one thing the suitability of
JACK Agents in the development of an oil production system.

The domain is the same as the reference problem defined in this report, and will therefore be a
contribution in the shaping of the system design described in Chapter 6.

3.2.2 JACKTeams
Jarvis et al. emphasize the following advantages by using JACK Teams in their work (25):

e Behaviour in the different teams is clearly separated. This makes it easier to change
components, since the behavior is defined according to roles, and not teams. How different
teams fulfil the same role, is therefore not important. Teams can therefore be replaced, as
long as they fulfil the role they were set to do.

e The plan describing the steps actions is written in terms of roles, not specific sub-teams, thus
making the plan resource independent.

e Behaviour of teams can be understood independently because plans are written in terms of
roles.

e The role concept in JACK Teams enables team structures and behaviours to be specified
independently of the eventual members of the team. Thus it provides the flexibility for team
formation to occur dynamically and in response to changing circumstances.

e Ateam s able to subtask its sub-teams and propagate beliefs to its sub-teams through the
role instances. If required, the actual sub-team instances that are available to perform a role
are accessible through the role obligation structure.

Bisht et al. (26) are using JACK Teams in the simulation of battlefields, used by the military. This
paper mentiones the following experiences made:

e JACK Teams gives a clear and concise description of coordinated activities and allows the
abstraction of what needs to be done from how it is done, i.e., the responsibilities of the
team can be written down without consideration of how the roles would be fulfilled and
implemented by the team members.

e Arelatively simple team programs become complex. For example, to implement this
scenario, the authors had 4 agent files, 3 capability files, 6 team files, 4 role files, 37 plan files
and 25 event files.

e The resultant code was highly modular and maintainable, which would not have been
possible otherwise.

Cheong (12) describes two different kinds of Collaborative Agent Architectures which provides
support for agent teamwork: Yellow Pages service to locate agents by their capabilities, a Facilitator
agent to facilitate agent coordination or a team class which can be extended to create agent-teams.
A team class will function like JACK Teams with its team-construct.

20

CHAPTER 3. FRAMEWORK AND TOOLS

A Facilitator agent coordinates tasks for the multi-agent system. When all agents start up, they are
required to register with the Facilitator agent. Registration involves informing the Facilitator agent of
the tasks that they can perform. When an agent requires a service from the community (i.e. the
team), it sends a query to the Facilitator. The Facilitator agent uses agent registration details to
determine which agents can help to solve the query. The Facilitator delegates the tasks to all agents
that can help solve the query. They will then perform the tasks and return the results to the
Facilitator agent. The Facilitator then sorts all the results and returns them to the Requesting Agent.

This report documents two systems developed to perform as objects of study in the experiment
designed in Chapter 4. The first system constructed uses JACK Agents to construct the structure with
a Facilitator agent described above. The second system constructed uses JACK Teams and with a
team class as described above.

The paper written by Daren (27) contains a comparison between JACK Agents and JACK Teams. This
project used a JACK Agents implementation of two agent-instances that communicated and
coordinated with eachother. The JACK Team solution had a team-instance coordinating all
communication between the two agents-instances. The question is if an extra agent-instance could
have performed the same type of coordination if it substituted the team-instance. To build the
system with an agent-instance substituting the team-instance could resulted in the same flexibility
and correctness. This remark is also noted in the paper.

3.3 JACK Development Kit

The JACK Development Environment (JDE) is a cross-platform graphical editor suite written entirely in
Java for developing JACK agent and team based applications (28). The JDE is a toolkit that allows
construction of detailed design, construction of JACK entities, and it supports reuse of components
(28). The editor uses drag-and-drop to to create detailed design. The editor generates a skeleton of
JACK code derived from this design. The JACK compiler compiles the JACK code into regular Java
source code before execution (28).

JDE was used in the work of designing the JACK Agents and JACK Teams systems to be made, due to
the possibility of graphical modelling for both of them. The sourcecode was written in both JDE and
Eclipse IDE (see Section 3.4). The JACK Agents solution was implemented in Eclipse IDE, and the JACK
Teams solution in JDE. The original plan was to use Eclipse for both modelling paradigms, but the
plugin for the JACK framework in Eclipse did not work properly for JACK Teams.

3.4 Eclipse Integrated Development Environment

Eclipse Integrated Development Environment (IDE) is a software platform comprising extensible
application frameworks, tools, and a runtime library for software development and management
(29). What most people associate with Eclipse IDE is Eclipse’s Java development environment (30).
The Eclipse extensible software framework allows users to extend its capabilities by installing and
writing their own plugins (29).

Eclipse IDE was selected to be the code-editor instead of JDE (see Section 3.3), because it is familiar
for the author, and it supports incremental code compilation. A plugin was installed in Eclipse IDE to
support development using the JACK framework. This worked only properly when JACK Agents was

used, and not with JACK Teams. JDE was therefore used to develop the system in JACK Teams.

21

http://en.wikipedia.org/wiki/Software_platform
http://en.wikipedia.org/wiki/Application_framework
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Plugin

22

CHAPTER 3. FRAMEWORK AND TOOLS

Part I

Own contribution

23

24

Chapter 4

Approach

This chapter describes the approach this project uses to compare the JACK Agents and the JACK
Teams modeling paradigms. The approach is to conduct an experiment designed in this chapter. The
approach is divided in two parts. The first part is a quantitative approach. The second part is a
gualitative approach that will give more depth in the comparison, in addition to the quantitative
approach. The result of the approaches is described in Chapter 9 and Chapter 10.

4.1 Quantitative approach

Experiments are used when we want control over the situation and manipulate behaviour directly,
precisely, and systematically (24). An experiment is performed in order to be able to decide empirical
that one method is better that the other. This inspection involves use of methods for statistical
inference with the purpose of showing with statistical significance that one method is better than the
other (31). To carry out an experiment, several steps of construction have to be followed. The
process to conduct an experiment contains the steps of defining, planning, operation, analysis and
interpretation, presentation and package. The following subsections will elaborate these steps.

4.1.1 Experiment type

The results of the experiment are evaluated quantitative by using statistical analysis to to draw
conclusions. The experiment conducted in this report is of type quasi experiment. It cannot be called
a true experiment, because it is impossible to perform random assignment of the subjects to the
different treatments. A treatment is one particular value of a factor, modelling paradigms (JACK
Agents and JACK Teams) in this case. The subjects to be evaluated in this experiment are two
implemented solutions of the same type of oil production system.

4.1.2 Experiment process
The steps in the experiement process are suggested by Claes Wohlin et al. (31), and are described as
follows:

e Experiment definition: The foundation of the experiment is determined by its definition. The
purpose is to define the purpose of the experiment in terms of the objective, purpose,
quality focus, perspective, and context.

e Experiment planning: The experiment definition explains why the experiment is conducted.
The planning prepares how the experiment is conducted. This step determines the context,
state hypotheses, design experiment, and evaluates possible threats.

e Experiment operation: The subjects are prepared and made ready for evaluation. The
experiment is executed and data is collected.

e Analysis and interpretation: Measured data is gathered in statistical analysis.

The steps above will serve as guidelines in how this experiment will be conducted, to ensure good
quality on the findings. The definition step and operation step will be handled in the following

25

CHAPTER 4. APPROACH

subsections. The operation, which is the system development, will take place in Chapter 7 and
Chapter 8. The analysis and interpretation will find place in Chapter 9.

4.1.3 Experiment definition

Before planning and execution takes place, the experiment needs to be defined. The purpose of the
experiment definition is to ensure that importart aspects of the experiment are defined. This is done
through using the “Goal Question Metric” (GQM) template described by Claes Wohlin et al. (31). The
goal template is:

Analyse <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>
in the context of <Context>

The different elements in the template are related to the experiment contained in this report as
follows:

e Objects of Study: The objects of study are the entities that are studied in the experiment. The
experiment conducted in this report will have two objects that are the two different
solutions made by using JACK Agents and JACK Teams.

e Purpose: The purpose defines the intention of the experiment. The intention of the
experiment will in this report be to look the applicability and suitability of JACK Agents and
JACK Teams when constructing teamwork. The author believes that the applicability and
suitability can be measured and evaluated by having a finished JACK Agents version
converted into a JACK Teams version, only changing the necessary code to convert the
application using JACK Teams constructs.

e Quality Focus: This is the primary effect being studied in the experiment. Quality focus in this
experiment will be applicability and suitability of teamwork.

e Perspective: Perspective is the viewpoint the results are interpreted according to. This
experiment has the perspective of a software developer.

e (Context: The context is the environment in which the experiment runs. The environment in
this experiment consists of the personell (subjects) involved in the experiment and the
software artifacts (objects) involved. The author (a student with experience at university
level) will be the subject. The objects of context are the JACK framework containing the two
modeling paradigms JACK Agents and JACK Teams and the application domain that is
decision-support systems used in oil production.

The definition for the experiment then turns out as follows:

Analyse two different implementations of an oil production system
for the purpose of evaluation
with respect to applicability and suitability of teamwork

26

CHAPTER 4. APPROACH

from the point of view of software developers
in the context of the student using JACK Agents and JACK Teams to implement the system.

4.1.4 Experiment planning

This subsection will handle the planning phase. The planning prepares for how the experiment is
conducted. The context selection selects the environment in which the experiment will run. The next
two steps are to formulate hypotheses and select variables to look at in the experiment. These step
are followed by the selection of subjects, experiment design, and validity evaluation.

Context selection

A specific reference problem of application domain that is decision-support systems used in oil
production shall be implemented in two versions. One made by using JACK Agents, and the other
using JACK Teams. A comparsion will be based on the two versions, doing the same work, but in a
different way. The two versions are as follows:

e JACK Agents version: Physical components from the reference problem in Chapter 5 are
represented as agents. The design of the system can be found in Chapter 7. The JACK Agents
paradigm is described in Subsection 3.1.2

e JACK Teams version: Some of the physical components from the reference problem in
Chapter 5 are represented as team-instances. The rest of the system will remain as agent,
same as in the JACK Agents version. The design of the system can be found in Chapter 8. The
JACK Teams paradigm is described in Subsection 3.1.3.

Both versions have the same graphical user interface (GUI). The two different versions will be
compared to discover differences to find their possible applicability and suitability in teamwork, used
in a system designed (see Chapter 6) based on the reference problem (see Chapter 5).

The context can be characterized according to four dimensions (31). The four dimensions are listed
with explanations as follows:

e Offline vs. Online: The experiment conducted is offline. The devolped systems will not be
deployed in a real oil field, only as simplificated simulated oil production system.

e Student vs. Proffesional: The two solutions developed are constructed by the student that
made this report.

e Toy vs. Real problems: The oil production system designed does not reproduce the
complexity a real oil production system has to handle. The main cause-effect relationships of
the challenges addressed is however maintained in the solutions.

e Specific vs. General: The experiment is made specific for oil production systems which are
built in a similar hierarchical structure as designed in Chapter 6, based on the reference
problem. The findings can possibly indicate applicability and suitability in similar domains
with the same hierarchical structure.

Hypothesis formulation
Hypothesis testing is the basis for the statistical analysis of the experiment. A hypothesis is stated
formally and comfirmed or rejected by data collected.

27

CHAPTER 4. APPROACH

To evaluate JACK Agents and JACK Teams applicability and suitability regarding teamwork in an oil
production system. To address this evaluation and comparison between the two versions, Table 2
contains several hypotheses to evaluate this. The null hypothesis states that there are no real
underlying trends or patterns in the experiment settings (31). The alternative hypothesis in the table
is the hypothesis in favour of which the null hypothesis is rejected (31). The formulation of the
hypothesis is done on background of the problem definition formulated in Chapter 1. Some of the
hypotheses formulated require objective measure, a value dependent only from the measured
object. Hypothesis 6 requires subjective measure, which depends on human judgement.

Id Hypothesis

HO1 The functionality of the the two versions will be implemented with approximately the
same number of code lines

HA1.1 The JACK Teams version will implement the same functionality as JACK Agents version
with fewer lines of code.

HA1.2 The JACK Teams version will implement the same functionality as JACK Agents version
with more lines of code.

HO2 The number of entities will be the same for the two oil production system versions.

HA2.1 The JACK Teams version will have more entities than JACK Agents version.

HA2.2 The JACK Teams version will have fewer entities than JACK Agents version.

HO3 Both versions will use the same number of functions to complete the designed oil
production system given in Chapter 6.

HA3.1 The JACK Teams version will complete the designed oil production system (see
Chapter 6) with fewer functions than JACK Agents version.

HA3.2 The JACK Teams version will complete the designed oil production system (see
Chapter 6) with a larger number of functions than JACK Agents version.

HO4 Both versions will have the same number of couplings between the components in the
system.

HA4.1 The JACK Teams version will have fewer couplings between the components than JACK
Agents version.

HA4.2 The JACK Teams version will have more couplings between the components than JACK
Agents version.

HO5 JACK Agents version and The JACK Teams version have the same number of external
operations changing their internal state.

HAS5.1 The JACK Teams version has a fewer external operations changing the internal state
than JACK Agents version.

HA5.2 The JACK Teams version has larger amount of external operations changing the
interna state than JACK Agents version.

HO6 Use of JACK Teams will not provide a higher abstraction level for modeling and
implementation of teamwork in an oil production system, compared to JACK Agents.

HA6.1 Use of JACK Teams will provide a higher abstraction level for modeling and

implementation of teamwork in an oil production system, compared to JACK Agents.
Table 2: Formulated hypotheses

Variable selection and experiment design

Variables are divided into independent- and dependent variables. Independent variables are
variables that we can control and change in the experiment. The dependent variables are variables
that can be measured to see the effect of the treatments (one particular value of a factor).

This experiment consists of one factor, which is the oil production system. Further, two treatments
are compared to eachother. The treatments are two versions of the oil production system, the JACK

28

CHAPTER 4. APPROACH

Agents version and the JACK Teams version. The dependent variable is the software engineering
regarding teamwork between the physical components represented in the oil production system.
The dependent variable from the two different versions will be compared in order to choose the
appropriate hypotheses from Table 2.

Validity evaluation

The validity threats should be examined in the early planning phase in order to address them in a
satisfying manner. Adequate validity is that the results should be valid for the population of interest.
First, the results should be valid for the population from which the sample is drawn. That is the
specific oil production system design in this report (see Chapter 6). Secondly, the results may be in
interest to generalize about in order to be valid for the whole population. The population in this
experiment is defined to be oil production system in general.

This experiment will use a scheme from Cook & Campell (28) with classification of four threats. The
classification scheme consists of the categories conclusion-, internal-, construct- and external vailidity
(31). Figure 3 shows how the different categories relate to the different parts of the experiment
process.

Experiment objective

Theory / \
4
— =

Cause-effect

construct
3 3
S L N SN e e —_——_———>
Observation Treatment-outcome
construct
=
112

Experiment Operation

Figure 3: Experiment principles (31)

The figure is divided into a Theory area and an Observation area. The observations made in the
experiment shall conclude the theory in the hypothesis. The different categories of validity threats
are described as follows (31):

1. Conclusion validity: Concerned with the relationship between the treatment and the
outcome. There shall be a statistical relationship with a given significance.

2. Internal validity: Concerned with observed relationship between the treatment and the
outcome. The treatment shall cause the outcome, and not by some factor that is under no
control or by a factor that has not been measured.

3. Construct validity: Concerned with the relationship between the theory and observation. If
the relationship is causal, the treatment reflects the construct of cause and the outcome
reflects the effect construct.

4. External validity: Concerned with generalization. If there is a causal relationship between the
construct of the cause and the effect, external validity is if the results can be generalized
outside the study achieving the same results.

29

CHAPTER 4. APPROACH

Threats identified in this experiment are divided into the different categories mentioned above. The
threats to category 1, conclusion validity are:

e Low statistical power: The power of the statistical test is the ability of the test to reveal a true
pattern in the data. The two systems implemented in this experiment does not contain the
size of a physical components involved in realistic production system. When constructing the
JACK Teams version, not all agent-teams are replaced with teams-instances from JACK
Teams, but they are used in a combination in the JACK Teams version. We accept this risk
and take it into consideration that some of the conclusions made can be erroneous.

® Fishing: The experiment performed is a quasi-experiment. This means that the evaluated
objects are not selected randomly. When constructing the two versions, no specific outcome
should be in mind when constructing and implementing the two versions to get a desired
result.

e Reliability of measures: When measuring a phenomen twice, the outcome shall be the same.
Human judgement can affect the reliability, since they do things different from time to time.
This threat is addressed by using metrics that involve a small degree of human judgement.

The threats to category 2, internal validity are:

e Maturation: The effect of that the subjects react differently as time passes. The two versions
of the program will be developed at different times in the work of this project. The threat is
addressed by developing the JACK Agents version first, and then converting it into a JACK
Teams version. The JACK Team version then reuses the structure and algorithms that
functions in both modelling paradigms.

e Selection: The effect of natural variation in human performance. There is only one person
developing both versions. Coding style and motivation at the development time, and
timepressure will play a role according to this threat. This risk is accepted, and addressed by
reusing as much as possible between the two versions to ensure a coding style as similar as
possible.

