
June 2008
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Robustness in Early Phase Software
Development

Håkon Haga
Øyvind Skjervold

Problem Description
Robustness is becoming increasingly important as we become more dependent of software
systems. Robust software performs according to its intention for all type of system input and
environment changes. Realization of robustness has traditionally been done during the
development phase, where it is more expensive to perform changes than in the earlier phases.

This thesis studies a way to move the focus of robustness to the requirement and design phase.
During our work with the thesis we will implement and test several ideas from "Robustness in
Software Development", a project done during the autumn of 2007. The result of this project was a
first, high level requirement specification for the tool that will aid software developers in the
realization of robustness in the early stages of the development. The requirement specification
will be further elaborated on before advancing to the design and implementation phases.
Experiments will be performed in two phases, in order to get feedback to our prototype. First an
experiment with students with main focus on usability and error detection in the program will be
performed. All output will then be evaluated and the prototype updated correspondingly. Then a
test with IT professionals will be performed, with focus on the value of the tool for the industry.
This results will be used to updated the prototype, and conclude on the usefulness of the
prototype.

The goal for the project is to develop a tool prototype to support robustness realization in early
software development phases.

Assignment given: 15. January 2008
Supervisor: Tor Stålhane, IDI

I

ABSTRACT

Ensuring robustness in software is as important as ever, with the increasing significance of
information technology in our lives. Users of any IT system expect and require a high level of
uptime. The earlier a threat to robustness is discovered in the development of a system, the
cheaper it is to handle. Allowing robustness to come into focus at an early stage of
development has been the objective of this master thesis.

This thesis is a continuation of the work that we did in the autumn 2007 (Skjervold and Haga
2007), where we created a requirement specification for a tool that can aid system
developers in realizing robustness during their design. This requirement specification was
based upon interviews with software development companies in Trondheim, one which we
performed usability testing with in this thesis.

We have developed a tool based upon the requirements from our previous work, along with
some additional requirements in the early phases of this thesis. After developing a first
version of the tool, a usability test was performed on 11 students. The feedback we got was
evaluated and the implementation was updated correspondingly. A second test was
performed, focusing on both the usability and the value of the tool, with four system
developers from a software development company in Trondheim. The responses to the
usability were divided, but mostly positive, and helpful. Some of the changes suggested were
implemented, and the rest was inserted as further work. For the value of the tool, there
were strong opinions amongst the four developers, as expected, followed by a constructive
discussion. The consensus was that the tool had good potential, but the professional
developers felt it needed some improvements and changes. Most of these suggested
improvements were too time consuming to address in this thesis, and are therefore inserted
as further work.

This report consists of four parts. Part I describes the state of the art and requirement
specification. In Part II the experiments that was run are described and evaluated, and finally
the implementation of the tool is shown in Part III. In Part IV the bibliography and
appendices are shown.

II Robustness in Early Phase Software Development

III

PREFACE

This master thesis was written as part of our MSc at Department of Computer and
Information Science, at the Norwegian University of Science and Technolohy (NTNU), spring
2008. It extends the work done in the project Robustness in Software Development
(Skjervold and Haga 2007), by the same authors in autumn 2007.

We would like to thank Professor Dr. Tor Stålhane at IDI, NTNU for his inputs to this report
and his good spirits during our meetings. Thanks also to the students participating in our
student test, and to the company, which wish to remain anomynous, that participated in
business test.

Trondheim, June 7, 2008

 _______________________ _______________________

Øyvind Skjervold Håkon Haga

IV Robustness in Early Phase Software Development

V

TABLE OF CONTENTS

Abstract .. I

Preface ... III

Table of contents ... V

List of Figures ... IX

List of Tables .. XI

Part I Introduction .. 1

1 Introduction ... 3

1.1 State of the art ... 3

1.1.1 Agent-based software redundancy .. 3

1.1.2 Jacobson’s analysis method ... 4

2 Requirements specification .. 5

2.1 Original functional requirements ... 5

2.2 Final functional requirements .. 6

2.3 Non-functional requirements .. 7

2.4 Use cases .. 8

3 Research methods .. 15

3.1 The experiments .. 15

3.1.1 Experiment characteristics ... 16

3.1.2 Experiment process .. 16

3.1.3 Threats to validity ... 17

3.2 Interview .. 20

Part II Experiments .. 23

4 Experiment execution .. 25

4.1 Students testing the user interface ... 25

4.2 Professionals testing the functionality .. 26

5 Experiment evaluation ... 27

5.1 User interface test performed on students ... 27

VI Robustness in Early Phase Software Development

5.1.1 Quantitative results .. 27

5.1.2 Consequences ... 30

5.2 Functionality test performed on professionals ... 33

5.2.1 Qualitative results ... 33

5.2.2 Quantitative results .. 37

5.3 Comparing results from the two experiments .. 41

5.3.1 Sign test .. 41

5.3.2 Paired t-test .. 42

5.3.3 Discussion of similarities ... 43

Part III Implementation .. 45

6 Architecture ... 47

6.1 Stakeholders .. 47

6.2 Views .. 47

6.3 Model-View-Controllers ... 47

6.4 Our architecture ... 48

7 Detailed design ... 51

7.1 Choice of technology ... 51

7.1.1 Java ... 51

7.1.2 C# .. 51

7.1.3 Our choice ... 52

7.2 Graphical user interface ... 52

7.2.1 Design ... 52

7.2.2 User controls ... 53

7.3 Classes .. 53

7.3.1 Model .. 53

7.3.2 Controller .. 55

7.3.3 View .. 55

8 Implementation ... 57

8.1 Classes .. 57

8.1.1 Model .. 57

VII

8.1.2 View .. 59

8.1.3 Controllers .. 60

8.2 Graphical user interface ... 61

8.3 Testing .. 64

8.4 Discussion ... 70

8.4.1 The children field .. 70

8.4.2 Using the results ... 70

8.5 User manual ... 73

8.5.1 Intention ... 73

8.5.2 Items description .. 73

8.5.3 Using the tool ... 74

9 Conclusions .. 77

9.1 Combining with Jacobson’s method .. 77

9.2 Combining with test-driven development ... 78

9.3 Further work .. 79

9.3.1 Copying nodes .. 79

9.3.2 Undo ... 79

9.3.3 Projects ... 79

9.3.4 Checkboxes and deletion of nodes ... 80

9.3.5 Design of the prototype .. 80

9.4 Final thoughts .. 81

9.4.1 Process .. 81

9.4.2 Experimental threats .. 81

9.4.3 Results ... 82

Part IV Bibliography and Appendices .. 83

Bibliography .. 85

Appendix A Business experiment document .. 87

A.1 Example .. 87

A.1.1 Textual use case .. 87

A.1.2 Failure mode for Zip code ... 89

VIII Robustness in Early Phase Software Development

A.1.3 Barriers ... 89

A.1.4 Actions .. 89

A.1.5 Tests .. 89

A.1.6 Data structure ... 90

A.2 Tasks ... 90

Appendix B Business experiement results .. 95

Appendix C Business interview .. 97

C.1 Questions ... 97

C.1.1 GUI .. 97

C.1.2 Tool value.. 97

Appendix D Information before business test .. 99

Appendix E Student experiment document .. 101

E.1 Example .. 101

E.1.1 Textual use case .. 101

E.1.2 Failure mode ... 103

E.1.3 Barriers ... 103

E.1.4 Actions .. 103

E.1.5 Tests .. 103

E.1.6 Data structure ... 104

E.2 Tasks ... 104

Appendix F Student test results .. 107

IX

LIST OF FIGURES

Figure 1: Representation of the classified objects in Jacobson’s analysis model 4

Figure 2: Rules of interactions between objects in Jacobson’s analysis model 4

Figure 3: Use case representing requirement F1 and F2 ... 8

Figure 4: Use case representing requirement F3 ... 9

Figure 5: Use case representing requirement F4 ... 10

Figure 6: Use case representing requirement F5 ... 11

Figure 7: Use case representing requirement F6 ... 12

Figure 8: Use case representing requirement F11 ... 13

Figure 9: Experiment planning with dependent and independent variables 15

Figure 10: Question 1, ease of selecting Input items ... 28

Figure 11: Question 2, ease of adding Input items .. 28

Figure 12: Question 3, ease of selecting child items under selected Input items 28

Figure 13: Question 4, ease of adding child items under Input items 29

Figure 14: Question 5, noticing the redundant options ... 29

Figure 15: Mean score for each question asked to the students .. 30

Figure 16: Before GUI test: One can add Input item when highlighting root 30

Figure 17: Before GUI test: Cannot add Input item when other than root are highlighted 31

Figure 18: After GUI test: Button added. Can add Input item independent of highlighting ... 31

