@ NTNU

Norwegian University of
Science and Technology

Phrase searching in text indexes

Asbjgrn Alexander Fellinghaug

Master of Science in Informatics
Submission date: June 2008

Supervisor: Svein Erik Bratsberg, IDI
Co-supervisor: @ystein Torbjgrnsen, FAST

Norwegian University of Science and Technology
Department of Computer and Information Science

Asbjorn Alexander Fellinghaug
fellingh@stud.ntnu.no
asbjorn@fellinghaug.com

Phrase searching in text
indexes

Abstract

This master thesis focus at the challenges within phrase searching in large
text indexes, and to assess alternative approaches to cope with such indexes.

This goal was achieved by performing an experiment, based on the theory of
using bigrams consisting of stopwords as additional index terms. Realizing
the characteristics within inverted index structures, we utilized stopwords
as indicators for severe long posting lists. The characteristics of stopwords
proved valuable, and they were collected based on a already established in-
dex for a subset of the TREC GOV2 collection.

In alternative approaches we outlined two “state of the art” index struc-
tures, specifically designed to cope with phrase searching challenges. The
first structure - nextword index - followed a modification of the inverted
index structure. The second structure - phrase index - utilized the inverted
structure in using complete phrases as index terms.

Our bigram index focused on the same manipulation of the inverted index
structure as the phrase index, using bigrams of words to drastically cut
posting lists lengths. This was one of our main goals, as we identified stop-
words posting list lengths to be one of the primary challenges with phrase
searching in inverted index structures. Using stopwords to create and select
bigrams proved successful to enhance phrase searching, as response times
substantially improved.

We conclude that our bigram index provides a significant performance in-
crease in terms of query evaluation time, and outperforms the standard
inverted index within phrase searching.

Preface

This is a master thesis for the Master of Science program at the Department
of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU).

I would like to thank my supervisors, Svein Erik Bratsberg and Oystein
Torbjgrnsen for valuable feedback, suggestions and ideas, as well as many
entertaining talks. They gave me inspiration and assistance throughout this
work. Also, I would like to thank fellow researchers and students at IDI for
support. Also, a big thanks to my girlfriend for support during the numer-
ous long working days. Also, the espresso machine next to my working hall
for providing me with precious caffeine on those long days.

A big thanks to my parents for encouraging me to reach for a master degree,
as well as the rest of my family.

Contents

Preface

1 Introduction

2 Background and problem statement

2.3 Models

2.1 Problem background
2.2 Problem definition
2.3.1 Boolean model . . .
2.3.2 Vector space model .
2.3.3 Other models
2.4 Ranking
2.5 Zipt’'slaw
2.6 Heap’slaw.
2.7 Motivation

3 Concepts and definitions

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

N-gram
Queries
3.2.1 Phrase query
3.2.2 Term query
3.2.3 Boolean query . . .
3.2.4 Combined queries .
Recall and precision
Inverted index
Signature File
Hybrid solutions
Document analysis
3.71 Stemming
3.7.2 Stopword elimination
3.7.3 Index term selection
Apache Lucene
TREC GOV2 Collection . .

4 Inverted Index

4.1
4.2
4.3
4.4
4.5

Resource usage
Inverted index construction
Scalability
Compression
Author comment

11

13
13
14
14
14
15
16
16
18
19
20

21
21
22
22
23
23
24
25
25
26
27
28
29
30
31
31
32

5

6

7

Related work

5.1 Nextwordindex
5.1.1 Index introduction
5.1.2 Index performance
5.1.3 Author comment

5.2 Phraseindex
5.2.1 Index introduction
5.2.2 Index performance
5.2.3 Author comment

5.3 Combined solutions,
5.3.1 Jombined inverted and nextword indexes
5.3.2 Combined inverted and phrase indexes
5.3.3 Three-way index combination
5.3.4 Author comment

Experiment

6.1 What shall be done?

6.2 Thegoal

6.3 Search framework
6.3.1 Index structure,
6.3.2 Query evaluation
6.3.3 Performance,

6.4 Bigramindex o o
6.4.1 TImplementation,
6.4.2 Performance,

6.5 Document collection
6.5.1 TRECGOV2
6.5.2 Parsing Lo

6.6 Implementation
6.6.1 Overall design principles
6.6.2 In the beginning
6.6.3 Architectureof Baldr

6.6.4 Possible future improvements of implementation

Results

7.1 Index construction
7.1.1 Constructing the index
7.1.2 Sourceoferror,

7.2 Querytests
7.2.1 Querying the indexes
722 Queryresults
7.2.3 Sources of errors

7.3 Evaluation.

731 Indexing

52
52
52
95
95
56
56
o7
o8
o8
99
60
60
62

7.3.2 Searching 112

7.4 Summary of findings oL 115

8 Discussion 117
81 Proposals 117
8.2 Common characteristics 117
8.2.1 Nextword vs Bigram 118

8.2.2 Phrasevs Bigram. 119

83 Performance. 119

9 Conclusion 121
9.1 Current challenges 121
9.2 Phrase searching improvements 121
9.3 Final conclusion, 122
94 Furtherwork 122

A Inverted Index 126
A.1 Ten most frequent 126
A.2 Hundred most frequent 126

B Code snippets 128
B.1 Calculate average query terms and terms length 129
B.2 Test OScaching 129

C Code 130
C.1 Statistical fetcher oo L. 130

List of Figures

1 [lustrates a typical Heap’s law plot diagram from Wikipedia [15]. 19
A hierarchy showing a combined query, where each node has

an implicit boolean operator such as AND, OR, NOT 25
3 Illustration of a typical document analysis process 29
4 Standard inverted index structure where the two core ele-

ments and their relation is in focus. 34

) Illustrates query term evaluation with the fetching order of
posting lists and the merge process into a temporal structure. 37
6 A figure encapsulating the inverted index as a whole, and
how the document-based and term-based partitioning scheme
works on the inverted index structure. The idea of this figure
is borrowed from [I7]. L. 43
7 A figure illustration the nextword index structure. 54
8 A figure illustration the phrase index structure. 56

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

A figure illustration the combination of the inverted index
and the nextword index structure

A figure illustration the three-way combination of the partial

phrase index and the combined nextword- and inverted index.

An illustration of how Lucene is integrated into applications,

since it is not a single ready-to-use search application.

