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Abstract

This master thesis focus at the challenges within phrase searching in large
text indexes, and to assess alternative approaches to cope with such indexes.

This goal was achieved by performing an experiment, based on the theory of
using bigrams consisting of stopwords as additional index terms. Realizing
the characteristics within inverted index structures, we utilized stopwords
as indicators for severe long posting lists. The characteristics of stopwords
proved valuable, and they were collected based on a already established in-
dex for a subset of the TREC GOV2 collection.

In alternative approaches we outlined two “state of the art” index struc-
tures, specifically designed to cope with phrase searching challenges. The
first structure - nextword index - followed a modification of the inverted
index structure. The second structure - phrase index - utilized the inverted
structure in using complete phrases as index terms.

Our bigram index focused on the same manipulation of the inverted index
structure as the phrase index, using bigrams of words to drastically cut
posting lists lengths. This was one of our main goals, as we identified stop-
words posting list lengths to be one of the primary challenges with phrase
searching in inverted index structures. Using stopwords to create and select
bigrams proved successful to enhance phrase searching, as response times
substantially improved.

We conclude that our bigram index provides a significant performance in-
crease in terms of query evaluation time, and outperforms the standard
inverted index within phrase searching.
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1 Introduction

This project intends to evaluate different aspects of performing phrase search-
ing in text indexes. That is:

� different index structures

� characteristics for indexing with respect for phrases

� characteristics for searching with respect for phrases

Also, this project will evaluate different ways of phrase searching, and briefly
look at new approaches within this subject. Many research papers cover in-
dex structures, and their characteristics for efficient searching and indexing.
This is mainly because of the more widespread understanding of the impor-
tance of search, and that it is absolutely necessary for businesses to embrace
this technology. It is a highly hot subject, and therefore it is devoted a lot
of research.

Search technology has proven it’s importance in the modern
world..

The future is hard to predict, but one thing is certain - there will always be
a need to search, both in business and personal life.

An increasing growth of information created every day needs to be search-
able. That is because it may be of value by other people, but they do not
know it since they are not aware of it. This poses some tough challenges for
the search engines which is to index and provide a rapid search service for
the people and businesses. We will explore some of these challenges during
this master thesis - some in more depth than others.

This master thesis is organized into 9 chapters. Chapter 2 gives an intro-
duction to the problem which this report will cover, in addition to limit the
problem domain. Chapter 3 provides a whole set of concepts and definitions
which is of great importance within the problem domain of this report. In
Chapter 4 we will dive into the industrial search engine data structure called
inverted index structure. We will explore the most known aspects and look
at how this structure is used in relation to phrase query evaluation. We will
also explore some state of the art material within phrase query evaluation
in Chapter 5. Next is our experiment in Chapter 6 whereas we implemented
a specialized inverted index structure to facilitate phrase query evaluation,
and we shall thoroughly discuss the results. In Chapter 7 we will present
and explore the results retrieved from the experiment. In Chapter 8 we
discuss our bigram index vs the “state of the art” material presented in

11
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Chapter 5. Finally, in Chapter 9, we will present our conclusion for the
problem statement which this report is concerned, along with the results
from the experiment carried out.

12
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2 Background and problem statement

This master thesis is concerned with challenges within the search technology
subject, with a extensive focus on phrase searching in large text indexes. We
shall explore our initial problem statement along with an descriptive back-
ground for exploring this problem.

The background for this report is the increasing usage of phrases when per-
forming searching, and the rapid growth of information which needs to be
easily available for others. Now, performing phrase searches are expensive,
as we will explore during this master thesis, so we need to look at different
solutions to meet this problem.

We will explore the commonly used and acknowledged search engine database,
namely the inverted index, in Section 3.4 and Chapter 4. Along with the
inverted index, we shall also explore some other more special purpose struc-
tures in Chapter 5, which empathize the challenges introduced by phrase
querying.

We will here first go through the problem statement and background, and
then have a look at the problem definition. At the end we will briefly go
through how we will take into consideration the ranking performed, and also
the motivation behind this master thesis.

2.1 Problem background

The problem background arises from the realization that the growth of infor-
mation is exponential nowadays, and all that information should be search-
able to be of any value for others. Non-searchable information is only of
value by the people knowing exactly where to find it. So, search engines in-
dex a lot of information that is made available, and the users need to query
the search engines to find it. Now, if the indexed information is of middle
size, then users could most likely retrieve only the interesting documents by
a single term query such as “computer”. However, if the indexed information
is huge (multiple gigabytes of text), the users would meet some difficulties.
To comply with this obstacle the user needs to express a better query, so
that non-interesting documents would be omitted. Such queries could be
phrase queries, which has an growing user mass, according to [12] in their
section of query properties. Phrase queries is briefly covered in chapter 3.2.1.
These phrase queries have the benefit of better discrimination of documents
than regular term queries, but as will be shown, comes with an additional
cost.

13
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2.2 Problem definition

The problem definition is mainly to evaluate a set of state-of-the-art tech-
niques for searching and building efficient inverted index files which promotes
phrase searching as well as standard term searching. These index files are
efficient in terms of disk space, processing needs, and how well they actually
fulfills the information need for the end-user. These are all aspects that we
will later investigate into greater extent.

If we now dive a little deeper into this problem definition, there may be some
clarification needed. An information retrieval system (IR) has to retrieve its
information units fast - a delay for multiple seconds would be unacceptable
disregardless of which query there is (in some scenarios also milliseconds is
unacceptable). And, of equal importance is to retrieve relevant information
in reponse to the query. If any of these aspects fails, the IR system would
have a serious problem.

So, this problem definition is to compare the different ways of performing
phrase searching, with respect to the aspects of response time, disk space
consumption and other efficiency factors. We will more concrete look at
specific approach, where we want to create a index based on pair of words
as index terms. We believe such an approach would yield efficiency gains,
and this is the foundation for our experiment introduced in Chapter 6. Based
on the results provided by our experiment, and introduced in Chapter 7, we
will hopefully be able to conclude whether or not this approach will yield
any gains in the context of search technology and phrase query evaluation.

2.3 Models

All IR-systems rely on a background model which supports the intention
of the IR-system and thus provides structures and techniques to support
them. Common characteristics for all of these models is that index terms
is identified words of semantic value from the document collection. Also of
importance is that the models consider various terms of different importance,
and the interpretation of words somewhat differ. Next we will introduce two
very much discussed models in the search community.

2.3.1 Boolean model

The boolean model introduced in [22] is a information retrieval model which
is based on boolean algebra. Its concept somewhat lies in the name of the
model; it is based on binary weights of documents. The boolean model re-
trieves documents based on a simple match/no-match presumption. A basic
search process in an IR-system built on the boolean model yields a boolean
expression where query terms must be present to represent a hit. If none

14
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hits are found, then nothing would be retrieved. If a (strict) match is found,
then we have a hit and that particular document would be retrieved.

Some decades ago this model was highly popular in the search communi-
ties, but the drawbacks of the model was too substantial for it to survive
in the field. The major drawback is its foundation; the binary selection of
documents based on strict queries. By strict we mean queries where query
terms must be present to represent a hit. This basics of the model does
not yield a good retrieval performance, since documents which semantically
would match based on the context would be discarded based on the binary
search decision. Nowadays, when people talk about the binary model, most
ones relate it with databases and strict data retrieval. And, this has its root
in another drawback; the model is too data oriented, while the semantics
are left out.

The boolean model works very well for databases where relevance and rank-
ing of hits is not a necessity. One example could be searching in a repos-
itory for a document with a tagged code, identifier or something like that.
For example search for a document containing the unique identifier code
“ISBN 0-201-39829-X”. There has been some attempt to enhance the boolean
model, such as the Extended Boolean Model described in [22]. This enhanced
boolean model implements one of the predecessors major drawbacks; the
functionality of partial matching and term weighting. Despite this drawback
elimination, the extended boolean model has not achieved any widespread
usage.

2.3.2 Vector space model

The Vector space model is a model based on the realization that the Boolean
model in section 2.3.1 is not sufficient in retrieval of documents based on a
loose coupling between words and their semantics. The coupling is somewhat
non-existing. The VSM model was introduced in 1975 by the information
retrieval scientist Gerard Salton, and is thus not to be considered as a state-
of-the-art model

The vector-space model introduces a new approach which allow partial
matching between documents, instead of the regular boolean matching model
described above in section 2.3.1 (either a match or no match; data retrieval).
The way this is accomplished is that the VSM (Vector-Space Model) sees a
document as a vector which contains one entry per unique term in the hole
document collection (each dimension corresponds to a separate unique term).
A query is also to be looked at as a document (hence a vector). Now we
have our document collection which is a huge set of vectors representing one
document each, and then we have a query which is also to be looked at as

15
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a document. A highly common approach to calculate the relevance between
a query and a document is to calculate the angle between the two vectors
using the dot-product1. A formula for this calculation is shown in equation 1
in section 2.4. This formula is part of the ranking scheme frequently used
in VSM based IR-systems which will be introduced below.

Theoretically the VSM has a drawback in that the index terms are assumed
to be independent of each other, which may imply lack of semantically encap-
sulation by the model. If we think about it, then this drawback is the reason
for many of the scalability issues the inverted index suffers from, which will
be more clear in Chapter 4. In the VSM each index term is independent,
and thus is indexed as a single searchable unit, means that we end up with
a waste amount of data. Given that the VSM is enable to “perfectly” cope
with this drawback, and that the model would recognize the dependencies
between index terms, then phrase searching would be substantial better in
terms of processing needs, disk space consumption and its ability to fulfill
the users information needs.

2.3.3 Other models

Other models could be such as the Probabilistic model described in [22]
and [14]. This model tries to cope with the information retrieval problems
with an probabilistic framework. Another model could be the Fuzzy Set
Model described in [22]. This model considers each query term defines a
fuzzy set, and that each document has a “degree of membership” towards
this fuzzy set. Often is a thesauri used in such IR-models as the fuzzy
set model, since we in a thesauri can lookup broader, narrower and direct
relationships between terms, and thus achieve the possibility to retrieve doc-
uments somewhat semantically matching the user query.

There is many more models that could be of value, but we will not consider
them in this report.

2.4 Ranking

In the process of evaluating different approaches for searching, the question
of the ranking scheme will occur. Now, this report will discuss and explore
the subject of ranking schemes, since it is quite large and covers much ma-
terial outside the scope of this report. So to clarify one assumption made in
this report: we will always assume that the best possible ranking scheme is
used, and will therefore achieve optimal ranking.

1http://en.wikipedia.org/wiki/Dot_product
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However, since the subject of ranking is quite important within search tech-
nology, albeit a little out of the scope of this report, we will only briefly go
through one very basic scheme. This ranking scheme lies within the widely
used and acknowledge VSM 2 thoroughly discussed in [14] and [22], and
somewhat introduced above in section 2.3.2. The reader is recommended to
read the above section before proceeding here.

In VSM the ranking between a document and query is measured as the
angle between the vectors. This measurement is very often calculated with
the dot-product. The formula for the dot-product is outlined in equation 1.
In this equation the dj represents the document vector, and q the query
vector.

sim(dj , q) =
dj · q
|dj ||q|

(1)

The dimensions in a document vector (each entry that is) contains the weight
which that particular term has. This weight could be calculated in a number
of ways. One way is to use the number of occurrences as the weight, so the
more frequent the term is, the higher the weight. An alternative calculation
which is widely used as a measurement for term weight is the tf-idf 3 cov-
ered in [14] [22] and introduced in [25]. Tf-idf stands for “term frequency
- inverse document frequency” and is a statistical measurement which has
proven its strength in calculating the importance of a term to a document
in a document collection.

The term frequency is believed to represent that the more frequent a term
occurs inside a document, the more relevant it is to the context of that doc-
ument. The inverse document frequency is believed to represent a measure-
ment for whether a term which occurs in many documents in the collection,
is useful for distinguishing between a relevant and non-relevant one. So, this
term weighting measurement needs to balance these two effects; tf and idf.
In Equation 2 we present a possible approach for calculating the weight of
an document entry (term). This calculation approach was introduced by G.
Salton in [25].

wi,j = fi,j · log
N

ni
(2)

Note that fi,j represents the term frequency within document j, N the total
number of documents in the collection, ni number of documents where the
entry (term) occurs, and at last the i represent the term. So, equation 2
tells us that the term weight of term i in document j is derived from the

2http://en.wikipedia.org/wiki/Vector_space_model
3http://en.wikipedia.org/wiki/Tf-idf
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term frequency of term i in document j, times the logarithm of the number
of documents in the collection divided by the number of documents where
the term i occurs.

Equation 2 is only one possible approach for the term weight calculation.
In [17] Zobel and Moffat briefly consider other calculation approaches.

We will assume that the best possible ranking scheme is in use in this report.
Note that in the Apache Lucene library (described in section 3.8) which we
will be using in our experiment later on, the ranking scheme in use is tf-
idf 4. The author will encourage the reader to have a look at other ranking
approaches such as Google’s PageRank5 thoroughly described in [18].

2.5 Zipf’s law

Zipf’s law is a model as described in [28] and [22] which tries to capture
the frequency distribution among the terms within the document collection.
In [28] it is stated that the frequency of the i-th most frequent word is given
by the equation 3 times the frequency of the most frequent word in the
document collection.

1
iθ

(3)

If we here assume that the θ value is equal to 1 (for large collections θ > 1)
we can state that the frequency of a word is inversely proportional to its
rank, where rank is defined by the equation 3.

Position Word Frequency Rank
1 the 6 1
2 of 4 0.5
3 to 2 0.33
4 and 1 0.25

Table 1: A very simple example of Zipf’s law which captures the frequency distri-
bution among some simple words. We assume θ equals 1 here.

In Table 1 is a very simple example where we have the 4 most frequent
words sorted by descending frequency. In the column Rank we have calcu-

lated their
1
i

where i is that particular words position in the sorted list of

4http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/search/

Similarity.html
5http://en.wikipedia.org/wiki/PageRank
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words.

2.6 Heap’s law

Heap’s law is in the field of linguistics used to describe the growth of the
vocabulary element in an inverted index structure (see section 3.4). Heap’s
law is thoroughly described in [11], and somewhat briefly in [22].

The main concept in Heaps law is that the more information that is gathered,
the growth of new term discovery would decrease. In the beginning of an
index process for a given IR-system the growth of term discovery would
be substantial. However, the more text that comes in, the more of the
terms would already have been discovered. Figure 1 clearly illustrates this
observation in the Heaps law. The x-axis represents the text size, and the
y-axis represents the number of distinct index terms in the vocabulary.

Figure 1: Illustrates a typical Heap’s law plot diagram from Wikipedia [15].

This growth description provided by Heap’s law can also be mathematically
formulated, as shown in Equation 4. As can be noted there are two param-
eters, K and β. Usable values of these two parameters would highly depend
on the linguistic characteristics of the document collection. In [22] and the
article describing Heap’s law in [15], recommended values for K is between
10 and 100, for β between 0.4 and 0.6.

VR(n) = Knβ (4)

The implication of Equation 4 enables us to model the growth of the vo-
cabulary, and thus the construction of the search engine can adapt to this
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behavior.

2.7 Motivation

The motivation in this master thesis is (the desire) to enhance searching in
general, but with specifically focus on phrase searching. Everyone has, one
time or another, experienced the results given to them by a search engine
that not completely fulfill their needs. There could be several reasons for
this:

� the search engine finds no relevant documents for the user

� the results are presented in a non-user friendly manner

� the query gives too many results

The latter one is the most common one since the query does not discriminate
enough to disregard unwanted documents, and thus poses a huge challenge
for the search engines.

One approach that has proven its strength is phrase searching where you
specify a certain phrase within quotation marks (Example: “to be or not to
be”). Now, a certain phrase is much more discriminating than a set of terms
disregarding the order. That is in the nature of a phrase query, it is a set of
terms in an given sequence where the order matters.
One requirement with phrases is that the user which constructs the phrase
has to have some knowledge regarding the information the user seeks. That
is, the user need to know that a specific phrase occurs, or has a high prob-
ability for occurring in documents which encapsulates the wanted content.
In a very specific phrase such as “Search engines need to evaluate queries
extremely fast”, the user has some knowledge about the wanted documents.
In a more vague phrase query such as “search engines” the user has much
less knowledge, but is still able to construct a phrase query based on the
information needed. It is all about how the user expresses its information
need with regards to the background knowledge of the user. The more dis-
criminating the expressed information need (query) is, the better results in
terms of relevance and precision is achieved.
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3 Concepts and definitions

This chapter will clarify some concepts that we will use throughout this re-
port, and that we think would be of great importance for you. Also, we will
look at some important definitions.

We will not go deeply through these concepts and definitions since most
of them will be more deeply explored later on. For an even more in-depth
information regarding these concepts and definitions, we would recommend
you to have a look at our bibliographic list at the end of this report.

3.1 N-gram

An n-gram is by definition a subsequence of n-items from a sequence. The
items can here be letters, words, numbers, etc. By this, we can say that the
sub-sequence “or not” from the sequence “to be or not to be” is a n-gram.
Different kinds of n-grams have received its own names:

� unigram A unigram is when the n-gram size is 1. That is, there is
only one item in the sub-sequence.

� bigram A bigram is when the n-gram size is 2. Following the previous
pattern, there is only two items in the sub-sequence.

� trigram A trigram is when the n-gram size is 3. As previous, there is
now only three items in the sub-sequence.

� n-grams A n-gram is when the n-gram size is 4 or above. That is,
there is 4 or more items in the sub-sequence.

In [2], there is discussed the early usage of n-grams in regards to term-
based search techniques. The usage of n-grams was introduced to provide
resilience to noise such as misspelling. The idea was to decompose terms
into word fragments of size n, then perform matching based on these frag-
ments to determine a match if it exists. In this report, we will not deal with
n-grams of letters (characters) such as these fragments, but instead concern
ourself with n-grams based on words. N-grams based on words is a com-
bination of words which are near each other in a sentence, or semantically
related such as “computer science”, or “in the”. These two bigrams (size
equals two) is a combination of two words, and the first one represents a
very semantic meaning in contrast to the two terms “computer” and “sci-
ence” by themselves. The bigram “in the” does not bring much semantic,
and is purely constructed based on their ordering in the sentence. We will
explore n-grams features (with a focus on bigrams) more in our experiments
in Chapter 6.
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3.2 Queries

A query is a representation of an information need by a user. The user want
to find some kind of information, and then expresses this quest in a partic-
ular representation, which is by definition a query. So, queries are basically
textual representations of information needs.

There are however different kinds of representations for different kinds of
information needs. Some needs are expressed by single terms such as: car
1971 pontiac lemans. In this query there is four terms which is an expression
for the information need. The user wants to find documents which contains
information about 1971 models Pontiac LeMans cars, and not cars in gen-
eral or the “American lemans sport car race series”. This query would most
likely not yield any good efficiency in terms of relevant documents. Note
that what is here referred to as a term query is also referred to as a keyword
query (multiple terms) in other literatures, whereas a single term query de-
notes a query of one term.

Another representation could be: “Pontiac LeMans 1971”. In this query
we specifically search for documents with the terms “Pontiac”, “LeMans”
and “1971” in that particular order. Other representations can be a user’s
desire for finding pictures of the car, or finding a video sequence of the
car in action. These are more advanced ones, and is part of Multimedia
Information Retrieval6 which will not be discussed in this report. We will
have a closer look at two kind of queries here, along with the familiar Boolean
query. Note that each query type here imply the usage of ranking, in that
the final result list would be ordered by the score each hit is assigned. A
boolean query often signalize a strict usage of boolean operators to locate
documents, however there is assumed that boolean queries also take ranking
into consideration.

3.2.1 Phrase query

A phrase query is basically a simple term query expressed as a phrase,
and a phrase often carries more semantic encapsulation than a term query.
For example, say that you want to find the famous quote from William
Shakespear’s, Hamlet : “to be or not to be”. Here is two examples:

1. boolean query: to be or not to be.
This query will tell the search engine to look for all documents which
has these terms in it, regardless of where they occur next to each other
in the document. Some search engines may also find documents where
not all terms occur. If no boolean operator such as AND or OR is given,

6Multimedia IR is a fairly large subject, handles typically audio, images and video.
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then the search engine has a predefined operator set. This default
operator differs somewhat depending on the search engine.

Another thing to notice here is that the terms are all typical stop-
words. For these reasons, the hit list of this particular query would be
huge. A test at http://www.google.com gives us 592 000 000 pages,
and a test at http://www.yahoo.com gives us 7 300 000 000 pages.
The waste difference here is because of different approaches to handle
such queries. We think Google use implicit AND boolean operator be-
tween each query term, thus shrinking the result set. Also, each search
engines internal index vary in size which would also impact the result
set.

2. phrase query: “to be or not to be.”
This phrase query will tell the search engine to look for this particular
arrangement of all the terms in the query; the phrase. It will never
look for pages with only a subset of the terms “to, be, or, not, to, be”.
A test at http://www.google.com gives us 2 710 000 pages in return,
and http://www.yahoo.com gives us 2 560 000 pages.

These two examples clearly show the importance of phrase queries, and their
impact on the results from the search engine. We will explore similar results
later on.

3.2.2 Term query

A term query is, in contrast to phrase queries, a simple query based on a
semantic and discriminating term (one word). The query could for example
be as simple as: “Computer”, without the quotation marks. The issue with
term queries is that you need to use quite discriminating terms to get good
efficiency (recall / precision) scores. Now, this may work very well within
relative small collections, but in case of a huge collection (like the web?),
then we will have problems.

A very simple example could be to query for “computer”, which in Google
gives us 1 190 000 000 hits, and Yahoo gives 3 190 000 000 hits. Both result
sets are vastly large since the term query is not particular discriminating
and the total size of the collection (the web?) is enormous.

3.2.3 Boolean query

A boolean query is a simple query combined of multiple query terms sepa-
rated by a boolean operator such as AND, OR, NOT, or whitespace indicating
the usage of a default boolean operator. Most search engine use the AND op-
erator, and thereby demand that all the query terms must be included in
the document to indicate a match. There is also techniques where the AND
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operator is used if there is located hits, and if not sufficiently enough hits
is located the OR operator would be used. This technique introduce a sort
of ranking, meaning that the first documents in the result set has all the
query terms, and those further down the list could be based on a subset of
the query terms.

Lets take a look at two very simple examples:

1. boolean query: computer science
This boolean query gives us a total of 193 000 000 hits with the usage
of the Google search engine. The field of computer science is very
large, so we are not surprised by the waste number of hits found.

2. phrase query: “computer science”
This phrase query gives us a total of 88 100 000 hits with the usage of
the Google search engine. Notice the difference between this and the
previous term query, which is quite significant. However, even with
the usage of a phrase query for “computer science” the hits is fairly
large, so considering extending the phrase query would narrow down
the result set. In Section 3.2.4 we shall see additional approaches to
address this problem.

This clearly show the differences with the usage of boolean and phrase
queries. As already stated, there lies a difference in the semantic encap-
sulation between boolean and phrase queries. Basic boolean queries carry
only the semantics of the query terms itself, regardless of the semantic re-
lation they may share. The term(s) within a boolean query is not directly
related (unordered), and therefor the query will have a more vague semantic.
A phrase query however, is by nature carrying the semantics of all the terms
in the ordering they have. A phrase query like “new york” differs substan-
tially from the boolean query “new york” (without the quotation marks).
Even worse would have been if the search engine interpreted the boolean
query with an OR operator, thus including documents which also contains
one of the query terms.

3.2.4 Combined queries

This section is merely to introduce the concept of combined queries, where
we by “combined” mean the usage of different query types to express a more
precise information need. The introduction of this concept has become more
visible since the information amount in web search engines is so enormous,
and the users need new ways of express their information needs. So, these
queries are simply different types of queries which can be expressed as a sort
of boolean query where each query term is in fact another query type.
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Take this combined query as an example:
computers "python programming" norway. Here we have a boolean query
consisting of three query terms, whereas each query term is in fact another
query. The first term is a single term query. The second is a phrase query
consisting of two ordered terms, and the last one is a single term query. This
combined query is better illustrated in Figure 3.2.4, and note that there is
assumed a default boolean operator such as AND or OR between each query
term if just whitespace is used..

Query

computers “python programming” norway

Figure 2: A hierarchy showing a combined query, where each node has an implicit
boolean operator such as AND, OR, NOT

3.3 Recall and precision

Recall is an IR performance measure which represents the fraction of rele-
vant documents in a set of retrieved documents. Let R represent a set of
relevant documents, and |R| the number of documents in R. Now, assuming
a answer set A is retrieved in response to some query, and |A| the number of
documents in A, and that |Ra| represents the number of documents in the
intersection of the two sets, R and A. Then we have a formal calculation of
recall illustrated in Equation 5.

Recall =
|Ra|
|R|

(5)

Precision is another IR performance measure which represents the faction of
retrieved documents that is relevant. Relevant would here be in context of
the query. In Equation 6 we see the formal calculation of precision, whereas
we follow the same notation as for recall.

Precision =
|Ra|
|A|

(6)

3.4 Inverted index

An inverted index (also called inverted file) is a simple structure used to
index a text collection in order to provide fast searching capabilities. It is a
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combination of two elements, the vocabulary (also called the index) and the
occurrences (also called posting lists).

3.5 Signature File

A signature file is another index structure which was very much used before
the inverted index became available. A signature file is basically an index
structure based on hashing which represents the “signature” in the sentence
“signature file”. The hash function in a signature file is the function which
maps words to bit masks. An example could be that the word “computer”
maps to the following bit mask → 01000111, that is that h(“computer”)
= 01000111 where h() is our hash function. In [14] and [22] there is an
extensive introduction of signature files which goes through the structure,
searching and constructing capabilities. Just to make you clear on what
signature files really are, we will briefly introduce the underlying structure
and some characteristics.

