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Abstract

In this thesis, the electronic states of a quantum well system in silicon is investi-
gated. The confinement is induced by a thin dopant profile called a δ-layer, creating
an effective two-dimensional metallic region inside a semiconducting bulk environ-
ment. The understanding of these systems is of great importance for silicon-based
quantum computing applications, which rely on exact knowledge of the dynamics
of the quantum well states. The presented results serve to complement existing
work in this field, which has mainly been focused towards the extreme case of a
single atomic layer dopant profile. Five silicon-phosphorus δ-layer samples with dif-
ferent dopant profile thickness were fabricated by gas dosing and epitaxial growth.
The electronic band structure was investigated using angle-resolved photoemission
spectroscopy (ARPES) and synchrotron radiation. The energy separations of the
three lowest electronic energy bands, known as the 1Γ, 2Γ and 1∆, were tracked
as the δ-layer thickness was changed. Most notably, novel measurements of the
1∆ state in a monolayer is presented, allowing sought-after comparison to existing
work. The results suggest taking an alternate view of the band structure in these
devices, specifically by reinterpreting the identification of the Γ states in obser-
vations. This new picture speaks in favor of adopting a larger material dielectric
constant than previously assumed for these structures, which can reduce current
inconsistencies between experimental observations and calculations.
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Sammendrag

I denne masteroppgaven undersøkes elektrontilstandene i et kvantebrønn-system i
silisium. Ved å introdusere et tynt, sterkt dopet lag i en silisiumkrystall, kalt et
δ-lag, skapes en tilnærmet to-dimensjonal metallisk profil inne i et halvledermateri-
ale. Dette medfører interessante elektroniske egenskaper som kan utnyttes innenfor
utviklingen av silisium-baserte kvantedatamaskiner. Forst̊aelse av hvordan disse
systemene oppfører seg er svært viktig for mulige anvendelser, som krever presis
manipulering av kvantiserte energitilstander som oppst̊ar i laget. Resultatene som
presenteres vil være et tillegg til eksisterende forskning p̊a disse strukturene, som
hovedsaklig omhandler spesialtilfellet der δ-laget er kun ett atomlag tykt (s̊akalt
monolag). Det ble laget fem δ-lag med forskjellig tykkelse som ble undersøkt med
”angle-resolved photoemission spectroscopy” (ARPES). Energidifferansen mellom
de tre laveste energitilstandene i laget, kjent som 1Γ, 2Γ og 1∆, ble sett i sam-
menheng med endringene i tykkelse. 1∆ tilstandene ble observert for første gang
i et monolag, som gjorde det mulig å sammenligne med eksisterende data. Re-
sultatene peker mot en endring av forst̊aelsen av b̊andstrukturen, spesielt ved å
revidere hvordan Γ tilstandene har blitt identifisert i tidligere eksperimentelle data.
Dette kan ses i sammenheng med en endring i verdien av den dielektriske konstan-
ten i forhold til hva som tidligere har blitt antatt. Dette kan bidra til å minske
uoverenstemmelser mellom teoretiske beregninger og praktiske observasjoner, som
har satt spørsm̊alstegn ved den etablerte forst̊aelsen av slike strukturer.
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Chapter 1

Introduction

1.1 Motivation for this thesis

Figure 1.1: Single-atom transis-
tor. Patterned, heavily phosphorus-
doped silicon leads (red features) are
used to address a single phospho-
rus atom (center) inside bulk silicon.
Reprinted from Ref. [34].

The study of quantum effects in low-
dimensional semiconductor systems consti-
tute a key part of the progress of solid state
physics in the past decades. Thin films, multi-
layered structures, and quantum dots are in-
creasingly present in modern electronic de-
vices, where size-effects such as quantum well
confinement are central to device operation
[31]. In recent years, atomic-scale precision
in semiconductor doping manipulation has
been demonstrated; an important advance-
ment with respect to the practical realiza-
tion of quantum computing systems. Phos-
phorus dopant structures in silicon were the
basis for one of the first proposals for a solid-
state quantum computer architecture [12, 19],
and have since been extensively studied in the
attempt of gaining insight into the electronic
properties of such devices. Recently devel-
oped patterning techniques offers the possi-
bility of assembling elaborate structures which are relevant to quantum comput-
ing applications, such as the single-atom transistor (see Figure 1.1). A thorough
understanding of the electronic state configuration of such structures is crucial
to predicting and controlling device operation. Thin, heavily phosphorus-doped
sheets inside a bulk silicon environment, called Si:P δ-layers, represent both an
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CHAPTER 1. INTRODUCTION

important platform for base research on these systems as well as being a promis-
ing candidate for hosting quantum computer architectures [28–30]. The atomically
sharp doping profile, called a monolayer, has become the most prominent objective
of silicon δ-layer research, as this represents the most relevant configuration for ap-
plication purposes. However, discrepancies between certain theoretical predictions
and experimental observations have led to concerns regarding the reliability of
the current theoretical description of these systems. Additional studies of thicker
dopant layers may lead to an increased understanding of the situation by allowing
trends of the energy states to be seen as the character of the states are modified.
The work presented in this thesis aims to contribute to this purpose, specifically
by tracking the behavior of the electronic states of a δ-layer as the thickness is
altered from bulk-like to a truly two-dimensional case.

1.2 Layout

A theoretical framework for describing electronic states in a solid is presented
in Chapter 2. Some general properties will first be treated before turning to the
specific case of silicon δ-layers. Relevant existing work will be presented to identify
the status quo of the research directed towards these structures, including some
important calculations and experimental observations made to this date. This will
set the stage for the work conducted in relation to this thesis. Chapter 3 is devoted
to presenting the techniques involved in the characterization and preparation of
the δ-layer structures. The practical aspect of the experimental work carried out
is documented in Chapter 4, where the instrumentation and the specifics of the
sample preparation process is presented. The width-dependence of the δ-layer
electronic states is not much studied, and a thorough theoretical model for this
specific case is not found in the existing literature. Therefore, a simple numerical
model is presented in Chapter 5 to supplement existing work when discussing the
results. In Chapter 6, the results will be presented and discussed in light of the
previous chapters. The thesis is concluded in Chapter 7 where the main findings
from the discussion is summarized and further work is suggested. Additional
information supplementing the main text is given in the Appendix.
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Chapter 2

Theoretical background

The purpose of this chapter is to give a primer of the subject, including key the-
oretical aspects and previous work defining the basis of the experiment described
by this text. I will begin by presenting some fundamental properties of crystals,
before advancing to the theoretical description of electron states in crystal struc-
tures. This will be used to give a brief treatment of key semiconductor properties.
These parts are largely based on Ref. [15, 16], and the reader is directed to these
resources for additional details. Towards the end of the chapter I will focus on the
specific case of silicon δ-layer structures.

2.1 Crystal structure

2.1.1 The crystal lattice

A crystal is a periodic structure which in principle can be described by a infinite
set of points on a lattice, defined by the linear combination of a particular set of
primitive lattice vectors. Such a lattice is called a Bravais lattice. By translating
from one point in the lattice to another through a lattice-specific displacement
vector r (i.e. any linear combination of the primitive lattice vectors), the lattice
should look the same as the initial location. The region closer to one lattice point
than any other is called the Wigner-Seitz cell. This concept is illustrated in Figure
2.1. In addition to a Bravais lattice, real crystal are described by a basis, which
indicates a particular configuration of atoms associated with a single lattice point.

3



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Crystal Bravais lattice and Wigner-Seitz cell. (a) Body-centered
cubic (bcc) and (b) face-centered cubic (fcc) Bravais lattices. The blue arrows represent
the primitive lattice vectors spanning the lattice. (c) The bcc and (d) fcc Wigner-Seitz
cells, indicating the spacial region which is closer to the lattice point in the center of the
figure than to other lattice points in the Bravais lattice. Reprinted from Ref. [16].

2.1.2 The reciprocal lattice

The reciprocal lattice is the set of wave vectors G that yield plane waves with the
periodicity of the Bravais lattice [16]. This imposes the relation

eiG·R = 1, (2.1)

where R is the previously defined real space lattice point vector and G is a recip-
rocal lattice vector. Just as the vectors R form a real space Bravais lattice, the
vectors G form a reciprocal Bravais lattice. The reciprocal space equivalent to the
Wigner-Seitz cell is the first Brillouin zone (1BZ). It is also common to refer to
higher order Brillouin zones to indicate the second closest region to a point etc.
The reciprocal lattice represents a very handy tool for dealing with the complexity
of crystal structures by exploiting the periodicity of the lattice, as we shall see in
the next section.

It is convenient to adapt a definition of describing planes and directions in
crystal structures. This is done by so-called Miller indices, which correspond to
planes perpendicular to reciprocal lattice vectors. They are identified by three
numbers hkl which refer to the components of the reciprocal lattice vector G. A
plane is described by the notation (hkl), while {hkl} indicate a family of equivalent

4



CHAPTER 2. THEORETICAL BACKGROUND

planes. A similar convention applies for real space directions, only now with the
indices l,m,n referring to the components of R. Here, square brackets are used for
indicating a real space direction; [lmn].

2.2 Electronic states in solids

In order to describe the electronic states in doped silicon which the work of this
text concerns itself with, it is necessary to present a theoretical framework that
accurately depicts the physical situation inside a semiconducting material. For
this I will use the free- and nearly free electron model. The former is only a good
approximation for metals, and will mainly be used as a stepping-stone for the
latter. It must be noted that these models are mere approximations, and only
serve to illustrate the concept of the electronic states. Still, this will suffice for the
purpose of this thesis. A more powerful model when it comes to covalently bond
solids like silicon is the tight-binding approach, which will not be treated in this
text.

The models I present are based on a quantum mechanical approach to describ-
ing electrons in solids. By taking this view, we wish to describe the motion of the
electrons by so-called wavefunctions, which contain information about the quan-
tum mechanical eigenstates of the electrons in our system. However, finding the
eigenstates of such a complex environment as a solid is an immense task, and we
must make a few approximations to make headway. To begin, we separate the
atoms in the solid into two parts - the ions and the electrons. The ions consist
of the atom nucleus and the tightly bound core electrons. In our treatment, the
core electrons can be considered inert due to its strong bonds to the nucleus, and
are mostly responsible for shielding the positive nuclear charges [23]. The valence
electrons are on the other hand loosely bound to the nucleus, and play a key role
for the electronic properties of solids. Based on this basis, the models make two
key assumptions:
1) The motion of the ions can be ignored.
2) The correlated motion of the valence electrons can be ignored, and instead de-
scribed by an effective potential.
Both can be shown to be reasonable approximations for our case [15]. With this
in mind, the task at hand is to solve the stationary Schrödinger equation for the
eigenstates of single electron, which now reads(

− ~2

2me

∇2 + U(r)
)

Ψ(r) = EΨ(r). (2.2)

Here, ~ is the reduced Planck constant, me is the electron mass, ∇ is the vector
differential operator, U is the effective potential, r is a real space position vector,

5



CHAPTER 2. THEORETICAL BACKGROUND

Ψ is the electron wavefunction and E is the energy of an electron state.

2.2.1 The free electron model

In the free electron model, we assume that the potential experienced by a single
electron is zero, and the problem becomes equivalent to the famous particle in a
box problem. The solutions for Ψ are plane waves of the form Aeikr, where A is
a normalization factor, i is the imaginary unit and k is the electron wave vector1.
The energy eigenvalues are

E(k) =
~2k2

2me

. (2.3)

This is similar to truly free electrons. Applying periodic boundary conditions2 of
the lattice lead to restrictions on the allowed values of the electron momentum
described by k. This in turn gives quantized energy levels, such that we get a
quasi-continuum of allowed states for the electron momentum and energy. The
dispersion relation E(k) is known as the electronic band structure of the solid.

Electrons are fermions and thus obey the Pauĺı exclusion principle, with the
implication that no two electrons can occupy the same quantum mechanical state.
Energy states are spin-degenerate, such that they can accommodate two electrons
with opposite spin; one in the spin-up-state and the other in spin-down. This
means that a system of N electrons in the free electron will model occupy the N/2
lowest energy states, assuming zero temperature [15]. The energy of the highest
occupied state is the Fermi energy, and the number of available energy states per
energy interval is called the density of states. At finite temperature, electrons are
excited out of their ground state. Electrons obey Fermi-Dirac statistics, and the
probability of a state being occupied at a given energy E and temperature T is
given by the distribution function3

f(E, T ) =
1

e(E−µ)/kBT + 1
, (2.4)

where µ is the so-called chemical potential and kB is the Boltzmann constant.
At T = 0, the chemical potential is equal to the Fermi energy [15]. The Fermi
energy has a rigid definition, and due to the statistical implications of the Fermi-
Dirac distribution it is convenient to introduce the Fermi level, which can be

1It is common to use the wave vector in reciprocal space, k, to describe the momentum of the
electron, p, which I will continue to do from here on. The quantities are related by the Planck
constant: p = ~k.

2Periodic boundary conditions, such as the Born-von-Kármán, are useful for describing bulk
states and properties related to traveling wave solutions. For treating situations close to a surface,
or quantum wells, other boundary conditions are required, as we shall see later on.

3This function will later be reffered to as simply the Fermi function.
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CHAPTER 2. THEORETICAL BACKGROUND

interpreted as the hypothetical energy of a state having a 50% chance of being
occupied. For semiconductors, we merely treat the Fermi level as a synonym for
the chemical potential [3]. From this an important result arise: The product of the
density of states and the Fermi-Dirac distribution gives us the density of occupied
electron states (DOS) at a given energy for a finite temperature, effectively giving
a probabilistic description of the occupancy of electron states in a solid. This is
illustrated by Figure 2.2.

D
O
S

Energy

"soft zone"

EF

g(E)
f(E,T)

f(
E
,T

)
g
(E

)

Figure 2.2: Density of occupied electron states (DOS) for finite temperature.
The density of states in the free electron model g(E), is modulated by a temperature
dependent Fermi-Dirac distribution f(E, T ) to produce the density of occupied states
(red curve). The broadened region around the Fermi level EF is referred to as the ”soft
zone”, having a width of ≈ 100 meV at room temperature.

