
June 2008
Alf Inge Wang, IDI
Anne Marte Hjemås, Telenor

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Online Location-based Mobile Gaming
CityZombie - A basic approach to introducing location in mobile
games

Øyvind Rolland

Problem Description
This thesis' main objective is to explore the challenges and possibilities of online location-based
gaming in a present day urban environment.

To achieve usable data we will design, implement and test an online multiplayer location-based
mobile game using Java Micro Edition. The design and implementation will be
based on a prototype concept developed in our depth project, which was a state of the
art analysis of location-based mobile gaming.

User testing will be performed, and the feedback will be documented and evaluated
in this report. This testing will include aspects related to infrastructure, such as GSM
and UMTS base station coverage, overlapping and availability. Testing also include aspects
related to network, such as practical GSM and UMTS response times, network
stability and operator specific properties. Finally, aspects related to game playability
and developer specific challenges when making and testing a location-based game will be
tested and evaluated.

Assignment given: 15. January 2008
Supervisor: Alf Inge Wang, IDI

Abstract

Mobile phone gaming has seen an enormous growth over the last decade and many coun-
tries now have more cell phone subscriptions than they have people. Combined with
the ever increasing interest in games, the mobile gaming market still hasn't reached it's
full potential. Newer and more powerful phones with interesting features hit the market
every day. Many of those features are directed at locating position, and that opens up
for the prospect of location-based gaming. This branch of gaming is still in the starting
phase, and public awareness is relatively low. Meanwhile, developers and operators ex-
plore the opportunities that are yet to be tested.

In this project, we have developed a game to test di�erent aspects related to infras-
tructure, network and playability in location-based mobile gaming. From the testing of
GSM and UMTS networks, results show that basic network properties such as CellID
can be utilized to make challenging and social games. Furthermore, the tests hinted at
UMTS as the best suited network to perform location-based gaming, as the smaller and
less overlapping zone structure, response times and bandwidth facilitates a multiplayer
game better than the GSM network. This is not a global truth, though, since EDGE
increases the GSM response times and bandwidth to an acceptable level. As long as a
suitable mapping of game zones and real-world cells can be made, GSM is still a candi-
date in many environments.

Developers face new challenges with location-based gaming, as testing no longer can
be con�ned to the development environment. Extensive �eld testing is vital to both �esh
out techincal issues as well as gameplay-related issues. Outdoor distances makes testing
take longer time, and communication between test team and developers is harder than
in a studio.

Finally, playtesting shows that most people are open to the idea of physical movement
as input when playing in a virtual reality. When incorporating social elements and mul-
tiplayer options in a dynamic setting, location-based games can be seen as a replacement
for a friendly football game or similar outdoor activities. When such an approach can
be made, while keeping communication and team-feeling among players high, the full
potential of location-based gaming migh be unlocked.

Preface

This report is the result of a master's thesis project that was performed in TDT4900
Computer Science by a �fth year student �nishing the Master of Science degree at the
Norwegian University of Science and Technology. The work was carried out from January
to June 2008.

I would like to thank my supervisors Anne Marte Hjemås at Telenor for supporting
this project with ideas and feedback as well as a test phone and Alf Inge Wang at IDI
for equally valuable feedback and ideas.

Trondheim, June 10, 2008

Øyvind Rolland

Contents

I Introduction & research 1

1 Introduction 2
1.1 Motivation . 2
1.2 Problem de�nition . 3
1.3 Summary of previous work . 3
1.4 Important de�nitions . 3
1.5 Project outline . 4

2 Research methods & questions 6
2.1 Research questions . 6
2.2 Methods used . 7

3 Development methods and tools 9
3.1 Development method . 9

3.1.1 Waterfall . 9
3.1.2 Scrum . 10
3.1.3 Our development method - Solo Scrum 11

3.2 Development tools . 11

II Prestudy 13

4 Concepts 14
4.1 Mobile gaming . 14

4.1.1 Multiplayer gaming . 15
4.1.2 Location-based gaming . 16

4.2 Client-server networking . 17

5 Technology 18
5.1 Java Platform, Micro Edition . 18

5.1.1 Java ME Architecture . 18
5.2 Mobile phones . 22

5.2.1 Screen . 22
5.2.2 Vibration . 23

5.2.3 Camera . 23

5.2.4 Sound . 23

5.2.5 Keypad . 23

5.2.6 Internet connection . 24

5.2.7 Location . 24

5.3 Mobile network technologies . 26

5.3.1 Pre GSM . 26

5.3.2 2G . 26

5.3.3 3G . 28

5.3.4 WLAN . 29

5.3.5 Comparison . 29

5.3.6 Test phones required . 31

6 State of the art 33

6.1 Location-based games . 33

6.1.1 The Target . 33

6.1.2 Mogi - item hunt . 34

6.1.3 The Shroud - Harvesting . 35

6.1.4 Summary . 37

7 Game playtesting 38

7.1 Playtesting candidates . 38

7.2 Game development stages . 39

7.3 Our playtesting . 40

III Own contribution 41

8 A Prototype game 42

8.1 CityZombie - The concept . 42

8.1.1 Gameplay overview . 43

8.2 Server and Client concurrency . 45

8.2.1 Client calculations . 46

8.2.2 Server calculations . 46

8.3 Game framework . 47

9 Requirements - The user stories 48

9.1 User stories . 48

9.2 Client requirements . 49

9.2.1 Functional requirements . 50

9.2.2 Non-functional requirements . 53

9.3 Server requirements . 55

9.3.1 Functional requirements . 55

9.3.2 Non-functional requirements . 57

10 Architecture and Design 60

10.1 Architectural overview . 60

10.1.1 MVC Architectural Pattern . 61

10.2 Client design . 62

10.2.1 Client classes . 63

10.2.2 Client models . 63

10.2.3 Client views . 64

10.3 Server design . 69

10.3.1 Server classes . 70

10.3.2 Server models . 70

10.3.3 Server views . 72

10.4 Communication . 72

10.4.1 Protocols . 73

10.4.2 Messages . 73

10.5 Threads . 74

IV Test results and user feedback 77

11 Test results 78

11.1 Infrastructure . 78

11.1.1 GSM base stations . 78

11.1.2 UMTS base stations . 78

11.2 Game Statistics . 79

11.2.1 Response times . 79

11.2.2 Game Data Transfer . 80

11.3 Playtesting results . 81

11.4 Summary . 83

12 Problems encountered 85

12.1 Framework problems . 85

12.2 Java problems . 86

12.3 Field testing problems . 86

12.4 Other problems . 87

13 Requirement ful�lments 88

13.1 Client Requirements . 88

13.1.1 Functional Requirements . 88

13.1.2 Non-Functional Requirements . 91

13.2 Server Requirements . 92

13.2.1 Functional Requirements . 92

13.2.2 Non-Functional Requirements . 94

V Summary 97

14 Evaluation 98
14.1 Technical evaluation . 98

14.1.1 GSM . 98
14.1.2 UMTS . 99
14.1.3 CellId . 99
14.1.4 Java ME and the Framework . 99

14.2 Method evaluation . 100
14.2.1 Research Methods . 100
14.2.2 Development Methods . 101

15 Research questions answered 103

16 Conclusion 107

17 Further work 109
17.1 Extending the game . 109
17.2 Testing . 110

Bibliography 111

VI Appendix 119

A CellID infrastructure 120

B Running CityZombie 121
B.1 Running the server . 121
B.2 Running the client . 122

C Files 123
C.1 Class Diagrams . 123

C.1.1 Client . 123
C.1.2 Server . 123

C.2 Applications . 123
C.2.1 Client for phone . 123
C.2.2 Client for emulator . 123
C.2.3 Server . 124

C.3 Source Code . 124
C.3.1 Client . 124
C.3.2 Server . 124

C.4 Javadoc . 124

List of Figures

3.1 Waterfall phases - Illustration . 9

3.2 SCRUM - Illustration . 11

4.1 Mobile gaming - Illustration . 15

4.2 Bot�ghters - Screenshot . 16

4.3 Client-server network - Illustration . 17

5.1 Java ME Components - Illustration . 19

5.2 Java ME MIDP - Illustration . 20

5.3 JSR 248: MSA - Illustration . 22

5.4 GSM base station signal overview . 31

6.1 The Target - Screenshot . 34

6.2 Mogi - Screenshots . 35

6.3 The Shroud - Screenshots . 36

7.1 The game development stages . 39

8.1 City Zombie - Zones of the city . 44

8.2 City Zombie - 1 vs 1 . 45

9.1 The game client - State Chart . 49

9.2 The game server - State Chart . 55

10.1 The game architecture . 60

10.2 The client architecture . 62

10.3 A high-level client class diagram . 63

10.4 Our client models . 64

10.5 The GameView . 65

10.6 The BattleView . 66

10.7 The LobbyView . 66

10.8 The Splash Screen . 67

10.9 The Startup Window . 67

10.10The Information Window . 68

10.11The High Score Window . 69
10.12The server architecture . 69
10.13A high-level server class diagram . 70
10.14Our server models . 71
10.15The Server GUI . 72
10.16Framework server threads . 74

11.1 The GSM base station coverage . 79
11.2 The UMTS base station coverage . 80

A.1 CellID - Illustration . 120

List of Tables

2.1 Validation Methods . 8

5.1 Base station CellID . 30
5.2 Mobile test phones . 32

7.1 Playtesters . 39
7.2 Project playtesting . 40

10.1 Framework rules . 74
10.2 Framework actions . 75
10.3 CityZombie actions . 76

11.1 Framework Response Times . 80
11.2 Simple game data statistics . 81
11.3 Full game data statistics . 82

Part I

Introduction & research

Chapter 1

Introduction

In the introduction we will state the main project objectives and our motivation related
to the assignment. Further we will explain the project context and give an outline of the
rest of this thesis with a presentation of the contents in each chapter.

1.1 Motivation

The gaming industry in general is one of the fastest growing industries in the world, sur-
passing even important parts of the movie industry in revenues, but the games created
so far have largely been directed at personal computers and gaming consoles. However,
with the development of more and more advanced mobile devices, the industry has begun
to look at these as gaming machines, not only communication tools.

In addition to displaying relatively large computational power, mobile phones are also
small, connected and available to the average person. Add the location technology present
in today's devices and you get many new opportunities for games and applications, not
just another console or computer.

More speci�cally, while the sheer size of a phone gives us mobility, new wireless tech-
nology gives us connectivity. The general population's communication dependency gives
us phone availability and the population phone density gives us a large player base with
which to cooperate and compete. Finally, modern infrastructure gives us the ability to
locate our devices. Adding these together should give us a great base for developing
online location-based mobile games.

Currently, there is little research and development being done in the �eld of location-
based mobile gaming in Norway, even though such games have proven to be successful
both at an academic and commercial level elsewhere. However, Norwegian mobile infras-
tructure is highly developed and mobile users are abundant, with a population phone
density of 92% [EKO], giving plenty incentive to perform such research.

1.2. Problem de�nition Chapter 1. Introduction

1.2 Problem de�nition

This thesis' main objective is to explore the challenges and possibilities of online location-
based gaming in a present day urban environment.

To achieve usable data we will design, implement and test an online multiplayer location-
based mobile game using Java Micro Edition. The design and implementation will be
based on a prototype concept developed in our depth project, which was a state of the
art analysis of location-based mobile gaming.

User testing will be performed, and the feedback will be documented and evaluated
in this report. This testing will include aspects related to infrastructure, such as GSM
and UMTS base station coverage, overlapping and availability. Testing also include as-
pects related to network, such as practical GSM and UMTS response times, network
stability and operator speci�c properties. Finally, aspects related to game playability
and developer speci�c challenges when making and testing a location-based game will be
tested and evaluated.

1.3 Summary of previous work

A research project carried out by the author during the fall of 2007 [ONL] forms the
basis of this thesis. Since that project has not been published, a brief summary related
to this thesis is given here.

The project's main objective was to perform a state of the art analysis of online location-
based games and to evaluate these in relation to what telecom companies can provide
to the �eld. Thus a number of games and technologies were evaluated and picking from
these, a new concept was introduced. It is this concept we elaborate upon and further
develop in this thesis.

1.4 Important de�nitions

Before we begin the formalities, a quick de�nition of the main topics of this report is in
order.
According to the mobile gaming industry, mobile games are de�ned as:

�...those that are delivered via wireless networks to devices whose primary function is
a mobile phone�.[MGW]

A location-based game is not that easy to de�ne, and many answers are given, depending
on who is asked.
From an academic point of view, a location based game is de�ned as such:

3

Chapter 1. Introduction 1.5. Project outline

�In a location-based game(...) the players themselves move around in the real world.
They interact with the game by changing their position and visiting certain places that
are of interest to the game. They still interact with(...) computers using various standard
input devices1, but that is secondary to the game. Players can meet in the real world, and
interact with each other in the game context�.[NPM]

While from a marketing point of view, a location based game is de�ned in this way:

�In a location-based game, the developer creates a virtual world on top of the real world
in order to use real world objects and surroundings in the game. (...) Mobile positioning
technology makes it possible to always know where the user is located.�[JDB]

1.5 Project outline

The project outline serves as a reader's guide to the entire report, with a summary of
each chapter.

Part I - Introduction

• Chapter 2 introduces our research questions, and the methods we use to answer
them.

• Chapter 3 outlines our development methods and contains a description of the tools
used in our project.

Part II - Prestudy

• Chapter 4 explains central development concepts relevant to out project.

• Chapter 5 is a review of the di�erent technologies that we make use of in construct-
ing our game.

• Chapter 6 summarizes the state of the art in location-based gaming.

• Chapter 7 introduces the methods to be used in the game playtesting.

Part III - Own Contribution

• Chapter 8 o�ers a deeper look into the premise and concept of our game prototype.

• Chapter 9 shows the requirements attached to our project.

• Chapter 10 presents our implemented game architecture and design.

Part IV - Test results and user feedback

1Primarily mobile phones and personal digital assistants (PDA's)

4

1.5. Project outline Chapter 1. Introduction

• Chapter 11 summarizes the test results.

• Chapter 12 explains any problems encountered throughout the project.

• Chapter 13 shows tables identifying whether the requirements have been ful�lled
or not.

Part V - Summary

• Chapter 14 is an evaluation of the project, both in technical and methodical terms.

• Chapter 15 summarizes how the research questions were answered.

• Chapter 16 gives a conclusion to our project work.

• Chapter 17 suggests further work.

5

Chapter 2

Research methods & questions

In this chapter we state the research methods that have been used during the process of
writing this report, as well as the research questions that are addressed and answered.

2.1 Research questions

The purpose of the research questions is to give the output of this project and dictate the
constraints of the project work in line with the topics given in the Problem De�nition
section of Chapter 1. The questions are derived from discussions between the author and
the advisors.

The research questions to be answered in this report include:

• RQ 1 -Which challenges exist when developing location-based games for mobile
phones?

• RQ 2 -What is the impact of adding an online multiplayer client/server-structure
to a location-based game?

• RQ 3 -What basis does the current infrastructure o�er to support a location-based
mobile game?

• RQ 4 -Which technologies support the continued existence of a location-based
multiplayer mobile game the best?

2.2. Methods used Chapter 2. Research methods & questions

• RQ 5 -How do people respond to a location-based game as opposite to a pas-
sive/stationary game?

Now that the question are asked, we identify what methods we must use in order to reach
a conclusion to our research.

2.2 Methods used

Software engineering is a multi-disciplinary research subject, consisting of both social
and technological factors. This is especially true when it comes to game development,
a �eld dominated by individual ideas and creativity, and as such a formal approach is
required in order to be able to experiment on the research at a later stage.

The most frequently used research methods in software engineering are given by Basili
[BAS] below.

• The empirical method - The empirical method relies on a statistical method used to
verify a hypothesis. After collecting and analyzing empirical data, one can verify
or falsify the hypothesis made.

• The engineering method - The engineering experimental method is based on engi-
neers building and testing a system according to a hypothesis. When confronted with
the result of a test, the engineers improve the solution until no further improvements
can be made.

• The mathematical method - The mathematical method is a formal approach and
depends on proposing formal theories. The results derived from a theory can in turn
be compared to empirical observations.

Answering RQ1 and RQ2 requires experience through trying and testing. In the project
description of the introduction chapter, we de�ned the development and analysis of a
location-based game as our main goal. The experiences from developing that game will
help us answer the �rst two questions. In this respect, the engineering approach seems to
be best method. The game will be implemented in stages, with continous tester feedback.
When �nished, the game will be applied to tests in a real-world environment where we
can evaluate di�erent aspects concerning infrastructure, network and playability. The
empirical method will be supplementally used when extracting objective data concerning
these three aspects from the phones and test group in order to answer RQ3, RQ4 and
RQ5.

In addition to the research methods mentioned above, for answering research questions,

7

Chapter 2. Research methods & questions 2.2. Methods used

di�erent methods for technology validation are also available. Zelkowitz and Wallace
created a taxonomy [MZW] of twelve such methods, divided into three main categories.
These are listed in table 2.1.

Historical Observational Controlled

Literature Search Project Monitoring Replicated Experiment

Legacy Data Case Study Synthetic environment experiments

Lessons Learned Assertion Dynamic Analysis

Static Analysis Field Study Simulation

Table 2.1: Validation Methods

To accomodate the nature of the research questions, the validation methods used as a
part of the engineering method in this report can be split in three, Lessons Learned,
Literature Search and a Case Study.

In our depth project [ONL] we looked at literature covering di�erent technologies for
implementing location in a mobile device, examined programming languages that sup-
port mobile game development and studied an array of developed location-based games.
All sections contained a comparative analysis of the di�erent elements within. The ex-
periences from the depth study lay much of the foundation for this project, and we will
use this knowledge in improving this project according to the lessons learned method.
We will add to these experiences by studying and analyzing further games and concepts
according to the literature search method.

Furthermore, the developed protype will be subject to a controlled test, a limited case
study with feedback from users, from which empirical data will be extracted. These data,
paired with the analysis from and additions to the previous literature search, form the
basis for our conclusion.

8

Chapter 3

Development methods and tools

In this chapter, we �rst describe the development methods we will use during this project.
At the end of the chapter, a list of the development tools we will use is provided, along
with a short description of each tool.

3.1 Development method

In a software development project, many process methods exist to help the development
team perform and organize tasks such as design, implementation and testing. Some
methods are better suited for larger teams or long development periods, some �t shorter
periods and smaller teams.

3.1.1 Waterfall

The waterfall method is the traditional and most used method of software development.
It entails a �ve-phase step by step way of progressing through a project. These phases,
as seen in �gure 3.1, are Requirement analysis, Design, Implementation, Veri�cation
and Maintenance. While being simple and intuitive, the method does not contain any

Figure 3.1: Illustration of the Waterfall method phases

Chapter 3. Development methods and tools 3.1. Development method

feedback loops, just a straightforward and linear sequence. Projects using the water-
fall method as a starting point often modi�es it with overlaps, in order to incorporate
feedback into the design and implementation.

3.1.2 Scrum

Given the nature of this project, an agile [AGI] development method seems more e�-
cient and natural. Agile development is a concept based on developing software in short
amounts of time, with many iterations throughout the project. Iterations normally last
from 1 to 4 weeks. This means that the focus is not on planning and making docu-
mentation, but on doing and communication between the stakeholders. The resulting
advantages of agile development are adaptability to change, and working software at an
early stage.

One of the agile methods is Scrum [SCR], which is really more of a project manage-
ment framework for agile development. Figure 3.2 shows a diagram describing the Scrum
process for Agile development. Iterations in Scrum are called Sprints, in which the de-
velopment team creates working increments of the software product. Scrum focuses on
being adaptive through Project Roles and best practices.

One such practice is User Stories. These stories are a way for users to communi-
cate wishes for a system without specifying them as a rigid requirement. A user story
emphasize the user's goals, not a system's attribute. When

The Product Owner is the one who at �rst compiles any changes planned for the
product and prioritizes the functionalities. This is similar to a customer representative
giving demands as in a requirement speci�cation, but mainly in the form of desired
functionality or User Stories. User stories emphazise the user's goals, not a system's
attributes. The list of stories/functionalities results in a Product Backlog, which is
a to-do list that is reprioritized as �t. Before each sprint is initiated, a number of ob-
jectives, including the ones with the highest priority are placed in a Sprint Backlog,
which is a list of goals to be implemented this sprint.

After �nishing a Sprint, the Scrum Team holds a Sprint Retrospective. This is a
meeting where the team members re�ect about the sprint they just went through. Posi-
tive and negative experiences are dealt with and analyzed. This way, the team can learn
something from the process, and improve in the next sprint.

The Scrum Team consists of the actual project members and a product user. The
goals of each sprint, the Sprint Backlog, are discussed between the Scrum Team and the
Product Owner, and the functionality is broken down to detailed tasks. These tasks
dictate what the Scrum Team will be doing this sprint. Finally, the Scrum Master
acts as an intermediary or bu�er between the product owner and the scrum team. He
coaches the development team and makes sure they are on track and comfortable without
interfering in their work. He or she also makes sure that the team is not disturbed by

10

3.2. Development tools Chapter 3. Development methods and tools

external elements during the sprint.

Figure 3.2: Illustration of the SCRUM management process. [SMP]

3.1.3 Our development method - Solo Scrum

Solo Scrum [SSC] is an adapted version of Scrum for use in single person projects. While
team communication and meetings, a forte of Scrum, is nonexistant, the projects still
bene�ts from general Scrum principles such as: the product backlog, the sprint backlog,
the sprint and the sprint retrospective. While we exclusively use Scrum in our develop-
ment process, the Waterfall method phases will in�uence this report through the chapter
structure.

In our project, the author will act as both Scrum Team and Scrum Master. The ad-
visors �t the role as Product Owner. Our sprints will last approximately 14 days each
and will be monitored through ScrumWorks.

Our user stories will follow the who-what-why form suggested by Mike Cohn [USR]:

• As a <user role>, I want to <perform some task>, so that I <reach some goal>.

3.2 Development tools

The following tools and applications have been used in this project, not only for devel-
oping the prototype but also for organizing the project and writing this report.

Netbeans 6.0.1- Netbeans is a Java-based programming environment, or Integrated
Development Environment (IDE), developed by SUN and designed to increase a pro-
grammer's productivity. It supports development in both Java EE, Java SE and Java
ME, where the last two are the most interesting aspects for our project.