The hash function maps words to bit masks. Now, a single text document
has its own signature file constructed by hashing all the words occurring in
the document. First in the construction phase the text is to be divided into
blocks. Now, the document is a set of blocks which in turn holds all the
words in the document. Each block in the document gets its own signature
by bitwise OR-ing together the hashes from all the words inside that partic-
ular block. Now we have a signature file which is composed of the sequence
of all the text block hashes.

The searching process in a signature file is very straight forward. First we get
the query where we perform hashing on each query term, and then bitwise
OR-ing them together into a bit mask which represents the query. And then
we compare the query bit mask with all the text blocks bit masks. Assuming
W represents our query bit mask, and Bi the bit mask of text block i, then
the comparison statement can be written like this:

W&Bi = W (7)

Note that the & is the bitwise AND operation. So, if all the bits set in W
are also set in Bi, then we may have a hit. Note that we say may have a hit,
since there is a probability of a false-match. The reason for this false-match
is in the nature of the signature file structure. When we construct a text
block hash, then our hashing function could construct a hash which has the
similar bits set as in another word hash. The likelihood of this occurring is
related to how much overhead you are willing to sacrifice in the signature
file. The less likelihood of a false-match indicate a large signature file, since
the hashes for each text block would need to contain more bits.
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Signature files has some interesting characteristics, such as that they are
more efficient the larger the query (in number of terms that is). For single
term queries, the signature files are not efficient. According to [22] signature
files improve phrase searching, and is the only indexing scheme which does
this (disregarding the state-of-the-art indexing scheme which is discussed in
Chapter 5). However, signature files are only efficient with relative small
document collections.
One important observation derived from many acknowledge books and arti-
cles such as in [14, 22, 17], is that inverted indexes almost always outperforms
signature files. This observation is explained in that signature files is likely
to yield a lot of false-matches which has to be sorted out by retrieving the
documents from disk.
To minimize the risk of false-matches one can increase the amount of bits
used in the bitmasks, however this imply larger index and more data to
retrieve for each search. Of even more importance is that ranking is not
supported. This restriction in contrast to the inverted index makes the sig-
nature file approach less appealing. Also complex queries with operators
such as disjunction or negation is hard to support.

3.6 Hybrid solutions

Hybrid solutions in regards to indexes is typically different kind of combina-
tions of index structures. The motivation for hybrid solutions is to support
various types of queries, such as:

1. term query

2. boolean query

3. phrase query

4. similarity query

5. image query (multimedia types)

6. ...

For term- and boolean queries there is usually the standard inverted index
which promotes this kind of use. For more advanced ones such as phrase
queries, a more enhanced index that supports rapid search based on phrases
could be used, however a standard inverted index would also fulfill the task.
Other examples could be queries which has special characteristics, such as a
very long boolean query with one or more stopwords. These kind of queries
would be very expensive to execute in a standard inverted index. However,
if we have some form of analyzation for all incoming queries, and then send
queries that performs best on a standard inverted index to that index, and
queries that may be rewritten to phrases to an phrase enhanced inverted
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index, and so on. This basically introduces the concept of implementing a
kind of routing mechanism, which maps each query up to the index type
which it performs best on.

Using the approaches described above, there is a possibility of saving pro-
cessing speed in form of lookup time in the index. This approach is very
much found in larger search engines nowadays. In [23], the author emphasize
that analyzing (linguistic techniques) queries and possibly rewrite them to
better suit the index in use, is done nowadays. In [12] the authors look into
the subject of using hybrid solutions to provide a fast searching process in
terms of phrase querying.

In Chapter 5 we will also go a little deeper into hybrid solutions, as it is
an important subject. We will also look at different example approaches
towards hybrid solutions that could be used, based on the introduced index
types.

3.7 Document analysis

Document analysis is the process of analyzing the content of documents (also
called “document preprocessing”). This is a core process in information re-
trieval systems, and has received a lot of scientific research over the past
decade. If we have poor document analysis in an IR-system, it will have an
impact on the search effectiveness since the indexed information will not re-
flect the information in the document collection in a good semantic way. Not
being able to encapsulate the document collection information in a search
engine makes the search engine worthless.

So, what lies in this core process which is of such great importance for an IR
system? Document analysis is composed of text operations which are used
to extract and manipulate the content of documents in such a way that the
semantics are encapsulated in the index. These text operations are often
referred to as a form of NLP (Natural Language Processing). You can see a
very simplified graphical illustration in Figure 3.

Text operations such as stemming, stopword elimination, index term selec-
tion, as illustrated in Figure 3, is a very common approach to document
analysis. In [22] Baeza-Yates and Ribeiro-Neto gives a simple yet broad in-
troduction to such text operations. The following three subchapters (3.7.1,
3.7.2 and 3.7.3) will cope with these text operations, and we would like to
point out that these operations are not the only ones who are being used in
document analyzing. Others worth to mention is the usage of thesaurus to
support index term selection in a much broader perspective, and the usage
of n-grams (chapter 3.1) to encapsulate the concept of the document (i.e. to
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Figure 3: Illustration of a typical document analysis process

model the document).

3.7.1 Stemming

In a user query there is often a combination of multiple words which together
forms the information need (the query). These variations between words in
different queries often share common characteristics, that is the same root
word with syntactical variations (grammar). In a very simple analysis pro-
cess the analyzer would make an distinction between the word “computer”
and “computers” (plural), which would construct two distinct terms, while
the concept of the word is basically the same. Now, if we consider a docu-
ment of many thousands of words in which a big portion is the same basic
word with syntactical variations, then it is easy to see that we would waste
vocabulary space if we did not consider the common concept they represent.
This root word is referred to as the stem portion of a word. The stem is
what is left after we remove the affixes (prefixes and suffixes). Let us have
an example:

hack hacking hacked hacker

Here the word hack is the stem (the root word) of hacking, hacked and
hacker. So, we basically save three index terms in the vocabulary here, ergo
the indexing structure will occupy less storage space. However, despite these
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apparent advantages, most search engines nowadays do not adopt stemming
in their document analysis process. The reason for this is that researchers
have come forward with some conflicting conclusions regarding the usage of
stemming. Especially a researcher named W. B. Frakes did some research
within the usage of stemming, and the results he came up with was incon-
clusive. [22] describes into more extent what was included in the experiment
performed by W. B. Frakes.

3.7.2 Stopword elimination

The definition of a stopword is a frequent word that carry little semantic on
its own, and thus is of little value to any IR-system. A high frequency for a
stopword also means that a query for a stopword would eventually result in
a very large result list. In the English vocabulary we have for example the
very frequent word “the”, which occur in almost all English documents. The
number of documents retrieved for a query like “the” would be |N | (often
even much larger), where N is all the documents in the collection. We can
therefore safely tag this word as a stopword based on its frequency, and for
the reason that it does not bring any meaning by it self. In a sentence it
brings meaning, but not on its own. In Figure 3 you can see how the stop-
word elimination has identified stopwords in the input document(s), and
thus discarded these words from being put into the index structure.

In an IR-system when there is an index which holds the vocabulary and
the posting lists, there would be a very skew balance in the posting lists.
This is because of their nature - each posting list holds the occurrences of a
particular word in the whole document collection. Given a stopword, which
would occur quite frequently, the posting list for that particular word would
be huge compared to a low-frequent one such as the word “TREC”.
If we applied stopword elimination in the document analysis phase, we would
enable large space savings in the index. In [2] and [22] there is claim to ob-
tain a compression in the inverted index structure by 40% or more (in disk
space savings). These savings are optimization factors that should not easily
be disregarded in IR-systems, since I/O traffic is usually a bottleneck. Some
disadvantages with the usage for stopword elimination is that it may reduce
Recall (Section 3.3) in the context of IR-systems.

As mentioned, stopword elimination will according to [2], [14] and [22] re-
duce recall in an IR-system. This disadvantage is very obvious when we
look at the query “to be or not to be”, where all the words except maybe
“not” and/or “be” will be stopped. This query would yield a very bad recall.
As elegantly stated in [14]: “the index creator is by stopword elimination
anticipating that future users will not be interested in these terms”. For this
reasons, most search engines nowadays do not adapt stopword elimination.
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It could be of interest to mention that search engines nowadays adapt aux-
iliary structures to cope with the stopword overhead in the index structure.
These auxiliary structures will be explored in Chapter 5.

3.7.3 Index term selection

Index term selection is the process of identifying and selecting good index
terms which encapsulate a comprehensive model of the document being an-
alyzed. Quoting this process in this simple sentence above makes it sound
very easy and straightforward, however that is not the case. A straightfor-
ward approach would be to identify all words (terms) in the document, and
then let them represent the content of the document. Now, given a query for
internet cookie could then match documents that describes food recipes
for cookies which is available on the internet, when the real intention was
to find documents regarding the internet information cookie used in web
browsers. This is an good illustration of semantic flaws which follows a
straightforward approach.

Other approaches in index term selection could be to extend the single term
identification algorithm above to also include infrequent terms which are se-
mantically related to the terms in the document. That is to extend certain
terms which have a semantic value with others synonyms or related words.
Techniques such as the usage of thesaurus is commonly used in these ap-
proaches. Also manual annotation of related terms (also called keywords)
could be used, however not in the same degree since it is expensive in con-
trast to an automatic approach.

In [22] there is described an approach where noun are identified as the se-
mantic carrying terms, and thus only they are identified and included in the
index term selection process. Terms such as verbs, adjectives, adverbs, con-
nectives, articles and pronouns are simply discarded based on their lack of
semantics. Term clustering is also used in cases where nouns appear nearby
each other, so that they encapsulate the concept of that particular sentence
or context. A very good example of this is a sentence which include the
nouns computer and science, which is clustered into computer science.

3.8 Apache Lucene

Apache Lucene is an open-source search and indexing technology framework,
and has become quite popular within the last couple of years. The name
“Lucene” comes from the creator wife’s middle name7. There was in the

7Doug Cutting is the original creator of Lucene.
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beginning only one implementation in the Java programming language8, so
this is the main language which the framework is available in. There now
exists several ports to other programming languages9.

Apache Lucene is not a single search application that we can just setup and
run. It is a complete search engine library which contains all the necessary
functions to both index and search a document collection. With this library
one can create a search engine which comply with user defined requirements
and other special needs. The library is very simple to use, and is despite its
simplicity very fast and efficient. The library provides out-of-the-box default
values so that one can quickly be able to index and search. However, it is
quite simple to extend the library to enhance indexing performance, search
domain, document analyzers, etc.

In the introduction of our experiment later on, we will further explain the
power and beauty of Apache Lucene. We shall also explore Lucene perfor-
mance, both in terms of indexing and searching with a focus of enhancing
phrase searching capabilities.

3.9 TREC GOV2 Collection

The TREC10 Collections is a standard “testbed” to judge information re-
trieval systems. The collections provided (called “tracks”) are each designed
for their own utilization domain; Web, Blog, Enterprise, Legal, Genomics,
etc. The track we use in our experiment is the Terabyte Track, which is
based on a web data crawl from web sites in the .gov top-domain.

This Terabyte Track is also called the GOV2 collection. The GOV2 collection
is a crawl that was performed in early 2004, and grow up to 426GB in size
and contained as much as 25.2 million documents (web pages). In the IR-
community it is quite common to do benchmarking based on this collection,
and so have we done in our experiments.

8Java programming language. http://java.sun.com/
9Look at http://wiki.apache.org/lucene-java/LuceneImplementations to find out

which programming languages Lucene is ported to.
10Text REtrieval Conference (TREC). http://trec.nist.gov
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4 Inverted Index

The inverted index is a very much acknowledged information structure which
promotes fast term lookup. The reader is recommended to first read Chap-
ter 3.4 for a brief and understandable definition of an inverted index. Basi-
cally an inverted index is a data structure whose primary goal is to simplify
and enhance the search task of a text document collection. Recall from
Chapter 3.4 that the inverted index is a combination of two elements:

� the vocabulary (index)

� the occurrences (posting lists)

The first element, the vocabulary, is a list of all the unique terms in the text
document collection. In Figure 4 on page 34, the leftmost box illustrates
this element. The other element, the occurrences, is a set of lists where each
list is related to one unique term in the vocabulary. Inside these lists there
is what we call postings (hence the lists is referred to as posting lists).

The postings represents pointers to all the occurrences of that particularly
term in the text document collection. A term in the vocabulary has a pointer
to a posting list in the occurrences part of the inverted index (as graphically
illustrated in Figure 4). Each entry in a posting list typically contains a
unique document identifier (denoted as dj , where j is the unique document
identifier), along with the term frequency within that document (usually
denoted as fi,j where i is the term and j the document), and maybe also a
list of positions to where the term occurs inside the document. In Figure 4
we clearly see the pointer from a term in the vocabulary to its posting list
in the occurrences.

Just to make the concept of a posting list simpler, we have a denoted a
very simple posting list for an imaginary term. Table 2 is a very simple
posting list where each entry is another list (vector) where we typically have
three items: document identifier, term document frequency, and a list of
occurrence positions within a document. In the posting list the i is the term
id and j is the document id, and the list items is sorted increasingly based
on the document identifier j.

entry 1 entry 2 entry ... entry j

< di,1, fi,1, [3, 19, 43] > < di,2, fi,2, [23] > ... < di,j , fi,j , [59, 88, 102] >

Table 2: A very simple posting list. i is the term id, j is the document id. List
items is sorted incrementally based on the document identifier j.

The document id represents the pointer to which document that a particular
term occur in. The posting lists in an inverted index is by definition also
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Figure 4: Standard inverted index structure where the two core elements and their
relation is in focus.

referred to as an inverted list. An inverted list is built up from the presence
and positions of a term in a collection of documents, so it is basically a
natural inversion from the text into a list of words and their occurrences.
An example can be the inversion of Table 3, which represents a set of docu-
ments where each row is a document, that would produce Table 4 which is
the (simplified) generated inverted index. A thorough description of these
core elements in the inverted index structure can be found in [14, 22] and
[2] along with comprehensive illustrations and examples.

If in-document positions is being used (in posting list entries that is), then
a given position there either refers to a word or a character. Most search
engines nowadays dealing with text documents use word references, not char-
acter11. The index type search engines often used is said to be a word ori-
ented index. A document oriented index type however, does not store word
positions, but only document identifiers. Look at the example posting list
above without the extra list within each post entry to denote the positions.

11Bioinformatics (genetic) search engines may use characters references
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Documents Words
doc 1 searching is for 1337 people
doc 2 programmers, also know as codemonkeys
doc 3 1337 people is codemonkeys

Table 3: A table of documents and their content. This type of table is in some
circumstances referred to as a forward index

Words Documents
1337 <doc1>,<doc3>
also <doc2>
as <doc2>
codemonkeys <doc2>,<doc3>
for <doc1>
is <doc1>,<doc2>,<doc3>
know <doc2>
people <doc1>,<doc3>
programmers <doc2>
searching <doc1>

Table 4: A table of terms and their occurrences. The rightmost column can be
looked at as an inversion of Table 3, and the hole table is a very simple inverted
index structure.

In document oriented indexes it is difficult to support proximity or phrase
queries, since there is a need to retrieve the document text online and then
sequentially scan it to locate phrases or proximity matches. This will in
most cases add a substantial time delay in an already strict time schedule
because of the I/O delay of fetching the document. It would also implicate
a significant storage overhead since all the documents needed to be stored
in their original condition. By original condition we mean before it has been
piped through the “Document Analysis” process described in Chapter 3.7.
In word oriented indexes the search engines has the advantage of simply
fetch postings lists and find matches based on the word positions. In case
of phrase queries, multiple posting lists must be fetched and then merged
together based on the order of the query terms and the word positions in
the posting lists. This is a whole lot simpler (with phrase and/or proximity
queries in mind) with a word oriented index than with a document oriented
index, and is also the preferred way of supporting these kinds of queries.

It should be noted that the document oriented index structure would oc-
cupy much less space than the word oriented. This is because the document
oriented index only needs to record the document identifier, not the term
positions inside the document, thus saving a whole lot of pointer space. In
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cases where we have stopwords like “the”, which is in almost every document
in the collection, we would save ourselves as much pointers as there is doc-
uments. If we have 1 million documents who all have the term “the” inside,
then we would at least save ourselves 1 million pointers in the posting list
of that particular term. In most cases, the term “the” would occur multiple
times inside a document, so we would actually save ourselves much more
than 1 million pointers overall. Despite this seemingly disadvantage with
the usage of word oriented indexes, this is widely in use due to its simple
support of phrase and proximity queries.

4.1 Resource usage

The inverted index resource performance has been deeply explored in [2,
14, 22, 23] where the focus is mostly on the occurrences part, since it is
the most resource demanding. Of great importance is balancing resource
performance versus search speed performance, and deciding which sacrifices
should be made in this process. It is widely known that there is limited
main memory available in a computer, and thus great care should be taken
with regards to what is to be stored there.

We want to utilize all main memory available such that data which is fre-
quently accessed, is available without the delay of external devices. One may
think that the internal OS cache strategy might do this for you, and that
is correct. However, often this approach is not sufficient. The vocabulary is
something we would want to put in the main memory, if there is sufficient
space though. Also caching of posting lists which would sufficiently speed up
the search task is of interest here. Approaches and experiments regarding
caching of results and posting lists is widely explored in [16], and a set of
interesting architectures of different levels of caching is being discussed.

Lets consider the first element in the inverted index structure; the vocabu-
lary. The vocabulary is only a collection of all the unique terms in the text
document collection. In addition to the terms, there is the need to store
the pointer to which posting list the vocabulary term is related to. Also, in
order to reduce I/O traffic towards slow external storage devices and thereby
save significant main memory, it is normal to include the overall frequency
for each term in the vocabulary. The benefits of including the frequency is
gained in cases where multiple query terms are present.

Given the phrase query “howto search”, we have two unique query terms;
“howto” and “search”. Now, inside the search engine, it is highly attractive
to locate which query term that has the lowest frequency (rarest term),
because the higher the frequency the larger posting list needs to be fetched
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and decoded from the occurrences. The phrase query term “howto” gives
34 300 000 hits with Google, and “search” gives 5 250 000 000 hits. Clearly
the term“howto”needs to be fetched first in light of this ratio, and the entries
are decoded and a temporal structure is constructed. Then the second rarest
terms posting list is fetched: “search”. A merge process will begin that will
merge the entries in this posting list against the temporal structure. Only
entries in the temporal structure that has a match in the posting list will
be leaved untouched, the rest will be discarded. So, this merge process only
purge entries from the temporal structure, it never appends. The savings
here are quite significant in terms of main memory, and also in I/O traffic. If
a high frequent term had been processed first, then the temporal structure
would have occupied more space than available (swapping to disk). The
phrase query above has a total of 19 400 hits according to Google. This hit
count differs somewhat from the frequency of the query terms alone. If we
had chosen to process the query term “search” first, our temporal structure
would have occupied 5 215 700 000 more entries than with the query term
“howto”. Just as a little sidenote: it is unlikely that the temporal structure
in this example would hold all the entries. Only a subset of the most relevant
ones based on the query ranking, since the user would never browse all the
19 400 hits at once.

Figure 5: Illustrates query term evaluation with the fetching order of posting lists
and the merge process into a temporal structure.

In Figure 5 there can be seen the fetch and merging of posting lists such as
described here. The operations performed in each number in the figure can
be summarized as:

1. Fetch posting list of rarest query term, and construct temporal struc-
ture.

2. For remaining query terms; fetch posting list and merge with already
constructed temporal structure.
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3. Output final structure where all entries has a hit based on the query.

Term Frequency Pointer
a 983 342 (disk access pointer)

Table 5: A simple illustration of an item in the vocabulary.

A simple example of an entry in the vocabulary can be seen in Table 5. Here
we simply have a term stored in its ordinary form (a sequence of characters;
a string), a (imaginary) term frequency (integer), and a pointer to its post-
ing list. Since the term in the vocabulary is unique, it is usually stored as
it is (compression could have an impact here; see Section 4.4).

The term frequency is very unbalanced in the vocabulary as a consequence
of the indexing of low- and high frequent words (and maybe stopwords),
and may vary between 1 to as many documents there is or more, depending
on whether the frequency counts document hits or in-document hits. In
Section 4.4 we explore this kind of behavior and look at how we can use
compression to enhance both the searching and indexing. The pointers in
the vocabulary will need to address all the posting lists in the occurrences
element of the inverted index structure. Since there will only be as many
posting lists as there are terms in the vocabulary, then a pointer will usually
be 32-bits.

The vocabulary is stored using some sort of clever data structure such as
a B-tree[1], Suffix tree [22], Hash table or a simple sorted list. The issue is
the lookup speed in finding the terms, so in case of B-tree, Suffix tree and
Hash table there will be an additional space overhead associated with the
vocabulary structure.

Lets now consider the second element in the inverted index structure; the
occurrences. The occurrences which holds the posting lists is the space con-
suming part of the structure. We especially talk about disk space usage, and
therefore also optimal CPU utilization based on the time-consuming task of
fetching these posting lists. A decade ago there was a limited amount of
CPU cycles available in computers, hence a focus on saving processing was
quite imperative. Operations such as decoding12 the posting lists required
a lot of CPU power, and was by that time very expensive in these terms.

One technique that proved to yield substantial gains for those computers was
the skipping [20]. This technique will not be discussed into detail here, but
its main goal was to provide an additional “index” on top of a posting list.

12Typical decompress and sense/understand the information
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This“index”reduced the decoding step, which in turn saved much processing
time for the CPU. Nowadays however, the CPU is not the bottleneck13, but
the disk is. To fetch posting lists from a disk requires multiple disk accesses
which comes with a price, namely time. Disks have not gone through the
same development as the CPUs, and therefore suffers from slow access rates
compared to operations within the CPU. This skipping technique is better
described in [20, 14], and somewhat in [5, 12].

A posting list for a particular term is a set of entries. Each entry encap-
sulates the document identifier, the term frequency and the word positions.
This posting list is sorted based on the document identifier, so that the first
entry in the posting list denotes the smallest document identifier match for
that particular term, as illustrated in Table 2. For each next entry, the
document identifier is guaranteed to be larger than the previous one. When
evaluation of ranked queries the posting lists for the query terms might yield
some difficulties due to its size, and that it is sorted based on the document
id. Given a very large posting list, the list has to be retrieved and decoded.
This is because it is necessary to calculate document weights and then rank
the matches in order to find hits based on relevance.

In case of ranked query processing, we would like to only retrieve and de-
code entries in a posting lists that is likely to be relevant, thus discard the
rest. Techniques for such an list reordering to promote this capability could
be frequency-ordering and impact-ordering. These techniques are somewhat
described in [5], and in much more detail in [17]. When considering ranked
phrase query processing however, it is not so simple to predict which occur-
rence of the term which will be in a phrase query. Thus such techniques
as list reordering is not considered to be effective, and therefore discarded.
In phrase queries, processing word positions inside a posting list entry only
needs to be decoded in case of a document match. If no document match is
in place, the processing will move on to the next entry until the end of the
posting list is reached. The whole posting list needs to be retrieved from a
disk.

4.2 Inverted index construction

The construction of an inverted index structure is actually a simple process,
to some extent described in the beginning of Chapter 4. Outlined in [17]
is the single key challenge with index construction that the data volume
involved cannot be held in main memory, and thus requires additional tech-
niques which facilitates inversion of such large data volumes without the
need to store the whole temporal index in main memory.

13http://en.wikipedia.org/wiki/Bottleneck_%28engineering%29
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As so elegantly outlined in [14], the whole construction process to create
an inverted index is essentially an matrix transposition. In the beginning of
Section 4 we introduced table 3 and 4. In table 3 we have a table where each
row is a document, and each column is essentially a term (word). To con-
struct an inverted index structure for such a document collection, we need
to perform a matrix transposition from table 3 to table 4, whereas each row
is transposed into a column and vice-versa. Now, the key challenge is the
document collection size, which is quite large - much larger than available
main memory - and thus we assume that the inverted index structure would
occupy more main memory than available. In the construction process there
is also taken extensively usage of compression techniques, as we shall see in
section 4.4. Now we will have a closer look at some inversion techniques
that has proven its strengths in response to our large data volumes which is
to be indexed.

In-Memory Inversion. The in-memory inversion is a simple inversion
technique which first constructs a template form of the inverted index based
on a pass over the document collection. This template contains vocabu-
lary terms and their frequencies, and also allocated blocks already created
by using the term frequency in the collection. Then a second pass over
the collection is required, and the pointers and such are so appended to the
template. This approach is taking full advantage over the random-access ca-
pabilities of main memory in that the skeleton is already constructed. This
technique works only when the main memory is about 10%-20% greater
than the complete size of the inverted index. Also, if we is to construct a
word oriented index to facilitate phrase querying, then the index size would
increase quite significantly and pose a challenge to keep in main memory.

However, it is possible to extend this technique to allow a larger index than
available main memory. This extension lays out the index template on disk,
and then creates a series of partial indexes in memory and move each in
a skip-sequential manner to the template laid out on disk. This extension
thus enables this technique to handle quite large collections. One important
thing to notice about this technique is that it requires two passes over the
collection, which implies huge I/O costs and possible a lot of document anal-
ysis processing (see 3.7). In section 4.4 we shall see that taking advantage
of compression will further improve this technique in the inversion process.

Sort-Based Inversion. The sort-based inversion technique is as the name
indicates - an inversion method that is based on sorting. In its simplest term
the technique creates an array of triples of the type < t, d, fd,t > on disk

40



4 Inverted Index Page 41

in document order and sorted by term order. This array is then used to
create the final inverted index. The transformation from the array to the
final index is then to merge blocks from the array, which would then give
the final index. This merge process is easy to see, as the triples are laid out
on disk in document order and sorted by term order. Also here the usage
of compression comes in handy. In this technique the vocabulary element
must be kept in memory, which constraints the amount of data which can
be processed at the same time. The larger the collection the larger the
vocabulary, hence more main memory would be occupied by the vocabulary.
This requirement also constraints which applications this technique is useful
for, since large collections such as the TREC Web Data track has a large
vocabulary and thus occupies large portions of memory.