The threats to category 3, construct validity are:

e Inadequate preoperational explication of constructs: This means that the constructs are not
sufficiently defined, before they are translated into measures and treatments. The problem
definition formulated in Chapter 1 has to be clear on what to expect of results, and the
theory on teamwork and the system design should address teamwork with its properties laid
out in Section 2.5 as a foundation.

e Mono-operation bias: If the experiment under-represent the construct and may not give the
full picture of the theory. Only one program of each version is made. The programs are also
constructed from a specific design that does not represent the complexity a real oil
production system has to handle. We accept this threat and and take into consideration
when generalizing the result and findings.

30

CHAPTER 4. APPROACH

e Confounding constructs and levels of constructs: The effect of the presence of the construct is
confounded with the effect of the level of the construct. No experience has been made using
JACK Agents or JACK Teams before the work of this project was carried out. The use of some
abilities the frameworks offer is therefore maybe not used to its full potential, and a higher
level of experience would maybe change the coding to be more suited to fit the two different
versions. This threat is accepted and is addressed in some degree by using the one version as
basis for the development of the other versions. The things that are changed, is the things
that can be done in a way that is characterized and mainconstructs in the other framework.

The threats to category 4, external validity are:

e Interaction of selection and treatment: Generalizing the results, the author may not be
representative for the representative population, namely the software developers. The
threat is accepted, and the lack of experiences the author has as a student is recognized.

e Interaction of setting and treatment: The effect of not having the experimental setting of
industrial practice. This threat is address by using development tools and methods that are
up to date.

4.1.5 Experiment construction

The experiment construction connects hypotheses and metrics with the benefits that will show
applicability and suitability of JACK Agents and JACK Teams doing teamwork in an oil production
system.

Benefits

The benefits recognized and examined are the same benefits mentioned for agent technology (32),
with emphasizing reduced development effort and high abstraction level when implementing
teamwork in an oil production system. Reduced development effort will reduce amount of code,
number of entities and functions. The benefits are pointed out as follows:

e Reduced development effort
e Reduced coupling

e Encapsulation of functionality
e High abstraction level

Metrics

The experiment is a quantitative research method. The relationship and comparison between the
two versions of the oil production system shall be measured and analysed according to the metrics
given in this subsection. The following metrics will be used in the evaluation:

e M1 Lines of Code (LOC): The number of written code-lines. Code-lines will be counted as the
number of semicolons in the source-code.

e M2 Number of Entities (NOE): In the JACK Agent solution this will be the events, plans,
capabilities, agents, views, beliefset, and Java classes. The addition constructs in JACK Teams
are teamplans, roles, and teams.

31

CHAPTER 4. APPROACH

e M3 Number of Functions (NOF): The number of JACK-methods, Java-metods, and
plans/teamplans used by the agents and teams and their plans/teamplans.

e M4 Number of Couplings between Entities (NOCBE): Couplings in the JACK Agents version will
in addition to in- and out going method-calls, be events sent and received by the agents.
Couplings in the JACK Teams version will in addition to in- and out going method-calls, be
events sent and received by the teams. Method calls from plans to its belonging agent/team
and posted events within the agent/team are not counted. Instanciating Java objects and and
JACK objects are not counted either.

e M5 Number of External Activations (NOEA): External activations in the JACK Agents version
will be external method-calls and received events. External activations in the JACK Teams
version will be external method-calls and received events.

The relationship between benefits, hypotheses and metrics

There exists a relationship between the four benefits mentioned above, the hypotheses (see
Subsection 4.1.4) and metrics (see above). Metrics are used to find the correct hyphothesis to
confirm, which will represent different benefits according to which hypothesis that is confirmed. The
relationships between the three elements are shown in Table 3. This table will be used to find the
wanted results and conclude with findings according to it.

Benefit Hypothesis Metric

Development Effort HO1/HA1.1/HA1.2 M1(LOC)
HO2/HA2.1/HA2.2 M2(NOE)
HO3/HA3.1/HA3.2 M3(NOF)

Reduced coupling HO4/HA4.1/HA4.2 M4(NOCBE)

Encapsulation of functionality = HO5/HA5.1/HA5.2 M5(NOEA)

High abstraction level HO6/HA6.1 Qualitative Result

Table 3: Benefits, hypotheses, and metrics

4.2 Qualitative approach

The qualitative approach compares the JACK Agents and JACK Teams solutions developed in the work
of the experiment described in Section 4.1. Advantages and disadvantages between the two
modelling paradigms are identified and explained. This will give more depth in the comparison of the
two modelling paradigms, in addition to the quantitative approach.

Interpretation of the qualitative data is more closely tied to the researcher (their identity,
backgournds, assumptions and beliefs) than in quanitative data analysis. This means that their
conclusion must be much more tentative than those from quantitative data analysis (33).

The qualitative analysis compares advantages and disadvantages JACK Agents and JACK Teams have
compared to eachother, looking at the following aspects:

e Autonomy: Lucas & Shepherdson (14) define autonomy as “the need for decisions to be made
at any time, with some appreciation for the circumstance of the current situation (often
referred to as situation awareness).” Delegation of autonomy can be divided into the two
cateogories machine to machine delegation, and human to machine delegation. The
delegation looks at how the machine and/or human is involved in teamprocesses. The aspect
covers challenges related to distribution of reasoning needed and storage.

32

CHAPTER 4. APPROACH

Scalability: Scalability indicates the system’s ability to either handle growing amounts of
work in a graceful manner, or to be readily enlarged (34). This quality attribute looks at
development effort when expanding the system with more instances of the different agent-
or teams constructs.

33

34

CHAPTER 4. APPROACH

Chapter 5

Defining a reference problem

This chapter describes a case that is considered to benefit from using teamwork. The problem
specified in accordance to the application domain decision-support systems used in oil production.
The reference problem described will create the foundation for the system design in Chapter 6. The
reference problem put restrictions on how teamwork can be included and evaluated in the
experiment.

5.1 OQil production system

Hydrocarbon production and processing are processes in production field have to be dealt with on
daily basis. The production is concerned with extracting hydrocarbons from the production wells, and
processing is associated with separating hydrocarbons from water and sand. The processing also
includes the uniting of the production from different wells, in order to maximize market value (3).
This report will refer to the production and processing system as oil production system, since oil will
be assumed to be the wanted substance. Gas is defined as waste in order to reduce the number of
parameters taken into consideration in the system design of the oil production system constructed in
this project.

The oil production system is about optimizing the oil production. The human operator plans and
monitors the asset with respect to meet the production goals for the asset, and implement the
production plan and monitor the process state and the general performance on a continuous basis.
Production targets are the amount of oil and the amount of waste. Different oil quality is not taken
into consideration in the work documented in this report. Waste is defined to be water, sand, and
gas.

The system designed is a distributed multiagent system which can perform analysis of sensor data
and take actions based on its findings in order to optimise the production of a simulated oil field.
Agent-instances and team-instances should be capable of adjusting the production in a globally
optimized manner. Global optimizion is performed when the oil field at all times produces with the
wells that have the best oil/waste-ratio. This type of optimization is an optimal production, which is
defined in Section 5.4 to be maximizing of the oil production in the long term, taking the extraction
of oil in reservoir into consideration.

5.2 Reference model

To represent an oil field, Figure 4 shows the physical infrastructure with two geographical areas
(equivalent to reservoir) which each contain two subsea templates. Subsea templates (four in total)
contain three wells each (twelve in total).

35

CHAPTER 5. DEFINING A REFERENCE PROBLEM

Cortral room Processing plant

I]i: i L}_"._FL“

Subsea Subsea

Subzea Template 2 ?;‘:ff;e 5 Template 4
Template 1 i B

s

Well 10,12
Wiell 7.9

wiell 1.3

Geographical Ares 1 Geographical Area 2

Figure 4: Physical infrastructure of an oilfield

The field has no injection-wells, only production wells. A decrease in oil production due to loss of
pressure can therefore not be handled by injection to increase the pressure. To reach the wanted
production, causes the production of the different wells to compensate lost production between
each other, or the total production target has to be changed according to the current situation.

The field is “process-limited”. That is, the production facilities are a potential bottleneck. The wells
are also potential bottleneck, called “well-limited”. The one of the two limitations preventing the
field from reaching its production target varies from time to time. Sometimes it can be the capacity
of the processing facilities, and other times it can be that the wells do not deliever enough according
to the field production target. The reference problem defined in this chapter assumes “well”-
limitation to be the reason if a production target is not achieved.

5.3 Assumptions
This section contains different assumption about the environment and concerns of the system
design, that influence how the architecture is built. The assumptions are the following (3):

e A well cannot influence the reservoir pressure and reservoir properties nearby another well.
Their influence on each other is assumed to be in little extent, and is therefore neglected
within a short period of time. This simplifies the calculation of each well’s production, since
all well’s production forecast calculation is not depending on each other for this period. After
this period, the new reservoir pressure and reservoir properties are recalculated and
updated.

e Sensor data is cleansed and filtered causing access to valid data.
e The processing plant has no oil capacity limit
e The processing plant has a known fixed gas-, sand- and water capacity.

36

CHAPTER 5. DEFINING A REFERENCE PROBLEM

e The manageable sand limit in the well is known.
e The agent system has access to adjust the chokes.

e The reservoir pressures and properties nearby the wells are known, in order to have the
ability to forecast well production.

e Qil is the preferred substance over gas, water, and sand.

e Wells connected to Subsea templates have to have the same wellhead pressure in order to
avoid affecting eachother’s production.

5.4 Optimal and maximal production

The terms “optimize” and “maximize” are often used in an inseparable manner. Regarding oil
production, a distinction must be made between these terms since they are not synonymous (4).
Optimization will have as goal to maximize the oil production, the time horizon is different.
Optimization is about maximizing the oil production in the long term, taking the extraction of oil in
reservoir into consideration. To perform this optimization, long term plans and decision should align,
and not maximizing the oil production at the current moment. This alignment can be performed
faster than before because of the increased real-time data available, enabling adjustments and
forecasts in a more frequently manner.

5.5 Previous experiences
This section describes previous experiences made when developing oil productions systems with
agents.

5.5.1 Oil production systems

@lmheim, Landre & Quale (2) suggested concepts for inclusion in the next generation production
support systems. The system is based on use of delegated and variable autonomy. The suggested
architecture is shown in Figure 5. It is divided into three distinct layers illustrating the business
concerns at each layer.

Reservoir Management

Field Operation

Well Monitoring & Control

Figure 5: Architectual layers

The layers are described as follows:

e Reservoir Management: Responsible for the long term objectives for each reservoir and
defines the goals for the lower levels to implement. Uses reservoir models and supports
what-if analysis of different scenarios. Determines how each reservoir should be drained for
the purpose of maximizing long term value in each reservoir and between reservoirs in a
geographical area.

37

CHAPTER 5. DEFINING A REFERENCE PROBLEM

e Field Operation: Responsible for the day-to-day operation of a single field. Uses field flowline
models and simulations to find the “best possible” configuration. Receives production goals
for each of its reservoirs from reservoir management, and develops plans for how to manage
the wells based on actual well state and designated production goals.

e Well Monitoring & Control: Responsible for monitoring and control of the individual wells.
Captures the uniqueness found in each individual well. Compared with more traditional use
of layers in software engineering, this approach differs as the components located in each
layer will negotiate contracts as part of the delegated autonomy.

Interpreting the algorithms presented in this report, reaching a common goal for a group of agents
(teamwork) is here realized through the “commander-agent” of the group knowing what it would like
the team-member’s contribution to be. The next step is for the “commander-agent” ask all the team-
members to make that contribution as best as possible and negotiates to make it work as best as
possible. If there exists several wells, negotiation with each of them would cause a large amount of
messages going back and forth to settle a production target for the group well, especially if the
contribution should be globally- and locally optimized at the same time. If one well cannot meet the
planned production target, this can mean renegotiation for the wells who already settle their
production target in order to compensate to reach the common production target for the whole
group. The system proposed in this report will hav all wells telling the field about their possible
contributions and the field (commander of the group of wells) can therefore decide which well shall
make what contributions. The focus will be how to reach a common goal (common production
target) for the whole group of wells, which implies use of teamwork.

The project preparing for this master thesis (3) designed a system structure that shows a hierarchy
with the Human operators and Operator Assistant (OA) on the top, with the Optimizing Field Oil
Production System (OFOPS) team underneath (Plant Monitor is a sub-team of OFOPS), who further
delegates the work through the Subsea Template Collection (STC) (same as a geographical area
mentioned in the system goals), Subsea Template (ST), and finally at the bottom level, the Well (W).
The hierarchy is bound together with contracts between the different levels in the hierarchy. In order
for the operator to be able to take actions, he/she has to follow the authority lines, so contracts are
not broken between teams in an uncontrolled manner.

38

CHAPTER 5. DEFINING A REFERENCE PROBLEM

i Abbreviations ™

AS: Alarm System
LS: Learning System
OA: Operator Assistant

m Human operators

QOFQPS: Optimizing Field Oil Producution System

PM: Plant Monitor

STC: Subsea Template Collection

ST: Subsea Template

W: Well /

Notfication w/
directions

—-——

Include ail msg
—
types widirections

Figure 6: System structure (3)

All teams will have the ability to deal with decisions within their scope of delegated authority. All
teams consist of a number of sub-teams which have agreed to work together toward a common goal.
The team tries to reach the team goal rather than the local goals of the sub-teams. To support the
overall team goal, the sub-teams need to collaborate with each other. The coordination is achieved
trough communication, showed in the system structure by arrows between the different teams.

The physical infrastructure in this system structure will be used as a basis for this report. The
teamstructure will also be explored and examined. The human operator shall be more directly
involved in the different team’s processeses, in a new system. This will for instance possibly result in
a relationship of trust between the human operator and the machine system.

39

40

CHAPTER 5. DEFINING A REFERENCE PROBLEM

Chapter 6

System design

This chapter explains the basic software layers that have to exist in a system that address the
reference problem from Chapter 5. The different control processes and “steps of action”-scenarios
this type of system is going to handle are described in the following subsections. These elements will
generate a core system design that will be the foundation when implementing the JACK Agent
version and the JACK Teams version.

6.1 Layers

The suggested architecture is divided into five distinct layers illustrating the encapsulation of
functionalities. The layers are shown in Figure 7 in two versions. The ideal architecture has one layer
that is placed vertical and is able to interact with all horizontal layers directly. The simplified
architecture used in this report has only a user interface towards the “Field Planning & Monitoring”-
layer, in order to be able to realize the system within the workhours available in this project.

Operator Assistant

8 A Field Planning & Monitoring | Field Planning & Monitoring
s | ‘
P S
e i Geographical Area Planning & Monitoring Geographical Area Planning & Monitoring
r]
s
a
t t Subsea Template Planning & Monitoring | Subsea Template Planning & Monitoring
o 2 o
n
! i Well Planning & Monitoring Well Planning & Monitoring

Figure 7: Architectual layers — Ideal architecture & Simplified architecture

e Operator Assistant: This layer is involved in the selection of production-scenarios at the
different layers to be able building the field production-scenarios. It is involved in selecting
the field production-scenario to plan the production according to, and has the ability to
monitor production hour by hour.

e Field Planning & Monitoring: This layer is responsible for the long term production target,
and defines the goals for the geographical area levels to implement. It determines how each
geographical area should be drained for the purpose of maximizing long term value of the oil
field.

e Geographical Area Planning & Monitoring: This layer selects the different the production
levels for the subsea template connected to each physical geographical area, after consulting
with the “Subsea Template Planning & Monitoring”-layer. It coordinates the production
levels of the subsea template connected to the geographical area, and captures the
information about each individual geographical area.

41

CHAPTER 6. SYSTEM DESIGN

e Subsea Template Planning & Monitoring: This layer selects the different the production
levels for the wells connected to each physical subsea template, after consulting with the
“Well Planning & Monitoring”-layer. It coordinates the production levels of the well
connected to the subsea templates, and captures the information about each individual
subsea template.

e Well Planning & Monitoring: This layer contains prediction models and productiondata for
each individual well, used in the planning phase and during the production phase. It is
responsible for monitoring and control of the individual wells, and captures the information
about each individual well.

6.2 Processes

The production system constructed run three processes: Proactive planning, Reactive adjustment,
Monitoring & Control. The processes run in a serialized manner, one at a time. The different
processes are shown is Figure 8.

Target Generate
scenarios
o

A
" Proactive Set well-settings
Gap o planning
v

Production check &~

> ®
Production check Performed
) Monitoring <
/ & Gap
: Control e
e g Update scenarios

check success v
Production check failed

\d
Find corrections
[Reactive

adjustment

»
Corrections performed

Figure 8: System processes

Proactive planning depends on Monitoring & Control to see if the system has reached the production
targets, or if it shall switch from Proactive planning to the Reactive adjustment process.