11

Chapter 3. Development methods and tools 3.2. Development tools

MiKTeX 2.6 - MiKTeX is a Windows implementation of the typesetting system TeX.
It includes a compiler, a LATEX to PDF converter, and other utilities [MIK].

TeXnicCenter Beta 7.01 - TeXnicCenter is a LATEX-editor used to easily write and
structure larger documents written in LATEX [TXC]. When combined with a compiler
such as MiKTeX, TeXnicCenter provide a complete environment for writing and compil-
ing LATEX documents.

Sun Java Wireless Toolkit 2.5.2 - The Java Wireless Toolkit (JWT) (formerly
known as WTK) contains the packages and classes supported by the standard Java ME
implemen- tations. The toolkit is needed to compile Java source �les and run these on a
computer using the standard Java emulators.

Sony Ericsson SDK 2.5.0.1 for Java ME - The Sony Ericsson toolkit for Java
ME is an extension to the JWT and provides new device pro�les [SEJ].

Java Development Kit 6.0 - A Java Development Kit (JDK) contains packages and
applications needed to compile and run Java applications. The JDK 6.0 is the latest
JDK from Sun and its new enhancements include improved I/O support, improved per-
formance and security, support for generics, and an improved Virtual Machine [JDK].

PaceStar UML Diagrammer 6.02 - A basic diagramming tool for creating Uni�ed
Modeling Language (UML) diagrams. This program will be used to create state charts,
class diagrams and architectural descriptions in this project.

Adobe Photoshop Elements 6.0 - Adobe Photoshop Elements is a relatively ad-
vanced image editing program that is easy to use. It will be used in this project to
complement PaceStar in creating illustrations and �gures.

ScrumWorks Basic Edition - ScrumWorks [SCW] is an Agile process automation tool
through which development teams are able to organize themselves and the development
process. It is based on the Scrum process, an agile development framework described
above, and will be used to create task lists and backlogs during the project.

Altova UModel 2008 rel.2 - Altova UModel is an application for creating UML mod-
els automatically from source code. The class diagrams in this project will be created
using UModel and stored in the .png format.

12

Part II

Prestudy

Chapter 4

Concepts

A mobile online multiplayer location-based game is based on concepts from many do-
mains. In this chapter we present most of these concepts. The presentation will show
what these concepts are, why they are important in our project, and how they will be
used.

Figure 4.1 shows how di�erent concepts are related to this project and computer gaming
in general. While the client-server architecture and location-based concept provide a
technical frame, mobile and multiplayer gaming create a social context to our prototype.

4.1 Mobile gaming

Mobile games can be de�ned as games played on devices like mobile phones, smartphones,
handheld computers, or PDAs. The largest advantage over other platforms is that mo-
bile games can be played anywhere and anytime, due to the fact that people bring their
mobile phones with them wherever they go. [MJG]

While computer games in general have existed and evolved since Pong [PON] and Space-
war! [SPW] in the early 60s, mobile gaming is a rather new arena. The �rst mobile game
developed was Snake, which came embedded in the Nokia 6110 back in 1997 [SNA]. This
game and those that followed in it's vein were simple and small games played for brief
periods of time. Later on, the online aspect was introduced with games based on WAP
and SMS. However, it wasn't until the color display and downloadable games emerged
in 2001, that wireless gaming opened up to the larger population [PEL].

Today mobile gaming is becoming ever more popular, and according to Gartner Inc.
the mobile gaming market tripled from 2004 to 2005, with sales ending at $4.3 billion in
2007 and expected to reach $9.6 billion in 2011 [DQI]. Juniper Research is more opti-
mistic, predicting mobile game sales to grow from $3 billion in 2006 to $10.5 billion in
2009, and surpass annual revenues of $17.6 billion in 2011 and beyond.

4.1. Mobile gaming Chapter 4. Concepts

The largest contributors to the explosion in mobile gaming seems to be the traditional
and simple puzzle games in new and better looking versions, these constituted one third
of the total revenue for the �rst quarter of 2006. But other genres are also on the rise,
and 3D multiplayer games have a large following in the Asian-Paci�c countries (APAC).
According to a Park Associates research carried out in 2006 [PAR] multiplayer games
were played weekly by 7% of the total APAC consumers. This interest seem to be driven
by the massive success by computer MMOs like World of Warcraft [WOW].

Figure 4.1: Illustration of mobile gaming in a larger gaming context

4.1.1 Multiplayer gaming

The increasing interest in multiplayer games has already been mentioned, in fact a 2005
Ovum Asia Paci�c report estimated that mobile multiplayer games contributed 12.5% of
the total revenue on the Asian mobile market [CHA].

The social and community aspect of multiplayer games started with simple online high-
score charts and simple chat channels in single player games. Later on turn-based games
became available and popular, as these didn't require much in terms of bandwidth or
latency, which are the two main constraints of multiplayer gaming. Latency a�ects the
delay between action and response in the network, and bandwidth sets a limit to con-
current data transfer between the devices of a network. The latter is a�ected by the fact
that the more players a game has, the more bandwidth is used to relay the actions taken
by the players [POW]. As larger network bandwidth has become available, due to newer
network technologies, the limit has been raised dramatically, and real-time multiplayer
games have now been successfully implemented.

15

Chapter 4. Concepts 4.1. Mobile gaming

4.1.2 Location-based gaming

In addition to being small and light-weight, a mobile phone is also relatively easy to
track, which opens up for new modes of gameplay.

The �rst location-based mobile game was introduced not long after Nokias aforemen-
tioned Snake became popular. Pirates! was developed in Sweden in 1999 [PIR]. This
game laid the foundation for the �rst commercial location-based mobile game, Bot�ghers,
which hit the shelves in 2000 [BOT], see �gure 4.2. Bot�ghters, and its sequels, are search
and destroy combat games fought between avatar1 robots. The �rst game utilized Short
Messaging Service (SMS). Users sent an SMS to see if there were any other bot�ghters in
the area. As each telephone is connected to a GSM antenna with a corresponding CellID,
the game server could positively reply if there indeed was another registered telephone in
the area. Upon receiving such a con�rmation, the player could send another SMS with
an attack command and destroy the other robot.

Figure 4.2: Screenshot from the early Bot�ghters game

Later games have been developed as stand-alone programs with no need for SMS to fa-
cilitate the gameplay. Other methods of implementing location have also been utilized,
like GPS and WiFi2. These games, and the technologies upon which they rely, will be
presented further in Chapter 6.

Regarding entertainment as one of many location-based services (LBS), there has been
stated that this is what will truly di�erentiate mobile devices from computers and con-
soles, as they can never surpass these in terms of audiovisual quality. Games and social
networks are at a stage where technology no longer poses the greatest threat, and neither
does popular interest. It is merely a matter of creating an enticing concept, or a killer
application if you will [LBS][LTB]. Meanwhile, there is an ever increasing population be-
neath the casual masses that devote time and e�ort on the alternatives already existing
[STE].

1A digital representation of a player in a virtual reality
2See Chapter 5

16

4.2. Client-server networking Chapter 4. Concepts

4.2 Client-server networking

The game concept we present in Chapter 8 is based on a client-server architecture, which
is brie�y described in this section.

The client-server architecture pattern describes an architecture that separates a server
from clients with graphical user interfaces (GUI). Each client can send requests to one
or more connected servers and receive appropriate and processed responses. The server
stores central data and sends this to clients which manipulate it according to local input.

The clients do not communicate directly with each other, and all communication goes
through the server. If the server goes down, the entire network goes down. Figure 4.3
below shows a simpli�ed illustration of a client-server network consisting of a server and
mobile phones as clients.

Figure 4.3: Illustration of a client-server network with mobile phones as clients

17

Chapter 5

Technology

This chapter presents the di�erent technologies that will be used throughout the project
and evaluates them with respect to the task at hand.

5.1 Java Platform, Micro Edition

In [ONL] we reviewed the most commonly available mobile programming technologies.
Of these, Java ME stood out as the most sensible choice for our project. In the following
sections, we will give a deeper presentation of Java ME, based on our earlier �ndings.

Java Platform, Micro Edition (Java ME) is a collection of speci�cations and technolo-
gies aimed at mobile devices, created and maintained by Sun Microsystems, with the
help from external expert groups consisting of leading mobile industry representatives.
Any mobile device will only implement a subset of the available mentioned collection
of speci�cations, or Application Programming Interfaces (API). As such, an application
developed for one phone may or may not work on the next, depending on the Java ME
support implemented by the manufacturer.

5.1.1 Java ME Architecture

An illustration of di�erent Java implementations as well as the di�erent components in
each are shown in �gure 5.1. Depending on the requirements, di�erent implementations
of Java are used, from the very lightweight JavaCard meant for smart cards and embed-
ded devices, all the way up to Java EE for enterprise server solutions.

The Java ME implementation is divided in two, one aimed at the lower end of the mobile
phone scale, including most normal handsets, and one for the more powerful devices, like
high-end PDA's and tv set-top boxes.

This project focuses on making a game that will be available for the majority of mobile
phones today, which makes it natural to base our development on the implementation

5.1. Java Platform, Micro Edition Chapter 5. Technology

Figure 5.1: An overview of the Java ME Architecture

stated in the right-hand column, namely �Mobile phones and entry level PDAs�, called
CLDC. A more detailed explanation of the components in this implementation will be
presented in the following sections.

Virtual Machine Layer

The Java Virtual Machine (JVM) is the execution engine for Java applications, con-
taining pre-de�ned machine instructions. Java code is translated into byte code to be
exectuted in the JVM, using the instruction set of the operating system on which it cur-
rently resides. This is what makes Java a portable language, the platform independency
coming from separating source code from OS machine code, and means that any device
that implements JVM can run Java applications.

The Kilobyte Virtual Machine (KVM) is a limited version of the JVM, aimed at de-
vices with limited resources [PER]. It contains all central aspects of the Java language,
but was built from ground up with no additional functionality in mind in order to work
in memory-poor environments. There also exists a CardVM, the virtual machine in the
JavaCard implementation. This is simply a further limited version of JVM lacking even
threads and garbage collection [ACM].

19

Chapter 5. Technology 5.1. Java Platform, Micro Edition

Con�gurations

A Java ME con�guration de�nes a minimum set of JVM features and core java class
libraries for a range of devices [TOP]. A con�guration does not o�er optional features,
because all Java implementations using the same con�guration should behave in the ex-
act same manner.

The con�guration speci�ed to run on top of the KVM on low-end Java ME devices
is called Connected Limited Device Con�guration (CLDC). The con�guration for the
more powerful devices is called Connected Device Con�guration (CDC). These con�gu-
rations come in backwards compatible revisions, and the current CLDC version is 1.1,
which added �oating point and weak reference support to version 1.

Pro�les

The pro�le works as an extension on top of the con�guration, providing extra APIs
for added functionality, as can be seen in �gure 5.2. These APIs include networking, user
inteface and gaming speci�c properties like layers and collision detection. In general,
a single device can support several pro�les, and a pro�le is meant to create a conform
environment for a device family. The pro�le designed for CLDC is is called Mobile In-
formation Device Pro�le (MIDP), the current version in MIDP 2.0, which is backwards
compatible with MIDP 1.0.

Figure 5.2: An overview of the MIDP Pro�le components

With the pro�le application model added to the CLDC, a three-layered runtime en-
vironment for applications is complete.

20

5.1. Java Platform, Micro Edition Chapter 5. Technology

Optional Packages

As you can see in �gure 5.2, there is a layer called optional packages on top of the pro�le.
These packages are applicable to a large number of devices, and contain functionality not
de�ned in the Java ME platform minimum requirements speci�cation. These optional
packages include, but are not limited to:

• JSR1 82 - Bluetooth API for Java ME

• JSR 120 - Wireless Messaging API

• JSR 135 - Mobile Media API

• JSR 179 - Location API for Java ME

• JSR 184 - Mobile 3D Graphics for Java ME

JSR 179 & 293

These additional speci�cations contain the Java ME location API, version 1.0 and 2.0
respectively. The location API includes a package called javax.microedition.location.
This package contains the basic classes needed to request and get a location result. The
package supports satellite based methods like GPS, cellular network based methods like
GSM and short range positioning methods like Bluetooth Local Positioning. While these
methods have many features, the only mandatory ones are:

• Provide latitude and longitude coordinates and their accuracy

• Provide timestamp of the location measurement

JSR 293, which is not yet �nal [JCP], adds to these features, introducing amongst other
things interfaces for accessing location-based services like map, navigation and geocod-
ing.

JSR 248 - Mobile Services Architecture

MSA is a new umbrella standard which aims to reduce fragmentation for the Java com-
munity. This is done by de�ning a set of component JSRs that must be supported on
next-generation mobile phones. These JSRs are strictly de�ned, giving less room for
handset developers to interpret the implementation themselves. Regarding this project,
the most important component included in the MSA is JSR 179, the location API. The

21

Chapter 5. Technology 5.2. Mobile phones

Figure 5.3: An overview of the MSA standard

earlier mentioned JSR 184 is also included. Figure 5.3 shows the entire MSA standard.

The MSA e�ectively forces the mobile industry to share some common ground, giving
developers an easier time in creating applications for a broader group of handsets.

5.2 Mobile phones

While mobile phones are less powerful than their console or computer counterparts, they
do have some other features which makes them interesting from a gaming perspective.
This section covers these features and shows how they can be useful in a mobile game.

5.2.1 Screen

The most obvious limitation of a mobile phone is the reduced screen size and resolution.
While the average size has increased over the years, from the aforementioned Nokia 6610s
128x128 pixels and 1.7� screen to the state of the art iPhone with a 320x480 pixel 3.5�
touch screen. However, the iPhone is nearing the maximum physical size consumers are
willing to use. Steve Jobs hinted at this himself when claiming that a 3G chip would
make the iPhone too big, and so it would have to be shipped without [IPH]. As a side
note, as this is being written, iPhone v.2 was just launched. It has both a 3G chip and
reduced size, while keeping the same screen.

At any rate, the screen size is important for a mobile game, since it dictates the number
of items that are available to the eye at any given time. In addition to this, screen sizes on
modern phones vary a lot, with the most common at 176x220 pixels and 320x240 pixels.

1JSR stands for Java Speci�cation Request, and is the formal pre�x to Java platform additions.

22

5.2. Mobile phones Chapter 5. Technology

Any game will have to compensate and adapt the play�eld to each phone group, making
as much information as possible visible, without the items becoming hard to discern.

5.2.2 Vibration

Vibration is a feature most mobile phones today have adopted. While it has traditionally
been used for making the user aware of phone calls in very silent or very noisy surround-
ings, it can also be used to give the user feedback much like the Nintendo Rumble Pack
game pads [RUM] or Playstation's Dualshock counterpart [SHO].

In mobile games vibration can be used to simulate chrashes, recoil, explosions and more.
However, vibration takes a toll on the battery, which is another limiting factor of mobile
gameplay, meaning vibration should be kept at a minimum or have the option of being
turned o�.

5.2.3 Camera

Mobile phone cameras are a driving factor in their own right, and some phones are
marketed mostly for their ability to compete with the traditional compact camera. While
the average mobile phone camera not yet is in a position to rival traditional cameras, it
has found uses outside MMS2 and party snapshots. Location-based games like Conqwest
use the mobile phone camera to capture semacodes [SEM], a type of barcodes, in city
surroundings. The semacodes are given a point value, placed on stickers and hidden
like treasures. When someone captures a semacode and uploads the picture to the game
server, the point value is given to the players team. The entire game plot can be found
on the game homepage [CQW].

5.2.4 Sound

Since 2005 most mobile phones have had support for truetone audio output. Truetone is
generally de�ned as high quality encoded formats like mp3 and aac. While the progress
in sound quality have been driven by the ringtone market, most games since the begin-
ning have incorporated some kind of sound in the gameplay. Music has been used for
atmosphere and sound e�ects have been added to crashes, gun �ghts, death and more.

5.2.5 Keypad

As important as the keyboard and mouse is to a computer game, the keypad is as input
source for mobile games. Most mobile phones have a standard 12-key setup with an ad-
ditional d-pad or joystick for menu manouvering. Other buttons vary greatly from phone
to phone, and one generally can not make assumptions about these without excluding
some users from playing the game in a satisfying manner. Keeping the input interface
intuitive while still maintaining a high degree of control can be di�cult. Buttons are

2Multimedia Messaging Service, a system allowing multimedia content to be sent via cellular networks.

23

Chapter 5. Technology 5.2. Mobile phones

generally small on mobile phones, and some care must be taken when deciding which
ones to use when.

In addition to the aspects covered above, many newer phones come without keys at
all, and solely rely on a touch screen interface for input. However, these phones are still
few in number and most tend to emulate a 12-key setup anyway.

5.2.6 Internet connection

While data transfer services were available since the start, a mobile internet connection
wasn't common until year 2000, when the General Packet Radio Service (GPRS) data
service was being implemented in most GSM phones, following a standard release in 1997
[GML]. The higher bandwidth of GPRS allowed use of services such as WAP and MMS.
Later on upgrades have been made to both bandwidth and latency of the mobile data
transfer services, and today network gaming via a mobile connection is within acceptable
terms.

An internet connection not only makes multiplayer gaming available, it also allows games
to make us of external web pages and services in the gameplay. Players outside the game
can interact via a web portal and the game itself can collect weather information or extra
game content from the internet.

5.2.7 Location

Location introduces a whole new aspect to mobile gaming. According to Srivastava
[LOC], location can be:

• Absolute position, as achieved in GPS.

• Location relative to a base station.

• Location relative to a starting point.

• An area, where location can be relative to a de�ned context, like city or munici-
pality.

• Location inside a building.

• Location compared to other people or objects.

When having identi�ed the location of a player, it can become a driving factor, not
merely a side-e�ect of being mobile. It can be utilized as contextual input like often is
the case in location-based services (LBS), or a direct input factor in the game, as the
keypad is in most games. Meaning that whenever the player moves in the real world,
his avatar in the game world changes as well. This can happen according to any of the
interpretations of location mentioned above.

24

5.2. Mobile phones Chapter 5. Technology

The location of a mobile phone and its user can be identi�ed using a number of tech-
nologies. The di�erent technologies that are available today provide a varying level of
accuracy, power consumption, and time to complete. Generally, a seamless interaction
between several technologies would be preferable when locating a device, but not all tech-
nologies are supported in every handset. This constitutes a great obstacle for developers
of locationbased mobile games and operators o�ering internet services to handsets [NIC].
The networks that technologies reviewed in this section rely upon can be further studied
in Section 5.3.

The most accurate way of getting the location is through use of the Global Position-
ing System, or GPS [GPS]. Some phones come with a GPS module built in, while
most other phones can access such a module externally via Bluetooth [BLU]. The GPS
is in practise a system consisting of some 24 satellites orbiting the earth, controlled by
a number of monitoring stations, and maintained by the US government. In addition
comes the mobile receiver modules installed in handsets. The GPS module in the phone
trilaterates3 it's position based on a signal from at least 3 of these satellites. The location
can be found with an accuracy of 2-10m all over the planet. The main drawbacks are the
need for a GPS module installed in the phone, which both is costly and power intensitive,
and the need to be in open air, since the signal is diminished indoors.

Another set of location techniques can be found in the GSM network itself. Via the
GSM base stations a handset is connected to, position can be identifyed in many ways.
Each base station has a unique identi�er, or CellID, this number can be used to identify
position within the covered area of such a station. These areas often have a radius of 100m
or less in urban areas up to several kilometers in rural areas. Adding timing information
to this CellID one can achieve a somewhat higher accuracy, at the cost of complexity.
Another GSM technology used in locating the phone is triangulation of a signal between
several base stations, not unlike the GPS system. This triangulation can be calculated
by the phone itself, as in Enhanced Observed Time Di�erence of Arrival(E-OTD) or by
the network, as in Uplink Time Di�erence of Arrival(U-TDOA). The latter technique
is mostly used, since it has no handset requirements other than a GSM connection. The
former technique need a module to be installed in the handset, which e�ectively removes
the advantages of using a GSM approach. These advantages are based on cost and mar-
ket: All GSM phones can make use of GSM localization, and at no cost to the user.
Furthermore, GSM localization works well indoor.

3G or UMTS provides the same means of location as the GSM network, but adds to it.
E-OTD is slightly di�erent in UMTS, and is called Observed Time Diference of Arrival
(OTDOA) [OTD]. In addition, the UMTS network provides a native system for locating
users. This system can be accessed by Parlay API's in the 3G OSA architecture [OSA].
These provide an easier way of fetching location information with no pre-knowledge of

3Calculating position based on known distance to two or more refrence points

25

Chapter 5. Technology 5.3. Mobile network technologies

the current network. However, access to these requires operator support, which comes
at a cost.

Lastly, a Wireless Local Area Network (WLAN) can be used to locate mobile devices in
any area covered by such a network. This can be done in two ways. One way is to have
all the WLAN antennas of an area listen to ongoing tra�c and then identify the position
of the MAC adresses that are found within each antennas area. The other way entails
analyzing the signal strength of surrounding WLAN access points. This information can
be compared to a database of already collected signal strengths connected to locations.
The calibration required to build such a database can be time consuming and complex.
WLAN position can be very accurate, down to 0.5 to 5 meters [WLA], and it is suitable
for indoor use. However, when covering larger area with one WLAN it can be very costly.
In addition, WLAN is supported by very few mobile phones today, these are normally
only the most advanced ones.

5.3 Mobile network technologies

This section will focus on the di�erent network technologies available for transfer of data
to and from a mobile phone. Since the �rst commercial GSM networks were opened for
service in 1992, these networks and subsequent technology updates have been categorized
into generations. These generations are 2G, 3G and the future 4G. Each generation o�ers
new services, new features and upgraded capacity. In addition, each generation typically
o�ers a performance upgrade or a hybrid feature before a new generation is standardized.
These upgrades are popularly referred to as 2.5G and 3.5G respectively.

5.3.1 Pre GSM

While mobile telephone services have been around since the radio telephones in the late
1940s (sometimes called 0G) [HIS], the �rst modern generation of mobile technology
was introduced in the 1980s (1G). At this time mobile phones used a di�erent cellular
system than GSM, for instance the analogue NMT (Nordic Mobile Telephony) in parts
of Europe and Russia [MPG]. It was at this point the idea of dividing geographic regions
into cells covered by base stations could successfully be applied. The idea itself had been
introduced at the very start. Another aspect of this idea is to reuse frequencies in cells
that are not neighbours. These �rst cells had a radius ranging from 2km to 25km.