This is all well and good, however; we know that the free electron model can
not accurately represent the full picture of electrons in real solid, as it contains
no assumptions of a lattice potential. This must surely be present due to the ions
sitting on the lattice sites. So, how can we describe the situation of the electron
states more precisely? For this feat, we turn to a slightly modified approach, the
nearly-free electron model.

2.2.2 The nearly-free electron model

The key to effectively describing the electron states is to exploit the symmetry
of the crystal structure. In the nearly-free electron model we seek to describe the
motion of the electrons in a finite, periodic potential. A solution to the Schrödinger
equation that fulfills our demands is of the form

Ψk(r) = eik·ruk(r). (2.5)

7



CHAPTER 2. THEORETICAL BACKGROUND

This solution is called a Bloch wave, where the modifying term uk(r) contain
information about the potential, exhibiting the same periodicity as the real space
Bravais lattice. The subscript k indicates that there shape of the solutions are
dependent on the electron momentum. It can be shown that the relation

Ψk+G(r) = Ψk(r) (2.6)

holds, meaning that a Bloch wave is only unique up to a shift of a reciprocal
lattice vector G. Inserting this back into the Schrödinger equation, one arrives at
the relation

E(k + G) = E(k) , (2.7)

which means that the energy also is lattice periodic. Thus, we only need to concern
ourselves with the treatment of the system in the first Brillouin zone, as this will
include all unique eigenstates of the electrons.

Let us now look at some of the results these models produce, illustrated in
Figure 2.3. We have seen that the free electron model yield a parabolic dispersion
for the energy with respect to the momentum vector (panel a). By introducing
a small, finite potential and imposing the symmetry of the lattice, the energy
dispersion is reproduced for shifts of a reciprocal lattice vector (panel b). As the
main result of the nearly-free electron model, an increased potential leads to the
formation of gaps at the Brillouin zone boundaries, producing regions where there
exist no electron energy states (panel c). These regions are known as band gaps,
while the regions that have available states are the allowed energy bands. This
result is of great significance for understanding semiconductor properties, which I
will return to in Section 2.3.1.

Near the edges of an allowed energy band the energy-momentum relation can
be described in a simple way by introducing the effective mass of an electron in
the solid. By this quantity it is possible to describe the behavior of an electron in
the crystal as a free electron with an apparent effective mass m∗. In this way, the
effective mass carries information about the internal effects of the lattice potential,
representing the response of the electron-crystal system to the outside world [32].
If we now assume that the energy-momentum relation can be described as given
by Eq. 2.3, the curvature of the band becomes

d2E(k)

dk2
=

d2

dk2

(
~k2

2m∗

)
=

~
m∗

. (2.8)

Thus, we see that the inverse curvature of the band near the band edge becomes
a measure of the effective mass of the band.

8



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Solutions for the electron band structure E(k) for the free- and
nearly-free electron model. (a) Free electron case. The energy disperses parabol-
ically as a function of the momentum k. (b) When introducing a weak potential and
imposing the symmetry of the real lattice, the free electron-like parabolas are reproduced
periodically by the displacement of a reciprocal lattice vector G. (c) By increasing the
effective potential, gaps are formed at the Brillouin zone boundaries, representing energy
regions where there are no available energy states. Reprinted from Ref. [17].

2.2.3 Bulk- and surface states

The models used for describing the electronic states are idealistic in the sense that
they assume a infinite solid wherein the electrons reside. In real solids, we have to
account for the existence of a surface, which effects the Bloch wave solutions for
the electrons in the solid. The existence of a surface has two main implications on
the electronic states. First of all, the wavefunction of a electron inside the crystal
has to vanish outside of the solid. Such solutions can be achieved by matching the
wavefunction to an exponential decay at the surface [7, 15]. These states are called
bulk states. Second, the surface makes a new type of solution possible, originating
from a complex part of the k-vector. This solution has an oscillating part which
grows exponentially towards the surface, and decreases exponentially outside the
solid. These states are highly localized to the surface, and are thus named surface
states [16]. The bulk and surface states are sketched in Figure 2.4.

While the surface breaks the periodicity of the lattice in the direction perpen-
dicular to the surface, it is still present in its parallel direction. As a result, surface
states lose their dependence on the perpendicular component of the wave vector
while retaining the dependence in the parallel direction, making them effectively
two-dimensional. This is an example of two dimensional quantum confinement. In
the next section I will look at how quantum confinement can occur in a potential
step inside a solid, and how this affect the electronic states.

9
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Figure 2.4: Bulk and surface electronic states. The distance z is directed along
the axis perpendicular to the surface. (a) The shape of a bulk state wavefunction. For
a bulk state, the Bloch wave needs to match a exponential decay at the surface. (b) A
surface state wavefunction. When introducing a surface, new states are made possible.
Such states are highly localized to the surface, and consist of a oscillating part that is
modulated by exponential decays both into the solid and out into vacuum. Reprinted
from Ref. [16].

2.2.4 Quantum well states

The concept of a quantum well is central in this thesis, as it is the phenomenon re-
sponsible for the electronic states we wish to investigate. We now consider a ideal
square potential well in the z-direction in the bulk of a solid. Inside the potential
well the electron wavefunction can be split into a parallel and a perpendicular
component relative to the potential step [15]. For the parallel wavefunction, the
solutions are the same (up to a constant potential offset) as for a nearly-free elec-
tron bulk state. The solutions for the wavefunction perpendicular to the potential
well must satisfy the boundary conditions of the well. This is a well known prob-
lem in quantum mechanics, and leads to discrete quantized energy levels in the
z-direction which are significantly separated in energy [15]. This means that there
will be confined energy states in the well, trapping electrons in the perpendicular
direction. The confinement, and thus the energy separation, depend mainly on two
parameters: the width of the well and the strength of the potential [7]. This will
be used as a basis to model the width-dependence of confined states in a δ-layer
system, which is presented in Chapter 5.

10
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2.3 Quantum confinement in silicon δ-layers

So far we have looked at various forms of electronic states in a crystalline solid,
which were derived from a quantum mechanical point of view. Before I continue
with the specific case of quantum wells in silicon, I will now briefly look at how
this can be extended to describe the theoretical fundamentals of semiconductors.

2.3.1 Semiconductor basics

The main result from the nearly-free electron model showed that the electronic
band structure in a crystal solid is divided into allowed energy bands and gaps
which has no available energy states. A semiconductor can be defined as a solid
where the density of available states is zero at the chemical potential at T = 0 K
[15]. This means that one of the energy bands is completely filled, while the higher
bands are empty. The occupied band is called the valence band, while the empty
band is called the conduction band. Electrons residing in the valence band are
unable to be excited into higher energy states by an amount less than the energy
difference of the bands, known as the band gap energy. At finite temperature, we
have seen that the Fermi-Dirac distribution develops a so-called soft zone around
the Fermi level, giving a finite probability of some states above the Fermi level to
be occupied (as shown in Figure 2.2). The soft zone is approximately 100 meV
wide at room temperature. Band gaps of most intrinsic semiconductors are much
larger than this, but typically less than 3 eV [15, 32].

Figure 2.5: Doping of semiconductors. The Fermi level can be shifted by doping
the intrinsic semiconductor with impurities having either additional (n-type) or less (p-
type) valence electrons.

The configuration of the energy states around the band gap can be altered
by doping the semiconductor. The process of doping relies on the introduction
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of new states within the band gap, effectively changing the chemical potential
of the material. This concept is fundamental to semiconductor devices and has
been extensively exploited in electronic technology for the past decades. Doping is
achieved by introducing impurities to the semiconductor lattice, either having one
more or one less electron per atom than the host material. This is known as n-type
and p-type doping, respectively. n-type doping give rise to new states below the
conduction band, raising the Fermi level. p-type doping create available states near
the valence band band, lowering the Fermi level. This is illustrated in Figure 2.5.
Doping can dramatically change the electronic properties of the semiconductor,
as there now exist loosely bound electrons that can be easily excited by small
energies.

2.3.2 Fundamental properties of silicon

Silicon (Si, atomic number 14) is a type-IV semiconductor with a diamond crystal
structure, consisting of covalent bonds between four sp3-hybridized orbitals. The
crystal can be described by a fcc Bravais lattice with two atoms in the basis; one
at (000) and the other at (a

4
a
4
a
4
) along the body diagonal, where a = 5.431 Å is

the Si lattice parameter [15, 32]. Due to its Bravais lattice, crystalline Si has a
cubic symmetry [38]. The 3D Brillouin zone (BZ) is a bcc Wigner-Seitz cell [38]
(see Figure 2.6).

a
=

5
.4

3
1

 Å

[001]

Figure 2.6: Bulk Si crystal structure in real and reciprocal space. (a) Real
space unit cell. The diamond structure is described by the face-centered cubic Bravais
lattice. (b) Body-centered cubic Wigner-Seitz cell in reciprocal space, describing the
first Brillouin zone. Adapted and reprinted from Ref. [38].

Figure 2.7 shows the electronic band structure of bulk Si along two directions
in reciprocal space. We see that Si has a band minima towards the Brillouin
zone boundary near the high symmetry X-point, giving an indirect band gap of
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Figure 2.7: Band structure of bulk Si and Brillouin zone locations of the
conduction band minima. (a) Bulk band structure of Si at 300 K along the L−Γ−X-
directions of the Brillouin zone. The indirect bandgap is shown (shaded). (b) Brillouin
zone locations of the six degenerate valleys of the bulk Si conduction band minima.
Reprinted from Ref. [32].

approximately 1.12 eV at 300 K [32]. Due to the symmetry of the reciprocal
lattice the conduction band minima has a six-fold degeneracy in reciprocal space
[38]. This is illustrated by Figure 2.7(b).

2.3.3 δ-doping

Phosphorus (P, atomic number 15) has five valence electrons compared to four
in Si, making it a n-type dopant. Thus, P doping of Si4 will raise the Fermi en-
ergy compared to the bulk Si crystal. A narrow, heavily phosphorus-doped region
encapsulated in a bulk Si crystal is known as a Si:P δ-layer. The most extreme
configuration is the monolayer (ML), which consist of an atomically sharp dopant
profile. The thickness can be increased to several atomic layers, but the monolayer
is the most extensively studied due to its increased relevance for device applica-
tions. The density of dopants in the δ-layer will vary depending on the method of
fabrication, but calculations typically operate with a 25% dopant density (normal
saturation, see e.g. [8, 22]). This will be discussed in greater detail in later chap-
ters. The sharp dopant profile of the δ-layer creates a discrete chemical potential
due to the raised Fermi level, which is not a stable configuration. Electrons will

4Not to be confused with p-doped Si, referring to a p-type dopant.
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flow from the doped region, ionizing the donors to create a net positive charge in
the dopant layer. The resulting electric field will counteract the Fermi level step
to produce a constant chemical potential throughout the solid at thermal equilib-
rium. As a result, the conduction band will bend, creating a potential well in the
region of the δ-layer. If the doping profile is sharp and dense enough, the depth of
the well will cross the Fermi level, creating a strong confinement in the direction
perpendicular to the δ-layer. As a consequence, new available states in the Si band
gap will make the dopant region metallic [24]. The confinement effects will break
the degeneracy of the conduction band minima, creating discrete, highly localized
energy states. In effect, this is a quantum well, confining electrons in the δ-layer to
in-plane movement in a two-dimensional electron gas (2DEG). Generally, a higher
dopant density is shown to increase the confinement [22]. A calculated confining
potential profile is shown in Figure 2.8. The three lowest energy states of this
quantum well system are named 1Γ, 2Γ and 1∆, and represent the main subject
of interest in this thesis.

Distance from -layer (monolayers)
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Figure 2.8: Calculated Si:P δ-layer poten-
tial profile. Result of tight-binding calculations
on a monolayer δ-layer of 25% dopant density.
Predicted minima of 1Γ, 2Γ and 1∆ states are
indicated. Reprinted from Ref. [22].

The two dimensional character
of the layer leads to a collapse of di-
mensionality of the Brillouin zone,
where the 3D BZ is projected onto
a 2D sheet. This can be seen in Fig-
ure 2.9. As a consequence, the out-
of-plane locations of the conduc-
tion band minima (along the kz-
direction in Figure 2.7) is projected
down to the 2D Brillouin zone cen-
ter Γ-point, while the other four lo-
cations are projected to their own
positions. The out-of-pane loca-
tions give rise to the 1Γ and 2Γ
states, while the 1∆-states are as-
sociated with the in-plane features
[17, 27]. It is interesting to note
that the Brillouin zone projection
leads to equivalent locations in the
2D BZ not necessarily correspond-
ing to the same 3D BZ location.
This can be seen by traversing between neighboring 2D zones in two different
directions (red and green arrows of Figure 2.9). The consequences of this is vital
to understanding the photoemission process of such states, as we shall see in later
chapters.
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Figure 2.9: Brillouin zone projection from 3D to 2D. Four in-plane X high-
symmetry points of the 3D Brilouin zone (BZ) are projected to the corners of the 2D
BZ, while two out-of-plane X-points are projected to the 2D zone center (Γ-point). Note
that the projected 3D plane leads to neighboring 2D Brillouin zones not necessarily
representing the same regions of the 3D BZ (illustrated by traversing from one 2D zone
to the next along the green arrow compared to along the red arrow). Reprinted from
Ref. [17].

2.4 Existing work

Si:P δ-layer structures have been extensively studied by various numerical models
to predict several key properties of these systems. This includes density functional
theory (DFT), tight-binding (TB) and effective mass theory (EMT) approaches
[10, 11, 22, 24, 27]. Particurlary, the effects of the dopant configuration in the layer
have been of interest. Tight-binding calculations of the electronic band structure
of an ideally doped Si:P monolayer system as well as the impact of changing the
dopant density on the band minima is shown in Figure 2.10. The corresponding
potential shape is shown in Figure 2.8. We see that both the 1Γ, 2Γ and 1∆ states
are predicted to reside below the Fermi level. By observing the curvature of the
predicted bands we see that the valleys of the Γ and 1∆ states can be associated
with different effective masses of the bulk Si band minima; the Γ states with the
transverse effective mass (mT = 0.19me) and the 1∆ states with the longitudinal
effective mass (mL = 0.98me) [10, 28].