The Reactive adjustment process is dependent on Monitoring & Control to see if the system has
reached the production targets. Figure 8 shows the system going from Reactive planning, and back to
Proactive planning. This is the ideal interaction between the processes. To simplify the system being
built, a transition from Proactive planning to Reactive planning is the only one being allowed, and not
the opposite transition. The following processes are described as follows:

® Proactive planning: The objective of the Planning process is to establish the best possible
well choke settings for a period of time and to reach production targets specified by the
human operator. This configuration will be challenged when it put into operation due to the
dynamics in the real world. Equipment will fail and situations emerge and the Reactive
adjustment process has to be performed in such case. The generation of possible production

42

CHAPTER 6. SYSTEM DESIGN

targets within a specified period of time is built bottom-up, because each well is telling the
subsea template how much it can contribute at different production levels. The subsea
template is combining the best combinations (highest oil/waste ratio) of well-contributions,
and generates subsea template contribution plans. This repeated on geographical area-level,
and at last at the field-level. The field-level uses the human operator-level to communicate
with the human being that chooses the total production target for the whole field for the
period of time.

e Reactive adjustment: The objective of reactive adjustment is to establish a best possible
configuration for the next hour constrained by a production target and the current situation.
Because the production system wants to ensure that the production target is reached,
maximizing the oil production at the current moment is performed. This may increase the
amount of waste produced in each and every moment while producing. Since a maximizing is
performed every moment, the production target will possibly be produced faster, but with a
larger load at the equipment during those hours. Well choke settings are tuned after
environmental changes have occured, instead of changing the well settings in advance.
Depending on how fast a change in the environment is detected in the environment, this
could cause some extra time to adjust accordingly. Reactive adjustment is top-down, where
the field-level asks for the best oil/wast-ratio subsea templates, then adjusting and selecting
which subsea template to produce at what levels. This is done at subsea template-level
because all wells connected to a subsea template have to have the same well-head pressure
to avoid producing into one another. This causes the all the wells connected to it to run with
the same well choke settings.

e Monitoring & Control: The production is being monitored and controlled after each time
step in both the Proactive planning process and the Reactive adjustment process. The
Monitoring & Control process decides the system state (proactive or reactive) for the next
hour. Note that the system design is simplified and can only change from the proactive state
to the reactive state, and not the opposite.

6.3 System operation
This section describes how the system implements global- and local optimization and steps of
action”-scenarios the system shall be able to do.

6.3.1 Global optimization

The system processes presented in Figure 8 will be described using “steps of action”-scenarios,
where one “steps of action”-scenario describes normal production (equal to the Proactive planning
process) and the second “steps of action”-scenario describes how to deal with unexpected change
(equal to the Reactive adjustments process).

The system emphasizes the use of global optimization, while still having every component producing
within its limits and restrictions. Global optimization will cause production levels with the highest
oil/waste ratio in total and with the lowest total amount of waste as possible, which is important for
the production facilities in order to avoid using unnecessary resources and capacities.

The production system constructed in this report asks every well component in the lowest level in
the physical infrastructure hierarcy shown in reference problem presented in Chapter 5. They report

43

CHAPTER 6. SYSTEM DESIGN

back to the subsea template they are connected to, telling what amounts of oil and waste they are
able to produce (within a zone of local optimization). This process is repeated at the different levels
until reaching the field-level in the hierarchy. A global optimization for the whole field will take place
at this moment. At every level in the hierarchy a few production-scenarios are removed because of
local optimization. Within this zone, the globally optimized production-scenario is chosen. Every
possible combination of well settings is generated because of the process of building a globally
optimized set of well production bottom-up. The bottom-up approach performed in this project will
create a globally optimized set of well settings, while a top-bottom approach would have created
approximately globally optimized and make the lower levels do local optimizations.

All processes in the system are initiated at the top level. Figure 9 shows how the initiation of actions
starts on the top level and propagates downwards, while returning to the top level after reaching the
bottom level. Reaching the top level, a globally optimized decision is ready to be made.

A
1 \
Messages)
Y
zl

LA
Messages Messages 7
r s A

e
% GeographicalArea
3l —
Messages Messages 6

K R
4 P
Messages ;\ﬂessages Messages TS
x v \ ®4

e e
% Well

Figure 9: Path of information flow

6.3.2 “Steps of action”-scenarios

The “steps of action”-scenarios described in this section represent the work that the implemented
system shall do during runtime are. The system can be represented by two main “steps of action”-
scenarios. The pseudo-algoritms realizing these “steps of action”-scenarios can be found in Appendix
A. The two “steps of action”-scenarios are described as follows:

e “Steps of action”-scenario one - Planned and predicted production: The “steps of action”-
scenario involves the Proactive planning- and the Monitoring & Control control processes.
The scenario starts when the length of the period of time is selected. Knowing the length on
the period of time, different production-scenarios with different production targets is
generated. The selected production target for the period of time is the production target
selected from the predicted field production-scenarios. Selecting a predicted production-
scenario is performed by a human operator defining the period of time he/she wants to
produce within. The objective is to achieve the amount of oil and waste (defined as gas,

44

CHAPTER 6. SYSTEM DESIGN

water, and sand in this project) specified in the production-scenerio, which is done by
following the planned well choke settings hour by hour.

e “Steps of action”-scenario two - Unpredicted changes according to planned production: The
“steps of action”scenario involves the Reactive adjustment- and the Monitoring & Control
control processes. The scenario starts when the predicted field production-scenario does not
fit the actual production. The objective now is to deal with the unpredictability of the
environment, while optimizing globally at the next timestep. The prime goal is to reach the
production target within acceptable production levels, but may cause intensive production
(same amount of production, but in less time) that could cause a greater extent of corrosion
on equipment, and increase the risk of technical failures. The process is repeated hour by by
hour to the end of the period of time selected, or until the production targets have been
reached.

6.4 Simulated environment

The graphical user interface (GUI) used in this project is shown in Figur 10. It is used to generate
proactive plans with different possible production targets, during a specified period of time. Another
feature is to look at the actual well choke settings that the agent system will use when following a
specific plan. The agent system will follow the proactive production plan set for the production-
scenario when the human operator selects a production-scenario. A change to reactive state will be
made if the actual production does not follow this plan. This is not shown in the GUI, but is
performed in the automatically in machine system.

Field scenarios - Et scenario gyldig for hele tidsperioden |’._||’E|r5__<|
enario ld Qil Gas Water | Sand |[Maximum Qildaste ratiol Minimum QildWaste ratio| Awverage Oilvyaste ratio
1 216 312 168 176 0,444 0,264 0,329
a == i = ———— 3| 0,331
B choice of production target |_'. _||_'I:I |r'5_(| i) 0,326
— 59 0,329
| Generate field-scenarios Choose scenario Find well settings A4 0,33
. . _ 26 0,325
Hours validity: Scenario chosen: Exit 63 0,324
; 26 0,325
4 174 0,32
10 [EEl| = Field scenario s : = 0,329
I 150 Well id Hour 1 Hour 2 Hour 3 0,33
12) 1820 oi1_5T1_Areat@... [2 1 0,325
ﬁ 115? BllZ_ST1_Areal@.. |1 2 1 0,328
ell3_5T1
15 12810 etz Ed Prod on logging O
]S]gé °::2_5T2 el Hour 1 Hour 2 Hour 3 |
T8 T DHB_STE il 18 a0 72 | |
1_5T1}Gas 21 42 a4 | =
ell2_ST1 fwater 21 42 48 | |
2ll3_ST1)Sand 21 42 36 | |
elll_ST2 e T
ell2_ST2_AreaZi@.. |2 2 1
ell3_5T2_Area2@.. |2 2 1

Figur 10: Graphical User Interface

The environmental variables are predicted oil-, gas-, water-, and sand production/hour in each well.
The numbers are contained in a textdocument that draw an interface towards calculations of
proactive production-plans. Production data to monitor is also given by a textdocument, to represent
the sensor values hour by hour. The values are not selected randomly, because this it is irrelevant to
the experiment conducted.

45

CHAPTER 6. SYSTEM DESIGN

6.5 Applied teamwork and implications

The system designed in this chapter has teamwork at field-, geographical area-, and subsea template
level. The common teamgoals for the teams was made out from a combination of what amount of
production the teammembers can offer during the period of time or the next hour. The field team is
the only team having the same teamgoal for the whole period of time selected and the possibility to
change the system state. The other teams have a common teamgoal for the whole period of time if
in proactive state, and a common teamgoal substituted every hour if the system is in a reactive state.

Subsection 2.1 indicates three challenges regarding multi-agent systems: there exists no global
system control, data is decentralized, and that the computation is asynchronous. Teamwork was
pointed out a possible solution addressed to these challenges. The system designed contains global
system control due to the hierarchy built. The data being desentralized challenge is not an issue here
since the data that is desentralized on different hierarchical levels belongs to different abstraction
levels. Asynchronous computation creates computation at different abstraction levels. Different
abstraction levels will create a good decomposition and less calculations necessary, in order to create
a global optimal solution.

Many approaches exist in the work of coordination of agent systems. Subsection 2.5.2 described
several coordination techniques that can be used in a multi-agent system. Contracting is the
coordination technique used to realize the teamwork in the designed oil production system of this
report is named. First the team announces a contract, receives bids from its teammembers,
evaluates the bids, and finally awards the different contracts to the subteams. Analogous the team
announces a contract of produciton for a specified period of time, receives production-scenarios
from its teammembers, evaluates the production-scenarios, and finally awards the different
contracts (id of the production-scenario to follow) to the subteams. Awarding contracts (id of the
production-scenario to follow) happens after after the finding of the best composition of all
production-scenarios received.

Subsection 2.5.3 went through team variables. The different team variables are addressed in this
design as follows:

e Team size: Team size is chosen on background of the reference problem from Chapter 5. One
field team contains two geographical areas subteams. A geographical Area team contains
two subsea template subteams (totally four in the whole system structure). A subsea
template team contains three well subteams (totally twelve in the whole system structure).

e Team structure: The teamstructure is static during runtime due to the static relationship the
physical components has to eachother in the reference problem defined. Solving a teamtask,
all the subteams will be given the same type of sub-tasks since they behave in the exact same
way on the different hierarchical levels. Since the subteams represent different physical
components, the tasks will be solved according to that unique instance of the physical
component.

e Differentiation and Specialization: The teams are homogenous. This causes teammembers to
take over and fulfil a role for a teammember that is temporary out of function, if all beliefs
needed are available. This was however not included in the system design.

46

6.6

CHAPTER 6. SYSTEM DESIGN

Failure handling: The system is designed with a fixed step of actions, with strict control
exercised from the team on the highest hierarchical level (field team). If a well cannot
produce according to its contract it will have consequences for the whole system, because
the system tries to achieve a globally optimal production solution. The field team will initiate
a check everyhour to examine all contracts in the system, to see if they still are sustained. If a
contract is violated, a violation report will propagate to the field team that will change the
system state from proactive to reactive and initiate an adjustment.

Authority delegation: The team on the highest hierarchical level (field team) initate all
control processes in the system. This creates a global control, which delegate subteams to
filtrated and monitor information on lower abstraction levels. The human operator has
delegated to the machine system everything except choosing the length on the period of
time to produce, the selection of field production-scenario, and production monitoring.

Towards a human-centric system

Human operator is able to influence the machine system in the planning phase of the oil production,

as described in Section 6.5. Interference from the human operator is not possible from the human

operator when actual production has started. Some of the human-centric principles from Subsection

2.4.3 have been used as background for this involvement of human operator. This is not the

mainfocus of the report and is not prioritized. The main focus is to compare JACK Agents and JACK

Teams and to evaluate their applicability and suitability in teamwork construction.

47

48

CHAPTER 6. SYSTEM DESIGN

Chapter 7

JACK Agents solution

This chapter runs through the design and implementation used to construct the JACK Agent version
of the program to be developt. The design shows the system structure of all the agents that will be
instanciated, and how the different kinds of agents realize teamwork. How the teamwork is done in
the actual implementation, is looked into by studying the primitives used by agents and plans, and
how they function.

7.1 System structure

The system structure of agent-instances used in the particular program developt is shown in Figure
11. The structure consists of 1 operator assistant, 1 field, 2 geographical areas, 4 subsea templates,
and 12 wells. The numbers of agents are the same as physical components given in the reference
problem described in Chapter 5. The interaction follows the same path as in a military structure. All
commandoes and enquiries have to follow a hierarchical path. The different levels in the hierarchy
represent different levels of abstraction levels. This will eventually lead to global optimization and
put the operator assistant in control and represent information on a suitable level of abstraction.

% OperatorAssistant

Messages

% Field

Mes M es
ik
% Geographicalarea % Geographicalarea
Mes 0 es /\
% SubseaTemplate % SubseaTemplate

Messa M esfw Messa M QS%W

% weil % weil % weil % weil % weil % weil

Figure 11: System structure - JACK Agents solution

The conceptual/intended teamstructure in the JACK Agent solution is as following starting with the
smallest teams:

e The Subsea Template team has Wells as teammembers.

e The Geographical Area team has Subsea Templates as teammembers.

49

CHAPTER 7. JACK AGENTS SOLUTION

e The Field team has Geographical Areas as teammembers.
e The operator assistant is involved in the teamprocesses regarding the Field team.

7.2 Teamwork

Two “steps of action”-scenarios were defined in Subsection 6.3.2: “Planned and predicted
production” and “Unpredicted changes according to planned production”. These scenarios represent
the work that the system does. The same “steps of action”-scenarios are implemented in the JACK
Teams solution, and create a foundation that makes the two versions suitable for comparison. The
parts that will be different in the two versions are the subsea template- and well levels, and is
therefore the main-focus in this section.

The two “steps of action”-scenario are divided into several interaction sequences to easier see what
happens during the scenario. The “Generate production-scenarios”-scenario is part of the “Planned
and predicted production”-scenario, and is representative what concerns teamwork. This section will
therefore describe it in details. For more information about the other interaction sequences, see
Appendix B.

The “Generate production-scenarios”-scenario will show how teamwork was built in JACK Agents. The
scenario begins when the proactive planning process receives a period of time, for which different
production-scenarios with different production targets is fulfilled. Figure 12 shows all agents, plans,
and events involved in this process.

OperatorAssistant Field GeographicalArea SubseaTemplate Well

i i i | i
StartGeneratingScenarios E E i 3 1

GenerateProductionScenarios

GenerateScenarios
-

FindFiei(ilScenarios

! ! GenerateScenarios ! !
i ™ I i
: : FindGeog raph."o:alA reaScenarios

GenerateScenarios
-

-

FindSubseaTenmiplateScenarios

|
i GenerateScenarios
;

FindFieldScenarios

i ScenariosGenerated
[Pttt istsbhsitsbbaidbinsh

h
i ScenariosGenerated |

ScenariosGenerated

ScenariosGenerated

-
Tl

i
ChooseScenarioPlan

Figure 12: Generate production-scenarios

The human operator has to specify a valid period of time through the operator assistant agent. The
number of hours is propagated downwards the system. When the event containing the number of
hours reaches the hierarchical bottom-level well, well production-scenarios are generated.

50

CHAPTER 7. JACK AGENTS SOLUTION

Propagating to the the subsea template team (with well as teammember), well production-scenarios
are combined into subsea template production-scenarios. The same process is repeated for the
geographical area team, with subsea template production-scenarios. The final repetition of this
process generates field production-scenarios, being ready to be choosed among with different
production targets.

The implementation of the subsea template teamwork is shown in Figure 13. To reach the well
teammembers, a list containing the addresses to all connected well teammembers are accessed. This
list was established in the main Java-method.

Communication is implemented by using the @send and @reply statements. Cooperation is getting
all teammembers to create the best subsea template production-scenarios. They have to use the
same well choke settings at all times. Coordination is that all well teammembers asked each time the
subsea template is asked for subsea template production-scenarios. The well teammembers is asked
in a serial fashion, but this could have been done in parallel as well. The common team goal in this
proactive state is the different subsea template production-scenarios’ production goals hour by hour.
One of these subsea template goals has to be selected by the geographical area.

(...)

for (int i=0; i<connectedWells.size(); i++) {
GenerateScenarios g = ev2.generateWellScenarios (hoursvValidity) ;
@send((String)connectedWells.get (i), q);
@waitFor (g.replied());
ScenariosGenerated wev = (ScenariosGenerated) g.getReply();
Scenarios wellScenarios = wev.scenarios;
generatedWellScenarios.add (wellScenarios);

}//end for-loop

subseaTemplateScenarios = generateSubseaTemplateScenarios (generatedWellScenarios);

self.setSubseaTemplateScenariosList (subseaTemplateScenarios);

@reply (ev, evl.scenariosGenerated(subseaTemplateScenarios));

}//end body ()

ﬂblic plan FindSubseaTemplateScenarios extends Plan { \
L)

(...)
Q/end plan j

Figure 13: Subsea Template - FindSubseaTemplateScenarios-plan

/public plan FindWellScenarios extends Plan ({

oning method

wellScenarios = findWellScenarios();
@Qreply(ev, evl.scenariosGenerated(wellScenarios));
}//end body ()

(...)

K}/}énd plan /

/

Figure 14: Well - FindWellScenarios-plan

51

52

CHAPTER 7. JACK AGENTS SOLUTION

Chapter 8

JACK Teams solution

This chapter runs through the design and implementation used to construct the JACK Teams version
of the program to be developt. This version has changes made in the subsea template and well
compared to the JACK Agents solution in Chapter 7. The design shows the system structure of all the
agents and teams that will be instanciated, and how the different kinds of agent realize teamwork.
How the teamwork is done in the actual implementation, is looked into by studying the primitives
used by agents and plans, and how they work. The structure and elements in this chapter is the same
as the design used in the JACK Agents solution.

