
June 2008
Torgeir Dingsøyr, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Case Study of Coordination in
Distributed Agile Software
Development

Steinar Hole

Problem Description
Today, many companies develop software in project teams with members located in different parts
of the world with different culture. This assignment's objective is to study the phenomenon of
global software development. For theses, it will be of interest to do field research in global
projects.

Assignment given: 15. January 2008
Supervisor: Torgeir Dingsøyr, IDI

i

Abstract

Both global software development and agile approaches have gained significant
popularity. Companies even show interest in applying agile approaches in
distributed development to combine the advantages of both approaches. This is
done despite their differences in key tenets. In their most radical forms, agile and
global software development can be placed in each end of a plan-based/agile
spectrum because of how work is coordinated. This study describes how four
global software development projects applying agile methods coordinate their
work. The findings show that there are at least three approaches to distributed
Scrum; local Scrum independent of remote team‟s approach, multiple Scrum
teams coordinated with Scrum of Scrums and geographic transparency and a
single distributed Scrum team. It was also found that trust is needed to reduce
the need of standardization and direct supervision when coordinating work in a
global software development project, and that electronic chatting supports
mutual adjustment. Further, co-location and modularization mitigates
communication problems, enables agility in at least part of a global software
development project, and renders the implementation of Scrum of Scrums
possible. Proper mechanisms to provide transparency are needed to achieve
mutual adjustment.

ii

iii

Preface

The University of Science and Technology (NTNU) has provided me with subjects
focusing mostly on traditional approaches to software development during this
five year master program. When starting my preparations for my master’s thesis,
I was curious to explore what innovative approaches might exist in the industry.
Half a semester was invested in a pre-study, a literature review on
“Communication in global software development - Joining virtual teams and agile
software development”. But there is always more to explore. The full time of the
next semester was dedicated to this thesis.

The industry is ahead of research in both global software development and agile
development. My supervisor, Torgeir Dingsøyr, advised me to do a case study to
investigate how they correlate. Nils Brede Moe, my advisor, introduced me to
Mintzberg’s coordinating mechanisms and helped me realize the benefits of using
them as a framework when analyzing distributed agile projects. They have both
been invaluable sources of knowledge, critique and advices. Nils Brede Moe and I
did even co-author a research paper that was base on this thesis, “A case study
of coordination in distributed agile software development.” The research paper
was accepted by the European Software Process Improvement (EuroSPI)
conference in Dublin, September 2008, and I’m quite thrilled to be allowed to
present my findings at the conference.

I really appreciate the invaluable input received from the project participants of
the investigated companies; it was nice to get to know you. A big thanks to the
proofreaders of both the paper and my thesis, respectively Hamish Barney and
Odd Nordland, and Martin Stige and Marianne Prestvik Hole. The biggest thanks
go to Nils Brede Moe for his patient help, interesting discussions, inputs and
questions, and to Torgeir Dingsøyr for providing this exciting challenge to me.
This research is supported by the Research Council of Norway under Grant
174390/I40.

Trondheim, June 10th 2008

Steinar Hole

iv

v

Contents

1 Distribution and agility 1

1.1 Increasing distribution ... 1

1.2 Introducing agility ... 2

1.3 The challenge .. 3

1.4 Outline... 3

2 Coordinating through agility 4

2.1 Searching for knowledge ... 4

2.2 Agile methods and Scrum ... 6

Common traits .. 6

Scrum .. 8

2.3 Coordinating mechanisms ... 11

Coordinating distributed software development ... 12

Coordinating mechanisms in Scrum .. 14

2.4 Transparency and awareness ... 16

Transparency and coordination ... 17

Transparency and Scrum .. 18

3 Research design and approach 19

3.1 Scope .. 19

3.2 Study context .. 20

3.3 Data sources and analysis .. 20

4 Agility in global software development projects 22

4.1 Project India I .. 22

Coordinating software development work in the India I project.................. 22

Transparency .. 23

4.2 Project India II ... 24

Coordinating software development work in the India II project. 24

Transparency .. 25

4.3 Project Eastern Europe .. 25

Coordinating software development work in the Eastern Europe project. .. 26

Transparency .. 27

4.4 Project USA .. 27

Coordinating software development work in the USA project. 28

Transparency .. 30

5 Discussion 31

5.1 Coordination in agile global software development 31

vi

5.2 The effect of transparency .. 34

6 Conclusion and future work 36

A References 37

B Glossary 40

C List of figures 42

D List of tables 43

E Research Plan 44

F Interview guides 48

1

“It is not by consolidation, or concentration of powers, but by their distribution,
that good government is effected.”

Thomas Jefferson (1762-1826)

1 Distribution and agility

Jefferson argues that collaboration between powers is better than centralized and
concentrated control. Although his statement is about democracy, it has a
growing relevance for software developing organizations. Coordination through
centralized control has been the suggested best practice for global software
development (Cataldo et al., 2007, Sangwan et al., 2006, p. 96), but later
approaches seem more eager to distribute the power (Moe et al., 2008).
Introduction of agile methodologies defy the established form of government by
focusing on self-organizing teams. Distribution of power has become a relevant
topic with distributed agile software development.

1.1 Increasing distribution

Globalization1 force organizations to consider global competition and resources
(Levitt, 1983). Outsourcing has been a buzzword since the mid 1980s, allowing
organizations to focus on their core competencies while handing over
responsibility for certain processes to others (Hirschheim and Dibbern, 2006).
During the 1990s, better global information technology infrastructure led to
outsourcing beyond the organization’s national border, more precisely dubbed
offshore outsourcing. Global inter-organizational software development, including
outsourcing, subcontracting and partnerships, is becoming increasingly common
(Paasivaara and Lassenius, 2004).

Multinational organizations are another case where services are distributed
beyond national borders. The distinction from outsourcing coined the terms
internal offshoring and offshore insourcing. “Offshore” stems from US
organizations mostly seeking overseas, like Ireland or India. The term has later
been recognized as a description of any sourcing beyond a national border. The
more precise term “nearshoring” has later been introduced to describe offshoring
between countries where the time zone difference is insignificant. Prickladnicki,
Audy et al. (2007) make a distinction between the terms by showing how they
describe different distributions related to organizational and geographical borders
(Table 1).

1 "Globalization is a process of interaction and integration among the people, companies, and
governments of different nations, a process driven by international trade and investment and aided
by information technology." (www.globalization101.org). A more academic definition from the social
sciences would be Robertson’s: “Globalization as a concept refers both to the compression of the
world and the intensification of consciousness of the world as a whole.” Robertson, R. (1992)
Globalization: Social theory and global culture, Sage Publications Inc.

2

Table 1: Organizational and geographical distributions (Prikladnicki et al., 2007)
 National Global

Internal

Shared Services or
Internal Domestic Supply

Internal Offshoring or
Offshore Insourcing

External

On-shore Outsourcing or
Outsourcing

Offshore Outsourcing

Many organizations turn toward global software development, software
development distributed beyond national borders, in an attempt to produce
cheap higher-quality software with the shortest development cycle possible (Moe
and Smite, 2007). Global software development is becoming the norm by
promising potential advantages like global resources, attractive cost structures,
round-the-clock development and closeness to local markets (Damian and Moitra,
2006). The promises are intuitive. To unleash the potential, methods and tools for
distributed software development are designed to enable geographically
dispersed team members to share programming tasks and development
practices (Canfora et al., 2006). Methods and tools are also needed to mitigate
global software development problems related to coordination, communication,
control (Agerfalk and Fitzgerald, 2006), and increased complexity (Carmel and
Agarwal, 2001).

1.2 Introducing agility

There is a demand for approaches able to deal with the increasing complexity of
software development, because coordination becomes more difficult when
complexity increases (Kraut and Streeter, 1995). A family of potential approaches
that has received a lot of attention from software engineers and software
researchers the later years has adopted the term “agile” (Abrahamsson et al.,
2003). Agile software development is introduced as a software development
approach promoting teamwork, innovation, flexibility, and communication
(Agerfalk and Fitzgerald, 2006).

Agile development approaches and global software development approaches
differ significantly in their key tenets, e.g. regarding coordination mechanisms
(Ramesh et al., 2006). Global software development focuses on command-and-
control and formal communication. The desired organizational structure is
mechanistic, which means that it is bureaucratic with high formalization. Agile or
change-driven development focuses on leadership-and-collaboration and informal
communication. The desired organizational form is organic, which means that it is
flexible, participative, and encourages cooperative social action. Therefore,
applying agile principles to global software development marks an intersection of
two seemingly incompatible approaches. Still, Ramesh et al. (2006) demonstrate
how a balance between agile and distributed approaches can help meet the
challenges with incorporation of agility in distributed software development.

Despite the differences, there is a growing interest in assessing the viability of
using agile practices for distributed teams (Agerfalk and Fitzgerald, 2006).
Several reports claim that it can be done successfully (Berczuk, 2007, Farmer,
2004, Fowler, 2003, Holmstrom et al., 2006, Nisar and Hameed, 2004, Korkala
and Abrahamsson, 2007, Ramesh et al., 2006, Sulfaro, 2007, Sutherland et al.,
2007).

3

1.3 The challenge

This study has been motivated by the work of Ramesh et al. (2006) and
Sutherland et al. (2007) to investigate how work is coordinated when introducing
agile methods in a global software development environment:

1. How are tasks coordinated in global software development teams applying
agile methods?

2. How does the level of geographical transparency affect the level of mutual
adjustment?2

While Ramesh et al. (2006) encourage a balance between mutual adjustment and
direct supervision in distributed agile software development, Sutherland et al.
(2007) claim that mutual adjustment can be achieved by proper geographical
transparency. The intention of this research is to explore coordinating
mechanisms in teams that implement agile practices in distributed software
development, identify changes in the way work is coordinated, and consider
geographical transparency’s impact on that coordination.

1.4 Outline

This report seeks to answer the research questions through a literature review
and a multiple case study. The material is organized like this:

 Coordinating through agility (p. 4) presents a literature review on agile
software development and coordinating mechanisms.

 Research design and approach (p.19) describes the research method in
detail.

 Agility in global software development projects (p. 22) presents the
results from a multiple case study on agile methods and practices applied
to four global software development projects.

 Discussion (p. 31) discusses the research questions.
 Conclusion and future work (p. 36) summarizes the findings, concludes

this research and states further investigations to undertake.

2 Geographical transparency is the availability of appropriate knowledge or information
for coordinating across multiple sites (see 2.4 Transparency and awareness p. 16).

4

2 Coordinating through agility

A literature review of research regarding global software development, agile
methods and virtual teams was carried out as a preparation for this thesis.
Literature reviews are fortunately able to give a deeper understanding while also
contributing in creation of new theories (Webster and Watson, 2002). While the
focus of the preparing study was on the communication challenges when joining
virtual teams and agile software development, the review has been adapted to
focus on coordinating mechanisms and transparency. This section presents the
reviewed theories to establish a foundation that both illuminates the research
questions and underlie the later presented multiple case study. Parts of this
section are reproduced from the preparation study.

2.1 Searching for knowledge

The articles for the review were collected in four steps. First, a set of seven
articles (Agerfalk and Fitzgerald, 2006, Borchers, 2003, Damian and Moitra, 2006,
Herbsleb and Mockus, 2003, Herbsleb et al., 2005, Krishna et al., 2004, Ramesh
et al., 2006) were provided by the advisors before the start of the study. Several
of these are introductory articles giving an overview of global software
development primarily. Second, every article in a special issue of IEEE Software
(Volume 23, Issue 5) on global software development was browsed for the
concepts of agility, virtual teams and communication. The same was done with
the papers submitted to IEEE International Conference on Global Software
Engineering 2006 and 2007.

Browsing and reading the articles inspired the construction of a keyword table
(Table 2) that was used in the third step, a search of online databases (Table 3).
The search strings were composed of words across the concepts treated, but not
in an exhaustive way. This was considered appropriate because the goal of the
review was to gain a proper founding understanding of the various concepts and
their relations. The keyword table and list of articles were dynamically expanded
throughout the review. Fourth, the references of the articles that were considered
most relevant for the goal of the review were searched for even more relevant
articles.

5

Table 2: Concepts and keywords used when searching for literature
Global

Multinational, international, offshore, offshoring, outsource,
outsourcing, globalization, globalisation, distributed,
dispersed, distance, culture, temporal, timezone, time zone

Agile

XP, Xtreme Programming, Extreme Programming, Scrum,
DSDM, Dynamic Systems Development Methodology,
Adaptive Software Development, Crystal (Methods), Feature-
Driven Development, Pragmatic Programming, Lean
Development, Agile method, Agile methodology, light weight

Virtual teams

Virtual organization, geographically dispersed team,
information technology, technology mediated

Communication

Coordination, collaboration, communication theory,
communication theories, communication mode,
communication model

Coordination Coordinating mechanism, mutual adjustment, direct
supervision, standardization, transparency, agile
transparency, geographical/vertical/horizontal transparency,
awareness

Table 3: Literature databases used when searching for literature
ACM Digital Library portal.acm.org
BIBSYS Ask ask.bibsys.no
Google Scholar scholar.google.com
IEEE Xplore ieeexplore.ieee.org
ISI Web of Science Portal.isiknowledge.com/portal.cgi?DestApp=WOS

Articles were included if their main focus was on global software development,
agility, virtual teams, communication, coordination, or a combination of these.
Communication is a mechanism underlying coordination and control (Carmel and
Agarwal, 2001), and was therefore considered a concept that embraced these as
well.