Figure 19: Input items can be added at all times ... 31

Figure 20: The ”>>” sign implies moving of Input items to the rightmost tree 35

Figure 21: Question 1, ease of selecting Input items ... 37

Figure 22: Question 2, ease of adding Input items .. 38

Figure 23: Question 3, ease of selecting child items under selected Input items 38

Figure 24: Question 4, ease of adding child items under Input items 38

Figure 25: Question 5, difference between deleting and un-checking 39

Figure 26: Question 6, noticing the redundant options ... 39

Figure 27: Question 7, whether the tool would be a useful to the company 39

Figure 28: Mean score for each question asked to the professionals 40

Figure 29: Mean score for students and professionals .. 44

Figure 30: Model-View-Controllers .. 48

Figure 31: The architecture of our project ... 49

Figure 32: The early sketch of the GUI ... 52

Figure 33: The detailed design of the Model package ... 54

Figure 34: The detailed design of the Controller package ... 55

Figure 35: The detailed design of the View package ... 56

Figure 36: The class diagram for the Model package .. 58

Figure 37: The class diagram for the View package ... 59

Figure 38: The class diagram for the Controllers package ... 60

Figure 39: The final GUI .. 63

Figure 40: The results can be used in the user’s software development process 70

X Robustness in Early Phase Software Development

Figure 41: Result page from our program .. 71

Figure 42: Pseudo code from Actions for the example .. 72

Figure 43: The first step, selecting input items .. 74

Figure 44: The second step, selecting child item ... 75

Figure 45: Jacobson’s rules ... 77

Figure 46: Our system interacting with Jacobson’s input validation 78

Figure 47: Relationships between example elements ... 90

Figure 48: Relationships between example elements ... 104

XI

LIST OF TABLES

Table 1: Data collection using interview or surveys ... 21

Table 2: Priority of suggestions from the professionals .. 34

Table 3: Sign test for students and professionals .. 41

Table 4: Results from the paired t-test .. 43

Table 5: Test 1 .. 65

Table 6: Test 2 .. 66

Table 7: Test 3 .. 67

Table 8: Test 4 .. 68

Table 9: Test 5 .. 69

Table 10: Textual use case example ... 88

Table 11: Textual use case for business test .. 91

Table 12: Textual use case for student test ... 102

XII Robustness in Early Phase Software Development

1

PART I
INTRODUCTION

2 Robustness in Early Phase Software Development

3 Chapter 1 - Introduction

1 INTRODUCTION

This master thesis is the follow-up work for the project Robustness in Software Development
by Haga and Skjervold, autumn 2007 (Skjervold and Haga 2007). The work done in this thesis
includes reviewing the requirements in (Skjervold and Haga 2007), and designing and
implementing the tool. The tool was also tested: The graphical user interface (GUI) was
tested on students and a functional prototype was tested on system developers. The results
from these tests were used as design input to the final product.

The main goal for this project was to support development of robust software by providing a
prototype of the tool. The tool is developed to support the industry when dealing with
robustness in software development. The tool will help developers uncover errors related to
input to the system at an earlier stage of development and will save both time and money
for the developers.

1.1 STATE OF THE ART

It is necessary to have an understanding of which methods that have been used earlier in a
field before developing or using new ones. In this chapter some state of the art solutions
used to achieve robustness are presented. Some of the features in the solutions are general,
and some are created especially for robustness.

1.1.1 AGENT-BASED SOFTWARE REDUNDANCY

This method is based on the hypothesis that robustness may be increased through
redundancy. The redundancy is achieved by using agents. Reinforcement learning is used to
build up trust between the agents. Redundancy applies to both software and hardware, the
problem with hardware redundancy is that any amount of redundant hardware can fail
because of the same faulty software. One way to build fault tolerant software systems is N-
version programming (NVP). A major problem with this method is the relation between
minimizing probability of getting same results in different versions and maximizing the
version development independency (Turlapati and Huhns 2005).

Cooperation between agents is one way of ensuring software redundancy. Multiagents may
learn by trials, errors and cooperation by sharing instantaneously information. A voting
technique is used to have the agents reinforced. This is important in multiagent systems
because one agent may learn from other agents’ performances (Huhns, Holderfield et al.
2003).

4 Robustness in Early Phase Software Development

1.1.2 JACOBSON’S ANALYSIS METHOD

This method was developed by Ivar Jacobson (Rosenberg and Scott 1999). The method is an
intermediate level of design between use cases and software design. The method identifies a
set of objects that participates in the analyzed use case. The objects are classified into three
stereotypes (Zhou and Stålhane 2004):

1. Boundary objects, which the actors use when communicating with the system
2. Entity objects, which are usually objects from the domain model
3. Control objects, which “connects” the boundary objects and entity objects

The objects are shown in Figure 1. There are rules for interaction between these objects
which are listed below and also represented graphically in Figure 2.

1. Actors can only talk to boundary objects
2. Boundary objects can only talk to Control objects and Actors
3. Entity objects can only talk to Control objects
4. Control objects can talk to boundary objects, other Control objects, but not to Actors

Figure 1: Representation of the classified objects in Jacobson’s analysis model

Figure 2: Rules of interactions between objects in Jacobson’s analysis model

This method has similarities to our system, e.g. the focus on input validation.

5 Chapter 2 - Requirements specification

2 REQUIREMENTS SPECIFICATION

The requirements are presented as a requirements list and use cases. In the requirements
list the requirements are presented as id (priority) – <description>, where id is a unique
identification, the priority is High, Medium or Low and the description is a short explanation
of the requirement.

2.1 ORIGINAL FUNCTIONAL REQUIREMENTS

Quite a few changes have been made to the original functional requirements, and the new
functional requirements are listed in section 2.2 - Final functional requirements. Below the
original requirements are shown.

OF1 (H) - The system shall accept textual use cases as input. The user can upload the textual
use case to the system and the system will interpret it. A method for identifying, comparing
or categorizing the use cases’ Input items is needed, to realize requirement OF3. Input items
in the textual use cases are the input data to the future system. If they cannot be detected
automatically, a manual solution must be used.

OF2 (H) - The Input items from the textual use cases can be related to one or more Failure
modes. The relationship between textual use cases and Failure modes can be many-to-
many.

OF3 (H) - The system shall suggest Failure modes for the Input items from the textual use
case. The user will be presented with a list of relevant Failure modes the system has
identified as relevant for the use case, with the option to choose the ones the user finds
appropriate for his use case.

OF4 (H) - New Failure modes can be entered into the system by the user, and connected to
relevant Input items.

OF5 (H) - The Failure modes stored in the system can be connected to one or more Barriers.
The relationship between Failure modes and Barriers can be many-to-many.

OF6 (H) - The user will be presented with a list of Barriers the system has found for the
Failure modes chosen in OF3, with the option to choose the ones he find relevant for his use
case.

OF7 (H) - New Barriers can be entered into the system by the user, and connected to
relevant Failure modes.

OF8 (H) - The Barriers stored in the system can be connected to one or more Actions. The
relationship between Barriers and Actions can be many-to-many.

6 Robustness in Early Phase Software Development

OF9 (H) - The user will be presented with a list of Actions the system has found for the
Barriers chosen in OF6, with the option to accept the ones he find relevant for the present
use case.

OF10 (H) - New Actions can be entered into the system by the user, and connected to
relevant Barriers.

OF11 (H) - The Actions stored in the system can be connected to one or more Tests. The
relationship between Actions and Tests can be many-to-many.

OF12 (H) - The user will be presented with a list of Tests the system has found for the
Actions chosen in OF9, with the option to accept those he find relevant for his use case.

OF13 (H) - New Tests can be entered into the system by the user, and connected to relevant
Actions.

2.2 FINAL FUNCTIONAL REQUIREMENTS

In this section the updated and final functional requirements are listed. These are based on
the original requirements, and were changed to fit our updated knowledge and perception
of the tool. There are fewer requirements than the original list, but they are more accurate
and correct.

F1 (H) – The system shall present Input items to the user so that the user can choose the
Input items relevant to his use cases.

F2 (H) – The system shall present Failure modes, Barriers, Actions and Tests for the chosen
Input items.

F3 (H) – New Input items can be entered by the user and the user shall be to add Failure
modes, Barriers, Actions and Tests for the new Input items.

F4 (H) – Each Input item, Failure mode, Barrier, Action and Test shall have a name and a
description that shall be editable for the user.

F5 (H) – The user shall be able to add Failure modes, Barriers, Actions and Tests to existing
Input items.

F6 (M) – The user shall be able to delete Input items, Failure modes, Barriers, Actions and
Tests from the data storage.

F7 (M) – The relationship between Input items and Failure modes should be one-to many.

F8 (M) – The relationship between Failure modes and Barriers should be one-to-many.

F9 (M) – The relationship between Barriers and Actions should be one-to-many.

7 Chapter 2 - Requirements specification

F10 (M) – The relationship between Actions and Tests should be one-to-many.

F11 (H) – After the user has selected the relevant items and confirmed his choices, the
system shall present them in a well arranged manner.

