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Abstract 

Nortura, Norway’s largest producer of meat, faces many challenges in their operation. One of these 

challenges is to decide which products to make out of each of the slaughtered animals. The meat from 

the animals can be made into different products, some more valuable than others. However, someone 

has to buy the products as well. It is therefore important to produce what the customers ask for. 

 This thesis is about a computer system based on online optimisation which helps the meat 

cutters decide what to make. Two different meat cutting plants have been visited to specify how the 

system should work. This information has been used to develop a program which can give a 

recommendation for what to produce from carcasses during cutting. 

 The system has been developed by considering both the attributes of the animals and the 

orders from the customers. The main focus of the thesis is how to deal with the fact that the attributes 

are only known for a small number of the animals, since they are measured right after slaughtering. A 

method has been made to calculate what should be made from the different carcasses, and this method 

has been realised with both exact and heuristic algorithms.  
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Strategical planning

Operational planning

Tactical planning

Online decisions

Figure 1 Hierarchical planning 

1 Problem description 

1.1 Nortura 
The case studied in this thesis is one of Nortura’s meat cutting plants. Nortura is Norway’s largest 

producer of meat and a cooperative consisting of more than 30,000 farmers.  

“The group’s purpose is to sell the members’ slaughtered animals, eggs, live animals and wool in the best 

possible manner. The group shall through its operations contribute to the members receiving the best 

possible financial result from their livestock production.” – Nortura’s objective clause [Nortura08] 

By being a cooperative Nortura has to work in order to benefit all of its members, not only by giving 

profit to its owners, but Nortura is obliged to accept animals for slaughter from its members and to pay 

a fair price for it. This is what creates the framework for their operation.  

To accept animals from all farmers creates various challenges. The animals are not allowed to be 

transported more than 8 hours by truck [Schütz05], which means slaughterhouses have to be located in 

proximity to the farmers, while the slaughterhouses also have to be efficient enough for Nortura to 

obtain a profit from their operation. The profit is made by selling final products to paying customers.  

These challenges make up a value chain stretching from every farmer all the way to the grocery stores, 

where every part is crucial for the success of Nortura. 

1.2 Hierarchical planning 
A meat cutting company makes decisions on many levels, as can be 

seen in Figure 1. This section will explain the hierarchical structure of 

the decision process to make it easier to understand the role of online 

optimisation. 

Strategic planning - This level of planning decides the long term 

strategies of the company. These kinds of decisions involve where to 

locate new slaughterhouses in the future, which slaughter houses to shut 

down and which markets to focus on. 

Tactical planning - On this level of planning, the whole value chain is in 

scope. The value chain of meat production includes slaughtering, 

cutting, processing, logistics and sales. The time horizon is long enough to 

deal with annual variations. Some products are more popular during 

certain time periods such as Christmas. Tactical planning should make 

sure that enough is produced to cope with these variations and make 

an overall plan for the production. 

Operational planning - On this level of planning, the production for a 
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shorter period of time is in scope, typically from one to three days. The slaughtering, cutting and 

demand for a limited period is used to determine exactly what to produce during a day. The final 

production plan is decided on this level, based on the estimates from the tactical planning. 

Online decisions – Online decisions are decisions which have to be taken with limited amount of 

information. These decisions cannot wait for more information because they are crucial for the 

production. One such decision is which products to produce from an animal.  
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1.3 Making decisions for meat cutting 
The last section described the scope of online decisions. This 

section will describe decisions that have to be done while cutting 

meat. 

 After cattle are slaughtered, some parts of the animals such 

as the hooves, intestines and the head are removed. The rest of the 

carcass is sent to cutting. Here it is first measured for 

characteristics such as fat percentage and weight. During cutting, 

the carcass is cut into different kinds of products. Which products 

the carcass should be made into has to be decided before the 

production can continue. Cutting patterns have estimates of what 

can be produced from a carcass. This pattern will tell what to make 

out of each part of the carcass. When a cutting pattern is chosen, it 

will give an estimate of how much of each product the carcass will 

be made into. One pattern can have the estimates that the carcass 

will turn into 1.4% tenderloin, 3% sirloin, 49% meat containing 14% 

fat, 21% round steak, 7% shoulder steak and 4% waste. These 

estimates are not accurate and will therefore not always sum up to 

100%. This is because various factors will determine exactly how 

the cutting is done, which can result in significant variations. A 

newly recruited cutter will not be as skilled as a more experience 

cutter. He or she would leave more waste and degrade more of the 

meat into lesser quality. 

A good choice of cutting patterns will make a trade off 

between making valuable products and fulfilling the production 

plan. If there is a large demand for meat with 7.5% fat, it might be a 

good idea to choose cutting patterns which make 7.5% fat meat out of the round steak. If the 

production plan has no need for more 7.5% meat, it might be better to keep it as a round steak, since 

this is a product with higher sales value. 

1.4 Cold cutting 
 There are two different techniques used for cutting meat. The most common is cold cutting. The 

animals are slaughtered, cooled down and then moved for storage. The meat does not go bad as fast 

after having been cooled down, and this makes it easier to plan ahead. If too many animals are 

slaughtered, they can be stored in the storage and cut later. A period with less slaughtering will make it 

necessary to reduce the size of the storage. This has been the most common practice for years because 

of the flexibility the storage provides, and due to the technical difficulties with cutting warm meat. 

When the meat stays on the carcass during storage, the meat will not be able to shrink since it is 

attached to the bone structure of the carcass. This has until now made it less desirable to cut the meat 

before storage, since the meat will become less tender when it shrinks. 

Figure 2 Production line a) Animals 
lined up for slaughtering b) Animals 
are measured c) Carcasses ready for 
cutting d) Cutting pattern is chosen 
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1.5 Warm cutting 
 Another technique is warm cutting. During warm 

cutting, the carcasses are being cut right after being 

slaughtered. The carcass has not been cooled down and is 

still warm. Cutting through warm carcasses improves the 

working environment since the cutters do not have to 

worry about keeping their fingers or their body warm while 

touching the meat and standing in a cold room. But the 

comfort of the workers is not the main reason for warm 

cutting. Warm cutting does not need a storage facility for 

the carcasses, but might need additional storage for live 

cattle. This is because warm cutting is less flexible to vary 

the speed of the slaughtering since the slaughtered animals 

have to be cut right away. Another advantage is the fact 

that the carcasses are being processed much faster. This 

leads to less stock line and a higher rate of turnover, which 

is good for profitability. While carcasses are being stored, 

some of the water dries out from the meat. This leads to a 

weight loss of the carcass which will eventually lead to a 

weight loss in the products. When the carcasses are being cut right away, this weight loss will not 

happen since the moisture do not have time to leave the meat. Cattle cut with warm cutting will 

therefore have less waste than those cut with cold cutting. Packing the meat right away does also create 

some challenges. The meat will shrink because it has no bone structure to keep it stretched. This 

problem has been solved with a new vacuum technology which capsules the steak in a special wrapping 

which prevents the steak from shrinking. Because of these advantages, more and more of the cutting is 

warm cutting and almost all new cutting plants which Nortura builds support warm cutting.  

1.6 Packing 
 The products are not quite ready for delivery even if the meat has been cut from the carcass. 

The meat has to go through one more step where the final products are made. Except for the vacuum 

packed steaks, cold cutting and warm cutting will produce the same type of meat. The quality is the 

same regardless of the technique used under production. Products such as sausages, ground meat and 

bacon will be made out of the meat. The meat will then either be packaged into the final wrapping or 

sent to another cutting facility. The reason why meat is sometimes shipped between cutting facilities is 

to even out the capacity or to enable different cutting facilities to produce different products. At some 

stages of the production the meat can be sent to freezing to be stored for later use. 

  

Figure 3 Meat cutting 
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1.7 Choosing the cutting pattern 
Which cutting patterns are used can have 

drastic results on what is being produced. If this 

task is left for each cutter to decide, it will be 

impossible for him to have an overview of which 

products are needed the most. The orders for the 

day have to be fulfilled, but how much is left to 

fulfil will vary during the day because of the 

continuous production. Today this is solved by 

having one person responsible for monitoring the 

production. He or she will know which products 

are needed the most and give the cutters 

recommendations on how to cut the carcasses. It 

is not possible for him to tell each and every 

cutter what to do. Instead; one recommendation 

is given for all the cutters to follow.  This is done 

on a whiteboard with directions to follow as to what should be made out of certain parts of the animal. 

It is therefore not possible to make decisions for individual carcasses with this system. A large part of the 

carcass will be used for different selections of meat. Selections are mixtures of different kind of meat 

and are graded by the fat percentage. As shown in Figure 4, excess meat should be added to the 18% fat 

selection, the shoulder part should be used for the 5% selection and so on.  

1.8 Computer aided decisions 
There has already been developed a system to help chose cutting patterns for cold cutting. This 

method uses the measured carcasses in storage to calculate how many carcasses should be cut with 

each cutting pattern. An offline algorithm is an algorithm which has all necessary information available 

at the start of the execution [Albers97].  The method for cold cutting can therefore be called an offline 

algorithm since all the carcasses used for the calculations are already measured. These measurements 

measure the fat percentage of the carcass and give the carcass a classification. This classification defines 

which cutting patterns can be used on the carcass. The offline algorithm can use a large number of 

carcasses for its calculations. It is therefore possible to view the carcasses as a continuous amount of 

carcasses instead of discrete numbers without losing too much precision. Such problems can be solved 

with linear programming. The offline algorithm might conclude that 102.6 carcasses will be cut with a 

certain pattern, which is rounded off to 103. This can help the supervisor to know what to recommend 

to fulfil the production of the day.  

Figure 4 Today’s solution 
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Figure 5 Carcasses during production 

Not all the carcasses 

are measured at the same time 

when using warm cutting. Only 

a few carcasses are measured, 

and only these can be used to 

calculate which cutting pattern 

to use. These are represented 

by the red sections in Figure 5.  

A decision has to be made from 

this limited knowledge. An 

online algorithm is an algorithm 

which makes decisions before 

all the data concerning the 

problem is available [Albers03].  

The method for choosing the 

cutting pattern to use for warm cutting is therefore an online algorithm. How many carcasses are being 

measured at a time can vary between production plants. Nortura’s plant at Rudshøgda is supposed to 

have 10 measured carcasses at any given time during production.  To calculate each carcass individually 

becomes much more important with as few as 10 carcasses, since rounding off 0.5 carcass is a significant 

portion of the total. More and more carcasses will have been cut throughout the day. Since the total 

number of carcasses for a day is constant, the amount of unmeasured carcasses will shrink accordingly. 

This can be seen in Figure 5 which illustrates how unmeasured carcasses become measured carcasses 

and then cut carcasses. 

1.9 Finding good solutions 
For the computer aid to be of any use, it has to give recommendations which will make it easier 

for the cutters to fill the production quotas from the production plan whilst making the most valuable 

products. Nortura has already experience with defining the goal of the computer system for cold cutting. 

To produce a product without an explicit need will be given a lower value than to produce a product 

which fills the production quota. The same system can be used for warm cutting, since warm cutting and 

cold cutting produce the same products. 

The challenge with choosing cutting patterns for warm cutting is that only a few of the carcasses 

have been measured. What to produce can only be decided for the measured carcasses, since the 

quality of the unmeasured carcasses is unknown. It is impossible to know if a later carcass is even better 

suited for making a certain product than the one which is about to be cut, but it is necessary to make a 

decision fast. A decision support system should recommend cutting patterns which are likely to give 

good results when the production from all the carcasses is summed. The recommendation has to be 

given before new carcasses are queuing up, since this would create a bottleneck in the production. To 

be sure that the recommendation system does not delay the production, the maximum time for giving 

the recommendation should be in a matter of seconds, typically 6 seconds for a plant like the one at 

Rudshøgda.  