Merge-Based Inversion. The merge-based inversion technique has fo-
cused on the problem of holding the complete vocabulary in main memory
at all time. The key idea here is that we want to create a mixture of small
indexes (partial indexes). The way these are created is that we continuously
read in documents from the collection and index them. If the main memory
has reached its capacity or a fixed threshold, the index including its vocab-
ulary is flushed to disk as a partial index. This partial index is a complete
index with its own vocabulary and occurrences part. Once the flushing to
disk is completed, the index in memory is deleted, and a new index is cre-
ated based on the new read of documents. This process continues until the
whole collection has been processed, then a new merge phase between the
partial indexes is initiated. The time to generate these partial indexes is
O(n) where n is all the words inside each document in the collection, and
there will be a total of O(n/M) partial indexes, where M is the size of the
main memory. This new merge phase merges two indexes at a time; it starts
off with merging the vocabularies, and for each time the same term occurs
in both indexes, a merge between their posting lists will occur. A more in-
depth understanding of these inversion techniques can be found in [22, 17].
As outlined above, there exists several inversion techniques used to create
indexes. Most of the steps that typical happens in an inverted index con-
struction is summarized in Listing 1.

4.3 Scalability

The scalability of the inverted index structure with regards to the indexing
process depends on the inversion techniques discussed above in section 4.2.
The last technique, Merge-Based Inversion, scales particularly well for a
range of collection sizes. The partial indexes can easily be distributed, and
the merge process is also highly scalable. Also, for an inverted index struc-
ture to scale regardless of document collection sizes, it needs to take advan-
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1 create a p a r t i a l index in memory
2 while the re are more documents to index do
3 i f the memory i s f u l l then
4 flush the cur rent p a r t i a l index
5 create new p a r t i a l index in memory
6 end i f
7
8 Add a new document to cur rent p a r t i a l index
9 end while

10
11 flush the cur rent p a r t i a l index
12 merge a l l p a r t i a l indexes in to one f i n a l index with multi−way

merge

Listing 1: General steps for constructing inverted indexes

tage of data structures and algorithms which facilitates distribution among
several nodes14.

In the subject of scalability there is a very important factor that effects al-
most every aspect of search technology, namely the disk space consumption.
An index which requires a substantial large disk overhead (overhead as in
extra data per entry in the index) has drawbacks in that more I/O traffic
must be performed to fetch the wanted data. The disk space consumption
needs to be linear, so a distribution of the processing over n nodes would

cut the whole processing M into
M

n
smaller processes. A lower disk space

consumption than linear is unlikely to be found, and an exponential con-
sumption is certainly not desirable, as the need for extra nodes to process
the data would be out of control. So, an inverted index structure providing
linear disk space consumption is a requirement, as the I/O traffic would in
such a case also be distributed (disregarding network bandwith).

Also of great importance in scalability and the inverted index structure is
its ability to handle a vast amount of queries. Large web search engines
nowadays utilize distribution in large scales to handle the query influx, and
the inverted index thus needs to be scalable to provide this.

In [23] there is discussed different partition schemes for partitioning the
inverted index. Partitioning an inverted index is the approach used to dis-
tribute parts of the index to other nodes, and thus make the inverted index
distributed. There is two common schemes:

� document partitioning

14A node is in general a network connected computer
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� term partitioning

In Figure 6 we can see a simplified inverted index structure.

Figure 6: A figure encapsulating the inverted index as a whole, and how the
document-based and term-based partitioning scheme works on the inverted index
structure. The idea of this figure is borrowed from [17].

The figure is somewhat self-explaining; to the left we have the vocabulary,
and at the top we have the document identifiers (numbers). Inside the
main-box we have the postings, where the first digit is the document iden-
tifier, and the second is the frequency. Notice however the bounding boxes
by the different partition schemes. The document-based partition scheme
encapsulates a set of document identifiers, and handle only requests con-
cerning those documents. The term-based partition scheme encapsulates a
set of terms from the vocabulary, and handle only requests concerning those
terms. From [22] there is concluded that most circumstances considers the
term-based partition scheme to perform better than the document-based.

4.4 Compression

The usage of compression in inverted indexes is a necessity because of the
large amounts of information involved. Almost every aspect of inverted in-
dexes is affected by compression in that less amounts of data is needed to be
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retrieved from disk and therefore savings in memory, disk space consumption
and processing is achieved. In [14] compression is one of the key discussions,
and a thoroughly discussion regarding overall aspects of compression effects
on inverted indexes from [17] will be explored in-depth here. Another very
interesting article regarding inverted index compression is [16], whereas cod-
ing schemes such as the ones brought forward here is thoroughly discussed.
Also of interest within the subject of IR-systems and compression is the as-
pects brought forward in [21] and the experiments outlined in [7].

Compression in IR systems Compression has not always been so at-
tractive in the area of indexes. In the times where the CPU was a fragile
and limited resource, compression yielded little gains. This is because of the
additional processing that is required by compression, lowered the overall
performance of computers at that time. Compression was though present,
but not in the same degree as now. In present times we are so lucky to have a
very huge resource pool of CPU cycles. However, the disk is the bottleneck,
meaning the disk access rates has not gone through the same development
as the CPU. So, the gap between CPU and disk has become larger which
affects the design of search engine architectures. In [9] there is a quite com-
prehensive example which illustrates the differences here. First is to fetch a
single byte from memory to CPU, which has a delay of 12-150 CPU cycles.
If we were to fetch a single byte from disk to CPU, we would see a delay of
10 000 000 CPU cycles. It should be evident that the benefits of implement-
ing compression in inverted indexes is substantial and should not be avoided.

In the inverted index structure there are a lot of integers which needs to be
represented and stored. Examples are the term frequency (ft) in the vocab-
ulary, the document identifier (dj where j is the document number), or the
word positions. Anyway, all these integers needs to be stored in the index to
make it complete. The majority of data in the inverted index structure are
integers, therefore we strive to keep the integer space as small as possible.
The main question is how large should such numbers be? What space range
do we need to support?

A very naive implementation would use 32-bit integers. This imply that all
numbers in the index would occupy 4 bytes, regardless of the number being
1 or one million. This implementation would work, but it is not the most
space efficient. There would be a lot of waste as word positions unlikely
would be as large as 4 294 967 296 (= 232 ⇒ int type) for example. One
simple, yet very space efficient approach here is to support integer coding
by variable number of bits. With such an approach, the number limit is
infinite, and the space consumption will scale from 1 bit to as much as is
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needed. In contrast to the other approach of using a fixed number of bits
(32-bit integer), this approach does not waste space nor set limits of max
values. However, sufficient large numbers demand space, and in an inverted
index there will be large numbers present. We will look at this problem after
some introduction of coding schemes used in the field of compression.

Coding schemes. Some popular encodings used is unary, Elias gamma(γ)
and Elias delta(δ), whereas the Elias encodings are introduced in [8]. These
are all called parameterless codes, and is thoroughly discussed in [14, 17]. By
parameterless we mean that they have a fixed parameters which counts for
all compressions, and if a coding is parametrized it means that the parame-
ters used can be tailored depending on the characteristics of the data to be
coded. Also one important coding scheme is the Golomb code introduced
in [10].

Unary is a highly simple variable-bit code which encodes a integer x, where
x > 0, as x− 1 bits as either “1” or “0” bits. The code is always terminated
by an opposite bit. If “1” bit is being used to code the x value, then the
terminating bit is “0”. Unary is the simplest coding. Gamma and delta
is slightly more complicated. The integer 4 in unary is 1110 - notice the
terminating “0” bit. In the second column in table 6 we have some coding
examples over a range of integers for unary.

The gamma code15 is only capable of encoding positive integers, as implied
above in the unary coding. The process of encoding a integer x is to extract
two values; first find the highest power of 2 that x contains (⇒ 2i), and then
the second value is the remaining binary digits of the integer x. We now
have two separate values. Encode i in unary as described above; use i “1”
bits followed by one “0” bit. Then append the remaining binary digits to
the unary encoding, and we have a gamma coding of the integer x. As can
be seen from table 6, we have coded a sequence from 1 to 6 integers, and
the results for the gamma is in the third column.

The delta coding16 shares such requirements that it can only code positive
integers. The delta coding is somewhat similar to the gamma coding in that
it also extracts two values from the integer to be coded. The first value is
the highest power of 2 that the integer contains (⇒ 2i). The i from the
first value is then coded as i+ 1 in gamma coding. The second value is the
remaining binary digits from the highest power of 2 of the integer. Then
we have two separate values, and to represent it as a delta code we have to

15See http://en.wikipedia.org/wiki/Elias_gamma_coding for more examples
16See http://en.wikipedia.org/wiki/Elias_delta_coding for more examples.
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Integer Unary Gamma Delta
1 0 1 1
2 10 10:0 100:0
3 110 10:1 100:1
4 1110 110:00 101:00
5 11110 110:01 101:01
6 111110 110:10 101:10

Table 6: Example coding of a sequence of integers with unary, gamma and delta
coding. Note that the “:” is only for illustrative purposes.

concatenate the two values. The fourth column in table 6 shows examples
of delta encoding of a sequence of integers.

The briefly mentioned variable bit coding has the disadvantage that it is bit
oriented. By this we mean that the computer needs to inspect each bit to
decode such a value. Now, since the basic unit of access is multiples of eight
bits (one byte), the process of inspecting each bit would be rather costly.
Instead we rather inspect whole bytes, which will simplify the process. Based
on this observation, we can now move on to a very simple coding scheme
used to encode and decode variable length byte-aligned codes. This coding
scheme can easily be summarized here: if x <= 128, then a single byte is
used to represent the number x − 1 in binary, with a leading “0” bit. If
x > 128, then the low-order seven bits of the number x− 1 is packed into a
byte with a leading “1” bit, and the quantity (x div 128) is recursively coded
the same way. The pseudo algorithm for these coding scheme can be seen
in listings 2 and 3.

1 s e t x = x − 1
2 while x >= 128
3 wr i t e byte ( 128+x mod 128)
4 s e t x = ( x div 128) − 1
5 wr i t e byte ( x )

Listing 2: Simple encoding with the variable-length code scheme

Just to mention a few advantages with this type of coding (bytewise) is that
it promotes fast reading of compressed data streams, since it only needs to
step through the stream for the kth subsequent code. This advantage is
highlighted in [9], were it is proven that queries perform more than twice as
fast as with bitwise codes.

The golomb coding17 scheme is somewhat different than the gamma and
17http://en.wikipedia.org/wiki/Golomb_coding for more examples
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1 s e t b = read byte ( )
2 s e t x = 0
3 s e t p = 1
4 while b >= 128
5 s e t x = x+(b−127) * p
6 s e t p = p * 128
7 s e t b = read byte ( )
8 s e t x = x+(b+1)*p

Listing 3: Simple decoding with the variable-length code scheme

delta scheme. Golomb coding is very efficient scheme which is parametrized.
This imply the usage of an parameter in the encoding / decoding process
of the scheme, and this parameter is calculated based on the length of a
posting list. The encoding and decoding process in this scheme shares some
characteristics with the Elias gamma and Elias delta, in that it creates two
values based on the input value. These two values are created with the help
of the parameter called M , and is a fixed value. Based on the input value
we find a quotient and the remainder.

quotient ⇒ q = int(
N

M
)

remainder ⇒ r = N%M

As the previous coding schemes, the encoded value has a first and a sec-
ond value, whereas the first is the unary encoded value of the quotient, and
the second is in binary encoding. Note that if the M is not the power of
2, then it has to be truncated. This is achieved based on a logical state-
ment: set b = dlog2(M)e, if r < 2b −M then code r as plain binary using
b−1 bits, else if r ≥ 2b−M then code r+2b−M in plain binary using b bits.

As with the Elias gamma and Elias delta, the output encoding is on the
form “firstcode:lastcode”. An example can be to encode the value 31, and

set M = 10. Then q = 1110, since the int(
31
10

) = 3, and 3 in unary is 1110.
The remainder is then 1, and following the description above we then get
001. So, given an input value of 31, the golomb coding scheme would output
“1110:001”.

Compression in vocabulary The vocabulary part of an inverted index
structure is the first part of an index which is searched in order to retrieve
the pointers to the posting lists in the occurrences part. Since the vocab-
ulary is to hold all the unique terms in the document collection, it may
become quite large. The size of the vocabulary is somewhat limited, as de-
scribed in 2.6, where the vocabulary growth is described as a mathematical
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expression. However, given a collection such as web data, the vocabulary
will contain millions of entries. Each entry contains a unique term, the over-
all term frequency (ft), and a pointer to a posting list in the occurrences
part. These three elements inside an entry in the vocabulary needs storage
space, especially the term. One standard approach in the vocabulary is to
have the terms lexicographically sorted. With this in mind, we can assume
that a lot of the nearby terms in the vocabulary may share some syntactical
similarities. Have a brief look at table 7 which illustrates a small set of en-
tries from a given vocabulary. Notice how all the terms are lexicographically
sorted.

Term Frequency Pointer
... ... ...
connect freq 0xXXXXX
connected freq 0xXXXXX
connecter freq 0xXXXXX
connecting freq 0xXXXXX
connection freq 0xXXXXX
connective freq 0xXXXXX
... ... ...

Table 7: A table illustration a small piece of entries in a given vocabulary. Note
that the term frequency is not written here.

One key observation here is that the “root” (see stemming in section 3.7.1)
is shared between multiple terms. Take for example the term “connected”
which is basically the term “connect” with the appended suffix “ed”. The
same goes for the term “connecter”, which is the term “connected” without
the ending “d” and with the suffix “r”. The pattern here is that we, given
similar terms, can express one term based on the previous with the usage of
suffixes. This key observation will provide us with compression in regards
to the vocabulary, and therefore also better utilization of the main memory.

Recall that it is very important that the vocabulary is very fast accessible,
and therefore large portions should be kept in memory. However, a straight
forward approach where all terms in vocabulary is coded with the usage of
prefix and suffix offsets would imply a sequential scan to decode a term -
which is not what we want. To approach this problem, we can have a fixed
interval where we index the whole vocabulary term without the usage of
prefixes and suffixes. Say for example that every 512 th entry is stored as it
is.

One other aspect is that given a vocabulary of many millions of terms, which
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would occupy most of the memory available, we could hold only each 512
th entry in the memory, and perform binary search between them. Now, in
cases where the index term is between entry x and x+512, a read operation
reading in all x + 511 entries would be initiated, and all the entries would
be buffered. This approach utilizes the main memory into more extent, and
also promotes the buffering of frequently accessed posting lists to be per-
formed. Note that vocabulary entries between two 512 th multiples which
is frequently accessed would be buffered for long times, and not so frequent
entries would usually be deleted given that the main memory has reached
its capacity or a given timeout has occurred.

This vocabulary approach to compress and thereby utilize the memory is
currently being used by the open-source search technology Apache Lucene in
Section 3.8. The idea of holding each n th entry as“it is” in the main memory
is one approach described and used in [23]. It should however be noted that
not all search engines implement such structures in the vocabulary. Some
takes advantage of distributing the vocabulary into a distributed hashtable,
and thereby achieving O(1) lookup time in each partition of the vocabulary.
The network I/O delay will however play a role here. Others however just
loads the entire vocabulary in the main memory and thereby accepts to
sacrifice memory space which could have been used to hold posting lists.

Compression in the occurrences The occurrences holds the set of post-
ing lists, which is the consuming part of the inverted index structure. In
Figure 4 and 5, and Table 2, there is illustrated different examples of posting
lists and how they are presented. One key observation in these illustrations
is that given a posting list containing more than one entry, all the entries is
sorted increasingly based on the document identifier. A simple list of doc-
ument identifiers extracted from a posting list is shown below. Notice the
order they are in.

10, 21, 23, 28, 31, 34, 35, 39, 73

We can see that each document id is a standalone integer, which each occupy
4 bytes. This is the least space efficient approach. If we now implement the
d-gap approach, we will have this list of document identifiers.

10, 11, 2, 5, 3, 3, 1, 4, 34

This new improved document id list is the same as the previous one, but
instead of denoting each document id as itself, we denote the gap between its
document id and the previous one (showing just the increment value). With
this approach we can represent document identifiers with much smaller num-
bers, hence their representation does not need to be a standard integer. It
is in these circumstances we takes advantage of the coding schemes already
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introduced in the beginning of this section. By representing these d-gaps
with a coding scheme such as Elias delta, Elias gamma or Golomb we can
harvest significant savings.

Take for example the need to represent the gap between document id 21 and
23, which is 2. The number 2 does not need 4 bytes to be represented. If we
look at the Table 6, we can see that the number 2 needs 3 bits using Elias
delta and 4 bits using Elias gamma. So, overall the most efficient represen-
tation of the number would be to use a byte, since we then eliminate the
need to inspect each bit, but rather multiples of bytes.

The usage of compression in posting lists is proving even more efficient in
case of common words (stopwords). Stopwords contains the largest posting
lists because of its nature; it is a frequent word in the collection, and there-
fore contains a lot of document pointers. Of even more interest is that given
the large frequency of common words, then the gaps between each document
identifier in the posting lists would be on average very small; 1 or more.
Take for example the very frequent term the, which occurs in almost every
document. Now, if we were to store a integer for each document identi-
fier, and we have 10 million documents in our collection, then our post-
ing list for this term (given document oriented index) would need 4 byte
×10000000 = 40000000 byte (≈ 38 MB) just to store the d-gaps. We would
also need to append the in-document frequency, and possible also word po-
sitions which would yield even more storage needs.

If we however could represent each document identifier as a d-gap, and to
code each d-gap in Golomb, Elias delta or Elias gamma, then our posting
lists would only be a fraction of the above calculation and thus promote
a much faster retrieval. The indexed stopwords will always point to the
consuming posting lists in the occurrences part, but we would significantly
reduce this space overhead with the usage of compression. To even fur-
ther reduce the costs there is the possibility to discard stopwords. The
main disadvantage with that is that the IR-system would most likely loose
effectiveness as described in Section 3.7.2, and thus lowering the overall per-
formance for the end users. Especially phrase queries would be effected by
stopword elimination, as described in Section 3.7.2.

Word positions Word positions only apply for word oriented indexes.
And as stated, indexes which is to efficiently offer proximity and/or phrase
searching capabilities needs to store word positions in order to find inter-
sections between posting lists. Now, the concept of word positions is pretty
much the same as document identifiers - they are both stored in increasing
order. Introducing word positions in indexes impose huge storage overheads.
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Stopwords, which already account for a large part of the occurrences part,
would considerable increase given the nature of a posting list. Each entry
that already contains a document identifier (gap) and an in-document fre-
quency, would also contain a new list consisting of each word position inside
that document. A very naive implementation would maybe apply integers
for each word position too. There is fortunately very simple to see the
downside of such a naive implementation. Word positions shares some char-
acteristics with the document identifiers, and one is the significant savings of
implementing d-gaps - we will from now on call this type of gap for w-gaps,
as done in [17]. Taking advantage of coding schemes such as Elias gamma,
Elias delta and Golomb here would lower the storage costs considerably.

An interesting observation done in [17] is that only a handfull of the most
common words in the occurrences account for more than 10% of the total
index size. One can therefore imagine the processing needed to handle query
evaluation involving such terms.

4.5 Author comment

The inverted index structure is one of the most researched and discussed el-
ements in the search engine architecture. It is therefore highly interesting to
read such acknowledged research papers within this subject as this chapter
is built on, knowing the widespread usage of the structure.

The inverted index structure has many advantages in contrast to structures
such as signature files, and the structure holds and scales for query types
such as boolean queries containing simply query terms. However, with the
introduction of phrase query, which is the overall subject of this master the-
sis, the inverted index structure has some downsides. These downsides are
neglectable for small document collections, but given a sufficient collection,
which is often found nowadays, the downsides are more obvious. In [14]
there is outlined that the inverted index structure outperform structures
such as signature files and bitmaps, but the challenges in phrase querying
are not taken into account in relation to large document collections. The
same goes for the subject in [22].

In the research work [13] the issue of phrase queries in inverted indexes is
discussed, and approached further. This is one of the earliest research work
which addresses this problem. More thorough work has been accomplished
in [5] with the introduction of nextword index structures, and then we have
the introduction of phrase indexes in [12], and the substantial gains of com-
bining structures into hybrid IR-systems. The latter approach is also more
discussed in [13].
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5 Related work

This chapter will explore related work in the area of inverted index struc-
tures which promotes efficient phrase search capabilities. Sections in this
chapter must be read with the previous chapter in mind; the inverted index
structure.

The two first sections in this chapter explores two somewhat similar struc-
tures. Both these structures builds on the inverted index structure, taking
advantage of the concept of mapping an information unit to its occurrences.

The first section discusses a structure called nextword index introduced
in [13] which explores some of the characteristics of terms in the vocab-
ulary. Its main focus is on pair of terms; a firstword and a nextword. The
second section discusses a structure called phrase index, introduced in [12].
The meaning of this structure somewhat lies in the name; it focuses on
phrases and how to index them as single searchable units.

The last section has a primary focus on combined solutions which is meant to
extract and utilize the advantages of the other structures, and by that create
an IR-system which supports various kinds of query evaluations. A very
attractive feature with such an approach is that each query evaluation type
is highly efficient since each type has its own especially tuned structure, that
performs very well for such queries. This is in contrast to having only one
index structure that needs to encapsulate and support all kinds of queries,
such has having a single standard inverted index.

5.1 Nextword index

The nextword index is a quite interesting index structure, which exploits
some of the characteristics of phrase searching within a document collec-
tion. The nextword index takes advantage of phrase queries of length 2 or
more, and where there is a stopword within. This stopword is quite signifi-
cant, since it signals a huge occurrence list that costs to retrieve. This cost
is in terms of I/O traffic and processing needs, which counts for the majority
of the time delay in IR-systems. Now, we want to keep the costs below a
satisfactory level to cope with phrase searching in large text indexes, and
therefore will strive against minimizing the retrieval of large occurrence lists
(posting lists).

5.1.1 Index introduction

The special characteristic of the nextword index is that it is similar to the
standard inverted index in all terms, except for high frequent terms (stop-
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words). What the nextword index does, in case of stopwords, is to “hook” a
stopword up to a new list, instead of a posting list such as in the inverted
index. This new list holds all terms that has been identified to occur right
after that particular stopword. Consider this small set of phrase queries of
length 2:

Example: “new york”, “the yankees”, “computer science”

In essence, these phrase queries is combined of two queries, a firstword and
a nextword. Considering the phrase query “new york” we see that the usual
approach, where the posting list for each word inside the phrase query is re-
trieved, would imply a significant time delay in case of stopwords. However,
since we in the nextword index has “hooked” a list to the stopword, instead
of the usual posting list, we will be able to lookup the subsequent word right
there.

The main purpose is to reduce the costs of retrieving large posting lists
for stopwords. When we have a phrase query containing a stopword and
a subsequent word, then instead of retrieving the large posting list for the
stopword, and then for the subsequent word, we want to retrieve the pre-
processed posting list for the phrase firstword+nextword. The posting list
for “new york” is in all likelihood much smaller than the individual posting
lists for the terms “new” and “york”.

In Figure 7 we have graphically outlined the nextword index structure, in
the same manner as with the standard inverted index in Figure 4. Observe
that given the lookup of a stopword, we would need to retrieve the nextword
list for that particular stopword (if not already fetched). The nextword list
can be stored in advanced data structures such as a HashMap, B+ tree or
just stored sequentially. A good data structure for such a list would enhance
the lookup speed, as well as the storage space needed.

Another significant gain introduced by the nextword index structure is the
savings of disk accesses in case of phrase queries which does not have any
hits in the document collection. This saving is achieved by that if the first-
word+nextword pair does not yield any hits in the nextword index, then
that evaluation could terminate without the need to fetch any posting lists.
In a standard inverted index the fetching of posting lists would have been
performed, since the only way to establish whether there is a hit or not is
to decode and merge the posting lists. The nextword index needs a single
disk access in case of a non-existing phrase query, since it needs to fetch the
nextword list from disk, as illustrated in Figure 7.

The nextword index structure is in [13] introduced as a phrase browsing
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Figure 7: A figure illustration the nextword index structure.

structure, and the usage of stopwords as firstwords is neglected based on
that it would produce a vastly large nextword list and thus lowering the per-
formance. However, the experiment outlined in the research paper proved
the opposite due to the savings in retrieval of posting lists. In [5] there is
introduced the usage of stopwords as firstwords, and the savings that comes
along with such an approach.

In case of phrase queries with lengths beyond 2 terms, there follows a slightly
different query evaluation strategy. First the evaluation needs to select which
firstword+nextword pairs to use, then evaluate them individually. This se-
lection process is thoroughly discussed in [13]. Given an example query such
as “programming in python”, a good approach is to use “in” and “python”
as the firstword+nextword pair, and the query term “programming” on its
own. Looking up the firstword+nextword pair is easily performed, and then
the corresponding posting list is retrieved. If the firstword+nextword pair
does not yield any hits, then the query evaluation can be terminated, thus
saving two additional disk accesses in fetching the posting lists for the term
“programming”and the firstword+nextword posting list. If the pair has hits,
then its posting lists is fetched, along with“programming”terms posting list,
and then they are merged to identify phrase hits.
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5.1.2 Index performance

The nextword index performance is thoroughly explored in [13], where the
nextword index structure was experimented with. In the outlined experi-
ment it was measured towards the MG18 search engine described in [26],
and proved to perform from 1.6 to 2.5 times faster than the MG search en-
gine, depending on the characteristics of the phrase queries used.