Articles were considered to be of higher prestige if published in “Communication
of the ACM”, “IEEE Software”, “MIS Quarterly” or “Organization Science”,
somewhat less prestige if published in “IEEE Transactions on Software
Engineering”, “Journal of Management”, “Journal of Management Information
Systems”, and conference proceedings were considered least prestigious
although above un-reviewed publications. Less prestigious material would only be
used if the article had a well founded base for its claims, and was preferably
commonly cited relative to its date of publication (close to or above ten cites per
year).

Qualitative, quantitative and industry experience papers were included, while
expert’s opinion articles were less regarded. When considering agility, the main
focus was on papers that dealt with Scrum. Studies that were clearly not about
agility, global software development or coordination of work were excluded,
together with papers lacking rigor, credibility and relevance. No particular review
strategy was made beyond reading literature continuously with a constant focus
on how well the concepts merged relevant to communication, coordination and
collaboration.

6

2.2 Agile methods and Scrum

A large variety of software development approaches emerged during the last
century, while only a few of them became mainstream (Abrahamsson et al.,
2002). These traditional approaches are characterized by detailed planning and
documentation. Some claim that they merely present a fictional image of control,
and that the provided tracking of status is only symbolic (Nandhakumar and
Avison, 1999). Agile methods can be seen as a reaction to plan-based or
traditional methods (Dyba and Dingsoyr, 2008)

In February 2001, the “Manifesto for Agile Software Development” 3 was created
by seventeen people with desires to find alternative approaches to software
development. Each of them played a prominent part in the opposition of the
prevailing software development processes, which they considered rigid,
heavyweight and too focused on documentation. Their response, summarized in
the manifesto, clarifies their focus by valuing:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

They also clarify that they do not disregard the unemphasized items on the right;
they just value the emphasized items on the left more. This also indicates their
view that there are no contradictions between e.g. following a plan and
responding to change.

Agile software development comprises a number of practices and methods
(Erickson et al., 2005, Cohen et al., 2004, Abrahamsson et al., 2002). Among the
most known and adopted agile methods are Extreme Programming (XP) (Beck
and Andres, 2004) and Scrum (Schwaber and Beedle, 2001). XP focuses primarily
on the implementation of software, while Scrum focuses on agile project
management (Abrahamsson et al., 2003). In this study the focus is on Scrum
since Scrum is an agile approach to the management of software development
projects (Erickson et al., 2005, Cohen et al., 2004, Abrahamsson et al., 2002),
and thus focuses on the coordination of work.

Common traits
Agility is related to concepts like quickness, dexterity or nimbleness. To achieve
this agility, the software development process is stripped of as much heaviness
and rigidness as possible (Erickson et al., 2005). The gained agility is proposed to
handle change responsively. This leads to one of the notions used to describe
agile methodologies; they are characterized as being change-driven (Moe et al.,
2008).

Agile methodologies intend to allow system requirements to change during
development, and welcome this change through frequent communication and
interaction. Because a detailed and complete plan up front demands a complete
knowledge about every aspects of the application(s) under development and
its/their interactions with the environment, agilists consider it a better approach
to elicit the details in transit, and even allow changes to the architecture as the
fundamental understanding grows (Abrahamsson et al., 2002).

3 www.agilemanifesto.org

7

The response to change has not been built into the traditional plan-driven
software development processes (Nerur et al., 2005). The waterfall model places
the parts of software development in successive phases, starting with
requirements before design, implementation, testing and maintenance
(Pressman, 2005, p. 47). Another approach, the V-model, attempts to improve
the relationships between the phases of the waterfall model by focusing on how
the later phases fulfill the earlier, e.g. how acceptance testing verifies that the
requirements are met and integration testing verifies that the architecture design
is followed. The spiral model is close to the waterfall model in that it keeps the
phases apart, but the phases are recurring by returning to the first phase after
the last, resulting in an iterative approach (Pressman, 2005, p. 54). Introduction
of iterations increase the flexibility of the software development process, but the
traditional software development processes still have a heavy focus on up-front
planning and tracking of progress according to the plan. The focus on plans leads
to the notion of plan-driven software development as a term describing the
traditional approaches. Nerur et al. (2005) provide a comparison of traditional
and agile software development in Table 4.

Table 4: Comparison of traditional and agile development (Nerur et al., 2005)
 Traditional Agile
Fundamental
Assumptions

Systems are fully
specifiable, predictable, and
can be built through
meticulous and extensive
planning.

High-quality, adaptive
software can be developed
by small teams using the
principles of continuous
design improvement and
testing based on rapid
feedback and change.

Control Process centric People centric
Management
Style

Command-and-control Leadership-and-
collaboration

Knowledge
Management

Explicit Tacit

Role Assignment Individual – favors
specialization

Self-organizing teams –
encourages role
interchangeability

Communication Formal Informal
Customer’s Role Important Critical
Project Cycle Guided by tasks or activities Guided by product features
Development
Model

Life cycle model (Waterfall,
Spiral, or some variation)

The evolutionary-delivery
model

Desired
Organizational
Form/Structure

Mechanistic (bureaucratic
with high formalization)

Organic (flexible and
participative encouraging
cooperative social action)

Technology No restriction Favors object-oriented
technology

How can agile software development eliminate the rigidness and heavyweight of
plan driven software development? According to Cockburn (2002, p. 178-179),
the following principles increase the chance of success:

1. Two to eight people in one room
2. On-site usage experts
3. Short increments

8

4. Fully automated regression tests
5. Experienced developers

The first principle enhances communication and community, while the second
results in short and continuous feedback cycles. This shows how agile
methodologies focus on close collaboration through continuous communication,
both within the team and with the customer or someone in a customer role. Plans
are evaluated and reconstructed frequently. The third principle indicates how
agile software development uses short iterations to complete the product in
parts, allowing the evaluation of finished parts to guide the development of the
rest of the product. It also enables quick repair during the development, instead
of a long testing phase at the end. The fourth principle is also concerned with
continuous improvement, while the fifth shows how agilists value people.

Abrahamsson et al. (2002) claim that software development is agile when it is
incremental, cooperative, straightforward and adaptive. It is incremental when
the product is developed in rapid cycles with small software releases. When
customer and developers collaborate with constant communication, it is
cooperative. Straightforward relates to how easy the method itself is to learn and
modify, while adaptive relates to the ability to make last moment changes.

Despite the common focus, a wealth of methodologies has emerged, ranging
from lists of practices to frameworks applicable to different contexts. In this
study, only one of these approaches are selected and used as a representative of
agile software development.

Scrum
Scrum was created with the perspective of industrial process control in mind,
treating development processes that are not completely defined as a black box
(Schwaber, 1995). The concept of black box is that one cannot see how input is
converted to output within the black box, resulting in unpredictable output.
Scrum’s underlying approach is therefore to accept the existence of uncertainty
and try to control this uncertainty, by managing both defined and black box
processes.

Figure 1: The Scrum methodology (Schwaber, 1995)

The planning and system architecture phase, and the closure phase are well
defined. Inputs, outputs and processes are controllable through the defined
framework of these phases. The planning phase may have multiple iterations, but
are considered linear, like the closure phase. As we can see from Schwaber’s
(1995) Figure 1, the sprint phase comes between the well defined first and last
phases. The sprint phase contains the uncertainty and control of these

Develop

Wrap

Review

Adjust

Planning &

System

Architecture

ClosureSprints

9

uncertainties. Iterating through sprints demand continuous control to "avoid
chaos while maximizing flexibility" (Schwaber, 1995). The sprints are non-linear
and flexible, allowing quick response to change in the environment, like change
in resources, quality demands, requirements or the market. A more detailed
description of each phase follows according to Schwaber and Beedle (2001, p. 31-
88) and Abrahamsson et al. (2002).

Planning To begin with, requirements are placed on a product backlog, which is
a prioritized list of functionality desired in the product. It is considered
unnecessary and even undesired to strive for a complete list of functionality to
begin with, as more items are placed on the product backlog when identified
during the process. The initial requirements should reflect the goal of the
product. The constraints of the project are also defined in this phase. Schedule
and cost are estimated and project teams are defined and allocated. Some time
should also be used to assess risk and assign controls to the identified risks.

The architecture of the system is created in the planning phase. It is not desirable
to make too much change to the architecture later, as changes to the
architecture implies changes to the code that should comply with the
architecture. Therefore, changes to the architecture should first and foremost
relate to implementation of new functionality. Architecture is also created on the
lower levels during sprints, but the system architecture and high level design
should be done up front. This includes conceptualization and analysis related to
system architecture and high level design.

Sprints Software is developed by the self-organizing team in increments called
"sprints" (Abrahamsson et al., 2002). The sprint duration varies ideally between
two and four weeks. Each sprint starts with a sprint planning meeting, where a
release is defined based on the items on the product backlog. The product
backlog comprises a prioritized and constantly updated list of business and
technical requirements for the system being built or enhanced (Abrahamsson et
al., 2002). Backlog items can include features, functions, bug fixes, requested
enhancements and technology updates. Multiple stakeholders can participate in
generating product backlog items, such as customer, project team, marketing
and sales, management and support (Abrahamsson et al., 2002).

The product owner decides which backlog items should be developed in the
following sprint. Usually, items that are related are selected, broken down into
more detailed backlog items and put on a sprint backlog, which then contains a
list of the functionality to implement during a single iteration. Only items the
team can commit to complete during one sprint are selected. Items from the
product backlog are broken down in smaller items for the sprint backlog and each
task is estimated. The team does this in close collaboration (Abrahamsson et al.,
2002).

Development begins after the sprint planning meeting. The team coordinates on
a daily basis. Every day contains one daily 15 minutes Scrum meeting where
each team member addresses three questions:

• What did you do since last Scrum meeting?
• What are you going to do until next Scrum meeting?

• What are the obstacles in your way?

The goals of the Scrum meeting include focusing the effort of developers on the
backlog items, communicating the priorities of backlog items to team members,

10

keeping everyone informed of team progress and obstacles, resolving obstacles
as quickly as possible, tracking progress in delivering the backlog functionality,
and addressing and minimizing project risk (Rising and Janoff, 2000).

At the end of each sprint is the sprint review where the team presents their
accomplishments, issues and problems are resolved and the product backlog is
revised by adding, changing or removing items. As stated by Rising and Janoff
(2000), "anything can be changed" at the end of a sprint. In addition to the sprint
review that is focused on the product developed, Berczuk (2007) suggests a
retrospective immediately after the review. The retrospective’s aim is to evaluate
the process, identifying what is working and what is not. Customer presence is
encouraged during planning and reviews and occasionally during daily scrums
and retrospectives. Figure 2 illustrates the flow of work involved in sprints.

Figure 2: Cycles in the Scrum methodology (Schwaber, 2004, p. 6)

Closure means preparation for general release. Final integration and user
documentation of the product is completed. Sometimes a final integration-sprint
is run to prepare the product for general release.

Roles Although the Scrum team is considered autonomous and self-organizing,
some roles are needed to maintain the process. The person(s) filling a role may
change from time to time.

• The Scrum master replaces the traditional project manager and is a
facilitator or coordinator in charge of solving problems that prevents the
Scrum team from working effectively, as well as removal of impediments
to the process and shielding of the team from unnecessary external
influence (Erickson et al., 2005, Cohen et al., 2004, Abrahamsson et al.,
2002).

• The product owner is selected by the Scrum master, the customer and
the management to be responsible for the project by managing and
providing the product backlog. He must also take part in estimation.

• The customer takes part in evaluation of backlog items.

• The Scrum team (5-9 people) consist of designers and developers that
are empowered to organize themselves to complete the tasks they commit

Product

Backlog
Sprint

Backlog

2-4 weeks

24h

Potentially shipable

product increment

Daily scrum,

coding,

testing

Planning,

design,

review,

retrospective

11

to for each sprint, through partaking in effort estimation, creation of sprint
backlog and revision of the product backlog.

2.3 Coordinating mechanisms

Mintzberg (1989, p. 100) states that every organized human activity involve the
division of labor into various tasks, as well as the coordination of those tasks to
accomplish the activity. The tasks need to be coordinated because of various
dependencies between them, like a need for access to the same resources.
Coordination is the management of these dependencies (Malone and Crowston,
1994). If there are no dependencies, there is nothing to coordinate. But if a task
depends on the result of another task, or if the execution of a task depends on
the expertise of the person that performs the task, the dependencies must be
managed. Coordination of work is therefore an important aspect of teamwork and
team leadership (Salas et al., 2005).

There are three basic coordinating mechanisms that seem to describe the
fundamental ways in which organizations can coordinate their work (Mintzberg,
1989, p. 101):

 Mutual adjustment – which achieves coordination by the simple process of
informal communication

 Direct supervision – in which coordination is achieved by having one
person take responsibility for the work of others whose work interrelates,
by issuing instructions and monitoring their actions, and thus enforcing
control

 Standardization – of which there are four types: Standardization of work
processes, standardization of outputs, standardization of skills (as well as
knowledge) and standardization of norms

While no organization can rely on a single coordinating mechanism, mutual
adjustment and direct supervision are almost always important. Still, all the
mechanisms mentioned will typically be found in every reasonably developed
organization (Mintzberg, 1989, p. 103).