06:00

08:00

10:00

12:00

14:00

16:00

18:00

Cut carcasses Measured carcasses Unmeasured carcasses
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1.10 Adjustments at the work place 
The purpose of computer aid is to make it easier to produce close to the production plan whilst 

not degrading quality meat into less valuable products. The system for cold cutting makes it easier to 

give good recommendations for what to cut; it does not however take into account individual 

differences between the carcasses. The system for warm cutting would give an individual 

recommendation for every carcass. This would require a new system to inform the cutters. This could be 

done by stamping each carcass with the cutting pattern to use or by installing a monitor for each cutter.  

Requirements: 

-give recommendations which in average will be better than the system used today 

-execute fast enough in order to not create a delay in the production 

-not add a significant amount of extra work for the employees 
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2 Model description 
This section will describe how the meat cutting problem is represented as a model. The model will 

represent the problem as an optimisation model using the following definitions. 

2.1 Definitions 

Indexes 

c: carcass, every carcass being cut is defined as an individual carcass. 

a: cutting pattern. 

p: product, what is produced from the carcasses. 

Variables 

xc,a:  
1 if carcass 𝑐 is cut with cutting pattern 𝑎

0 otherwise
   

vp: regular production of product p. This is production which is planned in the production plan. 

sp: surplus production of product p. This is production which is not specified in the production plan. 

up: unsatisfied demand for product p. This is the part of the production plan which is not fulfilled. 

Constants 

Pa,p: percentage of the carcass  which becomes product p while using cutting pattern a. 

Wc:  weight of carcass c. 

Dp: quota for product p, how much it has been planned to be produced of this product. 

Lp: loss or penalty for each kg of demand for p not fulfilled. 

Vp: value of planned production of product p per kg. 

Tp: value of surplus production of product p per kg. 
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2.2 Data 
This section will describe the data used in the model. The model is based on the data from Nortura’s 

data system. Only data available from their system will be used in the model since this is the only 

information which can be easily gathered automatically. By using only the information from the 

database without any manual adjustments, less maintenance will be needed when the data is altered. It 

is therefore a goal to make the program as generic as possible concerning the input and be oblivious to 

the actual properties of the data. A generic solution will not differentiate between what the input 

represent as long as it uses the same format as the original problem. This means the program will be 

able to solve the same problems for pigs, sheep or any animal which is cut according to a cutting pattern. 

Products – all the products from Nortura’s databases is extracted and included in the model even if they 

are not relevant for today’s production. To extract only the relevant products would require added 

complexity and make the program less flexible to changes. As long as the excess products will not slow 

down the calculations significantly all will be considered, otherwise the number will be reduced after 

loading.  

Each product has a price per kilo. This price is used to calculate the value of the production. The 

value of surplus production can be set individually to reflect the anticipated need of the product in the 

future. If no value is set, a base value of B% is set while a penalty of F kroner is subtracted representing 

the cost of freezing the product.  Typical values for B and F would be 60% and -5 kroner respectively. 

Carcass type – the animals are classified according to their age, fat percentage and gender. 

Cutting patterns – cutting patterns tell which products to make from a carcass. Only a few cutting 

patterns can be used for each carcass type. A cutting pattern contains a list of the products which will be 

produced when using that particular pattern. For each product in the list, there is also a percentage 

which tells how much of the carcass is expected to turn into that product. The sum of all the products 

should turn into the weight of the original carcasses. This is not always the case since there will be 

inaccuracies in practice. Not all possible cutting combinations are described in a cutting pattern. The 

most useful combinations have been picked out to limit the number of patterns. There exist other 

cutting patterns which would give even better results, but experience has shown that present cutting 

patterns are satisfactory. 

Carcasses – production data is necessary to run a model of the production line. The carcasses being 

measured will be fed to the system one by one. Historical data of slaughtered carcasses will be used for 

test cases. The historical data will then be revealed one carcass at a time for the online system to 

simulate real time production. 

Production plan – a production plan is a goal for what should be produced of each product during a time 

period. This time period is for Rudshøgda one day. The production plan does not have to be satisfied 

strictly, but it should be followed as long as no large sacrifices are made. Large underproduction will hurt 

the relationship to customers, while sacrifices will hurt the profit. The whole production plan for a 

period is available at the beginning of the period. Historical data can be used for production plans as 

long as the time period matches the time period of the carcasses slaughtered. 
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2.3 Offline Model 
The offline model describes how the problem would be solved if measurements of all the carcasses were 

available before the optimisation model starts. 

 The objective function consists of three parts. The first part tries to maximise the value of the 

regular production. This is the production which is scheduled in the production plan. The second part 

tries to maximise the value of the surplus production. This production is not in the production plan, but 

it is still important not to let resources go to waste even if it is not an immediate demand for the 

product. The value for surplus production is typically a portion of the value of regular production of the 

same product. The third part subtracts a penalty for each product in the production plan which is not 

satisfied. This is a similar function to what has been used for optimisation for meat cutting of cold 

carcasses. There is no fundamental difference in the objectives between cold and warm cutting, and 

what has been learnt from cold cutting should therefore be used to make this objective function. 

Objective Function 1 

𝑀𝑎𝑥 𝑉𝑝 ∗ 𝑣𝑝
𝑝

+  𝑇𝑝 ∗ 𝑠𝑝
𝑝

−  (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

 

 Constraint 1 defines the relationship between chosen cutting pattern and produced products. 

The left side says that each carcass turns into the amount of each product which is defined by the 

chosen cutting pattern. The right side says the production is either turned into regular production or 

surplus production. Regular production will always have higher priority than surplus production since it 

is valued more highly in the objective function.  

Subject to: 

Constraint 1 

   𝑥𝑐 ,𝑎 ∗ 𝑃𝑎 ,𝑝 ∗ 𝑊𝑐 = 𝑣𝑝 + 𝑠𝑝 ,∀𝑝

𝑎𝑐

 

Constraint 2 makes sure only one pattern is chosen for each carcass. 

Constraint 2 

 𝑥𝑐 ,𝑎

𝑎

= 1,∀𝑐 

Regular production cannot be greater than what is planned in the production plan. 

Constraint 3 

𝑣𝑝 ≤ 𝐷𝑝 ,∀𝑝 

The sum of the regular production and the unsatisfied production equals the production plan. 
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Constraint 4 

𝑣𝑝 + 𝑢𝑝 = 𝐷𝑝 ,∀𝑝 

Constraint 5 and Constraint 6 define the range of the variables. 

Constraint 5 

𝑣𝑝 ,𝑢𝑝 , 𝑠𝑝 ≥ 0, ∀𝑝 

Constraint 6 

𝑥𝑐 ,𝑎 ∈  0,1 ,∀𝑐, 𝑎 

This optimisation model is a representation of the consequences the choices of cutting patterns have. 

With the assumption that the data and the model represent the real problem well, a maximisation of 

this model will decide which cutting pattering is the best choice for each carcass.  

2.4 Problem size 
 How easy it is to find the optimal solution depends on the size of the problem. The size of the 

problem can be described by the number of variables and constraints. This model contains both binary 

and continuous variables. Binary variables will in worst case pose the largest computational difficulties 

in this problem, since this problem is related to 0-1 integer programming which is NP-hard [Karp72].  

 Table 1 shows the typical number of carcasses, products and cutting patterns for Nortura. 

Table 1 Example of problem size 

 Number of elements 

Carcasses (c) 200 

Products (p) 1000 

Cutting patterns (a) 400 
 

The number of non-trivial constraints is shown inTable 2. Non-negativity constraints and binary 

constraints are here considered trivial constraints. The total number of constraints are 3 * p + c. This will 

with the sample from Table 1 give a total of 3200 constraints. 

Table 2 Number of constraints 

Constraint type Number of constraints 

Constraint 1 p (product) 

Constraint 2 c (carcass) 

Constraint 3 p (product) 

Constraint 4 p (product) 

Total 3 * p + c (3 * product + carcass) 
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There are three types of continuous variables in the model, 𝑣𝑝 , 𝑢𝑝  and 𝑠𝑝 . This will with the sample from 

Table 1 give a total of 3000 continuous variables. 

Table 3 Number of continuous variables 

Continuous variable Number of continuous variables 

𝑣𝑝  p (product) 

𝑢𝑝  p (product) 

𝑠𝑝  p (product) 

Total 3 *p  (3 * product) 
 

𝑥𝑐 ,𝑎  are the only type of binary variables. The number of binary variables is with the numbers from the 

sample in Table 1 give a total of 80000 binary variables. 

Table 4 Binary variables 

Binary variables Number of binary variables 

𝑥𝑐 ,𝑎  c * a (carcass * cutting pattern) 

Total c * a (carcass * cutting pattern) 
 

The 80000 binary variables can pose a problem. The optimisation would take very long to finish if a large 

number of combinations of these variables have to be explored. The numbers used here is a theoretical 

worst case. The numbers can be reduced considerably if domain knowledge is used to exclude irrelevant 

information and impossible states. 

Some of the variables and constraints can be removed without changing the results. Not all of 

the 1000 products in Nortura’s example are relevant for the problem. Most of these products are not 

made before packing stage of the production. Only a limited number of the 40 products are made during 

the cutting stage. The number of carcasses cannot be reduced since every carcass is unique when it 

comes to weight and carcass type combination. Even though every carcass in theory can be combined 

with any cutting pattern, this is not the case in practice. Only a limited number of the cutting patterns 

can be used for each carcass. This number is usually between 5 and 20. By only considering the possible 

number of cutting patterns and not every cutting pattern, the elements in c will be reduced from 1000 

to 20. With these reductions, the numbers in Table 1 can be reduced to those in Table 5. 

Table 5 Example after problem size reduction 

 Number of elements after reduction 

Carcasses (c) 200 

Products (p) 40 

Cutting patterns (a) 20 
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Even after this reduction, the time to find optimum is very much dependent on how many of the binary 

variables which have to be explored. It could in worst case be impossible to solve with 4000 binary 

variables, but the nature of the problem will most likely not be close to a worst case. 

Table 6 Reduced problem 

 Numbers after reduction 

Constraints 320 

Continuous variables 120 

Binary variables 4000 
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2.5 Performance analysis 
This section will look at a theoretical analysis of the performance of methods for choosing cutting 

patterns. It is a continuance of the work done in [Wikborg07] and gives insight to the problems with 

creating a model for the online algorithm.  

2.5.1 Minimising unsatisfied demand 

The objective function of the model which minimises the unsatisfied demand can be written as 

Objective Function 2 [Wikborg07]. The problem is written as a minimisation of cost instead of a 

maximisation of value because this makes competitiveness analysis easier. 

Objective Function 2 

𝑀𝑖𝑛 (𝑢𝑝 ∗ 𝐿𝑝)

𝑝

 

The competitiveness of the online algorithm A is defined as Inequation 1, where fA is the cost of the 

online algorithm, f0 is the cost of the optimal offline algorithm, b is a constant, C is the competitiveness 

factor and p1, p2, … , pn is a sequence of requests [Motwani95]. 

Inequation 1 

𝑓𝐴 𝑝1 ,𝑝2 , … , 𝑝𝑛 − 𝐶 ∗ 𝑓0 𝑝1 ,𝑝2 ,… , 𝑝𝑛 ≤ 𝑏, ∃𝑝1 ,𝑝2 , … , 𝑝𝑛  

A special characteristic of this problem is the fact that the offline algorithm can have zero cost. In the 

case where the offline algorithm has zero cost and the online algorithm has a positive cost, the 

competitive ratio will always be unbounded. In the following example there will be two cutting patterns 

and two products with the output shown in Table 7. 