The query evaluation speed have sufficiently increased with the usage of the
nextword index structure, but so is also disk space consumption. In the ex-
periment outlined in [13] there is observed that the index consumes approxi-
mately 60% of the indexed data, which is not a desirable factor for an index.
Note that this is given the usage of a nextword index for a whole document
collection alone, without the utilization of stopwords as firstwords. There
are, however compression techniques such as those described in Section 4.4
which can lower this consumption. And, the experiment implementation
of the nextword index structure in [13] was only a prototype. Even with
a reduction of the nextword index, it is in most cases twice as large as a
standard inverted index, and thus poses disk consumption challenges, given
an nextword index of the whole collection.

5.1.3 Author comment

This index structure is very interesting since it builds an index inside an
index to reduce the posting list for the firstword, and instead spread it out
based on the firstword+nextword pairs. It is basically an extension of the
standard inverted index with a focus on more efficient phrase searching.

The way this nextword index structure approaches the challenges with phrase
searching is highly interesting since it takes advantage of the characteristics
of stopwords in the standard inverted index, and utilize this to sufficiently
lower the response time for phrase query evaluation.

The authors personal believe is that this index structure is an elegant ap-
proach towards the phrase searching challenges, and should be further ex-
plored in more real life IR-systems. The author have yet to found IR-systems
utilizing this kind of index structure.

18Managing Gigabytes
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5.2 Phrase index

The phrase index is - like the nextword index - pretty much the same as
the standard inverted index. However, a fundamental change in the vo-
cabulary makes the phrase index more suitable to address specific phrase
searching challenges, in that the response time is sufficiently lowered. This
performance enhancement is due to reduced disk accesses and I/O bandwith,
along with reduced processing and decoding of vastly large posting lists.

5.2.1 Index introduction

What separates the phrase index from the standard inverted index lies in
the vocabulary. In the inverted index vocabulary we use single words (un-
igrams19) as searchable units (terms), but in the phrase index we have ne-
glected the usage of single words. Instead it uses whole phrases as searchable
units. Also, in a phrase index there would be no need to store in-document
positions, which lowers the disk space consumption considerably. The rea-
son for have the in-document positions in the inverted index is to support
phrase queries by merging word positions and find matches. This will not
be necessary in the phrase index.

In Figure 8 we have outlined characteristics for the phrase index. Notice
the similarity between the phrase index and the standard inverted index
outlined in Figure 4.

Figure 8: A figure illustration the phrase index structure.

19A unigram is an N-Gram of size 1. http://en.wikipedia.org/wiki/N-gram
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The phrase index provides, with the characteristics described, a very fast ap-
proach towards evaluating phrase queries. The process to evaluate a phrase
query is simply to lookup that particular query term in the vocabulary
(which should stay in memory), and if there is a hit, then the posting list
is fetched and processed. This posting list would be much smaller than the
posting lists, which would have been retrieved in a inverted index approach.
An example query: “Olympic games”.

� phrase index: Lookup in vocabulary. If a hit, then retrieve and
process posting list, or else terminate phrase query evaluation.

� standard index: Lookup “Olympic” in vocabulary, retrieve and de-
code posting list. Lookup “games” in vocabulary, retrieve and decode
posting list. Merge posting lists to find hits where the term sequence
“Olympic games” occurs is in that order.

The former approach requires only one disk access, given that there is a hit
in the vocabulary. If no hit is found, then no disk access would be performed.
In the latter approach, there are two disk accesses, and each disk access has
a substantial I/O load since the posting lists is quite large. The benefits
with the phrase index are very attractive.

With the introduction of a phrase index, one might wonder if it is suitable to
index a whole document collection? Due to the amount of potential phrases
in a document collection, such an index would be prohibitive in construc-
tion time and disk space consumption. So, if you can not use a phrase index
to reflect the whole document collection, what can you do with it? In [12]
there is discussed a common approach where only a small subset of all pos-
sible phrases is indexed in the phrase index. For the phrase index to yield
most gains in respect to the IR-system, it would need to index frequently
occurring phrases, since those poses large costs to the IR-system. By con-
tinuous monitor the query input to the IR-system (typical query logs), one
might be able to analyze and extract frequently occurring phrase queries,
and thus predict their future usage. Also phrases, which is hard to evaluate
in a inverted or nextword index, would be attractive to index. The benefits
of indexing these phrase queries in the phrase index would be substantial.
This kind of phrase index is referred to as a partial phrase index, since it
is by nature partial in respect to the amount of phrases which is indexed in it.

5.2.2 Index performance

The performance of a partial phrase index is substantial, in respect to that
its primary focus is on resolving phrase queries. This is also its major con-
straint - no other query types (see Section 3.2) is provided.
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In a query evaluation, the phrase index demonstrates its power in case of
frequently occurring or difficult phrase queries. The query evaluation pro-
cess is straightforward and significant fast, and the savings when these kinds
of phrase queries are indexed is substantial.

5.2.3 Author comment

This index structure focuses primarily on phrases, both in terms of queries
and searchable terms. It is therefore an interesting twist to use complete
phrase queries as the entries in the vocabulary, for then to support direct
lookup for those phrases. This approach yield a very fast determination
whether the phrase query is indexed or not, thus allowing early termination
of the evaluation.

The author find the similarity between the phrase index and the nextword
index interesting, in that they both take advantage of a preprocessed posting
list for a phrase. This is a common performance characteristic they share.
In case of the nextword index, only phrase queries of length 2 brings such
a posting list, as longer phrase queries brings more posting lists to process.
Nevertheless, this signals the importance of preprocessed and narrow post-
ing lists, which is some of the essence of this master thesis.

5.3 Combined solutions

Hybrid solutions within phrase searching can be thought of as combinations
of the techniques previously discussed to provide a full feature IR-system.
Since both the inverted, nextword and phrase index poses constraints and
severe performance challenges within their own areas, an approach to com-
bine them and take advantage of their characteristics would be interesting.

In [12] there is considered three combinations:

� Combined inverted and nextword indexes

� Combined inverted and phrase indexes

� Three-way index combination

We will in the following sections explore these combinations, as they bring
valuable thoughts when considering the main goal of this master thesis.
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5.3.1 Combined inverted and nextword indexes

This combination takes advantage of the nextword and the standard inverted
index, as thoroughly introduced in [12]. In Section 5.1 we discussed in which
cases the nextword index performs best, and it was concluded that the largest
gains is when using stopwords as firstwords. So, whenever a word identified
as a stopword occurs, then it is selected as a firstword along with the next
word in the document as the nextword. This forms the firstword+nextword
pair. In addition to hold the nextword index, a complete inverted index is
constructed to reflect the whole document collection.

Figure 9: A figure illustration the combination of the inverted index and the
nextword index structure

In Figure 9 there is illustrated this combined structure. Notice the simi-
larity with Figure 7. The only aspect separating this combined index with
the nextword index in Figure 7, is that the vocabulary holds pointers to
both the nextword lists and posting lists. Stopwords in the vocabulary has
pointers to both its nextword list and posting list, and the other words has
just pointers to their posting lists.

A simple phrase query evaluation with such a combination would work like
this:

1. Identify any pairs in the query, in which the firstword is a stopword
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2. Fetch the posting lists for each firstword+nextword pair

3. Fetch the posting lists for the rest of the query terms

4. Process the posting lists in increasing order to find the phrase query
hits

This simple step-by-step procedure tells us that we use the nextword index
for all the firstword+nextword pairs which we manage to identify, and then
the inverted index for the rest. The gains is in that all occurrences of a
stopword signalize the usage of the nextword index, and the nextword index
handles these kinds of phrase queries significant fast. The rest of the query
terms in the phrase query is handled by the inverted index, which performs
quite well for such query terms.

5.3.2 Combined inverted and phrase indexes

This combination takes advantage of the phrase index and the standard
inverted index. Also this approach is thoroughly described and discussed
in [12]. With the phrase index, this combination would promote direct
lookup of indexed phrases. If the phrase query is not indexed in the phrase
index, then the query would be evaluated using the standard inverted index.

The twist with this combination is that we, as discussed in Section 5.2, do
not consider a complete phrase index, but a partial phrase index. The selec-
tion of which phrases that should be indexed in the partial phrase index is
usually done by considering two factors: their frequency in the query logs,
and their degree of difficulty in terms of query evaluation. An example of a
hard phrase query is “to be or not to be”.

Consider the example query “new york”. In terms of the phrase index, the
phrase query needs to be treated as a single query term, and then looked
up in the phrase index vocabulary. If a hit is found, then its posting lists is
fetched. If no hit is found, the query is to be evaluated against the standard
inverted index.

5.3.3 Three-way index combination

This three-way index combination takes advantages of both previous com-
bined approaches into a single combination. The motivation behind such an
combination is the eager to further harvest phrase searching gains, and that
the techniques described in this chapter provides such gains in an combined
manner. This three-way combination is introduced in [12]. Based on the
results provided by the experiment in the report, this combination yields
the best gains in terms of response time and disk space consumption.
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In this three-way combination the query evaluation would proceed as follows:

1. Use the partial phrase index to check if the phrase query has been
indexed as a single term. If a hit is found, fetch and decode the
corresponding posting list. If no hit, then continue to next step.

2. Use the combined inverted and nextword index described in Section 5.3.2,
and evaluate the query.

These procedures in this three-way index combination yields substantial ef-
ficiency gains. According to experiments performed in [12], phrase searching
in text indexes is between 60%-80% faster than using a standard inverted
index. There are variable factors though, such as how many stopwords to
use in the nextword index to identify firstwords, and how to effectively select
good phrase queries to be indexed in the partial phrase index. In Figure 10
this new three-way combination is graphically outlined, where we have two
main entities; the partial phrase index and the combined nextword- and
inverted index.

Figure 10: A figure illustration the three-way combination of the partial phrase
index and the combined nextword- and inverted index.

Table 8 below is basically a replica of the table summarizing space and time
effectiveness in [12]. The reason for duplicate this table and presenting it
here, is to give the reader a sense of the characteristics for each index struc-
ture outlined in this chapter; both individual and combined.
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Scheme Index Size Avg. Query Time
Inverted 1429 MB 1.04 sec
Inverted (stopping) 1002 MB 0.20 sec
Nextword index 2816 MB 0.02 sec
Inverted + nextword, 24 firstwords 1943 MB 0.31 sec
Inverted + phrase, top 10 000 1442 MB 0.89 sec
Combined 1956 MB 0.26 sec

Table 8: A table with the summarized results from the experiments performed
in [12]. The document collection used was TREC WT10g, and it contained 1.67
million documents and is 10.27 GB in size. The queries used in order to extract
response times was from the Excite query log, reflecting real life queries.

Note that the stopped inverted index in Table 8 have used stopword elimina-
tion to reduce the index size and response times for evaluation of stopword
query terms. The “top 10 000” notation used in “Inverted + phrase, top
10 000” denotes the usage of the 10 000 most frequent occurring phrase
queries, based on the Excite query log.

Table 9 below is another replica of the table summarizing a query test to-
wards the three-way combined approach. It is easy to observe that the
results in Table 8 and Table 9 is related.to each other.

Numbers of Firstwords
Query
length Inv. ind 3 6 12 24 48 96 192
All 1.04 0.41 0.30 0.27 0.26 0.24 0.22 0.20
2 0.35 0.14 0.14 0.14 0.13 0.13 0.12 0.11
3 1.62 0.64 0.39 0.31 0.28 0.25 0.22 0.17
4 3.73 1.32 1.00 0.92 0.88 0.84 0.81 0.74
5 3.80 1.62 1.13 1.06 0.95 0.89 0.85 0.77
6 4.67 1.78 1.39 1.33 1.21 1.12 0.91 0.81
7 4.99 2.31 1.41 1.41 1.37 0.78 0.63 0.56

Table 9: A table in [12], with the average query times (in seconds) of ≈ 66 000
queries. The three-way combined approach described in Section 5.3.3. Used the
10 000 most common phrases, based on the Excite query log, and a nextword index
based on 0 to 192 stopwords.

5.3.4 Author comment

The combined indexes outlined represents some very interesting combina-
tions of a set of state of the art index structures. Each combination has some
appealing characteristics, whereas the nextword index introduces a very in-
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novative idea. Realizing that each of these state of the art structures works
quite well within their usage domain, which is frequent and/or hard phrase
queries, have pushed forward these combined approaches. Other query types
such as Boolean and term queries is not supported by the structures, except
for in the combined approaches.

The first combined approach, inverted- and nextword indexes, provides strengths
in a domain of tough phrase queries. Also, all additional queries is supported
since the index structure is an “extended” inverted index. A concern within
this combination is disk space consumption, and the additional disk access
needed to fetch the nextword list for a firstword. However, based on the
results, these concerns are addressed.

The second combined approach, inverted and phrase index, embrace the
problems regarding frequently occurring and/or hard phrase queries. The
partial phrase index provides rapid phrase query evaluation in case of an al-
ready indexed phrase. Here is the standard inverted index used as a fallback
index, in case of a negative hit in the partial phrase index. The drawback is
that there is two separated indexes, whereas one for the partial phrase index
and one for the inverted index. If a query evaluation in the phrase index
is terminated due to a negative hit, then the evaluation process would need
to perform additional lookups in the inverted index in order to evaluate the
phrase query.

The three-way combined index gathers the benefits from the two previous
described approaches, and describes a combination where there is two in-
dexes. By utilizing the partial phrase index first, and if necessary the second
index. The second index is basically the combination of the inverted- and
the nextword index.

The latter approach is the most appealing one, based on the results extracted
from the experiment in [12]. However, all outlined index structures in this
chapter brings interesting characteristics, which altogether enhances phrase
searching.
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6 Experiment

This chapter will cover all aspects regarding the experiment undertaken in
this master thesis. One important factor for both me and my supervisors
was to include a practical part in this report - we wanted to have some cod-
ing.

In the experiment outlined below we will look into the open-source search
technology framework named Apache Lucene, somewhat discussed in Sec-
tion 3.8. The search framework encapsulates all the typical aspects of a
standard search engine, and provides helpfull techniques which helped us
significantly in this experiment. Also, using this framework saves us from
the additional work of creating our own search framework, which would have
introduced an unsurpassable time delay.

In Section 6.1 we briefly go through what the experiment should include
based on the problem definition and the overall scope of this master thesis.
An experiment without any goal is not a good experiment, so in Section 6.2
we present a overall goal of our experiment. Section 6.3 will deeply present
our choice of search engine framework. We will also explain the index struc-
ture used, since its highly relevant for this report. We will also look at how
the search engine provides phrase searching. Section 6.4 presents one core
aspect of this experiment; the index structure we want to create without
modifying the existing inverted index structure. Section 6.5 introduces the
document collection we will use to analyze and test our implementation. In
Section 6.6 we outline the actual implementation of the experiment which
also will cope with the architectural and performance choices made.

6.1 What shall be done?

The experiment will attempt to test and evaluate phrase query evaluation
on different types of inverted indexes. This process will include a document
collection, and that collection would be indexed based on these inverted in-
dex types. As stated in the problem definition in Section 2.2, we will look at
both the indexing and the query process to evaluate how these inverted in-
dexes performs. This implies that we will index the document collection for
each inverted index type we use in our experiment. From there on perform
a set of queries and monitor search engine, and extract information that can
be useful in the evaluation.

Index process So, first aim is to create the search engine with the help of
our open-source search technology framework. Here lies the need to create
a good architecture to support our task. One important factor outlined in
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Section 3.7 is the process of analyzing and extracting information from the
documents in the collection. This process is the foundation for the index,
since each indexed term, which together constitute the index, needs to be
identified in that process. We will later look deeper into this subject since
it is highly relevant for our Bigram index. After the indexing task has been
completed, and the appropriate measurements done, we can then start to
focus on the search process.

Search process To be able to perform an effective search process and
retrieve relevant measurements we would need a set of queries. This set
of queries could potentially be extracted from the document collection, but
that would introduce more work for us, so we focus on applying a predefined
query set instead. Then the search process can be executed. Now, along with
the search process we would also need to measure and extract information to
be able to evaluate the process later on, so this requirement must be fulfilled.

Evaluation Finally what needs to be done is to gather all the information
extracted from each previously performed processes, and then analyze and
measure how well each process did. This last phase here is very important,
since it would give a final answer to whether the experiment was successful
or not. Criteria for indexing is the time spent on indexing a document col-
lection, the throughput of documents pr second (document-pr-second rate)
and the initial disk space consumption. For searching, the performance cri-
teria is how much time each phrase query takes, whereas each phrase query
is categorized based on its characteristics. In 6.6 these criterias will be even
further outlined.

Test platform The platform which we will perform our experiment on
is listed in Table 10. All the hardware characteristics of interest should be
included here.

6.2 The goal

The main purpose of this experiment somewhat shines through the overall
goal of this master thesis; to experiment and measure different inverted in-
dex types and especially evaluate their effectiveness in regards to execute
phrase query evaluation. What also lies in the goal of this experiment is
to carefully look at the characteristics such as disk space consumption and
processing needs. These aspects would be significant in the evaluation of
the various inverted index types in the end, thus we need to inspect and
measure the process of indexing and querying our indexes.
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Our computer specification
CPU: Inteltm Pentium 4 3.0GHz 1MB cache
Memory: 1 x 1GB
Disk: 1 x 80GB SAMSUNG HD080HJ 7200 RPM
OS: Ubuntu Desktop Gutsy v7.10
Java version: 6.0 (v1.6.0 03)
Java args: -server -Xms256M -Xmx768M
Python version: 2.5.1

Table 10: Shows the hardware specification of our test computer. Note that we set
initial java heap size to 256MB, and maximum to 768MB.

6.3 Search framework

The search framework used in this experiment is better known as Apache
Lucene, which is briefly mentioned in Section 3.8 and more thoroughly intro-
duced in [6]. To further outline the Apache Lucene framework we will here
introduce the implemented index structure, and thus also the characteristics
of this particular index. Since this element is one of the core elements within
search technology, and that it somewhat identify and categorize the search
framework, we have devoted some time and space for this subject.

One common misconception regarding Lucene is that its a ready-to-use ap-
plication like desktop search tools or a web search engine. Lucene is more like
a software library which provides all the features and techniques available to
facilitate search capabilities in your application. As a software library it has
an overall goal; to provide search capabilities such as indexing and search-
ing documents. It does not concern nor care about your application, since
that is not its goal. All the application logic is not important, it is more
the other way around. Your application needs to take advantage of, and in-
tegrate, Lucene to be able to harvest the search technology“fruits”provided.

In Figure 11 we can see how a typical integration between an application and
Lucene might work. The arrow denotes the communication in the form of
commands to search and index documents that is defined by the application
owner. In its physical form the Apache Lucene software library is a single
JAR20 file.

In Section 6.3.1 the inverted index structure will be thoroughly introduced
along with some illustrations to make the introduction as comprehensive as
possible without too much complexity. Also of importance in this section
is to focus on the characteristics of the index structure. Section 6.3.2 will

20Java ARchive. Used to encapsulate multiple files into a single one.
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Figure 11: An illustration of how Lucene is integrated into applications, since it is
not a single ready-to-use search application.

outline all there is to query evaluation within Apache Lucene, especially
phrase query evaluation. It is very important to have a grasp of whats
happening from the moment the query enters to the response is sent to the
user. In Section 6.3.3 there will be some discussion regarding the search
framework performance in terms of disk space consumption, indexing and
query evaluation speed based on the already explored characteristics and
such.

6.3.1 Index structure

The index structure within Apache Lucene is based on the standard inverted
index structure thoroughly outlined in Chapter 4. The index is built around
the concept of VSM (Vector Space Model) presented in Section 2.3.2, hence
Lucene is able to list all documents that contain a specific term.

Inside the index structure there are three fundamental concepts which the
index consist of:

� Document The index is a sequence of documents.

� Field A document is a sequence of fields.

� Token A field is a sequence of tokens, whereas a token is a pair of
strings. The first is the fields name and the second is the tokens text.
A token encapsulates a term, along with some additional information.

So, as summarized by the list above is that an index in Lucene contains a
sequence of documents, and a document contains a sequence of fields, and a
field contains a sequence of tokens. This index structure can be illustrated in
Figure 12, which shows the relationships between each fundamental concept.
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Figure 12: The Apache Lucene index structure, illustrating the fundamental com-
ponents and their relationships. A document has a sequence of fields, a field has a
sequence tokens.

To give a better grasp of this index structure, we have provided a simple
example illustrated in Figure 13. In this figure there is shown the transfor-
mation between a textual document towards the presentation in the Lucene
index structure.

Figure 13: Illustrates a text documents presentation in the Apache Lucene index
structure, highly based on the structure outlined in Figure 12.

Since an index construction might consume more main memory than avail-
able, there is often written sub-indexes to disk. In Lucene, this is also
the common approach. Each sub-index, hereby called segment, is actually
a complete index structure capable of being searched in. An index for a
large collection will after construction contain multiple segments, each be-
ing searchable.

Vocabulary As all inverted index structures, this structure also has a
vocabulary containing all the unique terms identified in the document col-
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lection. That is, after the structure has been indexed. Now, as discussed
in Section 4.4 regarding compression of the inverted index, we mentioned
an approach where the vocabulary could be somewhat compressed and en-
hanced for faster lookup. There were two important concepts:

1. First the compressed presentation of each term, whereas a term is
denoted as a prefix of the previous term.

2. Second is an index of the vocabulary that was achieved by having each
n th term in its original form, and fetched to the memory

This is somewhat illustrated in Figure 14, and perhaps even better in Fig-
ure 15. The numbers are purely for the sake of appearances. The reason for
this is that it is unrealistic to assume that the whole vocabulary would fit in
main memory, nor that it would be efficient in regards to the posting lists
needed to be fetched in response to a query. Think that each item in the
memory is in its original form, and the following entries on disk is prefixes
(if possible) of the one in memory.

A binary search of the in-memory vocabulary (O(logN)) would give us an
idea of where the term is. If it is not in memory, we have a pointer to the
disk allowing us fetch a bulk of terms from disk. There would be some kind
of caching available here, so frequently accessed terms would always remain
in memory.

Figure 14: A illustration of the vocabulary structure in the Apache Lucene in-
dex. The vocabulary is in a way also indexed. Each number in the figure is just
representing an entry which contains a unique term in the collection.
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Figure 15: Another illustration of the vocabulary structure in the Apache Lucene
index. The vocabulary is in a way also indexed. Each 512th entry is here stored in
memory.

Occurrences In Lucene the occurrences is pretty much represented as de-
scribed in Section 4, that it is a set of posting lists. Lucene has an approach
to facilitate compression and fast decoding of entries in the posting lists. For
instance Lucene uses d-gaps to effective store document identifiers, and the
same approach also accounts for storing word positions inside documents.
Both these techniques saves significant storage space, and therefore also en-
hances a faster reading of postings lists.

Another interesting feature in Lucene’s posting lists is called Payloads. Pay-
loads is in its simplest term an array of bytes which is stored in the occur-
rences part. A payload may account to a document entry or a word position
entry. The concept of payloads in Lucene’s sense is that it can store arbi-
trary metadata related to entries in posting lists. This arbitrary metadata
can further be used to enhance scoring calculation or describe other aspects
of entries in posting lists. Payloads introduce an opportunity to implement
other features in posting lists which could potentially have an impact on the
hits found in reponse to a query. However, the concept of payloads imply
more data in posting lists, and thus a slower query evaluation. An approach
in Lucene tries to counteract the lowering of query evaluation throughput
by storing the payloads in a compact manner (byte array). It is important
to specify that if a payload is not set (disabled), then there would be no
additional space overhead in posting lists. Therefore the payloads in Lucene
is quite space efficient.

The occurrences part of the Lucene index structure has, in regards to both
posting list entries and word position entries, taken advantage of skipping to
save decoding processing when performing query evaluation. As mentioned
in Section 4.1, skipping yield significant gains in IR-systems when there was
limited CPU cycles, but not so much in present computers because the gap
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between CPU and I/O devices in terms of speed. However, skipping will
provide some savings with the penalty of a little more complex structure.

In the Lucene index structure there are several files which are created to
hold different data regarding the vocabulary and the occurrences part, and
some more. Numbers which are represented as integers in these inverted in-
dex files holds constraints over the maximum allowed representation. This
restriction somewhat limits the amount of terms and documents that can
be addressed to a 32-bit quantity21. If we were to build an enterprise search
system capable of indexing over 4 billion documents, then this restriction
would constitute a significant problem.

A very good (and likely to be implemented in the future) alternative would
be to replace the standard integer with a large value (64-bit), but this would
again only skew the maximum allowed representation further down the road.
A 64-bit integer would consume a lot of space, and can represent numbers
up to 18 446 744 073 709 551 616. Possible a better alternative would be
to embrace the VInt. VInt is a variable integer. The VInt is equal to the
variable length coding scheme discussed in Section 4.4, and thus capable to
represent all possible numbers and in addition achieve efficient compression
ratio.

6.3.2 Query evaluation

Query evaluation within Lucene is basically what happens from the time a
query is entered the IR-system, the processing is performed, and possible
hits is found and returned to the user. The query evaluation is a very im-
portant aspect in search technology, since its the part of most importance
from a user perspective. Fast retrieval and high effectiveness are two factors
which accounts for the users satisfaction with the system.