The most important change from the original to the final requirements was that the system
would no longer support uploading of textual use cases or automatic discovering of Input
items from these. If the application should identify Input items from the textual use cases,
complex algorithms and code would be needed. This functionality was considered to be
unimportant for this thesis, and hence this requirement (OF1) was removed and the user
now has to register Input items manually. Another change was that the relationship
between the items are no longer many-to-many, but one-to-many. The intention of many-
to-many was that for instance a Barrier could be used by many Failure modes, and that the
database could keep track of the relations between the parents and children. These
requirements were discarded due to the amount of work required to fulfill them.

2.3 NON-FUNCTIONAL REQUIREMENTS

The non-functional requirements state how the system should be experienced by the user.
There were no important changes compared to (Skjervold and Haga 2007), but they are
listed here to complete the requirements specification.

NF1 (H) - The effort needed to employ the system in a company should be low. The empirical
study from (Skjervold and Haga 2007) concludes that the industry require a low effort for
employing the tool, but they are willing to learn new methods if the possible payoff is good.
It should therefore be possible to check whether the system can be useful for the company
in less than one working-day.

NF2 (M) - The system shall focus on usability, and the graphical user interface should
therefore be intuitive to most users. 90% of the users should learn how to use the main
functions in the system in less than one hour (with guidance).

NF3 (H) - The advantages of the system should be clear to the user, or at least to the
company’s management. This means that the system’s main functionalities and their
benefits should easy to present to the companies.

8 Robustness in Early Phase Software Development

2.4 USE CASES

This section contains the use cases that describe all the functional requirements stated
earlier in this chapter except requirements F6 through F9, which we did not find suitable for
use case representation.

Figure 3 shows the use case representing requirement F1 and F2. The tool presents the Input
items in the data storage, and the user chooses the ones relevant for his system. When the
user chooses an Input item, the tool suggests Failure modes, Barriers, Actions and Tests that
corresponds to the chosen Input item.

Figure 3: Use case representing requirement F1 and F2

Present input items

System
Select input items

User
Present failure modes,
barriers, actions and

tests

9 Chapter 2 - Requirements specification

If the user needs additional Input items to the ones suggested by the tool, the user must add
them; this is shown in Figure 4. After adding the Input item the Failure modes, Barriers,
Actions and Tests can be added by the user. When an item is added the data storage is
updated.

Figure 4: Use case representing requirement F3

Add new input item

User

Add failure mode(s)

Update experience
database

Add barrier(s)

Add action(s)

Add test(s)

System

10 Robustness in Early Phase Software Development

Each item has a description and a name. The name and description are presented by the tool
for the chosen item when it is highlighted. The user can edit both name and description for
items and when the user click the save-button the changes are stored in the data storage.
The use case shown in Figure 5 describes requirement F4.

Figure 5: Use case representing requirement F4

View name and
description from chosen object

System
User

Edit name and/or
description for chosen object

Update experience
database

11 Chapter 2 - Requirements specification

The user can add child items to a chosen Input item. This is shown in Figure 6. The tool
presents the Input items from the data storage; the user then chooses which Input item to
add new child items to. After adding an item the data storage is updated. This is according
to requirement F5.

Figure 6: Use case representing requirement F5

Select input item

User

Add failure mode(s)

Update experience
database

Add barrier(s)

Add action(s)

Add test(s)

Present input items

System

12 Robustness in Early Phase Software Development

The user can delete Input items and child items. This is shown in Figure 7. The system
presents the available Input items and corresponding child items from the data storage. The
user may choose to delete any item. When deleting an item, all child items are also deleted.
After deleting an item the data storage is updated. This is according to requirement F6.

Figure 7: Use case representing requirement F6

Delete input item

User

Delete failure
mode(s)

Update experience
database

Delete barrier(s)

Delete action(s)

Delete test(s)

Present input items

System

Present child objects
to selected input item

13 Chapter 2 - Requirements specification

When the user has chosen the relevant Input items and made necessary changes to the child
items, it shall be possible to confirm these choices. When they are confirmed, the system
shall present the results to the user. These should be presented in a way that makes it is
easy for the user to get an overview of the result. Figure 8 shows the use case representing
requirement F11.

Figure 8: Use case representing requirement F11

User

System

Confirm choices

Present the
choices to the user

14 Robustness in Early Phase Software Development

15 Chapter 3 - Research methods

3 RESEARCH METHODS

In this chapter the methods used in this thesis are presented. The descriptions of the
methods are taken from (Wohlin, Runeson et al. 2000).

3.1 THE EXPERIMENTS

The best way to see if a tool is useful is to let others persons try it out. In order to do this in
an orderly fashion we used two experiments – one with students and one with IT
professionals. Off-line experiment was preferred since it has a higher level of control under
normal conditions. An off-line experiment is performed in a controlled environment where
the conditions are simulated to correspond to the real world, as opposed to an on-line
experiment that is performed in the field under normal conditions. Since both the students
and professionals were available in Trondheim, the off-line experiment was also the most
practical.

Figure 9: Experiment planning with dependent and independent variables

Professionals

Our System

Students

Our System

Professionals

Students

Result

Result

Sample

Sample

Improvement

Comparison

16 Robustness in Early Phase Software Development

In experiments a set of variables are defined and then sampled over. In our case we had
students and professionals as two independent variables and their results from trying out
the tool as dependent variables. Figure 9 shows how we ran the first experiment with the
students and used the results to improve the system. We then ran a second experiment with
professionals using the improved tool. The results from both experiments were used to (1)
compare the students and the professionals and (2) check whether both groups found the
program easy to use.

3.1.1 EXPERIMENT CHARACTERISTICS

Experiments have several characteristics depending on which aspects they are used to
investigate. Some of these aspects are listed below.

• Confirm theories, i.e. to test existing theories

• Confirm conventional wisdom, i.e. to test people’s conceptions

• Explore relationships, i.e. to test that certain relationships holds

• Evaluate the accuracy of models, i.e. to test that the accuracy of certain models is as
expected

• Validate measures, i.e. to ensure that a measure actually measure what it is
supposed to

The third aspect, marked bold, was the one that fit our experiment. We investigated the
usability and functionality for our system. First we tested how the students reacted to our
graphical user interface. Thus, the tests assess people’s conceptions to our user interface.
Non-functional requirement 2 states that 90% of the users should understand the most
significant parts of our system within one hour usage with guidance. Thus, the experiment
also helped us to test the usability of the system.

3.1.2 EXPERIMENT PROCESS

The experiment process has the following steps:

• Definition

• Planning

• Operation

• Analysis and interpretation

• Presentation and package

The definitions include defining problem and goals. The main goal of our project was to
support the development of robust software. The main goal of the experiments, however,
was to see how user-friendly the system is. A software tool like ours needs a high level of
usability, and the most important problem to be explored in the experiments was the quality
of the user interface. In addition, the system must provide the company’s development

17 Chapter 3 - Research methods

procedure with added value. The goal of the experiments is written below based on the goal
syntax suggested in (Wohlin, Runeson et al. 2000):

Analyze the system
for the purpose of improving the system

with respect to usability and functionality
from the developers’ point of view

in the context of the developers M. Sc

In the planning phase the design of the experiment is determined, and the threats to the
validity of the experiment evaluated. Our experiment design is shown in Figure 9. We also
made an experiment document that we handed out to the participants when the testing
session started. In this document there is information of the experiment, the model,
examples, tasks and a feedback form. The filled-in feedback form is shown as the result in
Figure 9. This feedback contains both quantitative and qualitative information. The business
experiment document is shown in Appendix A, and the student experiment document is
shown in Appendix E.

The most important threat to validity for the comparison part of this experiment was that
the students and the professionals were testing different tools, since the code was modified
between the two experiments. Threats are discussed in section 3.1.3 - Threats to validity.
The other aspects in the experiment process are not discussed since there was no focus on
these before the execution of the experiment.

3.1.3 THREATS TO VALIDITY

A general checklist in (Wohlin, Runeson et al. 2000) was used as a basis for identifying
threats to our experiment. The threats are categorized as follow: threats to conclusion
validity, threats to construction validity, threats to internal validity and threats to external
validity. Only the threats that are applicable to our experiment are described. In section
9.3.2 – Experimental threats the threats that applied to our experiments are discussed.

3.1.3.1 THREATS TO CONCLUSION VALIDITY

These threats are concerned with the issues that affect the ability to draw the correct
conclusion from the experiment results. The threats that could affect our experiment were:

• Low statistical power. If the power of a statistical test is low, the risk of drawing the
wrong conclusion is high. The power of a statistical test is the ability the test has to
reveal a true pattern in the data. Our sample sizes were lower than recommended
for these tests. This was a serious threat since a low sample size reduced the
probability that the sample represents the whole population.