The Apache Lucene index structure, illustrating the funda-

mental components and their relationships. A document has

a sequence of fields, a field has a sequence tokens.
Illustrates a text documents presentation in the Apache Lucene
index structure, highly based on the structure outlined in Fig-

ure 12. . . . oL e e e e
A illustration of the vocabulary structure in the Apache Lucene
index. The vocabulary is in a way also indexed. Each num-

ber in the figure is just representing an entry which contains

a unique term in the collection.
Another illustration of the vocabulary structure in the Apache

Lucene index. The vocabulary is in a way also indexed. Each

512" entry is here stored in memory.
Shows how the SimpleAnalyzer uses the stream of text (inpu-

tReader) and a chain of objects to return valid Tokens based

policy of the Analyzer.
The process of constructing a bigram index, from the point

of documents to the writing of the inverted index.
A slightly stripped GOV2 document
The process of constructing a bigram index, from the point

of documents to the writing of the inverted index.
Illustrates the main modules in the Baldr search engine from

a very abstract view. Made only for perceptual purposes . . .
Illustrating the two working threads in our Indexer, and how

they are connected
Overall architecture illustration of the Baldr search engine

created in this experiment.,
Illustration of the architecture of our bufferpool, and how

operations is performed on them.
A graph illustrating, for each index, the 100 most frequent

terms and their occurrences. Notice the gap between the bi-

gram curves and the unigram curves at the leftmost side of

the x-axis.
A graph illustrating, for each index, the increase in response

time when phrase queries become longer. Is based on the

results from Table 16

99

61

67

103

26 A graph illustrating the histogram for each index and the
performance of its query response time. The x-axis represents
the time, while the y-axis represents the amount of queries
performing in that time range. Focus on phrase queries of 3
TEermS. e 113

27 A graph illustrating the histogram for each index and the
performance of its query response time. The x-axis represents
the time, while the y-axis represents the amount of queries
performing in that time range. Focus on phrase queries of 4
terms. e 114

28 A graph illustrating the histogram for each index and the
performance of its query response time. The x-axis represents
the time, which the y-axis represents the amount of queries
performing in that time range. Focus on phrase queries of 5
terms. e e e e e 115

List of Tables

1 A very simple example of Zipf’s law which captures the fre-
quency distribution among some simple words. We assume 6
equals T here. 18

2 A very simple posting list. ¢ is the term id, j is the document
id. List items is sorted incrementally based on the document

identifier 7.o 33
3 A table of documents and their content. This type of table is
in some circumstances referred to as a forward index 35

4 A table of terms and their occurrences. The rightmost column
can be looked at as an inversion of Table 3, and the hole table
is a very simple inverted index structure.. 35

A simple illustration of an item in the vocabulary. 38

Example coding of a sequence of integers with unary, gamma
and delta coding. Note that the “.” is only for illustrative
PUTPOSES. . v v v v v e e e e e e e e e 46

7 A table illustration a small piece of entries in a given vocab-
ulary. Note that the term frequency is not written here. . . . 48

8 A table with the summarized results from the experiments
performed in [I2]. The document collection used was TREC
WT10g, and it contained 1.67 million documents and is 10.27
GB in size. The queries used in order to extract response
times was from the Excite query log, reflecting real life queries. 62

10

11

12

13

14

15

16

17

A table in [12], with the average query times (in seconds) of ~

66 000 queries. The three-way combined approach described

in Section 5.3.3. Used the 10 000 most common phrases,
based on the Excite query log, and a nextword index based

on 0 to 192 stopwords. L. 62
Shows the hardware specification of our test computer. Note

that we set initial java heap size to 256MB, and maximum to
T68MB. 66
Table presenting some test results for fetching and parse TREC
GOV2 files, and identify GOV2 documents. Tested with vari-

ous buffer sizes to see the impact on the overall dps (document-
pr-second rate). 88
Table presenting some statistics regarding the index construc-

tion of three different runs. The unigram index contains single
stopwords in the vocabulary, while the bigram indexes do not. 102
Table containing results from our query test performed on the
unigram index. Lo 106
Table containing results from our query test performed on the
bigram10 index. We use the top 10 stopwords derived from

our unigram index. Lo 107
Table containing results from our query test performed on the
bigram100 index. We use the top 100 stopwords derived from

our unigram index. 108
Table containing results derived from Table 13, Table 14 and
Table 15. 109

Table illustrating the difference as well as the performance
gains in case of a typical bad phrase query containing many
stopwords.o 110

1 Introduction Page 11

1 Introduction

This project intends to evaluate different aspects of performing phrase search-
ing in text indexes. That is:

e different index structures
e characteristics for indexing with respect for phrases
e characteristics for searching with respect for phrases

Also, this project will evaluate different ways of phrase searching, and briefly
look at new approaches within this subject. Many research papers cover in-
dex structures, and their characteristics for efficient searching and indexing.
This is mainly because of the more widespread understanding of the impor-
tance of search, and that it is absolutely necessary for businesses to embrace
this technology. It is a highly hot subject, and therefore it is devoted a lot
of research.

Search technology has proven it’s importance in the modern
world..

The future is hard to predict, but one thing is certain - there will always be
a need to search, both in business and personal life.

An increasing growth of information created every day needs to be search-
able. That is because it may be of value by other people, but they do not
know it since they are not aware of it. This poses some tough challenges for
the search engines which is to index and provide a rapid search service for
the people and businesses. We will explore some of these challenges during
this master thesis - some in more depth than others.

This master thesis is organized into 9 chapters. Chapter 2 gives an intro-
duction to the problem which this report will cover, in addition to limit the
problem domain. Chapter 3 provides a whole set of concepts and definitions
which is of great importance within the problem domain of this report. In
Chapter 4 we will dive into the industrial search engine data structure called
inverted index structure. We will explore the most known aspects and look
at how this structure is used in relation to phrase query evaluation. We will
also explore some state of the art material within phrase query evaluation
in Chapter 5. Next is our experiment in Chapter 6 whereas we implemented
a specialized inverted index structure to facilitate phrase query evaluation,
and we shall thoroughly discuss the results. In Chapter 7 we will present
and explore the results retrieved from the experiment. In Chapter 8 we
discuss our bigram index vs the “state of the art” material presented in

11

1 Introduction Page 12

Chapter 5. Finally, in Chapter 9, we will present our conclusion for the
problem statement which this report is concerned, along with the results
from the experiment carried out.