5.3.2 2G

The �rst digital mobile telephone systems in Europe were introduced with GSM (Global
Systems for Mobile Communications). Second generation technologies can generally be
divided into CDMA-4 and TDMA-5 based standards, depending on which type of mul-
tiplexing used. GSM is based on TDMA. The main advantages to 2G over 1G are less

4Code Division Multiple Access
5Time Division Multiple Access

26

5.3. Mobile network technologies Chapter 5. Technology

power consumption and increased sound quality. In addition, the hugely popular SMS
service was made available with the use of digital second generation systems.

GSM

GSM is the most popular standard for mobile phone networks in the world, and had over
3 billion users by the entrance of 2008 [GSB]. The system is based on cicuit-switching
with 200kHz channels split in 8 time slots. Data transfer can reach speeds of 9.6kbit/s.
In Europe, GSM occupies the 900MHz and 1800MHz wavebands.

GPRS

GPRS is a mobile data service that uses packet switching. This feature, which it has
loaned from 3G services, has given GPRS a description as 2.5G, since it does not meet
the speed requirements of 3G. Because of this overlay service, mobile phones with GPRS
have normal access to TCP/IP networks and can access the internet through WAP, send
MMS or use instant messaging programs. Since GPRS is packet switched, multiple users
share the same transmission channel, and only transmit data when needed. Contrary to
the old circuit-switched pay-per-minute approach, GPRS is billed per megabyte and is
thereby cheaper to use.

While GPRS uses the same modulation, 8 time slots and channel size as GSM, it of-
fers di�erent coding schemes that allow manipulation of these. Uplink and download
channels are separately reserved, giving possibility to combine these as needed. The
fastest coding scheme, CS-4, has a theoretical throughput of 160 kbit/s using all 8 time
slots for transfer and no error correction, but a normal throughput peaks at about 40-60
kbit/s [PRF]. In mobile gaming, latency is as important as transfer rate, and GPRS
o�ers very high latencies. A message going from a server to the client and back can take
as much as 1000 milliseconds [GPR].

EDGE

EDGE, or Enhanced Data rates for GSM Evolution, is a digital data transfer technol-
ogy also labeled as 2.5G or 2.75G. The technology can be used in both packet-switched
and circuit-switched services, but does not meet the speed standard of 3G. In a packet-
switched network EDGE uses a GPRS technique called Enhanced GPRS, which allows
for regular speeds up to 245 kbit/s on average. In this mode, the regular GPRS band-
width and time slots are utilized, but a more advanced signal that is able to carry 3
times the data per modulated symbol is used, allowing for 3 times the data transfer rate
of GPRS [PRF]. An additional advantage is the latency, which reaches end-to-end times

27

Chapter 5. Technology 5.3. Mobile network technologies

of 150 miliseconds and better.

5.3.3 3G

The third and present generation of mobile networks o�ers new services, higher capacity
and higher security compared to 2G. The largest branch of 3G development is standard-
ized and maintained by the 3rd Generation Partnership Project (3GPP), which strive to
make a globally applicable 3G speci�cation building on evolving the GSM system.

One of the new services available is video calls, long predicted to be the �killer app�
for 3G phones, these are phones with a front-mounted camera. Time has since proven
video calls' failure, and 3G's general upgrade in quality has attracted people instead.
Since 2001, when the �rst 3G service was launched in Japan, the number of 3G providers
have spead to service more than 300 million subscribers by the entrance of 2008 [GPB].
The �rst operator in Norway providing 3G services was Telenor in 2004 [NOR]. The 3G
technology deployed here is UMTS.

UMTS

Universal Mobile Telecommunications System (UMTS) is one of several technologies
providing the right capacity and services to �t in the 3G speci�cation. UMTS sup-
ports speeds up to 384 kbit/s in regular use. However, the theoretical throughput is
as much as 14 Mbit/s. The most common form of UMTS transfer interface deployed,
Wideband-Code Division Multiple Access (W-CDMA), comprises 72% of all 3G services.
In this mode, two 5 MHz channels are used for uplink and downlink. According to 3GPP
standard, these channels are found in the 1885-2025 MHz and 2110-2200 MHz bands
respectively, but some countries use other frequency bands, like the USA /citeUSU.

UMTS latency reaches end-to-end times as low as 100ms in general. Somewhat faster
than EDGE, and far better than GPRS.

HSPA

HSPA, or High Speed uplink/downlink Packet Access, works as an upgrade or addi-
tion to the UMTS standard. With the use of HSPA protocols, the download and upload
speeds of UMTS are reaching their theoretical maximum. The download speed maxi-
mum is 14.4 Mbit/s, but in the �rst installment, a general peak speed of 3.6 Mbit/s is
achieved. Some rollouts reach as much as 7.2 Mbit/s as well, depending on which collec-
tion of protocols and modulations are used. Upload speeds are generally 384 kbit/s, with
a theoretical maximum of 5.76 Mbit/s. Newer installments in Finland achieve upload
speeds of 1.4 Mbit/s [ELI].

28

5.3. Mobile network technologies Chapter 5. Technology

HSPA is recognized as a 3.5G technology, due to the massive increase in speed, while not
bringing any new service to the �eld. Not only speed is increased, though, as latency is
improved over UMTS reaching the area of 70ms.

5.3.4 WLAN

Although not considered a traditional mobile technology, a WLAN chip is included in
an increasing number of advanced handsets. WLAN deployment has increased rapidly
over the years, and as more and more companies, organizations and households sets up
routers enabling wireless networks, they become more accessible for mobile phone users
as well.

WLAN, as we have mostly come to know it, is a set of standards de�ned by the IEEE6,
in a family called 802.11. The family standards are a, b, g and n7. The only di�erence
between them is channel use, range and transfer speed. They all work in the 2.4 and/or 5
GHz spectrum. Data rates in 802.11b are limited to 11 Mbit/s, in b and g to 54 Mbit/s,
while the new n standard boasts up to 250 Mbit/s. Indoor range varies from 25m to
70m. Practical use will see somewhat lower speeds and ranges than the stated maxi-
mum, though. At any rate, speeds are faster than those of a traditional mobile network,
and latency is lower as well. The downside is reduced range and coverage.

5.3.5 Comparison

In a location-based multiplayer network game, there are several crucial factors that de-
pend upon the network technology used.

Let us �rst consider the location-aspect of the alternative networks. Both GSM and
UMTS support the same methods of location. Namely CellID and triangulation. How-
ever, the naming convention in base station CellID di�ers both from operator to operator
and from GSM to UMTS, this is left open for operators to decide in the standard. In
Norway a 4 cipher hexadecimal code is used for GSM base stations and an 8 cipher
hexadecimal code for UMTS. This is exampli�ed in table 5.1 below. The base station
positions vary geographically between operators and network technology as well. GSM
cells are naturally a bit larger, since they send on a lower frequency. Correspondingly,
UMTS stations must stand closer due to the higher transmission frequency. In addition,
the actual placement of stations vary between operators. In �gure 5.4 you see an overview
of how one operator's base stations might be placed, and the relative signal strength in
the area.

6Institute of Electrical and Electronical Engineers
7The n standard has not yet been �nally released, and is expected in 2009. However, products that

are guaranteed to work with the standard are on the market already

29

Chapter 5. Technology 5.3. Mobile network technologies

Location Network Operator CellID

St. Olavs Hospital GSM Telenor 40b4

GSM Netcom 3f00

UMTS Telenor 01f6ba31

UMTS Netcom 00059316

Nidaros Cathedral GSM Telenor 3f45

GSM Netcom 931b

UMTS Telenor 01f6b9c1

UMTS Netcom 0005e532

Table 5.1: Base station CellID

Triangulation by base stations is not a trivial task, and needs to be o�ered as a service
from the operator. These services are also known as Content Provider Access (CPA),
and CPA Positioning is only one of them. With CPA positioning, the means of re-
trieving location is transparent, and GSM, UMTS and WLAN are all supported. Both
Telenor and Netcom o�ers CPA [?][CPN], but a license to use this can be costly. In ad-
dition, location through the network may take as much as 4 seconds [?]. Thus, it is not
for any game developer to make use of this technology, both economically and practically.

Network throughput and latency are other factors playing a role in deciding which tech-
nology to use. Generally, any real-time game application will have to produce an e�ective
latency of less than 250ms for it not to a�ect gameplay seriously [RTG]. This means that
GPRS without EDGE is out of the question, while any other combination of technologies
should su�ce. Transfer rates are important to any large package sent via the network.
A large package sent with an insu�cient bandwidth will take too long to transfer, and
perceived latency will be unacceptable.

While gaming via WLAN o�ers both excellent latency and transfer rates, the location
complexity and limited coverage suits a mobile location-based game badly. There are
mobile games on the market that make use of WLAN, but they are very few. WLAN is
not so widely used to locate the phone as to provide a free connection to the internet for
game data transfer. Especially indoor or in urban areas. We will not discuss gaming via
WLAN further in this thesis, but if you are interested in the subject, check out Plundr
for the Nintendo DS by area/code [ACP]. It was originally a PC game for laptops, but
it has been ported to the DS, and a mobile version is not far away. The game is a pirate
adventure, where players move from island to island based on Wi-Fi zones. Your posi-
tion in the physical world a�ects the game. You'll �nd di�erent islands, di�erent market
prices and di�erent ships to �ght based on where you are.

30

5.3. Mobile network technologies Chapter 5. Technology

Figure 5.4: Map showing base station coverage in Dachau, Germany [Courtesy of Enorm
GMBH].

5.3.6 Test phones required

In this project, we will need phones that support:

• Java ME

• A 320x240 pixel screen resolution

• JSR 118 - MIDP 2.0

• JSR 139 - CLDC 1.1

• JSR 179 - Location API

While emulators have been and can be used to test games without a mobile phone, the
nature of our game dictates that we perform real world testing with suitable mobile
phones. Currently, very few handsets support the JSR 179 location API. A full list can
be found at [LOA]. However, both Nokia and Sony Ericsson(SE) have recently provided
their own network API's, which access the JSR 179. This way, CellId can easily be

31

Chapter 5. Technology 5.3. Mobile network technologies

retrieved by importing the com.sonyericsson.net.cellid or com.nokia.mid.cellid

packages. The method only works on SE phones that support JP-7.38 and later [SJP]
and Nokia phones with a Series 60 3rd edition FP2 system and later [NSE]. Series 40
3rd edition FP 1 systems can retrieve CellId as well, but require midlets to be signed by
manufacturer or operator [NSE].

Our test phones are the Sony Ericsson K850i and W910i, a modern camera phone and a
modern multimedia phone, respectively. They both support JP-8

Phone Model Features Screen Resolution

SE K850i MIPD 2.0, CLDC 1.1, HSDPA, MSA 320x240

SE W910i MIPD 2.0, CLDC 1.1, HSDPA, MSA 320x240

Table 5.2: Mobile test phones

8Sony Ericsson Java Platform - A technical increment of SE Java implementations

32

Chapter 6

State of the art

In our depth project [ONL], we reviewed the state of the art in mobile location-based
games. This chapter will build on our previous analysis, and add new information we
have discovered since.

6.1 Location-based games

As mentioned in Chapter 4 location-based mobile games have existed since the turn of
the century. Since that time phones have developed both in networking abilites, process-
ing power and display options. In the depth project we found that the large majority
of the 40 reviewed location-based mobile games used either CellID or GPS as the means
of locating players (>70 %). Furthermore, most of them were developed in Java ME
(>50 %). This seems natural due to the larger market of these approaches versus the
alternatives.

In the following sections we will present three location-based games that are active today.
These are all multiplayer games, incorporating location in di�erent fashions.

6.1.1 The Target

The target is a game developed and maintained by the Belgian company La Mosca, and
�rst released in May 2007 [TAR]. The game is described as a pursuit game. The plot
is based on a gangster escaping from prison, and the policemen sent after him. These
policemen will have to catch the gangster before he commits too many crimes and leaves
the city. The gangster must commit crimes and steal money in order to leave the city.
Crimes are commited by stealing objects virtually spread around the city. However,
when a crime is commited, the policemen are informed, and can follow the trail. These
are the player roles, and each game is thus limited to at least 3 persons playing in a
known environment. However, up to 36 players can play the game at the same time,
with groups of policemen chasing a group of gangsters. In addition, several games can
be played simultaneously, allowing for large groups.

Chapter 6. State of the art 6.1. Location-based games

Figure 6.1: Screenshot displaying an overview map from The Target.

Technology and business

Groups of players wishing to partake can rent a timeslot of 2 hours where they are
free to play. Distribution is done at game centers, places where people come to play
video games, mostly online [LAM]. The game is developed in Java ME, and the midlets
were originally preloaded on Nokia 6110 GPS phones. The phones were mostly sponsored
by Nokia, wishing to promote themselves in this segment. Now the game is played on
Nokia 3250 with Globalsat BT 338 external bluetooth GPS receivers. Some game centers
also invest in their own phones and buy game licenses from La Mosca. At the moment
the game is based on a few cities in Holland and Belgium, but any expansion of the game
is done by porting the plot to a di�erent base map, a fairly trivial transfer [LAM].

The typical players are groups of friends wishing to play for a few hours and event
agencies giving companies an alternative team building option [TAR]. As many as 130
players have been taking part in a session at a time, with several games going on at
the same time. Location is updated by GPS, and as with most multiplayer games, only
actions and location is transferred via the network, meaning each game has an average
device transfer of 500Kb [LAM]. This tra�c is paid for in the game session.

6.1.2 Mogi - item hunt

Mogi is a treasure hunting game released by France-based Newt Games to the Japanese
market in 2003 [MOG]. Players are supposed to follow a virtual map over Tokyo, move
through the real-world city, talk to other people in game and pick up virtual items. Items
are then traded with other players in order to complete item collections. Items are not

34

6.1. Location-based games Chapter 6. State of the art

limited to sticks and stones, but may be animals as well. Some items and animals may
only be available at night. The goal is to get items and complete item collections in order
to get points. By getting points you increase in rank and fame. The game comes with
an instant messaging system and a system to locate friends in the city.

Figure 6.2: Screenshots displaying di�erent scenes from Mogi. Top right: the radar.

Technology and business

The game is written in Java ME, released via the carrier KDDI, and designed to be
played on their AU phones which have GPS receivers [KDD]. The operator charges 315
Yen per month, or about $3. You get access to both a mobile and web-browser client
which will allow you to achieve them same results, only di�ering in interface. Mogi uses
both CellID and GPS as means of locating the player. When in CellID mode, one can
not pin-point items, and will have to rely a little on luck to get a special item one notices
on the radar, since you have to be within 400m to pick it up. However, random items
nearby are shown and ripe for pickup. Urban mobile base stations will also stand close
enough for players to reach most items. The creator of the game intended CellID mode
for when rushing through the map, just checking the radar for interesting item or players
[MOS].

6.1.3 The Shroud - Harvesting

The Shroud is a location based RPG for mobile phones, developed by Hardcode 3D Wire-
less [SHR]. First previewed in spring 2006, this Zelda-like game lets you explore parts of
the game based on real world locations through the GPS in your phone. The gameplay
is largely single player �ghting and gathering. You play the hero Taro in di�erent modes
as he harvests from his farm, solves puzzles, mines for gems and �ghts monsters that
are pouring through from a parallell world called The Shroud. In order to pay for his

35

Chapter 6. State of the art 6.1. Location-based games

�ghting expenses he will have to farm to make money.

Figure 6.3: Screenshots displaying everyday activities from The Shroud.

Technology and business

The game's social aspect is nurtured via an online community where players can compare
statistics and share tips. In this online �International Farmers League� (IFL) players are
also ranked, meaning you can improve your character and place higher in the ranking.
Through the IFL a player can also take out a timed challenge where he for instance
may have to plant 10 potatoes in an hour, or �sh 10 �sh within a similar time limit.
When successfully completing a challenge, points will be added to the player's rank. The
highest ranking player will be awarded a prize each month. These prizes could vary from
in-game currency to real-life snowboards [SMO].

While the main parts of the game are single-player �ghting and gathering, the incorpo-
ration of GPS location means that you at certain times can be given in-game challenges
based on your real world location. More speci�cally, you may at one point be challenged
to go somewhere in the real world, a so called hotspot or �breach�, and upon arriving
there a special challenge will become available in the game. These spots may be meters
away at �rst, but later on they can appear further away from the player, even at set
places like the Empire State Building [SMO]. The challenges themselves may consist of
a �shing competition or �ghting a monster. In addition, special events happen at certain
days of the game year, like an animal race taking place on July 7 [ANI].

The game is developed in both Java ME and BREW [BRE]. BREW, or Binary Runtime
Environment for Wireless, is Qualcomms proprietary counterpart of Java ME's KVM .
Games and applications for BREW are written in C and C++. The game has publishing
agreements via Your World Games (YWG) and Sony BMG Music. Since it is not yet
publicly released, pricing and transfer rates are unknown. Games bought through Sony
BMGs gaming portal typically cost $5.99 [BMG]. Statements made by a representative
from YWG made it clear that the game is �nished, and will ship with episodic content,
in the form on quests. At release the number of quests are 13, but the infrastructure is

36

6.1. Location-based games Chapter 6. State of the art

reported to support 50-100 new quests in the form of downloadable content. This strat-
egy has been used previously by games such as Final Fantasy VII:Before crisis [FFA] and
Era of Eidolon [ERA]. In FFVII a montly subscription is needed to unlock new quests
and storylines, while EoE sells each new content package at a �xed price.

6.1.4 Summary

In this chapter we have reviewed three mobile multiplayer games which all incorporate
location to some degree. While the two �rst games use location as a more direct part of
player input, the last game o�ers other options of gameplay as well. Common to all the
games is the support for GPS, but only The Target actually requires it to play.

All games have a sense of roleplay to them, but The Target takes a more action-oriented
approach and Mogi is more about socializing and collecting, common to puzzle games.
Only The Shroud can be counted as real roleplaying game among these three.

As for networking, some games are more tra�c-heavy than others. The Target has
signi�cant real-time update requirements, and will therefore have a larger network tra�c
than the others. In Mogi, network tra�c is only required when scanning with the radar,
picking up items, trading or changing map zones. These actions have a lower frequency
than updates required for real-time play. In The Shroud network acticity will only be
required when accessing the International Farmers League for challenges, chat and com-
parison, not counting set events where GPS location plays a part.

One of the fundamental advantages of multiplayer games is the social aspect. All games
incorporate this in some way or other. In the �rst game, direct contact between players
is a vital part, and the time before and after play is often used for discussing the event
[LAM]. Then again, the entire business model of the game entails people socializing and
competing in a direct and relaxed context. In Mogi, socializing takes a di�erent approach,
where competition is balanced with friendly trade and communication. The Shroud has
a less obvious social context, but introduces leaderboards and a community portal for
sharing tips and secrets to give the feeling of multiplayer gaming. The location-based
events also hopes to bring players together at certain places and times. In addition,
extra content is made available for download, giving the sense of a living and expanding
community.

37

Chapter 7

Game playtesting

Any game intended for actual use must think of playability1 as a factor equal to or greater
than the technical factors. Since mobile games have developed so rapidly the last few
years, following in the wake of handset manufacturers' progress, mobile players have high
demands for game playability [IMP].

While playability has been a slightly overlooked part of mobile game development so far,
it is essential for some game developers. Multiplayer games in general, and MMORPG's
in particular have a high level of playtesting before being shipped to the masses. In
short, one can say that the level of playtesting is proportional with the time and money
invested in a game. This is why mobile games developers overlook playtesting; short
time tables and tight budgets [IMP].

In this chapter we will look at some important playtesting aspects and how they can
be used to improve and stimulate the di�erent stages of mobile game development pro-
cess.

7.1 Playtesting candidates

Di�erent people have di�erent areas of interest and expertise. Using the right kind of
people at the right stages of the game development process is vital to get useful feedback.
In [IMP], Ollila mentions some tester categories along with their properties, these are
presented in table refplaytesters below. In our project, the expert roles may be �lled by
our supervisors, colleagues are fellow computer science students and the real players are
the natural target group for an online multiplayer location-based game.

1The fun-factor

7.2. Game development stages Chapter 7. Game playtesting

Testers Advantages Disadvantages

Experts Know their focus area(games,
usability)

Do not typically represent the
target group, they are more
experienced gamers.

Colleagues Easy to recruit, no problems
with con�dentiality

Do not often represent the tar-
get group well

Real players Match the target group well.
Provide realistic data on both
functionality and content

Con�dentiality may be an is-
sue. Recruiting takes time.
Need to be rewarded.

Table 7.1: Playtesters

7.2 Game development stages

Any software project has many stages of development. In games, the stages can mostly
be condensed to the ones in �gure 7.1 below. Our project will only include the ideas-,
game design-, implementation- and alpha stages. The alpha stage means that all features
of a game are in place, but lacking �nal content. Beta means both features and content
are in place, and only �nal tweaking and bugtesting remains.

Figure 7.1: Overview of game development stages

39

Chapter 7. Game playtesting 7.3. Our playtesting

7.3 Our playtesting

During the di�erent stages we will take di�erent opinions into account, and use di�erent
settings to achieve results. Table 7.2 below, shows a plan of the who, how, what and when.

At the early stages, concept and idea discussion is important. The process of �esh-

Testers Stage Setting

Experts Idea & Game Design Focus groups

Colleagues Implementation Direct Observation

Real players Alpha Direct Observation and Field Testing

Table 7.2: Project playtesting

ing out desirable and practical solutions to technical challenges will bene�t from expert
opinions. At the implementation stage, when the concept is set, fellow students and
colleagues may provide a fresh look and point out challenges with early versions. Having
the developers present and directing the players through a game session will help putting
the focus on the parts that need to be tested, skipping un�nished parts of the game.
When a prototype is �nished, real players need to be taken in to test the solutions. This
can happen both in the development environment or, preferably, in an actual gaming
environment. Since our game is location-based, which means the gaming environment is
outside and a�ected by external events not reproducable in a development setting, �eld
testing is vital for both playtesting and debugging.