18 Robustness in Early Phase Software Development

• Reliability of measures. Measurement in our case depended on several factors e.g.
question formulation, instrumentation and layout. In our case there were only
subjective measures that could be less reliable that the objective one. As mentioned
earlier, we also compared the results where the latter system was modified before
the last testing session. This did, however, only threaten the comparison part of the
experiment, not the usability assessment part.

3.1.3.2 THREATS TO INTERNAL VALIDITY

These threats are influences that can affect the independent variable regarding causality,
without the researcher’s knowledge. The threats that could affect our experiment were:

• Instrumentation. Poor formulations in the feedback form, example or walkthrough
could affect the answers from the participants. Avoiding leading questions in the
feedback form was crucial. Some of the questions could also be connected, and this
could lead the participants to answer in the same way on several questions, whether
quantitative or qualitative. To avoid this, the questions were tested, corrected and
approved before starting the experiment.

• Selection. This is the effect of variation in human performance. Since the participants
in the first experiment volunteered for this experiment they were generally more
positive than other in the population. We were therefore aware that the feedback
from the first test could be more positive than from the second test.

3.1.3.3 THREATS TO CONSTRUCT VALIDITY

Generalizing results from the experiment is the concern of the construct validity. The threats
that could affect our experiment were:

• Hypothesis guessing. This threat regarded participants that were curious of what the
purpose of the experiment was. This could lead them to answer what they thought
were the “correct” answers rather than their opinion.

• Evaluating apprehension. Some people do not like to be evaluated. This was a threat
that could affect our experiment, especially the first testing phase. The students
could be afraid of looking stupid in front of class mates. This risk was probably not
applicable to the same degree for the professionals as for the students. To avoid this
threat we gave the students the opportunity to choose which PC they wanted to use.
This means that they could keep a distance from other students if they wanted to.
Hence, the students in the sample were probably not affected by this threat.

19 Chapter 3 - Research methods

3.1.3.4 THREATS TO EXTERNAL VALIDITY

The external validity regards the generalization of the experiment’s results to an industrial
practice. According to (Wohlin, Runeson et al. 2000) there are three types of interactions
with the treatment: people, place and time:

• Interaction of setting and treatment. This threat regards not having the material that
is representative of the industrial practice. This threat also includes using fictional
problems in the experiment. In the first session the usability was the only thing that
was evaluated. In the second session we used a fictional use case that the
professionals used when performing the experiment. We made this use case in a way
so that each of the participants could recognize the problem, and extract the Input
items from it. The use case is shown in Appendix A.1.1 – Textual use case.

• Interaction of history and treatment. One should avoid arranging the experiment on
a special day or time that may affect the results. E.g. avoid arranging the experiment
right after a robustness failure since this could affect the result. The company
scheduled the date for the professional experiment so this was, as far as we know,
arranged without any influence from other events.

3.1.3.5 THREATS TO OUR EXPERIMENT

The statistical power was one of the threats that we addressed. Even if the results were
statistical significant it was important not to draw too strong conclusions based on this. As
discussed earlier, our dependent variable was the feedback from the participants. Since the
first result was used to improve the system before the second session we had to be aware of
the difference in the system that the participants evaluated. This would affect the results in
the second testing session. The results from both sessions were compared but the statistical
tests lose some of its significance when the results are not based on the same system.

20 Robustness in Early Phase Software Development

3.2 INTERVIEW

As part of the experiment, we performed interviews with the professionals. The interviews
were used to collect qualitative information. We made an interview guide, see Appendix C,
which we used in the interviews. An interview guide allows you to have control over the
interview situation. If the interviewee answers the questions accurately and the answer
naturally leads to new questions it might not be necessary to use an interview guide.
Otherwise, the guide supports the interviewer with new questions so the interview flows
smoothly (Ringdal 2007). (Wohlin, Runeson et al. 2000) indicate the following advantages of
using interviews instead of other data collection methods like for instance surveys:

• High response rates

• An interviewer will generally decrease the number of “blank” answers because he
can answer questions listed in the questionnaire

• The interviewer can observe and ask follow-up questions. The interviewer may also
add questions that were not thought of before the interview

According to (Ringdal 2007), interviews should be used when the extent of nearness is high
and the extent of standardization is low – see the details in Table 1. The extent of nearness
represents the geographical distance to the participant. Our nearness was high as the
interview was performed in the offices of the company. The other dimension is the extent of
standardization. Lower standardization gives the interviewer more flexibility. Low
standardization fit our interview well since we wanted feedback of both positive and
negative aspects from the interviewee, and the questions in the interview were not
answered to the same extent by each participant. This means that the questions asked to
each interviewee were not strictly the same – the interview was performed as a
conversation. Since we used a group conversation it was natural to keep the conversation
going, but also be sure to include every participant so that everyone had the opportunity to
state their opinions.

21 Chapter 3 - Research methods

Table 1: Data collection using interview or surveys

Extent of nearness Method Extent of standardization

 Low High

Low Mail, e-mail - Survey

Medium Phone Conversation interview Modern survey interview

High Personal visit Conversation interview Classic survey interview

The drawback with interviews is that they take a large amount of time to perform and
analyze compared to surveys. How useful it is to perform interviews depend on the sample
size. For big samples one often just wants to see a summary of the answers, while for a small
sample it can be useful to have an in-depth feedback from each participant. In our case we
got enough information from the experiment with the students. In the second session the
sample size was low, and we thus decided to arrange an interview instead of a survey. This
was because of the small sample size and because we could ask additional questions to the
developers depending on their opinions. Also, given the fact that our interviewees in the
second session were experienced system developers, we wanted a more thorough and
detailed feedback which an interview gave us.

22 Robustness in Early Phase Software Development

23

PART II
EXPERIMENTS

24 Robustness in Early Phase Software Development

25 Chapter 4 - Experiment execution

4 EXPERIMENT EXECUTION

In this chapter we discuss the execution of the experiment. We have pointed out what
modifications we did compared to the research methods. The object of the experiment was
to find answers to our research questions.

• RQ1: Is the system easy to use?
We will test the system’s usability – first on students and then on IT professionals.

• RQ2: Does the system add value to the developing process?
We will assess the added value by interviewing the IT professionals.

4.1 STUDENTS TESTING THE USER INTERFACE

To quickly test the usability of the GUI we arranged a test session, and invited students to
participate. The students were second grade Master of science students taking the course
Software Engineering. This experiment was important in the development because the
students could easily identify errors or lack of functionality in the tool, and their opinion
regarding the GUI was important feedback for us. The students were rewarded with a wage
corresponding to NTNU’s policy for such activities. An invitation to participate was published
on the course web site and also advertised in class. The students tested the program, and
answered multiple choice questions and gave opinions in free text. The suggestions that we
found reasonable was analyzed in-depth, and the GUI was improved before moving on to
the next testing phase. We did not find it necessary to perform interviews with the students.
However, after the experience with the group discussion with the professionals we saw that
a group discussion could have been appropriate for the students as well. On the other hand,
the student sample size was larger and to have a well arranged discussion group we would
have had to prepare this before the testing session.

Each student was given a PC with our tool installed. They were also given the experiment
document shown in Appendix E. Before they started reading the document we informed the
students what was going to happen so it would be easier for them to understand the
information in the document. When the students had read the experiment document they
started the program and began testing the system’s usability. They were allowed to ask
questions, and we answered them if they were not able to continue unless they got more
info. We did not, however, want to help them too much, but rather observe their handling of
the problems. After completing the tasks they answered the questions in the feedback form.

When the students had finished the experiment we analyzed the results, corrected the
errors that were discovered in the system and discussed if changes to the GUI were
necessary. The results are shown and analyzed in chapter 5 - Experiment evaluation. The
testing session was performed according to plan. All the students finished the experiment
and delivered the feedback form within the scheduled time. The session lasted about one
hour.

26 Robustness in Early Phase Software Development

4.2 PROFESSIONALS TESTING THE FUNCTIONALITY

The functionality and usability was tested on professionals after evaluating the student test
since the tool could be improved between the tests. The purpose of this test was to get
feedback from the system developers on their opinion of both utility value and the usability
of the tool. Some of the questions from the student test were used to be able to compare
the results. Performing interviews in addition to the questionnaire was appropriate. An
interview guide was prepared, and the plan was to interview the participants separately, but
it ended up as a group interview.

Since an off-line experiment was chosen, software developers located in Trondheim were
used. This test was performed in the company’s offices in Trondheim, and four of the
employees participated in the testing session. An information letter about the experiment
was sent to the participants in advance to prepare them for the experiment. The test started
with a short intro from us, and the participants were given the user manual shown in section
8.5, and the experiment document shown in Appendix A. They started by reading the
handouts and installing our program. They also read the example in Appendix A.1 before
moving on to the experiment tasks. We observed them while they tested the program, and
answered their questions as accurate as possible. The only exception was if the question
dealt with some of the functions in the program that we wanted them to test. When such
questions came up we made notes that later could be used to identify modifications to the
system. When all the participants had finished the testing, we performed an “all together”
interview session. We originally planned to interview them one by one, but since the
participants were eager to discuss the program together, the group interview was a better
solution. Since the participants had commented everything regarding the user interface in
the feedback form, the discussion quickly turned to the utility value of the program. From
this session we got a lot of interesting ideas from the developers, and the results are
analyzed in the chapter 5 - Experiment evaluation.