12

2 Background and problem statement Page 13

2 Background and problem statement

This master thesis is concerned with challenges within the search technology
subject, with a extensive focus on phrase searching in large text indexes. We
shall explore our initial problem statement along with an descriptive back-
ground for exploring this problem.

The background for this report is the increasing usage of phrases when per-
forming searching, and the rapid growth of information which needs to be
easily available for others. Now, performing phrase searches are expensive,
as we will explore during this master thesis, so we need to look at different
solutions to meet this problem.

We will explore the commonly used and acknowledged search engine database,
namely the inverted index, in Section 3.4 and Chapter 4. Along with the
inverted index, we shall also explore some other more special purpose struc-
tures in Chapter 5, which empathize the challenges introduced by phrase

querying.

We will here first go through the problem statement and background, and
then have a look at the problem definition. At the end we will briefly go
through how we will take into consideration the ranking performed, and also
the motivation behind this master thesis.

2.1 Problem background

The problem background arises from the realization that the growth of infor-
mation is exponential nowadays, and all that information should be search-
able to be of any value for others. Non-searchable information is only of
value by the people knowing exactly where to find it. So, search engines in-
dex a lot of information that is made available, and the users need to query
the search engines to find it. Now, if the indexed information is of middle
size, then users could most likely retrieve only the interesting documents by
a single term query such as “computer”. However, if the indexed information
is huge (multiple gigabytes of text), the users would meet some difficulties.
To comply with this obstacle the user needs to express a better query, so
that non-interesting documents would be omitted. Such queries could be
phrase queries, which has an growing user mass, according to [12] in their
section of query properties. Phrase queries is briefly covered in chapter 3.2.1.
These phrase queries have the benefit of better discrimination of documents
than regular term queries, but as will be shown, comes with an additional
cost.

13

2 Background and problem statement Page 14

2.2 Problem definition

The problem definition is mainly to evaluate a set of state-of-the-art tech-
niques for searching and building efficient inverted index files which promotes
phrase searching as well as standard term searching. These index files are
efficient in terms of disk space, processing needs, and how well they actually
fulfills the information need for the end-user. These are all aspects that we
will later investigate into greater extent.

If we now dive a little deeper into this problem definition, there may be some
clarification needed. An information retrieval system (IR) has to retrieve its
information units fast - a delay for multiple seconds would be unacceptable
disregardless of which query there is (in some scenarios also milliseconds is
unacceptable). And, of equal importance is to retrieve relevant information
in reponse to the query. If any of these aspects fails, the IR system would
have a serious problem.

So, this problem definition is to compare the different ways of performing
phrase searching, with respect to the aspects of response time, disk space
consumption and other efficiency factors. We will more concrete look at
specific approach, where we want to create a index based on pair of words
as index terms. We believe such an approach would yield efficiency gains,
and this is the foundation for our experiment introduced in Chapter 6. Based
on the results provided by our experiment, and introduced in Chapter 7, we
will hopefully be able to conclude whether or not this approach will yield
any gains in the context of search technology and phrase query evaluation.

2.3 Models

All TR-systems rely on a background model which supports the intention
of the IR-system and thus provides structures and techniques to support
them. Common characteristics for all of these models is that index terms
is identified words of semantic value from the document collection. Also of
importance is that the models consider various terms of different importance,
and the interpretation of words somewhat differ. Next we will introduce two
very much discussed models in the search community.

2.3.1 Boolean model

The boolean model introduced in [22] is a information retrieval model which
is based on boolean algebra. Its concept somewhat lies in the name of the
model; it is based on binary weights of documents. The boolean model re-
trieves documents based on a simple match/no-match presumption. A basic
search process in an IR-system built on the boolean model yields a boolean
expression where query terms must be present to represent a hit. If none

14

2 Background and problem statement Page 15

hits are found, then nothing would be retrieved. If a (strict) match is found,
then we have a hit and that particular document would be retrieved.

Some decades ago this model was highly popular in the search communi-
ties, but the drawbacks of the model was too substantial for it to survive
in the field. The major drawback is its foundation; the binary selection of
documents based on strict queries. By strict we mean queries where query
terms must be present to represent a hit. This basics of the model does
not yield a good retrieval performance, since documents which semantically
would match based on the context would be discarded based on the binary
search decision. Nowadays, when people talk about the binary model, most
ones relate it with databases and strict data retrieval. And, this has its root
in another drawback; the model is too data oriented, while the semantics
are left out.

The boolean model works very well for databases where relevance and rank-
ing of hits is not a necessity. One example could be searching in a repos-
itory for a document with a tagged code, identifier or something like that.
For example search for a document containing the unique identifier code
“ISBN 0-201-39829-X". There has been some attempt to enhance the boolean
model, such as the Extended Boolean Model described in [22]. This enhanced
boolean model implements one of the predecessors major drawbacks; the
functionality of partial matching and term weighting. Despite this drawback
elimination, the extended boolean model has not achieved any widespread
usage.

2.3.2 Vector space model

The Vector space model is a model based on the realization that the Boolean
model in section 2.3.1 is not sufficient in retrieval of documents based on a
loose coupling between words and their semantics. The coupling is somewhat
non-existing. The VSM model was introduced in 1975 by the information
retrieval scientist Gerard Salton, and is thus not to be considered as a state-
of-the-art model

The vector-space model introduces a new approach which allow partial
matching between documents, instead of the regular boolean matching model
described above in section 2.3.1 (either a match or no match; data retrieval).
The way this is accomplished is that the VSM (Vector-Space Model) sees a
document as a vector which contains one entry per unique term in the hole
document collection (each dimension corresponds to a separate unique term).
A query is also to be looked at as a document (hence a vector). Now we
have our document collection which is a huge set of vectors representing one
document each, and then we have a query which is also to be looked at as

15

2 Background and problem statement Page 16

a document. A highly common approach to calculate the relevance between
a query and a document is to calculate the angle between the two vectors
using the dot-product!. A formula for this calculation is shown in equation 1
in section 2.4. This formula is part of the ranking scheme frequently used
in VSM based IR-systems which will be introduced below.