40

Part III

Own contribution

Chapter 8

A Prototype game

Based on the research into location-based gaming, we introduce a mobile multiplayer
game using CellID. The concept is based on work done in the depth project [ONL],
and is meant to provide a development setting where we can apply concrete ideas for a
location-based game. See Appendix A for more details on GSM/UMTS base station cells
and CellId.

8.1 CityZombie - The concept

CityZombie is a multiplayer game set in urban areas. The players of the game are split
into factions of humans and zombies. The goal of the game is to take control of the city
zones and thereby generate �Fear� or �Hope�, depending on your faction. Zones are the
various important parts of the town, divided into real world CellID areas. We envision
one game per city, as each city will have to be mapped and recorded into a database
of zones. Each game can have 2, 20 or even 200 zones of a city activated, the concept
stays the same. The zones are represented in-game via a map and a color showing who
controls the zone, if any. The �rst player to register a CellID by walking into it will seize
control of that game zone for his faction. The zone will stay that way until a rival player
attacks the zone and declare the zone taken over by the warring faction.

The map also shows in which zones the other players are located, both allied and enemy,
and gameplay can be enhanced by items of power. These items can be mines that secure
a spot, radar information telling you where the rival players are (if they are not visible
by default), attack robots that grant you the possibility of testing a zone for mines and
thus rendering a mine useless etc. These items could be scattered across the map, or
randomly placed in zones, available for the �rst zone controller.

The game is played as an open world where players come and go as they please, never
having to wait for a game session to start. If there are no other players the �rst player
starts the game. These individual game sessions last until one faction has achieved a set
limit of fear or hope. After each game a new session can be started, keeping the game

8.1. CityZombie - The concept Chapter 8. A Prototype game

pace high. Each player is rewarded points for beating an enemy player and winning the
game session for his or her faction. These points are kept after a session is over and
maintained in a high score list.

In alternative settings the CityZombie concept could be a single player game where
the goal is for the last human has to take control of the city versus NPC1 zombies or it
could be a player zombie wreaking as much havoc as possible within a time limit. As
a multiplayer game the goals could be relative team dominance within a time limit, or
the initially intended faction favour gathering setting, where one team must hold control
of majority of the city for a certain amount of time in order to gather enough favour to
win. These modes could be set in the client before game starts.

The zone takeover sequence is played in several ways. If a player attacks a zone which
is merely controlled, and not defended by a rival player, takeover is a trivial change of
�ag color and status update. If other players are present, a more elaborate battle is
fought. Both synchronous and asynchronous battles are usable. However, due to latency
and tra�c in the network synchronous battles are more complex and costly. In our im-
plementation the server gathers information on both attacker and defender, simulates a
�ght between them and sends the results back to the players. The clients then show the
battle round for round in a turn-based manner.

Zones can also be defended with a mine. A player walking on a mine is put out of
battle for a certain amount of time, not capturing the zone but destroying the mine. The
same thing happens to any player who loses a �ghting sequence. By being put out one
will have to leave the zone and enter a neutral revival zone in order to be able to head
back into action again. This gives the defending players time to rush to zone defence
before the attacker �regains counciousness� and can attack the zone again.

8.1.1 Gameplay overview

The game is based on a set number of zones that can be attacked and defended. This is
a general model that can be laid on top of any set of CellID zones, and is why CellID is
used in the �rst place. Without a pre-de�ned zone structure, the game would have to rely
on �xed spots like a capture the �ag-game, and such a game would require high-precision
targeting like GPS. The CityZombie game might not be appropriate for some city envi-
ronments if GPS was used, though, because of the urban canyon problem.2 Besides, the
GPS mobile phone market is still too small to attract casual players to the game, unless
a strategy similar to The Target is used, as discussed in Section 6.1.1 At any rate, the
zone model opens for a game that can be geographically linked to any real-world city, as

1Non Player Character
2Tall buildings or indoor environments block/obstruct the signal from satellites.

43

Chapter 8. A Prototype game 8.1. CityZombie - The concept

in our prototype.

In CityZombie, virtual buildings are placed on the map according to their type and
position in the real world, which would make a logical sense of direction for the players.
The zones would not have to be neighbours, and the entire city could be used, either
making room for more zones, or making the area between the zones larger.

Figure 8.1 on the next page shows an early illustration of a game set in downtown
Trondheim. Some zones are free and up for claim, while others have been seized by a
faction. As mentioned above, virtual buildings are placed on the map according to the
location in Trondheim. The zones are from top left to bottom right: The railway sta-
tion, the tramway Graakallbanen, the �re station, the arena Nidarøhallen, the Nidaros
Cathedral, the Kristiansten Fort, the Student's Society Samfundet, St. Olavs Hospital
and NTNU Gløshaugen.

Figure 8.1: The game zones in a game with 1 human player and 2 zombie players

44

8.2. Server and Client concurrency Chapter 8. A Prototype game

Players who join an ongoing game will likely be scattered out over these zones based
on each client's CellID, along with the players already in the fray. In order for a team
not to get too much of a head start, each player will have to enter a neutral revival zone
before heading into battle.

A smaller version of the early game map, more in line with the dimensions of a mo-
bile phone screen can be seen in �gure 8.2, below.

Figure 8.2: The game zones in a smaller game with 1 human player and 1 zombie player

8.2 Server and Client concurrency

As in any other networked multiplayer game, information is not instantly forwarded from
client to client. As one client updates his information, this information is being sent to a
server, which in turn forwards this information to the other clients. This gives the server
the most complete picture of the situation at any given time. While this aspect is vital in
any real-time application with strong synchronization demands, our game updates more
slowly due to the limited input options and large distances involved in the gameplay, thus
largely camou�aging any latency problems in the network and issues rising from those.

This does not mean that clients and server are equal in our prototype. Some infor-
mation is better processed in the clients and some information is better processed in the
server.

45

Chapter 8. A Prototype game 8.2. Server and Client concurrency

8.2.1 Client calculations

Mobile clients are resource constrained and many, meaning that as few operations as
possible should be placed here.

Position

Each device in the game contionously checks its position according to a game speed
factor and relates this position to the recorded zones of the game. If there was no di�er-
ence in position from tick to tick, no position update is sent to the server. However, if
the player enters a new zone, the client will detect this and the position will be forwarded
to the server.

Battle initiation

Battles are initiated by the clients. In addition to listening for positional updates, the
clients also checks for player collisions. Meaning that if an enemy avatar is situated in
the zone you just entered, your client will send an attack request to the server with both
yours and the enemys id.

8.2.2 Server calculations

The server has more computing power as well as acting as a synchronization point, mean-
ing it should take on any operation suitable.

Battle calculation

After receiving a battle request from a client, the server will ask both attacker and
defender to respond to this request by submitting their battle tactics. When receiving
this information, the server simluates a battle, hit by hit, and sends the resulting infor-
mation back to the clients involved. This simulated calculation takes player strength and
tactics into account and lets it a�ect a randomization of hits. Meaning that an inferior
player could win a battle, but it would only be against all odds. The winning player is
also granted a modest hit point increase for that session, making him tougher to beat.

Favour generation

The server keeps its own model of the game zones and whether or not anyone has claimed
them. For each zone a faction claims, a larger amount of favour is granted that faction.
The server has its own internal game clock, and each time this ticks, the server checks
each zone and hands out support according to the owner. This information is then sent
to each player.

46

8.3. Game framework Chapter 8. A Prototype game

Winning criteria

As the server clock ticks, more and more support will be handed out, until one fac-
tion has achieved the support limit, be that hope or fear. As the limit is reached, a
noti�cation is sent to each player informing that the game session is over and declaring
who won. A new session can then start.

Player score

Similar to the zone model, the server also keeps a record of the individual players, award-
ing them points whenever they win a �ght, captures a zone or wins the session. Each
client is sent his or her points at regular intervals, but only the server manipulates these
points in any way. Clients keep a high score list.

8.3 Game framework

The implementation of our game prototype will be based on the framework peer2gaMe,
developed by Martin Jarrett and Eivind Sorteberg in 2007 [RTG]. In their master thesis
�Real-Time Online Multiplayer Mobile Games� they presented a multiplayer game frame-
work consisting of a client and a server. This framework provides the means of creating
and joining game sessions, polling position, collision detection and forwarding di�erent
messages to other clients through the server. It will be further presented in the following
chapters.

47

Chapter 9

Requirements - The user stories

In Scrum, requirements are not dictated beforehand or received in its complete form from
any customer. Instead, requirements can be derived from User Stories, which are scenar-
ios describing use of practical game features from a user perspective. After collecting a
number of user stories, one may identify requirements to be set up in requirement tables.
These game requirements can be divided into functional and non-functional requirements.
While the functional requirements address the functionality, data processing and general
behaviour of the system, the non-functional requirements address the constraints of the
game in terms of design and implementation.

This chapter presents some high level user stories gathered for our game, and summarizes
these in tables, both for client and server.

9.1 User stories

Our game is a simple application, with a very homogenous user base. All users will see
the game from the player perspective, and provide stories accordingly. High level user
stories are sometimes called Epic stories [USR], and can be broken down into several
smaller stories and requirements. The following stories are the ones used to create all
tasks and requirements for our game.

Epic stories

• As a player, I want to capture zones, so that I may win.

• As a player, I want to choose which server to connect to, so that I am able to play
the right version.

• As a player, I want to achieve kill points, so that I can top the high score list.

• As an administrator, I want to con�gure the game, so that I can set it up according
to my own speci�cation.

9.2. Client requirements Chapter 9. Requirements - The user stories

9.2 Client requirements

The client application runs on mobile phones and communicates with our game server
using the telenetwork. In this section we present the requirements for our game client
based on the described functionality in the concept part of Chapter 8. The game client
is based on an existing framework, peer2gaMe [RTG] as described in Section 8.3, and
some of the requirements material here is based on and will be ful�lled by that framework.

Our game client has three main state categories, as shown in �gure 9.1. The o�-line
part of the client before connecting to the server is regarded as the pre-game state. The
lobby players are presented with before and after an actual game is called the Connected-
/Post-game state. And �nally, the in-game state category covers all states within the
actual game.

Figure 9.1: Overview of client states

49

Chapter 9. Requirements - The user stories 9.2. Client requirements

9.2.1 Functional requirements

This section states the functional requirements for the CityZombie game client.

Pre-game requirements

These are requirements applying to the client before joining a game of CityZombies.

• FR-C1 - The player shall be able to provide his/her own name, limited
to 12 characters, no numbers Choosing one's name is important in any game,
as this will be listed among the high scores.

• FR-C2 - The player shall be able to choose faction before he/she joins
the game The only choices are Zombies and Humans. This is unique for every
game, and cannot be switched between sessions, unless the player restarts the game
client.

• FR-C3 - The player shall be able to enter server IP and port number
upon starting the game Allows the player to enter the adress to the server of
choice. The client will provide a default setting for server and IP, stored on the
phone. These defaults will adapt as the player enters new values.

• FR-C4 - The client shall provide a main menu with information on how
to play the game The main menu screen of the game gives the player an option
called �Game Info�, here the player can get some insight regarding the story and
actual gameplay before joining any session.

• FR-C5 - The client shall provide a main menu with a high score screen
The main menu screen of the game gives the player an option called �High Score�,
here the player can view the names of the top killers in the game and how many
battles they have won. High scores are only recorded during a continual game.
New day sessions carry over the score, but exiting the client or disconnecting from
a game will store your score.

• FR-C6 - The client shall not initiate communication with the server
before the player chooses to join a game All actions taken up to and including
the main menu shall not require or intitiate a connection to the speci�ed game
server.

• FR-C7 - The player shall be provided the ability to exit at any give point
Every game screen will provide the player with the option of exiting the client.

Connecting to game requirements

These are requirements applying to the client during and after connection a game of

50

9.2. Client requirements Chapter 9. Requirements - The user stories

CityZombies.

• FR-C8 - The client shall connect to a server when pushing �Enter Game�
in the main menu Most client will ask for con�rmation to use the network. This
is implemented di�erently by most manufacturers, but always gives some option of
yes and no. This requirement adresses what happens after pressing yes.

• FR-C9 - The client shall refresh the session list automatically if the
game server does not provide it on the �rst try If the client does not get any
response from the speci�ed server at �rst, it should automatically try to reconnect,
as this will negate some instances of false negatives. After one automatic refresh,
the client will provide the player with options to manually refresh or exit.

• FR-C10 - Any player shall be able to create a game session if one does not
already exist If after connecting to the server an empty session list is provided, a
new session will automatically be created.

• FR-C11 - The client shall enter a game session automatically if one is
found If after connecting to the server a session list with a valid and open session
is provided, the player will automatically join the open session.

• FR-C12 - If a game session does exist, the player shall not be able to
create a new one Though the framework supports creating new sessions, our
implementation should not provide the players with the option of creating several
sessions at a time. Any open session will be joined automatically as speci�ed in
FR-C7.

• FR-C13 - The client lobby shall present all connected players in the
lobby The lobby view shall provide a list of all connected players, regardless if
they are inside a game or just loitering in the lobby.

• FR-C14 - The client lobby shall list all connected players with kill scores
and according to their team The lobby view shall provide a list of all connected
players sorted by faction. Each faction is listed with a total kill score followed by
the names of their individual players and their individual scores.

• FR-C15 - The client lobby shall automatically update re�ecting session
changes The lobby view shall change as new players connect or old players dis-
connect. It shall also present updates scores at all times.

In-game requirements

These are requirements applying to the client after entering a game session of City-
Zombies.

51

Chapter 9. Requirements - The user stories 9.2. Client requirements

• FR-C16 - The client shall provide the player with an overview map
This is the main game screen showing a town map, individual players, zones and
ownership.

• FR-C17 - The player shall be able to enter and return from the lobby to
view connected players during the game Through commands in the interface
the player shall be provided with the option of viewing the lobby to check all
player's names and scores.

• FR-C18 - The client shall check for positional change at regular intervals
According to a speci�ed interval, the game client will poll the phone for it's position
and move the player accordingly.

• FR-C19 - The player shall have to move into a dedicated neutral zone
before being able to attack any zone As players can enter the game from
anywhere in the city, including game zones, they will �rst have to move into a
dedicated neutral zone before being able to move to and attack the other players.
This is to prevent annoying surpises for the established players.

• R-C20 - The client shall automatically inititate an attack on a zone
when the player enters its vicinity When the client registers that the player
has moved into a particular game zone, a takeover attempt will automatically be
initiated. If no enemy is present, the zone will simply change ownership according
to the attacking player.

• FR-C21 - The client shall check for enemy players at each zone change
After moving into a zone, the client checks for collisions with enemy players. If an
enemy is present, a battle initiation will be sent to the server.

• FR-C22 - A player shall automatically defend a zone upon it being at-
tacked by an enemy, if presently in the zone The battle initiation sent from
the attacker should be relayed to the defending player and he informed in the same
way the attacker is.

• FR-C23 - The players shall be prompted to send their battle tactics prior
to any battle After sending and receiving information of a battle, both defending
and attacking player should be given the ability to send their battle tactics to the
server before receiving the simulated battle report.

• FR-C24 - The client shall present received battle reports as an ongoing
battle in a dedicated window After receiving a complete battle report from
the server, each client shall present that information to the user in a turn based
manner, making it look like the battle is being fought as the player watches the
screen.

• FR-C25 - After a battle, the client shall take action corresponding to
the outcome of the battle report After receiving a complete battle report from

52

9.2. Client requirements Chapter 9. Requirements - The user stories

the server and showing it to the player, the client shall treat the player according
to the result; notifying the server of the kill if positive outcome and rendering the
player neutral and uncouncious if negative outcome.

• FR-C26 - After having lost a battle, the player shall have to move into
the dedicated neutral zone to resurrect his avatar In order to provide losers
with some form of punishment as well as facilitating a good game �ow any dead
player must return to the spawn zone to be resurrected, just like a new player
joining the game.

• FR-C27 - The client shall update the game board every 1500ms The
main game loop should be checked and the game board updated accordingly every
1500ms.

• FR-C28 - The client shall attempt to send the player's position every
350ms and after every �ght The player's position is sent to the server at the
speci�ed interval and after every �ght, to re�ect any changes in position that may
have occured at defeat.

• FR-C29 - The client shall only send the player position if there has been
registered a change in position In order to avoid unnecessary network use, the
client should not send a position update if there has been no change in position
since last poll.

• FR-C30 - The client shall provide the player with an optional status
information window during the game A status window displaying information
on score, location and support should be visible at the top of the game screen if
the player wishes it. A simple command should be provided to set it visible or not.

Post-game requirements

These are requirements applying to the client after �nishing a game session of City-
Zombies.

• FR-C31 - The client shall take the players back to the lobby view when
a game is over After the support limit has been reached, all players should be
noti�ed and taken back to the lobby view.

• FR-C32 - The client shall provide the players with a restricted lobby
view when a game is over The only options available to the player during the
post-game lobby is to start/join a new game day session or to exit the game.

9.2.2 Non-functional requirements

In the non-functional requirement categories, we would emphasise usability, availability
and modi�ability for our game clients. These categories are explained and rationalized

53

Chapter 9. Requirements - The user stories 9.2. Client requirements

below.

Usability

These are the non-functional requirements applying to the usability aspects of the City-
Zombies game client. Usability addresses the ease with which the player carries out a
task and the level of help given by the system in connection with said task. The threshold
of understanding any game should be low, in order to appeal to all levels of patience.

• NFR-C1 - The game mechanics and goals shall be understandable to the
player Left on his/her own device, the player shall be able to understand the goals
and mechanics of the game within 10 minutes.

• NFR-C2 - The client should provide ample feedback to the player The
game should make every action the user takes known and clear to him/her through
vibration, sound and visuals.

Availability

These are the non-functional requirements applying to the availability aspects of the
CityZombies game client. Availability is about system stability and failure and what the
consequence of such failure is. A high availability demands a system which is very sta-
ble and/or handles instability well. Players will want a game that does not crash on them.

• NFR-C3 - The game shall hide any failure from the user, and provide
means of carrying on playing Any failure caused by internal or external events
should be kept silent as long as it does not directly a�ect player progress. If it does,
the system should present the failure in a legible manner and provide the user with
options to �x/pass it.

Modi�ability

These are the non-functional requirements applying to the modi�ability aspects of the
CityZombies game client. Modi�ability concerns any modi�cation or addition to the
system and it's associated cost. A focus on modi�ability means that developers should
easily be able to both change values and the setup of the present game as well as change
functionality in order to alter the gameplay into a di�erent game. We wish to implement
our game client while keeping the modi�able structure of the client framework intact.

• NFR-C4 - Important game values shall be kept in a easily reachable
place If a developer wishes to alter game update speed, message send interval, cell
phone manufacturer, network operator, player strengths and other values, these
should be openly accessible at the beginning of relevant classes.

54

9.3. Server requirements Chapter 9. Requirements - The user stories

• NFR-C5 - The game shall support alternative means of identifying lo-
cation If a developer wishes to use map and use GSM CellID values, triangulation
or even GPS, only the location speci�c part of the client game class needs to be
altered.

9.3 Server requirements

In this section we present the requirements for our game server as outlined in the con-
cept part of Chapter 8. The game server is based on an existing framework, as given
in Sectionframew, and some of the requirements material here is based on that framework.

As the server is dormant before a connection is requested, only two state categories
apply to the server. The pre-game state covers listening for connections and waiting
for session creation. The in-game state covers the server lobby which generates support,
checks whether the support limit has been reached and allows for change in support limit.
After a session is won, the server closes that session, and waits for a new session creation.

9.3.1 Functional requirements

This section states the functional requirements for the CityZombie game server.

Figure 9.2: Overview of server states

General requirements

These are general requirements applying to the CityZombies server.

55

Chapter 9. Requirements - The user stories 9.3. Server requirements

• FR-S1 - The server shall be implemented in Java SE In order for the server
to be runnable on all computer systems, Java SE is used to create the server. Both
client and server are created in Java, which makes reuse of code and functionality
possible.

• FR-S2 - The server shall be able to run on any computer with Internet
An internet connection is vital to the communication between server and client.

Pre-game requirements

These are general requirements applying to the interface before joining a game of City-
Zombies.

• FR-S3 - The server shall allow players to join ongoing sessions at any
time As these game sessions can take quite some time, players must be allowed to
enter the game at their own desire instead of being forced to wait.

• FR-S4 - The server shall send alive requests at regular intervals of
7000ms As players may disconnect from various issues, including phone signal
and battery loss, the server needs to keep track of which players that are active
and which that are not.

• FR-S5 - Any client not responding to an alive request shall be removed
from the game session If a player does not respond to an alive request, they are
removed from the game. This is done in order to ensure that the active players are
presented with an accurate view of the game.

• FR-S6 - If several players are present in the lobby when a game session
starts, start game commands are sent to all players In order to avoid a
situation where several connected players start a game at the same time, a start
game command is forwarded to all players, sending them into the game screen.
This also sends the server to its in-game state.

In-game requirements

These are requirements applying to the server during a game of CityZombies.

• FR-S7 - All game zones shall be set to neutral upon game start Every
new session must present the players with a clean map where all zones are neutral.

• R-S8 - Any client that joins an ongoing game shall be sent an updated
zone overview Players joining a game mid-way will have to receive an update on
which zones belong to which team.

56

9.3. Server requirements Chapter 9. Requirements - The user stories

• FR-S9 - The server shall transmit updated player positions in batches
with regular intervals In order to avoid message congestion in games with many
players, player positioons are relayed in bundles at regular intervals. These intervals
are short enough to make the latency unnoticeable to the players.

• FR-S10 - The server shall keep track of support score and notify all
connected players when the game session is over At regular intervals, the
each team's support is checked to see if it has reached the support limit. If so, an
end-session message is sent to all players informing them on the winner.

• FR-S11 - The server shall allow the server administrator to change the
support score limit and notify all connected players as soon as a change
has been made The support limit dictates indirectly how long a game lasts, and
longer games have higher support limits. In order to control this, administrators
are presented with a sliding bar to change the limit at a whim, instead of modifying
the server source code for each game.

Post-game requirements

These are requirements applying to the server after a game of CityZombies.

• FR-S12 - The server shall close the gaming session if all players discon-
nect In order to prevent the server from generating resources and carrying on the
game after all players have disconnected, sessions are closed if all players leave.