Table 7 Two carcass example 

 Product 1 Product 2 

Pattern 1 100% 0% 

Pattern 2 0% 100% 

 

In this example there is a sequence of two carcasses, both weighing w kg. The demand for each product 

is also 200 kg. The first carcass can be cut with any of the cutting patterns. Which cutting pattern the 

second animal can be cut with is unknown at the moment the first cutting pattern is chosen. 

 With an adaptive adversary, the available cutting patterns for carcass #2 will simply be set to 

the same pattern as the carcass #1 has been cut with, see Figure 6. This will force the online algorithm 

to use the same pattern for both carcasses and produce w kg of one product and 0 kg of the other. Since 

the offline algorithm would know which pattern was available for carcass #2 it would simply have 

chosen the other for carcass #1 and therefore satisfied all of the demand. With the assumption that 
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there are penalties for not fulfilling a demand, this will lead to a positive cost for the online algorithm 

and 0 as the cost for the offline algorithm. The right hand side b of Inequation 1 would therefore have to 

be equal to the weight w to satisfy the equation. Since w is a variable, no constant for b can ensure this 

property for every weight w, and the algorithm is therefore unbounded. 

Choice of 

cutting 

pattern for 

carcass 1

Available 

cutting 

pattern for 

carcass 2

Cutting pattern 1

Available 

cutting 

pattern for 

carcass 2

Cutting pattern 2

Cutting pattern 1

Cutting pattern 2

Cutting pattern 1

Cutting pattern 2

w

0

w

0

 

Figure 6 Unsatisfied demand for the online algorithm 

For the oblivious adversary, it is not possible to choose the patterns for carcass #2 to always be 

the same as the one used for carcass #1. The oblivious adversary can chose a random pattern to be 

available for carcass #2. Since the algorithm will have no way of anticipating which pattern is available 

for carcass #2, it will on average choose the same pattern for carcass #1 50% of the time When this 

happens, the penalty will be the same as with an adaptive adversary, w. When the other pattern is 

chosen there will be no penalty. The average penalty will therefore be w/2 while the worst case penalty 

will be w. Since the offline algorithm will always give perfect results without any penalties, this will lead 

to an unbounded competitiveness in a similar way as for the adaptive adversaries. 

  



- 16 - 
 

2.5.2 Maximising value 

As shown in [Wikborg07] see Appendix A, the competitiveness of the online version of the value 

maximising problem is 1-competitive since it performs identically to the offline version. A value 

maximising problem is a problem which does not consider the production plan, but only look at the 

product value. 

2.5.3 Combined objective function 

The objective function which both minimises the unsatisfied demand and maximises the value can be 

written as Objective Function 3 [Wikborg07]. The objective function has been converted to a 

minimisation function to make competitiveness analysis easier. 

Objective Function 3 

𝑀𝑖𝑛 (𝑢𝑝 ∗ 𝐿𝑝)

𝑝

−  (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

−  (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

 

The first part of this function is identical to the objective function for minimisation of unsatisfied 

demand, while the other part increases the value of the products produced. If the constants can be 

assigned any value, the values for all of the Vp and Tp could be equal to zero. This will lead to an identical 

analysis as is the case with Objective Function 2 which leads to an unbounded competitiveness factor. 

Even with Vp and Tp above zero, the competitiveness will be unbounded without restrictions in the 

relationship between Vp, Tp and Lp.  

2.5.4 Maxmin 

Maxmin is a method of maximising the value of the worst case scenario. The method for achieving this is 

trivial for the online meat cutting problem and the complete objective function as shown in Objective 

Function 4 will therefore be used right away. 

Objective Function 4 

𝑀𝑎𝑥 (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

+  (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

−  (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

 

It is not possible to guarantee any value from the unmeasured carcasses. This can be proven by the fact 

that there is no lower bound on the weight of the carcasses. The minimal value will therefore be the 

value of the measured carcasses. To create the maxmin value for the problem, the minimal value has to 

be maximised. This can be done by maximising the value of the measured carcasses without considering 

the unmeasured carcasses. 

2.5.5 Minimax regret 

Regret is defined as the difference between the online solution and an optimal offline solution. While a 

competitiveness ratio uses the ratio between the online solution and the optimal offline solution, the 

minmax regret method will instead minimise the regret. An example would be to choose between two 

options, A1 and A2.There are two possibilities of how the future will be. In one possible future, A1 will 

yield 60 in utility while A2 will yield 40. In the other possible future these numbers will be 10 and 20.  
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 From the point of view of competitiveness, the worst case for A1 would be future 2 where it 

yields 1/2 of the maximum profit. The worst case for A2 would be future 1 where it yields only 2/3 of the 

maximum profit. A2 would therefore be chosen as the best alternative. By using minimax regret, the 

worst case for A1 would be future 2 with a regret of 10. The worst case of A2 would be future 2 with a 

regret of 20. This means that a different solution will be chosen by using the minimax method instead of 

a competitiveness ratio. 

Table 8 Minimax regret example 

 A1 A2 

Future 1 60 40 

Future 2 10 20 

Maxiumum regret 20 – 10 = 10 60 – 40 = 20 

 

Minimax regret can also be used for the meat cutting problem. With the purely profit maximising 

objective function, the results will be just the same as with competitiveness ratio. The offline and online 

algorithm will perform identical and the regret will be zero.  

The example described in Figure 6 can be used to analyse how minimax regret will perform with 

Objective Function 3, which only emphasises on satisfying the demand. There is no guarantee that the 

online algorithm will be able to fulfil any more of the demand after the first cutting pattern has been 

chosen. The offline algorithm may on the other hand fulfil all of the demand. This can be used as an 

upper bound for the regret. The online algorithm will know for sure how much of the demand it can 

fulfil with the measured carcasses, but it cannot guarantee that any of the unmeasured carcasses will 

count towards the unfulfilled demand. This upper bound is easy to achieve by only considering the 

measured carcasses and assume that the unmeasured carcasses will produce nothing while doing the 

optimisation. This method will most likely not perform very well in practice. It will only look at short 

term benefit and in the beginning produce mainly products which have a large penalty for unsatisfied 

demand. This can lead to overproduction of certain products. 

2.5.6 Relationship with the real problem 

 The production plan is usually made to reflect the animals being slaughtered that day. This 

means the extreme cases discussed above are very unlikely to occur.  Even if it could happen, what is 

important for the Nortura is the average profit or the expected value and not to minimise the regret or 

competitiveness ratio. Since the production plan usually is achievable or close to achievable with normal 

production, overproduction is likely to happen. This can be prevented by adjusting the production plan 

to only consider a portion of the total plan. If only 10% of the animals are measured, these animals can 

be expected to produce 10% of the total plan. This would be a fair estimate as long as the variation 

between the early and the later animals is not too large. This technique will from now on be referred to 

as an adjusted production plan. 
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3 Online model 
The online model describes how the problem would be solved if measurements of the carcasses become 

available one at a time while the optimisation model is run, as can be seen in Figure 5. The problem of 

determining what to make out of the first of the measured carcasses will from now on be called the sub 

problem, while the problem of finding out what to make out of every carcass will be called the master 

problem. The master problem therefore consists of one sub problem for each carcass which is being cut. 

 As shown in the performance analysis section, there is no guarantee that the unmeasured 

carcasses will make any valuable products at all. A natural approach to an online model would therefore 

be to maximise the value of the measured carcasses without considering the unmeasured carcasses. The 

model for this sub problem would be very similar to the offline model, but only consider the measured 

carcasses instead of all carcasses. 

The goal of this model would be the same as for the offline model, to maximise the total value. 

The objective function will therefore be identical. The restrictions will look identical as well, but the 

difference lies in the number of variables. The 𝑥𝑐 ,𝑎  variables will only be created for the measured 

carcasses and the set of carcasses c will therefore include a lot fewer members in the sub problem than 

in the offline model. While the offline model decide which cutting patterns to use for all the carcasses, 

the model for the sub problem only makes a decision for the first carcass. The model will be run again 

with new data for each carcass to solve the master problem. 

Objective Function 5 

𝑀𝑎𝑥 (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

+  (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

−  (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

 

Subject to: 

Constraint 7 

   𝑥𝑐 ,𝑎 ∗ 𝑃𝑎 ,𝑝 ∗ 𝑊𝑐 = 𝑣𝑝 + 𝑠𝑝 ,∀𝑝

𝑎𝑐

 

Constraint 8 

 𝑥𝑐 ,𝑎

𝑎

= 1,∀𝑐 

Constraint 9 

𝑣𝑝 ≤ 𝐷𝑝 ,∀𝑝 

Constraint 10 

𝐷𝑝 = 𝑣𝑝 + 𝑢𝑝 ,∀𝑝 
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Constraint 11 

𝑣𝑝 ,𝑢𝑝 , 𝑠𝑝 ≥ 0, ∀𝑝 

Constraint 12 

𝑥𝑐 ,𝑎 ∈  0,1 ,∀𝑐, 𝑎 

The online model will look identical whether the adjusted production plan is used or the full 

production plan. The difference will be in 𝐷𝑝 .The value of 𝐷𝑝  will be adjusted between each instance of 

the sub problem. After the cutting pattern has been determined for one carcass, the production from 

this carcass will be added to what have been produced so far. With a full production plan, the difference 

between the production plan and the production so far will be used directly as a goal for the sub 

problem. With an adjusted production plan, only a fraction of the production plan will be used. This 

fraction is equal to the fraction of the remaining carcasses which are measured. An example would be if 

there were 60 uncut carcasses and 10 of these are measured. Only 10/60 or 17% of the unsatisfied 

production will be used in the adjusted production plan. 

3.1 Heuristics 
Heuristics can be used to create a solution for an optimisation problem without a guarantee of an 

optimal solution. The core of many heuristics is a local search. A local search requires a neighbourhood 

structure for the states of the problem. Many neighbourhood structures can be used to describe the 

same problem, and how the neighbourhood structure is defined can have large consequences on the 

performance of the search [Gendreau02].  A neighbourhood structure describes how to move from one 

solution to another, even if these solutions are not feasible. 

A feasible solution for the meat cutting problem described in this paper is when each carcass 

has assigned one cutting pattern. Every carcass can be represented with a vector for all the available 

cutting patterns. One value in the vector will be 1 while the rest is 0. This binary value will determine 

which cutting pattern is used for the carcass, see Table 9. Not only is this a neighbourhood structure, but 

the structure also span all feasible, but no infeasible solution. It will therefore not be necessary to check 

for feasibility when exploring the neighbourhood. 

Table 9 Data structure 

 Carcass 1 Carcass 2 Carcass 3 ... Carcass N 

Pattern 1 0 1 0 0 1 

Pattern 2 0 0 1 0 0 

Pattern … 1 0 0 0 0 

Pattern N 0 0 0 1 0 
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By reassigning a carcass to a new cutting pattern, a move in the neighbourhood structure will be 

performed. This would be done in the data structure by changing one vector by moving the value 1 to 

another position. The search neighbourhood can be defined by a change in any single vector. For the 

example in Table 9, every carcass has 4 possible cutting patterns. A single cutting pattern for one carcass 

can therefore be changed to any of the other cutting patterns. By this definition of search 

neighbourhood, this can be done for only one carcass at a time. The number of neighbours is therefore 

equal to the number of unused patterns times the number of carcasses. 
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Figure 7 Global and local optimum 

3.2 Local search 
A local search,can be performed on this search neighbourhood to find a local optimum. One way 

of doing this is to cycle through the carcasses and to pick the cutting pattern which gives the best value 

for the objective function at each step. Eventually this method will no longer make any changes. This 

means that it has found a local optimum since none of the neighbours has a higher value [Rardin98].  A 

feasible solution can be a good start location for the local search. One possibility would be to assign 

cutting pattern 1 to all the carcasses. This would lead to the same solution every time. Another 

possibility would be to assign random cutting patterns to every carcass. By running the model again, a 

new starting position would be used and a local optimum would be found again. This optimum can be a 

worse optimum, the same, or hopefully a better one. If the first optimum found is the local optimum B 

in Figure 7, a new starting position further to the left might find the global optimum A instead. 