The Γ states have been studied and verified experimentally in several articles
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Figure 2.10: Tight-binding calculations of a Si:P monolayer doping profile.
(a) Modified band structure of an ideal ordered δ-layer of 25% dopant density (red
lines) along two directions parallel to the layer. The energy minima of the three lowest
energy states of the quantum well (the 1Γ, 2Γ and 1∆) are indicated. Bulk band states
are shown for reference (dashed black lines). Energies are given with respect to the
conduction band minima. Calculated valley minimas of the 1Γ, 2Γ and 1∆ states as
a function of dopant density. Energies are given with respect to the Fermi level. (b)
Band valley minima for the δ-layer states as a function of dopant density. Adapted and
reprinted from Ref. [22].

[24, 27, 28]. Still, the experimental findings deviate somewhat from the theoretical
predictions. In particular, the observed difference between the 1Γ and 2Γ band
minima, known as the valley splitting, is much larger than the calculated values
(see Figure 2.11). The valley splitting is important for determining the electronic
properties of the layer, and understanding how the splittings behave is of great
interest to make use of these structures in atomic scale devices. Both calculations
and experiments are sensitive to the arrangement of the dopants in the layer,5

and this has been considered the main reason for the observed discrepancy (e.g.
shown by DFT calculations in Ref. [28]). In an in-preparation article, Mazzola et.
al. [25] present self-consistent tight-binding calculations that model the impact of
changing the dielectric constant of the δ-layer on the band structure. Previously,

5 It should be mentioned that tight-binding models are known for underestimating the mag-
nitude of energy splittings, while DFT in general is considered more accurate. Still, DFT is more
sensitive to the details of atomic arrangement used in the model.
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the bulk Si value for the dielectric constant has been used for modeling the δ-
layer properties. Results of these calculations show that a substantial increase
in the dielectric constant produces an interesting effect that might explain the
observed splittings (see Figure 2.12). In this case, another distinct band minima
is brought down below the Fermi level at the Brillouin zone center, named the 3Γ.
The predicted valley splitting between the 1Γ and the 3Γ is similar to that of the
measured 1Γ-2Γ splitting. This could suggest that the measured band structure
has been misunderstood in the past, and that the state previously referred to as
2Γ in measurements could instead be 3Γ, and that 1Γ and 2Γ have been mixed
together in a common band, unresolved by measurements. However, I will continue
to use the ”old” terminology when referring to the Γ states throughout this text.
In the discussion of the results, I will return to this topic to see how the presented
data can supplement this conundrum.

Figure 2.11: Measured band structure
of a Si:P monolayer δ-layer. Parabolic
bands (solid curves) are fitted to experimen-
tal data (crosses) to indicate the 1Γ (blue)
and 2Γ (magenta) bands. Adapted and
reprinted from Ref. [28].

For quite some time, the 1∆ states
eluded experimental discovery, raising
additional doubt around the validity
of the projected band calculations and
the predicted locations of the states.
Recently, the states were observed in
thicker δ-layer samples [17], but has not
yet been observed in a monolayer. This
thesis aims to contribute to the un-
derstanding of these systems by track-
ing the evolution of the states as the
dopant layer is made thinner, going
from bulk-like layers towards the atom-
ically sharp monolayer. As we shall see,
this will give a more nuanced picture on
how the state splittings behave in the
monolayer case, specifically by adding
1∆ state to the established experimen-
tal data.
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Figure 2.12: Tight-binding calculations of a Si:P 1/4 monolayer for different
values of the dielectric constant ε. Modified band structure of the δ-layer for (a)
ε = 20 and (b) ε = 40 along two directions of the Brillouin zone (kx, ky and kxy). These
values are increased compared to the bulk Si value (ε = 11.9), which is assumed in the
calculated structure seen in Fig. 2.10a). Valley minima of the 1Γ, 2Γ, 3Γ and 1∆ bands
are indicated by arrows. Adapted and reprinted from Ref. [25].
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Chapter 3

Experimental techniques and
requirements

In this chapter I will cover the basic principles behind the experimental techniques
used in the work of this thesis. This will include photoemission techniques to
study δ-layer structures in Si, preparation techniques for making the structures,
and some important practical requirements for carrying out the various parts of the
process. Particular aspects relevant to the discussion of the experimental results
is treated in greater detail.

3.1 Photoemission spectroscopy

3.1.1 Photoemission basics

Photoemission spectroscopy (PES) relies on the photoelectric effect to measure
electrons emitted from a solid. Photons incident on a sample excite electrons in
the solid by such an amount that the electron can overcome the work function of
the material and escape into vacuum, where it can be observed by a detector. The
short inelastic mean free path of electrons make PES techniques surface sensitive,
probing only the uppermost nanometers of the solid [23]. Figure 3.1 illustrate the
energetics of the photoemission process.

A photoemission event can be described in a simple picture through the three
step model, which makes use of the same assumptions as the nearly-free electron
model [9]. In the first step, electrons occupying an initial state in the solid are
optically excited into an available Bloch-like bulk final state. Both energy and
momentum must be conserved in this process. Conservation of energy is achieved
simply by the electron absorbing the photon energy hν and increasing its energy
by an equal amount. For the momentum conservation however, the electron needs
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Figure 3.1: Energetics of a photoemission event. An electron is excited from
an initial state by the energy hν of an incident photon. The energy of the initial state
can be found from the relation between the measured energy of the electron in vacuum
(Ekin, relative to the vacuum energy EV ), the work function of the solid (Φ) and the
photon energy. This produces a spectrum representing the occupied density of states in
the solid (gray shading). Note the experimental broadening of the measured spectrum.
Reprinted from Ref. [9].

help from the lattice, which provides the momentum in units of a reciprocal lattice
vector G. This corresponds to a vertical transition in the band structure, due to the
fact that extended Brillouin zones are equivalent to the first Brillouin zone. This
is illustrated in Figure 3.2. The momentum of the photon is very small, making it
negligible for our purposes. In the second step of the model, the excited electron
travels to the surface, and may be scattered elastically along the way according to
its mean free path. In the final step, the electron escapes the surface via a matching

20



CHAPTER 3. EXPERIMENTAL TECHNIQUES AND REQUIREMENTS

of the bulk state to a free-electron-like vacuum state, with a parabolic dispersion
equal to the one presented in Eq. 2.3. The binding energy EB of the electron state
occupied by the electron before the photoemission event can be calculated from
the observed kinetic energy in vacuum Ekin, the photon energy hν and the work
function of the solid Φ [9, 16] by the relation

|EB| = hν − Φ− Ekin . (3.1)

Figure 3.2: Kinematics of a photoemission event in the three-step model.
(a) Nearly-free electron band structure, showing two Brillouin zones. Vertical arrow
describes the first step in the model; the direct optical excitation of an electron from an
initial state (ki, Ei) to a final state (ki+G = ki , Ef > EV ). States are separated by the
photon energy, conserving energy in the process. Momentum is conserved through the
lattice supplying momentum in units of a reciprocal lattice vector G, corresponding to a
vertical transition in the first Brillouin zone. (b) At the surface, the final state matches
with a free-electron state in vacuum and escapes the solid. (c) Measured spectrum
of electron kinetic energy Ekin in vacuum, representing the density of occupied states
(DOS) within the energy probing depth hν − Φ, where Φ is the work function of the
solid. Reprinted from Ref. [9].

The three-step model assumes that all three steps happen simultaneously, and
that the solid left behind after the photoemission of an electron relaxes into a
new state immediately in a discontinuous manner. Each step has an associated
probability, and the total probability of a successful photoemission event is the
product of the three probability factors [9].

There exists a range of photoemission techniques which make use of different
photon sources and offer various functionalities. I will now present the details of
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the specific photoemission technique used in this work, representing the means for
investigating the electron states of the Si δ-layers.

3.1.2 ARPES

ARPES is short for angle-resolved photoemission spectroscopy, and is a powerful
tool for measuring the occupied electronic band structure of metals and semi-
conductors [9, 16, 23]. The technique is also known as ARUPS (angle-resolved
ultraviolet photoemission spectroscopy) due to the type of radiation used. The
main idea behind this technique is to measure the direction and kinetic energy
of photoemitted electrons and relate this to the original electron momentum and
energy inside the solid. The instrumentation of an ARPES experiment can be seen
in Figure 3.3. A photoemitted electron enters a hemispherical analyzer1 which has
a dispersive- and a non-dispersive plane with respect to the electron energy. In
the dispersive plane, an applied voltage difference across the inner and outer parts
of the hemisphere causes a bending of the electron trajectory which is dependent
on the kinetic energy of the electrons passing through. Adjusting the applied po-
tential makes it possible to control the energy range which passes the analyzer. In
the non-dispersive plane, electrons are simply mapped according to their emission
angle θ relative to the sample orientation (see Figure 3.3). The electron is then
detected by a two-dimensional detector. The photoemission of several electrons
give rise to a intensity distribution in the detector as a function of kinetic energy
and emission angle.

Now, how can we use the measured quantities of the electron outside the solid
to gain information about the original state of the electron? This is achieved by
considering the conservation of energy and momentum at the surface. Energy is
conserved, and the energy of the initial state can be found through the energetics
of the photoemission process, given by Eq. 3.1. The conservation of momentum is
a bit more complicated. The components of the outside momentum can easily be
calculated from the geometry of the experiment. Due to translational symmetry
at the at the surface parallel plane, the parallel momentum is conserved across
the surface [9]. This makes it possible to express the electron initial state parallel
momentum k|| by known parameters:

k|| = |k||| =
1

~
√

2mEkinsinθ. (3.2)

For the perpendicular momentum component k⊥, the situation is different.
This component is not conserved in the photoemission process, and there is no

1There are other ways of detecting electrons in a ARPES experiment, but I will only describe
the case of the hemispherical analyzer.
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Figure 3.3: Instrumentation of angle-resolved photoemission spectroscopy
(ARPES). (a) Cut through the dispersive plane of the hemispherical analyzer. Pho-
toemitted electrons are deflected in a electric field set up between the inner and outer
hemisphere. The dashed blue line represent the trajectory of electrons having an en-
ergy Ekin = EP , called the pass energy. (b) Cut through the non-dispersive plane of
the hemispherical analyzer. Electrons are mapped onto the detector according to their
emission angle θ. (c) Resulting detector image. White contours correspond to higher
detector intensity. Reprinted from Ref. [15].

way of telling the dispersion of the excited electron final state before the surface
transmission. To solve this problem, an a priori assumption of final states is made.
By assuming nearly-free electron final states, one obtains

k⊥ = |k⊥| =
1

~
√

2m(Ekincos2θ + V0), (3.3)

where V0 is the inner potential of the solid, which can be calculated for a specific
solid. Combining Eq. 3.2 and Eq. 3.3, we now have a way of relating measured
quantities to the band structure of the occupied states E(k) inside the solid. It
should be noted that the non-conservation of the perpendicular momentum leads
to a refraction effect across the surface. This effect is absent at normal emission and
becomes more prominent as the perpendicular momentum component increases.

By varying the orientation of the sample and the photon energy, the dispersion-
free plane of the detector will correspond to different cuts in reciprocal space, al-
lowing the entire Brillouin zone to be mapped through multiple ARPES images.
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Stacking these images produces a 4D data cube, allowing different slices to be
extracted. Relevant to this text, an angle map refers to the slice in such a cube
displaying the intensity distribution of a given energy for the emission angle θ ver-
sus the orientation angle Φ (see figure 3.3) which corresponds to two perpendicular
directions in the Brillouin zone.

3.1.3 Imaging buried states

Figure 3.4: Photoe-
mission resonance for
the 1Γ and 2Γ δ-layer
states. Only par-
ticular combinations
of the photon energy
hν and the momen-
tum component k⊥
lead to photoemis-
sion. Reprinted from
Ref. [24].

It can be difficult to imagine how one can measure the elec-
tronic states residing in a buried δ-layer using a highly sur-
face sensitive technique such as ARPES. This is possible due
to a resonant enhancment of the photoemission process, al-
lowing the fraction of the δ-layer state wavefunctions that
exists at the surface to be measured. This process has been
studied and explained e.g. in Ref. [24] and Ref. [27]. The
confined δ-layer-states have a two dimensional nature, i.e.
they have no (or little) k⊥-dependence. However, the pho-
toemission of these states require coupling to bulk-like final
states, which do depend on k⊥. The photoemission process
is therefore resonantly enhanced when particular regions of
the Brillouin zone is probed, corresponding to the origin of
the confined states. We have seen that the δ-layer-states
that we wish to investigate originate from near the bulk BZ
high-symmetry X-points. Resonance is therefore achieved
when probing these regions of momentum space. The region
that is probed will be related to the photon energy used and
the orientation of the sample. For particular values of the
photon energy, only certain values of k⊥ lead to photoex-
citation (see Figure 3.4). It must be noted that both the
initial and final state have some broadening of k⊥, meaning
that the photoexcitation resonance may occur for a range of
photon energies, but with different probabilities [24]. The
work of this text relies on previously found ARPES param-
eters for the locations for the Γ- and 1∆ state resonances,
given by Ref. [17, 27, 28].

3.1.4 Synchrotron radiation

From the previous chapter, it is clear that we require great
control over the Brillouin zone navigation during ARPES
experiments to accurately measure the quantum well states
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belonging to a δ-layer. For this, a variable photon energy
is crucial. This is achieved by using synchrotron radiation. A synchrotron gener-
ates electromagnetic radiation through the acceleration of ultra-relativistic charged
particles around a storage ring using powerful magnets and insertion devices. The
radiation is directed towards the experiment setup (called a end-station) via a
so-called beamline, consisting of a series of mirrors and slits. The desired photon
energy can be selected from a broad spectrum using a monochromator, which is a
frequency filter using a spatial grating. Synchrotron-generated radiation has the
advantage of being highly collimated and intense, allowing for very small band-
widths of the monochromator, greatly improving the energy resolution compared
to other radiation sources. For more in-depth information on synchrotron radia-
tion, the reader is referred to Ref. [5].