• FR-S13 - The server shall release all resources and threads when a game
session is over To avoid an ever increasing number of threads as new sessions
are created, the server must release it's resources after each session and enter a
wait-for-session-creation state.

9.3.2 Non-functional requirements

Essential non-functional requirements for our game server include modi�ability, avail-
ability and performance. These categories are explained and rationalized below.

Modi�ability

These are the non-functional requirements applying to the modi�ability aspects of the
CityZombies game server. Modi�ability concerns any modi�cation or addition to the
system and it's associated cost. A focus on modi�ability means that developers should
easily be able to both change values and the setup of the present game as well as change
functionality in order to use the server for other games. We wish to implement our game
server while keeping the modi�able structure of the server framework intact.

57

Chapter 9. Requirements - The user stories 9.3. Server requirements

• NFR-S1 - Developers shall be able to add or change functionality in one
part of the server without a�ecting the rest If developers wish to use other
forms of identifying location, or using this game server for similar games, changes
in functionality should not a�ect the integrity of the server.

• NFR-S2 - The server shall continue to support both TCP and UDP
transport protocols Even if we use only TCP in our implementation, leaving the
framework UDP support be will be helpful for developers exploring other aspects
of location-based gaming.

• NFR-S3 - Important server values shall be changeable and easily acces-
sible Server values like alive request interval, support generation interval, support
generation rate and similar should be presented at the top of relevant classes, as in
the framework. Support limit should be directly changeable in the server GUI.

Availability

These are the non-functional requirements applying to the availability aspects of the
CityZombies game server. Availability is about system stability and failure, and what
the consequence of such failure is. A high availability demands a system which is very
stable and/or handles instability well. Players will want to be able to play a game when-
ever they feel like it.

• NFR-S4 - Players shall be able to connect to the server at any time. The
server should be listening for players trying to connect to the game during both
night and day, regardless if a game is already being played or not.

• NFR-S5 - Players shall be able to disconnect from the server at any
time. The server should allow players to disconnect from the session at any time,
and inform the other players accordingly.

• NFR-S6 - The server shall handle any disconnection without letting it
a�ect the game Even if a player disconnects during battle, the server should let
the remaining player continue as usual.

• NFR-S7 - The server shall handle any fault without letting the user know
Faults may appear many places in the system, if they appear, the server should �x
them or circumvent them without letting the player know they happened.

Performance

These are the non-functional requirements applying to the performance aspects of the
CityZombies game server. Performance adresses system response speed and quality. A
high performance requires the system to respond e�ectively to change. Players will want
the system to be responsive and accurate to have a good time.

58

9.3. Server requirements Chapter 9. Requirements - The user stories

• NFR-S8 - Network data from the server shall be short and informative
To keep the clients from chewing too much information and keep the network cost
as low as possible, data messages are short and only sent when required.

59

Chapter 10

Architecture and Design

In this chapter, we describe and explain the architecture of our CityZombie game ap-
plication. Software architecture concerns the structures of a system. The structures are
de�ned as software elements, the properties of these elements and the relations between
them [BCK]. Since our application is based on an existing framework consisting of a
client and server, that framework will be thoroughly gone through along with our own
modi�cations.

10.1 Architectural overview

The framework was made with reuse of code in mind, and the server and client are nearly
mirror versions, as methods and classes in the client have corresponding methods and
classes in the server. In �gure 10.1 below, we show the components of our server and
client as well as the communication lines between them. Both server and client are con-
structed with a three level architecture.

Figure 10.1: Overview of client-server architecture

10.1. Architectural overview Chapter 10. Architecture and Design

Views

At the top of our �gure, we �nd the views. These are the most di�erent layers of the
three, since the client and the server have di�erent demands when it comes to Graphical
User Interface (GUI). Our client needs to show several di�erent screens to the user, in-
cluding the main menu, lobby and game board, while the server only needs to show its
lobby information.

Models

One step down we �nd the models. These contain all data presented in the views,
and keep track of the game state. It is our goal to keep the information in both client
and server equal at all times, and to accomodate this the framwork has them sharing
the same models. This is true for both messaging, session and player information models.

Communication

The communication layer is situated at the bottom of our �gure. The components here
controls all communication between server and client. Server and client both share iden-
tical parsing interfaces

10.1.1 MVC Architectural Pattern

Our core framework, as described by 10.1, is based on the Model-View-Controller (MVC)
design pattern. This pattern focuses on separating the logics of a system from the user
interface. In this way, both underlying game logics and graphical user interface can be
modi�ed without disturbing the other module. While Java SE and ME provide di�erent
levels of support for this, MVC is achievable in both language editions.

Separating functionality into models, views and controllers is the primary principle of
MVC. Models contain the system information which the application utilizes, views show
this information in a way users can understand and interact with, while controllers han-
dle events and respond accordingly.

In our application, the Communication modules act as global controllers. These mod-
ules detect messages and forwards them to the models, changing them in the process.
Any view using one such model will then adapt and show the new information. Local
controllers in the client and server are implemented through the functionality o�ered by
each individual view. These views detect relevant user input whenever they are active
and forwards this to the models.

61

Chapter 10. Architecture and Design 10.2. Client design

10.2 Client design

In our implementation, we use the already de�ned architectural structure of the frame-
work, and mostly add to the views and models, leaving the communication modules
almost untouched. Figure 10.2 below shows the details of our client architecture. The
main di�erence between this �gure and the �gure presented on the previous page is the
bottom layer, which contains functionality found in Java ME. The communicator listens

Figure 10.2: Overview of client architecture

to messages from both the server ommunicator and the client game model. When re-
ceived, it sends these to the other part. Our game model keeps track of the game's state
at all times and handles messages received or to be sent. The game view is separated
into three parts; lobby view, game view and battle view. The lobby view contains game
information like players and scores. The game view presents the players to the actual
game screen where movement and zone ownership is displayed. The battle view simply
shows battle reports to the player in a turn-based fashion.

62

10.2. Client design Chapter 10. Architecture and Design

10.2.1 Client classes

Figure 10.3 below shows the class diagram of our client classes and their internal rela-
tionships. There is a distinct separation between the game speci�c CityZombie classes
and the framework classes. Although we made some additions to the framework views,
we count them as part of the framework, seeing as they do not need to be functionally
altered in order to be used in some other game. Methods and variables have been left
out at this point. To study the classes in more detail, please refer to Appendix C.1.

Figure 10.3: Overview of the client classes

10.2.2 Client models

Figure 10.4 below shows all models used for our game client and their relationships. To
the right we �nd the framework speci�c models, and to the left is our game speci�c mod-
els. Though vector annotation us used to describe the possibility of several instances of
both players and sessions, that only applies to the players in our game, as we only allow
one session at a time. The client has three models, containing the core functionality of a
multiplayer game. We expand this functionality through our implemented game-speci�c
classes, which inherit general functionality from the framework classes. The following

63

Chapter 10. Architecture and Design 10.2. Client design

Figure 10.4: Overview of the client models

�ve classes constitute our three models.

• AbstractGame is our main model. It contains the methods for both starting and
stopping the client as well as general game functionality like view handling.

• CityZombie is our implementation of the AbstractGame. It contains game speci�c
functionality like battle initiation and zone updates.

• AbstractPlayer contains all connected players' information, and is thereby a rep-
resentation of each player connected to the game.

• GamePlayer is our implementation of the AbstractPlayer model and contains
information speci�c to CityZombie players.

• Session models the currently active session, containing a list of connected players
and associated settings.

10.2.3 Client views

As seen in �gure 10.2, our main views are the GameView, BattleView and LobbyView.
In addition to these, several game window classes are used to display and receive infor-
mation to and from the player. The AbstractGame model controls which view is visible
at all times.

Some of the minor windows were not present in the framework, but we added them there,
as they are not necessarily game speci�c, and adds supporting functionality. These are
the SplashScreen, InfoWindow and ScoreWindow classes. The LobbyView is only slightly
modi�ed, while the GameView and its extension are heavily altered to make room for
game speci�c functionality. Screeenshots from the di�erent implemented views are pre-
sented here as well.

64

10.2. Client design Chapter 10. Architecture and Design

Figure 10.5: To the left: The human view before a battle. To the right: The zombie
view after a battle.

• GameView is the main view containing the board where game movement actions
are displayed. The GameView gets its game information through the AbstractGame
model, but listens for local positional updates on its own. In our implementation,
the player may choose his own input, either keypad or CellID, to move. This is for
testing purposes only. The GameView also gives the option of showing the status
bar, providing additional information like support levels and score to the player.
Figure 10.5 above shows the main gameview as seen from the human player before
a battle, and seen from the zombie player after a battle. The zombie player won
and seized the zone, the human player lost and was rendered uncouncious.

• GameBoard is our extension of GameView. It contains all game speci�c images
and sprites, as well as methods for displaying the correct zone structure.

65

Chapter 10. Architecture and Design 10.2. Client design

Figure 10.6: Left: The human player after round 4. Middle: The zombie player after
round 5. Right: The human player won.

• BattleView is displayed after combat is engaged. It simply draws the combat
report on the player screen, displaying both hit points and health bars. No user
input. Figure 10.6 above shows examples from the battleview. Each round, the
player's hit points are both written and illustrated via a hit point bar.

Figure 10.7: Left: A zombie players starts a session. Middle: A human player joins the
session. Right: The game is over.

• LobbyView is displayed before and after actual games. It is a intermediary holding
screen for players connected to the game, but not actively playing. The LobbyView
shows connected players, their score and team. Before games it gives you the
opportunity to join the game and after the game you get the choice to start a new
game. Figure 10.7 above shows the lobbyview from a starting zombie player's view,

66

10.2. Client design Chapter 10. Architecture and Design

a joining human player's view, and a recently �nished human player's view.

Figure 10.8: Left: Before launching game. Middle: Initial splash screen. Right: Tactical
splash screen.

• SplashScreen is a temporary screen shown as soon as you execute the game. In
this setting it is merely an opening image. It is also shown when you engage in
combat. In this setting it shows a di�erent picture telling you to provide tactical
input. Upon pressing any button the SplashScreen is dismissed. In our imple-
mentation some buttons send a tactical response to the server depending on your
input. Figure 10.8 above shows the game folder before launching the game, the
initial splash screen which shows up after launching the game, and the tactical
splash screen which shows up after entering combat.

Figure 10.9: Left: Connection information screen. Middle: Main Menu. Right: Warning
after pressing join.

67

Chapter 10. Architecture and Design 10.2. Client design

• StartupWindow is the �rst window shown after the initial splash screen. In this
window, the players may enter their names and server adresses in text boxes. A
choicegroup for faction choice is also provided. This window also provides the next
screen, which is the main menu. The main menu gives you the option of joining a
game, viewing game information, viewing the high score list and exiting the game.
Figure 10.9 shows the initial screen for providing name and connection information,
the main menu and the default screen that shows up whenever a Java application
tries to access the network.

• SessionWindow shows the currently active sessions on the connected server. This
window is automatically bypassed, as players shouldn't be allowed to create addi-
tional sessions.

Figure 10.10: Left: Top of the window. Middle: While scrolling. Right: Bottom of
window.

• InfoWindow contains information on how to play the game. No manipulation
option. Figure 10.10 shows the scrollable information window at various stages. At
the bottom of the screen, a mark shows up when trying to scroll further, marking
the end of the screen.

• ScoreWindow is a simple display of the high scores stored in the AbstractGame
model. No manipulation option. Figure 10.11 illustrates the di�erences in record-
store implementation between emulator and mobile phone. The emulator score
places itself where it should, while the values on the mobile phone place themselves
randomly. This is discussed further in Section 12.2. Note: The two pictures are
from di�erent games.

68

10.3. Server design Chapter 10. Architecture and Design

Figure 10.11: Left: High score window on a mobile phone. Right: High score window on
the emulator.

10.3 Server design

In our implementation, we use the already de�ned architectural structure of the frame-
work, mainly altering the view and models, leaving the communicator almost untouched.
Figure 10.12 below shows the details of our server architecture. The communicator in the

Figure 10.12: Overview of server architecture

�gure above receives and forwards messages much in the same way our client communi-
cator does. Both from the server models and the client. The main di�erence between the
client and server communicator, is that the server contains several communicators, one
for each connected client. Such a unique connection between server model and individual
communicator is illustrated with the black bar on the �gure. Our server model keeps
a representation of the game state, just like the client game model does. The frame-
work supports several sessions, each keeping their own server model with its associated
game threads. These threads generate support and handle game events. The server view

69

Chapter 10. Architecture and Design 10.3. Server design

shows the details of any active session, including connected players and scores, support
generated and and a slider to regulate support limit.

10.3.1 Server classes

Figure 10.13 below shows the class diagram of our server classes and their internal rela-
tionships. There is the same separation between the game speci�c cityzombie classes and
the framework classes in our server as there is in our client. Methods and variables have
been left out at this point. To study the classes in more detail, please refer to Appendix
C.1.

Figure 10.13: Overview of the server classes

10.3.2 Server models

Figure 10.14 below shows all models used for our game server and their relationships.
Much like the client, some server models are allowed to exist in several instances. At
the top we �nd the abstract framework classes, and at the bottom our implemented
extensions of these. A list of the classes that constitutes the server models follows below.

70

10.3. Server design Chapter 10. Architecture and Design

Figure 10.14: Overview of the server models

• AbstractServer is our main server model. It contains a list of players connected
to the server and a list containing the one allowed session. The AbstractServer
model is also noti�ed by the Communicator when messages arrive.

• GameServer is our implementation of the AbstractServer. It handles game speci�c
actions from the Communicator and keeps track of player models.

• AbstractSession represents a session, or the session. The session model contains
a list of connected players and the settings associated with the session. In addition
to this, the session is responsible for running the game threads and notifying the
EventHandler when game event messages arrive.

• GameSession is our implementation of the AbstractSession model and contains
information speci�c to CityZombie players.

• AbstractPlayer is identical to the AbstractPlayer found in the client, except
for the individual Communicator object needed to transmit and receive messages
unique to that particular player.

• GamePlayer is our implementation of the AbstractPlayer, no extra functionality
is provided.

• SettingsList contains a list of the settings associated with a session. The session
GameThread accesses the SettingsList to validate the game state.

71

Chapter 10. Architecture and Design 10.4. Communication

10.3.3 Server views

As seen in �gure 10.1, there is only one server view. This view allows administrator to
easily see who's connected to the game, and the status at all times in a simple GUI. It
also provides administrators with the option of changing the support limit, e�ectively
altering the win-condition of every game as seen �t. A screenshot of the server GUI is
provided.

Figure 10.15: The di�erent panels of the server GUI.

• ServerGUI is the main JFrame which contains a SessionPanel and a JSlider for
changing support limit.Figure 10.15 below shows the server GUI with a playerpanel,
settingspanel and a jslider for changing the support limit.

• SessionPanel is a JPanel containing a PlayerPanel and a SettingsPanel.

• PlayerPanel contains information on players connected to the session. Score,
support and names are shown.

• SettingsPanel contains information on settings associated with the session. Sup-
port limit, player limit and kill score limit are shown.

10.4 Communication

The shared Communication layer at the bottom of both client and server in the frame-
work, as seen in �gure 10.1, uses a Communicator interface at both sides to ensure that

72

10.4. Communication Chapter 10. Architecture and Design

messages are sent and received in a orderly fashion. This interface speci�es which meth-
ods that need to be implemented in this layer and makes sure that both client and server
uses the same operations. Examples of these methods are connect(), disconnect(),
sendMessage()and notifyAboutMessageReceived().These commands specify connec-
tion to a server, disconnection from a server, forwarding of a message from the model to
the network and �nally noti�cation to the model that a message has been received from
the network. The following subchapters explain the speci�cs of the Communication layer
in more detail.

10.4.1 Protocols

As mentioned earlier, the framework supports two of the three transport protocols avail-
able in the Transport Layer of the Internet reference model; namely TCP and UDP.
Server sockets are used for both types of communication. To make the game behave
equally with UDP and TCP, the framework also provides a SocketWrapper class for the
server, which translates messages of both kinds into the one selected by the user, making
the actual di�erences in implementation transparent. The client is written in Java ME,
in which the Connection interface is used to specify communication for both TCP and
UDP, and needs no wrapper.

While TCP uses connection-oriented communication via a Socket stream, where a con-
nection only needs to be established once, UDP uses DatagramSocketobjects, discrete
data packets of a speci�ed size, which each needs to be adressed to the receiver before
sending them.

In our implementation, only TCP communication is left as an option for users. The
reasoning behind this is described in Section 8.2

10.4.2 Messages

The framework also provides a message parser, which is implemented in much the same
way on both server and client. This parser makes sure that communication between
server and client follow the same set of rules. These message rules are explained in the
following section.

Message Format

Our implementation of CityZombie uses the StringParser to implement the MessageParser.
The StringParser only accepts messages in a String format. In the same vein, it only
creates String messages as well. A set of actions are speci�ed in order to control the
parsing of messages, the framework actions are de�ned in the Action classes and the
game-speci�c actions are de�ned in the GameAction classes of both client and server.
This rule list, written in Extended Backus-Naur Form (EBNF)1, can be found in the

1For more information on reading EBNF, see [EBN]

73

Chapter 10. Architecture and Design 10.5. Threads

framework documentation [RTG]. Some message speci�cation examples from this list
are restated in the table below.

Action Rule

ALIVE_REQUEST : �ARQ:�<requestId>�|�

START : �STA:|�

POSITION : �POS:�<positionX>�,�<positionY>�|�

Table 10.1: Framework rules

Actions

As mentioned above, actions de�ne the parsing of messages, and we use most of the
actions speci�ed in the framework in our implementation. In table 10.2, we list all the
framework actions we make use of, and in table 10.3 we list the CityZombie-speci�c ac-
tions we have added. The tables describe what the di�erent actions mean, when they
are used, the string message associated with each action and in which communication
direction they are used. The latter point speci�es whether they are sent by client, server
or both.

10.5 Threads

The server session contains one GameThread and one EventThread. These two threads
run the game between them. For the framework, these are called GameThread and
EventHandler , our implementation class of the EventHandler is called GameEventHandler.
All threads running in one such server session can be seen in �gure 10.16 below. The

Figure 10.16: Overview of the server threads

74

10.5. Threads Chapter 10. Architecture and Design

Name Value Used when? Describes what? Sent to?

Player PLR A new player connects to
the server, or requests a
refresh of the session list.

Name, color, team and
other player information.

Both

ALIVE_REQUEST ARQ A connection acknowl-
edgement is requested or
con�rmed.

A unique request id. Both

SESSION_LIST SSL A new player connects to
the server.

A list containing infor-
mation about the cur-
rent session.

Client

SETTING_LIST STL A new player joins a ses-
sion.

A list containing the cur-
rent session's settings.

Server

SESSION_SELECTED SES A player selects a ses-
sion.

The id of the current ses-
sion or a negative value if
creating the session.

Server

READY RDY A player changes his
ready status.

The new ready status to
server, player id included
from server.

Both

START STA A player starts or joins a
game.

Zone ownerships and
starting position.

Both

SCORE SCR A player defeats an en-
emy.

The player's new score. Both

POSITION POS A player or several play-
ers has changed his posi-
tion.

Local position to server.
All player's moves and
id's from server.

Both

GAME_OVER GAM The support limit has
been reached.

A description of why the
game ended.

Client

DISCONNECT DIS A player disconnects
from the session.

Nothing to server. The
player's id from server.

Both

Table 10.2: Framework actions

GameThread keeps track of the players' positions and forwards these positions to the
other players whenever they change. This forwarding happens in batches, with an inter-
val that can be set to any value.

The EventThread contains functionality for generating events, this could include mines
and robots, as mentioned in Chapter 8 In our present implementation, however, the
EventThread contains methods for simulating battles between players and sending pro-
cessed information back to involved players, based on external messages.

Each connected player also has a Communication thread associated with the connec-
tion. These communication threads are used by the GameThread and EventThread to
send and receive messages to and from the di�erent clients. Furthermore, each commu-
nication thread consists of one thread for receiving and one thread for sending messages.

75

Chapter 10. Architecture and Design 10.5. Threads

Name Value Used when? Describes what? Sent to?

ATTACKS ATC A player enters a zone with
an enemy player.

The id of defending
player to server. The
attacking player's
attributes from server.

Both

HITS HIT A player is ready to �ght. Player tactics to server.
Battle report from
server.

Both

ZONE ZON Zone ownership has been ex-
ternally updated.

A list containing infor-
mation about the most
current zone ownerships.

Both

SUPPORT SUP A session generates new sup-
port.

The current support val-
ues.

Client

LIMIT RDY An administor alters sup-
port limit.

The new support limit. Client

Table 10.3: CityZombie actions

On the client side, we �nd similar sender- and receiver threads.

Clients also keeps threads for polling local player position, controlling the BattleView and
performing client calculations. These threads are called PositionThread, BattleThread
and LocalThread. They are all located in the AbstractGame class. While the PositionThread
and LocalThread run continually, but at di�erent rates, the BattleThread is only in-
voked when a battle report is received from the server and closed as soon as it is �n-
ished. LocalThread detects collisions and updates the game board while PositionThread
fetches and sends player positions.

76

Part IV

Test results and user feedback

Chapter 11

Test results

This chapter presents the direct test results from our project. We will comment infras-
tructural results and some statistics from cell phone use, including game data transfer
and it's associated cost. Finally we will comment on the various playtesting results from
the di�erent stages of the game development process.

11.1 Infrastructure

Since we opted to use the basic CellID to locate the players of our game, we did not
have the exact positions of GPS to rely on. The use of base station location requires the
developers to do some manual mapping prior to and during game implementation. Some
services for mapping location and base station exist, like Cellspotting.com [CSP]. These
services, unfortunately, are not yet accurate enough, and lack boundary information.
They do have means of connecting latitude and logitude to base base station coverage,
though. In this section we present results associated with exisisting infrastructure and
landscape mapping.

11.1.1 GSM base stations

As expected from the studies carried out in Section 5.3.5, GSM base stations use a lower
frequency signal with a higher intesity, making them carry longer. This results in larger
base station coverage areas compared to UMTS. Figure 11.1 on the next page shows the
relevant results from the manual mapping of some coverage areas in Trondheim.