Speed The first factor, fast query evaluation, is basically to have an ef-
ficient query run-time. By this we mean that the process of fetching the
needed information, for then to be decoded and calculated, needs to run as
efficient as possible. We have already went through obstacles such as signif-
icant time delays with I/O traffic and CPU processing. What is of special
focus with the run-time of query evaluation, is how fast the data can be
accessed; hence the I/O is important. If we need to fetch large amounts of
data, which in addition is stored disorderly, then this will have a high impact
for the run-time factor. If the data to be fetched is stored contiguous - a
desirable situation - then reading could be performed in a single operation,

21See http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_
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without the need to perform multiple seek operations on disk. This would
also account for appending data to lists on disk. As also thoroughly dis-
cussed, the gap between the CPU and hard disks in speed has grown in such
a way that we have a large pool of CPU cycles available, but the hard disk
unit is in contrast noticeable slow to retrieve the wanted data. Especially of
interest is the seek delay for storage devices, which accounts for the major
part. Take for example the retrieval of a single byte from main memory to
the CPU, which cost between 12-150 CPU cycles. The retrieval of a single
byte from disk to the CPU costs 10 000 000 CPU cycles. It is easy to see the
waste gap between fetching from main memory and external devices, such
as disk. In Section 4.4 we presented the attractiveness of compression, as
a result of this gap. The more compact and compressed the data is stored,
the less is required to read from disk, thus fewer CPU cycles are wasted in
waiting for data.

In Lucene there are approaches to deal with challenges such as these. Taking
a widespread usage of caching beyond what is performed by the operating
system has proven to be very effective, and is thus implemented and pro-
vided through the API. Especially interesting is to cache results for frequent
queries along with list caching. Often an LRU22 policy is sufficient in cases
of caching, but in [16] it is concluded that there exist other policies that
will achieve significantly higher cache ratios. Just to mention a few other
policies: Least Frequently Used (LFU) and Optimized Landlord (LD).

As discussed in Section 6.3.1 regarding the index structure of Lucene, we
introduced the vocabulary structure of Lucene along with its characteristics
for compression and effective utilization of main memory, somewhat illus-
trated in Figure 14 and Figure 15. This approach makes it easy to binary
search the index in memory, and to locate and retrieve the entries which
is not in memory from disk. Since the vocabulary entries is stored in com-
pressed form, the amount of data to retrieve from disk is limited. A query
evaluation would typically need only a small set of vocabulary terms. If the
terms have been queried before, they would probably be cached and there-
fore fast accessible. If not, a disk access pr term may be required, which
is the downside of this vocabulary structure. However, there exists an ap-
proach where a “warm-up” phase to force the IR-system to fetch and cache
typical high-frequent words would yield significant savings in run-time query
evaluation. A “warm-up” phase is typically a program running a predefined
set of queries on the search engine, and thereby forcing it to perform the
“heavy lifting” before allowing users to query.

Next in a query evaluation process would be to fetch the posting lists based

22Least Recently Used is a cache algorithm

72



6 Experiment Page 73

on the term frequency. Now, in Lucene there is a division between a list of
documents that contains a given word, and a list of word positions related
to a given term which occurs inside a document. This occurrences part is
therefore divided into two parts, the list of documents, and the list of word
positions.

1. The list of documents is stored efficiently within its own file which also
contains pointers to their word position list.

2. The list of word positions is like with the list of documents also stored
within its own file. This file is accessed through pointers from the list
of document entries.

Both these parts, which together constitute the occurrences of an inverted
index, takes advantage of the gaps between document identifiers and word
positions values, as discussed in Section 4.4 regarding the compression of
occurrences. This introduces significant savings. As mentioned above, the
“warm-up” phase would not only yield run-time savings for the vocabulary,
but also for the occurrences, since posting lists would be fetched and there-
fore cached (by the OS and possibly also by the search engine).

Lucene will first parse the entered query in an attempt to categorize the
query type. Recall from Section 3.2, that we have different kinds of queries.
If Lucene can route a query type to the module which it is optimized for
when handling such a query, then that would in the end perform much
better than a “generic” query handler. We have several kinds of query types
in Lucene:

� TermQuery is a query consisting of a single term.

� RangeQuery is a query who search for hits between a set of terms
which is lexicographically ordered. A search for hits between dates is
a good example here.

� PrefixQuery is a query searching for documents which contains term
matching the beginning of the query, hence the “prefix”.

� BooleanQuery is not a query in normal sense, but applied to combine
sub-queries with the Boolean operators such as AND, OR and NOT. See
Figure 3.2.4. Combined sub-queries constitute a regular query.

� PhraseQuery is a query taking into account the order of the query
terms. Only documents matching the query terms with the same order
they are in will be returned.

� WildcardQuery is a somewhat specialized query that allows query-
ing for words with unknown characters. One example: “be*r” =>
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matches both “beer” and “bear”, despite the very large semantic gap.
This query type is very expensive in terms of processing needs, since
a lot of terms in the vocabulary would match a wildcard query, thus
a large set of posting lists needs to be retrieved.

� FuzzyQuery is a query that provides a way to query for similar
matches. The similarity can be based on Levenshtein distance23. One
example could be “beer” which is similar to “bear”, “beep”, i.e.

After the appropriate query handling module has been selected, and the
terms are fetched along with their posting lists, then the decoding and pro-
cessing of a temporal structure is performed. The query handling module
describes the internal policy in regards to how a match is found, and such.

Effectiveness The second factor, high effectiveness, is basically to have
the sufficient information and calculations preprocessed so that it is easy to
find the most relevant documents in response to the query. As mentioned
above, Lucene builds on VSM, enabling it to calculate document weights
and thereby rank the hits found. This process could be quite substantial
if we had to process all documents in the collection (a naive approach) for
each query to be able to give a good ranking.
However, in Lucene, much of the data needed to perform fast calculation of
document weights are already preprocessed when the documents are added
to the index. One important type of data is the term frequency, which is
stored in the vocabulary along with other terms. So, when a document is
to be added into the Lucene index, all the identified terms are added to the
vocabulary along with their term frequencies. In case a term already exists
in the vocabulary, then solely the frequency is updated. The same thing
goes for other major operations on indexes, such as update and delete.

Other aspects in Lucene which promotes query evaluation effectiveness is the
possibility to Boost a document, a field or a term. What lies behind Boosting
within Lucene is to affect the scoring procedure which is performed for each
query in such a way that a document, field or term gets a higher weight
than the other occurrences. This boost technique thus enables us to favour a
specific term in contrast to a non-boost term. If we have a collection within
the domain of computers, then we would boost the term “cache” in contrast
to the term “copyright”. Another more business like example would be to
boost terms such as a product name, model number, or items on sale and
such. Lucene also provides the possibility to boost a field that hold terms
(actually token objects, but we frequently use terms to denote them). This
is very useful for generic search engines where there is a division between
content and title. A natural approach would be to boost the title field, since

23http://en.wikipedia.org/wiki/Levenshtein_distance
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a hit in the title field would more likely reflect the context of the document.
Another level up would be to boost the whole document. This approach
can be very useful in cases where an identified document is important to be
exposed, frequently searched in, of general interesting, etc.

6.3.3 Performance

Apache Lucene is a search engine framework which is meant to be signif-
icantly fast, regardless of the collection size or the query rate. The real
world understanding based on practical usage and experiments has to some
extent proven this overall goal of the search framework. It does scale well
compared to other search frameworks, and along with its search technology
functionality it does reflect a real search engine alternative. In [19] there
is a comparison among Lucene and other open-source search engines which
support our statement regarding Lucene.

We have until now discussed the search framework in general, along with
more specific topics such as the index structure and the query evaluation.
All these topics include in some degree observations regarding the search
framework performance. In the topic of Lucene’s index structure we dis-
cussed characteristics of the vocabulary and occurrences, along with how
efficient those elements perform. In Lucene’s query evaluation we went far
to discuss the characteristics of speed and effectiveness in the process of
query evaluation. The aspect of performance lies on both these issues.

One aspect which Apache Lucene that has not been covered is the ability
to handle a distributed search. The technique of distributing a search en-
gine, both in respect of indexing and searching, has received an increasing
attention in the search communties. Because of the vast amount of informa-
tion that is to be made searchable on the web or in large intranets, a single
computer alone could never cope with such demanding data amounts. In-
stead the concept of distribution is widely applied. We will not look further
into this subject here, since it is outside the scope of this report, and not
provided by Apache Lucene search framework. However, one sub-project by
Apache which uses Lucene as a search framework, has been able to imple-
ment distributed capabilities. This sub-project is called Nutch24, and uses a
distributed filesystem named Hadoop25 that implements MapReduce to cope
with the vast amount of information needed to be processed. MapReduce
is introduced in [3], and the reader is recommended to get familiar with the
technique.

24http://lucene.apache.org/nutch/
25http://lucene.apache.org/hadoop/
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We would like to recommend the reader to read the comparison of different
search engines in [19] performed by some well known researchers within
the search technology community. It gives an idea regarding how to place
Apache Lucene search engine compared to other open source search engines.

6.4 Bigram index

The Bigram index - the core of this experiment - is in its simplest term a
standard inverted index. We have the standard vocabulary and occurrences
elements, and terms and postings lists are organized as described in Sec-
tion 6.3.1. So, what distinguishes a Bigram index from the standard index
used in Lucene? Since there has been no alternation of the index structure
nor code, then the major difference is that we have taken full advantage of
the definition of a term in Lucene. Lucene defines a term as the unit of
search, and that is precisely what it is. During the indexing process we do
not only consider terms as single words, but also as bigrams consisting of
multiple words.

Bigrams of words is a N-Gram of size 2, as defined in Section 3.1. It is
important to note that we do not consider n-grams to be character oriented,
but rather word oriented. By character oriented, a bigram would imply a
subsequence of two letters of a word, as opposed to a subsequence of two
words of a sentence as in word oriented. We focus merely on word oriented
n-grams in this report.

Considering this main difference in our bigram index, there are some poten-
tial obstacles ahead. If we consider both single words and pair of words as
terms, then our vocabulary would double in size, making it harder to hold
the vocabulary in main memory. Below is a sentence from the sound track
“Stiff Upper Lip” by the Australian rock band named “AC/DC”, released in
year 2000. Observe how an indexing process using a naive bigram indexing
approach.

Well I was out on a drive on a bit of a trip

Gives these single word terms:

a, bit, drive, i, of, on, out, was, trip, well

And subsequently these bigram terms:

well I, I was, was out, out on, on a, a drive, drive on,
on a, a bit, bit of, of a, a trip

As seen, the identified bigram terms based on the sentence above produce
additional n − 1 terms, where n is the number of terms in the sentence. If
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we have a document of 20 000 words, and thus 20 000 single word terms,
then we would also have 20 000 − 1 = 19 999 bigram terms with a sequen-
tial approach as shown above. Using this approach would not yield any
significant improvement on efficiency either, since the size of the vocabulary
would impose a large I/O overhead. Only a fraction of the bigrams would
actually constitute a performance improvement. Also note that some of the
identified bigram terms above brings some semantic meaning on its own,
and in [24] it has been experimented with the usage of bigrams to perform
text categorization.

A factor to keep in mind is the identification of bigrams. In a very naive ap-
proach one might consider the vocabulary of an already indexed collection.
If the vocabulary consists of x distinct terms, then there would be x × x
possible bigrams. If our vocabulary holds 1 000 000 distinct terms, then
there would be 1× 1012 possible bigrams. Imagine holding that vocabulary
in main memory. A naive approach like this would not work, both because
of the vast amount of bigrams and that only a fraction would hold any se-
mantic value.

It is important to know what kind of queries that lowers the overall through-
put in a standard inverted index. As already thoroughly discussed in pre-
vious sections, the observation of stopwords and their huge impact on the
index structure is of great concern here. In this report our main goal is to
look at ways to improve phrase searching in text databases, and this is where
our Bigram index comes into play. Now, phrase querying our standard in-
verted index would in some queries - where no stopwords are present - yield
a satisfactory performance. This is because the posting lists to retrieve and
decode from disk is small / normal in size, and the I/O overhead would not
have any significant impact on our search engine. However, if we perform a
phrase querying where stopwords are present, then the overall performance
would decrease significantly, and thus result in dissatisfied users since the re-
sults is not retrieved as quickly as expected. The posting lists for stopwords
is so large that they constitute a bottleneck in the IR-system due to the I/O.

Based on the observation above, we can safely conclude that there will be
none or insignificant gains in identifying all pair of words as a bigram term,
and then index it. This raises another important question: How can we iden-
tify terms that we with certainty would know provide performance savings?
Well, we already know that stopwords are responsible for the majority of
the occurrences size in terms of long posting lists and word positions lists, so
stopwords have some characteristics which we can utilize. We do not want
to discard stopwords in our index, since that could potentially impact the
semantics in phrase query evaluation and may include non-relevant docu-
ments and thus lower the precision.
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1 read stream of words
2 previous word = None
3 gotStopword = False
4 added bigram = False
5
6 while word in stream of words do :
7 i f previous word and gotStopword :
8 new Bigram ( previous word+” ”+word )
9 gotStopword = False

10 added bigram = True
11 end i f
12
13 i f word i s stopword :
14 gotStopword = True
15 end i f
16
17 i f gotStopword and previous word and not added bigram :
18 new Bigram ( previous word+” ”+word )
19 end i f
20
21 previous word = word
22 added bigram = False
23 end while

Listing 4: General steps to identify and construct a bigram term

What we want is to identify bigrams which contains a stopword. If we
construct bigrams based on the constraint that a stopword occur in, then
we would reduce the retrieval of the very long posting list of that particular
stopword, and instead retrieve a posting list based specifically on the bigram
term. That is, the posting list denoting which documents that a particular
bigram occurs in, along with in-document positions. This posting list will
in size be a fraction of the posting list for the stopword.

In Listing 4 the pseudo code for identifying and constructing a bigram term
based on a stream of word is listed. It is assumed that we already have a
dictionary of stopwords identified, thus checking a word for a stopword is
easy and fast. The core principle in identifying and constructing a bigram
term is to check every term. If a term is a stopword, then construct a bigram
containing the previous term plus the stopword, and the stopword plus the
next word in the stream.

Below is a simple sentence as example. Feeding it into our bigram identifier
and constructor would generate terms based on single words and bigrams.
Lets have a look:

This is an example text, without any meaning of its own.
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The stopwords from this sentence are:

an, any, of, is, its

then we produce these bigram terms based on the new approach:

this is, is an, an example, without any, any meaning,
meaning of, of its, its own

By analyzing these identified bigram terms we can see that they all is con-
structed based on the a stopword. And that stopword is - alone - quite
expensive for the search engine. We can also see some semantic rich bi-
grams in this set, such as an example, any meaning.

Having analyzed and discussed the principles and goal of our bigram index,
let us now have a look at how we implemented it, both in terms of Lucene
and in general.

6.4.1 Implementation

We have now introduced our Bigram index and what distinguishes it from
the standard inverted index. We will now show how we implemented it.
First of all, we will follow the pseudo code in Listing 4, where bigrams are
identified and constructed based on some rules. The main rule is to initialize
a bigram if a stopword is observed, and then construct a bigram based on
the previous term and the current stopword, and the current stopword and
nextword. This can be summarized to that we for each stopword construct
two bigrams; one containing the previous term plus stopword, and one con-
taining stopword plus the next term.

Before we go further into the Java code and more inner Lucene logic, there is
one important aspect that needs to be understood before proceeding. Recall
from Section 3.8, we mentioned how simple there is to expand the library,
and the concept of document analyzers. The key component which we shall
discuss is the document analyzer, hereby referred to as the Analyzer. In
Lucene the Analyzer is the class which handles the policy for extracting
index terms from text. This may sound familiar, since it is what we have
described in Section 3.7 where we described document analysis and index
term selection.

It is now established that our primary focus is index term selection within
document analysis. What specifically is defined to be accomplished in the
Java class Analyzer in Lucene is that it shall return a TokenStream object
that the indexing logic will use to create the index.
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A TokenStream is an enumeration over all identified terms based on a stream
of words. Note that the terms - searchable units - is referred to as Tokens26

in Lucene, and that the TokenStream will enumerate over Tokens. In order
to understand how we create our bigram and standard index with the usage
of these Analyzers, we first need to understand how Analyzers work inside
Lucene.

Analysers Lucene comes with some built-in Analyzers that have some-
what different purposes. We will not cover all of them here, but rather
encourage the reader to explore them. We will however introduce three An-
alyzers, whereas two is used in our experiment, and the other one is not.
Lets have a look at the latter one first.

StandardAnalyzer is a very widely used Analyzer which performs well
under most circumstances. StandardAnalyzer is quite efficient in identifying
different kind of index terms. The Analyzer takes advantage of JavaCC27 to
identify a wide range of index terms of various lexical types, such as:

� Alphanumerics
� E-mail addresses
� Numbers
� CJK (Chinese, Japanese, Korean) characters
� Acronyms
� Names

StandardAnalyzer is also constructed to discard stopword, if wanted. Now,
StandardAnalyzer performs its purpose quite well, but in this experiment we
will only need to identify single words, and there are therefore some down-
sides. A major downside is the time issues in relation to the wide range of
parsing capabilities. So, in simple terms, it is too slow for our purpose.

SimpleAnalyzer is another very widely used Analyzer. It performs quite
well using standard text, and where the interest of identifying index terms
lies strictly in finding words based on alphabetical characters. So the main
operation performed by SimpleAnalyzer is to identify words, whereas all
other characters will signal a whitespace, and implicit the creation of a new
Token. The Analyzer is very fast, since it builds on a range of other classes
where each class is especially designed for its own purpose. An attempt
to illustrate the relations SimpleAnalyzer has towards other classes in the
Lucene package is illustrated here in Figure 16.

26A Token object contains the terms text along with the start and stop offsets inside
the text

27Java Compiler-Compiler. A parser generator capable of perform effective lexical pars-
ing.
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Figure 16: Shows how the SimpleAnalyzer uses the stream of text (inputReader)
and a chain of objects to return valid Tokens based policy of the Analyzer.

SimpleAnalyzer extends the abstract Analyzer in Lucene, which includes
a method to return a TokenStream enumerator. In SimpleAnalyzer this
TokenStream enumerator is created by returning a new object of Lower-
CaseToknizer, which in turn extends LetterTokenizer and passes on the “in-
putReader” to its constructor. LetterTokenizer extends CharTokenizer, and
passes once again on the “inputReader” object. CharTokenizer, in turn, ex-
tends Tokenizer, and Tokenizer extends TokenStream. Now, the actual con-
struction of Token objects based on the input stream from “inputReader” is
constructed in “CharTokenizer”. That is pretty much the basic of Simple-
Analyzer and what is illustrated in Figure 16.

DocumentAnalyzer is an Analyzer which we created, that also serves as
a factory class. DocumentAnalyzer holds a private class named PhraseFilter3,
and this particular class holds all the logic in regards to identify and create
Bigram Tokens. The PhraseFilter3 utilize the SimpleAnalyzer described
above, and inspects the Tokens created by the SimpleAnalyzer. This makes
the PhraseFilter3 quite fast, since SimpleAnalyzer perform minimum op-
erations on the text.

Having a grasp of what Analyzers do is essential in order to understand the
procedure of creating the bigram index.
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Creating the index Lucene has the advantage of being designed with
modularity in all levels. This becomes clear when we can manipulate the
searchable units (Tokens) which are to be inserted into the index structure.
Manipulating the construction of Tokens is in essence what we have done to
be able to construct our Bigram index.

One important note regarding how Lucene handles phrase querying is that
each Token object has some additional data containing positional informa-
tion. Given an input document and the creation of Token objects for each
identified word, a Token object would contain a value denoting the posi-
tion relative to the previous Token. Lets again consider the simple example
sentence:

This is an example text, without any meaning of its own.

Now, each word would imply the creation of a Token object (Token(’this’),
Token(’is’), Token(’an’), ..). A Token object has by default the posi-
tional value set to one, which tells us that this Token is “one word position”
relative to the previous one. So Token(’is’) is a Token object which is one
word position to the right of Token(’this’), given that they are created
in the order of the sentence. This approach is quite straightforward, and it
adds the possibility to append additional terms at the same word position.
We can add the tokens Token(’intention’,0), Token(’purpose’,0) right
after the token Token(’meaning’) (where the number 0 indicate that the
word position has not changed, since the term is in the same position as the
previous term.

Inside a Token object there is also offset information denoting the subset
of offset values inside the source text which constitutes the actual word or
pair of words. Note that this offset information regards character positions
within the document.

For Token(’example’) in the example sentence above, we would get a“start
offset” equal 12, and “stop offset” equal 18. This tells the IR-system that
Token(’example’) starts at character position 12 and ends on position 18.
If we consider the example sentence above as a document, then our positional
information for the terms“this, is, an”are: Token(’this’, start=1, stop=4),
Token(’is’, start=6, stop=7) and Token(’an’, start=9, stop=10).

In case of using the DocumentAnalyzer, we would need a set of stopwords
defined. Given the example sentence, we could say that the terms is, an,
any, of, its is stopwords. Now, using the DocumentAnalyzer would pro-
duce these tokens: Token(’this’,start=1,stop=4),
Token(’this is’,start=1,stop=7), Token(’is an’,start=6,stop=10),
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..

The general process of identify and constructing bigrams based on a input
stream of words is illustrated in Figure 17. The basic steps from the input of
a set of documents to the insertion of the Tokens into the index is outlined
here. Note that we have a process for parsing documents without perform-
ing any form of analyzing to identify index terms, since only pure text is
identified. This is in cases where the documents requires careful handling,
in case of PDF documents, HTML pages and such. This step would output
a stream of characters, most likely with some additional metadata (such as
a description of either the text is title, body, author, description). The next
process performs the analyzing on the stream of text from the parses.

Figure 17: The process of constructing a bigram index, from the point of documents
to the writing of the inverted index.

6.4.2 Performance

The Bigram index performs somewhat similar to the standard inverted in-
dex since its basically the same internal structure and data types. The only
difference is that we discard indexing of single stopwords, and instead intro-
duce indexing of bigrams based on stopwords. This difference means that
we are faced with an even large vocabulary, which can be problematic if not
properly handled. However, we have the advantage of holding significant
smaller posting lists.

83



6 Experiment Page 84

By discarding indexing of stopwords in our index we can save ourselves for
considerable large posting lists in the occurrences part. This is one of the
main advantages we achieve with the usage of the Bigram index. This ad-
vantage means that we can retrieve posting lists faster from external devices
(ignoring disk access rates) along with much faster decoding of such large
posting lists. Consider the posting list for term “the”, which is many times
the number of documents in the index. In addition there is the word po-
sitions that ordinary needs to be stored inside each entry of a posting list
(given the usage of word oriented index). So, as can be seen, discarding
indexing of stopwords is highly attractive.

However, a drawback could be the restriction of querying a single stopword.
Even though such a case is very rare and thus gives no semantic meaning,
it could happen. In such a case, the user query would be routed to another
index or given a error message in return. So, a restriction in the Bigram
index is that querying after single stopwords, such as “in” or “the” would
not yield any results since those terms is not in the vocabulary. However,
word sequences containing those terms is indexed. Other drawbacks worth
mention is the vocabulary that will have to hold a much larger set of terms
in contrast to the standard inverted index. This would in turn also mean
that there would be less main memory available to hold postings lists and
such.

Lets illustrate the threshold for the amount of terms in vocabulary. Assum-
ing that a term entry in vocabulary uses 33 bytes. In this the actual term
representation takes 168 bits, where we allocate an average Java char array
of size 10 based on UTF-828 representation, in addition to a Lucene VInt
byte to hold the length of the term. Next we have a 64 bit to hold the
term count, and a 32 bit pointer to the posting list. Altogether 264 bits =⇒
33 bytes. Next we assume we have 2 GB of available main memory, which
is not unusual on a standard desktop computer these days. In Equation 8
below we can see that based on the assumptions made above we can hold
60 606 060 terms in memory.

2× 109

33
≈ 60 606 060 terms in memory (8)

Now, this number is a little unrealistic since we then would not have any
memory left to hold posting lists and/or results. Also, it would be a huge
waste to hold all these terms in memory, since only a fraction would be
accessed frequent enough. Given the approach Lucene use regarding vocab-
ulary and memory, we would hold an“index”over the vocabulary terms. Say

28http://en.wikipedia.org/wiki/UTF-8
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that we hold each 512th entry in main memory, thus lowering the memory

usage for a vocabulary of 60 606 060 terms into to
60 606 060

512
≈ 118 371

terms. This approach dramatically lowers the main memory usage by the
vocabulary. There should be noted that in addition to hold each 512th entry
in main memory, there would also be some mechanism to fetch and hold
high frequent terms, since their very likely to be queried.

6.5 Document collection

In our experiment we wanted to have a well acknowledge and used collection,
which has been a part of many other benchmarkings of various kind. Based
on the research on IR-systems and all of it characteristics, we found the
TREC collection very attractive. The TREC collection has outlined itself
as one “standard testbed” in IR-systems, and thus was a natural choice for
this experiment.

The scope of this master thesis is to look at phrase searching in text indexes,
and we know phrase searching is widely used on web collections due to the
index size. Thus, our selection for a testbed needs to reflect this. The TREC
GOV2 collection meets these requirements, and is the collection of focus in
this experiment. The importance of a good document collection is substan-
tial, since it would effect the effectiveness and efficiency if the collection did
not reflect real life data. If the IR-system is angled into a specific domain
of interest, then the testbed collection should reflect that too.

Below we will further inspect the document collection of our choice, and
how we managed to extract a pure text stream which is then passed into
the Analyzer.

6.5.1 TREC GOV2

The TREC GOV2 collection is a standard testbed within the IR research
community, and thus makes it highly attractive for our experiment. It pro-
vides a crawl of all .gov domains from 2004, altogether 426GB of web data.

Now, one of the major characteristics that makes this collection attractive
is that its a web crawl, and therefore provides real life web data. As al-
ready known, phrase searching is commonly used on web data, since the
waste amount of information on the web makes the querying for specific
data harder, and thus requires more discriminating queries. The GOV2 col-
lection has already been extensive used within both searching and indexing
benchmarking, and since we shall, into some degree, explore both processes
we found it to suite our experiment quite well.
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6.5.2 Parsing

A GOV2 document is not a plain HTML webpage, as it is more an encapsu-
lated webpage surrounded by SGML tags that provides additional metadata
to the webpage, including the HTTP response header. In Figure 18 there
is a slightly stripped GOV2 document that illustrates the usage of SGML
tags to encapsulate metadata of the webpage, and then the HTML codes for
the actual webpage. One can see that a GOV2 document is encapsulated
between <DOC> and </DOC>.