A further explanation of the various standardization mechanisms follows
according to Mintzberg (1989, p. 101-105). Standardization of work processes
achieves coordination by specifying the work processes of people whose work
interrelates, e.g. by assembly instructions or job descriptions. When outputs are
standardized, coordination is achieved by specifying the results, e.g. an
architect’s plan that specifies the resulting house. Standardization of skills and
knowledge achieve coordination by training the workers to handle different types
of tasks, e.g. a surgeon and an anesthetist. Finally, standardization of norms
achieves coordination by the norms that pervade the work, i.e. how the belief in
values like ethnic supremacy justified slavery. The change of such a norm may
change how work is coordinated.

The three basic coordinating mechanisms fall into an order regarding complexity
of organizing (Mintzberg, 1989, p. 101-102). Simple tasks with simple
dependencies are easily coordinated by mutual adjustment, but direct
supervision tends to be added and take over as the primary means of
coordination when work becomes more complex. Further complexity leads to
coordination by standardization (of work processes or norms, then of outputs or
of skills), while even more complexity revitalize mutual adjustment as the

12

primary coordinating mechanism (Figure 3). Mintzberg (1989, p. 102) consider it
a paradox that mutual adjustment is the mechanism best able to deal with both
the simplest and the most complex forms of work.

Figure 3: The change of primary coordinating mechanism with increasing task
complexity (Smite et al., 2008).

Coordinating distributed software development
Coordination, together with communication and collaboration, are recognized as
the key enablers of software development processes (Layman et al., 2006). While
there is no single cause for the problems in software development, a major factor
is the problem of coordinating activities while developing large software systems
(Kraut and Streeter, 1995). Kraut and Streeter (1995) mention scale of software
projects, inherent unpredictability of software specifications and tasks as well as
the interdependence of software components as some of the factors that lead to
the necessity of efficient coordination between the different work groups involved
in the development process (Amrit, 2005).

Even with a heavy demand for successful coordination of software development,
the challenge is even bigger when distribution is introduced. The key difference
between collocated and global software development is coordination over
distance (Herbsleb, 2007). The distance has unfortunately a negative impact on
the coordination (Herbsleb and Mockus, 2003), because many of the mechanisms
that coordinate the work in a collocated setting are absent or disrupted in a
distributed project (Herbsleb, 2007). Herbsleb consider this the fundamental
problem of global software development.

Global software development has traditionally relied mainly on formal
mechanisms (coordination by standardization), which exploit detailed
architectural design and plans to address impediments to team communication
induced by geographical separation and reduce the need for communication
(Ramesh et al., 2006, Agerfalk and Fitzgerald, 2006). The formal mechanisms are
chosen because of the traditional perspective that promotes a mechanistic
production-line approach to software development (Dyba, 2000, Nerur and
Balijepally, 2007). Boden et al. (2007) claim that, while there are two approaches
to solve the coordination problems, namely to reduce the need for frequent
informal communication (mutual adjustment) or to ease the informal
communication by technical means; a stronger focus on formalization is not a
solution.

Cataldo et al. (2007) provide a list of coordination mechanisms for distributed
software development that represents the best practices of the software
engineering literature. The mechanisms mentioned are either provided by
standardization and direct supervision, or means to achieve mutual adjustment

Standardization

Direct Supervision

Mutual Adjustment

Task Complexity

13

(Table 5). As we can see from the table, there is a balance between all three
coordinating mechanisms. Cataldo (2007) claims that lateral communication
(mutual adjustment) are beneficial even in cases where the level of
interdependency between remote teams are low, due to coordination
breakdowns that still occur when the proposed mechanisms are in place. It
seems like coordination breakdowns fall back on mutual adjustment to re-
establish coordination.

Table 5: Best practices from literature on distributed software development
(Cataldo et al., 2007). Conformity with mutual adjustment (MA), direct

supervision (DS) and standardization (S) is based on Mintzberg (1989, p. 101).
Mechanism Purpose MA DS S
Centralized structure Centralize critical decisions and

establish clear paths of
communication

 X

Early identification of
dependencies

Reduce dependencies amongst tasks
assigned to remote teams.

 X X

Documentation Reduce the need to communicate
amongst remote teams by having
access to detailed design decisions.

 X

Change, configuration and
integration management
processes

Identify relationships, manage,
control, audit and report on the
changes made to the software.

 X X

Periodic commits Increase awareness by making
ongoing changes to the system
available to all the remote teams.

X

Daily builds Reduce the potential for integration
problems by identifying them early.

X X

Communication tools Allow for exchange of information
amongst teams when other
coordination mechanisms are not
sufficient.

X

Periodic meetings Status and definition of tasks. Relay
information from remote teams to
others.

X

As a contrast to the traditional approaches, agile development relies on people
and their creativity rather than on processes (Cockburn and Highsmith, 2001),
and emphasizes informal communication (mutual adjustment) as the primary
coordinating mechanism (Nerur et al., 2005). The major challenge of applying
agile methods or practices in a global software development context is to balance
the coordinating mechanisms (Figure 4). However, there are obvious conflicts
when trying to balance mutual adjustment, direct supervision and
standardization, as direct supervision and standardization overrides mutual
adjustment.

14

Figure 4: Relative emphasis on coordinating mechanisms: Agile development
relies purely on mutual adjustment, while global software development (GSD)

emphasizes standardization and some direct supervision.

The benefits of agile development considering coordination are the advantage of
mutual adjustment as the best coordinating mechanism for complex
coordination, as mentioned above. Since distribution of the software
development increases complexity (Carmel and Agarwal, 2001), mutual
adjustment should be considered as the best coordinating mechanism. This
reinforces the challenges of communication in distributed software development,
as mutual adjustment is made more difficult by distribution, due to
communication impediments. It is also worth mentioning that Mintzberg did not
seem to consider distributed work when he claimed that mutual adjustment is
best for the most complex coordination, and therefore a balance with other
coordinating mechanisms might be appropriate.

Coordinating mechanisms in Scrum
Mintzberg (1989, p. 101-104) says that the standardization of work processes
achieves coordination by specifying the work processes of people carrying out
interrelated tasks. He exemplifies by mentioning time-and-motion studies, which
seek to make processes more efficient through removal of unnecessary actions;
resulting in a specific description of how to perform a repeatable task. He
describes standardization of work processes as the imposition of operating
instructions, job descriptions, rules, regulations and the like.

The concept of standardization of work process can be better understood by
considering its substitutes; standardization of skills and knowledge, and
standardization of norms. Instead of standardizing by imposing rules through a
detailed description of how to perform work, standardization of skill and
knowledge makes sure the standards are learned and therefore inherent in the
person that works (Mintzberg, 1989, p. 104). Likewise, the internalization of
standards through norms ensures that members of the organization acts and
makes decisions in accordance with the common belief, the standard (Mintzberg,
1989, p. 104). In the light of these, according to Mintzberg (1989, p. 104),
substituting standardizations, the standardization of work process becomes
another way to lock the actions of people to a pre-determined standard.

It is arguable that Scrum (or any other agile approach) is such a standardized
process, from which one would conclude that standardization, and not mutual
adjustment, is the primary coordinating mechanism of Scrum. It is also clear that
agile development imposes a very high level of discipline on the performers.
Examples would be the discipline needed to perform daily meetings, valuable

R
el

at
iv

e
em

p
h

as
is

 o
n

co
o

rd
in

at
in

g
 m

ec
h
an

is
m

Mutual

Adjustment

Direct

Supervision

Standardization

GSD

Agile

15

feedback, testing and reviews. The need for such discipline indicates quite some
rigidness in agile development as well.

It could even be argued that mutual adjustment and direct supervision are
standardized processes, and then conclude that the only coordinating mechanism
is standardization. This is not in accordance with Mintzberg (1989, p. 103), who
consider that mutual adjustment and direct supervision live side by side with
each other and with standardization, although the emphasis varies. Coordinating
mechanisms used in an organization may also vary depending on the
organizational level, e.g. mutual adjustment within a team, and direct supervision
between team and supervisor. Mintzberg (1989, p. 103, 110) states that the
primary reliance on a specific coordinating mechanism is indicative of what kind
of organization it is, while there still are other coordinating mechanisms in use. It
is therefore clear that, while there might exist standardization that facilitate
mutual adjustment or direct supervision, they are still distinguished coordinating
mechanisms.

Since the distinction between the three coordinating mechanisms is justified, it is
important to identify the one emphasized in agile development. It is true that
agile development seeks to provide processes for software development, but it is
important to remember that the provided processes are dynamic within the
frameworks provided. While practices like pair-programming and continuous
integration (Extreme Programming (Beck and Andres, 2004)) are standardized
frameworks for action, they are also dynamic in the sense that the processes
should be continually optimized. More important is their purpose to facilitate
mutual adjustment. Since no coordinating mechanism can prevail on its own
(Mintzberg, 1989, p. 103), it is logical that agile development also contain traces
of standardization, regardless of which coordinating mechanism is primary.

The traditional software development processes are highly focused on
standardization of output, and somewhat on standardization of skill and
knowledge, and of work process (Nerur and Balijepally, 2007). This is clearly in
contrast to agile development’s focus on continuous adjustment of output,
collaboration of people and adaption of process (Nerur and Balijepally, 2007).

Structures that rely on standardization for coordination may be defined as
bureaucratic, those that do not as organic, and vice versa (Mintzberg, 1989, p.
104). An organization’s structure is organic relative to how organic its
environment is (Mintzberg, 1989, p. 108). Innovative organizations have very
organic structures to respond to their organic environment. Mintzberg (1989, p.
113) note that innovative organizations rely on mutual adjustment as the primary
coordinating mechanism by welding various units into multidisciplinary teams of
experts that coordinate within and between themselves through mutual
adjustment.

Innovative organizations disperse power over different decisions to different
places in the organization, in contrast to centralization of power. Teams become
empowered to coordinate their own work, both internally and related to other
teams’ work. This is similar to self-organizing teams, typical for agile
development (Nerur and Balijepally, 2007). When software organizations deploy
experts in multidisciplinary teams that carry out projects in a complex and
dynamic environment, they can be classified as innovative, and mutual
adjustment should then be the most important coordinating mechanism (Moe and
Smite, 2007).

16

Mintzberg (1989, p. 105) also mention liaison devices related to mutual
adjustment. Liaison devices refer to a whole series of mechanisms used to
encourage mutual adjustment within and between units. They range from liaison
positions to fully developed matrix structures (Mintzberg, 1989, p. 105). Scrum
(and any other agile approach) should therefore be considered a liaison device,
as a way to create and improve a dynamic software development process by
providing a process framework that encourages mutual adjustment. Processes
should not be imposed unless they are needed, which is also the statement of
agile development regarding documentation (Nerur et al., 2005). Standardization
is discouraged if it is not needed.

On a higher level, Scrum enforces some rigidness concerning how to approach
software development. A system of values are laid as a foundation encouraging
the organization to value the collaboration of people, embrace change, include
the customer and produce useful results. A framework is built upon this
foundation. Scrum and other agile approaches present processes that facilitate
mutual adjustment. While the processes enforce discipline, even more so than in
traditional development, they are not detailed specifications of step-by-step
solutions to known problems, which is what Mintzberg talk about when he
mention the standardization of work process. Still, one could consider the agile
approaches to be high-level standardization of work process, and to a degree,
standardization of norms (i.e. values and beliefs). The question is then: “Which
coordinating mechanism is dominating in agile development?” Comparing the
ideology behind agile development; flexibility in response to a complex changing
environment, to Mintzberg’s description of innovative organizations, it is clear
that mutual adjustment should be the primary coordinating mechanism in agile
development. It can therefore be considered the goal of agile development to
achieve mutual adjustment, and the conclusion is that the theory on agile
development emphasizes mutual adjustment.

2.4 Transparency and awareness

Little research can be found on transparency. The concept is frequently used, but
has seldom got the full focus, and it is usually not explained, as the authors often
expect the reader to grasp the concept intuitively. This section will therefore try
to create an understanding of the concept by referring to how it is used in the
literature.

Transparency or visibility is a concept that is used to describe whether the
appropriate knowledge or information for coordinating is available or not. The
concept is frequently used in close relation to coordination, primarily through
direct supervision and mutual adjustment, where actors need to be made aware
before they react. Transparency makes everyone fully aware of productivity,
progress toward goals, competence of people to do their jobs, willingness of
people to work together toward project goals and the ability to build completed
products on time (Schwaber, 2007, p. 18). Geographical transparency refers to
transparency across multiple sites, as used by Sutherland et al. (2007).

Transparency as a concept is often applied in one of two dimensions, vertical or
horizontal. The vertical dimension often relates to direct supervision and
encourages the lower levels of an organization to provide the proper knowledge
for coordination and control on higher levels. The horizontal dimension relates
primarily to mutual adjustment within groups, where awareness, a consequence
of transparency, is the main focus of research.

17

The common definition of awareness is provided by Dourish and Bellotti (1992):
“Awareness is an understanding of the activities of others, which provides a
context for one’s own activities”. Awareness enables team members who are
aware of each other’s interdependent tasks to coordinate better (Damian et al.,
2007). The need for awareness therefore depends on the degree to which team
members must coordinate because of dependencies (Gutwin et al., 2004).

Herbsleb (2007), who consider coordinating at a distance to be the main
challenge of distributed work, claims that it is the reduced level of
communication that in turn reduces the team’s awareness and therefore impede
coordination. Damian et al. (2007) agree that the awareness needs of distributed
teams appear to be greater than those of small co-located teams.