11.1.2 UMTS base stations

Switching from GSM to UMTS on the cell phone, we were able to extract UMTS CellID
values in the same way as with GSM. Logging these values and connecting them to a map
manually as we progressed provided us with a complete map from which we could decide
on the values to use. Figure 11.2 shows the relevant UMTS zones in Trondheim. As you
can see from the �gure, picking the right Telenor zones is not too hard. As long as there

11.2. Game Statistics Chapter 11. Test results

Figure 11.1: Overview of GSM base station coverage in Trondheim

is a cell between two game zones, the zone structure is pretty easily set up. From the
results gathered, we �nd that zones cannot be any closer, meaning that the game map
we implemented is the smallest possible map to use in practical manner. It follows that
distances are pretty high. The walking distance from NTNU to the Nidaros Cathedral
is about 1km, making it a physical challenge as well as a tactical one.

11.2 Game Statistics

The actual game testing also provided us with results concerning network use and prac-
tical game values. Most important of these are response times and game data transfer.

11.2.1 Response times

The response time of a network is the time it takes for a data packet to from the server,
to the client, and back to the client again. When using GSM localization, the carrying
network technology is limited to EDGE. For UMTS, HSPA is the highest achievable
carrying technology. The framework used for our game has been thoroughly tested with
regards to response times. In our implementation, however, response times need not be
as low as possible, only within a certain limit. The more important factor is reliability.
Positional changes don't happen to often, but when they do, it is imperative that all
players are made aware of that one positional change. With UDP, packet loss can con-
stitute a major problem, despite the low response times. We tested the game at an early
stage with both UDP and TCP, since the functionality for this already was implemented
in the framework. Early testing showed that even though rare, packet loss would occur.
The most important results of the framework response time testing carried out in [RTG]
is restated in table 11.1 below.

79

Chapter 11. Test results 11.2. Game Statistics

Figure 11.2: Overview of UMTS base station coverage in Trondheim

Given any fast-paced game, the choice would be easy. However, in our game we

Network Protocol Avg. Response time

GSM TCP 750ms
UDP 300ms

UMTS TCP 700ms
UDP 250ms

Table 11.1: Framework Response Times

update the game board and checks for positional updates every 1500ms, while sending
the location every 350ms, if it has changed at all. In that perspective, a di�erence of
400ms is not vital. On the other hand, if we use UDP and lose the packet containing the
positional update, the client will not resend this until it changes position again, which
may take a lot longer.

11.2.2 Game Data Transfer

Any use of network data transfer comes at a cost. Service providers charge users per
kilobyte, both transmitted and received. The amount of data transferred depends on
several factors. These factors are transport protocol, game type and number of con-
nected players. Players more involved in battles will also see higher network use. The
game data transfer values are retrieved from the mobile phone's internal data transfer
counter. Our tests are performed with a Sony Ericsson K850i and W910i. When a player
starts or connects to a game, he sends the name and screen resolution to the server. The
server responds by sending the starting position and zone status. At game creation, all

80

11.3. Playtesting results Chapter 11. Test results

zones are neutral.

The prices for data transfer are steadily declining, and as this thesis is written, Te-
lenor o�ers all mobile access at a �at rate of 12.50 NOK per MB [TPR] while Netcom
charges 20 NOK per MB [NPR]. Tele2 o�ers prices from 12 NOK per MB [TLP]. In our
tables, we will calculate with a conservative price of 15 NOK per MB. The data amount
in the tables are measured in bytes. Table 11.2 shows that very little information needs to

Type Data transferred Cost

Sent to create a session 1179 0.017 NOK

Received to create a session 1349 0.020 NOK

Total to create a session 2528 0.038 NOK

Sent in 1.min idling in lobby 1470 0.022 NOK

Received in 1. min idling in lobby 1750 0.026 NOK

Total in 1 min. idling in lobby 3220 0.048 NOK

Table 11.2: Simple game data statistics

be sent in order to create a game. Even idling in the lobby of a created session demands
very little data transfer, as only alive requests are transmitted. This opens up for the
possibility of staying in the lobby for a while until someone else logs on to play with you.

There is more to the game than creating it or being passive, though, and several complete
tests were carried out to see the data transferred in a full game with di�erent amounts of
players. The values stated in table 11.3 are the average values between the two phones
carrying out the test. In the tests with 4 players, an additional two emulators were used
to generate data. Where not stated otherwise, the games were carried out with 3 battles
each, though more battles are likely in the longer games. As we can read from the tables,
CityZombie is a fairly low-cost game. Updates happen rarely because of the distances in-
volved, and therefore data use remains low. Even when we double the number of players
and triple the number of battles, we don't see a very high increase in total cost.

11.3 Playtesting results

During the game development process, several testing sessions were performed in order
to get ideas and limitations for a game and to test the result.

Early stages

At the very early stages, focus groups can work as a catalyst for idea generation and
provide a realistic frame for the game developers to test paper prototypes and possible
solutions. A big di�erence between using experts and people from the target group at
this point is the attitude towards the game mechanisms. While experts know the premise

81

Chapter 11. Test results 11.3. Playtesting results

Type Data transferred Cost

Sent in 5 min game w/ 2 players 8276 0.124 NOK

Received in 5 min game w/ 2 players 10535 0.158 NOK

Total in 5 min game w/ 2 players 18811 0.282 NOK

Sent in 10 min/200 limit game w/2 players 13140 0.197 NOK

Received in 10 min/200 limit game w/2 players 17190 0.257 NOK

Total in 10 min/200 limit game w/2 players 30330 0.455 NOK

Sent in 5 min game w/ 4 players 7950 0.119 NOK

Received in 5 min game w/ 4 players 9884 0.148 NOK

Total in 5 min game w/ 4 players 17834 0.267 NOK

Sent in 10 min/10 battle game w/ 4 players 15179 0.227 NOK

Received in 10 min/10 battle game w/ 4 players 19969 0.299 NOK

Total in 10 min/10 battle game w/ 4 players 35148 0.527 NOK

Table 11.3: Full game data statistics

of location-based gaming and are aware of the possibilites for locating a mobile phone,
very few others knows of this �eld.

A questionnaire with questions regarding age, shape, previous experiences with mobile
games etc. was sent out to 15 persons, ranging from technical savvy students to more
novice users of mobile phones. All within the age group 15-25. While all had played
games on their mobile phones, none had heard of location-based gaming, much less were
they able to mention games or applications using location. 3 out of 15 knew of map
applications on their phones when asked speci�cally. Because of the low amount of pref-
erences and knowledge, it is hard to get feedback during the early stages of a game like
this. Since players don't have anything against which they can compare the concepts
revealed to them, answers vary from moderate support to very positive responses, based
on nothing but the ideas from the developers. However, players that regard themselves
as physically active above the average were generally more enticed by the game premise
than those who regarded themselves under average.

Implementation stage

At this stage, players were presented with something more hands-on, which provided
developers with more useful feedback in terms of both technical solutions and playability
factors. Fellow students had a low threshold for giving supportive ideas based on tech-
nical challenges.

To retrieve data, users were guided through a game emulator by the developer, try-
ing di�erent features and getting a feel of the gameplay. However, since a game like this
is so limited on an emulator, many were discouraged by the simplicity of the game. In

82

11.4. Summary Chapter 11. Test results

addition, using keys to simulate zone shifts in a game like this removes a lot of game
time. A stretch of 500 meters is covered in a single click, leaving the players in a situation
where they always wait for something to happen. During this stage, we became aware of
the necessity for �eld testing at an earlier time, since emulation provides such a reduced
gameplay.

Field testing

After having installed the game on two handsets, players were fed information on how to
play the game and sent out in pairs to compete. The game was monitored by a developer
connected to the game via emulator.

The �rst result was that players seem more wary at �rst, as opposite to the sessions
on emulator where they were guided by developers and could hardly wait for something
to happen. Since input comes so slowly, some wondered if the game was broken, seing
as no visible movement was made. Another early aspect was players losing track of their
own avatar. This was remedied by altering avatars to di�er between fellow team mem-
bers and their own player. Another comment at this stage was the limited ability to
communicate with fellow players. Players are forced to shout to each other or simply
deduce movement based on the display. In any game where you have to rely on fellow
players for success, limits in communication is an annoying factor. Another discouraging
factor was the occasional bug and connection issue. Even though they are not directly
related to the playability of the game, it e�ectively forced the ongoing game to restart,
since players had to return to the developer to have the session restarted. Again, the
distances involved did not support this in a positive way.

11.4 Summary

Compared to other means of fetching position in a location-based game, CellId is rather
time consuming, since cell areas will have to be mapped beforehand. On the other hand,
the technical challenges are not very demanding, since a simple line of code will retrieve
your actual position. The process of mapping an area could be made easier if connect-
ing a GPS to the phone, and relating the absolute positions of the GPS to the phone's
current CellID. Such an approach would likely provide more and thereby better values.
This method was not used because of time constraints in our project.

Making use of the retrieved geographical mapping of base stations is another challenge.
Few areas can be mapped to real-world locations, which is a way to make the virtual
world easier to understand for the players. And those who do �t well with the street
map are often overlapping with other cell areas. The big di�erence between operator
networks makes it even harder to make a game that �ts a broad range of players. How-

83

Chapter 11. Test results 11.4. Summary

ever, our testing here in Trondheim proves that it is possible to �nd well-suited zones
and structures that support location-based gaming.

Using TCP connections in multiplayer gaming has it's advantages and disadvantages.
The main disadvantage is the increased latency and transfer times, making network op-
erations slow. In order to mask this slow pace, the game will have to use the network
more seldom and generally not demand a high level of input-output synchronization.
Keeping the user unaware of when he actually moves into a zone e�ectively masks this
e�ect. Zones are large, and no user can move 50 meters in the second or two it takes
the message to reach its destination anyway, which means that the transition between
local zone movement and display update is negligeable. A more positive aspect of the
slow game pace, is use of network tra�c. Any game that isn't oriented towards real-time
action is playable with a low amount of data transfer, making the entire session relatively
cheap. In our implementation users may play almost �fteen 10-minute games against 3
of their buddies for less than 10kr. A more likely situation, though, is fewer games that
last longer, depending on the support limit at the time.

Players themselves seem relatively supportive of location-based gaming, mostly because
it represents something new, but also because of the social aspect. Multiplayer games
seem more appealing despite the network cost. Playtesting during the early stages of
development were not so valuable when turned towards average players, at this stage
experts or people with background in mobile development are much more helpful in
pointing out concepts and ideas that are both challenging and practical. Furthermore, as
developers, we were made very aware of the need for �eld testing at an earlier stage. Half
of the bugs and gameplay issues arose �rst when tried with actual players outside. This
part needs a lot of time, more so because of the sluggish testing process with di�erent
key locations instead of any relative movement. Having a mobile development studio
would de�nitely help out at this stage, keeping developers more in contact with actual
play sessions.

84

Chapter 12

Problems encountered

This chapter states some of the problems we encountered during this project. Most
problems have yet to be solved, and these are described along with an asessment of the
impact they had on our results.

12.1 Framework problems

This section describes problems related to the framework and our implementation of it.

Disconnection error

When using the client via mobile phones, the server will sometimes not register that
a client has disconnected, and keep trying to send alive requests. This leads to an error
in the SocketWrapper class, since it no longer has a TCP connection on which to send
information. Using emulators never results in this error. This seems to be caused by
a weakness in the mobile TCP/IP network compared to cabled TCP/IP. Sometimes,
though not lost, TCP packets will get a low priority, and be cached somewhere in the
network until they disappear. This leads to the server not knowing they are gone.

This is not a big problem, as clients will never know of this unless they try to con-
nect shortly after disconnecting. Players su�ering from this error will remain in the
server list until they time out. The current timeout value is set to 7 seconds, and players
will be removed from the server when this happens. The problem could most likely be
�xed by having the client send activity packets, and letting the server keep a time-stamp
on each client.

Chapter 12. Problems encountered 12.2. Java problems

12.2 Java problems

Making a high score list

As we developed the high score list, we used the emulator exclusively. The way the
high score list is implemented now, we create a RecordStore in the AbstractGame class.
This is �lled with dummy scores when the game is opened for the �rst time. As the
game progresses, each client keeps a tab of every player's score. When a player discon-
nects, all clients informed of that disconnection checks his score against the values of
their recordstores and places that player in his correct position. The same happens when
a local player exits the game, he checks the scores of all players, including himself, and
puts them in the high score list if applicable. In the emulator this worked like a charm,
as seen to the left in �gure 10.11, Section 10.2.3.

When testing this on the mobile phones, however, we realized that something must
be implemented di�erent by Sony Ericsson. Here, all values are scattered seemingly at
random, as seen to the right in �gure 10.11 in Section 10.2.3.

We were not able to �x this because of time constrains, but it should be relatively
easy to retrieve information on the Sony Ericsson-speci�c implementation from o�cial
sources.

12.3 Field testing problems

This section covers problems encountered during the �eld testing stage.

Zone overlap

As base station signals overlap, there will be certain locations where the phone jumps
from cell to cell very rapidly, this is naturally seen by the game as fast zone movement,
and positions will be sent to the server accordingly. Because of this, we would have liked
to implement a security mechanism in the locating algorithm, making it ask for location
twice when entering a new zone, with some delay between polls. If the second location
is not the same as the �rst, ie. a quick zone overlap jump has been made, the process is
started over again. On the other hand, if the location is the same, a zone move will be
initiated as normal. Instead, the game is optimized for zones where the overlap problem
is less apparent.

UMTS coverage

When �eld testing, we noticed that not all locations, even very central locations, are
covered by an UMTS base station. From time to time the mobile phones would switch
from UMTS to the GSM network, changing CellId in the process. This could be a prob-

86

12.4. Other problems Chapter 12. Problems encountered

lem if the game or application relies exclusively on UMTS location and does not accept
GSM location strings. When mapping the zones, we tried to avoid involving these areas
in our gameplay, and the game now simply ignores such zones. Jumping to the GSM
network has no e�ect on the ability to send or receive updates to and from the server.

12.4 Other problems

ScrumWorks

During the development process, we had a Linux server running ScrumWorks. In Scrum-
Works we listed all user stories, split these into manageable tasks and kept track of the
progress every day. This was a good solution for organizing the project, and a very
accessible and understandable way of viewing the progress and remaining tasks.

The problems started when the server harddrive crashed, some halfway out in the project.
This was later attributed to temperature issues and poor cooling. All information was
lost, and with no backups, we were forced to abandon ScrumWorks and the daily update
process. By the time this happened, though, most of the project was well underway, and
the need for planning was less than in the early stages. We discuss this topic further in
the method evaluation of Section 14.2.2

87

Chapter 13

Requirement ful�lments

This chapter evaluates whether or not the requirement stated in chapter 8 are ful�lled
or not. Every requirement is restated here, with a description of the solution or the lack
of one. Requirements stated in green are considered ful�lled, while requirements written
in red are considered only partly or not ful�lled.

13.1 Client Requirements

This section covers all client requirements along with an evaluation.

13.1.1 Functional Requirements

The client functional requirements were stated in Section 9.2.1, this section states whether
or not they were ful�lled and describes how they were implemented.

• FR-C1 - The player shall be able to provide his/her own name, limited
to 12 characters, no numbers
Players may enter their name in the initial startup screen.

• FR-C2 - The player shall be able to choose faction before he/she joins
the game
The startup screen provides an exclusive choice between Zombie and Humans.

• FR-C3 - The player shall be able to enter server IP and port number
upon starting the game
The startup screen provides the player with �elds for both IP and port number. If
nothing is written, default values are used.

• FR-C4 - The client shall provide a main menu with information on how
to play the game
The main menu has an option called Game Info. This screen provides information
on the gameplay.

13.1. Client Requirements Chapter 13. Requirement ful�lments

• FR-C5 - The client shall provide a main menu with a high score screen
This requirement is only partially ful�lled. While the high score screen is provided,
and works on emulators, it does not work as intended on the test phones.

• FR-C6 - The client shall not initiate communication with the server
before the player chooses to join a game
The client does not connect to the network until Enter Game has been pressed in
the main menu.

• FR-C7 - The player shall be provided the ability to exit at any give
point
The player may exit the client at all times. An exit button is present in every
screen exept the battle screens. At this point the player may still exit with no
disadvantage to the remaining players.

• FR-C8 - The client shall connect to a server when pushing �Enter Game�
in the main menu
The client connects to the speci�ed server.

• FR-C9 - The client shall refresh the session list automatically if the game
server does not provide it on the �rst try
The client automatically refreshes the session list once if no sessions have been
returned the �rst time. Subsequent refreshes must be made manually.

• FR-C10 - Any player shall be able to create a game session if one does
not already exist
The �rst player to enter a game automatically creates a session.

• FR-C11 - The client shall enter a game session automatically if one is
found
If an open session exists, players will join this automatically.

• FR-C12 - If a game session does exist, the player shall not be able to
create a new one
The client joins the existing session without asking the player.

• FR-C13 - The client lobby shall present all connected players in the
lobby
All connected players are presented in the lobby.

• FR-C14 - The client lobby shall list all connected players with kill scores
and according to their team
All connected players are presented according to name, faction and score in the
lobby.

• FR-C15 - The client lobby shall automatically update re�ecting session
changes
The client lobby refreshes whenever a change has been made.

89

Chapter 13. Requirement ful�lments 13.1. Client Requirements

• FR-C16 - The client shall provide the player with an overview map
The main game screen background is the overview map.

• FR-C17 - The player shall be able to enter and return from the lobby
to view connected players during the game
A menu with a �back�-command is provided, and marked on the lower left corner
of the map, as commands are not visible in full screen mode. This command takes
players to the lobby where they may view all connected players.

• FR-C18 - The client shall check for positional change at regular intervals
In the current implementation, the client polls for location every 1500ms.

• FR-C19 - The player shall have to move into a dedicated neutral zone
before being able to attack any zone
When players �rst enter the game, the only check made is to see if they are in the
revival zone. This remains the only check performed until players enter that zone.
At that point, a �ag is set and all positional checks are made.

• FR-C20 - The client shall automatically inititate an attack on a zone
when the player enters its vicinity
When the client registers that the player has moved into a particular game zone, a
takeover attempt is initiated. If no enemy is present, the zone will simply change
ownership according to the attacking player.

• FR-C21 - The client shall check for enemy players at each zone change
After moving into a zone, the client checks for collisions with enemy players. If an
enemy is present, a battle initiation is sent to the server.

• FR-C22 - A player shall automatically defend a zone upon it being at-
tacked by an enemy, if presently in the zone
If the defender is present when the attacker checks for collisions, his id will be
linked to the attack message.

• FR-C23 - The players shall be prompted to send their battle tactics prior
to any battle
After sending and receiving information of a battle, both defending and attacking
player are showed the tactics window where they may enter a tactical keycode.

• FR-C24 - The client shall present received battle reports as an ongoing
battle in a dedicated window
The BattleView shows battle report values with delays, simulating turn based
combat.

• FR-C25 - After a battle, the client shall take action corresponding to
the outcome of the battle report
If an attacker wins, he is the new owner of the zone. If the attacker loses, he is sent

90

13.1. Client Requirements Chapter 13. Requirement ful�lments

into limbo. A state where no checks are made except for revival zone. The same
goes for the defender.

• FR-C26 - After having lost a battle, the player shall have to move into
the dedicated neutral zone to resurrect his avatar
After a defeat, the client only checks whether the player is situated in the revival
zone or not. The player will have to move there in order for his client to start
complete checking of position again.

• FR-C27 - The client shall update the game board every 1500ms
The main game loop is checked and the game board updated accordingly every
1500ms.

• FR-C28 - The client shall attempt to send the player's position every
350ms and after every �ght
The PositionThread checks for positional changes every 350ms.

• FR-C29 - The client shall only send the player position if there has been
registered a change in position
The PositionThread only sends the position to the server if there has been a
change in position from the last time such a message was sent.

• FR-C30 - The client shall provide the player with an optional status
information window during the game
A status window displaying information on score, location and support can be
displayed at the top of the screen.

• FR-C31 - The client shall take the players back to the lobby view when
a game is over
After the support limit has been reached, all players are taken to the lobby view.

• FR-C32 - The client shall provide the players with a restricted lobby
view when a game is over
The after-game lobby view is passive and will not change if new players connect
to the server. The players are given the option to exit or start a new game, which
will refresh the lobby view.

13.1.2 Non-Functional Requirements

In this section, the client non-functional requirements presented in Section 9.2.2 are
described and evaluated. Feedback from the �eld testing was used to evaluate the re-
quirements concerning usability.

• NFR-C1 - The game mechanics and goals shall be understandable to the
player Left on his/her own device, the player shall be able to understand the goals
and mechanics of the game within 10 minutes.

91

Chapter 13. Requirement ful�lments 13.2. Server Requirements

All of our testing participants but one responded that the game was understood in
less than 6 minutes, that person responded 6-10 minutes.

• NFR-C2 - The client should provide ample feedback to the player The
game should make every action the user takes known and clear to him/her through
vibration, sound and visuals.
While visuals in the form of backlight �ashes and game screen movement are pro-
vided, along with vibration, no sound is implemented in the game so far. Several
testers commented this fact. However, the feedback that was provided was accept-
able to all testers.

• NFR-C3 - The game shall hide any failure from the user, and provide
means of carrying on playing Any failure caused by internal or external events
should be kept silent as long as it does not directly a�ect player progress. If it does,
the system should present the failure in a legible manner and provide the user with
options to �x/pass it.
Using try-catch statement faults are handled before they become visible to the user.
Most faults are simply ignored by the client.

• NFR-C4 - Important game values shall be kept in a easily reachable place
If a developer wishes to alter game update speed, message send interval, cell phone
manufacturer, network operator, player strengths and other values, these should be
openly accessible at the beginning of relevant classes.
While not placed in a common, easily accessible class, all variables are stated at
the top of their relevant classes with a brief description of role and use.

• NFR-C5 - The game shall support alternative means of identifying loca-
tion If a developer wishes to use map and use GSM CellID values, triangulation or
even GPS, only the location speci�c part of the client game class needs to be altered.
The location fetching is implemented in a very simple manner, and the game simply
checks whether a position value equals one out of �ve statements. One statement
for each of the locations a player might be; Hospital, Ntnu, Cathedral, Limbo and
Revival Zone. Altering this check value can be done through any means available,
just implement a location algorithm, let it get checked by the main loop and alter
the position value accordingly.