Theoretically the VSM has a drawback in that the index terms are assumed
to be independent of each other, which may imply lack of semantically encap-
sulation by the model. If we think about it, then this drawback is the reason
for many of the scalability issues the inverted index suffers from, which will
be more clear in Chapter 4. In the VSM each index term is independent,
and thus is indexed as a single searchable unit, means that we end up with
a waste amount of data. Given that the VSM is enable to “perfectly” cope
with this drawback, and that the model would recognize the dependencies
between index terms, then phrase searching would be substantial better in
terms of processing needs, disk space consumption and its ability to fulfill
the users information needs.

2.3.3 Other models

Other models could be such as the Probabilistic model described in [22]
and [I4]. This model tries to cope with the information retrieval problems
with an probabilistic framework. Another model could be the Fuzzy Set
Model described in [22]. This model considers each query term defines a
fuzzy set, and that each document has a “degree of membership” towards
this fuzzy set. Often is a thesauri used in such IR-models as the fuzzy
set model, since we in a thesauri can lookup broader, narrower and direct
relationships between terms, and thus achieve the possibility to retrieve doc-
uments somewhat semantically matching the user query.

There is many more models that could be of value, but we will not consider
them in this report.

2.4 Ranking

In the process of evaluating different approaches for searching, the question
of the ranking scheme will occur. Now, this report will discuss and explore
the subject of ranking schemes, since it is quite large and covers much ma-
terial outside the scope of this report. So to clarify one assumption made in
this report: we will always assume that the best possible ranking scheme is
used, and will therefore achieve optimal ranking.

"http://en.wikipedia.org/wiki/Dot_product

16

http://en.wikipedia.org/wiki/Dot_product

2 Background and problem statement Page 17

However, since the subject of ranking is quite important within search tech-
nology, albeit a little out of the scope of this report, we will only briefly go
through one very basic scheme. This ranking scheme lies within the widely
used and acknowledge VSM? thoroughly discussed in [14] and [22], and
somewhat introduced above in section 2.3.2. The reader is recommended to
read the above section before proceeding here.

In VSM the ranking between a document and query is measured as the
angle between the vectors. This measurement is very often calculated with
the dot-product. The formula for the dot-product is outlined in equation 1.
In this equation the d; represents the document vector, and ¢ the query
vector.

= dj .
4;1ld]

The dimensions in a document vector (each entry that is) contains the weight
which that particular term has. This weight could be calculated in a number
of ways. One way is to use the number of occurrences as the weight, so the
more frequent the term is, the higher the weight. An alternative calculation
which is widely used as a measurement for term weight is the tf-idf3 cov-
ered in [14] [22] and introduced in [25]. Tf-idf stands for “term frequency
- inverse document frequency” and is a statistical measurement which has
proven its strength in calculating the importance of a term to a document
in a document collection.

sim(d;, q) (1)

The term frequency is believed to represent that the more frequent a term
occurs inside a document, the more relevant it is to the context of that doc-
ument. The inverse document frequency is believed to represent a measure-
ment for whether a term which occurs in many documents in the collection,
is useful for distinguishing between a relevant and non-relevant one. So, this
term weighting measurement needs to balance these two effects; ¢f and idf.
In Equation 2 we present a possible approach for calculating the weight of
an document entry (term). This calculation approach was introduced by G.
Salton in [25].

wij = fi;- logﬁ (2)
n;
Note that f; ; represents the term frequency within document j, N the total
number of documents in the collection, n; number of documents where the
entry (term) occurs, and at last the i represent the term. So, equation 2
tells us that the term weight of term ¢ in document j is derived from the

Zhttp://en.wikipedia.org/wiki/Vector_space_model
%http://en.wikipedia.org/wiki/Tf-idf

17

http://en.wikipedia.org/wiki/Vector_space_model
http://en.wikipedia.org/wiki/Tf-idf

2 Background and problem statement Page 18

term frequency of term 7 in document j, times the logarithm of the number
of documents in the collection divided by the number of documents where
the term ¢ occurs.

Equation 2 is only one possible approach for the term weight calculation.
In [I7] Zobel and Moffat briefly consider other calculation approaches.

We will assume that the best possible ranking scheme is in use in this report.
Note that in the Apache Lucene library (described in section 3.8) which we
will be using in our experiment later on, the ranking scheme in use is tf-
idf*. The author will encourage the reader to have a look at other ranking
approaches such as Google’s PageRank® thoroughly described in [18].

2.5 Zipf’s law

Zipf’s law is a model as described in [28] and [22] which tries to capture
the frequency distribution among the terms within the document collection.
In [2§] it is stated that the frequency of the i-th most frequent word is given
by the equation 3 times the frequency of the most frequent word in the
document collection.

5 3)

If we here assume that the 6 value is equal to 1 (for large collections 6 > 1)
we can state that the frequency of a word is inversely proportional to its
rank, where rank is defined by the equation 3.

Position | Word ‘ Frequency| Rank
1 the 6 1

2 of 4 0.5

3 to 2 0.33
4 and 1 0.25

Table 1: A very simple example of Zipf’s law which captures the frequency distri-
bution among some simple words. We assume 6 equals 1 here.

In Table 1 is a very simple example where we have the 4 most frequent
words sorted by descending frequency. In the column Rank we have calcu-

1
lated their — where ¢ is that particular words position in the sorted list of
i

“http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/search/
Similarity.html
°http://en.wikipedia.org/wiki/PageRank

18

http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/search/Similarity.html
http://en.wikipedia.org/wiki/PageRank

2 Background and problem statement Page 19

words.

2.6 Heap’s law

Heap’s law is in the field of linguistics used to describe the growth of the
vocabulary element in an inverted index structure (see section 3.4). Heap’s
law is thoroughly described in [I1], and somewhat briefly in [22].

The main concept in Heaps law is that the more information that is gathered,
the growth of new term discovery would decrease. In the beginning of an
index process for a given IR-system the growth of term discovery would
be substantial. However, the more text that comes in, the more of the
terms would already have been discovered. Figure 1 clearly illustrates this
observation in the Heaps law. The x-axis represents the text size, and the
y-axis represents the number of distinct index terms in the vocabulary.

10000

000

4] 200000 400000 800000 800000 1e+08

Figure 1: Illustrates a typical Heap’s law plot diagram from Wikipedia [15].

This growth description provided by Heap’s law can also be mathematically
formulated, as shown in Equation 4. As can be noted there are two param-
eters, K and (. Usable values of these two parameters would highly depend
on the linguistic characteristics of the document collection. In [22] and the
article describing Heap’s law in [I5], recommended values for K is between
10 and 100, for 8 between 0.4 and 0.6.