The lack of awareness results in a lack of context. A person on one site tend to be
unaware of what people on other sites are doing day by day, their availability for
communication and their concerns (Herbsleb, 2007). The lack of awareness
makes it difficult to identify who does what and who has what expertise (Herbsleb
and Mockus, 2003). Cataldo et al. (2007) suggest periodic commits of code to the
common repository to increase awareness by making ongoing changes to the
system available to all the remote teams. Another approach is to use presence
awareness technology to ease the initiation of distributed communication, as
when a notification of someone’s presence online serves as a reminder (Herbsleb
and Mockus, 2003). The need to communicate can also be reduced by increasing
awareness through transparency. Introducing transparency can reduce the
communication overhead in the long term by making information accessible
without the need for explicit communication or inquiries (Sangwan et al., 2006, p.
154-155).

Transparency and coordination
The lack of vertical geographical transparency may result in a feeling of lacking
control from management (Smite et al., 2008), which has a negative impact on
direct supervision. The team has a much better idea of the current project status
than the managers have, but this can be resolved by increasing the transparency
(Sangwan et al., 2006, p. 76). Vertical transparency is needed to achieve control
in global software development (Layman et al., 2006).

If dependencies are not made visible to someone who can coordinate them, the
lack of transparency will postpone the awareness of incompatibilities that
otherwise could be managed, making dependencies remain unresolved and in
need of further coordination. Discrepancies are commonly not discovered before
integration (Herbsleb and Grinter, 1999). A solution that brings transparency of
work progress to all partners is short iterations. Both the developers, project
managers and customers can frequently get a good picture of how the project is
progressing (Paasivaara and Lassenius, 2006).

It is also claimed that informal contact and task awareness are crucial for
applying mutual adjustment and direct supervision in distributed software
development (Smite et al., 2008). With absolute transparency of communication
and documentation, the central team may assume the role of facilitator instead
of an authority to report to (Sangwan et al., 2006, p. 155), which is a transfer of
coordinating mechanism from direct supervision to mutual adjustment. The term
“absolute transparency” indicates that information is both vertically and
horizontally available beyond geographical borders.

18

The main benefit of awareness in a distributed software development project is in
simplifying communication and improving coordination of activity. That is why
the need for awareness depends on the degree to which developers must
coordinate (Gutwin et al., 2004). Teams working on well modularized tasks would
therefore have less need for awareness, while teams utilizing mutual adjustment
have a high need for awareness and transparency.

A reduced level of geographical transparency will have a negative impact on
coordination by mutual adjustment because of the general need for awareness to
coordinate (Damian et al., 2007). Task awareness is crucial for applying mutual
adjustment (Smite et al., 2008). Increased geographical transparency will enable
mutual adjustment as mentioned above.

Transparency and Scrum
Scrum relies on transparency (Schwaber, 2007, p. 155) and makes everything
visible to everyone (Rising and Janoff, 2000). For instance progress can be made
visible through delivered increments and burndown charts. Sutherland et al.
(2007) even claim the success of a geographically transparent Scrum project with
56 developers in multiple dispersed teams. They state that it is difficult to
achieve, but possible. Geographical transparency was achieved through a single
global build repository, one tracking and reporting tool, daily meetings across
geographies and good engineering practices (Sutherland et al., 2007). The daily
Scrum meeting is credited as crucial for coordination (Sutherland et al., 2007).

19

3 Research design and approach

The goal of this research is to understand how the introduction of agility affects
coordination of tasks in a global software development environment, and how
transparency affects coordination. While the literature review has established an
understanding of transparency and coordination, it is important to study
practicing teams to verify theory and to reveal further aspects regarding
coordinating mechanisms in agile and distributed software development.

This thesis report on a multiple case holistic study (Yin, 2003, p. 39-43), in which
one phenomenon was studied in several projects in one company and in one
project in another company. In a multiple case study, each case must be selected
carefully so that it either a) predicts similar results or b) predicts contrasting
results but for predictable reasons (Yin, 2003, p. 47). Option a) was chosen for
the three cases with common context, while option b) was chosen for the fourth
case in another company.

The case studies were prepared by generating a research plan (Appendix E, p.
44). The research questions were listed in the plan, together with a schedule and
hypotheses to support or refute by observations. Yin (2003, p. 29) claims that,
according to empirical research methods, a theory can be tested by observance
of predictions that are logically derived from the theory. If the predictions are
supported, the theory is strengthened, but it is refuted if the predicted results are
lacking (Yin, 2003, p. 29). It is therefore important for the validity of empirical
case studies to state predictions that can be supported or refuted.

To achieve proper internal validity, propositions were generated for both of the
research questions. It was also written what kind of support or lack of support to
anticipate. A total of seven and five propositions were prepared for respectively
the first and the second research question.

3.1 Scope

Global software development is a diverse activity, ranging from a project
manager with a geographically distant team solving a simple task, to multiple
teams in multiple locations, cultures and time zones solving complex and
interdependent tasks. An equivalent diversity can be found in agile software
development, where different methodologies and approaches emphasize
different aspects and varying context. This diversity calls for a narrowing of the
scope and a clarification of the aspects considered.

It would be a good idea to balance the cases with both internal offshoring and
outsourcing, to identify differences in coordinating between the two. This should
make it possible to reveal possible differences in coordination due to variations in
management approach, and variations in transparency created by organizational
borders. Two of the selected cases use internal offshoring, while two of them use
outsourcing.

It would also be beneficial if the cases were culturally similar, or at least some of
them were culturally similar. That would allow for better identification of cultural
impact. The two outsourcing cases have remote teams in India, which should
allow for similar culture. It is also beneficial if the cases can be conducted within
a single company, because the similar context would reduce the possibilities of

20

variations in the results caused by external or contextual variations. Three of the
four cases are studied in the same company.

To overcome the diversity of agile software development, a suitable agile
methodology is chosen. Abrahamsson et al. (2002) have compiled a
comprehensive review of literature resulting in definition, classification and
comparison of ten agile software development approaches, including Extreme
Programming (twelve software development practices taken to the extreme),
Crystal family (several related methodologies applicable based on heaviness) and
Dynamic Systems Development Method (focused on fixing time and resources
allocated, while adjusting the amount of functionality accordingly). Scrum was
chosen for this study because of its focus on coordination of work (Section 2.2, p.
6). All the four cases use Scrum or some Scrum practices.

3.2 Study context

This study was done in the context of a larger action research program, where
several companies have introduced elements from agile development in
response to identified problems. The primary software company is medium-sized
with approximately 150 employees in four major departments. The projects
studied in this company were all using Scrum for the first time. However, the
company was experienced with using global software development.

The second company, from which the last case was selected, is a multinational
company with several thousands of employees in departments all over the world.
The case study was conducted in a department with responsibility for an
underlying core system used by several other departments and affiliates, and the
software development is of innovative nature. The company is quite experienced
with using both agile methods and global software development.

The case in the second company was selected because of the relatively low level
of experience with agile methods in the primary company. The low level of
experience is quite understandable granted that Scrum was recently introduced
for process improvement. The second company had been using Scrum for three
years and their project was therefore considered to be a more mature Scrum
project.

3.3 Data sources and analysis

To address the research questions, semi-structured interviews were conducted
with the persons most responsible for coordination of work in the four projects,
i.e. a Scrum master, a project manager, a product owner and a group manager.
One person was selected from each project. The interviews lasted from 30 to 70
minutes, and aimed at understanding how Scrum was applied in a global
software development context. The interview guide was based on the three
coordinating mechanism as proposed by Mintzberg (1989, p. 101), in addition to
questions related to Scrum. The focus was on understanding coordination of
work, communication within and between the teams, feedback-sessions, planning
and estimation, use of documentation, roles and specializations, and how
decisions were made. All the interviews were transcribed.

During the interviews a graph was presented. The graph showed the relative
emphasis on the various coordinating mechanisms in global software
development and in agile software development. The interviewees were then

21

asked to indicate the relative level of the various coordinating mechanisms used
between local and remote sites in their projects. Their indications were then
compared to what they said in the interviews and some were slightly adjusted.
The graphs are presented together with the results in the next section (Figure 5,
Figure 6, Figure 7 and Figure 8).

While the interviews were the primary source of data for this study, access was
given to previously collected data on the primary company. This was data
collected through the action research program. The data contained previous
interviews with several team members, the Scrum master and the product owner
of one of the projects. There were also pictures and an observation log connected
to the same project.

The transcripts of the interviews were read through and statements were
extracted if they dealt with one of the coordinating mechanism or with Scrum.
Other statements were extracted if they illuminated the necessary context of the
cases. The statements were then merged to tell an accurate and verifiable story
about each project regarding their use of Scrum and coordinating mechanisms.

22

4 Agility in global software development projects

We now present the three global software development projects under study,
how Scrum was implemented in these projects, and how work was coordinated in
the projects.

4.1 Project India I

The project is partly outsourced to India. The goal of the project is to develop a
system for integrity management of pipelines both offshore and onshore. Today
several customers are interested in buying the product, and so far three
contracts have been signed. One of the biggest challenges in this project is to
align requirements from potential customers from all over the world. Scrum was
introduced one year after the project had started.

The project consists of six developers working full time (one is a Scrum master),
two GUI designers, one product owner, and one project manager working 50% on
this project. Four of the developers are situated in India together with one tester.
To improve communication one of them is in periods moved to Norway.

The sprints usually last three weeks, and ends on a Friday with a retrospective
and review meeting. The next sprint is planned the following Monday. The team
organizes a 15 minutes Scrum meeting every morning discussing project related
issues. The product owner is usually attending all the Scrum meetings.

Coordinating software development work in the India I project.
Before using Scrum the team relied on standardization and direct supervision
when coordinating work with their Indian team. In the beginning, the remote
team was given some easy tasks specified by the Norwegian team. The Scrum
master said: “The quality was varying in the beginning, and we thought they
should only concentrate on the testing. Then they said „No, this is not fun, please
give us something more exiting to work on‟, so we gave them different tasks, and
this worked pretty well.”

After using Scrum for 6 months the project had implemented all the Scrum
practices, and felt they were succeeding with continuously improving their Scrum
process. The team tried to work as if they were all collocated, ignoring the
geographical and time differences. The Scrum master said: “Being distributed is a
big barrier. We used a lot of time on discussions between people in the two sub-
teams. It didn‟t work. The solution was to appoint one of the remote developers
the role of a local Scrum master. Then we mostly communicated with her. It was
much more efficient to delegate the responsibility to one person.”

It was hard to achieve mutual adjustment because of the time consuming
communication. To improve the communication it was decided to let the Indian
Scrum master stay in Norway for a period. The Scrum master said: “This
improved the situation a lot. The productivity increased while she was here. The
important issue is to communicate with only one person.” She was participating
in all the Scrum meetings as an integrated member of the team while situated in
Norway. The Scrum master gave her credit and said that: “She is very good at
coming up with ideas and show initiative.” At the same time it was also decided
to let the remote team work on its own module.

23

Even though they started applying Scrum, and assigned a member of the remote
team as a local Scrum master, the coordination between the two teams are still
described as a traditional way of developing software. During the planning
meetings in Norway, the local team plans and suggests initial estimates for all
the tasks in the project, and then assigns tasks to their remote partner. The
remote team turns the tasks into sub-tasks, and provides new estimates. In the
end, the Norwegian team checks the results. The Scrum master said: “We decide
what tasks are appropriate for them. Tasks are assigned to them, and verified.”
They are clearly coordinating the remote team through direct supervision.

The Norwegian Scrum master, the Scrum master from India and one of the
Norwegian developers had frequent meetings (2-3 times a week) with the remote
team. This was a kind of distributed Scrum meeting. In the meetings between the
two sub-teams they relied on chat and e-mail. The Scrum master said: “We tried
to use telephone-conferences, but it didn‟t work very well, because of language
problems. Written communication is easier to understand. Extensive use of
chatting even makes it possible to ask a question right away. It takes time to
organize a telephone conference.” He continued: “It was also difficult to use only
15 minutes on the telephone. It usually took an hour. Chat is better.”

The Scrum master from India is involved in the planning and daily meetings
standing equal to the other members, but then she coordinates the remote team
by deciding who should do what. While they abandoned the use of output
standardization, they have not achieved a very high level of mutual adjustment
towards the remote team. Their primary coordinating mechanism is direct
supervision (Figure 5).

Figure 5: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on direct supervision and mutual

adjustment than on standardization.

Transparency
The remote and local team are working on the same codebase and development
environment. This allows for some transparency of who has done what. They
have also managed to establish an automated build system, which allows
everyone to see the progress or impediments if the build fails. When the Indian
Scrum master is in India, scrum meetings are semi-daily, as the Scrum master
said: “Although not daily, we have regularly meetings equivalent to daily scrums,
but just including me and the remote Scrum master, and possibly one more.”

When collocated, she takes part in the regular daily scrum. The Scrum master
claims that this is beneficial, because: “When she was collocated with us we had

R
el

at
iv

e
em

p
h

as
is

 o
n

co
o

rd
in

at
in

g
 m

ec
h
an

is
m

Mutual

Adjustment

Direct

Supervision

Standardization

Traditional GSD

India I

Scrum Theory

24

an increase in productivity. It was quite substantial.” It seems that the
transparency increased some, because the Scrum master said: “Before she
joined the team, the remote team implemented exactly as specified even when
they received an obviously erroneous specification. They must have understood
that it was a mistake, but the point, for them, was to have their back clear. This
has improved.” While this is more a cultural issue, the Scrum master would have
been able to resolve it earlier if he was continuously aware of their work.