13.2 Server Requirements

This section covers all server requirements along with an evaluation.

13.2.1 Functional Requirements

The server functional requirements were stated in Section 9.3.1, this section states whether
or not they were ful�lled and describes how they were implemented.

92

13.2. Server Requirements Chapter 13. Requirement ful�lments

• FR-S1 - The server shall be able to run on any computer with Internet
The server will run on any computer with Java Runtime Environment (JRE) 6.0
and an internet connection.

• FR-S2 - The server shall allow players to join ongoing sessions at any
time The server allows players to join any ongoing session at all points during the
game.

• FR-S3 - The server shall send alive requests at regular intervals of
7000ms The server sends alive requests every 7000ms.

• FR-S4 - Any client not responding to alive requests shall be removed
from the game session After failing to respond to 10 alive requests, the player
will be removed from the session by the server.

• FR-S5 - If several players are present in the lobby when a game session
starts, start game commands are sent to all players A start game command
is sent to all connected players when a player chooses to start the game.

• FR-S6 - All game zones shall be set to neutral upon game start The server
resets all zones to neutral (2) when a day session is initialized.

• FR-S7 - Any client that joins an ongoing game shall be sent an updated
zone overview Any player joining a game is sent the current game zones and a
starting position.

• FR-S8 - The server shall transmit updated player positions in batches
with regular intervals The GameThread keeps all connected players' positions
and transmits these with regular intervals. When a player moves and transmits his
new position, the server updates that player's position in the list. Every 100ms this
list forms the basis of a position package that is relayed to all connected players.
Only players that have moved are included in the package.

• FR-S9 - The server shall keep track of support score and notify all con-
nected players when the game session is over Every time the session sends
alive requests, it checks each team's support. If one has reached the support limit,
a Game over message is sent to all players.

• FR-S10 - The server shall allow the server administrator to change the
support score limit and notify all connected players as soon as a change
has been made A slider bar is implemented in the server GUI. Changing this slider
will alter the support limit accordingly. For every change, a message containing
the new limit is sent to all connected players.

• FR-S11 - The server shall close the gaming session if all players discon-
nect Every time a player leaves, the server checks the number of connected players.
If that number is zero, the session closes.

93

Chapter 13. Requirement ful�lments 13.2. Server Requirements

• FR-S12 - The server shall release all resources and threads when a game
session is over Whenver the session closes, either due to players leaving, or
the support limit being reached. The GameThread and EventHandler threads are
stopped, releasing any resources held.

13.2.2 Non-Functional Requirements

In this section, the server non-functional requirements presented in Section 9.3.2 are
described and evaluated. Feedback from the �eld testing was used to evaluate the re-
quirements concerning usability.

• NFR-S1 - Developers shall be able to add or change functionality in one
part of the server without a�ecting the rest If developers wish to use other
forms of identifying location, or using this game server for similar games, changes
in functionality should not a�ect the integrity of the server.
The server remains una�ected by any change in the clients, as long as it still receives
messages in the format dictated by the message parsers.

• NFR-S2 - The server shall continue to support both TCP and UDP
transport protocols Even if we use only TCP in our implementation, leaving the
framework UDP support be will be helpful for developers exploring other aspects of
location-based gaming.
No alterations have been made in the communication layer of both client and server.

• NFR-S3 - Important server values shall be changeable and easily acces-
sible Server values like alive request interval, support generation interval, support
generation rate and similar should be presented at the top of relevant classes, as in
the framework. Support limit should be directly changeable in the server GUI.
The server allows administrators to change support limit directly in the GUI. All
other important variables are accessible, changeable and brie�y described at the
top of their respective classes.

• NFR-S4 - Players shall be able to connect to the server at any time.
The server should be listening for players trying to connect to the game during both
night and day, regardless if a game is already being played or not.
Players wishing to join or create a game are able to connect to the server any time
it is up.

• NFR-S5 - Players shall be able to disconnect from the server at any
time. The server should allow players to disconnect from the session at any time,
and inform the other players accordingly.
The server allows players to disconnect at all times. A disconnection notice is
sent with no waiting time involved. Other players are thereby informed of the
disconnection.

94

13.2. Server Requirements Chapter 13. Requirement ful�lments

• NFR-S6 - The server shall handle any disconnection without letting it
a�ect the game Even if a player disconnects during battle, the server should let
the remaining player continue as usual.
A player may disconnect from the game during battle at no penalty, but if a player
disconnects while the server is waiting for battle tactics, the other battling player
will be stuck waiting to get answer from the server. This never happened during
real play, because of the short time out periods of the tactics screen. But when
testing the game via emulator we were able to force a disconnection as soon as the
tactics screen was displayed, leaving the other player waiting.

• NFR-S7 - The server shall handle any fault without letting the user know
Faults may appear many places in the system, if they appear, the server should �x
them or circumvent them without letting the player know they happened.
Using try-catch statements, like on the client, faults are handled before a�ecting
the game. Most faults are simply ignored by the server.

• NFR-S8 - Network data from the server shall be short and informative
To keep the clients from chewing too much information and keep the network cost
as low as possible, data messages are short and only sent when required.
Messages sent from the server are limited to a three-letter action identi�er, a player
id, a list of values and a character de�ning the end of the message. Several values
may be sent within one message, keeping the number of messages as low as possible.

95

Part V

Summary

Chapter 14

Evaluation

This chapter contains an evaluation of both methods, framework and technology used.
All will be desribed and analyzed based on our experiences throughout this project.

14.1 Technical evaluation

This section deals with the technologies used in this project, as described in Chapter 5.
Both network and location technologies are evaluated.

14.1.1 GSM

Based on the prestudy, we knew GSM base station cells would comprise a relatively
wider area than UMTS cells. This was not the largest problem, however, as each city or
location will have a di�erent set of cells of various sizes that may or may not �t the game
plan. The biggest challenge was to �nd an appropriate way to map real-world cell areas
to virtual-world zones. The process of manually mapping the GSM cells in Trondheim is
relatively straightforward, but few good assoiciations to known locations could be made.
Using GSM zones as a location identi�er is easily implemented, but requires a relatively
high e�ort beforehand. Though, we add, this need only be done once, and can be relieved
by the help of a GPS used to connect absolute position to CellID value.

Another aspect of forcing GSM location is the reduced transfer speeds compared to
UMTS. While connected to the GSM network, EDGE de�nes the highest achievable net-
work data transfer rate. Despite this, the transfer speed did not impact the gameplay
noticeably when testing the game. As seen in Section 11.2.1 the response times of EDGE
have been measured as more or less equal to UMTS as well. This leads us to believe
that if a good mapping between GSM zones and real-world locations can be made, the
network technology does not restrain the options for a game or application like ours.

14.1. Technical evaluation Chapter 14. Evaluation

14.1.2 UMTS

When gathering UMTS base station CellID's, we quickly realized that they were some-
what smaller in size than the GSM cells. And not only were they a little smaller and
more manageable, the also mapped more easily to real-world locations. This need not
be true for every city or location, but we believe from our �ndings, that places chosen to
be of strategic importance in an application most likely are seen as strategic locations in
the real world, thus requiring a base station.

An upside with using the UMTS network to gather location was the increased trans-
fer rates and slightly reduced response times. While not critical in our game, the vastly
increased transfer speeds of HSPA might be useful in other applications.

14.1.3 CellId

As a means of locating the player, CellID is becoming increasingly easier. Now that large
manufacturers like Nokia and Sony Ericsson are o�ering easy access to CellID through
Java ME on all their newer phones, it is no longer an obstacle for developers wishing to
incorporate cell location in their applications.

14.1.4 Java ME and the Framework

The experiences from using Java ME to develop the game modules of this project were
mostly positive, especially since we could make use of an existing framework providing
us with the means to make a multiplayer game. While getting access to network speci�c
values like CellID and Operator at the moment requires new and relatively advanced
handsets, it is positive that mobile phone manufacturers provide such options for Java
developers.

Not all aspects of the game could be implemented as planned in Java ME, since the
Java performance of phones vary greatly and added complexity of games require more
resources. A more elaborate and synchronous battle resolve was not doable in our im-
plementation, since adding more threads caused the game to stutter, destroying the
playability of the game. This might be related to the framework already demanding a
large sum of the available resources, though, and other implementations could produce
better results. This only reinforces the need for strict resource management when making
mobile applications. Otherwise, the framework we chose for building a location-based
game worked very well. It's Java client and server are well supported by computers and
mobile devices, and the framework allows for a large number of players, though we only
had 5 players connected to a session at any time.

99

Chapter 14. Evaluation 14.2. Method evaluation

14.2 Method evaluation

This chapter deals with the methods used in this project, as described in Chapter 2.
Both research and development methods are evaluated. All methods are described and
analyzed based on our experiences throughout this project.

14.2.1 Research Methods

The research methods were described in Section 2.2. We mentioned �ve methods that we
felt would help us achieve the results we needed in order to answer our research questions.
Below is a list containing all methods and an evaluation of their appropriateness.

• The Engineering Method
The Engineeringmethod was used by implementing a location-based game in stages
throughout the project. By allowing users to test the result at di�erent points,
problems were pointed out and remedied in order to create a useful application.
The resulting game was vital in order to obtain results for most of our research
questions.

• Lessons Learned
This master thesis is based on the experiences from our depth study [ONL]. Espe-
cially at the early stages, the depth study guided our progress through this thesis.
Game-speci�c ideas and concepts from the depth sudy were built upon to create a
practical and challenging game, and helped us in answering the �rst two research
questions.

• The Empirical Method
Research question 3 required a more objective approach. Gathering data and infor-
mation on the surroundings and statistics of the game using the Empirical method
helped us achieve this. The data gathered both manually on infrastructure and
automatically via handset retrieval could be analyzed and evaluated to �nd sati-
factory answers.

• Literature Search
Part of this project has been to gather information on the �eld and state what
has been and what has not been done previously. Searching related literature both
on technical aspects and other games helped us understand the challenges ahead
and provided us with answers to overcome these. This is especially true for both
research question 1 and 2.

• Case Study
Research question 5 in particular, but also most of the other questions needed a test
study with actual users in order to retrieve usable data on playability. Controlled
tests were performed at several stages, but mostly at the end of the project. These
included answering questionnaires and direct interviews of players, and proved to
be very helpful.

100

14.2. Method evaluation Chapter 14. Evaluation

Together, these research methods helped us achieve acceptable answers to all of
our research questions. These answers are stated in Chapter 15.

14.2.2 Development Methods

The main development method for this project was stated in chapter 3.1.3. A variant
of Scrum modi�ed for use in single-person projects was descibed as our choice. In this
section we will explain the speci�c aspects of our method and evaluate whether or not
they were useful to us in this project.

• Project Roles
In a project with only one developer, roles aren't as de�nite as they would be in a
proper Scrum setting. The project supervisors functioned loosely as Project Own-
ers, and hinted at the desired outcome of our project. The developer acted as both
Scrum Master and Scrum Team, with a strong connection to the code, the project
environment and the outside stakeholders. While this juggling of responsibilities
is shunned in Scrum, it is quite manageable for smaller projects, such as this one,
and doesn't have too much of an impact on neither progress nor outcome.

• Backlogs
A better example of Scrum a practice that is useful in solo projects is the backlog
idea. Developing a prioritized list of outstanding requirements or features was very
valuable in the sense of managing the project progress and scope. ScrumWorks
helped keep all tasks and bugs visible and ordered, avoiding the ocean of yellow
post-its that may otherwise have appeared in such a setting. Because of the prob-
lems described in Section 12, we didn't get to document the use of ScrumWorks,
but luckily this happened at such a late stage that most value had been derived
from the process already.

• User Stories
User stories de�ne a di�erent approach at requirement gathering than the tradi-
tional speci�cation. Since very few demands were made from outside the project
environment, inventing and decomposing user stories was a good way of getting to
the core of functionality and properties that should be o�ered by the system.

• Sprints
One of the main ideas in agile methodology is incremental development. We had
increments or sprints covering 14 days, in this time period we would �gure out
which functionality to add, implement it, document it and try to test it. This way,
we could always keep focus on the most desired functionality and receive continual
feedback on the progress.

101

Chapter 14. Evaluation 14.2. Method evaluation

• Sprint Retrospectives
Having meetings with oneself may not sound all that productive, and most daily
scrums were in fact dropped. But adding retrospectives after �nishing a sprint is
still useful. Fleshing out what went right and what went wrong provides a morale
boost or strong incentive to change towards the next sprint. Connecting these
problems and ideas to the project via ScrumWorks also helped taking them into
consideration at later stages.

• Adaptability
Another main idea of agile development is adapting to change. Sticking with a plan
made before anything is tried and tested may be a large hinder, even in solo projects,
where di�erent responsibilities are �lled by the same person. As change happened in
our project, so did priorities. ScrumWorks was used to manage priorities by click
and drag at all points. At the same time, documentation was updated, keeping
most of the project report alive throughout the project.

The development practices of Scrum proved imperative in keeping track of project status
and managing details. Scrum provided us with an easy way of progressing through the
di�erent stages of the development in a �exible and lucid manner.

On the other hand, in this small project the Scrum process and ScrumWorks demanded
a substantial share of time spent on both study and setup in order for us to get value
from it. However, after having attained the required knowledge, we see no problem in
using Scrum for projects of all sizes in the future.

102

Chapter 15

Research questions answered

In chapter 2 we stated the research questions of this project. This chapter provides an-
swers to these questions.

• RQ 1 - Which challenges exist when developing location-based games
for mobile phones?

This research question was asked to identify the location-speci�c challenges related
to developing mobile games. The answers were gathered from our own experiences
with developing a location-based mobile game.

A key aspect when making a location-based game is deciding which role location
should play. Should it be a supporting factor controlling weather, fellow players
and background? Or should it be a direct factor replacing the directional keys of
you phone? Naturally, one may decide to use both approaches. The decision will
largely a�ect the type of players your game attracts. Games absolutely requiring
physical motion seems to appeal to a particular group of players, players who wish
physical ability to a�ect the outcome of the game. Much like strategic game play-
ers wish for other decision-factors than �rst-person shooter gamers. Motion-based
games are also more restricted in terms of gameplay �exibility. They cannot be
played everywhere and demand some planning ahead. Games using location as a
supporting factor are more able to mask the lack of some special location when
providing game challenges, meaning that you can almost always play the game and
progress in your own house, only needing to go somewhere when you want some-
thing special to happen.

Another aspect of location is handset support. Location retrieval is still an op-
tion reserved for a relatively small subset of mobile devices. GPS is the most

Chapter 15. Research questions answered

known way of getting mobile location, but though more and more handsets sup-
port GPS they are still few and far between. Especially in the target group for
game applications. Simpler ways of identifying location, like CellID are common to
all handsets, but cannot be retrieved in all devices, limiting this technique in much
the same way as GPS. A larger number of phones support this method, though,
including all Symbian phones and all Java phones in the newest generations from
Nokia and Sony Ericsson1. Triangulation remains a method still requiring operator
support.

In terms of playtesting, getting players out in the �eld as soon as possible is an
advantage. Field testing a location-based game, especially one relying on locations
with some distance apart, is time-consuming. And testing is vital; a bug free envi-
ronment should be considered especially important, since the game continues even
if a player gets disconnected, potentially interfering with the gameplay of other
connected players.

• RQ 2 - What is the impact of adding an online multiplayer client/server-
structure to a location-based game?

This question was formed to provide information related to the more social as-
pect of mobile gaming.

An often-mentioned factor in location-based gaming is the ability to play with
nearby players. This is even more emphasized in active games like CityZombie.
Players remark that since such a game competes with the exercise of a game of
hide and seek or a football match, the social aspect is important and should be
included to keep the fun-factor high.

To facilitate a social game of this scale, a server/client-approach should be adopted.
Allowing users to connect and disconnect as they please. With online play, cost
becomes a vital factor for players. Server and client communication should be de-
signed in a way that gives maximum value for the amount of data transfered via
the network. If successfully implemented, the competitive nature of active social
games can be kept and enhanced in a virtual game through the mobile network.

• RQ 3 - What basis does the current infrastructure o�er to support a
location-based mobile game?

This question adresses the various infrastructural challenges that exist when devel-
oping a location-based game. While GPS is well-tested and active as a means of
locating mobile phones, other methods haven't been as thoroughly explored.

The GSM and UMTS networks both provide mobile phones with a CellID unique

1 Nokia S40 and S60 FP 1 & 2 and SE JP-8

104

Chapter 15. Research questions answered

to the base station the phone is currently connected to. The area covered by such
base stations vary, but in more urban areas, a radius of 100-500 meters may be
considered normal. These areas provide a natural zone structure which developers
may utilize in games and applications. Mapping these coverage areas to the map is
a somewhat time-consuming and cumbersome task, but needs only be done once,
and can easily be reused by others.

The current infrastructure is very operator-dependant, as each network operator
provides their own base stations and naming conventions. Cross-mapping zones
between network operators is in many cases not feasible, and will have to be eval-
uated dependending on each location. If such a mapping can be done, discerning
between operators is programatically an easy task, allowing all players to partici-
pate on equal terms.

The di�erences between UMTS and GSM network cells are noticeable. Both in
terms of cell area size and CellId syntax. Cross mapping UMTS and GSM cells
and cross mapping between di�erent operators can be considered equally hard.
UMTS is the better choice, despite a somewhat lower coverage than GSM. This
is due to a larger number of smaller zones, making it more accurate, and UMTS
coverage in urban areas is good enough to mostly ignore the issue.

• RQ 4 - Which technologies support the continued existence of a location-
based multiplayer mobile game the best?

In terms of playability and technical properties, there is a di�erence between the
GSM and UMTS networks. UMTS o�ers higher bandwidth and better response
times. The EDGE technology provides GSM with a response time and bandwidth
that is acceptable for most games, however. There is no di�erence in cost between
the di�erent technologies, as the same amount of data is transfered in both cases. In
games such as ours, where demands for response times aren't crucial, both networks
o�er equal playability.

• RQ 5 - How do people respond to a location-based game as opposite to
a passive/stationary game?

This question is asked to gather player knowledge and attitude towards location-
based mobile gaming.

The thing that strikes us �rst is the lack of knowledge about location-based gaming.
This may be attributed to the fact that Norway hasn't had a culture for developing
games for mobile phones. Our neighbouring countries Sweden and Denmark were
both pioneers in terms of exploring location and gaming on mobile phones with
Bot�ghters [BOT] and ZoneMaster [ZON], early games using CellID location.

105

Chapter 15. Research questions answered

When confronted with a location-based game players are mostly positive, as it
provides their phones with yet another feature that has remained unused thus far.
There is a strong opinion, however, that these kinds of games are not time-killers
such as the games they have played before. Actively having to visit places to ad-
vance the gameplay is a concept best received with players that see the game as a
variation of other social games played outside. In this context, in-game communi-
cation becomes important. When spread out relatively far apart, players want a
way of communicating with their fellow team members to organize themselves.

106

Chapter 16

Conclusion

The goal of this master thesis was to design and implement an online location-based
game in order to decide which programmatical-, infrastructural- and playability-related
factors that support this in the best possible manner. Real-world testing of the game
was performed in order to evaluate the result in a realistic setting.

We started by introducing the di�erent concepts associated with mobile gaming in general
and location in particular. After evaluating these concepts, we introduced CityZombie,
an online multiplayer mobile game relying on CellID location as the main input factor.
This game provided us with the means to test both the GSM and UMTS infrastructure
and the related EDGE and HSPA network technologies as well as the general knowledge
and attitude towards location-based gaming in a test group.

In the process of identifying and mapping the GSM and UMTS infrastructure of the
two major operators, we discovered di�erences both in naming conventions, base station
cell sizes, base station locations and signal stability. All these factors in�uence a location-
based game. Firstly, the di�erences between GSM and UMTS are equal to the di�erences
between operators. GSM and UMTS cells have di�erent sizes, with UMTS cells being
somewhat smaller because of their higher frequency and lower output strength. This is in
most cases not important, since the number of cells of both kind are su�cient to create
an interesting zone structure. More important, and di�cult, is the process of relating
these cells to real-world areas. Most zones overlap, and while many locations o�er stable
connection to one base station, other locations will force the phone to jump between two
cells. Finding stable areas to mark as game zones is vital. Related to this, is connect-
ing the zones to real-world locations that are easily recognizable. A stable, well sized
zone is sometimes useless if it cannot be related to a game zone in an intelligeble manner.
This process e�ectively eliminates both zones, networks and operators from the equation.

We ended up implementing a game with Telenor UMTS zones based on St. Olavs Hos-
pital, The Nidaros Cathedral and NTNU Gløshaugen. While Telenor GSM zones were
plentiful in most areas, they were far more overlapping, and a direct mapping between

Chapter 16. Conclusion

the GSM and UMTS zones could not be made. Netcom GSM and UMTS zones were
also su�ering from overlapping problems, in addition to bad mapping with the three
real-world locations. This solution may not be the best in all areas, though, and an
evaluation of operator and network appropiateness should be made when implementing
this kind of game elsewhere.

Though incompatible in location, the GSM and UMTS networks both provide acceptable
playability in the form of response times and data transfer via EDGE and UMTS/HSPA.
While being a real-time game, CityZombie does not demand very high response times,
since input speed is limited to the player's ability to move between zones. The cost of
playing the game is the same in both networks, and is relatively low because of the slow
rate of player input.

In general, the location-based game concept was well received among players. Likely
because it represents something new; most players are still unaware of the possibilities
in location-based gaming. Making the game multiplayer was another another positive
factor, as many players feel that an active outdoor game has much in common with a
virtual football match or a game of hide and seek, making the social aspect important
and relevant. When testing the game with actual players, the main concerns were related
to communication options, content and the amount of physical activity. The distances
involved in CityZombie made the game more appealing to players interested in letting
physical ability decide the outcome of the game, even though the game facilitates both
passive and o�ensive roles. This result can to some degree be attributed to the relatively
small size of the game and the lack of content.

108

Chapter 17

Further work

This chapter describes issues and properties that could be further explored within the
scope of this project.

17.1 Extending the game

Though CityZombie was built as a concept for exploring possibilites in location-based
gaming, the game itself and the surrounding concept could be enhanced by extending
the game.