27 Chapter 5 - Experiment evaluation

5 EXPERIMENT EVALUATION

In this chapter the results from the questionnaires are presented. Each question in the
questionnaire has been given a score. This was done by calculating a mean score, using the
numbers from 1 (least positive alternative) to 4 (most positive alternative). When analyzing
results from experiments like this it is important to remember that people see things in
different ways. Some variation would therefore occur in the results even though we expect
most of the answers to be similar. NF2 stated that 90% of the users should be able to learn
how to use the most important functions within an hour of use. In this chapter we check if
the experiments imply that this requirement is met.

5.1 USER INTERFACE TEST PERFORMED ON STUDENTS

This section summarizes the results from the user interface test. The experiment gave both
quantitative and qualitative answers. The quantitative answers are shown in Figure 10
through Figure 14 and the qualitative answers are shown in Appendix F. Our findings are
discussed in this section and the consequences of the findings are stated.

5.1.1 QUANTITATIVE RESULTS

The quantitative results showed us that most of the students were satisfied with the
program’s usability. Each of the students scored each question on a scale from 1 to 4 and
mean score for each question was calculated as shown below.

݁ݎ݋ܿݏ ݊ܽ݁݉ ൌ ሺܽ כ 1ሻ ൅ ሺܾ כ 2ሻ ൅ ሺܿ כ 3ሻ ൅ ሺ݀ כ 4ሻ݊

Here a is the number of participants answering the least positive alternative, and so on until
d that is the number of participants answering the most positive alternative. The letter n
stands for the total number of participants.

The first question asked whether it was intuitive or not to select input items from the
leftmost tree in the program. Figure 10 shows that most of the students did not find this
intuitive. This meant that we had to look into the qualitative results and find out what
confused the students. The consequences are stated in section 5.1.2.1 - The Root item and
section 5.1.2.2 - Button for moving Input items between the trees. Mean score for question 1
= 3.27.

28 Robustness in Early Phase Software Development

Figure 10: Question 1, ease of selecting Input items

Figure 11 shows that the students did not have problems understanding how to add Input
items. The two students that did not find this intuitive claimed that the root item was
confusing, and that there was some lack of redundancy. This is some of the same results that
came up for the previous question, and the consequences for this question were therefore
similar to the previous question. Mean score for question 2 = 3.82

Figure 11: Question 2, ease of adding Input items

Figure 12 shows the results from the third question, and like the previous question, nine
students found the task intuitive. In this case one student found the task a bit hard to
perform. This student disagreed with the other students regarding the colors of the items’
icon. S/he found the colors on the icons confusing, but since none of the other students
shared this opinion we decided not to change anything regarding the colors on the icons. It
was therefore nothing to report in the section 5.1.2 - Consequences from this question.
Mean score for question 3= 3.73.

Figure 12: Question 3, ease of selecting child items under selected Input items

0 1 2 3 4 5 6 7 8 9 10

This was intuitive

It was pretty easy, but not intuitive

It was pretty hard, but got it right

This was hard to understand

0 1 2 3 4 5 6 7 8 9 10

This was intuitive

It was pretty easy, but not intuitive

It was pretty hard, but got it right

This was hard to understand

0 1 2 3 4 5 6 7 8 9 10

This was intuitive

It was pretty easy, but not intuitive

It was pretty hard, but got it right

This was hard to understand

29 Chapter 5 - Experiment evaluation

Most of the students found it intuitive to add Failure modes, Barriers, Actions and Tests as
shown in Figure 13. They found this question quite similar to question 2. The students that
did not find this operation intuitive did not claim that something was hard to understand
regarding the usability, but that they had a hard time understanding the model, see
Appendix E.1.6. – Data structure. Even though the concept was explained to them, and they
had some documentation we did not expect the students to understand the model in detail.
We therefore do not see the need to change anything because of these results. Mean score
for question 4 = 3.64.

Figure 13: Question 4, ease of adding child items under Input items

Most of the students did not notice the redundant possibilities of adding child items since
they performed the tasks intuitively. One student said he missed some options and claimed
that it would be easier to move Input items from one tree to the other if there was a button
under the trees with this functionality. We chose to follow the advice, and implemented this
functionality. This is described in section 5.1.2 - Consequences. Tree students noticed that
there were some redundant options, but none of them found it confusing. Mean score for
question 5 = 3.36.

Figure 14: Question 5, noticing the redundant options

When analyzing each of the bar charts in Figure 10 through Figure 14 we see that none of
the students have used the most negative alternative on the multiple choice questions. The
second most negative alternative implies that the student found it hard but got it right after
some time. We thus satisfy the requirement that 90% of the users should learn the program
within an hour. This also support our first research question (RQ1) which stated that the
program should be easy to use.

The chart shown in Figure 15 summarizes the results from the first testing session.

0 1 2 3 4 5 6 7 8 9 10

This was intuitive

It was pretty easy, but not intuitive

It was pretty hard, but got it right

This was hard to understand

30 Robustness in Early Phase Software Development

Figure 15: Mean score for each question asked to the students

5.1.2 CONSEQUENCES

Results that lead to modifications of our tool after testing the user interface are described
below.

5.1.2.1 THE ROOT ITEM

The Root item was originally intended to be a helpful item when adding new Input items. See
Figure 16 and Figure 17 for details. The parent item should be highlighted when adding child
items, and this was the reason for having the Root item. Since Input items were at the top of
the tree, it seemed a good idea to have a Root item as a parent for Input items. Some of the
students found the root item confusing. We decided to remove it, and the Input items now
have no parent. When adding Input items a button that is available independently of what is
highlighted in the program is used. This button, named Add Input item, was added as a
replacement and is shown in top of the menu in Figure 18 and Figure 19.

Figure 16: Before GUI test: One can add Input item when highlighting root

0

0,5

1

1,5

2

2,5

3

3,5

4

Question 1 Question 2 Question 3 Question 4 Question 5

31 Chapter 5 - Experiment evaluation

Figure 17: Before GUI test: Cannot add Input item when other than root are highlighted

Figure 18: After GUI test: Button added. Can add Input item independent of highlighting

Figure 19: Input items can be added at all times

32 Robustness in Early Phase Software Development

5.1.2.2 BUTTON FOR MOVING INPUT ITEMS BETWEEN THE TREES

Most of the actions in the application can be performed in several ways. For instance, for
moving an Input item from the leftmost tree to the rightmost tree, the user can check the
checkbox, double-click or use the right click menu. Some students wanted other alternatives,
and as a consequence of this we inserted buttons under the trees to move the Input items
between the trees.

5.1.2.3 HEADINGS FOR THE TWO TREES

Several students found it hard to see why both trees were needed. Most of the students
understood that the rightmost tree held the selected Input items, but some of them still did
not see the difference between the trees. The headings input item list (leftmost) and
selection tree (rightmost) did not help the students to see why the two trees were required.
The heading of the leftmost tree was changed to Input item database, which should make
the difference between the trees clearer. In our opinion, this did not solve the problem
completely, but it was the best solution we could come up with without doing major
changes to the tool.

5.1.2.4 WINDOW MENU

One of the students requested the window menu bar that is a standard in Windows. We
decided not to insert a menu bar since some students claimed that more redundancy could
lead to confusion, and the menu bar would have little or no effect on the usability.

5.1.2.5 TREE STRUCTURE IN THE SELECTION TREE

When choosing several Input items, some confusion arose. A student pointed this out and
said that s/he found it difficult to separate the Input items in the tree, and suggested to split
them by a solid line. Another student mentioned that minimizing the Input items that is not
currently used made it easy to maintain a good overview in the selection tree. Regarding
presentation of the results from the tool, it was decided to separate each Input item by a
solid line. The Input items in the selection tree in the tool are not separated at any time. This
was considered, but the user control which was used to show the Input items (TreeView)
had no functionality of adding lines and the change was not considered important enough to
spend time implementing it.

33 Chapter 5 - Experiment evaluation

5.2 FUNCTIONALITY TEST PERFORMED ON PROFESSIONALS

In order to get feedback from the industry, we ran the same test with professional system
developers as we ran with the students. Employees in a company from Trondheim, Norway
participated on this test. We focused on both functionality and usability in this test. The
quantitative answers are shown in Figure 21 through Figure 27 and the qualitative answers
are shown in Appendix B and discussed in section 5.2.1 - Qualitative results. We calculated a
mean score based on the quantitative results for the questions that are similar for the tests
run with students and with professionals.