4.2 Project India II

The project is partly outsourced to India. The goal of the project was to develop a
complex software system for quality audits in organizations. This project
represents the second release of the system and will provide multi user support.
Two departments of the studied company are involved, each acting as an internal
customer responsible for contracts with their own international customer.

The project consists of a product owner, who is also a project manager, and an
architect from Norway, while development is outsourced to India. Four remote
developers are working 100% on the project, one of them as a team leader. In
addition a few remote developers contribute part time on the project. The Indian
team members are given specialized responsibilities, like GUI.

Scrum was applied from the inception of this project because, according to the
product owner, “our customer didn‟t understand the creation of an old-fashioned
functional specification, so we thought: Okay, let‟s try an agile approach.” They
agreed on a contract that allowed the use of a backlog with a constantly updated
list of business and technical requirements, and continuous deployment of short
deliveries. The backlog was maintained by the product owner. In addition to the
described Scrum practices, they used continuous integration and semi-automatic
deployment, and code reviews.

Coordinating software development work in the India II project.
The project started after the first initial backlog was created by the product
owner. After the initial design was created, the work was then planned and
divided into sprints in cooperation with the Indian team. This failed. The product
owner said: “I quickly gave up defining the sprints together with the remote
team.” She continued: “It was very difficult because of problems with the
communication. […] We didn‟t understand each other, and there were cultural
differences, too.”

The product owner explained how they changed their way of coordinating work,
after finding it too time consuming to do the sprint planning in cooperation with
the remote team: “We started sending them work-packages specified in detail,
but we realized it would much to do this for each work package.” The solution
was then to create a principal work plan and then further specify and document
backlog items with use-cases described in documents.

The product owner and the remote team leader communicate daily, often several
times a day. She said: “The team leader down there assigned the tasks to the
team. I‟ve been dealing only with him.”

The assignment of tasks to the Indian team became less detail oriented and
instead there was an increased focus on continuous communication. It seems like
the product owner tried to act more as described in the Scrum literature. She was
maintaining the backlog and specifications, while letting the Indian team work

25

out the details: “I don‟t know everything, so I try to tell them that: „This is the use
case, you need to solve it. Work it out.‟ And it works. They ask: „Can we discuss
this?‟, and of course we do.”

Now they use a backlog where the product owner registers items that are up to
the Indian team manager to solve. The product owner said: “It is up to him how
they solve it. Now they make their own choices,” and “the mutual adjustment has
increased, it has improved.” Still, the remote team has not had any training in
Scrum and the remote team manager coordinates his team with direct
supervision.

Coordination of work with the remote team is mainly based on direct supervision
and standardization in the form of written specifications and reporting of status,
but the mutual adjustment is increasing (Figure 6). The team is also relying on
frequent informal communication. However, the biggest challenge is to get
feedback from the remote team. The product owner said: “I miss that they detect
problems and show initiative.”

Figure 6: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on direct supervision and

standardization than on mutual adjustment.

Transparency
The continuous integration and a semi-automatic deployment system provide
transparency for the product owner. Still, the product owner relies heavily on
frequent communication for transparency. “We communicate every day, even
several times a day,” she said, and continued: “Whenever something emerges,
we communicate, and I inquire if there has been silence for a while.
Communication is absolutely the prime critical factor to succeed.”

4.3 Project Eastern Europe

The project is partly internally offshored to Eastern Europe. The goal of the
project is to develop a system for collection and visualization of data from ship-
inspections. When ships are inspected, the results are stored in the system, and
the collected data are visualized through 3D models. The 3D engine was first
developed as a prototype five years ago, before it was integrated into the core
system and then released. Each time the product is sold to a new customer it
requires adaptation and modification of the system. Several contracts with
different customers from all over the world have been signed.

R
el

at
iv

e
em

p
h

as
is

 o
n

co
o

rd
in

at
in

g
 m

ec
h
an

is
m

Mutual

Adjustment

Direct

Supervision

Standardization

Traditional GSD

India II

Scrum Theory

26

Four to five developers are situated in the remote team in an East European
country, while two developers are situated in Norway, together with two persons
from the support department, one from sales and a project manager acting as a
product owner. The Norwegian team implements the daily Scrum. These
meetings are also used for discussion of future solutions. They tried to implement
sprints for the whole project, but failed. Tasks are mostly assigned to the
Norwegian team’s members by the project manager, who said, while pointing at
the backlog: “I‟ve been putting some signatures on who is going to do what.”

Coordinating software development work in the Eastern Europe project.
The project was originally applying a traditional, waterfall inspired model. This
changed a year ago when a new project manager was assigned. The two
distributed teams tried to use a common Scrum process. They were conducting
several joint Scrum meetings each week, and implemented shared
responsibilities with mutual adjustment. Originally, the remote team was only
responsible for the creation of 3D models, but when it was decided to integrate
them in the total development process, they faced new challenges. The project
manager said: “We thought that we should try Scrum, but because we wanted
the remote team to take part in development and bug fixing, daily Scrum became
a challenge. […] We didn‟t manage to interact and cooperate. It became too time
consuming.”

According to the project manager, the remote team was unfamiliar with the
system. This unfamiliarity made communication time consuming. The project
manager said: “We felt that the Norwegian team members used too much time
communicating with the remote team.” The project manager also felt that the
remote team did not deliver as expected. She said: “The software did sometimes
seem inadequately tested.” This dissatisfaction was communicated to the remote
team.

The project manager considered the problem to be difficulties gaining a thorough
understanding of the complex source code, and commented on how tasks were
divided: “If we had managed to identify bigger chunks of new functionality to be
developed by the remote team, it might have been easier for them.” To improve
the situation it was decided to divide responsibility between the teams and to
give the remote team tasks that required less cross-site coordination.

The Norwegian team is now responsible for the core system, bug fixing, new
functionality and customer relations, while the remote team is mainly responsible
for system configuration and the creation of 3D models for each customer. The
project manager said: “Because of their 3D competency, it works, because then
they don‟t have to communicate with us all the time. […] It‟s only if they lack a
specification or domain knowledge, for instance when they miss an overview of
what to put on the ship, then they come back and ask.” She also reported a lack
of initiative.

Coordination of work between the teams is mainly based on standardization and
direct supervision. The project manager said: “They get told all the way, and they
get asked all the way.” The level of mutual adjustment is low (Figure 7).

27

Figure 7: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on standardization and direct

supervision than on mutual adjustment.

Transparency
The project manager complained about low awareness in the project: “There are
things that we just discover by incidence, things that we don‟t control. I feel that I
don‟t control the resources. For instance, we don‟t know when they are at work.”

The local team provides some transparency through a spreadsheet with project
data, mostly broken down to a ship-by-ship level, including data on who has
implemented what. There was also a collocation of the teams for a two week
period. The project manager said: “We didn‟t manage to bring them through all
the nitty-gritty stuff, so there was a lot of chat, mail and telephone afterwards.”

They also had a common platform for development, with tools and logs
containing bugs and enhancements. The daily builds posed a particular problem,
according to the project manager, who said: “When the daily build failed, we had
to find out who checked in the code that broke the build, and if it was someone
remote, it might be that he wasn‟t there when we needed him.” Despite the
common infrastructure, there was low awareness in crucial areas. The project
manager thought it would be better if they were collocated. “You can think out
loud, and when you sit together, someone will answer, but you lose this if they sit
in another country. You have to initiate a conversation to get the answer instead
of just turning your head and ask.”

There was also low awareness of competencies and resources, as the project
manager mentioned when she said: “It was typically things they could have
asked anybody about, not just that single person, but he sat there and felt that
he had to assist them continuously.” She also said that: “If they had been sitting
next to me, we could have done it together, seen the result and adjusted,”
indicating that higher awareness and collocation could have solved some
problems.

4.4 Project USA

The goal of the project is to develop the configurable core functionality for one in-
house and about 150 worldwide partners or customers. The complex product has
been released and is now in an endless maintenance and improvement phase.
The project has been using Scrum for the last three years.

R
el

at
iv

e
em

p
h

as
is

 o
n

co
o

rd
in

at
in

g
 m

ec
h

an
is

m

Mutual

Adjustment

Direct

Supervision

Standardization

Traditional GSD
Eastern Europe

Scrum Theory

28

There are thirty experienced people working on the project, of which twenty-five
are developing a common code base and five fill management roles. Three of the
five managers are group managers, as the project is organized in three groups
with different technological competencies. The five managers constitute a board
that possesses the role of product owner, while the product manager is located in
the USA. The group manager said: “There is no one who has a complete
overview. There is no such person.” Two of the managers have weekly calls with
the product manager. Regarding her role, the group manager said that: “She has
suggestions, and we absorb them, but the decisions are made here.”

An overall roadmap is provided by the board in consultation with the product
manager. This is a necessity because, as the group manager said: “We have to
comply with the planning regime of the rest of the company.” The roadmap
specifies two releases a year. Sprints of four to six weeks are used to reach the
targets of the upcoming release, and nothing is done out-of-sprint, they always
work in sprints.

For each sprint they re-organize into new teams with members from the three
groups. The composition of the teams depends on the work packages they
handle and the functionality they deliver. The groups start every sprint by
discussing and proposing work packages and team constellations for the board,
which resolves conflicting proposals and approves. After approval, each team
takes its work package and scopes its sprint, breaks the package down in tasks,
estimates and designs. Daily scrums are also used. Interdependencies are
handled by a Scrum of Scrums meeting where everyone attends but only the
Scrum masters speak, and through drop-in API-change meetings. Changes to the
API must be announced before the weekly meeting. The sprints end with reviews
and demos. Retrospectives are done when starting the next sprint.

While the project’s development is collocated, it has some distributed aspects to
note. The product owner board answers to the product manager as well as the
engineering department in the USA. There is also a group of support consultants
who acquire feedback from customers, and a quality assurance team of four
testers in India.

Coordinating software development work in the USA project.
On the team level they have mutual adjustment both in planning and daily work.
Team members are made aware of each other’s work and have the ability to
coordinate. The group manager said: “People meet in their teams of three to six
persons at ten o‟clock every day. But then we have a Scrum of Scrum at ten past
ten, where all thirty attend.” Only the Scrum masters are speaking in the Scrum
of Scrums meeting, but the attendance of everyone is good for transparency, and
makes everyone aware of impediments that concern them.

It is also clear that everyone on the project has their say, which is according to
mutual adjustment. This is particularly visible when planning, as the group
manager said: “Each group has a meeting where they choose work packages
from the roadmap. We use work packages, which is the amount of work we can
manage to do in one sprint with a certain number of people. It is important that
the groups make these proposals themselves.” The teams chose their own work,
and how to do their work. The group manager continued: “While we, the
managers, constitute a board that practically decides the priorities, we try to
absorb input from the entire project.” While the product owner board could
enforce direct supervision and control, they merely prioritize the backlog of work
packages and allow the teams to take initiative.

29

The product owner board is also committed to the company’s management in
USA, and is constantly adjusting towards them. The group manager said: “When
planning the roadmap, we ask the product manager: „Should we do this or that?‟
Almost every suggested solution comes from us. If we discuss priorities, she has
a say, and we listen, but the decision is made by us.” Although they may receive
demands from engineering on details like using a “float” instead of an “int”, they
engage in negotiations, explain why it might be unwise to do so, e.g. due to
performance issues, and resolves the disagreements by enforcing mutual
adjustment.

It is clear that the project has a unique position because of their domain
knowledge, which makes them able to negotiate and initiate mutual adjustment
with both their supervisors and their customers. The group manager said: “The
customers are eager to assign tasks, but we don‟t allow them, we control the
terms. Engineering, on the other hand, may assign to some degree, but there is
always dialog too.”

Their initiative seems to come from the innovative nature of the project. The
group manager said: “Because the product manager is rather far away, and
because it is difficult for anyone outside the core environment to have a good
enough understanding to propose feature suggestions, we are responsible for
intercepting any needs, demands or possible features. We discover new solutions
for our customers based on feedback from them.” Their domain knowledge
makes it difficult for outsiders to initiate constructive interventions, and
customers do not know that they need the new features before they have been
invented and demonstrated. This allows the project the privilege of high esteem
and enforces coupling of decision power with knowledge.

It is also clear that they do not consider standardization an option for remote
coordination, as the group manager said: “Some customers are very absorbed in
standardization, both regarding requirement specifications and the assembly-line
principle. They ask for specified solutions, but we say: „No, we do not work like
that.‟ When we tried to comply, it was a very sub-optimal process. We have
learned that it cannot be done like that.” They can do this because of their
unique position in the domain and their knowledge. He said: “We are able to
cooperate with the customers on our terms using our process.”

While most of their distributed coordination is with customers and management,
they also have an Indian quality assurance team of four. The group manager
describes their activities like this: “Because we impose low formalism, we may
lack specifications that the QA team needs to create tests. They visit us twice a
year, and we brief them about the next version. Then they walk around and
speak with the developers. The documentation they receive is mostly user
manuals and technical documentation. They do also have access to the ticket
system of reported bugs, and they verify those. Based on all this, they create a
test specification that we review and verify. Then we have one person dedicated
to automate the tests. We want to make them fully automatic.”