Figure 18: A slightly stripped GOV2 document

<DOC>
<DOCNO>GX000-00-0002361</DOCNO>
<DOCHDR>
http://nuclear.gov
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://nuclear.gov/default.html
Date: Tue, 09 Dec 2003 21:21:34 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, 08 Aug 2001 12:37:51 GMT
ETag: "80f9e8ef620c11:902"
Content-Length: 1954
</DOCHDR>
<html lang="en">
<head>
<title>Office of Nuclear Energy, Science &#38 Technology - DOE</title>
</head>
[HTML tags and information here]
</HTML>
</DOC>

The process of extracting the textual information, and not the HTML tags
and other non-interesting data, is performed based on a library provided by
the MG4J project (Managing Gigabytes for Java) described in [27]. What
we will describe here can be outlined in Figure 17, where our focus is the
entry process which deals with the parsing of documents. It is a prepro-
cessing that must occur to be able to feed the rest of the IR-system with a
pure text stream. In the MG4J project there is a subpackage which has a
single purpose, which is to parse files containing GOV2 documents. A sin-
gle file contains up to thousand GOV2 documents, and therefore the parser
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provided by the MG4J project only needs to have a list of files to be able
to parse the documents, and then it will notify whenever it has extracted
text ready to be fetched. The parser is also able to parse and decode GZip29

compressed files, since most GOV2 files is compressed by the UNIX com-
press software to save disk space. GZip is the free implementation of the
old UNIX compress. In other words, the GOV2 parser is quite flexible.

One concern with the usage of the MG4Js GOV2 parser was its perfor-
mance. Not keeping the search engine waiting for incoming text to index is
a requirement, so we wanted a parser that could maintain a document feed
to the indexer. Before we went all the way to implement the GOV2 parser,
we wanted to test how many documents it could parse pr second. So, we
created a simple Java program that triggered a parser process, and ordered
the parser to parse 1000 files, each containing approximately 1000 GOV2
documents. We performed millisecond sampling before starting to parse the
documents, and after the parser had completed. Then the difference be-
tween the samples was calculated. After three tests of the parser, whereas
we wiped out the internal cache and paging made my the underlying OS
(Ubuntu Linux in our case) for each time, we measured the overall parsing
pr second to be ≈ 750 GOV2 documents. This speed is sufficient enough for
our search engine, so we settled with the usage of this parser.

In the MG4Js GOV2 parser there is possible to adjust the buffer size used
in the parsing process. We have experimented with various buffers to find
out which one gave the best results. The result of ≈ 750 GOV2 documents
was based on a buffer of size 16KB. In Table 11, we can see our results along
with the range of buffer sizes which we experimented with. Between each
run we cleared the internal cache and paging by the underlying operating
system, so that it would not affect the results.

In Figure 19 we have created a graph with the buffer sizes along the x-axis,
and the document-pr-second (dps) rate along the y-axis. The table and fig-
ure clearly outline that using 16KB (16383 bytes) as buffer size will give the
best performance.

One may notice the performance decrease when using buffer sizes of more or
less than 16KB. The believed reason for this is that allocation larger buffers
would imply larger latency for the parser to receive data. In case of a 64KB
buffer size, the parser would for each GOV2 document allocate the usage of
64KB, while the GOV2 document only needs 16KB. This large buffer have
a negative impact on the parsing process, since the reader of the GOV2

29http://en.wikipedia.org/wiki/Gzip and http://en.wikipedia.org/wiki/

Compress
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MG4J GOV2 parser tests
Buffer size
(KB)

Files Documents DPS

1024 x x x
2048 x x x
4096 100 89771 680
8192 100 89771 680
16384 100 89771 685
32768 100 89771 669
65536 100 89771 568

Table 11: Table presenting some test results for fetching and parse TREC GOV2
files, and identify GOV2 documents. Tested with various buffer sizes to see the
impact on the overall dps (document-pr-second rate).

document then will wait until the whole GOV2 document is read into the
buffer. Ergo, the rest of the parsing process needs to wait for the input data.
Also, choosing a too low buffer size imply that the buffer is filled up too fast.
This means that the parser receives data fast - maybe too fast, implying that
the parser will be too loaded for handling the data, and therefore the I/O
systems would have to wait for the buffer to be emptied. A mean value is
desireable, and in this case 16KB was choosen.
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Figure 19: The process of constructing a bigram index, from the point of documents
to the writing of the inverted index.

6.6 Implementation

As any respectful search engine, we needed a name for our search engine to
achieve a certain level of personality. In our experiment the name is Baldr,
named after the well known god in Norse mythology, and son of the chief
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god Odin. The name Baldr was chosen by the author in a random approach,
were the author read some articles on Wikipeda30 and the name Baldr em-
phasized itself. Baldr - our search engine - will be outlined into more detail
in this section.

We have previously introduced the main goal of this experiment along with
the index structures, document parsing and analyzing. Now, we shall look
at more specific details for the running code of our search engine, and how
we solved the challenges on our path, such as keeping the indexer busy with
indexing the documents. One major challenge in the indexing process is to
achieve a satisfactory documents-pr-second rate (dps), that is the through-
put of the indexer. Even though this was not a very important goal of this
experiment, we felt an urge to achieve this. One approach was to have an ef-
ficient buffer management in order to reduce Garbage Collection performed
by the Java Virtual Machine. Garbage collection of unreferenced objects in
the Heap of Java Virtual Machine is costly, and should thus be avoided if
possible. Also, the garbage collection procedure is periodically runned, so
there is a possibility to run out of available memory between each run. In
other terms, creation and deletion of objects should not occur frequently
along the lifetime of the indexing process. More on this subject in Sec-
tion 6.6.1 where we also describe our bufferpool structure. Also, the Apache
Lucene v2.3 has better support than previous versions to keep the garbage
collection at a minimal in that it allows reassigning content to Fields, and
thus enables Document objects to be reused.

In the searching process we focus on measuring the time used to query a
predefined set of phrase queries. This is our main concern, since we then
can observe the responsiveness of the IR-system in relation to the query. We
used a query set made available on the TREC TeraByte Track website31.
This query set contained altogether 50 000 queries of both single term and
potentially phrase queries. We say “potential” phrase queries, since queries
in the query set is basically sequences of words, not explicitly phrase queries.
To filter out queries which we could use in our query test, we parsed the
query set file and discarded each query of length one, leaving only queries
qualified as phrase queries. Of 50 000 queries we had only 38 799 valid ones,
which was initially used in this experiment. Of 38 799 queries the search
engine only had results for 7922, roughly 20%. More on the results from
this experiment in Section 7.

30http://www.wikipedia.org
31http://trec.nist.gov/data/terabyte/05/05.efficiency_topics.gz
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6.6.1 Overall design principles

In the beginning of the development phase of Baldr we had the already
mention goals and requirements to follow. As in any development project
there is design principles to sort out, and we wanted to face those before we
started any major coding. It is important to note that the implementation
needs to support two elementary tasks; indexing and searching.

� Write search engine in Java. In Table 10, we also noted this.
This design principle is highly supported by the fact that our search
technology framework, Apache Lucene, is written in Java (and also
ported to other languages). Also, the Java programming language is
well understood and handled by the author. Usually, C/C++ is the
preferred language for such applications, but we chose not to for the
reasons mentioned.

� Take advantage of Apache Lucene library. This is thoroughly
presented in Section 6.3, and needs no further introduction.

� Use Apache Commons Collection implementations. The Apache
Common Collection library is a package containing more powerfull col-
lection implementations than those provided by the Java Collection
Framework32. This library was used as our buffers in our bufferpool
implementation.

� Take advantage of a bufferpool to hold reusable Lucene Doc-
uments. This principle yield efficiency gains in the indexing process,
in that we reused already created Lucene Document objects and thus
save ourselves from garbage collection the document objects.

� Built with phrase querying in mind. Both the indexing and the
searching part of this implementation is built with efficient phrase
querying in mind. In the subpackage regarding indexing this imply
efficient handling and identifying of index terms, and regarding the
approach to query the index in the searching subpackage. In Sec-
tion 6.3.2 we introduced different query evaluation approaches in the
searching subpackage which is taken advantage of in this design prin-
ciple. The Bigram Index is heavy used in the indexer subpackage to
support this principle.

.

32http://java.sun.com/docs/books/tutorial/collections/index.html
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6.6.2 In the beginning

In the very beginning of the development of this search engine, we did not
had a clear vision of what we wanted to do besides experimenting with a
search engine and its abilities to handle phrase queries. What was not clear
was which search engine to use, or if it would be a necessity to develop
our own search engine. Since the author was somewhat familiar with the
Apache Lucene search engine library, and the supervisors agreed that we
should avoid spending time constructing our own search engine if we had
the chance - then the choice of using Lucene was early concluded.

It took some time before we agreed upon what exactly to do in our experi-
ment, besides the somewhat abstract goal / motivation described in Chap-
ter 2. After some reading and a good conception of the underlying concepts
introduced in [23], underpinned by research papers regarding phrase search-
ing, pair of words and the inverted index structure in [4, 5, 12, 13] and [17],
we concluded that we should have a focus on the characteristics of bigrams
and how to use them in order to provide more efficient phrase searching
capabilities. Especially the nextword structure described in Section 5.1 and
introduced in [13] was highly attractive. We searched for implementations
of this nextword structure, but none was to be found. As a consequence, we
chose to experiment with our own somewhat similar structure - the Bigram
index introduced in 6.4. In Figure 20 there is given a very abstract view of
the main modules in Baldr - just to simplify the overall comprehension of
the search engine.

Figure 20: Illustrates the main modules in the Baldr search engine from a very
abstract view. Made only for perceptual purposes
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Main entry The main entry is basically the Java file which is the glue in
the system. It is initialized by the usage of Apache Ant33, an automating
software build tool, which simplifies the process of compiling, running and
cleaning up the code. In Figure 20, the “main” component is the main entry
in Baldr, and is responsible for providing the underlying modules such as
Indexer, Searcher and utility tools to the initializer. Apache Ant is in Baldr
supported by an XML file, there each possible action towards the search
engine is specified, along with the appropriate arguments to map a request
to an action in Baldr.

One design pattern we took advantage of in Baldr is the usage of a “Sin-
gleton”. A Singleton is in simple terms a “global point of access”. What
distances a Singleton object from another object is that there is only one
instance of a Singleton, and never two or more. Our Singleton holds ref-
erences to our Indexer and Searcher, and thus provides simple access to
those resources for our main entry. Another feature is that instances of the
Searcher or Indexer would only be instantiated whenever a request for the
object is retrieved, and all subsequent request would only return references
to the already existing object.

Also, another somewhat similar class in Baldr is named Definitions.java.
This class holds a large set of static variables, thus centralizing and unifying
access to global parameters and other needed references. It may be argued
that some of the parameters and references should be held in our Singleton
object, however the class name (Definitions) somewhat defines the scope of
the parameters and references, and is thereby naturally stored there.

Indexer Our approach to develop Baldr started with the indexing part,
since it is the first part that needs to function to create an index. At that
time we did not have the document collection we initially ended using, how-
ever the author had access to an very old TREC collection from 1994 which
was used as a testbed for the early versions of the indexer. Problems regard-
ing efficiency was early experienced, such as slow documents-pr-second rates
as a consequence of frequent garbage collection. We created and “deleted”
document objects for each new TREC document. Also, our parser for these
old TREC documents was not very efficient, as it used many Java String
objects in an ineffective approach, resulting in high garbage collection costs.
Altogether, the efficiency for this indexer was not great, but we harvested
some experience - especially the author.

Spending many hours reading the source code for the Apache Lucene trying

33http://ant.apache.org
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to understand the stuff beneath the hood, paid of in the long run. Being
able to sufficiently modify the parameters which Lucene uses in the index-
ing process turned out to yield sufficiently performance gains. Adjusting the
parameters for main memory usage, and the threshold for number of docu-
ments to be indexed before the index is flushed to disk had an huge impact
on the dps throughput (document-pr-second rate). These parameters varies
based on the underlying hardware; amount of main memory, CPU (cycles,
L1 & L2 cache, cores), I/O systems, etc. On our hardware we suffered from
some slow CPU and I/O system, so we needed to take this into consideration
when adjusting the search engine parameters.

One challenge in our search engine was to balance the input stream of GOV2
documents with Baldr’s ability to consume the documents objects, in addi-
tion to utilize the main memory in a good manner. We sorted this approach
by having the parsing of GOV2 documents in its own thread, and a buffer
queue to hold all documents processed by the parsing thread. Also, the in-
dexing procedure is fired off in its own thread. In Figure 21, these working
threads are illustrated. Keeping both of these threads busy in their own way
was a goal to achieve a good dps throughput. One aspect within threads
which can sufficiently slow down the performance is the timing issues re-
lated to data synchronization. In Figure 21 the shared buffer between the
“producer” and the “consumer” can be seen, and all inserts and deletes re-
quire locking the buffer from external modification. If our parser inserts a
new document object, then the buffer will be locked. Hence the indexing
procedure will not be able to retrieve and delete a document object from
the same buffer at the same time. The indexing procedure would then have
to wait until the parser has finished inserting the document object. This is
a core challenge within threads, and introduces some extra time delay and
complexity.

Figure 21: Illustrating the two working threads in our Indexer, and how they are
connected
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Searcher Having finished the Indexer implementation, thus being able
to construct a complete index of the document collection, we needed to
construct the other core part to enable searching in the index. Of great
importance was to support the experiment goal to extract measurements
regarding our large scale query tests. One thought was that we needed to
“simulate” more than one user to query Baldr, so we needed threads which
had their own query sets, and could execute queries simultaneous. These
queries would then query Baldr and collection measurements along the way.
We did not want the collection of measurements to affect the performance
of Baldr or anything else, so we just stored time usage and numbers in an
internal Java HashMap data structure, without any computation performed
on it.

We used two threads, each having half of the original query set. For each
query we stored two things: the query in its original form as the HashMap
key, and a vector as the value. The vector contains the rewritten query
based on the Analyzer used, the hit count retrieved from Baldr, and the
time Baldr used to process the query. Recall from Section 6.6 that we have
38 799 usable queries, and only 7922 gave hits in return. This means that
the HashMap containing the measurements will only contain 7922 entries,
whereas each entry is a vector of three elements (String, Int, Long). Based
on the 7922 result entries, we have calculated that the average query is 2.5
words, where the average word is 7 characters. See Appendix B.1 to see how
this was explored. Now, assuming an String is on average d2.5 × 7e ≈ 18
chars (36 bytes; Java char â 16-bits) plus the overhead of an int (4 bytes)
presenting the String length, altogether 40 bytes. And, another Int con-
suming 4 bytes and a Long consuming 8 bytes. In the end, a vector entry
consumes approximately 40 + 4 + 8 = 52 bytes, and the whole HashMap
holding the measurements takes 52 × 7922 = 411944 bytes, or ≈ 412KB.
Note however that additional space consumption in regards to the structure
of the HashMap is needed, such as the load factor, the index over each key
and buckets assignation. Therefore this usage approximation is not to be
interpreted as final. This data size would only occupy a fraction of the avail-
able memory, and thus hold a minimal affect on the performance of Baldr.

When the Searcher is finished, the measurements is collected from the threads
and concatenated into a single structure, and then written to a result file on
disk.

Utility The utility module does not provide any single major functional-
ity, such as the Searcher or Indexer. However, we have chosen to store the
small modules that we have been used to extract and test the system with
here. One quite handy module is the HighFrequentTerms, which loads a

94



6 Experiment Page 95

specified Lucene index and extracts the vocabulary. For each term in the
vocabulary, there is also extracted the term frequency, where word positions
is considered a hit. Based on this module we were able to locate the 10 and
100 most frequent terms in the document collection, and thus use them in
order to construct different kinds of Bigram indexes to experiment on.

Another module in the utility module is the TestTRECDocReader. This
module has a single purpose of taking in a set of TREC GOV2 files, and
then extract the textual information. In these steps there are performed
measurements to calculate the average performance of the TREC GOV2
parser being used. We used this module to calculate the dps rate outlined
in Section 6.5.2.

6.6.3 Architecture of Baldr

The architecture of Baldr is quite straightforward, where our concerns have
been on the two major components: Indexer and Searcher. A very abstract
view can be seen in Figure 20 on page 91. With this figure in mind, we
have created a more UML similar diagram trying to visually illustrate the
relations and such between classes and packages (speaking in Java terms).
This diagram can be seen in Figure 22.

One observation from Figure 22 is that the Indexer part is not encapsulated
into its own Java package, such as the Searcher part. This is basically a
design flaw from the early stages in the development of this search engine,
and should ideally be rewritten. However, due to time restrictions, this has
not been a priority.

Bufferpool One other architectural aspect in Baldr worth mention is our
solution to address the high load of construction and deletion of GOV2Documents
in the Indexer. Outlined in Section 6.6.1 is our bufferpool implementa-
tion, which is in simple terms two buckets representing document holders
(buffers). The reason for using two buffers is based on the two states our
GOV2Document objects can have; “free” and “ready”.

� “free” is a state when a document object has already been indexed, or
is unused. This state signals that the object can be retrieved from the
buffer, and used in the Gov2Parser thread to hold a GOV2 document
extracted from the parsing of GOV2 collection. A “free” document ob-
ject may hold the information from a previous (already indexed) GOV2
document, however that information would be overwritten when the
Gov2Parser sets new values on the document object. After new values
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Figure 22: Overall architecture illustration of the Baldr search engine created in
this experiment.

has been set on the document object, it changes state to “ready” and
is inserted into the appropriate bucket.

� “ready” is a state when a document object is ready to be indexed. By
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this, the document object parameters has been set with information
from a parsed GOV2 document based on the GOV2 collection. The
internal class “AddDocs” illustrated in Figure 22 will fetch document
objects from the “ready” bucket, and then index the information each
object holds as a single document. After the document object has been
indexed, the object is appended to the “free” bucket and thus changes
state.

test 
data

test 
data

test 
data

test 
data

Indexer Gov2Parser

Free documents Ready documents

putReadyDoc()

fetchFreeDoc()

fetchReadyDoc()

putFreeDoc()

Figure 23: Illustration of the architecture of our bufferpool, and how operations is
performed on them.

In Figure 23, the two buckets “free” and “ready” is illustrated along with
the processes operating on them. When Baldr is initialized, then the “free”
bucket is filled with empty GOV2Document objects. After the parser has
started processing and the stream of parsed GOV2 documents is available,
then the Gov2Parser fetches a “free” GOV2Document object from the “free”
bucket. The Gov2Parser so fills it with the parsed GOV2 document, then
appends it to the “ready” bucket. Another thread named “AddDocs” will
continuous fetch GOV2Document objects from the “ready” bucket, and then
index them. After a GOV2Document object has been indexed it will be ap-
pended to the “free” bucket, as it is free to be reused. This is the “circle of
life” in Baldr with respect to the Indexing process.

The performance gains this approach introduced for Baldr proved signif-
icant, since we managed to keep garbage collection at a minimum. The
creation of new objects in Java introduces some time delay in response to
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the operations needed to create an object. Allocating the memory on the
Java heap, and the initialization of all the defined variables, and evaluation
of other defined actions based on the object constructor is time-consuming
operations. These factors further delay the process of creating new objects,
thus signalizing the performance gains in minimizing such operations.

The two buckets (buffers) is two instances of the BoundedFifoBuffer pro-
vided by the Apache Commons Collection34 library. This buffer implemen-
tation is very efficient, providing operations such as add(), remove() and
get() in O(1) time. The BoundedFifoBuffer is of fixed size, thus saving
dynamic memory allocation. Our two buffers is of size n = 5000; capable of
holding 5000 GOV2Document objects each. However, when initialization of
the Indexer the “free” bucket are filled with GOV2Document objects, thus
saving the creation of objects during the indexing process.

6.6.4 Possible future improvements of implementation

During this experiment we have identified some aspects that can de denoted
as “future” improvements. Some of these aspects affects the performance of
Baldr, and should therefore be addressed. However, due to time constraints
this was not performed during this master thesis. We will first introduce the
ones which affects the performance.

I/O utilization Baldr is very much an I/O bound application, since all
operations is heavily affected by the speed of retrieving data from disk. One
improvement in Baldr could be to take advantage of the new I/O APIs in
Java (NIO), which is specifically directed towards intensive I/O operations.

Less garbage collection In the indexing process there is continuous cre-
ated Token objects to represent indexable terms (searchable units). The
creation of Token objects is performed in the Analyzer, and therefore should
our Analyzer take advantage of reusing already created Token objects. As
of Apache Lucene version 2.3, reusing of objects such as Tokens, Documents
and Fields is provided, and our Analyzer should take advantage of this. Fur-
ther reduce the garbage collection performed during indexing would severely
increase the throughput of Baldr.

Parser Further improving the parser to provide even faster parsing would
increase the input of documents to the Indexer, thus the Indexer would not
need to wait for documents to index. Possibly create a customized parser

34http://commons.apache.org/collections/
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would yield some advantages, and utilize more I/O intensive APIs such as
the Java NIO.
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7 Results

In this chapter we will have an in-depth analyzation of the statistics pro-
vided by the collected measurements from the experiments performed on
Baldr. Some of these statistics will be calculated from the measurements,
and then provided in a comprehensible manner.

In this chapter we will refer to our standard inverted index as our Unigram
index, since it is created with single words in mind. In case of our bigram
indexes, we will refer to them as Bigram10 and Bigram100, whereas the
number signalize the amount of stopwords used.

All results could have potential sources of errors, and those sources should be
discussed and addressed. We will outline the identified sources, and discuss
how we approached them. In Section 6.1 we described our test platform,
summarized in Table 10 on page 66, and all results provided in this chapter
is highly influenced by that particular test platform. Performing the same
tests on another platform with different I/O systems, CPU, RAM, etc, would
have given other results. Regardless of the difference between results from
one platform to another, as long as there is possible to extract the overall
results that prove or disprove the impact of our design.

Before each test was executed, a Linux35 specific command was executed.
The main goal with this command is to clear the internal cache and pag-
ing carried out by the underlying operating system. To retrieve reliable
measurements from each test, this was a necessity.

$# echo 3 > /proc/sys/vm/drop_caches

Now, the underlying operating system would have to read all new files from
external devices, such as the hard drive. Executing our tests after the exe-
cution of the command above, would add the time delay introduced by the
I/O traffic, which is the most realistic approach. This signalize that these
tests would give more reliable results.

We performed a very quick and simple test to illustrate the difference be-
tween clearing and not clearing the internal cache in the OS. In Section B.2
in appendix, there is a code snippet outlined which is the Python program
we used here. Combined with the usage of the *NIX specific time command,
we have a powerful tool. We input a file - here named 99 - which is 17MB
in size. The first try is after we have run the Linux command above - notice
the sys time. Operations that goes through the kernel would affect the sys
time; operations such as opening, reading and closing files.

35This only works for the 2.6 Linux kernel
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fellingh: #; time python test.py 99
real 0m2.098s
user 0m0.104s
sys 0m0.060s

The second try is runned right after the first one, without the clearing of
internal cache and paging. Notice how the sys time has approximately
halved.

fellingh: #; time python test.py 99
real 0m0.153s
user 0m0.124s
sys 0m0.028s

The internal caching made by the underlying operating system is quite handy
in regards to normal use of the operating system, but for our experiment it
would shatter our results. So, it is crucial that we approached this.

In Section 7.1 we will inspect the measurements collected in regards to the
indexing procedure. In Section 7.2 we will present the query results, based
on the searching procedure. In Section 7.3 we evaluated the results and
measurements presented in Section 7.1 and Section 7.2.

7.1 Index construction

The index construction is our first test in our experiment, which provides
us with detail knowledge regarding the performance constraints and charac-
teristics introduced by our design.

7.1.1 Constructing the index

Constructing the index was performed by running a simple command to-
wards the Apache Ant building tool, which glues the requested libraries and
parameters together. We made available some simple commands to create
different indexes, whereas one for the standard inverted index without any
stopword identification nor stopping, along with commands for the other
indexes as well.

Our approach towards collecting the stopwords and take advantage of their
characteristics included the execution of HighFrequentTerms in the utility
subpackage - see Figure 22. Running this module against the standard in-
verted index extracts the 100 most frequent stopwords, which we inserted
into a file called stop_words.txt. When constructing the bigram index
based on 10 stopwords, only 10 of the most frequent stopwords is used to
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identify and discard terms from the document collection, as well as create
new terms. The same goes for the bigram index based on 100 stopwords.
When only using the top 10 terms, we needed to comment out the other 90
terms using the commonly used # sign. Ideally the software should have
taken this into consideration, but it was never prioritized.

In Table 12 we see the results collected from the index constructions per-
formed.

Index construction
Average time DPS Size Documents Terms

Unigram 32 min 36 sec ≈ 491 1.8GB 960 223 5 797 853
Bigram10 48 min 34 sec ≈ 330 2.5GB 960 223 10 744 459
Bigram100 58 min 14 sec ≈ 275 2.9GB 960 223 17 352 061

Table 12: Table presenting some statistics regarding the index construction of three
different runs. The unigram index contains single stopwords in the vocabulary, while
the bigram indexes do not.

From Table 12 we can see that all indexes have the same document numbers
- which is logical and good, since they all used the same document collection.
The construction of the standard inverted index without any concern for the
stopwords (using SimpleAnalyzer) took 32 minutes and 36 seconds, resulting
in a DPS rate at 491 documents. The processing steps performed for each
document are:

� parse a GOV2 document from the collection

� fetch a “free” GOV2Document, then insert the parsed GOV2 document
data. At last, add the GOV2Document to the “ready” bucket.