5.2.1 QUALITATIVE RESULTS

The feedback was gathered and evaluated, and we made a priority list for changes since it
was not enough time to implement them all. The priorities were based on importance of the
change, and time needed to fix the problem. The importance of the suggestions should
count more than the time to fix it. This is why we have chosen the set (5 (High), 3 (Medium),
1 (Low)) for importance and the set (3 (Low amount), 2 (Medium amount), 1 (High amount))
for the time needed. The priority list is shown in Table 2 and the suggestions are discussed
below.

5.2.1.1 BUG IN RIGHT CLICK MENU

When we were in the middle of the professionals’ testing session, one of the participants
discovered a bug in the program regarding right clicking. When adding an item using the
right click menu, nothing seemed to happen. The item was added in the model but not
shown in the GUI. When another item was added by using the add button, both items
became visible in the GUI. This was a bug that we knew how to fix, and we concluded that
the bug was important to get rid of so we prioritized it High (5). This bug was fixed
immediately after the testing session. It was estimated to take a low amount of time (3).

5.2.1.2 THE “>>” ICON

The “>>” icon was inserted between the two trees after the student test. This was not done
because the students missed something, but rather because we found it appropriate to add
this icon since it would, in our opinion, make it easier to understand that the input items
should be moved from the left to the right tree. A screenshot from the program including
the icon is shown in Figure 20. During testing, one of the participants tried to click on this
icon because s/he found it intuitive and thought this would move the highlighted Input item
to the rightmost tree. We observed this and the participant also did mention it in the
feedback form. We decided that if the icon should exist we had to add the intuitive
functionality to it. We prioritized this High (5) and found the icon useful as another
redundant option to move Input items. We found this pretty easy to change and thought this

34 Robustness in Early Phase Software Development

could be done in a low amount of time (3). We also added a “<<” sign to move the Input
items from right to left.

Table 2: Priority of suggestions from the professionals

Suggestion Status Importance Time Score (T*I)

Bug in right click menu should be fixed Fixed 5 3 15

The “>>” icon should have
functionality

Fixed 5 3 15

Change background color Fixed 3 2 6

Hard to see difference between DB
and project

Further
work

3 1 3

Undo function
Further

work
1 2 2

Copy function
Further

work
1 2 2

Support field dependencies
Further

work
1 1 1

Design level focus Already ok 1 3 3

35 Chapter 5 - Experiment evaluation

Figure 20: The ”>>” sign implies moving of Input items to the rightmost tree

5.2.1.3 CHANGE BACKGROUND COLOR

Some of the participants found the program’s background color inappropriate. It also
seemed as the color changed from computer to computer. Someone thought standard grey
was boring and others had a hard time reading what was written because of too similar
colors in background and text. We found it important that the background color should be
comfortable, and the user should actually not notice it at all. This is why we prioritized this
change as medium (3). Changing the color required little time but it was important to find a
color that was appropriate for the program. We therefore thought this problem would take
medium amount of time (2).

5.2.1.4 DIFFERENCE BETWEEN DATABASE AND PROJECT

In the interview session the system developers said that they wanted the possibility to store
each project separately, meaning that all changes done to the items in the right tree could
be stored, and later loaded for continuing the work. As the tool currently worked, the Input
items were moved between the trees. With this change, the Input items would be copied
which would allow specialized changes to the Input items in the right tree. We considered
that this would be necessary in some cases, and that it therefore would be an important
feature in the program. We did, however, not consider this something that had to be done

36 Robustness in Early Phase Software Development

to finalize the tool so we have given it medium (3) importance. This was also something we
considered would take a large amount of time (1).

5.2.1.5 UNDO FUNCTION

One of the participants in the test wanted an undo function, which we also had thought of
before the professional test. This was something we found less important (1) at this stage as
we did not consider it important to a prototype. The only action where the undo function
would be important was the deletion of an item, and there were warnings in the tool that
deletion could not be undone, which somewhat compensated for this. We estimated that
adding an undo function would require a medium amount of time (2).

5.2.1.6 COPY FUNCTION

When adding new items that were almost similar to existing items, the participants thought
it would be practical to have a feature that allows copying existing items. We agreed that
this could save time for the user. In our opinion this was not something that had to be
implemented to finalize the program. It was also considered to take a medium amount of
time (2) and that the importance is low (1).

5.2.1.7 SUPPORT FIELD DEPENDENCIES

Some of the professional developers mentioned that there could be dependencies between
input fields. An example of such fields was day of birth and place of birth. A product that
someone wants to buy may have an age limit (e.g. alcohol), and this limit may be different
from country to country. We calculated that supporting such dependencies would take a
large amount of time (1). This was an aspect that we did not think of as a robustness aspect
before the professional test, and in our opinion this is something that was outside our scope.
We chose to prioritize this as low (1) since it would change the focus late in the project. We
were, however, aware that this was important and it should therefore be considered for
further work.

5.2.1.8 DESIGN LEVEL FOCUS

Research question 2 seeks to determine what functionality the company wanted from a tool
like ours. After testing the program they had two answers to this question. One was that
they wanted a more automatic tool that could be able to generate code and unit tests as for
example JUnit1 does. The other answer was to have the program focus on the design level of

1 http://www.junit.org/

37 Chapter 5 - Experiment evaluation

the software development process. This means that the program should not generate code
that could be useful in the implementation phase. When the discussion ended, the
employees decided that focusing on the design level would be the best solution. Since the
program already had this focus it was no need to change this, but it was worth noticing for
further work that a solution with automatic code generation could be useful for the industry.
Since there will be some problems expanding the program to a code generation tool it will
probably be better to make a new tool and use our system as a background study. Code
generation would require several changes to the prototype and would therefore be hard to
implement.

5.2.2 QUANTITATIVE RESULTS

In this section the quantitative results for each question from the questionnaire and the
information that can be extracted from these results are presented. The quantitative results
showed that most of the professionals were happy with the tool, but disagreed among
themselves on whether the tool could be helpful in software development in the company.
Question 1 through question 4 and question 6 are the same questions as we used in the
student test. Question 5 was based on the observation that some students did not see the
difference between un-checking and deleting items. In question 7 we asked if the developers
thought the tool could be useful in software development in their company.

Question 1 asked if it was intuitive to select Input items from the leftmost tree. Figure 21
shows that the employees found this easy, and some of them even found it intuitive. Even
though we had few test participants, this was a positive result and removing the root item
before this test made it easier for the user. Mean score for question 1 = 3.50.

Figure 21: Question 1, ease of selecting Input items

The second question was if it was easy to add new Input items. Figure 22 shows that the
employees found this easy, and 50% also found it intuitive. Even though we added a button
that was available independently of which item was highlighted, 50% of the participants did
not find this intuitive. Mean score for question 2 = 3.50.

0 1 2 3 4

This was intuitive
It was pretty easy, but not intuitive

It was pretty hard, but got it right
This was hard to understand

38 Robustness in Early Phase Software Development

Figure 22: Question 2, ease of adding Input items

Figure 23 shows that 75% of the participants found it intuitive to select the child items under
the Input items. This was the same result as we had for the students. The results were also
similar for question 4 for the professionals and the students. Figure 24 shows the
employees’ results for question 4. Mean score for question 3 = 3.75. Mean score for
Question 4 = 3.25

Figure 23: Question 3, ease of selecting child items under selected Input items

Figure 24: Question 4, ease of adding child items under Input items

Question 5 concerned the difference between un-checking and deleting. This was a problem
for the students and we were worried that this difference was not explained well enough.
Figure 25 shows that 50% of the employees found it intuitive. We also noticed that one
participant found this hard to understand. It was hard to apply changes based on this since
the observation was not supported by any qualitative feedback. The participant did not
present this opinion during the interview session, so when considering the other opinions
we did not find any changes that would make this more understandable. This question was
not asked to the students so the mean score will not be evaluated further. Mean score for
question 5 = 3.00

0 1 2 3 4

This was intuitive
It was pretty easy, but not intuitive

It was pretty hard, but got it right
This was hard to understand

0 1 2 3 4

This was intuitive
It was pretty easy, but not intuitive

It was pretty hard, but got it right
This was hard to understand

0 1 2 3 4

This was intuitive
It was pretty easy, but not intuitive

It was pretty hard, but got it right
This was hard to understand

39 Chapter 5 - Experiment evaluation

Figure 25: Question 5, difference between deleting and un-checking

Question 6 was the same question as the last question in the student experiment. This
question was answered by only three of the four participants. The last participant did not
understand the question, and we are not sure why the person did not ask for help. The
result from this question is shown in Figure 26. The three that answered the question all had
different opinions so we cannot conclude anything from this result. Mean score for question
6 = 2.67. The maximum score for this question would have been 3 if the last participant had
the most positive alternative when answering this question.