8.1 System structure

This section shows the system structure used in the JACK Teams solution. Figur 15 shows the system
structure consisting of 1 operator assistant, 1 field, 2 geographical areas, 4 subsea templates, and 12
wells. The numbers of agents/teams are set according to the reference problem in Chapter 5. The
hierarchy is build the same way as the JACK Agents solution and communication has to follow the
communicationpaths it implies. Each level deals with a different abstraction level, and the top-level
agent handles the initiation of the different sequences of actions described through the “steps of
action”-scenarios in Section 6.3.2. All initiation of action will therefore lead global optimization
dealing with the highest abstraction level of information composite from the abstraction levels lower
in the hierarchy.

% OperatorAssistant

Message s

% Field

Mess es

% GeographicalArea

% GeographicalArea

Mesgages es /\

Uil—? SubseaTemplate] U%? SubseaTemplate l
MW MW
\T_\EJA?sEt;TnE_ \V Welssitariz , \T_\EJA?SEt;TnEt_Z/ __WeFA?sEt%E_ eI , \T_WJA?sEth_s_Z/
NN 4 Y N 4
NS 74 \\ / \\ A \\ \\ / NS 7
NS ,/// \\\\ ,/// NS /// N /// \\\\ ,/// N ,///
NS NV 7 % N4 N
Messgges Medsages Messages Messages Mgs%ggs Megsages

) | e | e |

Figur 15: System structure - JACK Teams solution

53

CHAPTER 8. JACK TEAMS SOLUTION

Some of the teamwork is represented by using agent-instances from JACK Agents to form teams, and
the subsea template and wells are using the team-construct from JACK Teams. The teamstructures in
the JACK Teams version are as follows:

e The Subsea Template team (using the team-construct) has Wells as teammembers (using the
team-construct).

e The Geographical Area team (using the agent-construct) has Subsea Templates as
teammembers (using the team-construct).

e The Field team (using the agent-construct) has Geographical Areas as teammembers (using
the agent-construct).

e The operator assistant (using the agent-construct) is involved in the teamprocesses regarding
the Field team (using the agent-construct).

8.2 Teamwork

Two “steps of action”-scenarios were defined in Subsection 6.3.2: “Planned and predicted
production” and “Unpredicted changes according to planned production”. These scenarios represent
the work that the system does. The same “steps of action”-scenarios are implemented in the JACK
Agents solution, and create a foundation that makes the two versions suitable for comparison. The
parts that will be different in the two versions are the subsea template- and well levels, and is
therefore the main-focus in this section.

The two “steps of action”-scenario are divided into several interaction sequences to easier see what
happens during the scenario. The “Generate production-scenarios”-scenario is part of the “Planned
and predicted production”-scenario, and is representative what concerns teamwork. This section will
therefore describe it in details. For more information about the other interaction sequences, see
Appendix B.

The “Generate production- scenarios”-scenario will show how teamwork was built in JACK Teams,
and will be described in details in this section. The scenario begins when the proactive planning
process receives a period of time, for which different production-scenarios with different production
targets is fulfilled. Figure 16 shows all teams, agents, plans, and events involved in this process.

54

CHAPTER 8. JACK TEAMS SOLUTION

1JACK Teams framework!

‘ OperatorAssistant

|
StartGeneratingScenarios| E

GenerateProductionScenarios

Field‘ GeographicalArea SubseaTemplate ‘ Well

GenerateScenarios

F/ndF/'e/ﬂ‘,‘Swnanos
GenerateScenarios

FindGeog raphrc\:afAreaScenarfbs
GenerateScenarios

FindSubseaTeniplateScenarios
| establish()

GenerateScenarios

FlndF/ehi/SDenar/os

ScenariosGenerated |
ScenariosGenerated |

I
ScenariosGenerated |

ChooseScenarioPlan

Figure 16: Generate production-scenarios

The scenario starts with the human operator specifying a valid period of time through the operator
assistant agent. The number of hours is propagated downwards the system. When the event
containing number of hours reaches the hierarchical bottom-level well, well production-scenarios are
generated. Propagating to the the subsea template team (with well as teammember), well
production-scenarios are combined into subsea template production-scenarios. The same process is
done for the geographical area team, with subsea template production-scenarios. The final repetition
of this process generates field production-scenarios, being ready to be choosed among with different
production targets.

Figure 17 shows the teamwork for the subsea template team consisting of well subteams as
teammembers. The implementation of the well’s plan is shown in Figure 18. Communication is
implemented by using the the event sent from subsea template using the @teamAchive statement.
The well will change an attribute on the event sent, by using the setScenarios()-method (user defined
method) on the event.

The @teamAchieve statement will maintain the event it sent for any updated attributes after the
subsea template has succeded to respond to the event. Cooperation is having the teammembers
(wells) to work towards the common team goal. The common team goal is to have the subsea
template production-scenario to produce every hour with the production-scenarios inititially
selected by the field. To reach this goal a team-subgoal is generate subsea template production-
scenarios performed during these steps of actions. Coordination is having the well teammembers
asked in a serial fashion what amount of oil and waste the can produce, but this could have been
done in parallel as well. The subteams fulfilling the required roles needed by the team are fulfilled by
the establish()-method used by the framework. This establish()-method can been seen in Figure 17.

55

CHAPTER 8. JACK TEAMS SOLUTION

public teamplan FindSubseaTemplateScenarios extends TeamPlan ({

Vector busy = new Vector();

wellAssl= (WellAssistantl) pickRole(busy, wal);
wellAssl!= null;

wellAss2= (WellAssistant2) pickRole(busy, wa2);
wellAss2!= null;

wellAss3= (WellAssistant3) pickRole(busy, wa3);
wellAss3!= null;

11ng method

(...)

find (wellAssl) ;
find (wellAss?2) ;
find (wellAss3);
(...)

}//end body ()

ning method
Role welll)

(...)
if (wellAss instanceof WellAssistantl) {
WellAssistantl wellAssCasted = (WellAssistantl)wellAss;

@teamAchieve (wellAssCasted, q);
wellScenarios = g.scenarios;
}
else if(wellAss instanceof WellAssistant2) {
WellAssistant?2 wellAssCasted = (WellAssistant2)wellAss;

@teamAchieve (wellAssCasted, q);
wellScenarios = g.scenarios;
}
else if (wellAss instanceof WellAssistant3) {
WellAssistant3 wellAssCasted = (WellAssistant3)wellAss;

@teamAchieve (wellAssCasted, q);
wellScenarios = g.scenarios;
}

else {

}
(...)
}//end find()

(...)
}//end plan

GenerateScenarios g = wellAssCasted.gs.generateWellScenarios (hoursvValidity) ;

GenerateScenarios g = wellAssCasted.gs.generateWellScenarios (hoursvValidity) ;

GenerateScenarios g = wellAssCasted.gs.generateWellScenarios (hoursvValidity) ;

Figure 17: SubseaTemplate - FindSubseaTemplateScenarios-plan

//'gublic teamplan FindWellScenarios extends TeamPlan {

soning method

wellScenarios = findWellScenarios();
ev.setScenarios (wellScenarios) ;
}//end body ()

(...)

\\j/}énd plan

Figure 18: Well - FindWellScenarios-plan

56

Part Il

Results and conclusions

57

58

Chapter 9

Quantitative results

This chapter contains results from the quantitative part of the experiment documented in this report.
The JACK Agents solution (see Chapter 7) and the JACK Teams solution (see Chapter 8) are evalutated
according to the metrics defined experiment. Metrics from Chapter 4 are used to make
measurements that either confirm or reject hypotheses formulated in the experiment. The validity of
the result is discussed at the end of the chapter, where some of the validity threats have been
addressed, while others have been accepted.

9.1 Testing of hypotheses

The measurements made in the experiment are done according to the metrics presented in
Subsection 4.1.5. These metrics have the purpose of getting measurements that are needed test the
hypotheses. The hypotheses described in the following subsections are confirmed or rejected in
accordance to measurements shown followed by a discussion.

9.1.1 Hypothesis 1

The hypothesis
Hypothesis 1 is concerned with lines of code and is given as follows:

e HOI1: The functionality of the the two versions will be implemented with approximately the
same number of code lines.

e HAI1.1: The JACK Teams version will implement the same functionality as JACK Agents version
with fewer lines of code.

e HA1.2:The JACK Teams version will implement the same functionality as JACK Agents version
with more lines of code.

Measurements

Metric M1 Lines of Code (LOC) is used in the testing of hypothesis 1. This metric represent the total
number of code-lines in the code written by the system developer. All entities in the different
packages will be counted. The packages that are included in the counting process are only the
packages that contain differences in JACK Agents solution and the JACK Teams solution. The packages
excluded are: Operator assistant, Field, Geographical area, and the GUI package. The measurements
of the metric will be found by counting the number of semicolons using Microsoft Word’s counting
function. The results can be found in Table 4. The result is presented in a diagram in Figure 19 that
illustrates the measurements related to each version.

59

CHAPTER 9. QUANTITATIVE RESULTS

M1: Lines of Code (LOC)

Package JACK Agents version JACK Teams version
Operator assistant - -
Field - -
Geographical area - -
Subsea template 453 582
Well 448 429
GUI - -
Scenario structures 156 156
System events 10 13
Main-method 108 130
Total Lines of Code 1175 1310
Table 4: Results for M1: Lines of Code (LOC)
600
500
400
L]
S 300
W IACK Agents version
200 WIACK Teams version
100
0
Subsea Well Scenario System events Main-method
template structures
Package
Figure 19: Measurements of Metric M1 (LOC)
Discussion

The diagram in Figure 19 shows that the subsea template package varies a lot between the two
solutions. The difference is caused by the extra code needed to establish teams in the JACK Teams
solution, while the JACK Agents solution has more reuse of code. The JACK Agents solution use for-
loops and repeat the work that needs to be done for each connected teammember. The JACK Teams
solution does not use a for-loop, but specify work to each teammember in separate codelines. Using
a for-loop was found difficult since the object will not be of the same type, because each well-role is
a separate Java-class.

The system events package had some attributes added because of the data exchange by using
@teamAchieve in the JACK Teams solution. The main-method package had some extra code-lines
because of a bug in the framework, and the instances had to be checked if they were finished being
instanciating before moving on. The connection between team and teammembers is not needed in
the main-method package to build the structure, since the JACK Teams version uses a .def-file
instead to build the possible team structures. The JACK Teams version’s
SetSubseaTemplateScenarioChosen-plan (from the subsea template package) registrered its
teammembers too. This was not done because it needed the addresses to find the teammembers,
but it was necessary to be able to find the right production-scenarios for the right teammember.

60

CHAPTER 9. QUANTITATIVE RESULTS

The JACK Agents version has 1175 lines of code to realize the teamwork, while the JACK Teams
version has 1310 lines of code. This is an increase of 11.49%.

Conclusion

The results from the measurements of metric M1 shown in Table 4 indicate that the JACK Teams
version has more lines of code than the JACK Agents. Hypothesis HO1 is therefore rejected and the
alternative hypothesis HA1.2 is chosen.

9.1.2 Hypothesis 2

The hypothesis
Hypothesis 2 concerns the number of entities in each version and is given as follows:

e HO2: The number of entities will be the same for the two oil production system versions.
e HA2.1: The JACK Teams version will have more entities than JACK Agents version.
e HA2.2:The JACK Teams version will have fewer entities than JACK Agents version.

Measurements

Metric M2 Number of Entities (NOE) is used in the testing of hypothesis 2. This metric represent the
number of JACK entities. In the JACK Agent solution this will be the events, plans, capabilities, agents,
views, beliefset, and Java classes. The additional constructs in JACK Teams are teamplans, roles, and
teams. Plans and teamplans, and agents and teams will fall in the same category. Roles will be a
separate entity category. The measurements of the metric will be found by counting the number of
JACK entities. The result of the countingprocess is found in Table 5. The result is presented in a
diagram in Figure 20 that illustrates the measurements related to each version.

61

CHAPTER 9. QUANTITATIVE RESULTS

M2: Number of Enities (NOE)

Entity Package JACK Agents version JACK Teams version
Events Operator assistant 2 2
Field 8 8
Geographical area 7 7
Subsea template 7 7
Well 3 0
System events 2 2
Total number: 29 26
Plan/teamplan Operator assistant 3 3
Field 5 5
Geographical area 5 5
Subsea template 5 5
Well 5 5
Total number: 23 23
Role Operator assistant 0
Field - 0
Geographical area - 0
Subsea template - 0
Well - 3
Total number: 0 3
Capabilities - -
Total number: 0 0
Agents/Teams Operator assistant 1 1
Field 1 1
Geographical area 1 1
Subsea template 1 1
Well 1 1
Total number: 5 5
Views - -
Total number: 0 0
Beliefset - -
Total number: 0 0
Java classes GUI 7 7
Main-method 1 1
Scenario structures 4 4
Subsea template 2 2
Well 1 1
Total number: 15 15
Total Number of entities 72 72

Table 5: Results for M2: Number of Entities (NOE)

62

CHAPTER 9. QUANTITATIVE RESULTS

P
E WJACK Agentsversion
WIACK Teams version
Events Plan/teamplan Agents/Teams Role Javaclasses
Enitity
Figure 20: Measurements of Metric M2 (NOE)
Discussion

The differences between the two solutions lays the event package and in the role package, as shown
in Figure 20. The JACK Teams solution has fewer events than the JACK Agents solution. This is caused
by the data exchange through the @teamAchieve statement, instead of using an extra event sent by
the @reply statement as in the JACK Agents solution. The role package is only used by the JACK
Teams version.

The JACK Agents version has 72 entities to realize the teamwork, while the JACK Teams version has
also 72 entities. The difference in the number of entities between the two versions is therefore 0.0%.
This is caused by the number of events and roles neutralizing eachother in this experiment. Increased
data exchange using the same number of roles, will however decrease the number of event-entities
in the JACK Teams version compared to the JACK Agents version.

Conclusion

The result from the measurements of metric M2 is shown in Table 5, and indicates that the number
of entities will be the same for the two solutions. Adding more teammembers to a team, which
functions together at the same time without data exchange, was experienced during developement
phase to cause that HA2.1 would be the chosen hypothesis. Increased data exchange between team
and teammembers was experienced during developement phase to cause that hypothesis HA2.2
would be the chosen hypothesis. There is no proven or unproven proportional dependency between
event-entities and role-entities in this experiment, and their unproven dependency (in any) makes it
hard to generalize about the results. The null hypothesis HO2 is chosen since the number of entities is
the same in both solutions used in this experiment.

63

9.1.3 Hypothesis 3

The hypothesis
Hypothesis 3 concerns the number of functions in each version and is given as follows:

CHAPTER 9. QUANTITATIVE RESULTS

HO03: Both versions will use the same number of functions to complete the designed oil

production system given in Chapter 6.

HA3.1: The JACK Teams version will complete the designed oil production system (see
Chapter 6) with fewer functions than JACK Agents version.

HA3.2: The JACK Teams version will complete the designed oil production system (see
Chapter 6) with a larger number of functions than JACK Agents version.

Measurements
Metric M3 Number of Functions (NOF) is used in the testing of hypothesis 3. This metric represent
the total number of JACK-methods, Java-metods, and plans/teamplans used by the agents, teams,
and their own plans/teamplans. The JACK methods are methods defined specially by the framework
in the agents/teams and plans/teamplans. The Java-methods are the number of user defined Java-
methods in the agent/teams and plans/teamplans. The packages looked into are the subsea template
package and well package that realize teamwork differently in the two solutions. The results can be
found in Table 6. The result is presented in a diagram in Figure 21 that illustrates the measurements
related to each version.

30

40

35

30

NOF
t

20

15

10

M3: Number of Functions (NOF)

Functions JACK Agents version

JACK-methods 30
Java-methods 47
Plans 10
Total Lines of Functions 87

JACK Teams version

40
41
10
91

Table 6: Results for M3: Number of Functions (NOF)

WJACK Agents solution

W JACK Teams solution

JACK-methods

Java-methods

Functions

Plans

Figure 21: Measurements of Metric M3 (NOF)

64

CHAPTER 9. QUANTITATIVE RESULTS

Discussion

The diagram in Figure 21 shows that the subsea template package varies a lot between the two
solutions. This is caused by JACK Agents solution having for-loops reusing code running through all
teammembers. The JACK Teams solution reuses code by introducing a JACK-method to have
repeated calls, working like a for-loop.

The JACK Agents version has 87 functions to realize the teamwork, while the JACK Teams version has
91 functions. This is an increase of 4.60%.

Conclusion

The result from the measurements of metric M3 shown in Figure 21 indicates that the number of
functions will increase using JACK Teams compared to JACK Agents. Hypothesis HO3 is therefore
rejected and the alternative hypothesis HA3.2 is chosen.

9.1.4 Hypothesis 4

The hypothesis
Hypothesis 4 concerns the number of couplings between entities in each version and is given as
follows:

e HO4: Both versions will have the same number of couplings between the components in the
system.

e HA4.1:The JACK Teams version will have fewer couplings between the components than
JACK Agents version.

e HA4.2: The JACK Teams version will have more couplings between the components than
JACK Agents version.

Measurements

Metric M4 Number of Couplings between Entities (NOCBE) is used in the testing of hypothesis 4. This
metric represent the number of couplings between the agent/team and other entities. The packages
looked into are the subsea template package and well package that realize teamwork differently in
the two solutions. Coupling is defined in Subsection 4.1.5 to be in- and out going method calls and
events. Method calls from an agent’s own plan or posted events within the agent are not counted.
Instanciating Java objects and JACK objects are not counted either. Events from the System events
package sent from agents/teams/plans/teamplans are counted as they were included in these
packages. The result of the measurements is found in Table 7.