3.2 Ultra High Vacuum (UHV)

Silicon is very reactive, and surrounding particles will quickly stick to a clean Si
surface causing contamination. It is therefore desirable to minimize the number of
contaminant particles impinging on our sample. This is achieved by carrying out
experiments inside a vacuum chamber. A vacuum environment with a pressure in
the range of 10−9 mbar and below is known as ultra high vacuum (UHV), and is a
key requirement for keeping samples clean for an extended period of time during
surface sensitive experiments [16]. To achieve such an environment, particles are
effectively removed from an enclosed system using a series of pumps. The gas inside
the vacuum system is referred to as the rest gas, and is the working substance for
the various pumps. The first step in the pumping process is a so-called roughing
pump, typically a rotor-vane pump, which achieves a pressure of approximately
10−3 mbar. At this point, a turbomolecular pump (or simply just turbo pump) is
utilized to further reduce the pressure. The turbo pump uses a stack of rapidly
rotating blades which gives the rest gas molecules momentum in the direction
of the roughing pump, which backs up the turbo. With this configuration, one
can achieve pressures as low as 10−11 mbar. Once the pressure is reduced to a
stable low value, an ion pump can be used to maintain the low pressure. This
pump ionizes the rest gas molecules, which then sticks to a titanium cathode. The
particles are thereby trapped in the pump so that they no longer can contribute
to the chamber pressure.

The pressure in UHV systems is monitored by the use of specialized gauges.
For pressures down to the 10.3 mbar range, a Pirani gauge is typically used. This
gauge measures the pressure by sensing the current through a wire, in which the
resistance is temperature-dependent. The wire temperature is again dependent on
the amount of particles impinging on the wire, and thereby cooling it. The current
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through the wire can then be calibrated to give a measure of the surrounding pres-
sure. For lower pressures, an ion gauge can be used. Here, the rest gas is ionized
by accelerated electrons in the gauge. The ions hit a wire, and the current through
the wire becomes a measure of the rest gas pressure. Additional information on
the vacuum environment can be achieved by using a mass spectrometer. The rest
gas is ionized as in an ion gauge, and the ions are accelerated and filtered accord-
ing to their mass-to-charge ratio before being focused onto a detector. This is an
important tool for vacuum diagnostics, giving detailed information of the different
species contributing to the chamber pressure.

Apart from the effectiveness of the pumps, achieving low vacuum pressure is
affected by two main factors. The first one is by leaks. All ports and connection
of a vacuum system may be the source of leakage, for instance from bad gaskets
or flanges that are not tightened properly. The second factor is by the degassing
of the vacuum chamber walls. This is mainly due to the evaporation of water
molecules adsorbed on the surface, but the evaporation of other impurities also
contribute. The degassing process will in principle happen by it self, but it takes
a very long time to reach very low pressures. The process can be accelerated by
baking the system, which means heating the system to approximately 200°C for an
extended period of time. For additional information on the UHV principles and
components measured above, see e.g. Chapter 3 of Ref. [16].

3.3 Preparation techniques

The aim of this section is to give a brief overview of the preparation techniques
used in the experimental work of this thesis. The specific preparation schemes for
preparing δ-layer structures is covered in the next chapter.

3.3.1 Sample heating

Annealing

In the previous section we saw how a UHV system represents a central requirement
for keeping the samples that is to be investigated as clean as possible throughout
the process. Inevitably, samples being brought into a UHV system from an atmo-
spheric environment will be contaminated to some extent. This is especially true
for Si due to its reactive nature, and consequently it has to be cleaned in vacuo.
The process of thermal annealing is based on applying thermal energy to a system
to either remove unwanted impurities or to improve ordering of crystal or surface
structure [2, 23]. Si is well suited for surface cleaning by heating, due to the fact
that its melting point is higher than the temperatures required to overcome the
desorption energy of most contaminant species [16]. The annealing temperature
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can be adjusted to achieve controlled desorption of selected chemical species. As
an example, the native oxides of Si will desorb at approximately 600°C, while the
lighter oxides require a lower temperature to come off. This can be utilized in the
cleaning process, as the native oxides can help protect the Si surface from further
contamination. A moderate temperature anneal for an extended period of time
will allow light impurities to migrate from the bulk towards the sample and then
desorb. This is referred to as degassing. A quick, high temperature anneal close
to the sample melting point is called flashing, its purpose being to get rid of re-
maining, heavier contaminants. Annealing will also affect the crystal and surface
structure. In the case of Si, surface reconstruction and surface defect formation
is sensitive to the characteristics of the anneal. This will in turn will affect the
chemical properties of the sample surface, making it an important parameter when
preparing atomically sharp Si:P δ-layers [13].

Direct- and indirect heating

There are two main ways of heating a sample inside UHV; either by direct- or
indirect heating. Direct heating use the resistive properties of the solid by applying
a voltage across the sample such that a current is pushed through the material,
thereby heating it. It is important to note that the resistive properties of the
material being heated is temperature-dependent, meaning that the temperature
increase is not linear with respect to the applied voltage. To avoid a sudden
unwanted temperature increase, a current limiter can be used to gain some control.
Direct heating does not work very well on insulators, and the method of indirect
heating is then preferred. In this method a nearby filament (made by e.g. a
tungsten wire) is heated, which in turn heats the sample.

3.3.2 Growth techniques

Thermal evaporation

The heating of materials is also the basis of the growth technique thermal evapora-
tion. This is a easy and versatile way of growing thin films in a UHV environment.
Thermal energy is added to a substance of a particular element, heating it to close
to its melting point, causing it to evaporate. The substance can then condense on
a nearby substrate surface, gradually forming a film. An Si evaporator device can
be made by placing a piece of Si between two electrical contacts capable of deliv-
ering a high current through the material. The evaporator can be fitted on a port
in a UHV chamber with electrical feedthroughs for connecting a power supply.

27



CHAPTER 3. EXPERIMENTAL TECHNIQUES AND REQUIREMENTS

Gas dosing

Another useful way of growing a substance on a substrate in situ2 is by gas dosing.
In this case, the growth happens by chemical vapor deposition, where a gaseous
element sticks to reactive surface sites of the substrate [36]. Gas is introduced into
a UHV chamber via a leak valve, which are specifically designed for controlled
gas admission to such systems. The dosing amount is measured by observing the
pressure rise in the chamber as the gas is introduced. A mass spectrometer may
be used to achieve greater control of the dosing process. In the work of this thesis,
gas dosing was used to administer phosphine gas (PH3) for the creation of the
dopant layer. The reaction paths of PH3 on Si is a complicated and much studied
subject (see e.g. [13, 36, 37]). The main relevant reaction is the PH3 → P + 3H
dissociation encouraged by heating the sample, giving the possibility of separating
the P from the H atoms in the δ-layer structure. Due to different desorption
energies, a well suited anneal will remove the H atoms while the P atoms are
incorporated into the Si crystal. This is central to the δ-layer sample preparation
process, which will be presented in the following chapter.

2 I.e. inside UHV without exposure to external environment.
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Chapter 4

Experimental approach

This chapter will serve to document the experimental work conducted in relation to
this thesis. This includes the instrumentation, the specific method of fabrication
and data collection method through ARPES measurements. A brief discussion
concerning the δ-layer preparation scheme is included to highlight some important
aspects of the process.

4.1 Instrumentation

The data presented in this thesis was collected during two beamtimes at the SGM3
beamline of the ASTRID2 synchrotron facility, Center for Storage Ring Facilities
(ISA) in Aarhus, Denmark. A picture of the beamline endstation used for the ex-
periment can be seen in Figure 4.1. The samples were prepared and characterized
in situ. Sample preparations was done in a dedicated silicon preparation chamber
specifically designed for δ-layer growth, housing a Si evaporator and gas lines for
phosphine gas dosing. The silicon preparation chamber held a base pressure of
approximately 1 · 10−10 mbar. The samples were heated by direct heating, and
temperature readout was done by a mounted IR pyrometer. Evaporator and sam-
ple current control was achieved by two separate DC power supply units. ARPES
measurements were carried out in the main analysis chamber, where the sample
was mounted on a six-axis manipulator for total control of orientation. Photons
were supplied by synchrotron radiation, with a selectable photon energy in the
range of 12-150 eV. The setup allowed for ARPES measurements with an energy
resolution better than 10 meV and angular resolution better than 0.1°1 [6, 14].

1For a detailed schematic of the resolution of the beamline, see Appendix C.
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Figure 4.1: SGM-3 beamline endstation at the ASTRID2 synchrotron fa-
cility in Aarhus. Picture of the endstation used for sample preparation and ARPES
characterization, showing 1) hemispherical analyzer (Specs Phoibos 150), 2) main anal-
ysis chamber, 3) main chamber six-axis manipulator, 4) dedicated silicon preparation
chamber and 5) synchrotron beam entry from storage ring.

4.2 Sample preparation: δ-layer growth

Five samples with different δ-layer thickness were prepared. The layer parameters
are shown in Table 4.1. The process started with a p-type (boron doped) Si(001)
substrate which was cleaned in isopropanol (IPA) in an ultrasonic cleaner before
being brought into UHV. All sample substrates were cut from the same Si wafer
to minimize variations in sample properties. The sample was thermally cleaned
in vacuo by degassing for at least 12 hours before being subjected to a series of
thermal flashes. The number of consecutive flashes was determined by observ-
ing the pressure in the preparation chamber during the flashes. When the peak
pressure during a flash was less than 10−9 mbar the sample was considered to be
clean. After the final flash, the temperature was brought down slowly (≈ 2 °C/s)
from 600°C to room temperature to achieve a well ordered, low-defect Si surface
[13]. The sample was then held at room temperature for a minimum of 20 minutes
before proceeding. The next step was the creation of the dopant layer. For the
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Table 4.1: δ-layer thickness for the prepared samples. Estimated uncertainties
can be found in Appendix A.1. The number of corresponding atomic layers for samples
A-D is calculated from the crystal parameters of Si (see Section 2.3).

Sample ID δ-layer thickness [nm] Atomic layers
A 3 ≈ 22
B 1 ≈ 7
C 0.5 ≈ 4
D 0.25 ≈ 2
E 0.13 1 (ML)

monolayer sample, a double-dosing scheme was used. This was done to achieve a
higher occupancy of the δ-layer states compared to a single dose scheme, which
previously have shown to be insufficient to occupy the 1∆ states [17, 28]. PH3 was
dosed at 5 · 10−9 mbar for 5 minutes to saturate the clean Si surface by sticking to
the surface dangling bonds. After dosing the sample was annealed to desorb the
H and incorporate the P atoms in the Si surface. This process was then repeated
a second time. The double dosing approach is shown to produce dopant densities
as high as 50% in the monolayer [26]. The growth of thicker layers was achieved
through simultaneous dosing of PH3 at 5 · 10−9 mbar and thermal evaporation
of Si at 0.4 Å/min2 until the desired layer thickness was reached. The process
is self-saturating, and is assumed to produce a dopant coverage of approximately
25% [26, 37]. The nature of the process leads to the continuous overgrowth of sat-
urated dopant layers with Si, which then in turn is saturated by gas. To achieve
saturation it is important that the partial PH3-pressure is sufficiently high com-
pared to the Si growth rate. To this end, the chamber pressure was monitored
during the entire deposition to be able to observe any drop in PH3 pressure, which
then could be compensated for. After the deposition was complete, the sample
was subjected to an incorporation anneal to cause the H to migrate to the surface
and evaporate off, while incorporating the P atoms into the Si lattice. A capping
layer of 1.5 nm Si was then deposited on the sample. This was done to increase
the relevancy towards real device designs, which need be encapsulated because of
the reactive nature of the materials involved. Finally, the sample was annealed to
reconstruct the Si surface and promote crystal structure. The sample preparation
process including details of the temperature and duration of the annealing steps
is shown in Figure 4.2. Two different sets of anneal temperature parameters were
used for the samples created at the two beamtimes. This is indicated by numbers

2 The Si deposition rate was calibrated by XPS analysis of P 2p core levels during gradually
Si encapsulation on a test sample. The details of this process is given in Appendix A.1.
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(1) and (2) in Figure 4.2, applying to samples A-B and C-E, respectively.
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Figure 4.2: Schematic of the preparation process of Si:P δ-layer samples.
Panel (a) shows the temperature profile of the annealing steps. The numbers 1 (blue)
and 2 (red) indicate two different sets of temperature parameters used. Prior to this
timeline the Si substrate sample was heated to 550°C for at least 12 hours (degassing) to
remove most of the surface contaminant species through thermal desorption. The sample
was then subject to a series of short, high-temperature thermal anneals (flashing) at
1100-1200°C to remove native oxides and remaining unwanted impurities on the surface.
After the final flash, temperature was reduced slowly (≈ 2°C/s) to achieve a well ordered,
low-defect surface structure. The highly doped δ-layer was formed by dosing phosphine
gas (PH3) either by itself (monolayer growth) or by evaporating Si at the same time
(thick layer growth). The sample was then annealed at 550/400°C for 40 seconds to
remove H and to incorporate P into the silicon lattice. For the monolayer sample, the
gas dosing and subsequent annealing step was repeated a second time to enhance dopant
density (double dose). A capping layer of Si was then grown on top of the δ-layer, before
reconstructing the surface with a final 30 second anneal at 500/400°C. Panel (b) shows
the corresponding monolayer sample structure for each step of the process. The blue,
yellow and green spheres represent Si, P and H atoms, respectively. Panel b) courtesy
of Dr. Simon Cooil, used with kind permission.
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4.3 ARPES measurements

Immediately after preparation, the samples were transferred to the main analysis
chamber for ARPES characterization. First, the azimuthal rotation of the sample
was calibrated to ensure correct orientation according to the desired Brillouin zone
cuts. For this, a preliminary image of the Γ-states taken at its assumed location (at
normal emission) was used. Definitions of momentum component directions and
Brillouin zone locations of measurements are shown in Figure 6.2. A small, low
resolution angle scan was collected at normal emission to find the precise location
of the states. A detailed image of the Γ-states was acquired at the best location.
A similar angle scan was then collected around the expected location of the 1∆-
state, and a detailed image was acquired at the best location. A Fermi surface
was then produced by combining a series of images collected for different sample
orientations. During measurements, the analysis chamber had a base pressure of
approximately 2 · 10−10 mbar, and the sample was kept at room temperature.