The easiest method to use the neighbourhood structure to improve a solution is to perform a 

local search. A local search searches through its neighbourhood for a local optimum. There is no 

guarantee that the local optimum is the best global solution. This is illustrated in Figure 6. Point B is a 

local optimum, and none of its neighbours have a higher value. Point A does however have a higher 

value and is for this graph segment a global optimum. 

A local search can be performed on the data 

structure described for the meat cutting problem. 

This can be done by cycling through all the carcasses 

and pick the cutting patterns which maximises the 

total value. Since changing the cutting patterns will 

change the total production made of each product, 

a product which used to be in demand can suddenly 

become abundant. Since this will make other 

cutting patterns seem more valuable, changes 

might have to be done to carcasses already assigned 

a cutting pattern. The changes will always increase 

the objective value. Only a limited number of changes 

can therefore be made before a local optimum is found. The local optimum might not be the global 

optimum. To increase the chance of finding a good optimum, the algorithm can be run several times 

with different starting positions. 

 An advantage of the local search is that it is generally a simple algorithm which will execute fast. 

The results can vary a lot depending on the problem’s neighbourhood structure and how easily the 

algorithm can get stuck in a local optimum which is much worse than the global one. 
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Figure 8 New individuals 

3.3 Genetic Algorithms 
One type of heuristics is based on the evolutionary processes seen in nature. The genes of an 

organism form the basis traits of the organism. Changing these genes will also change the traits of the 

organism. The genes can change through different methods from generation to generation. 

Reproduction will let the next generation inherit some of the genes from the ancestors, while mutations 

can form new genes which has never been in any of the ancestors before. 

 Genetic algorithms represent the data as a gene structure [Reeves93]. Each gene represents a 

part of the solution. In the data structure described in Table 9, each column can be considered a gene 

while the whole table is an individual. An individual can therefore be looked upon as one possible 

solution, although it might not be a good solution.  Methods for improving these solutions have been 

developed with inspiration from the evolution seen in nature.  

 

An initial population is needed to base the evolution on. This 

population consists of solutions which are made by assigning all the genes 

randomly. This can be seen in Figure 10 where there is no common origin 

for the genes. 

 

 

Mutations are made by choosing some genes from an existing 

individual while randomly assigning the other genes. Figure 9 shows how 

some of the genes are kept from the white individual, while 3 new genes 

are assigned random values. 

 

 

Crossovers from the survivors can be seen as children of the 

survivors. They are made by taking genes from two other individuals and 

mixing them together into a new individual. Figure 8 shows how a white 

and a blue individual are crossed to make a third individual with genes from 

the two other.  

 

 

 

  

Figure 9 Mutations 

Figure 10 Crossovers 
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3.3.1 Evolution through generations 

Different individual will have different combinations of genes. A group of individuals is called a 

population. The goal of genetic algorithms is to evolve fit individuals through evolution. A fitness 

function is used to evaluate how fit an individual is. A 

fit individual is the term used for good solutions. The 

fitness function for the online problem would 

therefore be the objective function seen in Objective 

Function 5. 

Genetic algorithms can be broken down into 6 

steps as seen in Figure 11. 

1) An initial population is generated. This can be 

done randomly by generating a number of individuals 

by giving them a set of random genes. 

2) Evaluation of population. In this step the 

population is evaluated by calculating the fitness value 

of the individuals in the population. 

3) Continue? In this step a choice has to be made 

to either accept the current solution or continue to 

look for better solutions. When to quit is often decided 

either on the fitness of the best solution or after a 

certain number of iterations of the algorithm. 

4) Some of the individuals are chosen to survive 

to the next generation. Each iteration of the loop 

consisting of steps 2, 3, 4 and 5 is considered a 

generation. The fittest individuals are typically chosen 

to survive while the others are removed from the 

population. 

5) The individuals which got selected in step 4) are used to form the basis of a new generation of 

individuals. There are 4 types of individuals in the next generation. 

 

i. Survivors from the last generation 

ii. Brand new individuals, see Figure 8. 

iii. Mutations from the survivors, see Figure 9. 

iv. Crossovers from the survivors, see Figure 10. 

The population can be kept constant by always creating as many new individuals as the ones 

being removed in step 4.  The algorithm will go back to step 2 after step 5 is finished and a new 

generation is ready to be evaluated. 

6) The final population is the current population at the last generation. The population becomes 

better and better with each generation, and the final population is therefore likely to consist of 

1. Initial 

population

2. Evaluation 

of population

4. Selection

6. Final 

population

3. Continue? Yes

No

5. 

Reproduction

Figure 11 Genetic Algorithm 
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fit individuals. The best of these individuals can be chosen as the final solution and be 

considered the output of the algorithm. 
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4 Implementation 

4.1 Offline solution 
The offline solution is very closely related to the offline model. Any implementation of the offline model 

would result in an offline solution. Since the model is a mixed integer programming model, a method for 

solving mixed integer programs is needed. A specialised language for mathematical programming is very 

well suited for solving the problem. Regular programming languages such as C++ or Java can also be 

used, but would require additional programming since the model is harder to represent without a 

mathematical programming language. 

4.1.1 Implementation tools 

Various tools can be used to implement the model. Certain requirements have to be fulfilled for a tool 

to be well suited. 

Requirements: 

1. Easy to learn 

2. Giving good results 

3. Fast development 

4. Affordable 

5. Well suited for the model 

Xpress from Dash Optimization has to be evaluated based on these requirements in Table 10. Xpress is 

optimiser software for solving various kinds of optimisation problems such as linear programming 

problems and mixed integer problems. Xpress includes its own development environment called Xpress-

IVE for writing constriction based programs with the programming language Mosel. 
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Table 10 Evaluation of Xpress for offline model 

Requirement Description Degree of fulfilment 

Easy to learn Already known by the developer High 

Giving good results Solves the model to optimality. High 

Fast development The developer has experience 

with the tool and will therefore 

work faster than with new tools 

High 

Affordable Sintef has already paid for a 

licence for the product. Other 

companies which want to 

develop the program further 

would have to acquire their own 

licence. 

Medium 

Well suited for the model Xpress has efficient algorithms 

for solving linear programming 

problems and mixed integer 

problems [Dash08]. This is the 

kind of problems which has to 

be solved for the model. 

High 

 

Xpress scores overall very well on the requirements. The largest disadvantage is the license price other 

developers would have to pay if they want to further develop the program. This would have been less of 

a problem with open source tools or less expensive tools. The goal of the offline problem is to make an 

optimal solution which the online solution can be compared with. As a benchmark for the online 

solution, there will be little need to develop the offline solution further after the online model is finished 

since it will not be used for production. 

 Xpress fulfil requirements 1 and 3 in a way no other tool would be able to, since Xpress is the 

only tool for solving mixed integer programs which the developer has previous experience with and 

SINTEF has been using. The time it would take to learn a new tool and the risk of not performing as well 

as anticipated is too large for any other tool to be considered. Xpress will therefore be chosen without 

evaluating other options. 

  



- 27 - 
 

4.1.2 Input data 

 All the input data needed for the offline model is available from Nortura’s databases. The most 

challenging data to format is the cutting patterns. The cutting patterns are originally represented by a 

list of entries with 4 values. The ID of the cutting pattern, the ID of the product produced, the carcass 

type the cutting pattern is used on and how much will turn into this product. Multiple entries can have 

the same cutting pattern ID, because the cutting pattern can produce more than one product. A new 

entry will therefore be added for each product a cutting pattern produces. An example with 2 cutting 

patterns, 3 products and only one carcass type can be seen in Table 11. 

Table 11 Cutting pattern format 

Cutting pattern ID Product ID Carcass Type Yield percentage 

1 100 10 50% 

1 101 10 20% 

1 102 10 30% 

2 101 10 60% 

2 102 10 40% 

 

The data in Table 11 is represented by 𝑃𝑎 ,𝑝  in the offline model. 𝑃𝑎 ,𝑝  can be represented by a two 

dimensional matrix with cutting patterns and products as the two indexes. Each cell in the matrix will 

represent how much of product p will be produced by using cutting pattern a. The data from Table 11 

will be represented by Table 12 in this format.  

Table 12 Cutting pattern matrix 

 Product 100 Product 101 Product 102 

Cutting pattern 1 50% 20% 30% 

Cutting pattern 2 0% 60% 40% 
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Some information has not represented in the new table. There is no longer a carcass type associated 

with each cutting pattern. This information will be represented elsewhere by only creating xc,a variables 

for the carcasses which can be cut by cutting pattern a, see Pseudo Code 1. 

 

forall (Carcasses c) do 

 forall (Cutting patterns a) do 

  if ( Usable pattern (c, a) equals true ) then 

   create( x(c, a) )  

  end-if 

 end-do 

end-do 

Pseudo Code 1 Creating relevant variables 

 

The other data such as product price, planned production and the input carcasses are stored in the 

database in a similar format as the one used in Xpress with only minor adjustments needed. 

4.1.3 Programming 

The offline model is programmed in a language named Mosel. Mosel is a programming language 

designed for mathematical modelling. The constraints in the offline model can therefore be modelled 

directly in Mosel. Constraint 1 can be written as Pseudo Code 2. The pseudo code is identical to the 

constraint in the original model, but is no longer written as a mathematical formula.  

 

forall (Products p) do 

 SUM(Carcasses c, Cutting Patterns a) x(a, c) * P(a, p) * W(c) = v(p) + s(p) 

end-do 

Pseudo Code 2 

 

All the constraints have to be modelled in a similar way before any optimisation can be done. The 

optimisation is done by defining the objective function and asking the Xpress solver to either minimise 

or maximise this function. The objective function can be written as Pseudo Code 3. No specific value for 

surplus production has been defined, and the value is therefore set to B of regular price –F kroner per 

kilo. 

 

Value = SUM(Products p)( V(p) * v(p) + ((V(pr) * B)- F) * s(pr) -  u(pr)*L(pr) ) 

Pseudo Code 3 Objective function 
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The value defined in Pseudo Code 3 will be maximised to calculate which cutting patterns each carcass 

should be cut with to create the most value. The value of x(c, a) determines whether the cutting pattern 

should be used for carcass c or not, while the amount produced of each product is stored in the 

variables for regular production v(p) and the variables for surplus production s(p). 

4.2 Online solution 
The model can be solved optimally like the offline model or heuristics can be used to find approximate 

solutions. 

4.2.1 Implementation tools 

The model to be solved has no fundamental differences from the offline model. The only difference is 

the data the model uses, since the data is adjusted according to which carcasses have been measured. 

There is however additional requirements for the implementation of the online model. It has to be run 

for each carcass during production. That means the calculations have to be finished and present the 

results for the cutter in a matter of seconds. A larger execution time can create  

The requirements  

Requirements: 

1. Easy to learn 

2. Giving good results 

3. Fast development 

4. Affordable 

5. Well suited for the model 

6. Fast execution time 

Xpress can be used to find optimal solutions to the sub problems in the online model. An 

evaluation has been done in Table 13. Xpress is a good choice for all the same reasons it was for the 

offline solution, but for the additional requirement, fast execution time, it does not perform as well. An 

exact solution can take more time than what is available at the cutting plant, which will result in a bottle 

neck in the production. Another problem is the licensing costs. A solution will need adjustments when 

the cutting plant request changes and licenses for Xpress is a considerable expense. 
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Table 13 Evaluation of Xpress for optimal solutions of the sub problem 

Requirement Description Degree of fulfilment 

Easy to learn Already known by the developer High 

Giving good results Solves the model to optimality. High 

Fast development The developer has experience 

with the tool and will therefore 

work faster than with new tools. 