� Add the “ready” GOV2Document to the Apache Lucene

� Apache Lucene will run the GOV2Document through the Analyzer, and
the output Tokens will be indexed

Observing the bigram indexes for 10 and 100 stopwords, we can see that the
DPS rate somewhat decreases. This is actually logical and quite understand-
ing, as both the complexity and the computation increases in the Analyzer
used to construct the Bigram index. In the standard inverted index the Sim-
pleAnalyzer is used to identify Token objects, and SimpleAnalyzer’s policy
is to create a new Token whenever a non-character is found. However, the
Bigram index Analyzer (DocumentAnalyzer) has a somewhat more complex
policy, and thus requires more processing. And, as an additional note, the
more stopwords identified, the more bigram Tokens would be produced.
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Also note the difference between each index’s disk space consumption. Know-
ing that our document collection is ≈ 16 GB, then the 1.8 GB occupied by
the standard inverted index is not that much (≈ 11% of the document col-
lection). The Bigram index with 10 stopwords occupy 2.5 GB, increasing
the ratio between index and collection to ≈ 15%. The Bigram index with
100 stopwords occupy 2.9 GB, further increasing the ratio between index
and collection to ≈ 18%.

This drastic increase in disk space is a consequence of the amount of vo-
cabulary entries, and thus the equal increase in posting lists. However, the
posting lists length has decreased, which is the effect we are searching for. To
create a comprehensible illustration to see the effects of our Bigram index,
we created a graph with the 100 most frequent terms and their frequency
for each index constructed. This graph can be found in Figure 24.
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Figure 24: A graph illustrating, for each index, the 100 most frequent terms and
their occurrences. Notice the gap between the bigram curves and the unigram
curves at the leftmost side of the x-axis.

In Figure 24 the x-axis is the terms (searchable units), in decreasing order
based on the frequency, and the y-axis represents the frequency for a term.
One obvious observation is that the standard inverted index curve has a
significant higher frequency for the most frequent terms, as opposed to the
curves belonging to the Bigram indexes, consisting of 10 and 100 stopwords.
This graph summarize the main purpose with our Bigram index in an ele-
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gant way, and the gains are graphically outlined.

One important factor to have in mind when inspecting Figure 24, is that
the Bigram indexes holds a quite large set of vocabulary entries. From the
Table 12, we can see that the Bigram10 index has approximately 85% more
vocabulary entries than the standard inverted index. And the Bigram100
index has approximately 200% more vocabulary entries than the standard
inverted index. This factor is a drawback with the usage of Bigram index.
Even so, the frequently accessed posting lists are substantial smaller, hence
the I/O bandwidth and processing needs in order to cope with such large
posting lists is prevented.

7.1.2 Source of error

In the process of index construction there are some potential sources of
errors, and those should be explored. The results credibility would be de-
batable if we chose to ignore factors such as sources of errors, so in response
to defend our results it is crucial to highlight all potential sources of errors.

One early introduced and thoroughly explored source of error is the caching
and paging made by the underlying operating system. However, this poten-
tial source of error has been addressed in all operations where it is a required.

One source of error which the author early experienced was that the list of
high frequent terms (stopwords) was not accurately calculated in the
HighFrequentTerms. The early approach was to count only the number of
documents which the term occurred in, without any regards to the num-
ber of occurrences inside each document. After this source of error was
discovered and addressed, we extracted a new accurate stopword list. The
consequence of not approaching this error would have had an impact on the
results retrieved, as the stopwords is a central factor in the construction of
the Bigram indexes.

Another source of error which the author experienced was that the Bigram
indexes was not reflecting the content of the document collection, as there
were some queries on the standard inverted index that did not give any re-
sults on the Bigram indexes. This error was quite a nutcracker, as there was
no obvious errors in the code. The author compared the effected documents
across indexes and the document collection, and noticed in the end that
only the Bigram indexes were effected. A common characteristic for Bigram
indexes is that it holds more Token objects (more terms) than the standard
inverted index, which was the main source of this error. Apache Lucene has
a default internal integer specifying the maximum length of a Field. Recall
from Section 6.3.1 and Figure 12 that a Document object (GOV2Document)
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is a set of Fields, where each Field holds Token objects that represent all
terms identified and in relation to that particular Field from a document.
Now, if a document has many terms in a standard inverted index, then it
would have even more in the Bigram index. So, in case of this error, we
had breached the internal integer threshold in Lucene, and thereby the rest
of the terms for the document was discarded. The default maximum Field
length was set to 10 000 Tokens. We increased it to 180 000 Tokens, which
was a sufficient threshold, and thus resolving the error. In another document
collection, also this threshold could be too low.

Other potential sources of errors in the Indexing process could be software
bugs both in the Apache Lucene or in our implementation of the Bigram
index, which we have yet to discover. The Apache Lucene library is widely
in use in many different applications around the world, so most of the bugs
are identified and hopefully approached. However, one may never say that
software is bug-free, so we can never exclude the possibility for errors related
to bugs in the software. A more likely entity that could contain bugs is in
our Bigram index, since it has not gone through such extensive testing and
usage as the Apache Lucene library. But, so far it has proven to be reliable.

7.2 Query tests

Here we will introduce the results which we managed to extract from our
query tests in our experiment. These results will provide knowledge regard-
ing the performance of our approach towards enhancing phrase searching in
text indexes.

In order to make the results as comprehensible as possible, we have con-
structed both graphs and tables to present them. Also, the information is
simplified wherever possible.

7.2.1 Querying the indexes

Querying the indexes was performed by the Searcher part, outlined in Sec-
tion 6.6.3. In the querying process we used the set of queries outlined in
Section 6.6, along with the stages performed to narrow down our initial
query set from 50 000 queries to 38 799 queries.

As also specified in Section 7.1, we here performed the Linux specific com-
mand clearing the cache and paging performed by the underlying operating
system. Based on which type of query test we wanted to perform, we needed
to take into consideration the stop_words.txt containing the 100 most fre-

105



7 Results Page 106

quent terms from the standard inverted index. When querying the Bigram10
index, we needed to comment out the other 90 stopwords, and uncomment
them when querying the Bigram100 index.

7.2.2 Query results

For each query run there is collected a whole lot of measurements. To extract
comprehensive and understandable results, we needed to parse and perform
calculations over the measurements. In Appendix C.1, we have printed the
source code for our program which calculates and presents this results. It is
a simple Python program, which takes the measurements file created by the
Searcher as input, and outputs a simple, yet information rich presentation
of the results.

Standard Inverted Index First query test was against the standard in-
verted index. Since no stopword considerations is needed in this test, we
could simply ignore the stop_words.txt for now.

In Table 13 below, we have the statistics calculated and presented by our
Python program.

Query testing unigram index
Query length Occurrences Avg response time
2 5352 186.94 ms
3 1848 448.39 ms
4 550 848.93 ms
5 130 1058.50 ms
6 27 1686.74 ms
7 7 1452.85 ms
8 3 1322.66 ms
9 5 2388.00 ms

Table 13: Table containing results from our query test performed on the unigram
index.

In Table 13 we have three main measurements:

� Query length We have categorized all phrase queries in the measure-
ments file created by the Searcher. We have phrase query lengths from
2 to 9.
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� Occurrences We have here the number of phrase queries which gave a
positive hit in Baldr. Notice that this number is related to the query
length.

� Average response time This is an average calculation based on all the
response times for each query within that query length category.

One clear observation from the table is that the longer the phrase queries
is, the greater average response time is achieved. The background for this is
that for each extra term in the phrase query, the whole posting list needs to
be fetched and processed. Given that the extra term is a high frequent term
(stopword), then the posting list would imply a lot of I/O bandwidth and
processing time. The average response times outlined in the table somewhat
reflect the general understanding of the standard inverted index structure.

Bigram10 Index Next query test was towards the Bigram index built
with the 10 most frequent stopwords identified. This index is, from Ta-
ble 12, 2.5GB in size, and contain 10 744 459 terms (≈ 85% more than the
amount of terms in the standard inverted index).

Query testing bigram10 index
Query length Occurrences Avg response time Avg stopwords
2 5352 151.14 ms 0.020740
3 1848 280.40 ms 0.222403
4 550 397.88 ms 0.587273
5 130 541.96 ms 0.946154
6 27 1299.00 ms 1.000000
7 7 737.57 ms 2.571429
8 3 431.00 ms 2.333333
9 5 1234.60 ms 3.000000

Table 14: Table containing results from our query test performed on the bigram10
index. We use the top 10 stopwords derived from our unigram index.

In Table 14 we have presented the processed measurements from the Searcher.
This table is very much the same as Table 13 - with one minor difference. We
have in this table in addition calculated (on average) how many stopwords
there are in each phrase query. Note that the amount of stopwords used
in the index (10 stopwords here) is also used in this calculation. This ad-
ditional column in the table provides us with an understand of the queries
used. Keeping this in mind while interpreting the average response time
within a phrase query categorization, could be helpful in understanding the
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results.

Observing the average reponse times in Table 14, we see the same trend as
in Table 13. The longer phrase query in use, the greater response time is
achieved. Again, this is quite understandable and logical. However, com-
paring the results for each phrase query category between this table and
Table 13 shows a sufficient performance boost in the Bigram10 query test.
For some categories the average response time is halved, which suggests a
performance boost of approximately 50%.

Bigram100 Index This query test was approached in the same manner
as the previous test, except for that we in this test used the 100 most fre-
quent stopwords, instead of 10.

From Table 12 this index is 2.9GB in size, and contains 17 352 061 terms
(≈ 200% more than the standard inverted index, and ≈ 62% more than the
Bigram10 index). So, this index is somewhat larger in terms of size and in-
dexed terms, but due to the characteristics of the Bigram index it will hold
shorter posting lists. This is graphically illustrated in Figure 24, where the
Bigram100 curve shows the smallest occurrence values for its high frequency
terms.

In Table 15 we have the output of our results from our measurements. As
with the previous table, also this table includes the average number of stop-
words in each phrase query category.

Query testing bigram100 index
Query length Occurrences Avg response time Avg stopwords
2 5352 127.75 ms 0.084081
3 1848 197.53 ms 0.459416
4 550 282.54 ms 0.994545
5 130 364.73 ms 1.546154
6 27 437.07 ms 2.111111
7 7 519.00 ms 3.285714
8 3 453.00 ms 4.000000
9 5 1347.80 ms 4.000000

Table 15: Table containing results from our query test performed on the bigram100
index. We use the top 100 stopwords derived from our unigram index.

Also in Table 15 we can observe the same characteristics as in the previous
tables; the average response time increases in relation to the phrase query
length. And, comparing this table against Table 14 signalize that we achieve
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even further performance gains with the Bigram100 index. This is quite in-
teresting, as it somewhat confirms that our approach yields performance
gains in terms of phrase querying.

Comparing phrase query response time
Query length Unigram Bigram10 Bigram100
2 186.94 ms 151.14 ms 127.75 ms
3 448.39 ms 280.40 ms 197.53 ms
4 848.93 ms 397.88 ms 282.54 ms
5 1058.50 ms 541.96 ms 364.73 ms
6 1686.74 ms 1299.00 ms 437.07 ms
7 1452.85 ms 737.57 ms 519.00 ms
8 1322.66 ms 431.00 ms 453.00 ms
9 2388.00 ms 1234.60 ms 1347.00 ms

Table 16: Table containing results derived from Table 13, Table 14 and Table 15.

In Table 16 we have summarized the average response times from each test
run. This table gives an extensive view of the benefits of bigrams in case of
phrase searching, and how it affects the query process.
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Figure 25: A graph illustrating, for each index, the increase in response time when
phrase queries become longer. Is based on the results from Table 16

In Figure 25, we have created a graph based on the results presented in
Table 16. This graph shows that relationship amongst phrase query lengths
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and response times, and further confirms the efficiency gains introduced by
the bigram index approaches, along with the utilization of stopwords.

In the IR-community there are frequent bad queries used as examples to
illustrate different points. One of these queries is the famous William Shake-
speare’s quote from the play Hamlet: “to be or not to be”. We have tested
querying our indexes with this famous quote in Table 17.

Performance of a phrase query
Query: “to be or not to be”
Time usage Savings

Unigram 6081 ms N/A

Bigram10 3029 ms 1− 3029
6081

≈ 50%

Bigram100 1136 ms 1− 1136
6081

≈ 81%

Table 17: Table illustrating the difference as well as the performance gains in case
of a typical bad phrase query containing many stopwords.

It should be noted that this phrase query is typically referred to as a bad
query, in terms of the frequent usage of stopwords. Therefore the gains of
querying the Bigram indexes instead of the standard inverted index would
be much clearer with queries such as these. In case of a phrase query without
any stopwords at all, the gains would be more or less insignificant.

7.2.3 Sources of errors

In the process of querying our indexes, there are some factors that could
potential resolve into sources for incorrect results.

As also outlined in Section 7.1 regarding sources of errors, the factor of
caching by the underlying operating system should be taken serious. How-
ever, between each query test run we performed the Linux specific command
introduced in the beginning of Chapter 7, thus resolving this source of error.

The vulnerability introduced by our stop_words.txt should also be taken
into consideration here. Given that the wrong set of stopwords was being
used in one of the tests, then those results presented above would be invalid.
Extreme precaution was taken before each query test run, assuring that the
correct set of stopwords was being used.

One observation made from the results is that the Bigram10 index performed
somewhat better than the Bigram100 index in certain cases. This is best
illustrated in the two lowest rows; phrase query category 8 and 9.
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One theory for this is that we in Bigram100 used the 100 most frequent
terms, instead of 10, thus there are more bigrams identified in the Bigram100
index. Take for example phrase queries of length 8, which we have 3 queries
of. One characteristic they share in the Bigram100 index is that more bi-
grams could have matched within those queries, as opposed to the Bigram10
index where fewer bigrams could have had a match. This is because of that
the Bigram10 index only holds bigrams of the top 10 stopwords. In case
of our phrase queries of length 8, there could be bigrams which is outside
the range of those top 10 stopwords. This brings along a greater likelihood
for that the bigrams in the Bigram10 index have already matched in ear-
lier phrase queries (since there are fewer of them, and they occur in more
queries), and therefore has been cached inside Baldr and the underlying
operating system. For the Bigram100 index however, there is a greater like-
lihood for that those matching bigrams has not yet been fetched, and thus
the costs of fetching and decoding the posting lists comes into play.

It should be noted that the author has not verified this scenario, but it is not
unlikely, so it should therefore be taken into consideration when interpreting
the results. A larger set of phrase queries within those affected categories
would most likely straighten out the results though.

7.3 Evaluation

Here we will evaluate the presented results from the indexing and querying
tests performed in our experiment.

7.3.1 Indexing

In our indexing results presented in Section 7.1, we presented building statis-
tics for our indexes. The gaps between each construction was presented,
along with the causes for those gaps. There is an especial focus on the gaps
between the standard inverted index and the Bigram indexes.

Maybe the best illustration between each index construction is in Figure 24
on page 103. In this figure, a decreasing list of “posting lists” lengths is out-
lined across the x-axis, starting with the largest posting lists in the index.
It shows the drastic cuts in posting lists lengths introduced by our Bigram
indexes. Also, Table 12 gives us some statistics for each construction, pro-
viding us with a conception of the building process.

By the introduction of the Bigram index, we clearly see the increasing disk
space consumption along with the increasing vocabulary. This can be said
to be the two drawbacks introduced by this approach. To cope with these
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drawbacks, there is a need to take advantage of distribution. This is into
some extent discussed in Section 4.3, whereas two approaches to partition
the index across multiple nodes are discussed. Also worth mention is that
Heap’s law - discussed in Section 2.6 - also applies for the vocabulary in
Bigram indexes. So, the vocabulary growth rate will straighten out over
time, only a little later than with the standard inverted index. The two
parameters in Heap’s law, K and β, would also need some adjustments to
model the vocabulary of the Bigram indexes.

7.3.2 Searching

The results presented in Section 7.2 is carefully calculated based on the mea-
surements collected by the querying tests. These results gives insight into
the querying process, and provides us with important knowledge about the
influence that the various index types has.

One factor of great importance in this context is the performance in terms
of response time. The response time is measured from the time the query
enters the IR-system, to the time the response is retrieved (hit list). This
factor, in relation to the actual phrase query used, along with its character-
istics, gives valuable insight into how the search engine performs. That is,
when this factor is compared across indexes.

Considering the tables with the query results presented in Section 7.2.2, we
clearly see the trend introduced by the Bigram indexes. Enhanced phrase
query capabilities is outlined in terms of drastic smaller response times for
typical “bad” phrase queries, which contains stopwords. It should be noted
that phrase queries has various degree of“badness”depending on the amount
of stopwords, and the occurring stopwords frequencies.

An important thing is that our Bigram indexes only affects phrase queries
that has stopwords in it, and that all other phrase queries would be better of
using other approaches, such as combined approaches outlined in Chapter 5.

Below we have three graphs - one for each phrase query category. Figure 26
is based on phrase queries of length 3, and is basically a histogram, illus-
trating - for each index - the amount of phrase queries performing within
various time ranges. The x-axis represents the response time in milliseconds,
and the y-axis represents the amount of queries. Just to give a better under-
standing of the graphs, we can say that the larger amount of queries which
is in the lower-end on the x-axis, the better that particular index performs,
in terms of the query test. So, we are basically looking for a quite skew
distribution of the queries among the x-axis.
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Figure 26: A graph illustrating the histogram for each index and the performance of
its query response time. The x-axis represents the time, while the y-axis represents
the amount of queries performing in that time range. Focus on phrase queries of 3
terms.

Notice the peaks for each curve in Figure 26, whereas each curve repre-
sents an index. This particular category included - according to Table 15 on
page 108 - 1848 phrase queries, making the curves more reliable in reflecting
real life performance. Also notice that the highest peak is hold by the Bi-
gram100 index, and the second highest is hold by the Bigram10 index. The
Unigram index (standard inverted index) has the lowest peak. This char-
acteristic signalizes that the Unigram index has a more distributed curve
among the x-axis, which in turn means that a large portion of its phrase
queries performed within larger response time ranges. In contrast, the Bi-
gram100 index has its major part of phrase queries within the lower part of
the response time ranges, and thus gives overall better response times.

In Figure 27 we have the same graph as in Figure 26, but it is based on a
different data set. The graph in Figure 27 is based on phrase queries of length
4, which we have 550 phrase queries of in our result set. In this graph we
can see the curves and their peaks, along with their distribution among the
x-axis. Just as with the previous graph, we can here see that the Unigram
curve has a more equal distribution, in contrast to the Bigram100 index.
Also, the Bigram10 index shows a better performance than the Unigram
index.
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Figure 27: A graph illustrating the histogram for each index and the performance of
its query response time. The x-axis represents the time, while the y-axis represents
the amount of queries performing in that time range. Focus on phrase queries of 4
terms.

Notice that the amount of phrase queries in the category which is in focus
in Figure 27 is much lower than the graph in Figure 26. This means that
the y-axis holds a substantial lower range than in Figure 26, which in turn
gives a more drastic image of the differences within the response time ranges.
Nevertheless, the characteristics between the indexes comes forward in the
same degree as in the previous one.

Observe that we in Figure 27 consider longer phrase queries (containing 4
query terms), and thus the process is a bit more complex, involving fetching
and decoding of even more posting lists. This can be observed from the
graph in that the Unigram curve has far less phrase queries within the lower
reponse time ranges, which is caused by the need to fetch and decode long
posting lists. In case of the curves of the Bigram10 and the Bigram100 in-
dexes, we see that they somewhat maintain the gap between them and the
Unigram curve.

In Figure 28 we are looking at the same type of graph as the two previous
ones, despite the change of the underlying data set. In this graph we have
considered phrase queries of length 5, which is a substantial smaller set of
phrase queries than the others, as we here have 130 phrase queries.
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Figure 28: A graph illustrating the histogram for each index and the performance of
its query response time. The x-axis represents the time, which the y-axis represents
the amount of queries performing in that time range. Focus on phrase queries of 5
terms.

As with the previous graph, also Figure 27 suffers from the lack of enough
phrase queries to give a more smooth presentation of the curves. Also, in
Figure 28 there is a higher risk of being affected by the characteristics of
the phrase queries performed, due to the lack of smoothness. Phrase queries
containing non-stopwords would perform equally. If the larger portion of
the 130 phrase queries shares this characteristic, then the gaps between the
curves would decrease. In Table 14 and 15 there is denoted the average
stopwords within each phrase query category. For Bigram10 there is on av-
erage 0.946154 stopwords in each phrase query, and for Bigram100 there is
1.546154. The difference is due to the different set of stopwords used.

7.4 Summary of findings

Based on the evaluations of the tables and the graphs presented, we can con-
clude that the gains introduced by the Bigram index is substantial. There
are some constraints in relation to these gains introduced, such as that the
input phrase queries has to contain one or more stopwords. In case of a
phrase query without any stopwords, that query would most likely perform
quite well due to the characteristics of the query terms. Non-stopword query
terms has much shorter posting lists than stopwords, thus the I/O traffic
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and processing needs would not introduce any significant time delay in the
query evaluation. In case of a phrase query containing one or more stop-
words, Baldr would be able to fetch posting lists for the identified bigrams
in the query, thus introduce savings.
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8 Discussion

In this chapter we will take the results and experience from our Bigram in-
dex experiments, and discuss them in relation to the Nextword- and Phrase
indexes outlined in Chapter 5.

In Section 1 we stated that the intention of this master thesis is to evalu-
ate different aspects of performing phrase searching, in addition to evaluate
different approaches towards efficient phrase searching. In Chapter 5 we
outlined different state of the art structures, which specifically has phrase
searching in mind. In Chapter 6 and Chapter 7 we thoroughly explored
and described our proposal for enhancing phrase searching, in addition to
experiment with the proposal and evaluate the results. So, we have now a
set of proposals, all with the same intention in mind. What we now need
to do is to discuss whether there are benefits in using any of the proposals,
and which one will be recommended.

8.1 Proposals

Based on the approaches in Chapter 5, along with the one we created and
experimented with in Chapter 6 and Chapter 7, we have the following list
of proposals:

� Nextword index
� Phrase index
� Bigram index
� Combined nextword- and inverted
� Combined phrase- and inverted
� Three-way combination

Each of the proposals in the list above is already thoroughly explored and
introduced, so any further introduction will not be necessary.

8.2 Common characteristics

Here we will investigate and discuss the common characteristics the ap-
proaches may share or not. The motivation for this is to create a more
visible distinction between them.

Since the characteristics between the nextword and the phrase index is ex-
plored in Chapter 5, we will not further outline them here. Hence, we will
primarily focus on the common characteristics between the bigram index
and the approaches outlined in Chapter 5.
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Also note that the combined approaches would not be compared, as their
applications differ with the bigram index, even though their primary goal is
the same. Combined approaches enhances phrase searching indeed, but they
also cope with the rest of the query types. Since the bigram index is only
meant towards phrase queries, it would not match towards the combined
approaches. However, a combined bigram approach would be of interest.

8.2.1 Nextword vs Bigram

Considering the nextword index and the bigram index, we may notice some
common characteristics. Both is conceptually focused on the same thing:
pair of words and the utilization of common words. The nextword index has
a one-to-many relation for its firstwords and nextwords (a firstword can have
many nextwords, hence the nextword list), while the bigram index considers
word pairs as single terms in the index vocabulary.

The interesting common characteristics is that both focuses on the utilization
of stopwords. The nextword index uses stopwords as firstwords in its vocab-
ulary, and then “hooks” nextword lists up against those identified firstwords.
Each complete firstword+nextword pair has its corresponding posting list.
The bigram index uses stopwords to signalize the creation of bigrams. If
a stopword occurs, then two bigrams is created. First the previous word
plus the stopword, then the stopword plus the nextword. The resemblance
is astonishing.

However, a structural difference is the implementation of the approaches.
The nextword index imply a modification of the inverted index structure in
terms of “hooking” up the nextword lists against the stopwords in the vo-
cabulary. The bigram index, on the other hand, takes the same approach as
the phrase index. Each bigram is indexed as a single searchable unit (term),
and stopwords is neglected in the vocabulary since they are already covered
by the bigram terms.

The drawbacks these index structures share is the increasing index size,
as more information is stored in the index structure. This drawback is
however counterbalanced by the significant increase in response time. But,
considerations regarding scalability in terms of the increasing index size
should be taken. If a sufficiently large document collection is to be indexed,
then the index structure may be too much for a single computer to handle.
There is no need to further outline the advantages, as they are made very
clear.
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8.2.2 Phrase vs Bigram

Considering the phrase index and the bigram index, we can see a common
characteristic in that they both have the same inverted index structure. No
modification such as those performed in the nextword index is done.

The phrase index considers a complete phrase query to be a single search-
able unit (term), thus indexing whole phrase queries and place them in the
vocabulary with its corresponding posting list in the occurrence part. The
same approach is also performed in the bigram index, as it considers both
single words and bigrams as terms. Bigrams, however is based on pair of
words, somewhat similar to a phrase query of length 2. The main difference
between the phrase index and the bigram index is the items in the vocabu-
lary; the terms. The phrase index has exclusively complete phrases as terms
in the vocabulary, while the bigram index has both bigrams and single words
as terms. Notice that the bigram index vocabulary is magnitude larger than
the phrase index vocabulary, as the bigram index also holds single words
and bigrams, but not single stopwords. And that a phrase index only holds
a predefined set of phrase queries in the vocabulary, not all possible phrase
queries, as that would be prohibitive.

Nevertheless, both index types share this characteristic, and it is clear that
both approaches has its advantages and disadvantages. The drawback with
this approach is that its restricts the application for the index in that only
phrase queries may be evaluated, and that a combined approach or a fallback
index would be needed in case of other query types. The bigram index does
however support other query types into some extent, but since the stopwords
are neglected there would be difficult to query for stopwords. Queries con-
taining only stopwords is thus very rare. The advantages with these struc-
tures is, beyond what is clear, its simplicity in that they do not modify the
inverted index structure. This is an advantage, since it carry less complexity.