4.4 Comments to preparation scheme

Several variations of the monolayer growth scheme have been studied, e.g. through
repeated dosing and annealing cycles and temperature variations [26, 37]. More
complex stacking structures of dopant layers using silicon spacer layers and locking
layers are also investigated [20, 21]. Variations in the preparation process are shown
to be of great significance for the dopant properties of the layer. The growth of the
thicker layers are less studied. When dealing with these structures, it is important
to note that the processes involved are highly sensitive to the temperatures of the
individual annealing steps. High temperatures can lead to dopant segregation (the
migration of dopants out of the layer), effectively weakening the confining potential
of the layer. This can also facilitate the formation of P-P dimers, causing electrical
deactivation of dopants [20]. In the opposite case, too low temperatures can reduce
the ordering of the lattice structures, or fail to remove unwanted species which can
affect the layer configuration. The structure of the surface prior to dosing is also
of great importance, particularly for the monolayer case. To approach the ideal
dopant coverage and achieving the maximum number of active carriers it is crucial
to produce a highly ordered, clean Si substrate surface [13]. Considering this, great
care has to be taken when preparing these structures to ensure a consistent and
precise growth.
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Chapter 5

Numerical modelling

As we have previously seen, Si:P δ-layer structures have been studied through var-
ious numerical models to simulate variations in dopant properties in a monolayer
configuration and its implications on the band structure (see Section 2.4). To my
knowledge, the same is not true for the case of a varying δ-layer width. I will
not attempt an elaborate treatment on par with the aforementioned calculations,
as this is beyond the scope of this thesis. I will rather make use of a somewhat
”naive” model to try and gain a quantitative picture of how the state valley split-
tings respond to a changing layer thickness. For this I will employ a simple 1D
finite square potential well (as introduced in Section 2.2.4), giving a quantum me-
chanical treatment of the bound states residing in a narrow, confining potential.
This is a much used model for semiconductor heterostructures, and should provide
insight into some trends that can contribute to understanding the total behavior
of a δ-layer system of varying layer width.

In this model, which I will simply refer to as the square well (SW) model, the
δ-layer potential is approximated by a square potential well of width l and depth
V0 along the z-direction. The energy zero corresponds to the CBM of the bulk Si.
The model is illustrated in Figure 5.1. From Section 2.4 we recall that the valley
minima of the energy states we are concerned with can be associated with different
effective masses. The implementation of this aspect will be key to predicting the
behavior of the valley splittings in this simple model. The numerical task is now to
solve the Schrödinger equation for bound states inside the well for different values
of the width parameter l. The equation reads:(

− ~2

2m∗
d

dz

2

+ V (z)

)
Ψ(z) = EΨ(z). (5.1)

Here, m∗ is the effective mass and V (z) is the square well potential shown in
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Figure 5.1: One-dimensional finite square well (SW) model of a δ-layer sys-
tem. The potential set up by the δ-layer structure is approximated by a finite square
potential profile V (z) of width l and depth V0. The energy eigenstates En of the bound
quantum well states are found by solving the relevant Schrödinger equation for various
values of the parameters l and V0 numerically.

Figure 5.1. The energy eigenvalues are

Ei =
~2k2z,i
2m∗

, (5.2)

where the wave number kz is quantized through the relations√
2m∗V0l2

~2
− (kzl)2 = kzl tan kzl (S), (5.3)√

2m∗V0l2

~2
− (kzl)2 = kzl cot kzl (A), (5.4)

for alternating symmetric (S) and asymmetric (A) wavefunction solutions of Eq. 5.1
[7]. The main output of the computation is the energy eigenvalues of the first two
states having m∗ = mT (bulk Si transverse effective mass, corresponding to the
1Γ and 2Γ states), and the ground state having m∗ = mL (bulk Si longitudinal
effective mass, corresponding to the 1∆ state). The valley splitting of the states
are simulated for varying the well width and for different potential depths.
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5.1 Accuracy of model - important shortcomings

If this model is to aid the understanding of experimental data, it is imperative
that we have a clear notion of what this model can tell us - and what it can not.
Before comparing to any actual data, we can already now address some important
shortcomings of this model. First of all, by comparing the potential shape to
previous calculations (Figure 2.8), it is evident that the square profile is not a very
accurate approximation to the more Coulomb-shaped layer potential. In addition,
the boundary conditions of the problem suggest that the potential is infinitely
symmetric about the well center. This is not the case, as the width of the capping
layer of overgrown Si is comparable to the layer thickness, especially for the thicker
layers. Different potential shapes are expected to affect the energy eigenstates of
the well, meaning that we can not expect the model to produce accurate predictions
of the individual band minima. However, the purpose of the model is merely to
give an impression of the overall trends of the state valley splittings, and for this
the square potential is assumed to be a decent approximation.

It is important to note that this model will only give the contribution from the
strongly quantized perpendicular momentum component kz to the total energy of
the bands. The model disregards that the states are in fact located at at different
Brillouin zone sites, due to the projection of the zone from 3D to 2D (see Figure
2.9). Consequently, an energy offset is imposed due to the parallel component of
the momentum k||. The Γ states are located at the 2D zone center, while the 1∆
states are located towards the zone corners. If we assume that the total energy can
be decomposed into factors dependent on the square of the momentum components
(as is assumed in Ref. [10]), the 1∆ states should be shifted to higher energies to
compensate for the larger k|| component1. The exact amount will not be calculated
in this thesis, as the trend of the splitting will come across regardless. For this
reason, we will not pay too much attention to the energy scales in the calculated
splittings, but rather concentrate on the overall trends that are produced.

5.2 Numerical results

Results of the numerical calculations from the SW model are shown in Figures 5.2
and 5.3.

1When the well is made wider, matters become increasingly complicated. As the states become
more bulk-like, the Γ states will gain a non-zero k||-component due to the reverse BZ projection
from 2D back to 3D. This fact will be noted, but not accounted for in the numerical model.
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Figure 5.2: Numerical SW model - varying well width for different effective
mass states. The well depth is set to equal the Si band gap. (a) Calculated binding
energies with respect to the bulk conduction band minima for the ground- and first
excited state for Si transverse effective mass mT = 0.21me (green and blue circles,
respectively) and for the ground state for Si longitudinal effective mass mL = 0.92me

(purple circles). (b) Calculated valley splitting between the ground state and first excited
state for the transverse effective mass bands. (c) Calculated valley splitting between the
ground state of transverse effective mass and the ground state of the longitudinal effective
mass.
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Figure 5.3: Numerical SW model - varying potential depth for different well
widths and different effective mass states. The simulated response to varying the
potential depth for the ground state energies of the transverse and longitudinal effective
mass states are shown in panels (a) and (b), respectively. Different well widths are
indicated by different color markers. Panel (c) show how the valley splitting between
the two effective mass ground states are affected by changing the potential depth.
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Chapter 6

Results, analysis and discussion

In this chapter I will present and discuss the experimental results collected in
the work of this thesis. The purpose of the discussion will be to investigate how
the energy states of the δ-layer respond to the changing layer thickness of the
individual samples. Experimental broadening, signal noise and the Fermi level
cutoff makes it difficult to point out the exact band structure in the measurements.
Analyzing the results by data fitting is therefore fundamental to interpreting the
data quantitively, enabling us to extract useful and accurate information on the
electronic state dispersions. Therefore, I will start this chapter by looking at
how the data fitting process was conducted. This will be central to the further
discussion of some key aspects of the observed band structures. Following this,
I will present Fermi surface measurements showing the observed location of the
states and compare to previous work. Consequently, the measured and fitted
bands of the individual states will be presented, before eventually treating the
valley splitting trends of the states. The case of the monolayer will be treated in
greater detail and compared to existing work.

6.1 Analysis and data fitting approach

The acquired ARPES data is subject to broadening both from the instrumentation
and from the natural linewidth of the probed states. The broadening from the
instrumentation is related to resolution effects, and can be modeled by a Gaussian
profile. The natural linewidth arises from the uncertainty in energy and momentum
of the states involved in the transition processes during photoemission, and can
be approximated by a Lorentzian profile (see e.g. Ref. [35]). To incorporate
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Figure 6.1: Illustration of data fitting process for δ-layer state ARPES data.
(a) ARPES measurement showing 1Γ and 2Γ state bands. Darker features correspond to
higher photoemission intensity. Several constant-momentum (EDC) and constant-energy
(MDC) intensity distribution curves are extracted from the ARPES dataset. (b) Two
Voigt profiles (blue) modulated by a Fermi-function (black dashed line) fitted against an
EDC extracted at kx = 0 (red line against red markers). (c) Four Voigt profiles fitted to
a MDC taken at the Fermi level (EB = 0). Parabolas are then fitted to the Voigt peak
positions from all EDC and MDC fits (circles and crosses) to indicate the dispersion of
the energy state bands (blue and pink curves in (a) for 1Γ and 2Γ, respectively).

both sources of broadening in the fitting process, a Voigt profile1 was used as a
fitting function. Since the measurement resolution in both momentum and energy
given by the instrument used is better than the observed broadening, the Voigt
profile was weighted towards a Lorentzian profile. The data fitting method is
based on slicing the data set in two ways: 1) A constant momentum slice, giving

1A Voigt profile is a convolution between a Gaussian and a Lorentzian profile. True Voigt
functions are very computationally expensive, so an approximated pseudo-Voigt profile was used,
as provided by Igor Pro 7 software.
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rise to a energy distribution curve (EDC), and 2) a constant energy slice, giving a
momentum distribution curve (MDC). Several such slices were extracted from the
ARPES data, before Voigt profiles were fitted to these curves. For the EDC case,
a Fermi function at room temperature was included to modulate the Voigt profile
across the Fermi level2. The peak positions of the fitted profiles in the various
EDC and MDC slices were stored in a new data set, indicating points on a band
with a momentum and a energy coordinate. Finally, parabolae were fitted against
this dataset3, to give the final fitted parabolic dispersion describing the energy
bands. The process is illustrated in Figure 6.1.

Due to the purely mathematical nature of the fitting process, several assump-
tions had to be made to ensure that the outcome was physically reasonable. Fur-
ther details on this matter as well as a brief discussion regarding the general quality
of the fits and the associated peak position uncertainties is given in Appendix B.

6.2 Brillouin zone location of states

A measured Fermi surface of sample B (1 nm layer thickness) acquired with hν =
118 eV is presented in Figure 6.2, along with a schematic illustrating the predicted
location of the states relative to the 2D Brillouin zone. Equivalent maps were
produced for the other samples. Even though the match is almost complete, we
observe that the measured Fermi surface deviates from the prediction by containing
only half of the 1∆ states. They seem to be missing one pair of ”leaves” in each
location of the Brillouin zone corners. To explain this, we recall the projection
of the 3D bulk Brillouin zone onto a sheet describing the 2D Brillouin zone of
the δ-layer (Figure 2.9). By comparing neighboring zones, we realize that even
though we are probing equivalent regions of the 2D BZ, these projections actually
originate from different regions of the 3D BZ. We have seen that the photoemission
of these states depend on a resonant enhancement, coupling the initial 2D states
to bulk final states. By considering panels (a) and (c) of Figure 6.2, we see that
the leaves of the 1∆ states can be found in the corners of four neighboring 2D
Brillouin zones which pairwise correspond to two different projected planes of the
3D BZ. We remember that the Γ-states originated from near the out-of-plane high
symmetry X-points (i.e. the X-plane), while the 1∆ states were derived from the
in-plane high symmetry points (i.e. the Γ-plane). Due to the resonance condition,
the δ-layer states will be photoemitted through the bulk states corresponding to

2The location of the Fermi level was determined by integrating several EDCs over angu-
lar regions without occupied states and fitting a Fermi function. See Appendix B for further
information.

3Parabolic dispersion of the δ-layer states is assumed, in accordance with previous work on
the subject, as presented in Section 2.3.
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Figure 6.2: Predicted and measured Fermi surface (constant energy) showing
locations of δ-layer states. The directions kx and ky correspond to the defined
directions of the experiment. (a) Schematic of the predicted location of δ-layer states
relative to the projected 2D Brillouin zone (yellow square). Reprinted from Ref. [17].
(b) ARPES Fermi surface measurement collected with hν = 118 eV, corresponding to
near the X-plane of the bulk Brillouin zone. 2D Brillouin zone is overlain to facilitate
comparison to (a). The blue and green dashed lines represent the momentum space
regions probed for the Γ and 1∆ state ARPES measurements, respectively (Figures 6.3
and 6.5). (c) Brillouin zone projection showing neighboring 2D zones and corresponding
3D BZ locations. High symmetry points for bulk BZ are included for comparison to
Figure 2.6. At the bottom corner of the center 2D BZ, a slice along the green dashed
line traverses through regions corresponding to the bulk Brillouin zone Γ-plane, while a
slice along the ky axis traverses through regions corresponding to the bulk X-plane.
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the 3D BZ location which is probed. This explains the missing leaves of the 1∆
states, as they pairwise will be resonantly enhanced by the parameters of the
ARPES measurement. The opposite pair of leaves can be imaged by probing
with a different photon energy and orientation of the sample, corresponding to a
different cut in the k⊥-direction of the bulk BZ (Γ-plane). An example of this can
be seen in Ref. [17].

The measured Fermi surface confirms the existence and location of the states
we are interested in. I will now continue to discuss the measured band dispersions
of the δ-layer states. First, the fitted bands of the Γ and 1∆ states will be discussed
separately, with the aim of highlighting some interesting properties of the systems.
With this serving as a basis, the energy separation of the states as a function of
the δ-layer thickness will be presented and compared to previous calculations and
existing work.

6.3 Γ states

ARPES measurements of the different samples acquired at ky = 0.0 Å−1 along the
kx-direction are shown in Figure 6.3. Fitted parabolae resulting from data analysis
are overlain. There are particularly two points I wish to address from these results;
the variation of the energy of the states, and the variation in observed intensity.
The discussion of these results will serve to exemplify some key properties of the
δ-layer parameters and how they affect the energy configuration of the system.
This will be important considerations for discussing the energy splitting trends
later on.

6.3.1 Energy variations

By considering Figure 6.3 we observe that the 1Γ band is shifted in energy for dif-
ferent sample dopant layer thickness. Comparing to the results from the numerical
SW model, the observed behavior is surprising. Both ends of the width scale show
a deviating behavior from the calculations. In the thinner samples, the expected
rise of the band shifting towards lower binding energies as the layer is narrowed is
completely absent. In the opposite end of the spectrum, the band actually shifts
upwards in energy for the thickest samples. The observed deviations can be caused
by a number of factors.