65

M4: Number of Couplings between Entities (NOCBE)

CHAPTER 9. QUANTITATIVE RESULTS

External Entities JACK Agents version JACK Teams version
package Coupling to Coupling Coupling Coupling Coupling to Coupling Coupling Coupling
subsea from to well from well subsea from to well from well
teamplate subsea agent agent template subsea team team
agent template team template
agent team
Subsea Agent - - 0 0 - - 0 0
template Plans - - 5 5 - - 5 0
Roles - - 0 0 - - 0 0
Java - - 0 0 - - 0 0
classes
Total Number - - 5 5 - - 5 0
of Couplings
Well Agent 0 5 - - 0 0 - -
Plans 5 0 - - 0 0 - -
Roles 0 0 - - 0 15
Java 0 13 - - 0 15 - -
classes
Total Number 5 18 - - 0 30 - -
of Couplings
Scenario Java 0 27 0 35 0 27 0 35
structures classes
Total Number 0 27 0 35 0 27 0 35
of Couplings
Main-method | Java 20 0 48 0 40 0 72 0
classes
Total Number 20 0 48 0 40 0 72 0
of Couplings
Java library Java 0 74 0 136 0 92 0 139
classes
Total Number 0 74 0 136 0 92 0 139
of Couplings
All packages 25 119 53 176 40 149 77 174
Table 7: Results for M4: Number of Couplings between Entities (NOCBE)
1440

120

100

80

NOCBE

&0

40

20

well

Subseatemplate
Scenariostructures

Coupling to subses
teamplate agent/team

Mlain-method
Java library
Subseatemplate

well

Scenario structures

Mlain-meathod

Coupling from subsea
template agent/team

Java library

Subseatemplate

Couplings

Well

Scenario structures

Coupling to well
agent/team

Main-meathod |
Jawa library

Subseatemplate

Well
Mlain-method

Scenario structures

Coupling fram well
agent/team

Figure 22: Measurements of Metric M4 (NOCBE)

66

Java library

W IACK Agents version

W JACK Teams version

CHAPTER 9. QUANTITATIVE RESULTS

Discussion
The diagram in Figure 22 shows that the different packages vary regarding couplings between the
two solutions.

Coupling to the subsea template agent/team varies between the JACK Agents version and the JACK
Teams version. The well package has no couplings because of the use of @teamAchieve. The JACK
Teams version does not need to send an event to return data, because of the data exchange through
the @teamAchieve statement. The result is no coupling. This is a decrease of 100%. The JACK Teams
require more couplings to Java libraries mainly because of checking the status when instanciating
teams. This is caused by a bug in the framework (see Section 9.3). This is an increase of 100%.

Coupling from subsea template agent/team varies between the JACK Agents version and the JACK
Teams version. In the well package, this is mainly caused by using @teamAchieve statements to each
role, instead of using a for-loop to run through all receivers. This is an increase of 66.67%. The Java
library package has more couplings in the JACK Teams solution because of the establishment of
teams and teammembers. This is an increase of 24.32%.

Coupling to well agent/team varies between the JACK Agents version and the JACK Teams version.
The JACK Teams require more couplings to Java libraries mainly because of checking the status when
instanciating teams, caused by a bug in the framework (see Section 9.3). This is an increase of 50%.

Coupling from well agent/team varies between the JACK Agents version and the JACK Teams version.
The subsea template package has no coupling in the JACK Teams version, because it uses the
@teamAchieve statement which creates no extra return-event like JACK Agents when doing data
exchange. This is cause a decrease of 100% in number of couplings. The Java library package is
slightly different in the two versions compared. The JACK Teams version causes an increase of 2.21%.
The small difference in the Java library package is of no significance, and is probably caused by
different coding style or inaccurate measurement.

Conclusion

The results from the measurements of metric M4 are shown in Figure 22. The important thing is to
look at the JACK couplings and not at the Java couplings counted in the Java library package, Scenario
structures package and the Main-method package. The data-exchange in JACK Teams creates fewer
couplings, but the role-use creates more couplings. They approximately neutralize eachother in this
experiment, and the null hypothesis HO4 is therefore chosen. There is no proven or unproven
proportional dependency between the two types of entitites in this experiment, and that makes it
hard to generalize about.

9.1.5 Hypothesis 5

The hypothesis
Hypothesis 5 concerns the number of couplings between entities in each version and is given as
follows:

e HO5: The JACK Agents version and The JACK Teams version have the same number of
external operations changing their internal state.

67

CHAPTER 9. QUANTITATIVE RESULTS

e HAL.1: The JACK Teams version has a fewer external operations changing the internal state
than JACK Agents version.

e HAL.2: The JACK Teams version has larger amount of external operations changing the
interna state than JACK Agents version.

Measurements

Metric M5 Number of External Activations (NOEA) is used in the testing of hypothesis 5. This metric
represents the incoming couplings that activated the subsea template agent/team and the well
agent/team. The results are shown in Table 8. The couplings were defined as external method-calls
and received events in Subsection 4.1.5. The result is presented in a diagram in Figure 23 that
illustrates the measurements related to each version.

M5: Number of External Activations (NOEA)

External Entities JACK Agents version JACK Teams version
package External External External External
activations activations | activations | activations
of subsea of well of subsea of well
teamplate agent template team
agent team
Subsea Agent - 0 - 0
template Plans - 5 - 5
Roles - 0 - 0
Java - 0 - 0
classes
Total Number - 5 - 5
of Activations
Well Agent 0 - 0 -
Plans 5 - 0 -
Roles 0 - 0
Java 0 - 0 -
classes
Total Number 5 - 0 -
of Activations
Scenario Java 0 0 0 0
structures classes
Total Number 0 0 (1] 0
of Activations
Main-method | Java 20 48 40 72
classes
Total Number 20 48 40 72
of Activations
Java library Java 0 0 0 0
classes
Total Number 0 0 0 0
of Activations
All packages 25 53 40 77

Table 8: Results for M5: Number of External Activations (NOEA)

68

CHAPTER 9. QUANTITATIVE RESULTS

B0

70

60

50

=
o 40
=
30
20
HJACK Agents version
10 W JACK Teams version
a
£ = s 3 z 2 = g 3 =
= = ol c =]
s | 22| 2| | || & 2| z
£ e £ E £ = g E
= E b E
3 2 z = 5 o z =
k=] = 5
a <] &
(=] o
W w
External activations of subsea teamplate External activations of well agent/team
agent/team
External Activation
Figure 23: Measurements of Metric M5 (NOEA)
Discussion

The diagram in Figure 23 shows that the different packages vary regarding external activations.

External activations of the subsea template agent/team vary between the JACK Agents version and
the JACK Teams version. The well package has no couplings because the use of the @teamAchieve
statement. It causes no return-event to exchange data, and therefore results in no coupling. This is a
decrease of 100% in the JACK Teams version. The JACK Teams require more couplings to Java
libraries mainly because of checking the status when instanciating teams, caused by a bug in the
framework (see Section 9.3). This is an increase of 100%.

External activations of the well agent/team vary between the JACK Agents version and the JACK
Teams version. The JACK Teams version requires more couplings to Java libraries mainly because of
checking the status when instanciating teams, caused by a bug in the framework (see Section 9.3).
This is an increase of 50% in the JACK Teams version.

Conclusion

The result from the measurements of metric M5 is shown in Figure 23. The Main-method package in
the JACK Teams version has an increased number of external operations, mainly caused by a bug in
the framework (see Section 9.3). The number to put into focus is therefore the number of external
operations between JACK-entities. The JACK Teams version will have fewer external operations
changing the internal state regarding JACK-entities, compared to the JACK Agents version. Hypothesis
HO5S is therefore rejected and the alternative hypothesis HA5.1 is chosen.

69

CHAPTER 9. QUANTITATIVE RESULTS

9.1.6 Hypothesis 6

The hypothesis
Hypothesis 6 concerns about the level of abstraction in each version and is given as follows:

e HO6: Use of JACK Teams will not provide a higher abstraction level for modeling and
implementation of teamwork in an oil production system, compared to JACK Agents.

e HA6.1: Use of JACK Teams will provide a higher abstraction level for modeling and
implementation of teamwork in an oil production system, compared to JACK Agents.

Measurements

A quantifying metric cannot be used to test hypothesis 6. Qualitative assessment is therefore used.
The modelings of the two versions are considered according to the following definition for
abstraction:

“..abstraction of a system that suppresses details of elements that do not affect how they use, are
used by, relate to, or interact with other elements. In nearly all modern systems, elements interact
with each other by means of interfaces that partition details about an element into public and private
parts (35).”

When implementing the two versions, the term “abstraction level” substituted by the term “level of
programming language’ ”. The “level of programming language” is defined as follows:

“In computing, a high-level programming language is a programming language with strong
abstraction from the details of the computer. In comparison to low-level programming languages, it
may use natural language elements, be easier to use, or more portable across platforms. Such
languages hide the details of CPU operations such as memory access models and management of
scope. A high level language isolates the execution semantics of a computer architecture from the
specification of the program, making the process of developing a program simpler and more
understandable with respect to a low-level language. The amount of abstraction provided defines
how 'high level' a programming language is. (36)”

Discussion

JACK Teams has constructs that are made to support teamwork. It uses for instance belief
propagation/inheritation and can use the @teamAchieve statement to exchange data between
team-instances. Details are hidden, demanding no events doing the data exchange. The role-
construct creates an extra encapsulation that can create reuse. The terminology used is more
intuitive than JACK Agents when constructing teamwork. The possible composition of team
formation is separated into a .def-file which hides the initial team structures from the rest of the
code.

JACK is a cross-platform development environment written in Java. The programming language is far
from CPU operations, which can be seen in the code structure. Source code must be contained in

7 JACK Agents and JACK Teams are referred to as both modelling paradigms and programming languages in this
report.

70

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Scope_(programming)

CHAPTER 9. QUANTITATIVE RESULTS

JACK entities. JACK Teams is an extension of JACK Agents, extending the support of contstructing
teamwork. JACK Teams has therefore higher-level programming constructs than JACK Agents in
construction of teamwork.

Conclusion

Based on the experiences made when developing the two versions, hypothesis HO6 is rejected and
hypothesis HA6.1 is chosen.

9.2 Summary of results
Subsection 4.1.5 draws the connections between the hypotheses and benefits, which will be used to
summarize the results of the hypotheses.

The development effort is concerned with the hypotheses 1-3. The JACK Agents version has 1175
lines of code to realize the teamwork, while the JACK Teams version has 1310 lines of code. This is an
increase of 11.49%. The JACK Teams version will have more entities than the JACK Agents version.
This is due to the increased number of role-entities when adding more teammember. The JACK
Agents version has 87 functions to realize the teamwork, while the JACK Teams version has 91
functions. This is an increase of 4.60%. This increase of functions is due to extra functions needed to
establish teams in JACK Teams. The experiment indicates that JACK Teams will cause a larger
development effort than JACK Agents.

Reducing coupling is the concern in hypothesis 4. The data-exchange in JACK Teams creates fewer
couplings, but the role-use creates more couplings. They approximately neutralize eachother in this
experiment. This makes it hard to generalize about, but this experiment showed both versions having
the same degree of couplings.

Encapsulation of functionality is concerned with the hypothesis 5. The number to put into focus is the
number of external operations between JACK-entities. The JACK Teams version will have fewer
external operations changing the internal state regarding JACK-entities, compared to the JACK Agents
version. The well package has no couplings because of the use of the @teamAchieve statement. It
does not have to send an event to return data, which leads to no coupling.

High abstraction level is the concern in hypothesis 6. JACK Teams has constructs made to support
teamwork. It uses for instance belief propagation/inheritation and the @teamAchieve statement to
exchange data between teams-instances. Details are hidden, needing no return-events doing data
exchange. The role creates an extra encapsulation that can create reuse. The terminology used is
more intuitive than JACK Agents when constructing teamwork. The possible composition team
formation, is separated into an own .def-file which hides the possible team structures from the rest
of the code. JACK Teams has therefore a higher-level programming constructs than JACK Agents in
construction of teamwork.

Summarized, JACK Teams have the advantages of better encapsulation of functionality and higher
abstraction level. If much data, more than the amount of required roles needed, is exchanged
through the use of the @teamAchieve statement, the reduced coupling can be an advantage. If a
large amount of roles are needed and less data exchange is done through @teamAchieve, this is a
disadvantage using JACK Teams. The disadvantages are higher development effort, and possibly a
higher amount of couplings.

71

CHAPTER 9. QUANTITATIVE RESULTS

9.3 Abugin the framework

A bug was discovered in JACK Teams during development of the JACK Teams solution. There was a
problem assigning subteams to roles. AOS, the company developing the JACK framework, found a
race condition in the framework causing the failure. A solution to work around the problem was to
check that all the team-instances have instanciating before moving on in the main-method executing
the program. The condition was checked by looking at the state of instanciation: team.getState() !=
Team.INITIAL_STATE.

9.4 Validity Concerns
Validity threats were described in Subsection 4.1.4. Some threats were accepted and other
addressed to handle. The validity of the final results is as follows:

e Conclusion Validity
o Low statistical power: Only one version of each modeling paradigm was compared.
Some of the conclusion may therefore be made with lack of data.
o Reliability of measures: Metrics are used testing the hypotheses. They are
guantitative and therefore objective, except hypothesis 6.
e Internal Validity
o Selection: The selection of objects may not be representative for all possible
outcomes.
e Construction Validity
o Experiment construction: The experiment is constructed with define measurements,
hypotheses and treatments. The relation between theory and observation is tried to
be clearified.
o Mono-operation bias: The quasi-exeriment constructed in this report may not show
the whole picture of the theory.
e External Validity
o Interaction of selection and treatment: A student has constructed and performed the
experiment, and may not be representative for the software developer population
the results are generalized about.
o Interaction of setting and treatment: Development tools and method used are up to
date in order to make the experimental setting representative for the software
industry.

72

Chapter 10

Qualitative results

This chapter describes differences in JACK Agents and JACK Teams in accordance to challenges set by
the reference problem presented in Chapter 5. The qualitative approach compares the JACK Agents
and JACK Teams solutions developed in the work of the experiment described in Section 4.1.
Advantages and disadvantages between the two modelling paradigms are identified and explained.
This will give more depth to the comparison of the two modelling paradigms, in addition to the
guantitative approach. The evaluation considered the two aspects defined in Section 4.2, autonomy
and scalability.

10.1 Autonomy

Autonomy is evaluated according to the construction of teamwork. The following subsections run
through how the system design is related to autonomy, how it is constructed using JACK Agents and
JACK Teams, and at the end a comparison of advantages/disadvantages between the two solutions
implementing autonomy. Autonomy is defined in Subsection 4.2 to be “the need for decisions to be
made at any time, with some appreciation for the circumstance of the current situation (often
referred to as situation awareness).”

10.1.1 System design

The delegation of autonomy machine to machine is depending on the level of hierarchy one is looking
at. The hierarchy presented in the oil production system is shown in the layered arhictecture
presented in Figure 7. The field has the autonomy to choose between proactive and reactive system
states, and initiate all sequences of actions accordingly. All teams below have a more limited
autonomy, but are able to choose its production-contribution in proactive state. This selection and
aggregation of production-scenarios reduce the volume of data on the production-scenarios
presented for the human operator to pick among. A second effect is that production-scenarios are
formatted into production-scenarios at different abstraction levels, for instance well production-
scenario and subsea template production scenarios. The top-level team makes all decisions if the
system state is in a reactive state. This is done in order to maintain a globally optimized solution.

The delegation of human to machine autonomy is more relevant in the planning phase than during
the production phase, in the system design documented in this report. Input from the human
operator is required in the planning phase, and the only feedback from the machine to the human
operator during the production phase, is only the actual production hour by hour.

10.1.2 JACK Agents

The task that is being delegated to the teammembers cannot fail in the system designed in the work
documented in this report. The @send statement is that is used to communicate between teams will
always succeeds (because the event is sent asynchronously), and does not pick up failure of
subteams. To wait for the event to be handled by the subteam, the @wait_for statement should be
used in the team. The team will then wait for the subteam to return a message-event using the
@reply statement. Delegation of autonomy is therefore depending on the trust that subteams does

73

CHAPTER 10. QUALITATIVE RESULTS

not fail. The @wait_for statement has to be used in order to check for some condition, if a team shall
notice a failure among the teammembers.

An agent-address is needed in order to send events to it. The agent-address of the event-receiver can
be found by registering the address inside the sender-agent at some point. Delegation of autonomy
is used by sending events to the same agents every time, since the team structure is static due to the
reference problem described. The psysical components in the reference problem will have the same
dependencies to eachother, and therefore creating a static team structure.

The operator assistant uses the @waitFor() statement to get the human operator involved team
processes. JACK Teams is not used towards the human operator in the solutions developt. Only JACK
Agents are, or teams-instances used exactly like an agent-instance. A team-instance is an extension
of an agent-instance because the JACK Teams modelling paradigm is an extension of the JACK Agents
modelling paradigm. JACK Teams was decided to focus on machine to machine autonomy delegation
between the subsea template and well level, since it was perceived to be a better way to show the
potential of JACK Teams in this experiment. The interface towards human operators was considered
during development to be implemented in the same way in both JACK Agents and JACK Teams.