High 

Affordable Sintef has already paid for a 

licence for the product. Other 

companies which want to use 

the program further would have 

to acquire their own costly 

licence. 

Medium 

Well suited for the model Xpress has got efficient 

algorithms for solving linear 

programming problems and 

mixed integer problems. 

[Dash08]. This is the kind of 

problems which has to be solved 

for the model. 

 

High 

Fast execution time 

 

Xpress will search for an optimal 

solution for the model. Since the 

model is a mixed integer 

problem, the execution time can 

be hard to predict with no 

certain upper limit. 

Low 

 

The heuristics described in the online model section can be realised with various programming tools. 

This could for example be done in Visual Studio with C++ or Eclipse with Java. C/C++ is the de facto 

standard for implementing heuristics and will therefore be used. 
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Table 14 Evaluation of Visual Studio with C++ for heuristic solution of the sub problem 

Requirement Description Degree of fulfilment 

Easy to learn Already known by the developer High 

Giving good results Heuristics can give varying 

degree of optimality, but 

execution time can be sacrificed 

for better results. 

Medium 

Fast development The developer has experience 

with the tool and will therefore 

work faster than with new tools. 

C++ is often considered more 

vulnerable to bugs than other 

programming languages, which 

can prolong the development 

time. 

Medium 

Affordable Visual Studio available through 

NTNU or through the free Visual 

Studio Express Edition. 

High 

Well suited for the model C++ is well suited for 

implementing heuristics since it 

has got libraries including the 

needed algorithms and data 

structures. 

High 

Fast execution time 

 

Heuristics can be adjusted to 

execute fast by sacrificing 

guaranteed optimality. C++ is a 

programming language which is 

known to run fast because of 

how it is compiled into machine 

code. 

High 

As can be seen from Table 13 and Table 14, the different methods have different advantages and 

disadvantages. The heuristic solution is assumed to be faster than the exact method, while the exact 

method gives better results. Both methods are well known to the developer and implementation should 

therefore not be a problem. However, a major concern is the cost of Xpress. Licensing of commercial 

optimisation solutions can be a costly affair, and a free alternative should be used if the performance is 

equal. 
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4.2.2 Program structure for the master problem 

Various optimisation methods can be implemented in C++. Some functionality will always be 

shared by these implementations. The data has to be loaded into the program, the results have to be 

written somewhere. This makes up a common framework which the optimisation methods have to 

communicate with. This framework should provide the optimisation method with the measured 

carcasses and the production plan, while the 

optimisation method will provide the cutting pattern 

with which to use for the first carcass. The framework 

will then update the production plan according to the 

products made from the carcass, and ask the 

optimisation method to calculate what to do with the 

next carcass. The structure of the program can be seen in 

Figure 12. 

Loading data:  The data described in section 2.2 

is loaded in this phase and loaded into appropriate data 

structures. 

Initialise optimisation: This phase prepares the 

data for the optimisation method. The produced amount 

of each product will be summed. This amount will 

increase for each carcass which has been cut. Then the 

measured carcasses will be updated. For the first 

iteration, a given number of carcasses will be added as 

measured carcasses to be used for the optimisation. For 

subsequent iterations, the first carcass will be removed 

from the list of measured carcasses, because it has been 

cut, and a new carcass will be added to keep the number 

of measured carcasses constant. The number of 

unmeasured carcasses will be reduced by one. 

Choose method: This phase will simply choose 

which optimisation method to use. This is typically 

predefined by the user. 

Optimisation method: This phase solves the sub 

problem by determining which cutting pattern to use on 

the next carcass. Many methods can be used to achieve this goal, these methods are further explained 

in section 3. 

Display pattern: This phase simply displays the result from the optimisation method. This is 

where the cutters get the information as to which cutting pattern should be used for the current carcass. 

Loading data

Initialise optimisation

Local search Genetic search Other opt.method

Choose 

method

Finished?

[Yes] 

Write output

Display pattern to use

[No] 

Figure 12 Program structure 
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Finished? If there are no more carcasses to be cut, the program will start writing the outputs. If 

there are still more carcasses left, another iteration will be performed to determine what to do with the 

next carcass. 

Write output:  The program has now calculated the production of each product after all the 

carcasses have been cut. This can either be displayed as the total production of each product or the 

production compared with the production plan. 

4.2.3 Data structures 

The data described in section 2.2 has to be represented efficiently to allow fast access and 

execution. A simplified figure of the relationships between the data types can be seen in Figure 13. 

“Carcasses” is a list of the measured carcasses. Each carcass has a weight and a carcass type. Each 

carcass type can be cut with a predefined number of cutting patterns. No cutting pattern can be used for 

more than one carcass type. Each cutting pattern turns a percentage of the carcass into each product. 

The production plan defines how much of each product is the production target. 

-CarcassType

Carcass

-CuttingPatternSet

Carcass Type* 1

-ProductVector

-PercentageVector

Cutting Pattern

1

*

-Price

Product * *

-ProductVector

-QuantityVector

Production Plan 1 *

-CarcassVector

-WeightVector

-CuttingPatternVector

-CuttingPatternMap

Carcasses

1 *

*

*

 

Figure 13 Data relationships 

While loading the data, the cutting patterns are read line by line in the format show in Table 11. 

New elements have to be added each time a new carcass type or cutting pattern is encountered.  Each 

carcass type is placed in a map linking its ID to the appropriate object. The same is done for cutting 

patterns. This makes it much easier to set up the appropriate linking since the numbers read in from the 

data sources can be used to look up the objects in the maps instead of traversing long arrays. 

During execution of the heuristics, the most common operations are to assign cutting patterns 

to the carcasses and to calculate the value of the chosen cutting patterns. The cutting pattern is 

assigned by putting the Cutting Pattern in the CuttingPatternVector which matches the Carcass in the  

CarcassVector. To find which cutting patterns can be used for that particular carcass, the following steps 

have to be followed: 

-access the carcass from the CarcassVector in Carcasses 

-find the carcass type from CarcassType in Carcass 

-access the Cutting Patterns in the CuttingPatternSet in CarcassType 
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This set will contain all the cutting patterns which can be used for the carcass. 

To calculate the value of a set of cutting patterns, the total production of each product has to be 

summed up, as can be seen in Pseudo Code 4. The value of the production depends on the production 

plan, since some of the products are considered regular production while others are surplus production. 

Penalties will also be added for unsatisfied demand. 

 

forall( Carcasses a ) do 

 forall( Products p ) do 

production(p) += weight(a) * PercentageVector(CuttingPatternVector(a)) 

 end-do 

end-do 

Pseudo Code 4 Summation of the production 

 

The calculation of the total value of the normal production, surplus production and penalties is 
done in Pseudo Code 5. The normal production is given full price, while the price of the surplus 
production is reduced to B% of the regular production and given a penalty of F kroner per kilo. 
 

 

forall( Products p ) do 

 value += product.price * MIN( production( p ), ProductionPlan( p ) ) 

 value += ((product.price *  B ) –  F ) * MAX(  production( p ) –     ProductionPlan( p ) , 0 ) 

 value -= product.penalty*(ProductionPlan( p ) – MIN(production( p ), ProductionPlan( p )) 

end-do 

Pseudo Code 5 Calculating value 
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4.2.4 Local search 

This section will explain how the local search is implemented.  

continue = true 

while(continue) do 

 continue = false 

 bestValue = calcValue(currentSolution) 

 forall(Carcasses c in currentSolution) do 

tempSolution = currentSolution 

  forall(Cutting Patterns a in c) do 

c.assign(a) 

if(calcValue(tempSolution) > tempValue(currentSolution) do 

   currentSolution = tempSolution 

continue = true 

end-if  

  end-do 

 end-do 

end-do 

Pseudo Code 6 Local search 

The local search is a simple algorithm which goes through every measured carcass and assign the cutting 

pattern which makes the total value the highest. Each change can make chain reactions for the other 

cutting patterns, and every carcass therefore has to be evaluated again when a change is done. How this 

is done can be seen in Pseudo Code 6.   
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4.2.5 Genetic algorithm 

The genetic algorithm described in section 3.3 has been implemented from scratch in C++.  This 

section will explain the implementation with pseudo code.  The first stage is to create an initial 

population. This can be done as shown in Pseudo Code 7. New solutions are created by assigning 

random cutting patterns to all the carcasses in the solution. 

 

while(population.size < desired size) do 

 new solution 

forall(Carcasses c in solution) do 

c.assign(Random cutting pattern) 

 end-do 

population.add(solution) 

end-do 

Pseudo Code 7 Generating a population 

 

Each solution has to be evaluated after the initial population has been generated. The results from these 

evaluations can be used to rank the solutions according with their fitness. 

 

forall(Solutions s in population) do 

 calculateValue(s); 

end-do 

sortByValue(population) 

Pseudo Code 8 Evaluation population 

 

The next generation is first populated by the best from the last population, Pseudo Code 9. These 

individuals make sure the best genes survive and make the basis for the crossovers and the mutations.  

 

forall(Survivors) do 

nextPopulation.add( population.remove(best) ) 

end-do 

Pseudo Code 9 The best solutions survive 
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Crossovers are made by taking two solutions from the surviving population are chosen as parents. For 

each gene in the new solution, there is 50% chance of taking the gene from the first parent and an equal 

chance of taking the gene from the other parent, as can be seen in Pseudo Code 10. 

 

forall(Crossovers) do 

 new solution 

 parent1 = population.get(Random Survivor) 

 parent2= population.get(Random Survivor) 

forall(Carcasses c in solution) do 

if( random(50%) ) do 

c.assign(parent1.get(c)) 

  else do 

c.assign(parent2.get(c)) 

  end-if 

end-do 

nextPopulation.add(solution) 

end-do 

Pseudo Code 10 Crossovers 

 

Mutations are done by creating new solutions which are partly based on a single parent and partly 

based on random mutations, see Pseudo Code 11. The degree of mutation can be chosen by adjusting 

the mutation chance. Most of the genes will typically be taken from a parent while some are mutated. 

 

forall(Mutations) do 

 new solution 

 parent = population.get(Random Survivor) 

forall(Carcasses c in solution) do 

if( random(Mutation Chance) do 

c.assign(Random Cutting Pattern)  

else do 

c.assign(parent.get(c)) 

end-if 

end-do 

nextPopulation.add(solution) 

end-do 

Pseudo Code 11 Mutations 
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Some newborns are added to the solution, see Pseudo Code 12. Newborns are created exactly like they 

were for the initial solution. 

 

forall(New born) do 

 new solution 

forall(Carcasses c in solution) do 

c.assign(Random cutting pattern) 

 end-do 

nextPopulation.add(solution) 

end-do 

Pseudo Code 12 New born 

 

The nextPopulation will become the current population, and the whole process will be done all over 

again. This will continue until enough generations have passed away. The best solution from the current 

population will be chosen as the final solution. 
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5 Results and discussion 
This section will present and discuss the results of the optimisation program. The data used to produce 

these results are taken from the production of one of Nortura’s cutting plants in June 2007. 

5.1 Results of the offline algorithm 
The results of the offline algorithm will be a goal for the online algorithm. Results of the exact 

offline algorithm can be found in the appendix. 

The offline model has been run with carcass data and the production plan from 4th June 2007 in 

Figure 14. Take notice of the logarithmic scale. The total value from this production is 912 174 kroner 

and 95 carcasses were cut during the day. 