First, variations in the dopant properties of the different samples can con-
tribute to explaining the observed behavior. I have previously presented calcula-
tions showing how the energy states of the δ-layer are directly related to the dopant
properties (Figure 2.10b). We have also seen that the effects of dopant segregation
and dopant density are highly dependent on the sample preparation process, which
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Figure 6.3: Measured Γ states band dispersion for various dopant layer thick-
nesses. ARPES measurements collected at ky = 0.0 Å−1 for (a) 3 nm (hν = 36 eV), (b)
1 nm (hν = 36 eV), (c) 0.5 nm (hν = 37 eV), (d) 0.25 nm (hν = 38 eV) and (e) 1 mono-
layer (hν = 37 eV) Si:P δ-layer dopant profiles. Blue and magenta color correspond to
the 1Γ and 2Γ states, respectively. Fitted EDC and MDC peak positions are indicated
by markers, and fitted parabolae are overlain to show the location of the bands. The
energies of the band minima are shown explicitly.
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is prone to variations especially due to the delicate temperature dependence of the
processes involved. The monolayer sample is the most evident case to be affected
by this. Due to its alternative sample preparation scheme, it is expected to have
a greater dopant density than the thicker layer samples. Calculations suggest a
energy shift of ∼ 100 meV to higher binding energy for the 1Γ state for the as-
sumed change in dopant density compared to normal saturation. This is seen as a
major contribution to the observed behavior of the 1Γ state variation, as this will
directly counteract the calculated confinement effects pushing the band upwards
as the layer is made thinner. Dopant density variations may also be related to
the upwards energy shift in the thicker samples. From the SW-model predictions
presented in panels a) and b) of Figure 5.3, it can bee seen that the thicker samples
appear to be more sensitive to changes in the potential than the thinner samples.
This could mean that some energy shift in the thicker layers might be ascribed
to dopant properties, even for small changes in the dopant configuration. If this
is the case, it suggests that a lower dopant density has been achieved in the two
thickest samples. This can be seen as a result of the larger incorporation anneal
temperatures used for these samples, promoting dopant segregation and diffusion.
This is consistent with the considerations of the preparation scheme presented in
Chapter 4.2.

It is not considered likely that changes in the dopant density alone can explain
the observed 1Γ behavior for the thinner samples. The approximations made
in the SW model are also expected to contribute to the observed discrepancy.
In the previous chapter, I addressed how the assumption of a square potential
could significantly change the confinement of the states in the well compared to
a more accurate potential shape. This means it is possible that the model falsely
predicts the magnitude of the raising of the energy levels as a result of the potential
approximation. This is assumed to be a significant effect. Another contributing
factor could be a charge redistribution due to the change in the number of bands
that are contributing to the electronic properties of the layer. As the 2Γ state
disappears above the Fermi level, a lot of electron states are made unavailable. If
some of the electrons previously occupying the 2Γ band were to migrate to the
1Γ band, this would lead to a lowering in energy, counteracting the reduced width
effect. The charge redistribution effect is explained in greater detail by Ref. [17].

It should also be noted that some of the presented measurements for the dif-
ferent samples are acquired with different photon energies. This could in principle
affect the energy of the states, as different photon energies will correspond to dif-
ferent cuts of the BZ through varying the k⊥ momentum component (see Section
3.1.2). For states dispersing with k⊥, i.e. states that have some 3D character,
this means that we might not be sampling the true minima of the states. In-
vestigations of the 1Γ state energy minima as a function of photon energy were
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conducted, suggesting that a photon energy of 37 eV is most favorable for probing
the true valley minima of this state. However, the difference in valley minima
for 36, 37 and 38 eV was not found to be significant. In fact, for the thinnest
samples there was no apparent difference. This is because of the states being of a
2D character with little or no k⊥-dependence. For the thicker layers the difference
was found to be within the experimental- and fitting uncertainty. For this reason,
the ARPES data is presented for the photon energy corresponding to the highest
quality measurements, making the data fitting more reliable.

Let us now consider the 2Γ state variation. As the layer is made thinner, the 2Γ
is pushed above the Fermi level, making it hard to predict the energy of the band
accurately. Still, making some assumptions about the relationship to the 1Γ state
makes it possible to include a peak describing the 2Γ valley in the EDC fits. This
is the case for the 0.5 nm and 0.25 nm samples, shown in panels 6.3c) and 6.3d),
respectively. While doing this, one must keep in mind that the intensity relation
between the two states is not straightforward to predict, a matter I will return to
in the next section. I found that fitting with the assumption of a reasonably wide
valley splitting interval, putting the 2Γ above the Fermi level, as well as imposing
a common width parameter for the two Γ states, improved the fit of the single
peak below the Fermi level significantly. Nevertheless, the 2Γ peak positions of
these two samples are related to a larger uncertainty than the directly observed
bands. For the monolayer sample there is no basis for fitting the location of the
2Γ band, as the data show no evidence of the tail of the band coming down below
the Fermi level. We have previously seen that the width of the Fermi-Dirac soft
zone is approximately 100 meV at room temperature. Taking into account the
broadening of the state, we can make the assumption that the state must lie at
least 50 meV above the Fermi level. The 2Γ data point for the monolayer in Figure
6.6 is thus based on this assumption. This will be important to keep in mind for
later discussion.

6.3.2 Intensity variations and resonant enhancement

It is interesting to observe the measured intensity of the 1Γ and 2Γ states relative
to each other. In the thickest sample (3 nm layer, Fig. 6.3a), the 2Γ is clearly
the most intense, and analysis show a near 4:1 ratio of the fitted EDC peak areas
in the slice extracted at kx = 0.0 Å−1 . In comparison, the sample having a 1
nm layer (Fig. 6.3b) show a much more even intensity relation between the two
bands. One explanation for this is that the Fermi slope attenuates the signal of the
bands at low binding energies. Considering the width of the Fermi soft zone, some
attenuation can be credited to this effect. Still, my analysis show that this can not
account for any significant intensity reduction of the 2Γ band minima at kx = 0.0
Å−1 . MDC data clearly indicate that the band minima lies below the Fermi level
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(see e.g. Figure 6.1), so the explanation of the signal being a tail of a higher
state can also be discredited. Instead, we must return once more to the physics
of the photoemission process to give a reasonable explanation for the observed
phenomenon. To achieve resonant photoemission of the states, only certain values
of the photon energy will couple a initial state to a final state through which it can
be photoemitted. Since the Γ states are separated in energy (at least for sufficiently
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Figure 6.4: Photoemission resonance for Γ-states. Photoemission occurs when
an initial state couples to a final state via excitation of an amount equal to the photon
energy hν. Momentum conservation must also be considered, limiting the possible values
of the momentum components. (a) Situations for a given k|| (a) and k⊥ (b) is shown.
Assuming true two-dimensional δ-layer states, the Γ-states exhibit no dependence on the
perpendicular momentum. In the depicted situation, the 2Γ state is in resonance and
appears more intense when imaged by ARPES. The resonance condition changes as the
state is moved up in energy (2Γ′). The blurred line of the final state illustrates that the
resonant condition is fulfilled for a range of momentum values, as both initial states and
final states are subject to some broadening. It should be noted that the thicker samples
are not completely two dimensional, and will exhibit some k⊥-dependence. This will
lead to some initial state dispersion with k⊥.

confined systems), which state is favored to be resonantly enhanced will depend on
the parameters of the measurement and the dispersion of the states involved. This
is illustrated in Figure 6.4. For the 3 nm sample, we can interpret the situation as
the 2Γ state being in a more favorable position for the resonant condition than the
1Γ. Since both the initial states and the final state is broadened to some degree,
the 1Γ state, found at a higher binding energy, is still photoemitted, but with a
lower associated probability. Thus, the 2Γ appears more intense than the 1Γ. For
the 1 nm sample, the situation is different. Now, the 2Γ state has moved to a
lower binding energy, effectively weakening the resonance condition of the state.
The 1Γ is found at a slightly higher binding energy, but still comparable to the
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thick sample band. The result is that the two states couple to the final state with
a similar photoemission probability.

6.4 1∆ states
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Figure 6.5: Measured 1∆ states band dispersion for various dopant layer
thicknesses. ARPES measurements acquired with hv = 45 eV at ky = 1.1 Å−1 for
(a) 3 nm, (b) 1 nm, (c) 0.5 nm, (d) 0.25 nm and (e) one monolayer thick Si:P δ-layer
dopant profiles. Fitted EDC and MDC peak positions are indicated by markers, and
fitted parabolae are overlain to show the location of the energy bands. The energies of
the band minima are shown explicitly.

ARPES measurements showing the bands of the 1∆ states for the different
samples is presented in Figure 6.5, acquired with hν = 45 eV at ky = 1.1 Å−1

along the kx-direction. The left band was used for data fitting, and the results are
overlain on both bands by mirroring about kx = 0.0 Å−1 . Panel e) shows, for the
first time, experimental evidence of the 1∆ state in a true monolayer δ-layer.
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The 1∆ state measurements have a lower signal-to-noise ratio compared to
the Γ state measurements, making it harder to obtain accurate fitting data. At
first glance, this could indicate that the 1∆ states are less occupied than the Γ
states, contradicting calculations presented e.g. in Ref. [10]. One must however be
careful to draw this conclusion. The photoemission process complex and affected
by several factors, and trying to explain this quickly becomes speculations. Still, it
is interesting to consider how electrons are distributed in the states due to the BZ
projection. We know that the 1∆ states are associated with 4 of the 6 degeneracy
lobes of the CBM, while the Γ states derive from the remaining 2. If we were to
assume an equal filling fraction for the Γ and the 1∆ states, the electrons states
representing the Γ bands (within the same BZ) would be squashed together in
the center of the zone, while the electrons residing in the 1∆ bands would be
distributed between the four leaves towards the zone corners. This is assumed
to affect the measured intensity of the states. Another factor that surely plays a
role is that the 1∆ states are measured far away from normal emission, making
scattering effects more significant compared to the Γ state measurements.

If we now focus on the curvature of the 1∆ bands for the different samples, we
se a clear trend of the bands becoming increasingly narrow as the layer is made
thinner. This could indicate that the effective mass of the bands is dependent on
the layer thickness. The reasons for this is not immediately clear to me. From my
point of view, such an effect would be surprising, as we know that the δ-layer states
can be described by the same effective masses as the bulk bands from which they
are derived. If such a dramatic change in electronic structure does not change the
effective mass, why should a change in layer thickness promote this? I will admit
that this is not at all a trivial question. Electron interactions in quantum-confined
systems are complex phenomena, and might be relevant to the situation in ways I
can not anticipate4. I will not attempt to answer this any further. I will however
discuss two factors that might influence this observation. First of all, the error in
the fits must be taken into account. The curvature of the fitted band parabolae
is mainly determined by the MDC fits close to the Fermi level. The quality of
the data and the attenuation due to the Fermi step makes this process subject to
some uncertainty. The fact that the trend is so consistent across all the samples
still indicate that this might be attributed to some other effects. Second, it could
indicate that the measurements correspond to different cuts of the BZ as a result of
the changing k⊥-dependence of the states. This can be explained in the same way
as previously discussed, related to the different photon energies used for measuring
the Γ states. The difference here is that we are not measuring at normal emission,
which could cause a more dramatic behavior e.g. through refraction effects of the
k⊥ component in the photoemission process. Still, this remains speculations, but

4 For instance through effective mass renormalization [4, 18].
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should be kept in mind for further discussion.

6.5 Valley splitting trends for varying δ-layer thick-

ness

In Figure 6.6, the energy band minima of the δ-layer states are shown as a function
of δ-layer thickness. The energies are presented in terms of the valley splitting
relative to the 1Γ state for the individual samples. This is done for two main
reasons: 1) The impact of varying dopant configurations across different samples
is reduced, and 2) any energy offsets due to erroneous Fermi level pinning between
the different samples are avoided. The arguments behind this choice have been
discussed previously, in relation to the 1Γ state energy variation. Additional data
points from previous work presented in Ref. [17] are included to extend the data
range and to supplement the discussion. The additional data is obtained from
ARPES investigation of two samples with 2 nm and 4 nm thick dopant profiles,
which were prepared according to a similar scheme as the one used in the work of
this text5.

6.5.1 General trends

The overall trend of the observed 1Γ − 2Γ valley splitting is similar to the SW
model calculations, with the splitting increasing as the layer is made thinner. This
is seen as a consequence of the increased confinement, pushing the energy levels
apart. For the thickest sample, the two states are degenerate in energy. This is
as expected for a bulk-like sample, due to the fact that both states originate from
the same bulk state associated with the CBM. If we now look at the 1Γ − 1∆
splitting, there are two main observations I wish to address. The most striking
aspect is the almost parabolic feature that crosses the 1Γ− 2Γ trend. The energy
increase for the thicker layers is especially interesting, as we would expect all three
states to be degenerate in the bulk-like case. One explanation could be that the
thickest layer is not sufficient to produce a true bulk-like behavior. In this view, it
is possible that the 1∆ has split apart from the Γ states in the 4 nm sample, but
the confinement is not yet strong enough to break the Γ state degeneracy. The
downward trend of the 1∆ as the layer is made thinner could then be explained
by a charge redistribution effect due to electron migration that occurs as the Γ

5It should be mentioned that these samples lack a capping layer, which may cause the states
to be found at slightly different binding energies due to the implications of the potential. Without
a capping layer, the potential step of the δ-layer will be altered by the vacuum boundary at the
surface. Dopant diffusion is also limited to one perpendicular direction. These deviations are
estimated to be negligible for the purposes of this discussion.
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Figure 6.6: δ-layer state energy separation versus layer thickness. Measured
band minima energies of the 2Γ (magenta) and 1∆ (green) states are plotted relative to
the 1Γ state energy (valley splitting). Data points for 4 nm and 2 nm layers are included
from the previous work presented in Ref. [17], indicated by filled diamonds.

states split apart, bringing down the 1∆ state in energy as the 2Γ is raised. An
alternative view can be taken by comparing to the SW model results. Apart from
the energy scale, there is a clear resemblance between the observed trend and
the predictions presented in Figure 5.3. Previous discussion regarding the model
justifies a possible energy shift of the 1∆ state compared to the 1Γ state (Sec.
5.1). This could indicate that the trend is caused by the different effective masses
of the bands, and that the raising of the 1∆ for thicker layers is a real effect of the
confinement. However, the best match is achieved for the calculations using weak
potentials, which are not expected to be able to produce the degree of confinement
we see in the Γ states measurements. This could be an effect of lacking accuracy
of the model. There is also the chance that we are not actually probing the CMB
for the thicker layers. This can be seen in relation to the previously discussed
variations in curvature of the 1∆ state bands, which could indicate that some
translation in momentum space takes place. This could cause an energy shift due
to the increased k⊥-dependancy of the thicker layer states. Again, this quickly
becomes speculations. It is safe to say that the observed trend is hard to explain
by any one effect. Many competing factors contribute to the dynamics of the
electron states as the layer is made increasingly bulk-like, and it is likely that
some superposition of 2D and 3D state characteristics is present in the thick layer
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measurements.
A more subtle trend for the 1∆ splitting can be seen for the thinnest samples,

where the state seems to make a small ”dip” compared to the 1Γ state. This
happens right around the point where the 2Γ disappears above the Fermi level,
indicating that this too could be related to some charge redistribution. It should
be noted that the uncertainty of the fits might influence the magnitude of the
observed trend.