10.1.3 JACK Teams

A team-instance has subteams-instances to fulfil the different roles, and is responsible to coordinate
the action of the teammembers. The team-instance uses a teamplan to get subteams-instances to
fulfil its teamgoals and subtasks. The @teamAchieve statement is used to send a message event to
the subteams-instances, through the roles. When the subteam-instance that fulfil a role fails to do
the task, it can propagate (if not handled in the subteam) the exception back to the team-instance by
using the @teamAchieve statement. This was not used in the system designed in this report, because
all agents/teams are programmed not to fail by a fixed sequence of serial actions. The
@teamAchieve(roleinstance_ref.peer, Eventinstance) statement is used to send event back from the
subteam-instance to the team-instance.

Delegation of work is done through roles, which the subteams-instances fulfil. The team formations
need to be static in order to access the data regarding a specific physical component, because the
different subteams-instances contain the needed datastructures to store data about the specific
physical component. Each role can just be fulfilled by one subteam-instance at the time. Each
subteam-instance therefore has to fulfil seperate roles in the teams-instances, which created extra
role-entities needed. Creating extra teams-instances during runtime and add them as new
teammembers would be a problem since role-entities are defined at compilation time. Adding new
teams-instances fulfilling roles in the .def-file (contains all possible team formations) was
experienced to be possible. Adding new teams (not removing) was tested in a small example besides
the experiment. A team-instance should also be able to change what roles it can perform during
runtime. However, the author of this report did not examine this during the use of the JACK
framework.

One thing that was observered that could benefit dynamic teams was belief propagation and
inheritation between teams-instances and teammembers-instances. The software developer does
not have to care with implementing all the event-traffic data exchange causes. The data exchange is
coded more or less straight into the beliefset. This could be a suited way to copy data back and forth
to give the subteam-instances all the data needed to fulfil the role, if different teams-instances fulfil

74

CHAPTER 10. QUALITATIVE RESULTS

the same role at different times during runtime. This type of data exchange solves the problem of
distributed data needed by others. This was tried implemented in the solutions documented in this
report, but it failed to run properly. The cause of the failure was not identified, and should be further
investigated. Example-code that came along with the JACK framework product showed how belief
propagation/inheritation could be implemented in smaller example, and indicated some of the
benefits described in this paragraph.

10.1.4 Comparison
The comparison with advantages and disadvantages given in this subsection are based on the system
design (see Chapter 6) documented in this report, and not necessarily valid in the general case. Table
9 shows the advantages and disadvantes between the two solutions developed.

Advantages

JACK Agents version

Supports a static team structure with having
address-lists in the team, containing the
addressed of the connected teammembers.

JACK Teams version

Built-in support to construct a teamstructure of roles
and to declare what subteam-instance that can fulfil
what roles needed by a specific team-instance.
Built-in propagation of exception from
teammembers.

Using a JACK Teams .def-file type to set up possible
teamstructures, instead of Java-methods gives a
better overview of the team-hierarchy.

Propagation and inheritance of beliefs do not create
any extra events to be sent.

Built-in support for dynamically allocate teams to
roles. Copy data needed by the new teammember by
using belief propagation and inheritance.

Roles work as interfaces and make it easier to see
what is needed of events to be sent and to be
handled.

The @teamAchieve statement waits until it is either
successful or not (asynchronously). Does not need to
wait for another event in return.

Disadvantages

Asynchronously has to wait for (using the
@wait_for statement) a returned event after
using the @send statement. The return-event is
sent by using the @reply statement. The
@teamAchieve statement in JACK Teams gives

better team-support because it is synchronously.

Using a simple texteditor to generate the .def-file is a
bit difficult in the work of getting all the special
symbols typed correctly. JACOB® could have been
used, but was not in this work.

Implementing human operator interaction
requires what was considered to be relatively
much coding, and could possibly been made
simpler in an improved framework.

Implementing human operator interaction probably
has to done usin the same approach as in the JACK
Agents modeling paradigm.

Table 9: Autonomy comparison

10.2 Scalability
Scalability is evaluated according to scalability related to construction of teamwork. The following
subsections run through how the system design is related to scalability, how it is realized using JACK
Agents and JACK Teams, and at the end a comparison of advantages/disadvantages between the two
solutions. Scalability is defined in Subsection 4.2 to be the development effort when expanding the
system with more instances of the different agent- or teams constructs.

& The JACOB™ Object Modeller (JACOB) is a system providing machine and language independent object

structures (42).

75

CHAPTER 10. QUALITATIVE RESULTS

10.2.1 System design

The reference problem defined in this report contains the number of physical compontents the
system design should handle. The structure is hierarchical, and if new physical components are
added will they be placed in one of the hierarchical levels that already exist. The performance is not
supposed to decrease much because the distributed work enables parallel reasoning. The team-
commander has to do more work if it has more teammembers connected to it. A quantitative
evaluation on how an increased number of teammembers affects the performance is not performed
in this work. This is however an important issue in order to get global optimization. A large amount of
computations that generates the production-scenarios are needed, and an increased number of
teammembers will affect the performance of the system.

10.2.2 JACK Agents

Adding agent-instances to the different hierarhical levels requires registration of the new agent-
address in its belonging team-commander agent. Scaling the system therefores create little extra
work and can occur during compilation and runtime.

10.2.3 JACK Teams

A few things need to be done in order to add new teams into the different hierarchical levels of the
existing team structure. An increased number of role-entities are needed when more teammembers
are introduced. This is a result of each role only being fulfilled by one team-instance at the time, and
teammembers working in parallel have to fulfil their own separate role. It is however possible to
perform reasoning based on the actual team membership if needed, because the team can access its
possible sub-teams through the role container. This will cause a type of interaction more like the one
JACK Agents uses.

Adding new teams-instances fulfilling roles has to be updated in the .def-file (contains all possible
team formations). This was experienced to be possible. Adding new teams (not removing) was tested
in a small example besides the experiment. A team-instance should be able to change what roles it
can perform during runtime, but the author did not experience if this could be done in a satisfying
manner.

10.2.4 Comparison

The comparison with advantages and disadvantages given in this subsection are based on the system
design (see Chapter 6) constructed in this report, and not necessarily valid in the general case. Table
10 shows the advantages and disadvantes between the two solutions developed.

76

CHAPTER 10. QUALITATIVE RESULTS

JACK Agents version JACK Teams version

Advantages Only register a new teammember in the team- A team-instance can perform several roles at the
commander. same time.

Disadvantages Difficult to keep track on what teammember is Needs extra role entities when new teammembers

allowed to do what kind of work.

working in parallel are introduced. It is however
possible to perform reasoning based on the actual
team membership if needed.

Each role can only be fulfilled by one team at a time.
Since roles are defined at compile time, this limits
the number of teammembers operating at the same
time.

Updating what team that is allowed to fulfill which
roles, can be a possibly limitations of the JACK Team
modeling paradigm. This was not examined in the
work documented in this report and should be
further investigated.

Table 10: Scalability comparison

77

78

CHAPTER 10. QUALITATIVE RESULTS

Chapter 11

Summary of work

This project was motivated by the applicability and suitability using JACK Agents or JACK Teams to
construct teamwork. It was expected that JACK Teams would be more feasible than JACK Agents,
because it is a modelling paradigm specially designed to support the costruction of teamwork. JACK
Teams is an extension of JACK Agents, and can be used in the same way as JACK Agents if wanted.
The elements extended to JACK Teams can be listed as follows:

o Teamdata

o Belief propagation and inheritance
o Exception propagation

o Dynamic team formations

o Use of @teamAchieve

Teamdata enables beliefs to be propagation and inheritation between teams and subteams.
Subteams can propagate belief to the the team, and subteam can inheritate beliefs from a team.
Teamdata is contained in the team and shall reflect the common beliefs that will be consistent with
the subteams’ belief. Propagation and inheritation of beliefs in JACK Agents, would propably create
extra event-traffic if beliefs were distributed in the system.

Belief propagation was tried implemented, but did not work in the JACK Teams solution constructed.
The cause of failure was not discovered. An example that came along with the JACK framework
product showed that belief propagation and belief inheritance in JACK Teams run asynchronously.
Asynchronously means that beliefs are propagated or inheritated while the user-plan is still running.
This creates parallelism that can possibly be exploited in for instance distributed systems that runs
large amouts of computation. The belief propagation and inheritation also enables beliefs to be
copied back and forth between teams and subteams. Copy of beliefs is needed when different teams
fulfil a role during runtime. The teams will then have access to the needed data to fulfil the role, by
using belief propagation and inheritation.

Exception propagation propagates Java exceptions to the team if not handled in the subteam. Note
that this is not the same as a plan failing. This feature was not examined.

Team formation consists of two things: the possible teamstructures defined at compile time, and task
teams established within these teamstructures to solve a tasks during runtime. The possible
teamstructures has to be defined in a .def-file at compile time (it can possibly be updated during
runtime, but this was not tested). Task teams are dynamic teams that have the ability to change what
subteam that fulfils what role, during runtime. The relationships between the physical components in
the reference problem are static, and did not use this feature to the fully extend.

79

CHAPTER 11. SUMMARY OF WORK

A role only can be fulfilled by one team at the time. Subteams that want to operate at the same time
within the team need to fulfil different roles to be able to work simultaneously. In JACK Teams, this
created several role-entities. It is however possible to perform reasoning based on the actual team
membership if needed, because the team can access its possible sub-teams through the role
container.

The @teamAchieve statement activates subteams by sending an event to the subteam. The team
that sent event by using the @teamAchieve statement then waits until the event has been processed
by the subteam. Changes in the event made by the subteam can be maintained by the team when
the @teamAchieve statement is finished. This feature therefore enables data exchange, whitout any
returning event that contains the data.

80

Chapter 12

Conclusion

The problem definition described in Chapter 1 presented three questions:

1. Isiteasier to develop teamwork in JACK Teams than in JACK Agents, when building a
decision-support system?

2. lIsit possible to develop a similar system in JACK Agents and JACK Teams?
Will JACK Teams be a more feasible platform than JACK Agent, when developing teamwork?

The first question is looking at the aspects of development effort. The experience is that JACK Teams
require a bit extra development effort compared to JACK Agents. This extra effort is caused by extra
lines of code. An increase of 11.49% of code lines in the JACK Teams version was measured. The
increase of functions was measured to be 4.60%. The extra number of functions was a result of the
additional functions needed to establish teams in JACK Teams.

The second question looks at the output for the two versions developed. Both versions had the same
static composition of teams and teammembers. The algorithms performing all the computations that
resulted in the output-values, shown in the graphical user interface, were the same in both versions.
The teamstructure and distribution of work was the same in both versions. The most important
difference between the two versions was how the communication was performed between team-
instances and agent-instances. The JACK Teams version required less event-trafic doing data
exchange, but needed extra JACK entities because of the introduction of the role-entities. It is
however possible to perform reasoning based on the actual team membership if needed, because
the team can access its possible sub-teams through the role container. This was not implemented in
the JACK Teams version, and therefore causing a different result. Both version did however
implement the same type of system, and performed the same results.

The third question asked if JACK Teams is a more feasible platform for development than JACK
Agents, when implementing teamwork. The data-exchange in JACK Teams creates fewer couplings,
but the role-use creates more couplings. They approximately neutralize eachother in this
experiment. Introducing more teammembers, could have caused a large number of role-entities
needed and therefore extra couplings. The external operations between JACK entities decreased, and
resulted in better encapsulation of functionality. JACK Teams has constructs specially design to
support teamwork construction. It uses for instance belief propagation/inheritation and uses
@teamAchieve to exchange data between teams. Details are hidden, demanding no events for the
data exchange. The role creates an extra encapsulation that can enable reuse. The terminology used
is more intuitive than JACK Agents when constructing teamwork. The possible composition of team
formations is separated to be contained in a special .def-file. This declaration hides the possible
formations from the rest of the code. JACK Teams is therefore considered by the author to provide a
higher-level programming constructs than JACK Agents. Introducing teams in large scale was not
performed, and could have caused a problem if each team is supposed to fulfil its own separate role
defined in a role-entity. Considering all the above-mentioned elements, and the increase

81

CHAPTER 12. CONCLUSION

development effort needed in the use of JACK Teams, caused JACK Agents to be considerate as the
most feasible platform for development of teamwork in this case.

The main conclusion is that systems with static team formation will cause JACK Agents to be the
preferred modeling paradigm. Dynamic team formations during runtime were not needed due to the
reference problem introduced. Maintaince during runtime, for instance introducing new subteams
and changing the role structure was not looked into. Introducing teams in large scale was not
performed. These four factors could have caused a different result. The question is if JACK Teams
shows its potential through the oil production system designed in this report.

82

Chapter 13

Future work

This report has looked at teamwork created by JACK Agents and JACK Teams, using the reference
problem described in Chapter 5 as application area. Future work on the oil production system design
is to implement parallel and continous working process-loops, not serial and discrete as the present
one (one by one hour). The system should be able to have parts of the system running in proactive
state and having other parts running in a reactive state at the same time. Different levels of
predictability should also be taken into account. The global optimization technique with all the
computation on the different abstraction levels needed should be validated with a more realistic
number of physical components and real life data model used. Prediction of production used in the
proactive state should be continuously updated, to be as precisely as possible. The possible
advantage created by the use of proactive planning compared to reactive adjustements should be
investigated.

Human-centric systems possess the possibility for the agent system to learn from humans, and
therefore enable agents to become so-called human-centric smart agents. These systems can have
interaction in both directions. A future system should look at how this learning process can be
implemented to take a new step towards human-centric systems.

What concerns JACK Teams is how parallelism can be increased by using the belief propagation and
inheritation supported. The belief propagation and inheritation also enables beliefs to be copied back
and forth between teams and subteams. Copy of beliefs is needed when different teams fulfil a role
during runtime. The teams will then have access to the needed data to fulfil the role, by using belief
propagation and inheritation. This should be examined and confirmed.

The roles a team can fulfil were static and remained the same during runtime. How to make change
this role-structure during runtime should be investigated. A well can for example change from being
a production well to being an injection well during runtime. The well should therefore loose its
possibility of fulfing a production role, and be able to fulfil an injection role.

The human operator can operate with different levels of autonomy. Further work should look into
how the human operator can operate towards teams contained in different hierarchical levels in the
system. An important question is how different roles affect eachother in combination with different
degrees of autonomy varying during runtime. Several human operators should be able to use the
system at the same time. How they work together with different levels of autonomy must be looked
into in order to realize this simulatenous work between human operators. The agent system shall
also vary the degree of autonomy itself, and human operator should be able to manually adjust the
delegation of autonomy. The escalation and de-escalation of the level of autonomy is import in the
work to involve the human operator a satisfying manner in the right situations on the right pointin
time.

Dynamic teams should be looked into, using human operators (with different delegation of
autonomy), and also other elements like of economy and oil transportation can be taken into
consideration. This may show the full potential of JACK Teams.

83

84

CHAPTER 13. FUTURE WORK

Part IV
Appendices

85

86

Appendix A

“Steps of action”-scenarios

This appendix describes pseudo algorithms of the “steps of action”-scenarios presented in Subsection

6.3.2.

A.1 “Steps of action”-scenario one - Planned and predicted production
Objective: Plan a configuration that meets the production target within a fixed period of time.

Situation: Production is being planned and put into action.

Algorithm:

1.

2.

Operator Assistant sends a number of hours the production shall be reached within.

Field Planning & Monitoring asks Geographical Area Planning & Monitoring to generate
possible production-scenarios of geographical areas, within the period of time chosen by
Operator Assistant.

Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to
generate possible production-scenarios of subsea templates, within the period of time
chosen by Operator Assistant.

Subsea Template Planning & Monitoring asks Well Planning & Monitoring to generate
possible production-scenarios of wells, within the period of time chosen by Operator
Assistant.

Well Planning & Monitoring sends predicted well production-scenarios to Subsea Template
Planning & Monitoring.

Subsea Template Planning & Monitoring combines all well production-scenarios, and chooses
the three (number of production-scenarios is set to three to simplify and decrease the
number of combinations) best production-scenarios. These are sent to Geographical Area
Planning & Monitoring.

Geographical Area Planning & Monitoring combines all subsea template production-
scenarios, and chooses the nine (amount of production-scenarios is set to nine to simplify
and decrease the number of combinations) best production-scenarios. These are sent to
Field Planning & Monitoring.

Field Planning & Monitoring generates field production-scenarios, and sends all production-
scenarios to Operator Assistant.

Operator Assistant chooses a field production-scenario. The production-scenario chosen is
told Field Planning & Monitoring.

87

APPENDIX A. “STEPS OF ACTION”-SCENARIOS

10. Field Planning & Monitoring tells Geographical Area Planning & Monitoring which
production-scenario that is chosen.

11. Geographical Area Planning & Monitoring tells Subsea Template Planning & Monitoring
which production-scenario that is chosen.

12. Subsea Template Planning & Monitoring tells Well Planning & Monitoring which production-
scenario that is chosen.

13. Well Planning & Monitoring implements the production-scenario chosen, start the
production according to the well settings required by the production-scenario chosen.

14. Field Planning & Monitoring asks Geographical Area Planning & Monitoring to monitor the
production after one timestep.

15. Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to
monitor the production after one timestep.