 

Figure 14 Offline results from 4th June 2007 

 Product 11 stands out particularly in this graph. It is plenty of demand for this product, but 

nothing is being produced. This reflects a weakness in the model. Product 11 is tendons, which will 

always be produced during production of other products. It is therefore not included in all of the cutting 

patterns, and the optimisation algorithm will not register any production of it. Some of the cutting 

patterns have tendons included, but the value of tendon is very small compared with the value of other 

products. This will not affect the production since the production of tendons is independent from the 

cutting pattern that was used. It does however make it harder to use the system for planning since these 

products have to be handled separately.  
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Figure 15 4th June 2007 without a production plan 

Figure 15 shows the production for the same day without a production plan. The most valuable products 

will always be produced since there is no production plan to consider. In this situation, each carcass of 

the same type will be cut with the same cutting pattern since there is no production plan to fulfil.  

 The production of product 9 matches the production plan closely in Figure 14. It seems like this 

production is forced up by the production plan, and it is therefore likely that the production would be 

lower without the plan. Figure 6 shows that this is exactly what happened. The production of product 9 

fell in favor of product 6 and 12. Nothing at all is produced of product 1 without the production plan. 

This is because product 1 is a byproduct of some of the cutting patterns which produce the products 

demanded in the production plan. 
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Figure 16 Production from 4th of June to 6th of June 

Except for the tendons, the offline algorithm fills up the complete production plan in all the test cases. 

This can be seen in Figure 16 which shows the total production when the production for 3 days are 

calculated together.  The plan for product 3 and 8 are fulfilled even if none of these products would 

have been produced without the production plan. Product 6 and 9 is matched even closer to the plan 

with little surplus production. 

 The conclusion of the results from the offline algorithm is that the results are what the cutting 

plant need. There can be small mistakes for certain products, but in this case it is because of the lack in 

the cutting patterns and not because of the algorithm.  
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5.2 Convergence of the genetic algorithm 
This section will evaluate the genetic algorithm described in section 3.3. The genetic algorithm can give 

varying results because it is a heuristic. The parameters in the algorithm should be adjusted to give a 

good trade off between speed and solution quality. Speed can be sacrificed for better results by either 

performing more generations of the algorithm or by having a larger population in each generation. Both 

mutations and crossovers can be important for the population. How important one is over the other 

varies a lot depending on the problem type [Luke98]. The offline problem using the production on 4th of 

June will be used as an example to test the algorithm. Different settings shown in Table 15 are used to 

evaluate how the algorithm converges.  

Table 15 Parameter settings for the genetic algorithm 

 

Regular 
population 

Small 
population 

No 
Mutations 

No 
crossovers 

No new 
born 

Fewer 
survivors 

More 
survivors 

Survivors 200 100 200 200 200 50 400 

Crossovers 400 200 400 0 400 400 400 

Mutations 400 200 0 400 400 400 400 

Newborns 400 200 400 400 0 400 400 

The exact results can be seen in Table 22 in the Appendix. Two graphs will be used to represent these 

results. Figure 17 shows the first 10 generations while Figure 18 shows the next 90 generations. This is 

done to improve the readability due to the large variations in scale when the algorithms converge. 

 

Figure 17 Generation 1-10 of offline 4th of June 
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 A few settings stand out the most during the first 15 generations. The setting with fewer 

survivors converges much faster than the other settings. The new generations are in a larger degree 

based on good solutions since only the very best are picked out to survive.  The setting with increased 

number of survivors does the opposite. There is less change with each generation since solutions with 

bad objective value are allowed to survive. This is what can be expected based on literature on genetic 

algorithms, since there is a higher degree of selection while the diversity is lower. By far the worst 

setting is the one without any crossover. Little is brought with it from generation to generation since the 

surviving solutions are not allowed to be merged, and the algorithm resembles closer to a guessing 

game by generating random changes. The rest of the settings perform almost equally well, and it is hard 

to say if one is better than the other. 

 

Figure 18 Generation 11-100 of offline 4th of June 

 The setting without crossovers has been omitted from the graph for the last 90 generations 

because it is too far behind. The setting with fewer survivors starts to slow down soon and converges 

prematurely. Few survivors have caused the diversity to be too low and the right gene combinations for 

a better solution cannot be found in the gene pool. The setting with more survivors takes longer, but 

catches up with the other solutions slowly. The small version lags behind and comes to a halt 

substantially worse than the regular solution. The regular solution ends up as the best heuristic, but the 

differences without mutations or new born are very small. This clearly shows that new born and 

mutations are much less important than the crossovers. Research shows that mutations or new born are 

vital to keep the diversity of the gene pool [Mauldin84]. Diversity generally increases the value of the 

point of convergence, but requires more generations to give a good solution. Keeping many solutions 

between each generation also helps to maintain diversity. The graph shows that reducing the number of 

survivors has bad effect on the long term results. From what can be learned from these conclusions, a 

good combination of speed and good solutions would be to keep the regular setting but decrease the 

number of mutations and new born.  These settings will have to be tweaked for each problem size. For 
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the online problem with only 10 carcasses, fewer generations and smaller populations will be needed. 

Testing has showed that 20 generations with 100 survivors, 200 crossovers and 50 of both mutations 

and newborns is adequate for convergence in cases with 10 carcasses. 

 The genetic algorithm performs a global search in the search space. Even though the algorithm 

seems to have converged, there might be better solutions in the nearby neighbourhood. This can be 

exploited by running a local search after the genetic algorithm has finished. That would drive a good 

global solution into a local optimum. The “Regular” setting in Figure 18 performs best of all the 

heuristics in the graph with a final value of 912033. This is however still not the local optimum. If a local 

search is performed on the solution with value 912033, it will be further increased to 912104. To 

perform a local search on the solution from the genetic algorithm will never make the solution worse, 

and is therefore a safe improvement to the genetic algorithm. 

5.2.1 Discussion of the genetic algorithm 

The quality of a genetic algorithm often depends on the data structure which it is based on and 

the problem it solves. The problem solved here reaches 99.992% of the optimal objective function. 

0.008% is insignificant for this kind of problems since the inaccuracies elsewhere is very large in 

comparison. The inaccuracies in the measurement equipment and the variation between the cutters can 

be 100 times larger [NorStaff08].  The algorithm can be considered as good as an exact algorithm for all 

practical purposes. 

Today’s solution for cold cutting solves a similar problem to that of the genetic algorithm. It has 

therefore been asked by Trond Malmo [NorStaff08] from Nortura if it is possible to also use this method 

for cold cutting of carcasses. Cold cutting optimisation does not handle each carcass individually, but is 

based on a LP solution which is then translated into whole carcasses by a heuristic. To solve the cold 

cutting problem for individual carcasses should therefore theoretically be able to outperform today’s 

solution. It has been shown here that the genetic algorithm is able to solve problems with a hundred 

carcasses, and it will be able to solve the amount of carcasses used for cold cutting in a matter of 

minutes. The question will therefore be how different are the problems. The cold cutting optimisation 

program does today include prognoses for future demand and spans over a larger operational field than 

what has been discussed in this thesis. Storage and logistics is as much a focus as the cutting patterns in 

itself. Even though cold and warm are partly overlapping problems, the differences are too large for any 

direct comparison. 
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5.3 Results from the online algorithm 
The online algorithm uses the genetic algorithm which has been tested out in section 5.2 to solve 

the sub problem. This is then done once for each carcass to solve the master problem such as explained 

in section 3. Whether to use the full production plan for the sub problem or adjust the production plan 

was discussed in section 2.5. To use the full production plan would give the theoretically minimum 

regret, but it was acknowledged that this did not relate well to the actual problem. A comparison 

between the methods is shown in Figure 19. The exact results can be found in Table 23 in the appendix. 

The horizontal axis shows the number of measured carcasses, while the vertical axis shows the objective 

value for the master problem. To the far right at 95 carcasses, both methods perform identically since 

both methods will be a heuristic solution to the offline problem. To the far left, the method using an 

adjusted production plan outperforms the methods using a full production plan significantly. Using the 

full production plan lacks any foresight into the future, and is therefore outperformed by the method 

which depends on the quality of future carcasses. The method using the full production plan will not be 

considered any further because of its poor performance. 

 

Figure 19 Online algorithm results 4th of June 

As can be seen in Figure 19, the quality of the online algorithms depends on the number of measured 

carcasses it uses for the sub problem. More measured carcasses clearly improve the solution, as the sub 

problem becomes a bigger part of the master problem. Figure 20 gives a more detailed view of the 

effect. In the beginning, the solution improves strongly with more measured carcasses, but after a while 

the quality of the solution stabilises. The improvements are largest from 1 to 3 measured carcasses, 

noticeable from 3 to 7 carcasses and only minor from 7 carcasses and more. 
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Figure 20 Effect of measured carcasses 

More detailed numbers are given in the appendix. As can be seen, the difference from the optimal 

solution quickly decreases when more measured carcasses are used in the sub problem. For this 

example, 7 measured carcasses give a close to perfect solution with only 0.034% different from the 

optimal solution. The number of measured carcasses needed to achieve this accuracy will depend on the 

specific problem and will vary each time. 3 test cases have been used in Table 16 to create an average 

with less statistically variance. The trends still resemble what have been seen in the graphs above. Quite 

large improvements can be seen in the beginning while less is gained after the 7th measured carcass. 

Table 16 Performance of online algorithms 

Measured 
carcasses 1 3 7 10 15 

Optimal 
offline 
solution  

6th of June 964951 966514 968244 968714 968784 969629 

5th of June 668271 671620 673230 673449 673121 673460 

4th of June 908275 910679 911844 911933 911999 912174 

Sum 2541497 2548813 2553318 2554096 2553904 2555263 

% of optimal 99.461% 99.748% 99.924% 99.954% 99.947% 100.000% 
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5.3.1 Local search comparison  

A local search can be used to solve the sub problem instead of the genetic algorithm. A local search 

alone will be less likely to find good solutions to the sub problem. The results of solving the master 

problem with a local search can be seen in Table 17. The performance of the local search is much worse 

than that of the genetic search. Because the local search will look for the first local optimum, more 

measured carcasses may not enhance the performance as much. The local search will always adjust the 

cutting pattern for the first carcass first, which leads to certain cutting patterns being chosen more often 

for the first carcass in the sub problem.   

Table 17 Local search comparison 

Local search 908275 908771 910462 908722 908401 

% of optimal 99.573% 99.627% 99.812% 99.622% 99.586% 

Genetic search 908275 911504 911933 911999 912036 

% of optimal 99.573% 99.927% 99.974% 99.981% 99.985% 

Measured carcasses 1 5 10 15 20 

 

The local search gives the same results as the genetic search when only one carcass is measured.  Only 

one carcass is being evaluated by the sub problem, and the local search will evaluate every possible 

cutting pattern for this carcass. Every possible solution will therefore be explored by a single iteration of 

the local search. An optimal solution will therefore be found for the sub problem each time. Not even 

the genetic search can guarantee as good results as the local search, since it is based on randomness. 

However, it is very likely that the genetic search will find the same solution since the mutations will 

make a random walk towards the same optimum. 

 Even if only test data from one day is used in Table 17, it is safe to conclude that the local search 

is unsuited for solving sub problems with many measured carcasses since the performance is well below 

the worst performance which has been seen by the genetic algorithm. Nonetheless, the local search is a 

good choice if only one carcass is measured, or to improve the best solution found by the genetic 

algorithm. 
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5.3.2 Production comparison 

Since the objective function from the online algorithm is almost the same as the objective function for 

the offline value, it is likely that the variation between what is produced with the two algorithms is small.  

 

Figure 21 Comparison of the offline and online production 

Tendons are still not produced by any of the algorithms, as can be seen in Figure 21. Product 3 is only 

produced by the online algorithm. Product 3 is actually a low priced product compared with the others. 