The quality assurance team has specialized tasks, and can be considered a case
of standardization of skills and knowledge. While their product is documentation,
their process relies on mutual adjustment. This would be impossible without
giving them access to all the information they need.

Based on the way the project coordinates with various distributed actors, and in
accordance with the responses on distributed coordinating mechanisms from the

30

group manager, a plot was drawn to show the relative emphasis on the three
coordinating mechanisms (Figure 8). Project USA relies heavily on mutual
adjustment, and much less on direct supervision and standardization.

Figure 8: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on mutual adjustment than on

direct supervision and standardization.

The group manager suggests that the reason for their success with agile
development is their freedom: “We are innovating. There are no needs to deliver
according to order. The reason we succeed is the lack of a deliver-as-ordered
model.” A consequence of this is that distributed work is easier, because of their
local product owner board, which maintains the requests and needs from the real
product owners in USA. Because the board has been given authority to make
decisions regarding priorities, they constitute a proper product owner, and the
need for distributed communication is somewhat reduced.

Transparency
The progress of the project is always visible through a tool that shows remaining
hours, as well as through daily scrum. Transparency of impediments is provided
by the Scrum of Scrums, as the group manager said: “In the Scrum of Scrums
meeting, I report on the status of the automatic build system, and direct focus to
needed solutions. And then we have weekly drop-in API-change meetings, where
proposals are announced beforehand.” Awareness of changes to interfaces is
handled by API-change meetings.

They also have a wiki that gives an overview of work. The group manager said:
“We have a wiki page with work packages that we think we can finish before the
release, and the groups select from this list of work packages. Each work
package has a wiki page with information about the work package, the scope,
status, a list of tasks, who has done what and when, and how to demonstrate
completeness. The information is updated when something changes, and it is
also available as an archive afterwards.”

While everything is transparent on the collocated site, only what is intentionally
communicated seems to be visible to the management in USA. The quality
assurance team, on the other hand, has access to every artifact and to the
developers.

R
el

at
iv

e
em

p
h

as
iz

e
o

n

co
o

rd
in

at
in

g
 m

ec
h

an
is

m

Mutual

Adjustment

Direct

Supervision

Standardization

Traditional GSD

USA
Scrum Theory

31

5 Discussion

In this section the key observations are discussed in light of the research
questions:

1. How are tasks coordinated in global software development teams applying
agile methods?

2. How does the level of geographical transparency affect the level of mutual
adjustment?

5.1 Coordination in agile global software development

To answer the first question, it would be beneficial to evaluate how agile the
projects are. One approach is to evaluate how well they conform to the generally
accepted elements of the Scrum methodology. This can be done by applying the
Nokia test4:

Are you doing iterative development?

1. Do you have fixed iterations?
2. At the end of the iteration, do you have working software?"
3. Do you start the iteration before you have a specification in complete

detail?
4. Do you have testing in the middle of the development?

Are you doing Scrum?

1. Do you have a product owner that represents the customer?
2. Do you have a product backlog with estimated pieces that is prioritized by

business value?
3. Do you have a burndown chart that tracks your progress and tells the

velocity of the team?
4. Is the Scrum team self-organizing in the sense that the team is responsible

for choosing the work, assigning themselves the work and figuring out the
fastest path to deliver the work?

Project India I passes the test for the local team, but lacks a corresponding
process at the remote site. The India II project manages to do iterative
development, but has neither a burndown chart nor a self-organizing team.
Project Eastern Europe is not doing iterative development, but implements some
Scrum practices. The USA project passes the test if their product owner board is
considered a proper product owner.

None of the projects succeeded in implementing a shared Scrum process for both
the local and remote team (considering that the USA project lacked a remote
team). This resulted in the use of different coordinating mechanisms for local and
remote (strengthening proposition 1.2, Appendix E.C, p. 44). The three projects at
the primary company tried to implement mutual adjustment in the distributed
process, by treating the people at the remote site as equal members of the team.
This was a natural move when implementing agility, because agile development

4 http://www.infoq.com/interviews/jeff-sutherland-scrum-rules (last visited 10.06.2008).
This interview with Jeff Sutherland is the most reliable freely available source on the
Nokia test, a list of criteria used by Nokia to verify that their teams are using Scrum.

http://www.infoq.com/interviews/jeff-sutherland-scrum-rules

32

relies on mutual adjustment (Nerur et al., 2005). Because of problems, the three
projects ended up using the traditional approach relying on direct supervision
and standardization when coordinating remote work (strengthening proposition
1.3 and 1.7, Appendix E.C, p. 44). The USA project was the only one that
coordinated with remote actors through mutual adjustment, but there was also
some coordination by direct supervision.

The means by which the three projects of the primary company tried to achieve
mutual adjustment was the daily Scrums. Daily Scrum is the most important
instrument for mutual adjustment in Scrum. However, they all experienced these
meetings to be time consuming, because of the flow of questions from the
remote site. Language and cultural differences were also a reason for the
problems with these meetings. Communication problems are often reported in
global software development projects (Herbsleb and Mockus, 2003, Ramesh et
al., 2006).

The daily meetings were abandoned because of the communication problems,
and replaced with fewer meetings with fewer people (weakening proposition 1.5,
Appendix E.C, p. 44). After a while, none of the projects coordinated through daily
distributed scrums. This means that it was either too complicated for the projects
level of experience, or quite as likely, none of the projects investigated resided in
a proper context. For instanced, the USA project had no need for distributed daily
Scrums because the developers were collocated. They did however have multiple
teams performing their own daily Scrum. They did also achieve mutual
adjustment in their distributed work when collaborating with customers to solve
their problems.

The three projects of the primary company started to coordinate by direct
supervision and detailed specifications again. This probably made it difficult to
solve the communication problems, discuss the backlog, and to self-organize; one
of the key tenets of agile development (Dyba and Dingsoyr, 2008). Lateral
communication may be required even for low level interdependencies, so
technical leads and managers ought to promote lateral communication (Cataldo
et al., 2007). This is in accordance with Ramesh et al. (2006). Since this is a
problem in both traditional and agile approaches to distributed software
development, it is important to facilitate the needed communication because
there is no guarantee that the problems are solved by introducing coordination
by standardization. There is still a need for lateral communication when using the
traditional approach (Cataldo et al., 2007).

Ramesh et al. (2006) suggest four practices to improve communication;
synchronize work hours, provide for informal communication through formal
channels, balanced coordination and constant communication. India II was only
partly synchronized, but managed to communicate frequently and relied on
formal channels, i.e. communication through people with dedicated roles. India I
reduced the need for synchronization and coordination through modularization
and communicated frequently with the remote Scrum master. The team from
Eastern Europe used synchronized work hours, enabling constant communication,
but the amount of communication and the lack of formalized channels negated
the positive effect. Project USA had less need for continuous communication
because of the lack of a distributed team, but they did provide for regular
communication with management.

As mentioned, there was no joint Scrum process between the teams; however
India I succeeded in implementing Scrum in Norway by dividing the project into

33

modules, appointing a remote Scrum master, and by moving her to Norway for
periods. The other projects used a similar approach, making the remote team
responsible for specific modules (strengthening proposition 1.4, Appendix E.C, p.
44). This reduced the need for everyone to communicate with everyone, and
made communication less critical. The Eastern Europe project chose to assign
standardized tasks to the remote team, as less complex tasks reduce the need
for mutual adjustment (Mintzberg, 1989, p. 101-102). Fowler (2003) argues, in
accordance with Smite et al. (2008), that this kind of modularization is important
to succeed with distributed Scrum, because a remote team that is responsible for
an entire module from planning to testing gets a deeper understanding of the
tasks it is working on. He also suggests continuous integration to avoid surprises
when integrating the modules.

Literature on traditional distributed software development suggests dividing the
work into separate modules that then can be distributed to different sites to be
developed (Herbsleb and Grinter, 1999). These modules should be independent
in order to minimize communication between sites (Herbsleb and Grinter, 1999).
The authors emphasize that it is possible to split only well-understood products
for which architecture and plans are likely to be stable. However, in the current
development environment with a lot of uncertainties, dividing the software into
modules and specifying the modules in detail upfront is often impossible
(Paasivaara and Lassenius, 2006).

Modularization also makes it possible to implement a Scrum of Scrums approach
(Sutherland et al., 2007), where several teams follow their own Scrum process.
The total process will then be coordinated through meetings between the Scrum
masters. India I was in an early phase of implementing Scrum of Scrums.

Two of the projects improved their level of mutual adjustment after first
substituting this coordinating mechanism with standardization and direct
supervision (strengthening proposition 1.1, Appendix E.C, p. 44). Electronic
chatting was the best remedy to support mutual adjustment, since it is instant,
written text is less hampered by noise than speech, and it was perceived as
timesaving compared to using a telephone conference. The increase in mutual
adjustment suggests that modularization is a good approach for the transfer
towards distributed Scrum.

All the projects that focused on direct supervision after failing to use Scrum felt
they could reduce their level of direct supervision after some months because of
an increased level of trust. Among the reasons for increased trust are frequent
and reliable communication (Moe and Smite, 2007) and frequent visits by
distributed partners (Ramesh et al., 2006). All the projects investigated used
some level of collocation, for various reasons. Most of the projects reported that
the collocation increased the level of trust. Moe and Smite (2007) shows that
trust is a prerequisite for effective mutual adjustment.

It is also worth noting the major difference in how work is coordinated between
the primary company and the second company. While the primary company had
been using traditional approaches for distributed work for a long time and only
recently started to use agile approaches, the second company had been using
Scrum for three years. There is also a difference in the distributed nature of the
projects, as noted several time, namely the lack of a distributed development
team in the second company. The final substantial difference is in how the
remote teams of the projects were perceived. Projects in the primary company
reported frustration with the lacking initiative of their remote teams, while the

34

USA project claims that all the initiative comes from them. They show a lot of
initiative to the management in the USA, who obviously trusts them a lot.

Project USA’s initiative is closely connected to the complexity of their task. They
are capable within their domain, and no one else has their competency or
overview. They have to be innovative. This relates to Mintzberg (1989, p. 113),
describing innovative organizations as depending on mutual adjustment. This is
in strong contrast to the three remote teams of the primary company. All the
remote teams were coordinated locally by direct supervision and the developers
were highly specialized. According to Sutherland et al. (2007), it is likely that an
experienced Scrum team at the remote site together with an equally skilled
Scrum team at the local site would make it possible to achieve the single
common distributed team approach that the three projects of the primary
company set out for in the beginning.

The discussion of the four project’s approaches summarizes to three approaches
to agile distributed software development with Scrum:

1. Local Scrum independent of the remote team’s approach
2. Multiple Scrum teams coordinated with Scrum of Scrums
3. Geographic transparency and a single distributed Scrum team

These three approaches are listed by increasing complexity and thus with
increasing demands for dicipline and care. According to Mintzberg (1989, p. 102)
it would also indicate that there would be more need for mutual adjustment in
the last approach.

5.2 The effect of transparency

The second research question can be answered partly by theory and partly by
results from the case study. Theory indicates that lack of geographical
transparency disables mutual adjustment (strengthening proposition 2.1,
Appendix E.C, p. 45), as noted by Smite et al. (2008) and Damian et al. (Damian
et al., 2007). While it is logical that the contrary is also true, that high levels of
geographical transparency enables mutual adjustment, there is no evidence for
this (weakening proposition 2.2, Appendix E.C, p. 45). The reason for this is that
there are other factors involved in enabling mutual adjustment, so that a disabler
might hinder mutual adjustment despite the benefits of geographical
transparency.

In particular the Eastern Europe project experienced a lack of transparency. This
is also the project with the lowest level of mutual adjustment and highest reliance
on direct supervision and standardization. It is not definite that the low mutual
adjustment was because of lack of transparency, but there was clear indication
that increased awareness would have enabled them to improve their mutual
adjustment. This, together with theory, indicates that the level of geographical
transparency is not irrelevant for the level of mutual adjustment (weakening
proposition 2.4, Appendix E.C, p. 45).

If trust is low and geographical transparency is lacking, the management feel
that they loose control (Moe and Smite, 2007). To regain control, they enforce
monitoring, which increase their visibility of the project (Moe and Smite, 2007).
This means that lack of trust does not necessarily decrease the geographical
transparency (weakening proposition 2.3, Appendix E.C, p. 45). However, if the
team feel that they are not trusted, they might withhold information (Moe and

35

Smite, 2007), which definitely would decrease the geographical transparency
(strengthening proposition 2.3, Appendix E.C, p. 45). The opposite of this might
be what happens in the India I project, where collocation, communication and
increased visibility have slowly led to increased trust and mutual adjustment.

Since “mutual adjustment” by its very name indicates coordination between
peers, one would expect little need for vertical transparency to coordinate by
mutual adjustment. Horizontal transparency would be much more useful. Much
time can be spent on finding the right person to get help from if a person does
not have visibility into the activities of people on remote sites. The absence of
available information will lead to assumptions that may conflict with
requirements or assumptions made elsewhere in the project, and this introduces
problems into the software (Sangwan et al., 2006, p. 5).

The importance of vertical transparency should not be overlooked. As seen from
Moe and Smite (2007), the lack of vertical transparency might easily lead to
increased formalization because of lacking trust. That would indirectly reduce the
level of mutual adjustment. One should therefore facilitate both vertical and
horizontal transparency to enable mutual adjustment (weakening proposition 2.5,
Appendix E.C, p. 45).