Vr(n) = KnP (4)

The implication of Equation 4 enables us to model the growth of the vo-
cabulary, and thus the construction of the search engine can adapt to this

19

2 Background and problem statement Page 20

behavior.

2.7 Motivation

The motivation in this master thesis is (the desire) to enhance searching in
general, but with specifically focus on phrase searching. Everyone has, one
time or another, experienced the results given to them by a search engine
that not completely fulfill their needs. There could be several reasons for
this:

e the search engine finds no relevant documents for the user
e the results are presented in a non-user friendly manner
e the query gives too many results

The latter one is the most common one since the query does not discriminate
enough to disregard unwanted documents, and thus poses a huge challenge
for the search engines.

One approach that has proven its strength is phrase searching where you
specify a certain phrase within quotation marks (Example: “to be or not to
be”). Now, a certain phrase is much more discriminating than a set of terms
disregarding the order. That is in the nature of a phrase query, it is a set of
terms in an given sequence where the order matters.

One requirement with phrases is that the user which constructs the phrase
has to have some knowledge regarding the information the user seeks. That
is, the user need to know that a specific phrase occurs, or has a high prob-
ability for occurring in documents which encapsulates the wanted content.
In a very specific phrase such as “Search engines need to evaluate queries
extremely fast”, the user has some knowledge about the wanted documents.
In a more vague phrase query such as “search engines” the user has much
less knowledge, but is still able to construct a phrase query based on the
information needed. It is all about how the user expresses its information
need with regards to the background knowledge of the user. The more dis-
criminating the expressed information need (query) is, the better results in
terms of relevance and precision is achieved.

20

3 Concepts and definitions Page 21

3 Concepts and definitions

This chapter will clarify some concepts that we will use throughout this re-
port, and that we think would be of great importance for you. Also, we will
look at some important definitions.

We will not go deeply through these concepts and definitions since most
of them will be more deeply explored later on. For an even more in-depth
information regarding these concepts and definitions, we would recommend
you to have a look at our bibliographic list at the end of this report.

3.1 N-gram

An n-gram is by definition a subsequence of n-items from a sequence. The
items can here be letters, words, numbers, etc. By this, we can say that the
sub-sequence “or not” from the sequence “to be or not to be” is a n-gram.
Different kinds of n-grams have received its own names:

e unigram A unigram is when the n-gram size is 1. That is, there is
only one item in the sub-sequence.

e bigram A bigram is when the n-gram size is 2. Following the previous
pattern, there is only two items in the sub-sequence.

e trigram A trigram is when the n-gram size is 3. As previous, there is
now only three items in the sub-sequence.

e n-grams A n-gram is when the n-gram size is 4 or above. That is,
there is 4 or more items in the sub-sequence.

In [2], there is discussed the early usage of n-grams in regards to term-
based search techniques. The usage of n-grams was introduced to provide
resilience to noise such as misspelling. The idea was to decompose terms
into word fragments of size n, then perform matching based on these frag-
ments to determine a match if it exists. In this report, we will not deal with
n-grams of letters (characters) such as these fragments, but instead concern
ourself with n-grams based on words. N-grams based on words is a com-
bination of words which are near each other in a sentence, or semantically
related such as “computer science”, or “in the”. These two bigrams (size
equals two) is a combination of two words, and the first one represents a
very semantic meaning in contrast to the two terms “computer” and “sci-
ence” by themselves. The bigram “in the” does not bring much semantic,
and is purely constructed based on their ordering in the sentence. We will
explore n-grams features (with a focus on bigrams) more in our experiments
in Chapter 6.

21

3 Concepts and definitions Page 22

3.2 Queries

A query is a representation of an information need by a user. The user want
to find some kind of information, and then expresses this quest in a partic-
ular representation, which is by definition a query. So, queries are basically
textual representations of information needs.

There are however different kinds of representations for different kinds of
information needs. Some needs are expressed by single terms such as: car
1971 pontiac lemans. In this query there is four terms which is an expression
for the information need. The user wants to find documents which contains
information about 1971 models Pontiac LeMans cars, and not cars in gen-
eral or the “American lemans sport car race series”. This query would most
likely not yield any good efficiency in terms of relevant documents. Note
that what is here referred to as a term query is also referred to as a keyword
query (multiple terms) in other literatures, whereas a single term query de-
notes a query of one term.

Another representation could be: “Pontiac LeMans 1971”. In this query
we specifically search for documents with the terms “Pontiac”, “LeMans”
and “1971” in that particular order. Other representations can be a user’s
desire for finding pictures of the car, or finding a video sequence of the
car in action. These are more advanced ones, and is part of Multimedia
Information Retrieval® which will not be discussed in this report. We will
have a closer look at two kind of queries here, along with the familiar Boolean
query. Note that each query type here imply the usage of ranking, in that
the final result list would be ordered by the score each hit is assigned. A
boolean query often signalize a strict usage of boolean operators to locate
documents, however there is assumed that boolean queries also take ranking
into consideration.

3.2.1 Phrase query

A phrase query is basically a simple term query expressed as a phrase,
and a phrase often carries more semantic encapsulation than a term query.
For example, say that you want to find the famous quote from William
Shakespear’s, Hamlet: “to be or not to be”. Here is two examples:

1. boolean query: to be or not to be.
This query will tell the search engine to look for all documents which
has these terms in it, regardless of where they occur next to each other
in the document. Some search engines may also find documents where
not all terms occur. If no boolean operator such as AND or OR is given,

SMultimedia IR is a fairly large subject, handles typically audio, images and video.

22

3 Concepts and definitions Page 23

then the search engine has a predefined operator set. This default
operator differs somewhat depending on the search engine.

Another thing to notice here is that the terms are all typical stop-
words. For these reasons, the hit list of this particular query would be
huge. A test at http://www.google.com gives us 592 000 000 pages,
and a test at http://www.yahoo.com gives us 7 300 000 000 pages.
The waste difference here is because of different approaches to handle
such queries. We think Google use implicit AND boolean operator be-
tween each query term, thus shrinking the result set. Also, each search
engines internal index vary in size which would also impact the result
set.