It would therefore seem like the offline algorithm has been able to do the optimisation without 

degrading the quality of the meat into product 3.  

The production plan is accurately matched in production by both the online and offline 

algorithm for product 9. To produce any more of this product is clearly not worth it, while penalties for 

not fulfilling the demand forces the algorithm to produce everything that is planned. From Nortura’s 

point of view, this is one of the purposes of using an optimisation method, since it would be very hard to 

fill the production plan for product 9 without surplus production by manually picking the cutting 

patterns. 
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5.3.3 The chosen cutting patterns 

Only a few of the cutting patterns are being used in this example. Most of the carcasses of the same 

type will be cut with the same pattern. While some carcasses will be cut with another pattern to prevent 

overproduction, there are only 2 or 3 patterns which are used for each carcass type. The online 

algorithm has a tendency of varying the type of cutting pattern more than the offline algorithm. This is 

quite logical, since the online algorithm will use different cutting patterns to fill up the different 

demands earlier in the production, while the online algorithm will know how to fulfil the demand with 

future carcasses. 

It can seem like the unused cutting patterns could have been removed from the calculations 

completely. However, not all products can be produced by the most popular cutting patterns. If the 

production plan was different, a different set of patterns would have been the most popular ones.  It 

would in theory be possible to analyse the production plan to discover which of the cutting patterns are 

needed, and with this information reduce the number of possible cutting patterns before doing the 

optimisation.  Even if this is theoretically possible, it is not a trivial task to calculate which cutting 

patterns are needed for every combination of production plans. Some cutting patterns can easily be 

removed if they are neither the most valuable cutting pattern for the carcass type nor consist of any of 

the products in the production plan.   
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5.3.4 Discussion of the online algorithm 

The relationship between the number of measured carcasses and the quality of the solution of the 

master problem has been shown in the previous sections. How close to optimality the solution should 

be to be useful depends on what it is used for. If simplicity of the implementation is the main focus, the 

results with only 1 measured carcass 0.5% from optimal value can be adequate. However, if the results 

have to be as good as possible, it will be well worth it to measure more carcasses. 

Nortura’s system is however already designed to measure multiple carcasses, and the benefit of 

10 measured carcasses instead of 1 is noticeable. The following arguments are made based on the 

results in Table 16. If the model and data is a good representation of the real world, the difference 

between the 0.5% optimality gap with 1 measured carcass and the 0.05% optimality gap with 10 

carcasses, this makes up 0.45% of the total revenue of the cutting facility. With the estimated value for 

the production of 4th of June at approximately 900 000 kroner, 0.45% would equal 4050 kroner. This is 

for a single cutting plant, and similar profits could be gained from every warm cutting plant.  

The difference of 0.45% is however huge in comparison with the difference between the online 

algorithm with 10 measured carcasses and the offline algorithm. The optimality gap is only 0.05% which 

would make out only 450 kroner out of the 900 000 kroner revenue. This gap is so small that there is in 

practice no reason to use more than 10 carcasses, and the online algorithm has been demonstrated to 

work as intended. 
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5.4 Execution time 
The critical execution time is the execution time of the sub problem. The program will have plenty of 

time to load the data before the production starts. What is important is how long it takes to solve the 

sub problem. The sub problem has to be solved for each carcass. The cutter would have to wait if the 

algorithm takes too long to calculate which cutting pattern to use.  

 All runs in this section has been performed on a 1.2 GHz Intel Dual Core running Windows XP. 

 How long the genetic algorithm will use before it terminates mainly depend on two factors, the 

number of generations and the number of individuals in each generation.  Each individual has to be 

evaluated for each generation, which is the time consuming operation.  

  Execution time = number of generations * size of population 

Equation 1 Execution time of the genetic algorithm 

For convergence on the sub problem with 10 carcasses, 20 generations with a population of 400 has 

been used. To solve this sub problem takes between 5 and 6 seconds. Tests have shown that this scales 

up linearly when more generations are performed, which supports Equation 1. By using the upper limit 

of 6 seconds, the algorithm takes 75 µs per individual per generation. 

 The genetic algorithm should be compared with the exact method implemented in Xpress. The 

differences in the results between the two methods are so small that it makes little difference which 

one is used. However, it should be taken into consideration what happens with the execution time if the 

problem changes.  

The timing of the algorithms has been taken by running various sub problems used in the master 

problem for 4th of June 2007. An upper limit is set by rounding up the longest execution time. The 

genetic search is performed with 20 generations and 400 population size. 

Table 18 Execution time 

Algorithm Execution time 

Local search 0.5 seconds 

Genetic search 6 seconds 

Exact method 6 seconds 

 

All of the methods evaluated in Table 18 perform well enough for the time limit of 6 seconds. A faster 

computer could easily have brought the results further below the time limit. These results mean both 

the genetic search and the exact method can be used for the sub problem with 10 measured carcasses. 

In practice, the problem might be larger than what is described in this thesis. Nortura has visions of 

including multiple cutting plants in the optimisation and include more of the value chain. This would 

make the problem larger and the execution time would increase.  
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 The genetic algorithm is much more flexible to different objective function than the exact 

solution. As long as the objective function can be calculated from the production, any function can be 

used. This means the objective function could be much more complex. One example is to make a non-

linear objective function. Large overproduction is a large problem, while some overproduction is 

tolerated. The objective function could therefore penalise large overproduction more severely than 

minor overproduction. Similar methods could be used for underproduction. 

 The execution time of the genetic algorithm can easily be adjusted for any time limit. The 

number of generations and the population size can simply be adjusted for the execution time in 

Equation 1 to be below the time limit. Another approach is to make the genetic algorithm to finish when 

the time limit is approaching instead of performing a predefined number of generations. The best 

solution from the genetic algorithm is still likely to give a good result even if it has not converged 

completely. This is not the case for the exact method. In many instances no solution will be available 

before the final and optimal solution is found. This means it is impossible to stop the optimisation when 

the time limit is reached to get an approximate solution. This is a serious weakness of the exact method. 

 Xpress, which is used to find the optimal solution, is highly tweaked and optimised to perform 

fast. The genetic algorithm is however not thoroughly optimised for performance. The inner loop of the 

algorithm is the value calculation. An improvement of the method used to calculate the value of a 

solution could improve the execution time of the genetic algorithm significantly. Another advantage of 

genetic algorithms is the fact that they are naturally parallel. This means the algorithm can be 

performed on multiple processors without any fundamental changes in the algorithm. Different 

processors can work with different populations and exchange survivors regularly. 

 Conclusion: the exact method gives slightly better results. However, its execution time cannot 

be adjusted. It works well for the sub problem with only 10 carcasses and today’s cutting patterns, but 

would too slow lacking if the problem size increases. Licences for Xpress are a considerable expense and 

makes the solution dependant on the Dash Optimizations which provides Xpress. The genetic algorithm 

performs almost as good as the exact method and will be just as good in practice. The method can easily 

sacrifice optimality for fast execution time, and will therefore be able to uphold tighter time limits for 

larger problems. The source code of the genetic algorithm will be owned by the developer and there will 

be no license costs or external dependencies. It can therefore be concluded that the genetic algorithm is 

a better choice. 
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5.5 Sources of error 
How well the data and model resembles the reality is not a source of error for the algorithm, but 

it is a huge source of error when making the algorithm work in real production. It is not possible for the 

optimisation program to get perfect information about the reality. These inaccuracies have been noticed 

when the results from the algorithm were compared to the actual production of a cutting plant. Even if 

the measurements received by the optimisation program were the same as the ones done in the real 

cutting plant, the results could have large differences. In some occasions the real production would 

report a significantly larger production than the input weight to the optimisation program. Reasons for 

this can be additional production procedures. These kinds of variations have to be taken into account by 

the program, by systems which are continuously reporting actual production. 

Only 3 days of production has been used as test sets for testing the online algorithm. These test 

sets use real data from one of Nortura’s actual cutting plants. The results could vary if test sets from a 

larger time period or from different cutting plants were used. However, there are strong points 

suggesting that this algorithm is likely to work for other test sets as well. The algorithm has by no means 

been adjusted to perform well with these test sets and has been developed before the test sets were 

known. For all of the test sets the optimality gap from the offline solution has been less than 0.1%, 

which is insignificant in this context. 
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5.6 Other uses of the online algorithm 
Many production processes have similar characteristics as the one discussed in this thesis. The algorithm 

is flexible enough to be used on other problems as long as the basic conditions are the same.  

Conditions for a problem to be suitable for the online algorithm: 

1) Input resources cannot be uniform 

2) The resources can be turned into different products. 

3) There has to be a production plan. 

4) Production in addition to what is specified in the production plan has to be valued less than or 

equal to the products in the production plan. 

5) Production starts before all resources are known. 

One problem which suits these conditions are sawmills. Logs can be cut into various types of boards. 

Some types of boards can only be made from certain logs. Wide boards can typically only be made from 

large logs. Orders from the customers have to be fulfilled and makes up the basis for a production plan. 

All the conditions are fulfilled as follows: 

1) Logs vary in quality and size. 

2) Different kind of boards can be made from the logs. 

3) Orders of boards create a production plan. 

4) Products which the customers do not demand are not valued as highly. 

5) The logs can be measured at the saw mill during production. 

The value of using the online algorithm depends on the logistics of the production. If large storages can 

be made of the products and there is little time pressure to keep the turnover rate high, the problem 

will resemble cold cutting. However, just in time production will resemble warm cutting and gain more 

from the online algorithm. 
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6 Conclusion 
Online algorithms have to our knowledge not been applied to meat cutting. This thesis has shown that 

online algorithms absolutely are competitive with offline algorithms for this problem type.  It has also 

shown the importance of measuring carcasses, how a few measured carcasses give a large improvement 

while a large number of measured carcasses will only give slightly better results. 

Nortura has shown great enthusiasm about the project and are very satisfied with the results 

[NorStaff08]. The program developed can serve as a prototype if Nortura decides to make an 

operational system with online optimisation.  What will make or break this system is how accurately the 

model resembles the reality and how robust it will be to manually override. The cutters will be able to 

see what the optimisation system cannot see, and will at times have to ignore the systems 

recommendations. Feedback from the production system is required for each product, since using 

estimates from the cutting patterns alone will result in large inaccuracies.  

The test data shows that the genetic algorithm comes extremely close to the optimal solution. This 

provides a fast and flexible solution method for the sub problem, which makes sure each carcass will be 

calculated in time even if the system become more complex than what is described in this thesis.  



- 56 - 
 

7 Further work 
To make the prototype into an operational system is the largest challenge in the future. The system has 

to work with the measurement instruments and deliver the recommendations to the cutters, which 

require both integration with other systems and interaction with humans. For this to work well, 

extensive testing of usability and robustness will be needed, as well as the feedback systems discussed 

earlier. 

 Today’s cutting patterns do not include all possible patterns. They are only a selection of 

patterns which has been shown to work well. With more cutting patterns, even better results could have 

been made since it would have been easier to make the products fit the production plan. An even more 

advance system could decide what to make for each part of the carcass instead of using predefined 

cutting patterns. 

 Not all cutters will know every possible cutting pattern and some cutters may want to use 

particular patterns for reasons unknown for the optimisation program. It would therefore be very 

helpful for the cutters if the optimisation program could suggest more than one cutting pattern. There 

are often a few cutting patterns which contribute almost equally to the objective function. If all of them 

were presented to the cutter, it would be up to he or she to choose the best suited among them. 

 Various improvements can be done to the algorithms. The genetic algorithm can be optimised 

through parallelisation, improvements to the code and adjustments to the algorithm. While the two first 

improvements are to the code, the last one has to do with finding the best combination of population 

size, reproduction style and number of generations. The selection function can increase its diversity by 

also letting some of the unfit individuals survive. 