Adding content

In Section 8.1, we mentioned game content like mines and robots, used to defend and
attack zones as proxies for actual players. Similar objects could be strength potions and
weapons regulating the balance between the players. These items could be placed on
the map before game start or generated by the server and then placed randomly. The
framework used supports random generation of items, and adding this functionality into
the existing game would not be hard.

Other random events could also occur, depending on location and time. Making the
players feel they play in a dynamic world. Adding an in-game clock to record events
could be utilized in many ways, ranging from the cathedral striking it's bells every in-
game hour when you are present in that zone, to the hospital increasing your hit points
every in-game hour when in that zone.

Expanding the playground

Presently, the game is relatively small, with only 3 zones to occupy. Adding to this
number would give both a larger number of players something to do and make the game
truly mirror the city in which it exists. A scrolling map could help keep the present
overview at the current level and at the same time make the game boundaries larger.

Chapter 17. Further work 17.2. Testing

There is no theoretical limit to how many zones a game could have, but the number of
players would dictate the practicality of this to a large extent. Having two persons �ght
over 20 zones in a game covering ten kilometers in diameter might be a bit unrewarding
to some.

Combat

As mentioned in Chapter 8, A more elaborate combat was envisioned when players at-
tacked each other in zones. Giving the players the ability to use keypads to control their
own actions during combat is desireable, from a playability perspective. The framework
might have to be modi�ed more in order to achieve acceptable response from the phone,
but given time it is not an unimaginable task. If such a task proves impossible, combat
could be implemented in a real turn-based manner. This might be a rock-scissor-paper
strategy over several rounds, where the winner is best of three. Or letting the client
send a value to the server based on the player's ability to perform some precision feat
locally, maybe clicking a combination of buttons at the exact right times. The server
would then see which player performed best and decide the winner. Any method that
provides players with the ability to show skill would be good.

17.2 Testing

Part of this project was to perform playtesting, as location-based gaming is a relatively
new genre on the market. However, with only two mobile phones supporting the game
available, testing was limited to one on one combat and combinations with 2 actual
players and some players using emulators. Most testers responded that the game would
suit best for teams of 2-5 player, meaning as much as 10 phones in the �eld at the same
time. This would give the players the option of taking o�ensive or defensive roles, some
guarding zones and others attacking the enemy. Developers would also have the ability
to test the framework and game's capability to support more players.

110

Bibliography

[ACM] Hartel, Pieter H. and Moreau, Luc . Formalising the Safety of Java, the Java
Virtual Machine and Java Card.

Univ. of Southampton & Univ. of Twente. 2001.

citeseer.ist.pdu.edu/502446.html

[ACP] Miller, Ross. Plundr, �rst location-based DS game, debuts at Where 2.0.
Article, Joystiq. 4 June 2007.

www.joystiq.com/2007/06/04

/plundr-first-location-based-ds-game-debuts-at-where-2-0/

[AGI] Schwaber, Ken, Highsmith, Jim et.al. The Agile Manifesto.
Utah, USA. 11-13 February, 2001.

www.agilemanifesto.org

[ANI] Buchanan, Levi . The Shroud.
IGN Wireless . 8 June, 2006.

wireless.ign.com/articles/711/711888p1.html

[BAS] Basili, Victor R. The Experimental Paradigm in Software Engineering.
Lecture Notes in Computer Science. Springer-Verlag. 1992.

[BCK] Bass, Len., Clements, Paul and Kazman, Rick . Software Architecture in Practice.
Addison-Wesley, 2.ed. 2003.

[BLU] Bluetooth SIG Inc. Bluetooth.
Official homepage. 2008.

www.bluetooth.com

[BRE] Qualcomm Inc . Brew: Bring wireless to life.
Brew Homepage . 2008.

brew.qualcomm.com/brew/en/

[BMG] Sony BMG. The Shroud.
Sony BMG Games . 2007.

games.sonybmg.com/theShroud.html

[BOT] Baron, Paul . Location Based Mobile Games.
In-Duce.net. November 2004.

www.in-duce.net/archives/locationbased_mobile_phone_games.php

Bibliography Bibliography

[CHA] Chau, Fiona . Mobile Gaming Aims For Mass Market.
Wireless Asia. 19 September, 2006.

www.telecomasia.net/article.php?id_article=1744&page=5

[CPN] NetCom. Netcom CPA.
Netcom Homepage . 2008.

netcom.no/omnetcom/partnere/cpa-innholdsleverandorer.html

[CQW] Vinh, T. High-tech hunt nets a $5,000 prize.
Article, Seattle Times. 24 October 2004.

homepages.nyu.edu/�dc788/conqwest/press/seattletimes/

[CSP] Ferner, Carl J. Cellspotting.
Official homepage. 2008.

www.cellspotting.com

[DQI] Nguyen, T. H., Ekholm, J. and Ingelbrecht, N. Dataquest Insight: More Growth
Ahead for Mobile Gaming.

Gartner Inc. Analysis. 2 May 2007

www.gartner.com/DisplayDocument?id=504622&ref=g_sitelink

[DTS] Datatilsynet. Krav om samtykke for bruk av lokaliseringsdata.
Letter from Datatilsynet to Telenor and Telia. 3. february 2005.

www.datatilsynet.no/templates/Page____874.aspx

[EBN] Garshol, Lars M. BNF and EBNF: What are they and how do they work?.
Personal Homepage. 21 July, 2003.

www.garshol.priv.no/download/text/bnf.html

[EKO] Post- og Teletilsynet. Det norske ekommarkedet 2007.
NPT. Lillesand, Norway. 27 May 2008.

http://www.npt.no/iKnowBase/Content/107094/Ekommarked_2007.pdf

[ELI] Elisa Elisa kolminkertatistaa 3G-datanopeudet.
Elisa.fi. 30 August, 2007.

www.elisa.fi/ir/pressi/index.cfm?t=100&o=5120.00&did=14237

[ERA] Watagame . Era Of Eidolon.
Official Homepage . 2004.

www.eraofeidolon.com

[FFA] Square Enix Co Ltd. Final Fantasy VII: Crisis Core.
Square Enix Homepage . 2007.

www.square-enix.co.jp/ccff7/

[GML] Hillebrand, F. Milestones of the GSM/UMTS Development.
3GPP. 11 March 2007.

112

Bibliography Bibliography

www.3gpp.org/ftp/workshop/2007-03-14_20%20Years%20of%20GSM

/Presentation/07_GSM_UMTS_milestones_070311.pdf

[GPB] Umts Forum Past the 200 million milestone: 3G/UMTS Grow.
Umts Forum. 30 January, 2008.

www.umts-forum.org/content/view/2315/170/

[GPR] Michel, Dirk and Ramasarma, Nathan . GPRS Measurement Methodologies and
Performance Characterization for the Railway Environment.

Wireless Communications and Network Conference. 2005.

ieeexplore.ieee.org/iel5/9744/30730/01424764

[GPS] Pellerin, Cheryl. United States Updates Global Positioning System Technology.
Washington File. 3 February 2006.

usinfo.state.gov/xarchives/display.html?p=washfile-english

&x=20060203125928lcnirellep0.5061609

[GSB] GSM Association. GSM Facts and Figures.
GSM World. 28 January 2008.

www.gsmworld.com/news/statistics/index.shtml

[HIS] Farley, Tom . Mobile Phone History.
Phone Warehouse. 20 February, 2002.

affordablephones.net/HistoryMobile.htm

[IMP] Ollila, Elina M.I . Improving the end user experience: Advances in playtesting for
mobile games.

Game Developers Conference Presentation . 2008.

[IPH] Wing�eld, Nick and Sharma, Amol . iPhone 'Sur�ng' on AT&T Network isn't
Fast, Jobs Concedes.

Wall Street Journal. 29 June, 2007.

online.wsj.com/article/SB118306134626851922.html

[JCP] Majakangas, Jaana . JSR 293: Location API 2.0.
Java Community Process. 2008.

jcp.org/en/jsr/detail?id=293

[JDB] Jonell, Jonas and Dahlberg, Gustav . Framtiden för mobile spel-
teknologispelarena�ärsmodeller.
Diploma at the University of Gothenburg, School of Economics. 2003.

[JDK] SUN Java SE 6 Features and Enhancements.
SUN website. 2008.

java.sun.com/javase/6/webnotes/features.html

113

Bibliography Bibliography

[KDD] KDDI Corporation . KDDI.
Official Homepage . 2008.

www.au.kddi.com/english/index.html

[LAM] Privat, Ludovic . Multiplayer location-based gaming gets real: Interview with La
Mosca.

GPS Business News. 29 January, 2008.

www.gpsbusinessnews.com/index.php?action=article&numero=627

[LBS] R&D Neferi Team. Entertainment Location-Based Services: the nest killer-app?.
Report. 30 November, 2006.

www.scribd.com/doc/2573421/locationwhitepaper

[LOC] Srivastava, M. Location Sensing for Context-Aware Applications.
Lecture in EE233C, UCLA. 30 May 2000.

[LTB] Lomas, Natasha . Location-based services to boom in 2008.
Businessweek. 11 February, 2008.

www.businessweek.com/globalquiz/content/feb2008/qb20080211_420894.htm

[LOA] SUN Microsystems. The Java ME Device Table.
Sun Developer Network. 2008.

developer.sun.com/mobility/device/pub/device/list.do?sort=manufacturer

&filterIds=125

[MGW] Morton, Derrick and Wisniewski, Donald . 2005 Mobile Games White Paper,
Game Developers Conference 2005.

IDGA Online Games SIG. August 2005.

http://www.igda.org/online/IGDA_Mobile_Whitepaper_2005.pdf

[MIK] Schenk, C . MiKTeX.
Project website. USA. 2008.

www.miktex.org

[MJG] Fox, David, Verhovsek, Roman . Micro Java Game Development.
Addison-Wesley. Boston, USA. 28 April, 2002.

[MOG] Newt Games . O�cial Mogi Homepage.
Mogimogi.com . 2003.

www.mogimogi.com

[MOS] Hall, Justin . Mogi: Second Generation Location-Based Gaming.
The Feature Archives . 1 April, 2004.

www.thefeaturearchives.com/100501.html

[MPG] funSMS.net. Mobile Phone Generations.
funSMS.net . 2006.

www.funsms.net/mobile_phone_generations.htm

114

Bibliography Bibliography

[MZW] Zelkowitz, Marvin V. and Wallace, Doris L. Experimental Models for Validating
Technology.

IEEE Computer 31(5). May, 1998.

[NIC] Vaughan-Nichols, Steven J. The Challenge of Wi-Fi Roaming.
IEEE Computer 36(7). 2003

[NOR] Wikipedia. List of Deployed UMTS Networks.
Wikipedia entry. April, 2008.

en.wikipedia.org/wiki/List_of_Deployed_UMTS_networks

[NPM] Nicklas, D., P�sterer, Ch. and Mitschang, B. Towards Location-based Games.
University of Stuttgart, Institute of Parallel and Distributed

High-Performance Systems (IPVR). 2001.

www.adcog.org/adcog21/adcog21.pdf

[NPR] NetCom. NetCom Data Prices.
Official homepage. 2008.

netcom.no/priser.html

[NSE] Nokia. Getting CellID in Java ME.
Forum Nokia Developer Community. 14 May, 2008.

wiki.forum.nokia.com/index.php/CS000947_-_Getting_Cell_ID_in_Java_ME

[ONL] Rolland, Øyvind . Online Location-based Mobile Gaming.
NTNU. Trondheim, Norway. 18 December 2007.

[OSA] Grimen, G. et.al. Service Context and Information Content in Mobile Information
Services.

Proceedings of the 12th IST Summit on Mobil and Wireless

Communications. Aveiro, Portugal. June, 2003.

[OTD] Alsnes, R. Location Aware Services.
Master's Thesis, NTNU. 2003.

[PAR] Park Associates. Electronic Gaming In The Digital Home.
Survey. September, 2006.

www.parkassociates.com/research/reports/tocs/2006/multi-gaming.htm

[PEL] Pelkonen, Tommi . Mobile Games, E-content Report 3.
Anticipating Content Technology Need. February, 2004.

[PER] Helal, Sumi . Pervasive Java.
Pervasive Computing. January-March, 2002.

[PIR] Bjørk, S., Falk, J. Hansson, et.al. Pirates! The Physical World as a game board.
IOS Press. Tokyo, Japan. 9-13 July 2001.

www.viktoria.se/fal/publications/play/2001/pirates.interact.pdf

115

Bibliography Bibliography

[PON] Winter, David . PONG-Story.
PONG-Story website. 2008.

www.pong-story.com

[POW] Powers, Michael . Real-Time Constraints.
Mobile Multiplayer Gaming, Part 1. 2006.

developers.sun.com/techtopics/mobility/midp/articles/gamepart1/

[PRF] Halonen, Timo, Romero, Javier and Melero, Juan . GSM, GPRS and EDGE
Performance - Evolution Towards 3G/UMTS.

Wiley, 2 ed. 2003.

[RTG] Jarrett, Martin and Sorteberg, Eivind . Real-Time Online Multiplayer Mobile
Gaming.

Master's thesis, NTNU . 2007.

[RUM] Wikipedia . Wikipedia Rumble Pak entry.
Wikipedia. 12 April, 2008.

en.wikipedia.org/wiki/Rumble_pak

[SCR] Kniberg, Henrik . Scrum and XP from the Trenches.
C4Media. USA. 2007.

www.infoq.com/minibooks/scrum-xp-from-the-trenches

[SEJ] Sony Ericsson. Java ME Platform Docs and Tools.
Sony Ericsson Developer World. 2008.

developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

[SCW] Danube Technologies Inc. Scrum Lifecycle Management Tools.
Danube website. 2008.

www.danube.com/scrumworks

[SEM] Semacode Corp. Sem@code.
Official homepage. 2008.

www.semacode.com

[SHO] Wikipedia . Wikipedia Dualshock entry.
Wikipedia. 6 June, 2008.

en.wikipedia.org/wiki/Dualshock

[SHR] Your World Games . The Shroud.
Official Homepage . 2006.

www.shroudgame.com

[SJP] Sony Ericsson. Java Platform Versions and Screen Sizes.
Sun Developer Network. 28 January, 2008.

developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

116

Bibliography Bibliography

[SMO] Davis, Justin . The Shroud's GPS Functions Revealed.
Modojo . 10 March, 2006.

www.modojo.com/features/20060316/55/

[SMP] Lakeworks Wikipedia Scrum Entry.
Wikimedia Commons. 2008.

en.wikipedia.org/wiki/Image:Scrum_process.svg

[SNA] Dance With Shadows. The man who made snake.
DanceWithShadows.com . 19 June, 2005.

www.dancewithshadows.com/tech/snake-nokia-game.asp

[SPW] Parish, Jeremy . Classic.1up.com's Essential 50.
1UP.com . 12 January, 2005.

www.1up.com/do/feature?cId=3116291

[SSC] Bell, Peter . Solo Scrums.
Blog entry, Personal Homepage. 17 June 2007.

www.pbell.com/index.cfm/2007/6/17/Solo-Scrums

[STE] Stensrud, Geir . Mobile lokasjonsbaserte dataspill: ny dataspillgenre?.
Insitutt for Medier og Kommunikasjon. February, 2006.

www.media.uio.no/prosjekter/internettiendring/downloads/stensrud.pdf

[TAR] LaMosca. About The Target.
Official Homepage. 2008.

www.lamosca.be/thetarget_company.htm

[TLP] Tele2. Tele2 Data Prices.
Official homepage. 2008.

www.tele2.no/privat/mobil/priser/datatrafikk/

[TOP] Topley, Kim . J2ME in a Nutshell.
O'Reilly. 2002.

[TPR] Telenor ASA. Telenor Data Prices.
Official homepage. 2008.

telenor.no/privat/mobil/priser

[TXC] ToolsCenter.org . ToolsCenter.org.
ToolsCenter website. USA. 2008.

www.texniccenter.sourceforge.net

[USR] Cohn, Mike . User Stories Applied: For Agile Software Development.
Addison-Wesley. Boston, USA. 11 March, 2004.

117

Bibliography Bibliography

[WLA] A QUALCOMM Company Snaptrack. Location technologies for GSM, GPRS
and UMTS networks.

Snaptrack. 2003.

www.snaptrack.com/pdf/Snaptrack_Advantage.pdf

[WOW] Blizzard Inc. World Of Warcraft.
Official Homepage. 2008.

www.worldofwarcraft.com

[ZON] Unwiredfactory. ZoneMaster.
Official homepage. 2002.

www.zonemaster.myorange.dk

118

Part VI

Appendix

Appendix A

CellID infrastructure

In Figure A.1 below, a GSM grid is illustrated in a landscape where a road passes from an
imaginary town (A) with a relative dense population into a highway area (B) with very
scarce population. Weaker antenna power is used in urban areas, this is done to make
room for more base stations with less interference. More base stations means higher total
capacity, since the population is split into several zones.

Figure A.1: A CellID grid.

Appendix B

Running CityZombie

This chapter provides information on how to install and run the CityZombie client on a
mobile phone, and the ZombieServer on a computer.

B.1 Running the server

This section contains a brief explanation on how to install and run the ZombieServer
application.

To install the server, just copy ZombieServer.jar to your computer. The �le is self-
contained and needs no special environment in which to run.

To run the server, you will need Java Runtime Environment 6.0. If you don't already
have it installed, it can be dowloaded for free from
http://java.sun.com/javase/downloads/index.jsp

To start the default server running on port 3724, you may simply double-click the Zom-
bieServer.jar �le. There are two disadvantages here. Firstly, your computer �rewall may
be blocking the port, not allowing any connections. Second, you will not see console mes-
sages like players joining your game. If you wish to decide port number yourself or wish
to see the console messags, please start the ZombieServer.jar �le in a console window. In
Microsoft Windows, console windows can be opened by pressing Start->Run, then type
�cmd� in the run-window and press ok/enter. Inside the console window, navigate to the
directory where ZombieServer is located and type:

java-jarZombieServer.jar -to open a console server window on port 3724, or

java-jarZombieServer.jar <portnumber> -to open a console server with dedicated
port.

Chapter B. Running CityZombie B.2. Running the client

B.2 Running the client

This section contains a brief explanation on how to install CityZombie on your mobile
phone. Note that this program will not work properly unless you have a 320x240 screen
resolution. Location will not work unless you have a Sony Ericsson JP-7.3 or newer phone.

To run the client on a mobile phone, the �les CityZombie.jad and CityZombie.jar needs
to be installed on the phone. Make sure you transfer the the �les from �Client for phone
testing�, otherwise location will not work. We recommend you transfer the �les to the
mobile phone via memory card, usb cable or Bluetooth. After having copied the �les to
your phone, simply press CityZombie.jar to install the game. From now on, the game
can be launched from the folder you installed it to.

122

Appendix C

Files

This appendix explains the catalog structure in the �le attachment.

C.1 Class Diagrams

This folder contains the class diagrams for the server and client architecture.

C.1.1 Client

This subfolder contains all class diagrams for the CityZombie client.

C.1.2 Server

This subfolder contains all class diagrams for the CityZombie server.

C.2 Applications

This folder contains the runnable Java applications.

C.2.1 Client for phone

This subfolder contains the CityZombie.jad and CityZombie.jar �les meant for phone
testing, will not work on emulator.

C.2.2 Client for emulator

This subfolder contains the CityZombie.jad and CityZombie.jar �les meant for emulator
testing, will not work on phone. Has a dummy variable attached as CellID value to avoid
NullPointerException.

Chapter C. Files C.3. Source Code

C.2.3 Server

This subfolder contains the ZombieServer.jar �le.

C.3 Source Code

This folder contains the source code for the developed client and server.

C.3.1 Client

This subfolder contains the game client source code.

C.3.2 Server

This subfolder contains the game server source code.

C.4 Javadoc

This folder contains javadoc for the client and server.

124

	Title Page
	Problem Description
	I Introduction & research
	Introduction
	Motivation
	Problem definition
	Summary of previous work
	Important definitions
	Project outline

	Research methods & questions
	Research questions
	Methods used

	Development methods and tools
	Development method
	Waterfall
	Scrum
	Our development method - Solo Scrum

	Development tools

	II Prestudy
	Concepts
	Mobile gaming
	Multiplayer gaming
	Location-based gaming

	Client-server networking

	Technology
	Java Platform, Micro Edition
	Java ME Architecture

	Mobile phones
	Screen
	Vibration
	Camera
	Sound
	Keypad
	Internet connection
	Location

	Mobile network technologies
	Pre GSM
	2G
	3G
	WLAN
	Comparison
	Test phones required

	State of the art
	Location-based games
	The Target
	Mogi - item hunt
	The Shroud - Harvesting
	Summary

	Game playtesting
	Playtesting candidates
	Game development stages
	Our playtesting

	III Own contribution
	A Prototype game
	CityZombie - The concept
	Gameplay overview

	Server and Client concurrency
	Client calculations
	Server calculations

	Game framework

	Requirements - The user stories
	User stories
	Client requirements
	Functional requirements
	Non-functional requirements

	Server requirements
	Functional requirements
	Non-functional requirements

	Architecture and Design
	Architectural overview
	MVC Architectural Pattern

	Client design
	Client classes
	Client models
	Client views

	Server design
	Server classes
	Server models
	Server views

	Communication
	Protocols
	Messages

	Threads

	IV Test results and user feedback
	Test results
	Infrastructure
	GSM base stations
	UMTS base stations

	Game Statistics
	Response times
	Game Data Transfer

	Playtesting results
	Summary

	Problems encountered
	Framework problems
	Java problems
	Field testing problems
	Other problems

	Requirement fulfilments
	Client Requirements
	Functional Requirements
	Non-Functional Requirements

	Server Requirements
	Functional Requirements
	Non-Functional Requirements

	V Summary
	Evaluation
	Technical evaluation
	GSM
	UMTS
	CellId
	Java ME and the Framework

	Method evaluation
	Research Methods
	Development Methods

	Research questions answered
	Conclusion
	Further work
	Extending the game
	Testing

	Bibliography

	VI Appendix
	CellID infrastructure
	Running CityZombie
	Running the server
	Running the client

	Files
	Class Diagrams
	Client
	Server

	Applications
	Client for phone
	Client for emulator
	Server

	Source Code
	Client
	Server

	Javadoc