2. phrase query: “to be or not to be.”
This phrase query will tell the search engine to look for this particular
arrangement of all the terms in the query; the phrase. It will never
look for pages with only a subset of the terms “to, be, or, not, to, be”.
A test at http://www.google. com gives us 2 710 000 pages in return,
and http://www.yahoo.coml gives us 2 560 000 pages.

These two examples clearly show the importance of phrase queries, and their
impact on the results from the search engine. We will explore similar results
later on.

3.2.2 Term query

A term query is, in contrast to phrase queries, a simple query based on a
semantic and discriminating term (one word). The query could for example
be as simple as: “Computer”, without the quotation marks. The issue with
term queries is that you need to use quite discriminating terms to get good
efficiency (recall / precision) scores. Now, this may work very well within
relative small collections, but in case of a huge collection (like the web?),
then we will have problems.

A very simple example could be to query for “computer”, which in Google
gives us 1 190 000 000 hits, and Yahoo gives 3 190 000 000 hits. Both result
sets are vastly large since the term query is not particular discriminating
and the total size of the collection (the web?) is enormous.

3.2.3 Boolean query

A boolean query is a simple query combined of multiple query terms sepa-
rated by a boolean operator such as AND, OR, NOT, or whitespace indicating
the usage of a default boolean operator. Most search engine use the AND op-
erator, and thereby demand that all the query terms must be included in
the document to indicate a match. There is also techniques where the AND

23

http://www.google.com
http://www.yahoo.com
http://www.google.com
http://www.yahoo.com

3 Concepts and definitions Page 24

operator is used if there is located hits, and if not sufficiently enough hits
is located the OR operator would be used. This technique introduce a sort
of ranking, meaning that the first documents in the result set has all the
query terms, and those further down the list could be based on a subset of
the query terms.

Lets take a look at two very simple examples:

1. boolean query: computer science
This boolean query gives us a total of 193 000 000 hits with the usage
of the Google search engine. The field of computer science is very
large, so we are not surprised by the waste number of hits found.

2. phrase query: “computer science”

This phrase query gives us a total of 88 100 000 hits with the usage of
the Google search engine. Notice the difference between this and the
previous term query, which is quite significant. However, even with
the usage of a phrase query for “computer science” the hits is fairly
large, so considering extending the phrase query would narrow down
the result set. In Section 3.2.4 we shall see additional approaches to
address this problem.

This clearly show the differences with the usage of boolean and phrase
queries. As already stated, there lies a difference in the semantic encap-
sulation between boolean and phrase queries. Basic boolean queries carry
only the semantics of the query terms itself, regardless of the semantic re-
lation they may share. The term(s) within a boolean query is not directly
related (unordered), and therefor the query will have a more vague semantic.
A phrase query however, is by nature carrying the semantics of all the terms
in the ordering they have. A phrase query like “new york” differs substan-
tially from the boolean query “new york” (without the quotation marks).
Even worse would have been if the search engine interpreted the boolean
query with an OR operator, thus including documents which also contains
one of the query terms.

3.2.4 Combined queries

This section is merely to introduce the concept of combined queries, where
we by “combined” mean the usage of different query types to express a more
precise information need. The introduction of this concept has become more
visible since the information amount in web search engines is so enormous,
and the users need new ways of express their information needs. So, these
queries are simply different types of queries which can be expressed as a sort
of boolean query where each query term is in fact another query type.

24

3 Concepts and definitions Page 25

Take this combined query as an example:

computers "python programming" norway. Here we have a boolean query
consisting of three query terms, whereas each query term is in fact another
query. The first term is a single term query. The second is a phrase query
consisting of two ordered terms, and the last one is a single term query. This
combined query is better illustrated in Figure 3.2.4, and note that there is
assumed a default boolean operator such as AND or OR between each query
term if just whitespace is used..

Query

computers “python programming” norway

Figure 2: A hierarchy showing a combined query, where each node has an implicit
boolean operator such as AND, OR, NOT

3.3 Recall and precision

Recall is an IR performance measure which represents the fraction of rele-
vant documents in a set of retrieved documents. Let R represent a set of
relevant documents, and |R| the number of documents in R. Now, assuming
a answer set A is retrieved in response to some query, and |A| the number of
documents in A, and that |Ra| represents the number of documents in the
intersection of the two sets, R and A. Then we have a formal calculation of
recall illustrated in Equation 5.

| Ral
Recall 7] (5)
Precision is another IR performance measure which represents the faction of
retrieved documents that is relevant. Relevant would here be in context of
the query. In Equation 6 we see the formal calculation of precision, whereas
we follow the same notation as for recall.
| Ral

Precision = —— (6)
Al

3.4 Inverted index

An inverted index (also called inverted file) is a simple structure used to
index a text collection in order to provide fast searching capabilities. It is a

25

3 Concepts and definitions Page 26

combination of two elements, the vocabulary (also called the index) and the
occurrences (also called posting lists).

3.5 Signature File

A signature file is another index structure which was very much used before
the inverted index became available. A signature file is basically an index
structure based on hashing which represents the “signature” in the sentence
“signature file”. The hash function in a signature file is the function which
maps words to bit masks. An example could be that the word “computer”
maps to the following bit mask — 01000111, that is that h(“computer”)
= 01000111 where h() is our hash function. In [I4] and [22] there is an
extensive introduction of signature files which goes through the structure,
searching and constructing capabilities. Just to make you clear on what
signature files really are, we will briefly introduce the underlying structure
and some characteristics.

The hash function maps words to bit masks. Now, a single text document
has its own signature file constructed by hashing all the words occurring in
the document. First in the construction phase the text is to be divided into
blocks. Now, the document is a set of blocks which in turn holds all the
words in the document. Each block in the document gets its own signature
by bitwise OR~ing together the hashes from all the words inside that partic-
ular block. Now we have a signature file which is composed of the sequence
of all the text block hashes.

The searching process in a signature file is very straight forward. First we get
the query where we perform hashing on each query term, and then bitwise
OR-ing them together into a bit mask which represents the query. And then
we compare the query bit mask with all the text blocks bit masks. Assuming
W represents our query bit mask, and B; the bit mask of text block ¢, then
the comparison statement can be written like this:

W&B; =W (7)

Note that the & is the bitwise AND operation. So, if all the bits set in W
are also set in B;, then we may have a hit. Note that we say may have a hit,
since there is a probability of a false-match. The reason for this false-match
is in the nature of the signature file structure. When we construct a text
block hash, then our hashing function could construct a hash which has the
similar bits set as in another word hash. The likelihood of this occurring is
related to how much overhead you are willing to sacrifice in the signature
file. The less likelihood of a false-match indicate a large signature file, since
the hashes for each text block would need to contain more bits.