Figure 26: Question 6, noticing the redundant options

The last question was if they thought the tool could be a useful support for their software
development process. One of the participants did not think that this tool could be useful.
One thought that the tool needed some modifications to be useful for the company. The last
two saw more potential in the tool and thought that it could be interesting to use. The
results are shown in Figure 27. Mean score for question 7 = 2.25. This score was not used in
the statistics since this question was not asked to the students. When considering Research
question 2 shown in chapter 4 - Experiment execution, 50% of the developers said that the
program probably could add value to the development process. This was considered a good
result since the participants were critical to the tool in advance of the experiment.

Figure 27: Question 7, whether the tool would be a useful to the company

0 1 2 3 4

Absolutely
It will probably be very interesting to use this tool
With some modifications this tool could be quite …

I do not think so

40 Robustness in Early Phase Software Development

Question 7 did not regard learning to use the program. Two answers from the developers
implied that they did not understand the function in the program. In total there were 23
answers from the professionals. This means that 91% of the answers imply that the function
was understood. This result satisfied requirement NF2. On the other hand we had four
participants and two of them answered that some of the functions was hard to understand.
This means that only 50% of the professionals learned to use all the main functions within an
hour use. This would thus not satisfy the requirement of 90% of the users should learn the
main functions within one hour of use. Research question 1 shown in chapter 4 - Experiment
execution asks if the program was easy to use. Only 9 % of the answers were of the least
positive character, which means that 91% of the answers supported RQ1, which was a great
result. The chart shown in Figure 28 summarizes the results from the second test session.

Figure 28: Mean score for each question asked to the professionals

0

0,5

1

1,5

2

2,5

3

3,5

4

Question 1Question 2Question 3Question 4Question 5Question 6Question 7

41 Chapter 5 - Experiment evaluation

5.3 COMPARING RESULTS FROM THE TWO EXPERIMENTS

In this section the results from the student test and the professional test are compared by
using statistical tests. This was based on the mean score of each question, and only on the
questions that were given to both groups.

5.3.1 SIGN TEST

A sign test is a simple statistical test that compares two objects regarding questions and sets
sign to indicate which object that has the highest answer score. Our sign test checked which
of the two test groups that was most satisfied with our tool. We chose to use a ‘+’ sign if the
students were most positive and a ‘-’ if the professionals were most positive. The results are
shown in Table 3.

Table 3: Sign test for students and professionals

Question Students mean score Professionals mean score +/-

1 3.27 3.50 -

2 3.82 3.50 +

3 3.73 3.75 -

4 3.64 3.25 +

5 3.36 2.67 * +

*Even with a maximum score of 3 it was the students that were most positive. This means
that the sign test would have outputted “+” even if the last professional had answered the
most positive alternative.

In Table 3 it is an equal number of “+” and “-“, which indicate that both groups were equally
satisfied. The sign test is, however, rather coarse and we therefore also performed a paired
t-test. The mean score show that the students were more satisfied than the professionals in
three out of five questions. In question 3 it was almost a tie score and the professionals were
more positive than the students on the question that had the most influence on our choice
of improvements, namely question 1. This means that the improvements made after the
student test seemed to increase the usability of the tool.

42 Robustness in Early Phase Software Development

5.3.2 PAIRED T-TEST

The paired t-test is a variant of the student’s t-test. We used a paired t-test since we had two
different response groups to the same objects - questions. In our case these two treatments
were groups of people with different experience. Our questions, i.e. the objects in the paired
t-test, differed in complexity.

The first hypothesis h0 was that the difference between the two groups was zero. The test
was performed by first calculating a mean score for both the students and the professionals.
This was done by summing up all the scores and dividing by the number of scores from
section 5.1.1 - Quantitative results and section 5.2.2 - Quantitative results for the students
and the professionals respectively. In addition we estimated the variance for each group.
This was calculated using the formula shown below.

ܵௗ ൌ ඨ∑ ൫݀௜ െ ҧ݀൯ଶ௡௜ୀଵ݊ െ 1

Since we were estimating the variance, the number of degrees of freedom was the divisor in
the formula. We use the number of observations in the equation for calculating t0. This
equation is shown below.

଴ݐ ൌ ҧ݀ܵௗ ሺ√݊ሻ⁄

Our degree of freedom was 4 and we chose a significant level of 95%. The critical t values
were retrieved by looking in the t-distribution table. For one-tailed our α-value was 0.05.
This meant that the P(T<=t) had to be lower than 0.05 for the results to be statistically
significant. On the other hand it was an 11% probability that this was a random result and
89% probability that this result was because the two groups were different, thus the
difference was not statistically significant and hence h0 cannot be rejected. This result would
have remained the same independently of the last participant’s choice on the professional’s
question 6. Our difference mean was calculated to 0.23 and a 95% confidence interval from
this difference was [-0.2174, 0.6774]. All the results are shown in Table 4.

43 Chapter 5 - Experiment evaluation

Table 4: Results from the paired t-test

 Students Professionals Difference

Mean 3.564 3.334 0.23

Variance 0.05673 0.16903 0.12985

Observations 5 5

Hypothesized mean
difference

0

Degrees of freedom 4

t0 1.427223

P(T<=t) one tail 0.11335

t Critical one-tail 2.132

P(T<=t) two tail 0,2267

t Critical two-tail 2,776

5.3.3 DISCUSSION OF SIMILARITIES

When comparing the results from the tests summed up in section 5.1 - User interface test
performed on students and section 5.2 - Functionality test performed on professionals some
similarities was revealed. The sign test showed that when the students’ score were the
largest they were in average 0.43 above the professionals’ and in average 0.13 below when
not. This implied that the students overall found the program more intuitive than the
professionals did. There may be several reasons for this. One possible reason was that
students answered the intuitive option because they did not want to admit that they did not
understand the tool. Another possible reason was that professionals interpreted “intuitive”
differently than the students did. In our opinion there was no reason to believe that any of
the students lied when answering. On the other hand we suspected that the professionals

44 Robustness in Early Phase Software Development

were more critical than the students. The mean scores for both students and professionals
are shown in Figure 29. Question 5 and question 7 were not asked to the students.

Figure 29: Mean score for students and professionals

It was important to remember that some modifications were made to the program between
the tests. This especially applied to the question 1 where the professionals found the
program more intuitive than the students. The improvements might be the reason why
question 1 was the only where the professionals had the significant highest score. We were
aware of the fact that it was preferable to use the same system when applying statistical
methods, but this inconvenience was disregarded since improving the tool was more
important. The t-test showed that it was 11% probability that the two groups were different.
This was not statistically significant but it was still a high probability. The results of the
experiments indicate that the students found the program more intuitive than the
professionals. Since there were fewer participants in the business experiment, each
professional influenced the mean score more than each student did. One of the participants
from the company did not understand one question and the percentage might have been
affected of this. This participant was the most critical of all the participants. Based on the
results and our own impressions we believe that there were differences between the
students and the professionals even though there was no statistical significance to support
this claim.

0

0,5

1

1,5

2

2,5

3

3,5

4

professionals

students

45

PART III
IMPLEMENTATION

46 Robustness in Early Phase Software Development

47 Chapter 6 - Architecture

6 ARCHITECTURE

The architecture is the first part of the design phase, and is equivalent to high level design
(Braude 2001). It is followed by detailed design, which is covered in the chapter 7 - Detailed
design. (Bass, Clements et al. 2003) defines the software architecture for a system as the
structure or structures of the system, which comprise elements, the externally visible
properties of those elements, and the relationship among them.

6.1 STAKEHOLDERS

The developers for this project were the authors of this report. We were responsible for all
development, testing and maintenance of the project. All future developers also fall into this
category. Our teaching supervisor was Tor Stålhane, professor at department of Computer
and Information Science, Norwegian University of Science and Technology in Trondheim. As
part of the evaluation of the tool developed we ran two tests, and the persons participating
in these tests are also, in some sense, stakeholders for the architecture.

6.2 VIEWS

According to (Bass, Clements et al. 2003), an architectural view is a representation of a
coherent set of architectural elements, as written by and read by system stakeholders.
Having several views can help represent the architecture in different ways for different
stakeholders. We selected however only one view, the Logical view, a part of the 4+1 view
model of software architecture by (Kruchten 1995). The Logical view primarily supports the
functional requirements, and was implemented by the use of class diagrams. A class diagram
shows a set of classes, with their relations; inheritance, usage, association, and so forth. The
logical view for our architecture is shown in section 6.4 - Our architecture.

6.3 MODEL-VIEW-CONTROLLERS

Model-View-Controllers (MVC) is a well-known architectural pattern. An architectural
pattern is a description of element and relation types together with a set of constraints on
how they may be used (Bass, Clements et al. 2003). In MVC the Model represents the
knowledge in the system, the View is the visual representation of the model and the
Controller is the connection between the Model and the View. It provides the user with
output by using the views, and allows the user to give input through menus and other
controls (Reenskaug 1979). A schematic of MVC is shown in Figure 30.