 Since the genetic algorithm can solve non-linear as well as linear objective functions, this 

advantage should be exploited. The objective function can be tweaked and adjusted to be more helpful 

for the cutting plant. One such improvement would be to let the value of products drop continuously for 

production beyond the production plan instead of today’s simple view of regular and surplus production. 

 The results can be tested by applying more test cases from a larger time span and from different 

cutting plants. Other cutting plants may produce a larger variety of productions and can have production 

plans which are more challenging to fulfil. 
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9 Appendixes 
 

9.1 Appendix A 
 
This is a proof of the competitiveness of a profit maximising objective function disregarding demand. It is copied 
directly from [Wikborg07]  
 
The value of each cutting pattern can be determined by summing the value of all the products it produces. An 
online algorithm can simply pick the most valuable cutting pattern available for each carcass. The result of this 
online algorithm will be exactly the same as the result of the profit maximising offline objective function. 
 
Proof: 

 

(1) , ,( * * )pr ca pa pa pr ca

pr ca pa

Max V x P W   

 
Subject to: 

(2)  
, 1,ca pa

pa

x ca 
 

 

(3) , (0,1), ,ca pax ca pa   

 
(1) can be rearranged to (4). 
 

(4) , ,( * * * )ca pa pr pa pr ca

ca pr pa

Max x V P W  

 
(2)  means that only one cutting pattern can be used for each carcass. It would therefore be equivalent if 
the maximisation function could choose one cutting pattern for each carcass. (4) can be written as (5) to 
be forced to choose between the cutting patterns directly. 

 

(5) 1, 2, ,( ( * * ), ( * * ),..., ( * * ))pr pr ca pr pr ca pr N pr ca

ca pr pr pr

Max V P W V P W V P W     

 

By replacing the constants with ,pa caC  for readability, the results will be (6), which is exactly what the 

algorithm does. The most valuable cutting pattern is chosen for each carcass. 
 
(6) 
 
 

Since the results are identical, this algorithm is a 1-competative online algorithm. It will, just like the offline 
algorithm, not make sure that the production fits the demand. 

  

1, 2, ,( , ,..., )ca ca N ca

ca

Max C C C
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9.2 Appendix B Results 

9.2.1 Results for optimisation program 
Table 19 Results from 4th of June 2007 

Product 
Regular 
Production 

Unsatisfied 
Production 

Surplus 
Production 

1 0 0 19.6463 

2 0 0 294.886 

3 0 0 0 

4 0 0 189.526 

5 0 0 117.878 

6 0 0 1463.29 

7 0 0 902.92 

8 343 0 604.78 

9 9250 0 10.4617 

10 180 0 2573.5 

11 0 300 0 

12 0 0 408.347 

13 0 0 880.885 

14 0 0 630.898 

15 0 0 502.432 

16 270 0 225.953 

17 0 0 97.8575 

18 0 0 215.779 

19 0 0 78.5851 
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Table 20 Offline production 4th June 2007 without production plan 

Product Regular Unsatisfied Surplus 

1 0 0 0 

2 0 0 395.698 

3 0 0 0 

4 0 0 200.366 

5 0 0 131.63 

6 0 0 4932.09 

7 0 0 729.494 

8 0 0 0 

9 0 0 1422.7 

10 0 0 3611.51 

11 0 0 150.294 

12 0 0 3987.21 

13 0 0 439.816 

14 0 0 952.767 

15 0 0 645.633 

16 0 0 456.737 

17 0 0 734.283 

18 0 0 542.996 

19 0 0 358.214 

20 0 0 0 
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Table 21 Offline production 4th - 6th June 2007 

Product 
Regular 
production 

Unsatisfied 
production 

Surplus 
production 

1 0 0 28.8433 

2 0 0 612.032 

3 500 0 618.457 

4 0 0 523.282 

5 0 0 340.829 

6 1199.9 0 0 

7 0 0 2175.99 

8 1674 0 704.01 

9 30247.8 2.20418 0 

10 3060 0 2905.32 

11 0 900 0 

12 0 0 1143.91 

13 0 0 2449.45 

14 0 0 1768.65 

15 0 0 1405.5 

16 305 0 1360.89 

17 0 0 80.2436 

18 0 0 745.928 

19 0 0 115.373 
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9.2.3 Results for genetic algorithm used on offline problem 
Table 22 Genetic algorithm results for 4th of June 

Generation Regular Small 
No 
mutations 

No 
crossovers 

No new 
born 

Less 
survivors 

More 
survivors Optimal 

1 662442 662442 662442 662442 662442 662442 662442 912174 

2 697754 691486 697754 678560 697754 713485 697754 912174 

3 736447 731654 718216 692302 714640 755437 706570 912174 

4 750615 757588 744619 717688 754592 808765 733293 912174 

5 779617 775079 769001 717688 792077 830044 747562 912174 

6 813729 807013 786974 717688 792077 878396 762378 912174 

7 830518 835451 808149 723777 814055 891038 794253 912174 

8 855193 849520 825496 723777 837048 895105 811584 912174 

9 872871 871358 860818 736365 859895 898086 815223 912174 

10 887064 887450 888394 736365 883714 898691 816664 912174 

11 891984 889458 888394 736365 889733 899531 851850 912174 

12 896031 891089 893232 736365 893675 901121 851850 912174 

13 896031 891640 895059 742698 895308 902172 886504 912174 

14 896031 893831 896121 742698 897880 903171 886504 912174 

15 896031 895405 897176 761361 897880 904321 890975 912174 

16 897210 896467 897929 761361 898027 905681 894927 912174 

17 898755 896467 898603 761361 899842 905958 894927 912174 

18 899441 898591 900337 761361 899842 906811 894927 912174 

19 900626 898730 902160 761361 900653 907908 894927 912174 

20 901709 900212 902512 765291 901943 907908 895373 912174 

21 902153 901660 902515 765291 903378 908186 895373 912174 

22 903030 901660 904395 783172 903986 908556 895949 912174 

23 904989 902157 904395 783172 904833 908653 897525 912174 

24 904989 902833 904395 783172 905511 908692 897905 912174 

25 905112 904326 905061 783172 905988 909003 897964 912174 

26 905490 904326 906166 783172 906597 909113 899548 912174 

27 905733 904642 906166 783172 907147 909118 900078 912174 

28 906624 906073 906701 783172 907788 909120 900649 912174 

29 907496 906073 906956 783172 908176 909120 901757 912174 

30 907721 906525 907331 783172 908176 909120 901757 912174 

31 908630 907191 907728 803345 909035 909120 903206 912174 

32 908630 907414 908144 803345 909143 909120 903465 912174 

33 908630 907562 908345 803345 909366 909120 904321 912174 

34 908799 908050 908957 803345 909366 909120 904748 912174 

35 909622 908105 908957 803345 909598 909120 904833 912174 

36 909906 908126 908957 803345 910186 909120 906290 912174 

37 909916 908668 909191 803345 910186 909120 906290 912174 

38 910238 908668 909282 803345 910186 909120 907313 912174 

39 910731 909023 909637 803345 910502 909120 907313 912174 

40 910731 909220 910015 803345 910733 909120 907313 912174 

41 910731 909220 910015 803345 910733 909120 907313 912174 

42 910731 909361 910119 803345 911060 909120 907313 912174 

43 910934 909691 910119 803345 911060 909120 907850 912174 

44 911031 909840 910577 803345 911060 909120 907850 912174 

45 911031 909840 910577 803345 911141 909120 908833 912174 

46 911174 909843 910739 803345 911304 909120 908833 912174 

47 911176 909973 910739 803345 911304 909120 908833 912174 

48 911248 910068 910770 803345 911304 909120 908833 912174 

49 911456 910104 910911 803345 911304 909120 908833 912174 

50 911457 910246 911015 803345 911304 909120 908833 912174 

51 911639 910246 911015 803345 911323 909120 909510 912174 
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52 911664 910288 911285 803345 911511 909120 909510 912174 

53 911664 910291 911285 803345 911511 909120 909510 912174 

54 911664 910317 911385 803345 911511 909120 909756 912174 

55 911692 910340 911385 803345 911511 909120 909756 912174 

56 911692 910340 911385 803345 911511 909120 909756 912174 

57 911692 910340 911387 821795 911567 909120 910323 912174 

58 911749 910340 911451 821795 911567 909120 910323 912174 

59 911749 910340 911540 821795 911591 909120 910323 912174 

60 911797 910340 911540 821795 911596 909120 910657 912174 

61 911800 910340 911540 821795 911596 909120 910657 912174 

62 911800 910340 911540 821795 911596 909120 910657 912174 

63 911848 910340 911552 821795 911639 909120 910657 912174 

64 911848 910340 911552 821795 911726 909120 910657 912174 

65 911848 910340 911571 821795 911744 909120 911030 912174 

66 911848 910340 911628 821795 911744 909120 911030 912174 

67 911880 910340 911628 821795 911744 909120 911030 912174 

68 911893 910340 911628 821795 911744 909120 911030 912174 

69 911893 910340 911628 821795 911784 909120 911030 912174 

70 911914 910340 911628 821795 911874 909120 911030 912174 

71 911921 910340 911628 821795 911874 909120 911030 912174 

72 911921 910340 911628 821795 911874 909120 911111 912174 

73 911921 910340 911628 821795 911874 909120 911111 912174 

74 911921 910340 911688 821795 911874 909120 911277 912174 

75 911921 910340 911688 821795 911874 909120 911277 912174 

76 911934 910340 911688 821795 911874 909120 911277 912174 

77 911934 910340 911688 822786 911874 909120 911277 912174 

78 911934 910340 911688 822786 911874 909120 911277 912174 

79 911934 910340 911688 822786 911874 909120 911277 912174 

80 911934 910340 911688 822786 911888 909120 911277 912174 

81 911947 910340 911688 822786 911888 909120 911379 912174 

82 912003 910340 911688 822786 911888 909120 911379 912174 

83 912003 910340 911688 822786 911901 909120 911379 912174 

84 912003 910340 911688 822786 911901 909120 911379 912174 

85 912003 910340 911688 822786 911901 909120 911417 912174 

86 912003 910340 911688 822786 911901 909120 911417 912174 

87 912003 910340 911688 822786 911915 909120 911573 912174 

88 912003 910340 911688 822786 911929 909120 911573 912174 

89 912003 910340 911688 822786 911929 909120 911573 912174 

90 912003 910340 911688 822786 911929 909120 911573 912174 

91 912003 910340 911688 822786 911933 909120 911622 912174 

92 912003 910340 911688 823794 911933 909120 911622 912174 

93 912003 910340 911688 823794 911933 909120 911622 912174 

94 912003 910340 911688 823794 911940 909120 911622 912174 

95 912003 910340 911713 830852 911940 909120 911622 912174 

96 912033 910340 911713 830852 911945 909120 911651 912174 

97 912033 910340 911713 830852 911958 909120 911651 912174 

98 912033 910340 911713 830852 911958 909120 911651 912174 

99 912033 910340 911759 830852 911969 909120 911651 912174 

100 912033 910340 911759 830852 911969 909120 911651 912174 
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Table 23 Online algorithm 4th of June 2007 

Measured carcasses Optimal 
Adjusted production 
plan 

Not adjusted 
production plan 

1 
 

908275 904784 

2 
 

909707 
 3 

 
910679 

 4 
 

910709 
 5 

 
911504 906252 

6 
 

911414 
 7 

 
911844 

 8 
 

911828 
 9 

 
911799 

 10 
 

911933 907260 

11 
 

912072 
 12 

 
912071 

 15 
 

911999 909873 

20 
 

912036 910302 

40 
  

911445 

95 912174 912104 912104 
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