26

3 Concepts and definitions Page 27

Signature files has some interesting characteristics, such as that they are
more efficient the larger the query (in number of terms that is). For single
term queries, the signature files are not efficient. According to [22] signature
files improve phrase searching, and is the only indexing scheme which does
this (disregarding the state-of-the-art indexing scheme which is discussed in
Chapter 5). However, signature files are only efficient with relative small
document collections.

One important observation derived from many acknowledge books and arti-
cles such as in [14}, 22, [17], is that inverted indexes almost always outperforms
signature files. This observation is explained in that signature files is likely
to yield a lot of false-matches which has to be sorted out by retrieving the
documents from disk.

To minimize the risk of false-matches one can increase the amount of bits
used in the bitmasks, however this imply larger index and more data to
retrieve for each search. Of even more importance is that ranking is not
supported. This restriction in contrast to the inverted index makes the sig-
nature file approach less appealing. Also complex queries with operators
such as disjunction or negation is hard to support.

3.6 Hybrid solutions

Hybrid solutions in regards to indexes is typically different kind of combina-
tions of index structures. The motivation for hybrid solutions is to support
various types of queries, such as:

1. term query

2. boolean query

w

. phrase query

W

. similarity query
5. image query (multimedia types)
6. ...

For term- and boolean queries there is usually the standard inverted index
which promotes this kind of use. For more advanced ones such as phrase
queries, a more enhanced index that supports rapid search based on phrases
could be used, however a standard inverted index would also fulfill the task.
Other examples could be queries which has special characteristics, such as a
very long boolean query with one or more stopwords. These kind of queries
would be very expensive to execute in a standard inverted index. However,
if we have some form of analyzation for all incoming queries, and then send
queries that performs best on a standard inverted index to that index, and
queries that may be rewritten to phrases to an phrase enhanced inverted

27

3 Concepts and definitions Page 28

index, and so on. This basically introduces the concept of implementing a
kind of routing mechanism, which maps each query up to the index type
which it performs best on.

Using the approaches described above, there is a possibility of saving pro-
cessing speed in form of lookup time in the index. This approach is very
much found in larger search engines nowadays. In [23], the author emphasize
that analyzing (linguistic techniques) queries and possibly rewrite them to
better suit the index in use, is done nowadays. In [12] the authors look into
the subject of using hybrid solutions to provide a fast searching process in
terms of phrase querying.

In Chapter 5 we will also go a little deeper into hybrid solutions, as it is
an important subject. We will also look at different example approaches
towards hybrid solutions that could be used, based on the introduced index

types.

3.7 Document analysis

Document analysis is the process of analyzing the content of documents (also
called “document preprocessing”). This is a core process in information re-
trieval systems, and has received a lot of scientific research over the past
decade. If we have poor document analysis in an IR-system, it will have an
impact on the search effectiveness since the indexed information will not re-
flect the information in the document collection in a good semantic way. Not
being able to encapsulate the document collection information in a search
engine makes the search engine worthless.

So, what lies in this core process which is of such great importance for an IR
system? Document analysis is composed of text operations which are used
to extract and manipulate the content of documents in such a way that the
semantics are encapsulated in the index. These text operations are often
referred to as a form of NLP (Natural Language Processing). You can see a
very simplified graphical illustration in Figure 3.

Text operations such as stemming, stopword elimination, index term selec-
tion, as illustrated in Figure 3, is a very common approach to document
analysis. In [22] Baeza-Yates and Ribeiro-Neto gives a simple yet broad in-
troduction to such text operations. The following three subchapters (3.7.1,
3.7.2 and 3.7.3) will cope with these text operations, and we would like to
point out that these operations are not the only ones who are being used in
document analyzing. Others worth to mention is the usage of thesaurus to
support index term selection in a much broader perspective, and the usage
of n-grams (chapter 3.1) to encapsulate the concept of the document (i.e. to

28

3 Concepts and definitions Page 29

Analyze
content,
identify and
extract interesting
terms, and pass
them on

A test document
about computers
in new york. Writing
this is a kind of
hacking. For every
connection in the
computer, there is
I a hack

Indexing

process

the, a, to,
and, in,
for, of

-
write,

M > connect,
hack

"computer",
"new york",
"in the"

Figure 3: Hlustration of a typical document analysis process

model the document).

3.7.1 Stemming

In a user query there is often a combination of multiple words which together
forms the information need (the query). These variations between words in
different queries often share common characteristics, that is the same root
word with syntactical variations (grammar). In a very simple analysis pro-
cess the analyzer would make an distinction between the word “computer”
and “computers” (plural), which would construct two distinct terms, while
the concept of the word is basically the same. Now, if we consider a docu-
ment of many thousands of words in which a big portion is the same basic
word with syntactical variations, then it is easy to see that we would waste
vocabulary space if we did not consider the common concept they represent.
This root word is referred to as the stem portion of a word. The stem is
what is left after we remove the affizes (prefizes and suffizes). Let us have
an example:

hack hacking hacked hacker
Here the word hack is the stem (the root word) of hacking, hacked and

hacker. So, we basically save three index terms in the vocabulary here, ergo
the indexing structure will occupy less storage space. However, despite these

29

3 Concepts and definitions Page 30

apparent advantages, most search engines nowadays do not adopt stemming
in their document analysis process. The reason for this is that researchers
have come forward with some conflicting conclusions regarding the usage of
stemming. Especially a researcher named W. B. Frakes did some research
within the usage of stemming, and the results he came up with was incon-
clusive. [22] describes into more extent what was included in the experiment
performed by W. B. Frakes.

3.7.2 Stopword elimination

The definition of a stopword is a frequent word that carry little semantic on
its own, and thus is of little value to any IR-system. A high frequency for a
stopword also means that a query for a stopword would eventually result in
a very large result list. In the English vocabulary we have for example the
very frequent word “the”, which occur in almost all English documents. The
number of documents retrieved for a query like “the” would be |N| (often
even much larger), where N is all the documents in the collection. We can
therefore safely tag this word as a stopword based on its frequency, and for
the reason that it does not bring any meaning by it self. In a sentence it
brings meaning, but not on its own. In Figure 3 you can see how the stop-
word elimination has identified stopwords in the input document(s), and
thus discarded these words from being put into the index structure.