36

6 Conclusion and future work

All three projects were using Scrum for the first time, and it is possible that more
mature Scrum teams would communicate more efficiently because they may be
more knowledgeable about and have a better understanding of issues related to
applying an agile approach in a global software development project.
Furthermore, none of the remote teams were trained in Scrum and this probably
resulted in a lack of process understanding. Dyba and Dingsoyr (2008) report
that no less than 73 % of the studies on agile projects were on projects with less
than a year of experience in agile development. This is unfortunately the case for
three of the four projects in this study as well.

This report presented data from a multiple case study. Three of the four projects
did not succeeded in implementing mutual adjustment, and Scrum was only
implemented in two local teams. In the end, the less mature projects applied a
subset of Scrum practices. This study found that:

 There are at least three approaches to distributed Scrum, listed by
increased complexity:

o Local Scrum independent of the remote team’s approach
o Multiple Scrum teams coordinated with Scrum of Scrums
o Geographic transparency and a single distributed Scrum team

 A high level of trust is important for reducing direct supervision and
standardization which is important to enable mutual adjustment.

 Geographic transparency enables mutual adjustment.
 Co-locating the remote Scrum master with the local team and making the

remote team responsible for dedicated modules, makes it possible to
implement Scrum in part of a global software development project, and to
implement Scrum of Scrums. This also reduces the need for everyone to
communicate with everyone in the global software development project.

 The communication problems caused by distribution are a threat to mutual
adjustment, however electronic chatting enables mutual adjustment.

In addition, there is a need for more research utilizing formal analytical methods
on how work is coordinated in mature agile global software development teams,
e.g. teams using Scrum of Scrums, and when there is a common Scrum process.

37

A References

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002) Agile software
development methods - Review and analysis, VTT Publications.

Abrahamsson, P., Warsta, J., Siponen, M. T. & Ronkainen, J. (2003) New directions
on agile methods - A comparative analysis. International Conference on
Software Engineering - ICSE, 244-254.

Agerfalk, P. J. & Fitzgerald, B. (2006) Flexible and distributed software processes:
Old petunias in new bowls? Communications of the ACM, 49, 26-34.

Amrit, C. (2005) Coordination in software development: the problem of task
allocation. Proceedings of the 2005 workshop on Human and social factors
of software engineering. St. Louis, Missouri, ACM.

Beck, K. & Andres, C. (2004) Extreme programming explained: Embrace change,
Addison-Wesley.

Berczuk, S. (2007) Back to basics: The role of agile principles in success with a
distributed Scrum team. AGILE 2007, 382-388.

Boden, A., Nett, B. & Wulf, V. (2007) Coordination practices in distributed
software development of small enterprises. International Conference on
Global Software Engineering - ICGSE, 235-246.

Borchers, G. (2003) The software engineering impacts of cultural factors on multi-
cultural software development teams. International Conference on
Software Engineering - ICSE, 540-545.

Canfora, G., Cimitile, A., Di Lucca, G. A. & Visaggio, C. A. (2006) How distribution
affects the success of pair programming. International Journal of Software
Engineering and Knowledge Engineering, 16, 293-313.

Carmel, E. & Agarwal, R. (2001) Tactical approaches for alleviating distance in
global software development. IEEE Software, 18, 22-29.

Cataldo, M., Bass, M., Herbsleb, J. D. & Bass, L. (2007) On coordination
mechanisms in global software development. International Conference on
Global Software Engineering - ICGSE, 71-80.

Cockburn, A. (2002) Agile software development, Addison-Wesley Boston.
Cockburn, A. & Highsmith, J. (2001) Agile software development: The people

factor. Computer, 34, 131-133.
Cohen, D., Lindvall, M. & Costa, P. (2004) An introduction to agile methods. IN

Zelkowitz, M. V. (Ed.) Advances in Computers, Advances in Software
Engineering. Amsterdam, Elsevier.

Damian, D., Izquierdo, L., Singer, J. & Kwan, I. (2007) Awareness in the wild: Why
communication breakdowns occur. International Conference on Global
Software Engineering - ICGSE, 81-90.

Damian, D. & Moitra, D. (2006) Global software development: How far have we
come? IEEE Software, 23, 17-19.

Dourish, P. & Bellotti, V. (1992) Awareness and coordination in shared
workspaces. Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, 107-114.

Dyba, T. (2000) Improvisation in small software organizations. IEEE Software, 17,
82-87.

Dyba, T. & Dingsoyr, T. (2008) Empirical studies of agile software development: A
systematic review. Information and Software Technology.

Erickson, J., Lyytinen, K. & Siau, K. (2005) Agile modeling, agile software
development, and extreme programming: The state of research. Journal of
Database Management, 16, 88 - 100.

Farmer, M. (2004) DecisionSpace infrastructure: Agile development in a large,
distributed team. Agile Development Conference.

38

Fowler, M. (2003) Using an agile software process with offshore development.
www.martinfowler.com.

Gutwin, C., Penner, R. & Schneider, K. (2004) Group awareness in distributed
software development. Proceedings of the 2004 ACM conference on
Computer supported cooperative work, 72-81.

Herbsleb, J. D. (2007) Global software engineering: The future of socio-technical
coordination. International Conference on Software Engineering - ICSE,
188-198.

Herbsleb, J. D. & Grinter, R. E. (1999) Architectures, coordination, and distance:
Conway's law and beyond. IEEE Software, 16, 63-70.

Herbsleb, J. D. & Mockus, A. (2003) An empirical study of speed and
communication in globally distributed software development. IEEE
Transactions on Software Engineering, 29, 481-494.

Herbsleb, J. D., Paulish, D. J. & Bass, M. (2005) Global software development at
Siemens: Experience from nine projects. International Conference on
Software Engineering - ICSE.

Hirschheim, R. & Dibbern, J. (2006) Information technology outsourcing in the
new economy - An introduction to the outsourcing and offshoring
landscape, Springer Berlin Heidelberg.

Holmstrom, H., Fitzgerald, B., Agerfalk, P. J. & Conchuir, E. O. (2006) Agile
practices reduce distance in global software development. Information
Systems Management, 23, 7-18.

Korkala, M. & Abrahamsson, P. (2007) Communication in distributed agile
development: A case study. 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, 203-210.

Kraut, R. E. & Streeter, L. A. (1995) Coordination in software-development.
Communications of the ACM, 38, 69-81.

Krishna, S., Sahay, S. & Walsham, G. (2004) Managing cross-cultural issues in
global software outsourcing. Communications of the ACM, 47, 62-66.

Layman, L., Williams, L., Damian, D. & Bures, H. (2006) Essential communication
practices for extreme programming in a global software development
team. Information and Software Technology, 48, 781-794.

Lee, A. S. (1989) A scientific methodology for MIS case studies. MIS Quarterly, 13,
33-50.

Levitt, T. (1983) The globalization of markets. Harvard Business Review, 2-11.
Malone, T. W. & Crowston, K. (1994) The interdisciplinary study of coordination.

ACM Computing Surveys (CSUR), 26, 87-119.
Mintzberg, H. (1989) Mintzberg on management: Inside our strange world of

organizations, Free Press. New York, USA.
Moe, N. B., Dingsoyr, T. & Dyba, T. (2008) Understanding self-organizing teams in

agile software development. Australian Software Engineering Conference -
ASWEC.

Moe, N. B. & Smite, D. (2007) Understanding lacking trust in global software
teams: A multi-case study. Lecture Notes in Computer Science, 4589, 20-
32.

Nerur, S. & Balijepally, V. G. (2007) Theoretical reflections on agile development
methodologies. Communications of the ACM, 50, 79-83.

Nerur, S., Mahapatra, R. & Mangalaraj, G. (2005) Challenges of migrating to agile
methodologies. Communications of the ACM, 48, 72-78.

Nisar, M. F. & Hameed, T. (2004) Agile methods handling offshore software
development issues. IN Hameed, T. (Ed. International Multitopic
Conference.

Pressman, R. S. (2005) Software engineering: A practitioner's approach, McGraw-
Hill Professional

http://www.martinfowler.com/

39

Prikladnicki, R., Audy, J. L. N., Damian, D. & de Oliveira, T. C. (2007) Distributed
software development: Practices and challenges in different business
strategies of offshoring and onshoring. International Conference on Global
Software Engineering - ICGSE, 262-274.

Paasivaara, M. & Lassenius, C. (2004) Using iterative and incremental processes
in global software development. International Conference on Software
Engineering - ICSE, 42-47.

Paasivaara, M. & Lassenius, C. (2006) Could global software development benefit
from agile methods? International Conference on Global Software
Engineering - ICGSE, 109-113.

Ramesh, B., Cao, L., Mohan, K. & Xu, P. (2006) Can distributed software
development be agile? Communications of the ACM, 49, 41-46.

Rising, L. & Janoff, N. S. (2000) The Scrum software development process for
small teams. IEEE Software, 17, 26-32.

Robertson, R. (1992) Globalization: Social theory and global culture, Sage
Publications Inc.

Salas, E., Sims, D. E. & Burke, C. S. (2005) Is there a "big five" in teamwork?
Small Group Research, 36, 555-599.

Sangwan, R., Bass, M., Mullick, N., Paulish, D. J. & Kazmeier, J. (2006) Global
software development handbook.

Schmidt, K. & Bannon, L. (1992) Taking CSCW seriously: Supporting articulation
work. Computer Supported Cooperative Work - CSCW, 1, 7-40.

Schwaber, K. (1995) Scrum development process. OOPSLA95 Workshop on
Business Object Design and Implementation.

Schwaber, K. (2004) Agile project management with Scrum, Redmond, WA, USA,
Microsoft Press.

Schwaber, K. (2007) The enterprise and Scrum, Redmond, WA, USA, Microsoft
Press.

Schwaber, K. & Beedle, M. (2001) Agile software development with Scrum,
Prentice Hall PTR Upper Saddle River, NJ, USA.

Smite, D., Moe, N. B. & Torkar, R. (2008) Pitfalls in remote team coordination:
Lessons learned from a case study. PROFES. Rome, Italy.

Sulfaro, M. (2007) Agile practices in a large organization: The experience of Poste
Italiane. Lecture Notes in Computer Science, 4536.

Sutherland, J., Viktorov, A., Blount, J. & Puntikov, N. (2007) Distributed Scrum:
Agile project management with outsourced development teams. Hawaii
International Conference on System Sciences - HICSS, 274.

Webster, J. & Watson, R. T. (2002) Analyzing the past to prepare for the future:
Writing a literature review. MIS Quarterly, 26, 13-23.

Yin, R. K. (2003) Case study research: Design and methods, Sage Publications
Inc.

40

B Glossary

Agile software development is lightweight processes or practices for software
development which is incremental, cooperative, straightforward and
adaptive (Abrahamsson et al., 2002)

Awareness is an understanding of the activities of others, which provides a
context for one’s own activities (Dourish and Bellotti, 1992)

Crystal (Methods) is several related methodologies applicable based on
heaviness

Coordination is the process of managing dependencies between activities
(Malone and Crowston, 1994).

Coordinating mechanism is a defined approach to achieve management of
dependencies between tasks (see direct supervision, mutual adjustment and
standardization)

Direct supervision achieves coordination by having one person take
responsibility for the work of others whose work interrelates, by issuing
instructions and monitoring their actions, and thus enforcing control
(Mintzberg, 1989, p. 101)

Distributed software development is software development spanning
multiple geographical sites

Dynamic Systems Development Methodology (DSDM) is an agile approach
focused on fixing time and resources allocated, while adjusting the amount
of functionality accordingly

Extreme Programming is twelve software development practices taken to the
extreme

Global comprise the concepts: Worldwide, universal, pertaining the whole world

Global software development is software development spanning multiple
geographical sites distributed beyond national borders, but not necessarily
multiple organizations

Globalization is a process of interaction and integration among the people,
companies, and governments of different nations, a process driven by
international trade and investment and aided by information technology.
(www.globalization101.org)

International comprise pertaining multiple nations, two or more

Multinationals are multi-national companies, companies with markets in several
countries

Mutual adjustment achieves coordination by the simple process of informal
communication (Mintzberg, 1989, p. 101)

NTNU is the Norwegian University of Science and Technology

41

Offshoring is relocation of business processes from one country to another, both
within the company and to external contractors

Outsourcing is relocation of internal business processes to an external company

Scrum is an agile approach to the management of software development
projects (Erickson et al., 2005, Cohen et al., 2004, Abrahamsson et al.,
2002)

SINTEF is the Norwegian association for industrial and technological research,
the largest independent research organization in Scandinavia

Software development is the production of software, spanning business goals,
requirements, planning, coding, testing, releasing and often maintenance

Standardization is either standardization of work processes, standardization of
outputs, standardization of skills (as well as knowledge), standardization of
norms or a multitude of these (Mintzberg, 1989, p. 101)

Transparency is the availability of the appropriate knowledge or information for
coordination

42

C List of figures

Figure 1: The Scrum methodology (Schwaber, 1995) .. 8
Figure 2: Cycles in the Scrum methodology (Schwaber, 2004, p. 6) 10
Figure 3: The change of primary coordinating mechanism with increasing task
complexity (Smite et al., 2008). ... 12
Figure 4: Relative emphasis on coordinating mechanisms: Agile development
relies purely on mutual adjustment, while global software development (GSD)
emphasizes standardization and some direct supervision. 14
Figure 5: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on direct supervision and mutual
adjustment than on standardization. ... 23
Figure 6: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on direct supervision and
standardization than on mutual adjustment. ... 25
Figure 7: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on standardization and direct
supervision than on mutual adjustment. .. 27
Figure 8: Relative emphasis on coordinating mechanisms between the onshore
and offshore teams: More emphasis is placed on mutual adjustment than on
direct supervision and standardization. ... 30
Figure 9: Gantt diagram showing the research schedule 47

43

D List of tables

Table 1: Organizational and geographical distributions (Prikladnicki et al., 2007). 2
Table 2: Concepts and keywords used when searching for literature 5
Table 3: Literature databases used when searching for literature 5
Table 4: Comparison of traditional and agile development (Nerur et al., 2005) 7
Table 5: Best practices from literature on distributed software development
(Cataldo et al., 2007). Conformity with mutual adjustment (MA), direct
supervision (DS) and standardization (S) is based on Mintzberg (1989, p. 101). . 13

44

E Research Plan

Case study lacks the best reputation as a proper scientific method, but proper
design and execution will counteract this. A good design is fundamental to
achieve high internal and external validity and to support theories and claims
based on a case study. A theory can be tested by observance of predictions that
are logically derived from the theory. If the predictions are supported, the theory
is strengthened, but it is refuted if the predicted results are lacking (Yin, 2003, p.
29). This matches scientific research, where falsifiability, logical consistency and
the theory’s ability to explain or predict indicates its quality (Lee, 1989). Needless
to say, the theory must remain unfalsified.