16. Subsea Template Planning & Monitoring asks Well Planning & Monitoring to monitor the
production after one timestep.

17. Well Planning & Monitoring checks if production is according to the well production-set. If
yes, step 14-17 are repeated until until production target is reached, or the period of time
selected is finished. If no, the system switchs to production-scenario number two:
“Unpredicted changes according to planned production”.

A.2 “Steps of action”-scenario two - Unpredicted changes according to

planned production
Objective: Meet production target within the period of time set.

Situation: Production is not going according to the predicted and planned production, because of
reservoir dynamics.

Algorithm:

1. Well Planning & Monitoring tells Subsea Template Planning & Monitoring it did not follow
the production-scenario it said it would produce according to.

2. Subsea Template Planning & Monitoring tells Geographical Area Planning & Monitoring it did
not follow the production-scenario it said it would produce according to.

3. Geographical Area Planning & Monitoring tells Field Planning & Monitoring it did not follow
the production-scenario it said it would produce according to.

4. Field Planning & Monitoring tells Geographical Area Planning & Monitoring to switch to
“reactive adjustement” process.

5. Geographical Area Planning & Monitoring tells Subsea Template Planning & Monitoring to
switch to “reactive adjustement” process.

88

10.

11.

12.

13.

14.

APPENDIX A. “STEPS OF ACTION”-SCENARIOS

Subsea Template Planning & Monitoring sends Geographical Area Planning & Monitoring the
oil/waste ratio for the last hour for the specific production level.

Geographical Area Planning & Monitoring sends Field Planning & Monitoring the subsea
template oil/waste ratio for the last hour for the specific production level.

Field Planning & Monitoring chooses the subsea templates with best oil/waste ratios until
the processing facility capacity is fulfilled. Field Planning & Monitoring sends the list of
chosen production levels for the different subsea templates to Geographical Area Planning &
Monitoring.

Graphical Area Planning & Monitoring sends the list of chosen production levels for the
different subsea templates to Subsea Template Planning & Monitoring.

Subsea Template Planning & Monitoring sends Well Planning & Monitoring the different
production levels to implement.

Field Planning & Monitoring asks Geographical Area Planning & Monitoring to monitor the
production after one timestep.

Geographical Area Planning & Monitoring asks Subsea Template Planning & Monitoring to
monitor the production after one timestep.

Subsea Template Planning & Monitoring asks Well Planning & Monitoring to monitor the
production after one timestep.

Well Planning & Monitoring checks if the production target is reached, or the period of time
selected is finished. The algorithm is then repeated if the target is not reached and period of
time is not finished.

89

90

APPENDIX A. “STEPS OF ACTION”-SCENARIOS

Appendix B

Design

This appendix shows the detailed design of both the JACK Agents- and JACK Teams solutions
developed during the work documented in this report. The notation of the diagrams shown can be
found in Appendix C.

B.1 JACK Agents solution

This appendix contains detailed design diagrams used in the development of the JACK Agents
solution described in Chapter 7. Two “steps of action”-scenarios that were implemented in the
solution were defined in Subsection 6.3.2: “Planned and predicted production” and “Unpredicted
changes according to planned production”.

The first “steps of action”-scenario “Planned and predicted production” is divided into several
interaction sequences to easier see what happens during the scenario. The following subsections are

divided into “Generate production-scenarios”, “Choose production-scenario”, and “Monitor
production against production-scenario”.

The second “steps of action”-scenario “Planned and predicted production” is divided into several
interaction sequences to easier see what happens during the scenario. The following subsections are
divided into Start reactive “well choke settings” state and Monitor reactive” well choke settings”
state.

B.1.1 Generate production-scenarios
The sequence diagram with description can be found in Subsection 7.2. Figure 24 shows how the
JACK entities are connected to eachother.

91

GenerateProductionScenarios =7t StartGeneratingScenarios

popts

UsPs
ChooseScenarioPlan T % OperatorAssistant

N

FindFieldScenarios

ds =

hanfles % Field

ScenariosGenerated w@md(}eographlcalAreaScemarlos

% GeographicalArea
sel
GndSubseaTemplateScenar\os

Lges
% SubseaTemplate
FindWellScenarios f

ug

s
% Well

sehgds

APPENDIX B. DESIGN

GenerateScenarios

Figure 24: JACK entities involved in the "Generate production-scenarios"-scenario

B.1.2 Choose production-scenario

The scenario begins when the proactive planning process (see scenario: generate production-

scenarios) has created production-scenarios with different production targets predicted. Figure 25

shows all agents, plans, and events involved in this process. Figure 26 shows how the JACK entities

are connected to eachother.

92

OperatorAssistant

Field

ScenariosGenerated

|
|
1
|
!
L}
|
|

ChooseScenarioPlan

FieldScenarioChosen

StartF ieldMonitoring
; |

Monitoring F) ieidProdLi‘cﬁonVersu sScenario

SetFieldScenarioChosen

GeoAreaScenanoChosen !

APPENDIX B. DESIGN

GeographicalArea

SubseaTemplate Well

Lt}

SetGeog raphr’calAlreaScenarioChosen

-

SubseaTem p\aleScenarimChEEEen

SetSubsea TemplateScenarioChosen

WellScenarioChosen

SetWellScenarioChosen
WellReadyToM onitor

e

GeoAreaReadyToMonitor

Figure 25: Choose production-scenario

i
SubseaTemplateReadyToMonitor

.

:

i

1

The human operator has to specify a field production-scenario id to be choosed. This production-

scenario is a composition of production-scenarios from the level belove in the system hierarchy. In

this case the geographical area. The id’s of the composite production-scenarios are found, and the

decomposing production-scenario process is repeated until reaching the bottom-level well. The

different well settings are the put into action, and production is started. The well propagates a

message saying that monitoring can now start because the actual production has started.

Gonit0|'ingFieIdF'roduction\»’ersusScenariDﬁxgs—mﬁ

hanflles

StartFieldMonitoring

% CperatorAssistant

% Field

% GeographicalArea

ChooseScenarioPlan

SetFieldScenarioChosen

FieldScenarioChosen

GeoAreaScenarioChosen

/D‘Wﬂ‘E

— —
'ws%éetGe0g|'aphicalAreaScenarioChoser)W GeoAreaReadyToMonitor
ﬁnﬁs\

% SubseaTemplate

w
1 WSQGetSubseaTemplateScenarioChosen sSubseaTemplateScenarioChosen

T w

SetWellScenarioChosen

5

SubseaTemplateReadyToMonitor

=t WellScenarioChosen

4 WellReadyToMonitor

Figure 26: JACK entities involved in the "Choose production-scenario"-scenario

93

APPENDIX B. DESIGN

B.1.3 Monitor production against production-scenario

Monitoring production against production-scenario begins after the selected field production-
scenario has been chosen (see scenario: choose production-scenarios) and the system is set
accordingly. Figure 27 shows all agents, plans, and events involved in this process. Figure 28 shows
how the JACK entities are connected to eachother.

OperatorAssistant Field GeographicalArea SubseaTemplate Well

StartFieldMonitonng

!
MomrormgHeIdeddcnbnVersusScenario

| StartGeoAreaMonitoring
T

Monitoring GeoAreaProductionVersusScenario

SlartSubseaTem plateM DI‘IilU[_iIJb

L

Monitoring SubseaTempla ﬂ:eProducrfon VersusScenario

StartWellMonitoring

WellHourProduction

it

|
|
Sub

g

A GeoAreaHourProduction

'
'
'
'
'
'
'
1
|
1
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
1
1
1
1
-}
'
'
'

» ShowlLastHourProduction;

ShowlL aerourFemd uctionFlan

StartF ieldReactiveState E
\

StartGeoAreaMonitoring

o

seaTempIateHmuerductio:n
i
I
i
I

Figure 27: Monitor production against production-scenario

When monitoring is ready to start since the actual production has started, a sample to check actual
production against production-scenarios planned are initiated by the field. The wanted timeinterval
to check for accumulated production is sent downwards the hierarchy to the hierarchical bottom-
level well. The amount of production and system state for the next hour is then propagated and
combined in each level reaching the field level in the end. If one or more wells want to change from
proactive to reactive, the whole system has to change to reactive. This is done by posting a
StartFieldReactive in the field. If the system remains in a proactive state, the process is repeated for
the next hour by sending a StartGeoAreaMonitoring-event, and keeps repeating if state remains
proactive until the period of time is finished.

94

APPENDIX B. DESIGN

% OperatorAssistant ’Jm%éhowLastHourProductlonFmﬁE@i ShowLastHourProduction

FieldReactiveState

StartFieldReactive State

S

MontorngFedProductonVersusScen% StartGeoAreaMonitoring
les
% GeographicalArea um%@omtonngGeoAreaProductlonVersusScenarln}W GeoAreaHourProduction

StartSubseaTemplateMonitoring
% SubseaTemplate lm%@onitoringSubseaTempIateProductionVersusScenario

se

SubseaTemplateHourProduction

% Well o MonitoringWellProductionVersusScenario StartWellMonitoring

WellHourProduction

Figure 28: JACK entities involved in the "Monitor production against production-scenario"-scenario

B.1.4 Startreactive ” well choke settings” state

To change system state into reactive begins if the actual production and production-scenarios
selected did not match (see scenario: Monitor production against production-scenario). Figure 29
shows all agents, plans, and events involved in this process. Figure 30 shows how the JACK entities
are connected to eachother.

Field GeographicalArea | | SubseaTemplate Well

StartFieldReactive State

Monitoring Fr'eIdProd:.:vcfionVersusScenario
I

L

FieldRedctive State

| StartG euAreaReactiveStaEl

GeoAreaRéacﬁveSfafe
Sta :rtSuhseaTem plateReactiveS_t_a:te
el

I
Subsea Temp!aréﬂeacﬁvesmfe

| StartWellReactiveState
| WellReagtive State
Il:nﬁialeReactiveWeIIAdjustmen\:

it

b

\nitiatéﬂeaCliveSuhseaTempIateAd]pslment

B m e e e e oo

I
|tiateReaCtiveGeoAreaAdJust‘menl
-

StartFieldReactiveAdjustment

Figure 29: Start reactive "well choke settings” state

95

APPENDIX B. DESIGN

If the system state has changed from proactive to reactive, the field will ask downwards the system
to the production for the last hour. The last hour production is propagated to the subsea template
team, where it is accumulated. This accumulation will show which well level (all well must is assumed
to have the same well choke setting towards the subsea template) creates which oil/waste-ratio.
Propagating the answer to the field, the next scenario Monitor reactive” well choke settings” state
will have a look at how to choose what subsea templates will instructs its teammember with what
well choke settings.

GetFiedReactiveAdjustment
[% GeographicalArea]ygg%éeteeoAreaReactiveAdJustment

% SubseaTemplate 3536etSubseaTemplateReactiveAdjustment

se

InitiateReactiveGeoAreaAdjustment

StartSubseaTemplateReactive Adjustment

InitiateReactiveSubseaTemplate Adjustment

)

% Well I=e SetWellReactive Adjustment StartWellReactive Adjustment
Sermds

InitiateReactiveWellAdjustment

Figure 30: JACK entities involved in the "Start reactive well choke settings state"-scenario

B.1.5 Monitor reactive” well choke settings” state

After the reactive "well choke settings” state has started (see scenario: Start reactive “well choke
settings” state), the newly calculated subsea template settings from field has be adjusted and have
the system produce according to the new settings. Figure 31 shows all agents, plans, and events
involved in this process. Figure 32 shows how the JACK entities are connected to eachother.

96

APPENDIX B. DESIGN

Field GeographicalArea SubseaTemplate Well

StarFieldReactiveAdjustment 3

SetFieldReactiveAdjustment

StarG eoAreaReacliveAdjuslmbnt I '

SefGecuflrea!?eaI ctiveAdjusiment '

0 StanSiubseaTem p\ateReactiveAdJuajtmem !

i i i
| : SetSubsealemplate F‘?e activeAdjustment
0 i StartWellReactiveAdjustment 1

—_——
I I I

SetWellReactiveAdjustment

i i IllmtiateReactiveWeHAdJustment'
e T

Initiate:ﬂeactiveSubseaTemplateAdle.lslment

ol |

i |
nitiate Reactive GeoAreaAdjustment |
: |

|

Lk
=

! 1
1 '

StartFieldReactive State i i i i

FieldReactiveState

Figure 31: Monitor reactive "well choke settings” state

The StartFieldReactiveAdjustment-event contains oil/waste ratios for the subsea templates last
hour’s production. In addition well choke levels +/- 1 is predicted with oil/waste-ratio and amount of
production. The field then fills up the total capacity with the subsea templates having the best
oil/waste-ratio, to maximize oil production every hour. Maximization every hour will be the best way
to ensure that the production target is reached within the period of time. The field then propagates
downwards in the system the new settings. The actual production is then monitored in the wells
using the new well choke settings. The amount of production is then propagated to the field, which
make a check if the total production target set by the human operator is reached. If not, the reactive
state process is repeated again starting with the scenario: Start reactive “well choke settings” state.

97

APPENDIX B. DESIGN

SetFieldReactiveAdjustment

FieldReactiveState

StartFieldReactiveAdjustment

% Field

StartGeoAreaReactiveState

InitiateReactiveGeoAreaAdjustment

% SubseaTemplate uyg:%GubseaTemplateReactveState StartSubseaTemplateReactiveState
L)

Sernds

[% GeographicalArea

InitiateReactiveSubseaTemplateAdjustment

N
v

StartWellReactiveState

WellReactiveState

3w

—_—————

InitiateReactiveWellAdjustment

Figure 32: JACK entities involved in the "Monitor reactive well choke settings state"-scenario

B.2 JACK Teams solution

This appendix contains detailed design diagrams used in the development of the JACK Teams solution
described in Chapter 8. Two “steps of action”-scenarios that were implemented in the solution were
defined in Subsection 6.3.2: “Planned and predicted production” and “Unpredicted changes according
to planned production”.

The first “steps of action”-scenario “Planned and predicted production” is divided into several
interaction sequences to easier see what happens during the scenario. The following subsections are
divided into “Generate production-scenarios”, “Choose production-scenario”, and “Monitor
production against production-scenario”.

The second “steps of action”-scenario “Planned and predicted production” is divided into several
interaction sequences to easier see what happens during the scenario. The following subsections are
divided into Start reactive ” well choke settings” state and Monitor reactive” well choke settings”
state.

B.2.1 Generate production-scenarios
The sequence diagram with description can be found in Subsection 8.2. Figure 33 shows how the

JACK entities are connected to eachother.

98

APPENDIX B. DESIGN

Design: GenerateScenarios

GnerateProductionScenariM StartGeneratingScenarios

ChooseScenarioPlan

ScenariosGenerated GenerateScenarios

handless

angllel

hangles

\T\\ wa3 Y 7
\‘Q@enAssistanny//
NS //// FindwellScenarios J) ____V. ———L
N . WelAssistant1 |7/

e /
2

N 7

N4

. WellAssistant3 2
\\\ WellAssistant3 =
\ 7

Figure 33: JACK entities involved in the "Generate production-scenarios"-scenario

B.2.2 Choose production-scenario

The scenario begins when the proactive planning process (see scenario: generate production-
scenarios) has created production-scenarios with different production targets predicted. Figure 34
shows all agents, plans, and events involved in this process. Figure 35 shows how the JACK entities
are connected to eachother.

99

APPENDIX B. DESIGN

OperatorAssistant Field GeographicalArea SubseaTemplate Well | |JACK Teams framework

]
I

5 I
ScenariosGenerated '
]

i

I

ChooseScanarioPlan
FieldScenarioChosen

|
I

| SetFieldScenario Chosen

‘ E GeoAreaScenarioChosen

e e

I 0
i i SetGeograph/cafA:JeaScenanoChosen

QubseaTemp\aleScenanuChuslen
—

i i
0 SetSubseaTemplateScenarioChosen

establish()

-

i]
! WellScenarioChosen ! !
——————————#

SeM/e/fScénarfoChosen
I

i I
SubseaTemplateR eadyToMoniter
—

i GeoAreaReadyToMonitor
-—

! StartFieldMonitoring 1 1

' Monitoring Field Progi c% ctionVersusScenario i i i i

' Figure 34: Choose production-scenario

The scenario starts with the human operator specifying a field production-scenario id to be choosed.
This production-scenario is a composition of production-scenarios from the level belove in the
system hierarchy. In this case the geographical area. The id’s of the composite production-scenarios
are found, and the decomposing production-scenario process is repeated until reaching the bottom-
level well. The different well settings are the put into action, and production is started. The well
propagates a message saying that monitoring can now start because the actual production has
started.

100

APPENDIX B. DESIGN

FieldScenarioChosen

@onitoringFieldProductionVersusScenario

hapév

StartFieldMonitoring /ﬂﬂgs
% GeographicalArea SetGeographicalAreaScenarioChoseDgW GeoAreaReadyToMonitor

Sel

GeoAreaScenarioChosen

. s SubseaTemplateScenarioChosen
SetSubseaTemplateScenarioChosen
engds

SubseaTemplateReadyToMonitor

Wi i’
AN : z
\\‘{Q/ellAsmstantSV//
//
N4

\\

WellScenarioChosen

Y

Figure 35: JACK entities involved in the "Choose production-scenario"-scenario

B.2.3 Monitor production against production-scenario

Monitoring production against production-scenario begins after the selected field production-
scenario has been chosen (see scenario: choose production-scenarios) and the system is set
accordingly. Figure 36 shows all agents, plans, and events involved in this process. Figure 37 shows
how the JACK entities are connected to eachother.