6.5.2 Monolayer valley spliting

In Section 2.4 we saw that previous work has not been able to completely reconcile
experimental observations and theoretical predictions for the monolayer case. It
is therefore natural to focus on the monolayer measurements to see how the data
relates to the established picture. In particular, I will discuss the ordering of the
states, and how a change in the dielectric constant could help explain the observed
behavior.

By comparing to previous tight-binding calculations, we see that the measured
1Γ− 2Γ valley splitting is roughly 10 times larger than the predicted value. This
is a significant deviation, and could indicate a lack of understanding of the situa-
tion. We should immediately address the fact that the calculations assume a lower
dopant density (25%) than we can expect for the investigated sample (≤ 50%6).
However, the calculations predict that this change in dopant density should not
affect the 1Γ−2Γ band splitting to any significant degree, at least not of the mag-
nitude that is observed. This contradiction is reinforced by comparing to existing
experimental monolayer data. The presented measurements of the double-dosed
monolayer show a dramatic increase (≈ ×2) in the 1Γ − 2Γ valley splitting com-
pared to single-dosed monolayer data presented in Ref. [28] (see Figure 2.11),
indicating a large dependence on the dopant density. Figure 6.6 also show that
the 1∆ state minima sits in between the 1Γ and 2Γ state in the measurements,
contradicting the predicted ordering that puts the 1∆ as the highest energy state
of the three. These observations could serve to support that the state referred
to as 2Γ in the measurements is in fact the 3Γ state, as suggested in Ref. [25].
This would mean that the observed 1Γ band actually contains a second band, even
though there is no compelling evidence for this in the data. This could still be
possible, as the predicted magnitude of this splitting is right at the edge of what
is possible to resolve through this ARPES experiment. Further investigation on
this matter would be needed to clarify this situation.

A problem that arises with this ”new” interpretation is that when assuming

6 Even though the dopant density might be as high as 50%, we might expect the effective
number of active carriers to be less due to some dopant deactivation effects (see Section 4.4.)
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a bulk Si dielectric constant for the δ-layer, the 3Γ band valley is predicted to
be surrounded by other band features which do not appear in the measurements
(see Figure 2.10a)7. An increase in dielectric constant as suggested by Ref. [25]
will disentangle the higher states and produce a distinct, parabolic band valley for
the 3Γ (as seen in Figure 2.12), increasing the agreement with the measurements.
Still, the observed splittings does not completely match the predictions. This
might be affected by several factors. In addition to shifting the Fermi level, the
increased dopant density in the measured sample may contribute to altering the
band splittings. Even though the 1Γ − 2Γ valley splitting is not expected to
vary much with a change in dopant density, the effect may be stronger for the
1Γ− 3Γ and 1Γ− 1∆ splittings. We have also seen that tight-binding approaches
are known to underestimate the magnitude of the splittings. If these effects are
to account for the observed splittings, an important question arises. A general
increase in valley splittings in the calculations would indicate that the 1Γ − 2Γ
splitting should increase as well, meaning that we should be able to resolve them
in the measurements. Why, then, is this not the case in the observations? A
possible explanation could be related to the fact that the 1Γ and 2Γ states differ
in character from the 3Γ state by being derived from the exact same bulk state,
resulting from the broken degeneracy of the two projected out-of-plane lobes of
the CBM8. This may cause a different behavior of the state splittings compared
to other bands such as the 3Γ. Indications of such an effect is also present in the
calculations of Ref. [25], which show a near-independent relationship between the
1Γ − 2Γ splitting and the change in dielectric constant, while the higher Γ state
bands are affected in a much more dramatic way. If this is the case, this could
mean that the relative splittings of the monolayer are artificially high in the overall
picture of Figure 6.6 due to the effect the increased dopant density of the layer
might have on the state separations.

Finally, we must remember that the data point corresponding to the 2Γ state
minima is related to large uncertainty due to the assumptions made. However, it
is not likely that the state is located at a significantly lower energy than stated.
Instead, it might well be located at a higher energy. With these factors taken
into account, it is indeed possible that an increase in dielectric constant could be
justifiable to explain the presented monolayer data. Nevertheless, I will not draw
any firm conclusions on this matter based on the presented discussion, considering
all the complicated effects that are at play in determining the properties of this
system.

7 In Ref. [22], the predicted band structure for a larger dopant density comparable to the
investigated monolayer sample is presented. This shows a similar trend for the 3Γ state.

8 More details on this matter can be found e.g. in Ref. [38].
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Chapter 7

Conclusion

This thesis has described the fabrication and investigation of thin, heavily phosphorus-
doped profiles in silicon, so-called Si:P δ-layers. The formation of such a layer
creates a quantum well perpendicular to the layer, giving rise to confined, highly
localized electronic states. The aim of the investigation has been to observe the
electronic band dispersion of the three lowest energy states of the layer, called 1Γ,
2Γ and 1∆, as the dopant layer thickness is varied. In particular, the energy sep-
aration of the band minima, called the valley splitting, has been of interest. This
supplements existing research on such devices, which mainly concerns the atomi-
cally sharp monolayer profiles. The understanding of the energy configuration of
these systems is of great interest for the development of silicon-based quantum
computing architectures. The experimental work was carried out at the ASTRID2
synchrotron facility in Aarhus, Denmark. Five different samples were prepared,
with dopant layer thickness ranging from 3 nm to a true monolayer (≈ 0.13 nm)
which were buried under a 1.5 nm thick capping layer of Si. The samples were char-
acterized using angle-resolved photoemission spectroscopy (ARPES). The imaging
of the buried states is made possible through resonant enhancement, which con-
stitute a key part of understanding the photoemission process of these structures.
As simple numerical model based on a finite square potential well was employed
to gain a theoretical framework for discussing the observations.

7.1 Summary of main findings

• The 1Γ state was used as an energy reference for the valley separations. In
relation to this, the energy variations of the 1Γ state across the samples was
discussed, relating it to changes in dopant density due to the preparation
process and charge redistribution effects resulting from the changing band
structure. The results showed indications of sensitivity to variations in the
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preparation process, mainly due to the delicate temperature dependence of
the processes affecting the dopant configuration in the δ-layer.

• Experimental evidence of the 1∆ state for a true monolayer was presented
for the first time, allowing comparison to existing work. The occupancy of
the band was seen as a consequence of a double-dose preparation scheme,
producing enhanced dopant density in the layer compared to normal satura-
tion.

• The overall trend of the Γ state splittings were found to be in good agreement
with the predictions from the presented numerical square well model. The
1∆ state was seen to deviate from the expected behavior for thicker layers,
showing a near-parabolic trend that crossed the Γ trend line. Comparison to
the numerical model indicated that the observed behavior could be related
to a difference in effective mass of the Γ and 1∆ bands. An increase towards
bulk-like behavior of the states and the accuracy of the model was also seen
as a contributing factors. This situation remains inconclusive.

• The band configuration in the particular case of the monolayer was treated
in detail. The 1Γ − 2Γ valley splitting was observed to be dramatically
larger than previous calculations and measurements, suggesting a review
of the state identification. In particular, the observations indicated that
the state previously referred to as 2Γ should instead be associated with the
predicted 3Γ state. The novel 1∆ monolayer data was found to support
this claim, providing new and important insight into the dynamics of this
system. The new view suggest that an increase in the previously assumed
value for the material dielectric constant is required to reconcile observations
and theoretical predictions. This may have significant implications on the
electronic properties of the system, an understanding of which might prove
important for accurate device prediction and development in the future.

7.2 Looking ahead

The discussion has highlighted some features of the presented results that require
further investigation. The most pressing matter is attempting to resolve any near-
degenerate states in the lowest Γ band, which is important to clarify the current
situation of the monolayer band structure. A success in doing so would represent
a compelling argument in support of the suggestions made in this thesis regarding
the state identification. Specifically, low-temperature ARPES measurements of
super-saturated monolayers could be successful in resolving the states through in-
creasing the band separation while reducing the thermal broadening of the states.
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CHAPTER 7. CONCLUSION

Another point that poses interesting questions is the observed trend of the 1∆
splitting. Investigation of thicker layers to extend the trends towards an increas-
ingly bulk-like situation could provide some answers to this behavior. In this case,
the implications of changing the photon energy could be explored to gain a bet-
ter understanding of how the state configuration behaves as the states become
dominated by three-dimensional characteristics.

ARPES only gives information about the occupied electronic states of the ma-
terial, which limits the investigation of the δ-layer states to below the Fermi level.
This is unfortunate, as there are clearly a lot of interesting things happening around
and above this region. Inverse photoemission spectroscopy (IPES) is a complimen-
tary technique to regular photoemission, allowing for the probing of unoccupied
electron states above the Fermi level [33]. Applying this technique to the study
of δ-layers would be a natural continuation of this work, which could contribute
vital information on the behavior of the electronic states.

From what has been observed, it is evident that the dopant configuration of the
layer plays a major role in affecting the energy of the states. To better understand
the measured band structures it would be beneficial to have some idea of the doping
properties of the investigated samples. This could be achieved by complementing
the photoemission data with electrical measurements of the layers, for instance
through depth-dependent four-point-probe- or work function measurements [1, 26].
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Appendix A

Additional sample preparation
data

A.1 Silicon deposition rate

This appendix describes how the silicon deposition rate used for estimating the δ-
layer- and capping layer thickness was found. I will start with a quick introduction
of the x-ray photoemission spectroscopy technique (XPS), which this approach was
based upon.

A.1.1 XPS

X-ray photoemission spectroscopy is a technique mainly used for chemical analysis
of a sample. The technique utilizes X-rays to probe the binding energy of core
level electrons, by the same principles as illustrated in Figure 3.1. The principle of
electron detection is the same as in ARPES, only without the angular dimension
(see section 3.1.2). A XPS spectrum can give in-depth information on the chemical
environment of the sample as well as the chemical states of the various surface
elements [16].

A.1.2 Calibration of the Si deposition rate

The silicon deposition rate was determined by stepwise growing silicon on a Si:P
δ-layer and measuring the intensity of the P 2p core levels by XPS in between
each growth step. The integrated electron counts belonging to the core level peak
served as a measure of the peak intensity. When measuring at normal emission,
the initial intensity I0 of a buried P core level can be related to the measured
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intensity I with an overgrown silicon layer of thickness d by the equation

I = I0e
− d
λ , (A.1)

where λ is the electron inelastic mean free path. In this work λ = 0.7±0.1 nm was
assumed (in accordance with the universal curve of mean free path (MFP) [17]).
The measured intensity and the corresponding calculated deposition rates can be
seen in Table A.1.

t [min] Total counts [103 electrons] d [nm] Deposition rate [nm/min]
0 24.5 0 -
10 15.3 0.328 0.033
20 8.1 0.772 0.039

Table A.1: Silicon deposition rate.

It has previously been shown that that the growth rate stabilizes for longer
deposition times [17]. In the work of this thesis, a Si deposition rate of 0.4 Å/min
has been used. Using an uncertainty of 10% in the MFP and the square root
of the intensity, the total uncertainty is estimated to be 0.0043 nm/min. The
implications of this on the uncertainties for the δ-layer growth parameters is given
i Table A.2.

Table A.2: Sample parameters. tδ and tcap is the δ-layer and capping layer deposi-
tion time, respectively. dδ and dcap is the estimated δ-layer and capping layer thickness,
respectively.

Sample ID tδ [min] dδ [nm] tcap [min] dcap [nm]
Beamtime 1

A 75 3.0± 0.3 37.5 1.5± 0.2
B 25 1.0± 0.1 37.5 1.5± 0.2

Beamtime 1
C 13 0.5± 0.05 37.5 1.5± 0.2
D 6.5 0.25± 0.03 37.5 1.5± 0.2
E double PH3 dose (monolayer) ≈ 0.13 37.5 1.5± 0.2

A.2 Voltage supply parameters

Temperature control was done by limiting current on voltage supplies during direct
heating of evaporator and samples. The parameters used are shown in Table A.3.
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In addition, the temperature was monitored by an IR pyrometer.

Table A.3: Voltage supply parameters.

Object Event Current
Si evaporator Si evaporation 12.0 A

Sample Degassing (550°C) 0.85 A
Sample Flash (1100°C) 11.0 A
Sample Flash (1200°C) 11.5 A
Sample Anneal (570°C) 1.1 A
Sample Anneal (500°C) 1.0 A
Sample Anneal (400°C) 0.8 A
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Appendix B

Data fitting

Data fitting and analysis was done using Wavemetrics Igor Pro 7 software.

B.1 Fermi level pinning

The Fermi level was determined by binning data from several energy distribution
curves (EDCs) in an angular range selected outside any band features. The back-
ground is relatively constant in such a region, and the Fermi step can be observed
by a characteristic dip in the signal. A Fermi-Dirac function at room temperature
was fitted against this step, estimating the position of the Fermi level. An example
is shown in Figure B.1.

Ulstrup et. al. [35] argue that an EDC based approach for Fermi level deter-
mination is unstable in practice, and suggest another method using MDC data
to track the integrated intensity of a single energy band arm close to the Fermi
level. This method becomes difficult for the case of the states we are dealing with,
as there are several bands dispersing across the Fermi level in the same location.
This means that the Fermi level pinning could be subject to some uncertainty.
Still, this is irrelevant in the discussion of the energy splittings, as these will be
independent of the Fermi level location.