In addition to focusing on the scientific quality of the case study, I want to be
observant of changes. Has it always been like this? When did it change? Why? Or
what was done to change it? Answers to these questions may give a view of
change in "controlled variables", thus giving an "experimental" touch to the case
study and the ability to compare "response variables". These changes will be
important when evaluating the validity of the theory.

E.A Method

Through a case study inspired by (Yin, 2003) I will try to identify different kinds of
coordination in distributed agile software development, and maybe how
coordinating through agile methods affect effectiveness of distributed teams.

E.B Research questions

Based on the focus on coordination of tasks in agile global software development
teams/projects, I state the following questions:

1. How are tasks coordinated in global software development teams applying
agile methods?

2. How does the level of geographical transparency affect the level of mutual
adjustment?

E.C Propositions (Hypothesis to refute by observations)

These are propositions that might or might not be true. They are based on the
research questions above.

RQ1: How are tasks coordinated in global software development teams
applying agile methods?

1-1. Scrum introduces more mutual adjustment.
1-2. Coordination of local and distributed tasks is the same.
1-3. Distributed tasks are coordinated through supervision.
1-4. Distributed tasks are coordinated through modularization, local tasks

through daily Scrums (standardization vs. mutual adjustment).
1-5. Tasks are coordinated through daily distributed Scrums facilitating mutual

adjustment.
1-6. Responsibility for coordinating work is different for planning and sprints.
1-7. Scrum is not really used for the distributed parts.

45

RQ2: How does the level of geographical transparency affect the level of
mutual adjustment?

2-1. Lack of geographical transparency disables mutual adjustment between
teams.

2-2. High level of geographical transparency enables mutual adjustment.
2-3. Lack of trust discourages geographical transparency.
2-4. Geographical transparency is irrelevant for the level of mutual

adjustment.
2-5. Vertical transparency and horizontal transparency is not equally

important when facilitating mutual adjustment.

E.D Unit(s) of analysis

Data are collected through two instances. The first comprise an initial interview
with the project leaders of three projects. The second comprise further interviews
with project leaders and team members, possibly some observations of work
practices and hopefully email or phone interviews with distributed members. The
initial interviews should also reveal what kind of documentation is available. For
observations, it would be interesting to observe the team during daily Scrums,
scrum planning, review and retrospective.

E.E Logic linking data to propositions

Findings should be able to refute or support these statements, and the following
list shows what findings one should anticipate for support or refutation.

RQ1: How are tasks coordinated in global software development teams
applying agile methods?

1-1. Scrum introduces more mutual adjustment.
 Claims that team members show more initiative together with less

assignment of tasks and claims of self-organization indicate support.
1-2. Coordination of local and distributed tasks is the same.

 Lack of evidence that coordination is different for tasks handled by the
distributed team indicates refutation.

1-3. Distributed tasks are coordinated through supervision.
 Indications that tasks are handed over or assigned to the distributed

team by the local team or by local team members support, while the
distributed team’s participation in daily Scrums or choice of tasks
indicate refutation.

1-4. Distributed tasks are coordinated through modularization, local tasks
through daily Scrums (standardization vs. mutual adjustment).
 Claims of differences between local and distributed coordination and

indications of modularization supports, while distributed participation in
the daily Scrum indicates refutation.

1-5. Tasks are coordinated through daily distributed Scrums facilitating mutual
adjustment.
 Claims of daily Scrums where each member is responsible or co-

responsible for choosing tasks indicate support, while assignment of
tasks by a leader or by specialization indicates refutation.

1-6. Responsibility for coordinating work is different for planning and sprints.
 Identification of different support for the three coordination

mechanisms between planning phases and during sprints supports the
claim, while identical coordination mechanisms indicate refutation.

46

Identification of different roles in coordination would also indicate
support.

1-7. Scrum is not really used for the distributed parts.
 Clear division between the distributed team and the local team together

with differences in processes indicate support, while lack of differences
indicates refutation.

RQ2: How does the level of geographical transparency affect the level of
mutual adjustment?

2-1. Lack of geographical transparency disables mutual adjustment between
teams.
 Claims that both geographical transparency and mutual adjustment are

absent indicate support, while identification of mutual adjustment
without geographical transparency leads to refutation.

2-2. High level of geographical transparency enables mutual adjustment.
 Identification of both geographical transparency and mutual adjustment

indicate support, while identification of geographical transparency
without mutual adjustment leads to refutation.

2-3. Lack of trust discourages geographical transparency.
 Statements that indicate withholding of information because of distrust

supports the proposition, while identification of transparency despite a
lack of trust leads to refutation.

2-4. Geographical transparency is irrelevant for the level of mutual
adjustment.
 If there are no correlation between geographical transparency and

mutual adjustment, the hypothesis is supported, otherwise it is refuted.
2-5. Vertical transparency and horizontal transparency is not equally

important when facilitating mutual adjustment.
 Claims that horizontal transparency plays a greater role in facilitating

mutual adjustment indicate support, or if vertical transparency is
emphasized, while identification of equal importance of both vertical
and horizontal transparency indicate refutation.

E.F Criteria for interpreting the findings

It is important for the validity of the findings to not jump to conclusions. This
means that refutation of the hypothesis through contradicting findings should be
valued more than findings supporting the hypothesis, and supporting findings
should be multiple and unambiguous to be considered substantially supporting.

E.G Schedule

February
 Research Plan
 Introduction
 Theory

March
 Case study
 Introduction
 Theory

47

April
 Case study
 Theory
 Analysis
 Discussion

May
 Analysis
 Discussion
 Conclusion

June
 Final overhaul
 Latest possible delivery: June 10th

Figure 9: Gantt diagram showing the research schedule

ID Task Name Start Finish Duration
February 08 March 08 April 08 May 08

6. 8.9.3. 1.4.2.

1 21d29.02.200801.02.2008Research Plan

2 31d28.03.200815.02.2008Introduction

3 43d15.04.200815.02.2008Theory

4 43d30.04.200803.03.2008Case Study

5 44d30.05.200801.04.2008Analysis

6 34d30.05.200815.04.2008Discussion

7 12d30.05.200815.05.2008Conclusion

6d09.06.200802.06.2008Final Overhaul

9

8

0d10.06.200810.06.2008Delivery

48

F Interview guides

The first interview session is with three project leaders of three different projects
utilizing varying degree of distribution. It is important to identify the degree of
distribution, the level of compliance with Scrum and the coordination
mechanisms present in the projects.

The second interview session takes place more than a month later, and should
involve the same project leaders as well as Scrum masters and members of the
teams, and possibly product owners. It is also desirable to interview the members
of the teams that are not co-located.

The interviews are unstructured, but utilize an interview guide.

The interview guides state several categories of concepts that are relevant when
answering the research questions. There are several questions and statements
within each category. The questions aim to be general and without expectations
of a certain answer, and the statements reminds the interviewer of concepts that
are relevant within the category.

F.A Questions for the first session (06.03.2008)

The first session encompasses three projects at a Norwegian company. Two of
the projects outsource tasks to India, while one project offshore tasks to an in
house site in Poland. The main goal of this interview is to find out:

 How is work coordinated in the projects?

 Are there different coordination mechanisms for local and remote?

Introduction
 Present myself, SINTEF, Evisoft
 May I record the interview? (Only me and Nils Brede will use the recording,

to remember what has been said)
 Expected duration 30 min

Project 5 min
 About the project
 The project’s importance, duration
 How many people and what roles? (Local and remote)
 How long? Experience? Distributed?
 Using agile methods? For how long? Other method?
 Satisfaction with the project

Role 2 min
 Your role
 Who does what?
 And the remote team?
 Who is product owner? What does he/she do?
 Do members take responsibility?

Changes 3 min
 What is different with Scrum?
 How were you working before Scrum?

49

 Distributed?
 Change in efficiency?
 Completion?
 Why?

Mintzberg 2 min
 Present the graph
 Ask for a plot, one for local, one for remote

Collaboration 10 min
 How do you make plans?
 When do you plan?
 How are the tasks specified? Oral, backlog, documentation.
 How are tasks assigned?
 How is architecture agreed upon?
 Why and how was/is it done?
 What kinds of documentation exist? (Backlog, burndown, other)
 How much time is spent on daily Scrums and task discussions?
 How do you solve problems in the team?

 Why?

Distribution 5 min
 Why people from another country?
 What are the main differences between the local team and the remote

team?
 Same kind of tasks? Any tasks that could not be done by remote?
 If a task is complex, local or remote (or both)?
 How are their approaches different?
 How are their approaches similar?
 ’Our’ and ’their’ way of doing things?
 All the way? (Specification, implementation, test, maintenance)?
 What if remote is stuck?
 How is feedback given? Easy to give feedback/response? What is feedback

generally about?
 Why?

Communication 2 min
 How frequent is distributed communication?
 Through which channels? (documents, meetings, virtual meetings, e-mail,

phone, skype, msn, other)
 Language? Everybody comfortable?
 Time zones?

Finalizing
 Is there anything else we should have covered/discussed?

 Thank you

F.B Questions for the second session (05.05.2008)

Questions for the second session are based on the analysis of the first session.
Due to difficulties with gaining further access to the original organization, a
search for a new organization has been initiated. This reduces the possibility of

50

doing a further depth study. To remedy some of this, I will search for an
organization with more mature Scrum teams, since the lack of such in the original
organization is a challenge when generalizing the findings.

The main goal of this interview is to find out:

 How is work coordinated in the projects?
 Are there different coordination mechanisms for local and remote?
 Who are informed about what, or shielded from information?
 Is there enough transparency to allow any team member to take initiative?

Introduction
 Present myself, SINTEF, Evisoft
 May I record the interview? (Only I will use the recording, to remember

what has been said, and quotes may be used in articles.)
 Expected duration 1 hour

Project 10 min
 About the project nature, local organization, agility
 The project’s importance, duration
 How many people and what roles? (Local and remote)
 How long? Experience? Distributed?
 Using agile methods? For how long? Other method?
 Satisfaction with the project

Role 2 min
 Your role
 Who does what?
 And the remote team?
 Who is product owner? What does he/she do?
 Do members take responsibility?

Changes 5 min
 How were you working before Scrum/Agile?
 What is different with Scrum/Agile?
 Distributed?
 Change in efficiency?
 Completion?
 Why?

Mintzberg 5 min
 Present the graph
 Ask for a plot, one for local, one for remote

Collaboration 10 min
 How do you make plans?
 When do you plan?
 How are the tasks specified? Oral, backlog, documentation.
 How are tasks assigned?
 How is architecture agreed upon?
 Why and how was/is it done?
 What kinds of documentation exist? (Backlog, burndown, other)
 What information is available to everyone?
 What kind of information is limited?

51

 How much time is spent on daily Scrums and task discussions?
 How do you solve problems in the team?
 Why?

Transparency 5 min
 Who has access to information?
 Does everyone have knowledge of everyone?
 Does everyone know who’s doing what?
 Are there restrictions on information?

Distribution 15 min
 What are the main differences between the local team and the remote

teams?
 Same kind of tasks? Any tasks that could not be done by remote?
 If a task is complex, local or remote (or both)?
 How are their approaches different?
 How are their approaches similar?
 ’Our’ and ’their’ way of doing things?
 All the way? (Specification, implementation, test, maintenance)?
 What if remote is stuck?
 How is feedback given? Easy to give feedback/response? What is feedback

generally about?
 Why?

Communication 5 min
 How frequent is distributed communication?
 Through which channels? (documents, meetings, virtual meetings, e-mail,

phone, skype, msn, other)
 Language? Everybody comfortable?

 Time zones?

Finalizing
 Is there anything else we should have covered/discussed?

 Thank you

	Title Page
	Problem Description
	masteroppgave.pdf