101

APPENDIX B. DESIGN

OperatorAssistant Field GeographicalArea SubseaTemplate Well | |JACK Teams framework

i
StartFieldMonitoring

Monitoring FiefdProdL:rc(fbnVersusScenarfo

I
I
'
|
|
1
'
I
I
I
I
I
'

-

| StartGeoAreaMonitoring

Monitoring GeoAreaFPjoductionVersusScenario

S:ta riSubseaTem plateM onitorin'g

Monitoring SubseaTempla J‘:BPTOdUCﬁOU VersusScenario
establish()

-
-

StartWellMonitoring

Monitoring WellProdugction VersusScenario

I
I
SubseaTemplaleHnurPruductiun

et
-

GeoAreaHourProduction

-

ShowlLastHourProduction

-

ShowLas(HourF?roductmnPian StarlGeoAreaMonitoring

i
StartFieldReactiveState

1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
'
1
1
1
1
1
1
'
1
1
1
'
1
|
1
1
1
1
'
1
1
1
1
I
1
1
1
L -
I Ll
I

I

1

'

I

Figure 36: Monitor production against pfoduction-scenarid

When monitoring is ready to start since the actual production has started, a sample to check actual
production against production-scenarios planned are initiated by the field. The wanted timeinterval
to check for accumulated production is sent downwards the hierarchy to the hierarchical bottom-
level well. The amount of production and system state for the next hour is then propagated and
combined in each level reaching the field level in the end. If one or more wells want to change from
proactive to reactive, the whole system has to change to reactive. This is done by posting a
StartFieldReactive in the field. If the system remains in a proactive state, the process is repeated for
the next hour by sending a StartGeoAreaMonitoring-event, and keeps repeating if state remains
proactive until the period of time is finished.

102

APPENDIX B. DESIGN

Design: MonitorProductionfgainstScenario

ShowLastHourProductionPlan ShowLastHourProduction

% OperatorAssistant

“ FieldReactiveState ,\" amTies StartFieldReactiveState

MonitoringFieldProductionVersusScenario

sel
StartGeoAreaMonitoring

es

GeoAreaHourProduction
% GeographicalArea =z MonitoringGeoAreaProductionVersusScenario s
sel

StartSubseaTemplateMonitoring

f ‘QﬂonitoringSubseaTempIateProductionVersusScenario))w SubseaTemplateHourProduction

edqares
N2
\{WellAssistant1 7
S N 72
N sy

>
N4

Y
\\\WeuAssistantzy//
AN 7

N 4

Ne——————=—== 7
\T\\ wa3 p ///
\\(\QlellAssistanty/

N v
\\\ 4

N
AN

USES @onitoringWellProductionVersusScenariD

perfagms NN WellAssistant3 ///

7777777777 ZAN
AN

AN
performs AN
et —t———— N
N\ WellAssistant! 7~ \\\//
N 7 ~
ANS

Z
N Vs,
N V7
N4 B
AN a StartWellMonitoring

Figure 37: JACK entities involved in the "Monitor production against production-scenario"-scenario

B.2.4 Startreactive ” well choke settings” state

To change system state into reactive begins if the actual production and production-scenarios
selected did not match (see scenario: Monitor production against production-scenario). Figure 38
shows all agents, plans, and events involved in this process. Figure 39 shows how the JACK entities
are connected to eachother.

103

APPENDIX B. DESIGN

InitiateReactive GeoAreaAdjustment

i

Field GeographicalArea SubseaTemplate Well | |JACK Teams framework
MonfrorfngFiefdedn:tcnbnVersusScenario i i i i
i i i i i
StariFieldReactiveState | i | i i
FieldRed4ctive State
| StartGeoAreaReactiveState | H H H
—_—— ' ' '
3 GeoAreaR{laacﬁveS!are E E E
3 Stai‘tSubseaTemp\ateReactiV&Stéte E E
i i o i i
3 E SubseaTempfatéReac(iveSfafe E E
0 i :‘ establish() H H
i | | StartwellReactiveState | |
WellReative State
i i i
1 i i

InitialéReaCtiveSubseaTempIateAdJ'ustmenl
e e E——

|
i |

StartFieldReactiveAdjustment ' !
I I

I

Figure 38: Start reactive "well choke settings” state

If the system state has changed from proactive to reactive, the field will ask downwards the system
to the production for the last hour. The last hour production is propagated to the subsea template
team, where it is accumulated. This accumulation will show which well level (all well must is assumed
to have the same well choke setting towards the subsea template) creates which oil/waste-ratio.
Propagating the answer to the field, the next scenario Monitor reactive” well choke settings” state
will have a look at how to choose what subsea templates will instructs its teammember with what
well choke settings.

104

APPENDIX B. DESIGN

StartFieldReactiveState

FieldReactiveState

% Field

SetFieldReactiveAdjustment

/‘““es/
SetGeoAreaReactiveAdjustme%

% GeographicalArea |use

TTEITES

StartGeoAreaReactiveAdjustment

InitiateReactiveGeoAreaAdjustment

\sems\

[%—% SubseaTemplate }ggﬁ@etSubseaTemplateReactiveAdjustme%~ StartSubseaTemplateReactiveAdjustment
requigs

N

\\\ wal
\‘QQ/euAssist
NN
A\
\\//
o
,,,,,,, ==7

InitiateReactiveSubseaTemplateAdjustment

\Y\\ wa3 ///
\\QQ/enAssistantsy/’
~ 4
AN Vs
\\\///
\\’/
USES GetWellReactiveAdjustmenD
pel s
pepfSrms _ perfoxms . i
\\\ WellAssistant1 /// \\\ WellAssistant2 //// \\\\ WellAssistant3 ///
AN N NS 7~
AN 7
N v
N4
N\
hapflles
s
hanfilés

StartWellReactiveAdjustment

Figure 39: JACK entities involved in the "Start reactive well choke settings state"-scenario

B.2.5 Monitor reactive” well choke settings” state

After the reactive "well choke settings” state has started (see scenario: Start reactive “well choke

settings” state), the newly calculated subsea template settings from field has be adjusted and have

the system produce according to the new settings. Figure 40 shows all agents, plans, and events

involved in this process. Figure 41 shows how the JACK entities are connected to eachother.

105

APPENDIX B. DESIGN

Field GeographicalArea | | SubseaTemplate Well | [JACK Teams framework

StantFieldReactiveAdjustment i i i i
1

i
SetFieldReactiveAdjustment i i
StaﬂGeuAreaReacliveAdjustm'ent H

Se(GeoAreaReei ctiveAdjustment H

StaﬂSEubseaTem p\ateReacliveAdJug:tm ent

i i i
I E Se!SuDseaTempiafeﬁ?eacﬁveAdjus!menf

0 :‘ establish() | |
-t

5 StaﬂWeHReactiveAdjustmenL: H

E 0 SefWeHReacf:fveA djustment E
I I I I
| i i
| InilialéReaCliveSubseaTempIaleAthslmenl
i —

InitiateReactive GeoAreaAdjustment i i |

StarfF ieldReactiveState | |

F.rbldRea:criveS(afe i i ; i

Figure 40: Monitor reactive” well choke settings” state

The StartFieldReactiveAdjustment-event contains oil/waste ratios for the subsea templates last
hour’s production. In addition well choke levels +/- 1 is predicted with oil/waste-ratio and amount of
production. The field then fills up the total capacity with the subsea templates having the best
oil/waste-ratio, to maximize oil production every hour. Maximization every hour will be the best way
to ensure that the production target is reached within the period of time. The field then propagates
downwards in the system the new settings. The actual production is then monitored in the wells
using the new well choke settings. The amount of production is then propagated to the field, which
make a check if the total production target set by the human operator is reached. If not, the reactive
state process is repeated again starting with the scenario: Start reactive “well choke settings” state.

106

APPENDIX B. DESIGN

Design: MonitorReactiveState

% Field

SetFieldReactiveAdjustment

StartFieldReactiveAdjustment

FieldReactiveState
StartGeoAreaReactiveState

% GeographicalArea InitiateReactiveGeoAreaAdjustment

StartSubseaTemplateReactiveState

‘ﬁ SubseaTemplate

InitiateReactiveSubseaTemplateAdjustment

——————— =
N wa?2 s
\\\&eIIAssistant 4
AN Vs
\\\///
N
N —————====7
\T\\ wa3 ///
\weuAssistantay/

AN 7/

NG

N N s/
N/
A4
ﬁ Well usesS WellReactiveState
el
———_pedoms ____, P _:::::::p:_ S
N Wellassistanti 22"\ Wellpssistantz V4
\Y v 4
N '’ \\\ V7

hanyjes hantlles

StartWellReactiveState

Figure 41: Monitor reactive well choke settings state

107

APPENDIX B. DESIGN

108

Appendix C

Notation

This appendix defines the notation used in the sequence diagrams and and JACK Development
Environment (JDE) design diagrams shown in the report.

C.1 Sequence diagram
Table 11 describes the notation used in the sequence diagrams shown in the report.

Well

—_—

Monttoring WellProdugctionVersusScenario

o=

establishi)

The blue box
represent agent or
team

The blue rectangle
with text represent
the plan/teamplan

The arrow
represents the uses
of the JACK method
establish to form
task team, used in
JACK Teams.

SubseaTemplateHourP roduction

StartFieldReactiveState I

Table 11: Sequence diagram notation

109

The arrow with text
represent an event sent
from one agent/team to
another agent/team

The arrow with text
represent an event
posted within
agent/team

APPENDIX C. NOTATION

C.2 JACK Development Environment graphical notation
Table 12 describes the notation used in the JDE design diagrams shown in the report.

\.________,./
Note | 5

Represent the JACK - Not used in this report-
% Agent agent entity Capability
/-—'—'_‘—‘—-\ . .
Represent the JACK (< > - Not used in this report-
Event event entity NamedData
(<Unknown Type>)

Represent the JACK - Not used in this report-
plan entity
Represent the JACK \T_:E_DT;::,;’? Represent the performs
Te . .
%% =am team entity \\\ ;,’? JACK role entity
A\ .
N\ ;;.’? declaration
W
Represent the JACK \‘fzﬁﬁf@ﬁ_jfz/:/ Represent the JACK role
TeamP| . e ; ;
teamplan entity Ny (Role) % entity required
N V4
V4

Table 12: JDE notation

110

Bibliography

1. Einar Landre, Jgrn @lmheim, Geir Owe Waersland, Harald Rgnneberg Statoil ASA. Software
Agents - An Emergent Software Technology That Enables Us To Build More Dynamic, Adaptable, and
Robust System. Texas : SPE Annual Technical Conference and Exhibition, September 2006.

2. Jorn @lmheim, Einar Landre, Eileen A. Quale StatoilHydro. Improving Production by use of
Autonomous Systems. Texas : SPE Annual Technical Conference and Exhibition, 2008.

3. Spillum, @ystein. Delegation and coordination in autonomous oil production systems. Trondheim :
Norwegian University of Science and Technology, 2007.

4. StatoilHydro. StatoiHydro in brief. [Online]
http://www.statoilhydro.com/en/AboutStatoilHydro/StatoilHydrolnBrief/Pages/default.aspx.

5. al., J. Tweedale et. Future Directions: Building a Decision Making Framework Using Agent. s.l. :
Springer-Verlag Berlin Heidelberg, 2008.

6. J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis, A. Consoli, G. Phillips-Wren. Innovations in
multi-agent systems. s.l. : Elsevier Ltd, 2006.

7. (AOS), The Agent Oriented Software Group. FAQ. [Online] [Cited: October 30, 2008.]
http://www.agent-software.com/shared/products/fag.html#commsProtocols.

8. Cheong, Christopher. A Comparison of JACK Intelligent Agents and the Open Agent Architecture.
Melbourne, AUSTRALIA : School of Computer Science and Information Technology, RMIT University.

9. Wikipedia. Cyber-physical system. [Online] http://en.wikipedia.org/wiki/Cyber-physical_system.

10. Massachusetts), Bryan Horling (University of Massachusetts) and Victor Lesser (University of. A
survey of multi-agent organizational paradigms. s.l. : Cambridge University Press, 2005.

11. Barber, K. Suzanne. Dynamic Adaptive Autonomy in Agent-based Systems. s.l. : The University of
Texas at Austin, 1999.

12. Cheong, Christopher. An Empirical Investigation of Teamwork Infrastructure for Autonomous
Agents. Melbourne, AUSTRALIA : School of Computer Science and Information Technology, RMIT
University.

13. Alan F Hill, Fiona Cayzer, Peter R Wilkinson. Effective Operator Engagement with Variable
Autonomy. s.l. : 2nd SEAS DTC Technical Conference, 2007.

14. Andrew Lucas, David Shepherdson. Architecture for Distributed Power Management for
Autonomous Unmanned Vehicles. s.l. : AOS Group, 2007.

15. Vlassis, Nikos. A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence. s.l. : Department of Production Engineering and Management, Technical University of
Crete, 2007.

111

BIBLIOGRAPHY
16. Angela Consoli, Jeffrey Tweedale and Lakhmi Jain. The Link between Agent Coordination and
Cooperation. Intelligent Information Processing Ill. s.. : Springer Boston, 2007.
17. Durfee, Edmund H. Scaling Up Agent Coordination Strategies. s.I. : IEEE, 2001.

18. Jinsong Leng, Colin Fyfe, and Lakhmi Jain. Teamwork and Simulation in Hybrid Cognitive
Architecture. s.l. : Springer-Verlag Berlin Heidelberg, 2006.

19. Susannah Soon, Adrian Pearce, and Max Noble. A Teamwork Coordination Strategy Using
Hierarchical Role Relationship Matching. s.l. : Springer-Verlag Berlin Heidelberg, 2004.

20. Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee & Jaron C. Collis. ZEUS: A Toolkit for
Building Distributed Multi-Agent Systems. s.l. : BT Laboratories, Martlesham Heath, 1999.

21. HS Nwana, L Lee and N R Jennings. Co-ordination in software agent systems. s.l. : BT Technol J
Vol 14 No 4, 1996.

22. Agent Oriented Software Pty Ltd. JACK™ Intelligent Agents Teams Manual. s.l. : Agent Oriented
Software Pty Ltd, 2005.

23. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Agent Manual. s.l. : Agent Oriented
Software Pty. Ltd., 2005.

24. Lise Engmo, Lene Hallen. Software agents applied in oil production, Master's thesis. s.l. :
Norwegian University of Science and Technology, 2006.

25.). Jarvis, R. Ronnquist, D. McFarlane, L. Jain. A team-based holonic approach to robotic assembly
cell control. s.. : Elsevier Ltd., 2004.

26. Sanjay Bisht, Aparna Malhotra, and S.B. Taneja. Modelling and Simulation of Tactical Team
Behaviour. Defence Science Journal. Vol. 57, No. 6, 2007 November.

27. Daren, Yeo Huang-Yu. Automatic Protocol Generation Based on Commitment Machines. s.l. : The
University of Western Australia, 2004.

28. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Development Environment Manual.
s.l. : Agent Oriented Software Pty. Ltd., 2005.

29. Eclipse (software). [Online] http://en.wikipedia.org/wiki/Java_eclipse.

30. The Eclipse Foundation. Eclipse Newcomers FAQ. [Online]
http://www.eclipse.org/home/newcomers.php.

31. Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, Anders Wesslén.
Experimentation in Software Engineering: An Introduction. s.l. : Kluwer Adademic Publishers, 2000.

32. Mari Torgersrud Haug, Elin Marie Kristensen. Applicability and Identified Benefits of Agent
Technology, master thesis. s.l. : Norwegian University of Science and Technology, 2006.

33. Oates, Briony J. Researching Information Systems and Computing. s.l. : Sage Publications, 2006.

112

BIBLIOGRAPHY

34. Wikipedia. Scalability. [Online] http://en.wikipedia.org/wiki/Scalability.

35. Len Bass, Paul Clements, Rick Kazman. Software Architecture in Practice, Second edition. s.l. :
Pearson Education, Inc, 2003.

36. Wikipedia. High-level programming language. [Online] http://en.wikipedia.org/wiki/High-
level_programming_language.

37. Wooldridge, Michael. An introduction to MultiAgent Systems, 1.edition. s.l. : John Wiley & Sons
Ltd, 2002.

38. Jovanovic, Gaston Eduardo Tagni and Dejan. Comparison of Multi-Agent Systems JACK vs 3APL.
s.l. : Departamento de Inform’atica, Universidade Nova de Lisboa.

39. Agent Oriented Software Pty. Ltd. JACK™ Intelligent Agents Agent Practicals. s.l. : Agent Oriented
Software Pty. Ltd., 2005.

40. Bevan Jarvis, Dan Corbett, and Lakhmi C. Jain. Beyond Trust: A Belief-Desire-Intention Model of
Confidence in an Agent's Intentions. s.l. : Springer-Verlag Berlin Heidelberg, 2005.

41. Wikipedia. Scalability. [Online] http://en.wikipedia.org/wiki/Maintainability.

42. Agent Oriented Software Pty. Ltd. JACOB Manual. s.l. : Agent Oriented Software Pty. Ltd., 2006.

113

	Title Page
	Problem Description
	masteroppgave.pdf