The phrase index described in Section 5.2 is meant to be an isolated index,
in contrast to the bigram index which includes an stopped inverted index
(no stopwords is indexed, except for in bigrams).

8.3 Performance

The bigram index results is thoroughly presented and evaluated in Chap-
ter 7. The performance of the nextword and phrase index is presented in
Chapter 5, along with the results in Table 8 illustrating their performance,
in regards to the experiment performed in [12].

Comparing the results between our experiment and the experiment carried
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out in [12] or [5] would be somewhat difficult. This is since they were carried
out on different document collections, as well as different query sets. How-
ever, the characteristics they represents can into some extent be compared.
We can easily see based on Table 9 for the “three-way combined approach”
in Section 5.3.3, that it shares some characteristics with the tables Table 13,
Table 14 and Table 15. However, these results is not very comparable.

What is possible to compare, in term of performance, is the overall stated
performance enhancement for each index. Now, based on the evaluations
and results from Chapter 7, we can see that the bigram index enhances
query response times with 20%-80%, compared to the standard inverted
index. In [12] there is stated that a complete nextword index is 50 times
faster than using a standard inverted index. This can be shown by looking
in Table 8, and comparing the average query time between an inverted in-
dex and the nextword index (1.04 sec vs 0.02 sec). In [5] a nextword index
in combination with a inverted index is shown to cut the query evaluation
of phrases to ≈ 60%. When using the “three-way combined approach” de-
scribed in Section 5.3.3, the performance enhancement is between 60%-80%
faster than using an standard inverted index.

In terms of disk space consumption, then the bigram index requires ≈ 18%
of the document collection size when using 100 stopwords. Note that this
requirement will increase when using more than 100 stopwords. Neither the
nextword nor the phrase index can directly be compared to the bigram index
in terms of index size, since neither one of them can be practical used in our
experiment. Also, a complete nextword index has a severe disk requirement.
According to [13], a complete nextword index requires 60% of the document
collection. However, the “three-way” combined approach can be compared
here. In [12] it is concluded that this approach requires 20% of the size of
the document collection. As can be seen, the size requirements is very close,
whereas the bigram index requires slightly less.

Considering operations performed on the structures, such as add, update
and delete, then the nextword index will stand out in a negative perspec-
tive. This is due to the increased complexity with the nextword lists. The
bigram index has an quite large vocabulary in contrast to the inverted in-
dex, but the postings lists for the index terms is drastic shorter (considering
bigram terms). Thus, operations which includes add, update or delete on
bigrams would claim less processing than in case of indexed stopword terms.
The phrase index has a short vocabulary, since it only contains carefully
selected phrases. In addition, the posting lists would be shorter than the
most frequent term in the phrase query, thus imply far less processing.
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9 Conclusion

This chapter covers the final conclusion based on the results and literature
brought forward in this master thesis. Also the discussion regarding the
bigram index and the other outlined approaches is taken into consideration.

This master thesis has covered some state of the art material in phrase search
technology, as well as introduced a new phrase searching structure named
“bigram index”. We also performed a thoroughly experiment with our new
phrase searching structure, and evaluated the presented results from both
indexing and searching.

9.1 Current challenges

The challenges within phrase searching is from the very beginning high-
lighted in this master thesis. We described the inverted index and its evalu-
ation process of phrase queries, and described in detail why such an approach
does not scale well when considering vastly large document collections. Espe-
cially factors such as I/O, decoding and merging are taken into consideration
when outlining the problems with phrase query evaluation.

The primary challenge which affects phrase searching performance in the
standard inverted index is its vastly large posting lists. A particular set of
index terms stands out in terms of large posting lists; high frequent terms,
also known as“stopwords”. The cost to fetch and decode such posting lists is
tremendous, and highly influence the reponse time for queries which contains
stopwords.

9.2 Phrase searching improvements

Throughout this master thesis we have presented possible improvements to
cope with the current challenges within phrase searching. Innovative ap-
proaches introduced in [13] [4] [5] [12] and presented in Chapter 5, takes
phrase searching challenges into consideration and approaches them. An
even further innovative and interesting approach is the bigram index, which
is introduced, experimented and evaluated in this master thesis.

In Chapter 8 we discussed the presented and introduced approaches towards
phrase searching, in addition to combined approaches which is capable of
working as a complete search engine. An especial focus was directed towards
our bigram index vs the other presented indexes. Common to them all is
that they cope with the challenge of vastly large posting lists, and thereby
achieve significant enhanced phrase query evaluation. Thus, the applica-
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tions for each index is somewhat different; as we found the bigram index as
something between both nextword index, and phrase index, based on their
characteristics.

The performance characteristics outlined in a summarized manner in Chap-
ter 8, show us that the bigram index holds as similarly size requirement as the
“three-way combined” approach. In direct comparison between the bigram
and nextword index, we find that the nextword index requires much more
in disk space due to more complexity and structure. A complete nextword
index needs 60% of the document collection, while the bigram index (100
stopwords) only ≈ 18%.

9.3 Final conclusion

Based on the results presented in this master thesis, we can with confidence
conclude that the bigram index provides significant improvements in terms
of phrase query evaluation. These improvements yield great importance for
search engines, given the desire to provide fast phrase query evaluation.

Summarized: when phrase searching, our bigram index provides a fast
phrase query evaluation, in contrast to the ordinary inverted index. Also,
the nextword and phrase indexes should be taken into consideration, as they
both provide rapid phrase query evaluation.

9.4 Further work

In further work we will look at aspects in our bigram index which could be
subject of improvements, and consider experimenting with other approaches
in the hunt for faster phrase searching capabilities. We will outline the as-
pects here.

In our experiments with Baldr in regards to indexing and searching, we
explicitly used 10 and 100 stopwords. An interesting thought could be to
identify the ideal number of stopwords to use. Experimenting with more
stopwords would give an even larger vocabulary, but the expensive posting
lists would neglect since the “costly” index terms would be coped by the
bigrams. This area would be quite obvious to explore in further work.

In this master thesis we outlined the nextword and phrase indexes, and
discussed them in relation to our bigram index. It is very tempting to im-
plement the nextword index, as it modifies the inverted index structure and
introduces the nextword lists, which is a very innovative approach. This
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would also make it a whole lot easier to compare it with our bigram index.
Also the phrase index approach, which is easy to implement in the current
bigram index, would have been interesting to experiment with.

In Section 6.6.4 we have identified some possible future improvements in our
implementation. Taking these into consideration would naturally be part of
a further work, as they are likely to yield further gains.
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A Inverted Index

Here we present our stopword terms extracted from the standard inverted
index.

A.1 Ten most frequent

the
of
and
to
a
in
for
that
is
s

A.2 Hundred most frequent

Notice that the term “gov” occurs twice in the list below. This is due to
that it frequently occurred in two Fields for our GOV2Document object.
Logically, “gov” occurred once in the Field for the documents URL, since
the TREC GOV2 is a crawl of the top-domain .gov.

the
of
and
to
a
in
for
that
is
s
on
or
be
by
with
are
this
as
at
from
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not
an
it
will
information
have
i
may
data
u
other
c
e
state
all
has
new
if
no
gov
d
health
can
national
more
about
b
page
department
also
any
one
gov
http
home
its
office
federal
been
site
but
contact
center
do
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available
act
each
date
www
development
agency
first
search
how
government
general
area
california
during
last
based
html
after
because
business
city
between
board
control
help
application
case
following
day
administration
current
access
community
american
privacy
back

B Code snippets

Outline various code parts from all aspects of the experiment. A mixture of
both Python36 and Java, whereas Java is used in the core parts, and Python

36http://www.python.org

128

http://www.python.org


B Code snippets Page 129

is used to analyze the measurements extracted from the tests.

B.1 Calculate average query terms and terms length

In Listing 5 we calculate the average number of query terms used in all phrase
queries used in our experiment. Notice the tmp.txt file, which contains for
each line the query used.

1 import numpy
2 f = open ( ’tmp . txt ’ )
3 data = f . r e a d l i n e s ( )
4 t = [ x . count ( ’ ’ )+1 for x in data ]
5 t . s o r t ( )
6 l = numpy . array ( t )
7 print ”Average query terms f o r each query : %f ” % numpy . average ( l

)

Listing 5: ”Calculate average query terms in result set from experiment”

In Listing 6 we calculate the average term length in all the query terms used
in the query set.

1 import numpy
2 f = open ( ’ tmp2 . txt ’ )
3 data = f . r e a d l i n e s ( )
4 t = [ l en ( x ) for x in data ]
5 l = numpy . array ( t )
6 print ”Average query term length : %f ” % numpy . average ( l )

Listing 6: ”Calculate the average query term length for all the query terms used in
the query set”

Common to both code snippets above is that they take advantage of scientific
computing library named NumPy37.

B.2 Test OS caching

Here is a very simple code that takes a filename as an argument, opens the
file, read the contents, and then closes it. The code is outlined in Listing 7.

1 import sys
2
3 i f name == ” main ” :
4 i f not l en ( sys . argv ) > 1 :
5 print ”Need input argument ! ”
6 sys . e x i t (0 )
7 name = sys . argv [ 1 ]
8 try :
9 f = open (name , ”r ”)

37http://numpy.scipy.org/
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10 data = f . r e a d l i n e s ( )
11 f . c l o s e ( )
12 except Exception , e :
13 print ”Wil l e x i t . Encountered e r r o r : %s ” % e r r o r
14 f ina l ly :
15 sys . e x i t (0 )

Listing 7: ”Read a file”

C Code

Java and Python code from frequently used components in this experiment.
The Java part is focused on the Baldr search engine and some utility mod-
ules, and the Python part is exclusively used to extract statistical informa-
tion used to interpret the experiment.

C.1 Statistical fetcher

Python code for getStatistics.py

1 #!/ usr / b in /env python
2
3 import sys
4 import os
5 import os . path
6
7 try :
8 from optparse import OptionParser
9 except ImportError , i e :

10 print ”Miss ing ’ OptionParser ’ module .\ nWill e x i t . ”
11 sys . e x i t (0 )
12
13 def r ead InResu l tF i l e ( f i l ename = None ) :
14 i f not f i l ename or not os . path . i s f i l e ( f i l ename ) :
15 return d i c t ( )
16
17 q u e r y r e s u l t s = d i c t ( )
18 f = open ( f i l ename , ’ r ’ )
19 data = f . r e a d l i n e s ( )
20 f . c l o s e ( )
21
22 for l i n e in data :
23 org query , r ewr i t t en query , h i t s , s ea rch t ime = l i n e .

s p l i t ( ” ; ”)
24 h i t s = i n t ( h i t s )
25 search t ime = i n t ( search t ime )
26
27 nr query terms = len ( org query . s p l i t ( ” ”) )
28
29 q u e r y r e s u l t s [ org query ] = d i c t ( q l en=nr query terms ,
30 r ewr i t t en que ry=rewr i t t en query ,
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31 h i t s = h i t s ,
32 search t ime = search t ime
33 )
34
35 return q u e r y r e s u l t s
36
37 def getStopwords ( ) :
38 f = open ( ”stop words . txt ” , ”r ”)
39 data = f . r e a d l i n e s ( )
40 stopwords = [ ]
41 for i in data :
42 i f i . s t a r t s w i t h ( ”#”) :
43 continue
44 stopwords . append ( i . r e p l a c e ( ”\n” , ””) )
45 f . c l o s e ( )
46 return stopwords
47
48 def fetchPlotsBasedOnQuery ( r e s u l t s , length , withStopwords=False )

:
49 ”””
50 Same as ’ de f f e t c h P l o t s ( ) ’ , but w i l l use every s i n g l e

va lue !
51 ”””
52 i f not i s i n s t a n c e ( r e s u l t s , d i c t ) :
53 return False
54 i f not i s i n s t a n c e ( length , i n t ) :
55 raise ValueError ( ” I n v a l i d input value f o r parameter ’

l ength ’ . Got %s ” % s t r ( l ength ) )
56
57 stopwords = getStopwords ( )
58
59 # crea t e s a f r e s h d i c t o f search t imes
60 newDict = {}
61 for q in r e s u l t s . keys ( ) :
62 q l en = i n t ( r e s u l t s [ q ] . get ( ’ q l en ’ ) )
63 i f q l en i s not l ength :
64 continue
65
66 query words = q . s p l i t ( ” ”)
67 gotStopword = False
68 for w in query words :
69 i f w in stopwords :
70 gotStopword = True
71 break
72 i f withStopwords :
73 i f not gotStopword :
74 continue
75 else :
76 i f gotStopword :
77 continue
78
79 search t ime = r e s u l t s [ q ] . get ( ’ s ea rch t ime ’ )
80
81 # we want to cons t ruc t a vec t o r to ho ld
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82 # the search t ime a long wi th the # of t imes i t occurs
83 i f newDict . get ( s earch t ime ) :
84 newDict [ s ea rch t ime ] += 1
85 else :
86 newDict [ s ea rch t ime ] = 1
87 so r t ed key s = newDict . keys ( )
88 so r t ed key s . s o r t ( )
89 for i in s o r t ed key s :
90 print ”%i \ t%i ” % ( i , newDict [ i ] )
91
92 def f e t c h P l o t s ( r e s u l t s , l ength ) :
93 ”””
94 F i l t e r out only q u e r i e s o f s i z e == length .
95 And , c o l l e c t the r e s u l t s in buckets , where the va lue s

d i f f e r only by 50 .
96 This i s to ’ smooth ’ the f requency in the graph .
97
98 note : we know that the response−time i s not more than 15

000ms (15 sek ) ,
99 so we ’ ve t h e r e f o r e used ’ xrange (0 ,15000 ,50) ’ to c r e a t e

’ 0 , 5 0 , 1 0 0 , 1 5 0 , . . , 1 5 0 0 0 ’ .
100 ”””
101 i f not i s i n s t a n c e ( r e s u l t s , d i c t ) :
102 return False
103 i f not i s i n s t a n c e ( length , i n t ) :
104 raise ValueError ( ” I n v a l i d input value f o r parameter ’

l ength ’ . Got %s ” % s t r ( l ength ) )
105
106 # crea t e s a f r e s h d i c t o f search t imes
107 newDict = {}
108 # crea t e s the bucke t s to ho ld the va l u e s !
109 buckets = {}
110 for i in xrange (0 ,15000 ,50) :
111 buckets [ i ] = { ’ va lue ’ : 0 , ’ count ’ : 0}
112
113 for q in r e s u l t s . keys ( ) :
114 q l en = i n t ( r e s u l t s [ q ] . get ( ’ q l en ’ ) )
115 i f q l en i s not l ength :
116 continue
117
118 search t ime = r e s u l t s [ q ] . get ( ’ s ea rch t ime ’ )
119
120 i f newDict . get ( s earch t ime ) :
121 newDict [ s ea rch t ime ] += 1
122 else :
123 newDict [ s ea rch t ime ] = 1
124 so r t ed bucke t s key s = buckets . keys ( )
125 so r t ed bucke t s key s . s o r t ( )
126 for i in newDict . keys ( ) :
127 tmp = 0
128 for x in s o r t ed bucke t s key s :
129 i f i < x :
130 buckets [ x ] [ ’ va lue ’ ] += newDict [ i ]
131 buckets [ x ] [ ’ count ’ ] += 1
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132 tmp = x
133 break
134 # normal ize the numbers in each bucke t . ( d i v i d e by 50 , which

i s the bucke t s i z e )
135 for i in s o r t ed bucke t s key s :
136 i f not buckets [ i ] [ ’ va lue ’ ] :
137 continue
138 print ”%i \ t%i ” % ( i , buckets [ i ] [ ’ va lue ’ ] )
139
140
141 def queriesWithStopwordsOfVariableLength ( r e s u l t s , length ,

r eve r t ed=False ) :
142 # ug ly func t i on name !
143 i f not i s i n s t a n c e ( r e s u l t s , d i c t ) :
144 return False
145 i f not i s i n s t a n c e ( length , i n t ) :
146 raise ValueError ( ” I n v a l i d input value f o r parameter ’

l ength ’ . Got %s ” % s t r ( l ength ) )
147
148 phrase types = d i c t ( )
149 stopwords = getStopwords ( )
150
151 i n t e r e s t i n g q u e r i e s = [ ]
152
153 for q in r e s u l t s . keys ( ) :
154 q l en = i n t ( r e s u l t s [ q ] . get ( ’ q l en ’ ) )
155
156 # want on ly qu e r i e s o f l e n g t h 2
157 i f q l en i s not l ength :
158 continue
159
160 # i f stopword in query , append to i n t e r e s t i n g q u e r i e s [ ]
161 words in query = q . s p l i t ( ” ”)
162
163 i f not r eve r t ed :
164 for term in words in query :
165 i f term in stopwords :
166 i n t e r e s t i n g q u e r i e s . append ( q )
167 break
168 else :
169 stopword query = False
170 for term in words in query :
171 i f term in stopwords :
172 stopword query = True
173 break
174
175 i f not stopword query :
176 i n t e r e s t i n g q u e r i e s . append ( q )
177 return i n t e r e s t i n g q u e r i e s
178
179 def queriesWithoutStopwordsOfVariableLength ( r e s u l t s , l ength ) :
180 ”””
181 This i s j u s t a wrapper f o r ’ de f

queriesWithStopwordsOfVariableLength ( ) ’ , by
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182 j u s t f l i p p i n g the l a s t argument in func t i on c a l l .
183 ”””
184 return queriesWithStopwordsOfVariableLength ( r e s u l t s , length ,

True )
185
186
187 def countDi f ferntPhraseTypes ( r e s u l t s ) :
188 i f not i s i n s t a n c e ( r e s u l t s , d i c t ) :
189 return False
190
191 phrase types = d i c t ( )
192 phrase avg t imes = d i c t ( )
193
194 stopwords = getStopwords ( )
195 print ”=========== Got %i stopwords in memory ! ============\

n” % len ( stopwords )
196
197 for q in r e s u l t s . keys ( ) :
198 q l en = r e s u l t s [ q ] . get ( ’ q l en ’ )
199 i f not q l en in phrase types . keys ( ) :
200 phrase types [ q l en ] = 1
201 else :
202 phrase types [ q l en ] += 1
203
204 search t ime = r e s u l t s [ q ] . get ( ’ s ea rch t ime ’ )
205
206 stopwords in q = len ( [ i for i in q . s p l i t ( ” ”) i f i in

stopwords ] )
207
208 i f not q l en in phrase avg t imes . keys ( ) :
209 phrase avg t imes [ q l en ] = [ search t ime , 1 ,

s topwords in q ]
210 else :
211 s topwords in q = phrase avg t imes [ q l en ] [ 2 ] +

stopwords in q
212 phrase avg t imes [ q l en ] = [ phrase avg t imes [ q l en

] [ 0 ] + search t ime , phrase avg t imes [ q l en ] [ 1 ] + 1 ,
s topwords in q ]

213
214 i f not q l en in phrase avg t imes . keys ( ) :
215 phrase avg t imes [ q l en ] = [ search t ime , 1 ,

s topwords in q ]
216 else :
217 s topwords in q = phrase avg t imes [ q l en ] [ 2 ] +

stopwords in q
218 phrase avg t imes [ q l en ] = [ phrase avg t imes [ q l en

] [ 0 ] + search t ime , phrase avg t imes [ q l en ] [ 1 ] + 1 ,
s topwords in q ]

219
220
221 print ”Summary o f phrase l eng th s and occurences in query

r e s u l t f i l e . . ”
222 t o t a l p h r a s e s = 0
223 for i in phrase types . keys ( ) :
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224 tmp avg time = phrase avg t imes [ i ] [ 0 ]
225 count = f l o a t ( phrase avg t imes [ i ] [ 1 ] )
226
227 avg time = f l o a t ( tmp avg time / count )
228 avg stopwords in q = f l o a t ( phrase avg t imes [ i ] [ 2 ] /

count )
229 t o t a l p h r a s e s += phrase types [ i ]
230
231 print ”phrase l ength : %i Occurences : %s

Average search t ime : %s
Average nr o f s topwords in query : %f ” % \

232 ( i , s t r ( phrase types [ i ] ) . r j u s t (4 ) , s t r ( avg time ) .
r j u s t (14) , avg stopwords in q )

233 print ”Total nr o f phrase q u e r i e s with h i t s : %i ” %
t o t a l p h r a s e s

234
235 return ( phrase types , phrase avg t imes )
236
237
238 i f name == ” main ” :
239 usage = ”usage : %prog [ opt ions ] ”
240
241 par s e r = OptionParser ( usage=usage )
242 par s e r . add opt ion ( ”−s ” , ”−− s t a t i s t i c s ” , a c t i on=” s t o r e t r u e ” ,

des t=” s t a t i s t i c s ” , d e f a u l t=False , he lp=”Wil l output the
s t a t i s t i c s o f the input r e s u l t

243 par s e r . add opt ion ( ”−o ” , ”−−fetchPlotBasedOnQuery ” , a c t i on=”
s t o r e t r u e ” , des t=”p lo t s based on query ” , d e f a u l t=False ,
he lp=”Wil l print out p l o t va lues

244 to be used in Gnuplot graphs . NOTE that you may
s p e c i f y with − l or −r to have the p l o t s based on
q u e r i e s with or without stopwords . Defau l t

245 par s e r . add opt ion ( ”−p” , ”−−f e t c h P l o t s ” , a c t i on=” s t o r e t r u e ” ,
des t=”p l o t s ” , d e f a u l t=False , he lp=”Wil l p r i n t out p l o t

va lue s to be used in Gnuplot gra
246 par s e r . add opt ion ( ”− l ” , ”−−l i s tO f s topwords ” , ac t i on=”

s t o r e t r u e ” , des t=” l i s t o f s t o p w o r d s ” , d e f a u l t=False , \
247 help=”Wil l output a l i s t o f phrase q u e r i e s which i s

o f v a r i a b l e l ength ( d e f a u l t 2) and conta in s
stopwords in i t . ”)

248 par s e r . add opt ion ( ”− i ” , ”−−l ength ” , a c t i on=”s t o r e ” , des t=”
phrase l ength ” , d e f a u l t =2, he lp=”Length o f q u e r i e s which
i s to be searched for . Only use fu

249 when used toge the r with − l . ”)
250 par s e r . add opt ion ( ”−r ” , ”−−l i stOfNoneStopwords ” , a c t i on=”

s t o r e t r u e ” , des t=” l i s t o f n o n e s t o p w o r d s ” , d e f a u l t=False , \
251 help=”Wil l output a l i s t o f phrase q u e r i e s which i s

o f v a r i a b l e l enght ( d e f a u l t 2) and does NOT
conta in stopwords in i t . ”)

252 par s e r . add opt ion ( ”−f ” , ”−−f i l ename ” , ac t i on=”s t o r e ” , type=”
s t r i n g ” , des t=”f i l ename ” , he lp=”This i s requ i red , s i n c e
t h i s i s the r e s u l t f i l e . ”)

253 ( opt ions , args ) = par s e r . p a r s e a r g s ( )
254
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255 i f l en ( args ) < 2 :
256 i f not opt ions . f i l ename :
257 par s e r . e r r o r ( ”Need the r e s u l t f i l e to be ab le to do

s t u f f . . ”)
258 sys . e x i t (0 )
259
260 parsedResu l t s = read InResu l tF i l e ( opt ions . f i l ename )
261 i f opt ions . s t a t i s t i c s :
262 countDi f ferntPhraseTypes ( par sedResu l t s )
263
264 i f opt ions . p l o t s :
265 i f not opt ions . phra s e l ength or not i n t ( opt ions .

phra se l ength ) :
266 l ength = 2
267 e l s e :
268 l ength = i n t ( opt ions . phra se l ength )
269 f e t c h P l o t s ( parsedResul ts , l ength )
270
271 i f opt ions . p l o t s based on query :
272 i f not opt ions . phra s e l ength or not i n t ( opt ions .

phra se l ength ) :
273 l ength = 2
274 e l s e :
275 l ength = i n t ( opt ions . phra se l ength )
276
277 i f opt ions . l i s t o f s t o p w o r d s :
278 fetchPlotsBasedOnQuery ( parsedResults , length ,

True )
279 e l s e :
280 fetchPlotsBasedOnQuery ( parsedResults , length ,

Fa l se )
281 # w i l l e x i t here , so the s e c t i o n below won ’ t get

executed due to
282 # ’ opt ions . l i s t o f s t o p w o r d s ’ and ’ opt ions .

l i s t o f n o n e s t o p w o r d s ’ .
283 sys . e x i t (0 )
284
285 i f opt ions . l i s t o f s t o p w o r d s or opt ions .

l i s t o f n o n e s t o p w o r d s :
286 i f not opt ions . phra s e l ength or not i n t ( opt ions .

phra se l ength ) :
287 l ength = 2
288 e l s e :
289 l ength = i n t ( opt ions . phra se l ength )
290
291 i f opt ions . l i s t o f s t o p w o r d s :
292 q u e r i e s = queriesWithStopwordsOfVariableLength (

parsedResul ts , l ength )
293 p r in t ”Quer ies o f l ength %i with stopwords in i t

: %i ” % ( length , l en ( q u e r i e s ) )
294 e l s e :
295 q u e r i e s =

queriesWithoutStopwordsOfVariableLength (
parsedResul ts , l ength )
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296 p r in t ”Quer ies o f l ength %i without stopwords in
i t : %i ” % ( length , l en ( q u e r i e s ) )

297 x = 1
298 f o r i in q u e r i e s :
299 p r in t ’ : ’ . j o i n ( [ s t r ( x ) , i ] )
300 x += 1

Listing 8: ”Parse measurements from query tests and perform necessary
calculations. Outputs statistics in a comprehensive manner. Also provides output
of plot data to be used in GNUPlot.”
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