B.2 Comments on the quality of fits

In general, the EDC fits give accurate peak locations for the band dispersion when
dealing with the bottom of the parabolas, but fails as the bands curve upwards.
For the MDC approach, it is the other way around. Thus, these two approaches
supplement each other in a nice manner. The EDC data ensures accurate loca-
tion of the minima of the parabolas, while the MDC contributes to predict the
curvature. The EDC method is more complicated and prone to errors, as it has
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Figure B.1: Fermi level pinning. Sample A with 3 nm dopant profile thickness.
Fermi-Dirac distribution at room temperature is fitted to the Fermi step in the intensity
of a angle-integrated region containing no band features.
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to deal with the bands being affected by the Fermi step. To improve EDC fits a
background signal was subtracted, estimated by averaging EDCs within a angu-
lar region containing only background noise. This was chosen over a theoretical
background subtraction, as this is complex to model in the case at hand [35]. The
width of the region was approximately 0.3 Å−1 . Considering estimated standard
deviations from the fitting process, the error related to the band minima is esti-
mated to be in the order of 10 meV. It should be noted that the fitted bands to
the states located above the Fermi level (as is the case for the 2Γ state in the three
thinnest samples) is subject to a larger uncertainty, as discussed in the main text.

All of the EDC fitting results show a discrepancy around the Fermi level step.
This may indicate that there is a systematic error in the fitting process, such
as a offset of the Fermi level or a too narrow Fermi profile in the fitting function.
Broadening of the Fermi function may be achieved by modeling assuming increased
temperature or by including a energy resolution effect. Better fits are achieved by
increasing the temperature by 150 - 200 K. Even though the samples may be
subject to some heating from the synchrotron beam, I can not find the physical
grounds for such a large temperature increase. A resolution broadening was also
modeled by convolving the modulating Fermi function with a Gaussian profile
with a full-width half maximum (FWHM) corresponding to the resolution of the
instrumentation used. Results are barely affected by this, and such an approach
is therefore discarded in favor of the simpler approach in the presented fits.
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Appendix C

SGM-3 beamline specifications

Figure C.1: SGM-3 beamline total resolution for different slit settings. From
Ref. [14].
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Table C.1: SGM-3 system parameter ranges. Retrieved from Ref. [6].

Parameter Range / Description
Photon energy hν 12 - 150 eV
Energy resolution Better than 10 meV
Angular resolution Better than 0.1°

Background pressure 5 · 10−11 - 2 · 10−8 mbar
Sample temperature 25 - 1300 K

25 - 400 K manipulator 6 axis
70 - 600 K manipulator 5 axis

180 - 1300 K manipulator 4 axis
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2G. M. Alonzo-Medina, A. González-González, J. L. Sacedón, and A. I. Oliva,
“Understanding the thermal annealing process on metallic thin films”, in Iop
conference series: materials science and engineering (2013).

3N. D. Ashcroft, Neil W. ; Mermin, Solid state physics (Holt, Rinehart and Win-
ston, New York, 1976).

4A. Babinski, M. Korkusinski, P. Hawrylak, M. Potemski, and Z. R. Wasilewski,
“Renormalization of effective mass in self-assembled quantum dots due to electron-
electron interactions”, in Journal of physics: conference series (2013).

5M. Benfatto and C. Meneghini, Synchrotron Radiation (2015).
6P. Bianchi, Marco; Andersen, John E. V.; Kjeldsen, Henrik; Jones, Nykola C.;
Hoffmann, Søren V.; Hofmann, A new multipurpose end-station on the SGM3
beamline @ ASTRID2, 2014.

7B. H. Bransden and C. J. Joachain, Quantum Mechanics (Prentice Hall, 2000).
8D. J. Carter, O. Warschkow, N. A. Marks, and D. R. McKenzie, “Electronic
structure models of phosphorus δ-doped silicon”, Phys. Rev. B 79, 33204 (2009).

9A Damascelli, “Probing the electronic structure of complex systems by ARPES”,
Phys. Scr. (2004) 10.1238/Physica.Topical.109a00061.

10D. W. Drumm, L. C. L. Hollenberg, M. Y. Simmons, and M. Friesen, “Effective
mass theory of monolayer δ doping in the high-density limit”, 155419, 1–14
(2012).

11D. W. Drumm, A. Budi, M. C. Per, S. P. Russo, and L. C. Hollenberg, “Ab
initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon”,
Nanoscale Research Letters 8, 1–11 (2013).

12M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L.
Hollenberg, G. Klimeck, and M. Y. Simmons, “A single-atom transistor”, Nat
Nano 7, 242–246 (2012).

73

http://dx.doi.org/10.1103/PhysRev.127.150
http://dx.doi.org/10.1088/1757-899X/45/1/012013
http://dx.doi.org/10.1088/1757-899X/45/1/012013
http://dx.doi.org/10.1088/1742-6596/456/1/012002
http://dx.doi.org/10.1103/PhysRevB.79.033204
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1103/PhysRevB.85.155419
http://dx.doi.org/10.1103/PhysRevB.85.155419
http://dx.doi.org/10.1186/1556-276X-8-111
http://dx.doi.org/10.1038/nnano.2012.21
http://dx.doi.org/10.1038/nnano.2012.21


BIBLIOGRAPHY

13T. Hallam, “The use and removal of a hydrogen resist on the Si ( 001 ) surface
for P-in-Si device fabrication”, (2006).

14P. Hoffmann, Søren V.; Hofmann, The SGM 3 Beamline at ASTRID, 2009.
15P Hofmann, Solid State Physics: An Introduction, Physics textbook (Wiley,

2011).
16P Hofmann, Surface Physics: An Introduction (Philip Hofmann, 2013).
17A. J. U. Holt, “Engineering Quantum States in δ-doped Semiconductors”, Mas-

ters Thesis (NTNU, 2017).
18M. Holzmann, B. Bernu, V. Olevano, R. M. Martin, and D. M. Ceperley, “Renor-

malization factor and effective mass of the two-dimensional electron gas”, Phys-
ical Review B - Condensed Matter and Materials Physics (2009) 10 . 1103 /

PhysRevB.79.041308.
19B. E. Kane, “A silicon-based nuclear spin quantum computer”, 133–137 (1998).
20J. G. Keizer, S. Koelling, P. M. Koenraad, and M. Y. Simmons, “Suppress-

ing Segregation in Highly Phosphorus Doped Silicon Monolayers”, ACS Nano 9
(2015) 10.1021/acsnano.5b06299.

21J. G. Keizer, S. R. Mckibbin, and M. Y. Simmons, “The Impact of Dopant
Segregation on the Maximum Carrier Density in Si : P Multilayers”, 7080–7084
(2015).

22S. Lee, H. Ryu, H. Campbell, L. C. L. Hollenberg, M. Y. Simmons, and G.
Klimeck, “Electronic structure of realistically extended atomistically resolved
disordered Si:P δ-doped layers”, Phys. Rev. B 84, 205309 (2011).

23F. Mazzola, “Photoemission spectroscopies and their application in solid state
and material physics”, PHD thesis (NTNU, 2016).

24F. Mazzola, M. T. Edmonds, K. Høydalsvik, D. J. Carter, N. A. Marks, B. C. C.
Cowie, L. Thomsen, J. Miwa, M. Y. Simmons, and J. W. Wells, “Determining
the Electronic Confinement of a Subsurface Metallic State”, ACS Nano 8, 10223–
10228 (2014).

25F. Mazzola, C.-y. Chen, R. Rahman, X.-g. Zhu, C. M. Polley, M. Y. Simmons, P.
Hofmann, J. A. Miwa, and J. W. Wells, “The Sub-band Structure of Atomically
Sharp Dopant Profiles in Silicon”, ”in preparation”, 1–9 (2018).

26S. R. McKibbin, C. M. Polley, G Scappucci, J. G. Keizer, and M. Y. Simmons,
“Low resistivity, super-saturation phosphorus-in-silicon monolayer doping”, Ap-
plied Physics Letters 104, 123502 (2014).

27J. A. Miwa, P. Hofmann, M. Y. Simmons, and J. W. Wells, “Direct measurement
of the band structure of a buried two-dimensional electron gas”, Physical Review
Letters 110 (2013) 10.1103/PhysRevLett.110.136801.

74

http://dx.doi.org/10.1103/PhysRevB.79.041308
http://dx.doi.org/10.1103/PhysRevB.79.041308
http://dx.doi.org/10.1103/PhysRevB.79.041308
http://dx.doi.org/10.1103/PhysRevB.79.041308
http://dx.doi.org/10.1021/acsnano.5b06299
http://dx.doi.org/10.1021/acsnano.5b06299
http://dx.doi.org/10.1021/acsnano.5b06299
http://dx.doi.org/10.1021/acsnano.5b01638
http://dx.doi.org/10.1021/acsnano.5b01638
http://dx.doi.org/10.1103/PhysRevB.84.205309
http://dx.doi.org/10.1021/nn5045239
http://dx.doi.org/10.1021/nn5045239
http://dx.doi.org/10.1063/1.4869111
http://dx.doi.org/10.1063/1.4869111
http://dx.doi.org/10.1103/PhysRevLett.110.136801
http://dx.doi.org/10.1103/PhysRevLett.110.136801
http://dx.doi.org/10.1103/PhysRevLett.110.136801


BIBLIOGRAPHY

28J. A. Miwa, O. Warschkow, D. J. Carter, N. A. Marks, F. Mazzola, M. Y. Sim-
mons, and J. W. Wells, “Valley Splitting in a Silicon Quantum Device Platform”,
Nano Letters 14, 1515–1519 (2014).

29A. Morello, C. C. Escott, H. Huebl, L. H. Willems Van Beveren, L. C. L. Hol-
lenberg, D. N. Jamieson, A. S. Dzurak, and R. G. Clark, “Architecture for
high-sensitivity single-shot readout and control of the electron spin of individual
donors in silicon”, Physical Review B - Condensed Matter and Materials Physics
(2009) 10.1103/PhysRevB.80.081307.

30J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, D. N. Jamieson,
A. S. Dzurak, and A. Morello, “A single-atom electron spin qubit in silicon”,
Nature 489, 541–545 (2012).

31A Shik, Quantum Wells: Physics and Electronics of Two-Dimensional Systems
(1998).

32J Singh, Smart Electronic Materials: Fundamentals and Applications (Cambridge
University Press, 2005).

33N. V. Smith, “Inverse photoemission”, Reports on Progress in Physics, 1227–
1294 (1988).

34G. C. Tettamanzi, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge, and M. Y. Sim-
mons, “Probing the Quantum States of a Single Atom Transistor at Microwave
Frequencies”, ACS Nano 11, 2444–2451 (2017).

35S. Ulstrup, J. C. Johannsen, M. Grioni, and P. Hofmann, “Extracting the tem-
perature of hot carriers in time- and angle-resolved photoemission”, Review of
Scientific Instruments 85, 1–17 (2014).

36O. Warschkow, N. J. Curson, S. R. Schofield, N. A. Marks, H. F. Wilson, M.
W. Radny, P. V. Smith, T. C. G. Reusch, D. R. McKenzie, and M. Y. Sim-
mons, “Reaction paths of phosphine dissociation on silicon (001)”, The Journal
of Chemical Physics 144, 014705 (2016).

37H. F. Wilson, O. Warschkow, N. A. Marks, N. J. Curson, S. R. Schofield, T. C.
G. Reusch, M. W. Radny, P. V. Smith, D. R. McKenzie, and M. Y. Simmons,
“Thermal dissociation and desorption of PH3 on Si(001): A reinterpretation of
spectroscopic data”, Physical Review B (2006) 10.1103/PhysRevB.74.195310.

38F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollen-
berg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, “Silicon
quantum electronics”, Rev. Mod. Phys. 85, 961–1019 (2013).

75

http://dx.doi.org/10.1021/nl404738j
http://dx.doi.org/10.1103/PhysRevB.80.081307
http://dx.doi.org/10.1103/PhysRevB.80.081307
http://dx.doi.org/10.1103/PhysRevB.80.081307
http://dx.doi.org/10.1038/nature11449 http://www.nature.com/nature/journal/v489/n7417/abs/nature11449.html{\#}supplementary-information
http://dx.doi.org/10.1088/0034-4885/51/9/003
http://dx.doi.org/10.1088/0034-4885/51/9/003
http://dx.doi.org/10.1021/acsnano.6b06362
http://dx.doi.org/10.1063/1.4863322
http://dx.doi.org/10.1063/1.4863322
http://dx.doi.org/10.1063/1.4939124
http://dx.doi.org/10.1063/1.4939124
http://dx.doi.org/10.1103/PhysRevB.74.195310
http://dx.doi.org/10.1103/PhysRevB.74.195310
http://dx.doi.org/10.1103/RevModPhys.85.961

	Introduction
	Motivation for this thesis
	Layout

	Theoretical background
	Crystal structure
	The crystal lattice
	The reciprocal lattice

	Electronic states in solids
	The free electron model
	The nearly-free electron model
	Bulk- and surface states
	Quantum well states

	Quantum confinement in silicon -layers
	Semiconductor basics
	Fundamental properties of silicon
	-doping

	Existing work

	Experimental techniques and requirements
	Photoemission spectroscopy
	Photoemission basics
	ARPES
	Imaging buried states
	Synchrotron radiation

	Ultra High Vacuum (UHV)
	Preparation techniques
	Sample heating
	Growth techniques


	Experimental approach
	Instrumentation
	Sample preparation: -layer growth
	ARPES measurements 
	Comments to preparation scheme

	Numerical modelling
	Accuracy of model - important shortcomings
	Numerical results

	Results, analysis and discussion
	Analysis and data fitting approach
	Brillouin zone location of states
	 states
	Energy variations
	Intensity variations and resonant enhancement

	1 states
	Valley splitting trends for varying -layer thickness
	General trends
	Monolayer valley spliting


	Conclusion
	Summary of main findings
	Looking ahead

	Appendices
	Additional sample preparation data
	Silicon deposition rate
	XPS
	Calibration of the Si deposition rate

	Voltage supply parameters

	Data fitting
	Fermi level pinning
	Comments on the quality of fits

	SGM-3 beamline specifications