In an IR-system when there is an index which holds the vocabulary and
the posting lists, there would be a very skew balance in the posting lists.
This is because of their nature - each posting list holds the occurrences of a
particular word in the whole document collection. Given a stopword, which
would occur quite frequently, the posting list for that particular word would
be huge compared to a low-frequent one such as the word “TREC”.

If we applied stopword elimination in the document analysis phase, we would
enable large space savings in the index. In [2] and [22] there is claim to ob-
tain a compression in the inverted index structure by 40% or more (in disk
space savings). These savings are optimization factors that should not easily
be disregarded in IR-systems, since I/O traffic is usually a bottleneck. Some
disadvantages with the usage for stopword elimination is that it may reduce
Recall (Section 3.3) in the context of IR-systems.

As mentioned, stopword elimination will according to [2], [14] and [22] re-
duce recall in an IR-system. This disadvantage is very obvious when we
look at the query “to be or not to be”, where all the words except maybe
“not” and/or “be” will be stopped. This query would yield a very bad recall.
As elegantly stated in [14]: “the index creator is by stopword elimination
anticipating that future users will not be interested in these terms”. For this
reasons, most search engines nowadays do not adapt stopword elimination.

30

3 Concepts and definitions Page 31

It could be of interest to mention that search engines nowadays adapt aux-
iliary structures to cope with the stopword overhead in the index structure.
These auxiliary structures will be explored in Chapter 5.

3.7.3 Index term selection

Index term selection is the process of identifying and selecting good index
terms which encapsulate a comprehensive model of the document being an-
alyzed. Quoting this process in this simple sentence above makes it sound
very easy and straightforward, however that is not the case. A straightfor-
ward approach would be to identify all words (terms) in the document, and
then let them represent the content of the document. Now, given a query for
internet cookie could then match documents that describes food recipes
for cookies which is available on the internet, when the real intention was
to find documents regarding the internet information cookie used in web
browsers. This is an good illustration of semantic flaws which follows a
straightforward approach.

Other approaches in index term selection could be to extend the single term
identification algorithm above to also include infrequent terms which are se-
mantically related to the terms in the document. That is to extend certain
terms which have a semantic value with others synonyms or related words.
Techniques such as the usage of thesaurus is commonly used in these ap-
proaches. Also manual annotation of related terms (also called keywords)
could be used, however not in the same degree since it is expensive in con-
trast to an automatic approach.

In [22] there is described an approach where noun are identified as the se-
mantic carrying terms, and thus only they are identified and included in the
index term selection process. Terms such as verbs, adjectives, adverbs, con-
nectives, articles and pronouns are simply discarded based on their lack of
semantics. Term clustering is also used in cases where nouns appear nearby
each other, so that they encapsulate the concept of that particular sentence
or context. A very good example of this is a sentence which include the
nouns computer and science, which is clustered into computer science.

3.8 Apache Lucene

Apache Lucene is an open-source search and indexing technology framework,

and has become quite popular within the last couple of years. The name

“Lucene” comes from the creator wife’s middle name’. There was in the

"Doug Cutting is the original creator of Lucene.

31

3 Concepts and definitions Page 32

beginning only one implementation in the Java programming language®, so
this is the main language which the framework is available in. There now
exists several ports to other programming languages®.

Apache Lucene is not a single search application that we can just setup and
run. It is a complete search engine library which contains all the necessary
functions to both index and search a document collection. With this library
one can create a search engine which comply with user defined requirements
and other special needs. The library is very simple to use, and is despite its
simplicity very fast and efficient. The library provides out-of-the-box default
values so that one can quickly be able to index and search. However, it is
quite simple to extend the library to enhance indexing performance, search
domain, document analyzers, etc.

In the introduction of our experiment later on, we will further explain the
power and beauty of Apache Lucene. We shall also explore Lucene perfor-
mance, both in terms of indexing and searching with a focus of enhancing
phrase searching capabilities.

3.9 TREC GOV2 Collection

The TREC! Collections is a standard “testbed” to judge information re-
trieval systems. The collections provided (called “tracks”) are each designed
for their own utilization domain; Web, Blog, Enterprise, Legal, Genomics,
etc. The track we use in our experiment is the Terabyte Track, which is
based on a web data crawl from web sites in the .gov top-domain.

This Terabyte Track is also called the GOV2 collection. The GOV2 collection
is a crawl that was performed in early 2004, and grow up to 426GB in size
and contained as much as 25.2 million documents (web pages). In the IR-
community it is quite common to do benchmarking based on this collection,
and so have we done in our experiments.

8Java programming language. http://java.sun.com/

9Look at http://wiki.apache.org/lucene-java/LuceneImplementations|to find out
which programming languages Lucene is ported to.

10Text REtrieval Conference (TREC). http://trec.nist.gov

32

http://java.sun.com/
http://wiki.apache.org/lucene-java/LuceneImplementations
http://trec.nist.gov

4 Inverted Index Page 33

4 Inverted Index

The inverted index is a very much acknowledged information structure which
promotes fast term lookup. The reader is recommended to first read Chap-
ter 3.4 for a brief and understandable definition of an inverted index. Basi-
cally an inverted index is a data structure whose primary goal is to simplify
and enhance the search task of a text document collection. Recall from
Chapter 3.4 that the inverted index is a combination of two elements:

e the vocabulary (index)
e the occurrences (posting lists)

The first element, the vocabulary, is a list of all the unique terms in the text
document collection. In Figure 4 on page 34, the leftmost box illustrates
this element. The other element, the occurrences, is a set of lists where each
list is related to one unique term in the vocabulary. Inside these lists there
is what we call postings (hence the lists is referred to as posting lists).

The postings represents pointers to all the occurrences of that particularly
term in the text document collection. A term in the vocabulary has a pointer
to a posting list in the occurrences part of the inverted index (as graphically
illustrated in Figure 4). Each entry in a posting list typically contains a
unique document identifier (denoted as dj;, where j is the unique document
identifier), along with the term frequency within that document (usually
denoted as f;; where ¢ is the term and j the document), and maybe also a
list of positions to where the term occurs inside the document. In Figure 4
we clearly see the pointer from a term in the vocabulary to