48 Robustness in Early Phase Software Development

Figure 30: Model-View-Controllers2

6.4 OUR ARCHITECTURE

MVC is a pattern that was well suited for the project. No thorough process of selecting the
pattern was performed, as we were united in the choice of pattern from the beginning. The
project is divided into three packages; Model, View and Controller, these are described
below. The architecture is shown in Figure 31.

The Model package represents the data, which are the Input items with their child items. We
also implemented a class with methods to load the data into suitable classes and store
changes to the model. It contains one class with tools to load and save the data, and classes
to represent the items.

The Controllers package handles the logic between the View and the Model. It is a single
class, with static methods for saving, loading and editing the Model.

The View package contains one class, namely a window form that presents the content of
the Model using appropriate user controls.

2 http://en.wikipedia.org/wiki/Model-view-controller

49 Chapter 6 - Architecture

Figure 31: The architecture of our project

50 Robustness in Early Phase Software Development

51 Chapter 7 - Detailed design

7 DETAILED DESIGN

This chapter covers the detailed design. It succeeds the architecture, and the goal is to
prepare the project for the implementation by providing an implementation blueprint for
the programmer.

7.1 CHOICE OF TECHNOLOGY

Since some design decisions depended on the technology used, the choice of technology
was done as the first part of the design. Since we were making a prototype, we based our
choice mainly on the GUI programming abilities of the technology, as this would be the most
important part of the project. The two options are shown below, along with the decision.

7.1.1 JAVA

Java was the only programming language which we had learned in-depth. Still, we were
novices in GUI programming in Java. Java does not offer a GUI editor, though add-ons to for
instance Eclipse3 can be used. To run a Java program, the Java Runtime Environment must
be installed on the computer in use, which was considered a limitation. CVS4 or SVN5 were
our options for version control with Java.

7.1.2 C#

Based upon Microsoft’s .NET platform, C# is developed using the programming tool Visual
Studio. Through MSDN Academic Alliance6 we could download and use Visual Studio 2008
Professional Edition for free. The syntax in C# is similar to the syntax of Java, which meant
that it would be easy adaptable for us. Skjervold, who was in charge of the development,
had been working with C# previously while Haga was new to it. Working with GUI in Visual
Studio is easy and intuitive, based on drag and drop functionality. It is also easy to create an
EXE-file to use during testing. Visual SourceSafe 6.0d, also available through MSDN Academic
Alliance, would be used for version control.

3 http://www.eclipse.org/

4 http://www.nongnu.org/cvs/

5 http://subversion.tigris.org/

6 http://msdn60.e-academy.com/NO_700027

52 Robustness in Early Phase Software Development

7.1.3 OUR CHOICE

We chose to use C# for this project. The superiority in GUI programming was the most
important factor. We did not perform a thorough analysis of many technologies as the most
important factor was that we had to be satisfied with the use of the technology. This means
that the programming languages that we were not comfortable with were not taken into
consideration. Thus, our own opinion of the most suitable technology was heavily weighted
and after some initial testing of both Java and C# the choice was made. In retrospect we
have no regrets as C# proved to be well suited for our project.

7.2 GRAPHICAL USER INTERFACE

The first part of the design was the graphical user interface (GUI). The usability of our
program had the highest priority, and hence the layout of the GUI was our first design
decision. The GUI was also important for the remaining design process.

7.2.1 DESIGN

The first design of the GUI was done by sketching on paper. This took about two days and
included studying the relevant user controls in C#. The user controls and their functionalities
were necessary to understand how to make good GUI decisions during the sketching. The
sketching resulted in Figure 32.

Figure 32: The early sketch of the GUI

53 Chapter 7 - Detailed design

7.2.2 USER CONTROLS

The two boxes Input items and Selected items in Figure 32 symbolize hierarchical trees, like
the folder view in Microsoft Windows. Hierarchical trees are common user controls7 for
programming platforms, and were a good solution for presenting our data model as it is
hierarchical. In C# these controls are named TreeViews8. The reason for using two trees was
that Input items should contain all the Input items in the database, while Selected items
should only contain the Input items that the user find relevant for his program. In addition,
Selected items show all underlying items to the Input items. The items menu provides
operations on the chosen item in one of the trees, and is a set of buttons or other
appropriate user controls. Add items and Delete items are the two most intuitive actions, but
other functionality can be added as the need arises. Item information presents the
information of the highlighted item in the trees, using text boxes or similar user controls.
Save, Cancel, Finish and Quit are all buttons with self-explanatory functionalities.

7.3 CLASSES

The next step was to create a detailed class diagram. Only the most important parts of the
classes are included in the diagrams in Figure 33 through Figure 35, as it would overload the
diagrams if every event, method and parameter was included.

7.3.1 MODEL

Developing a good data model to represent the items used in the tool was important. Our
model was named NodeModel. The items used in the TreeView control are of the class
TreeNode, so NodeModel was set to inherit from TreeNode. To store the model in between
sessions a few options was considered: Database, XML and Serialization. A database was
considered an exaggeration for this project, and given the hierarchical model it would be
difficult to implement and parse the database. Storing the information in an XML file was a
good and suitable option, and as good as Serialization, which was the solution that was used.
Serialization is a process of saving an object onto a file or a similar medium9, and was chosen
since we were familiar with the method. C# has good and simple mechanics for this, and we
had used it before. We thus chose to use this technology. In retrospect we learned that
Serialization lead to some difficulties, for instance that a serialized file could not be reused if
the structure of the code was changed. This meant that a new file had to be saved each time

7 A User control allows the user to communicate with the system, for instance a Text box

8 http://msdn2.microsoft.com/en-us/library/system.windows.controls.treeview.aspx

9 http://en.wikipedia.org/wiki/Serialization

54 Robustness in Early Phase Software Development

some important parts of the code were changed, which lead to additional work. Hence, XML
would probably have been a slightly better and more code independent choice and should
be considered for further development.

To allow NodeModel to be serialized it was set to implement the interface ISerializable. Also,
NodeModel was set to be abstract. An abstract class cannot be initialized, but can be
inherited from. The classes that inherit from an abstract class must implement all abstract
methods in the parent class. Hence, they provide its children with a recipe for the methods
they must implement. This was suitable for NodeModel, since there are not any instances of
the class itself, only of its children.

For each item in our model, a class was created that inherited from NodeModel. These were
Input item, Failure mode, Barrier, Action and Test. These classes implement more specific
versions of the AddChild and AddEmptyChild methods which they override from the parent
class NodeModel. The Model class is the link to the Controller package. It implements two
methods: The LoadModel method retrieves (de-serializes) the data from a file onto the data
model, and SaveModel stores (serializes) the data model objects to a file.

The detailed design for the Model package is shown in Figure 33.

Figure 33: The detailed design of the Model package

55 Chapter 7 - Detailed design

7.3.2 CONTROLLER

The Controller package contains only one, static class Logic, shown in Figure 34. ImageList is
a common list of images that can be used in the user controls. TreeViewLeft and
TreeViewRight are the two TreeViews in the View. Having them in the Logic class makes it
easier to perform tasks on them. The View package handles the presentation of the trees to
the user. The first time the trees are accessed they are loaded from the serialized file.

AddChildItem adds a child item to the input parameter Parent. It uses the method
Model.NodeModel.AddEmptyChild. Adding an Input item differs from adding other items, as
this is the top item in the TreeView. There is a special method for this, namely AddInputItem.
DeleteItem deletes the input parameter Node, and PrintResults shows the results of the user
session. The results are presented as a graphical representation of the items in
TreeViewRight. SaveToModel save the changes made to the nodes, by using
Model.SaveModel.

Figure 34: The detailed design of the Controller package

7.3.3 VIEW

The View package has only the class MainForm, shown in Figure 35. It inherits from the C#
form class System.Windows.Form, and is used to present the information in the Model.

CheckForUnsavedItems trigger when a new item is highlighted. It checks if the previous item
was changed without being saved. If so, the user is prompted with a question whether he
wants to save or cancel these changes, and the chosen action is made. DeleteItem ask the
user if he is sure about his decision to delete the highlighted item, and remind him that this
is irreversible. The Logic class then deletes the item if the user confirmed the deletion.

View contains many events thrown by the user controls, which again call upon the Logic
class to perform the requested operations. Since there are many events, only the most
important are mentioned here. Most of the events are simple as they only do one call to the
Logic class. For instance AddInputItem only use the corresponding Logic method
Logic.AddInputItem to add an Input item to a tree. Every button has an event for clicking the
button. The textboxes has TextChanged events to determine when the name or description
for an item is changed, along with a KeyUp event to determine when the keyboard button

56 Robustness in Early Phase Software Development

enter is pushed. For the TreeViews there are several events. They handle both GUI specific
actions, as moving items between the two trees (as mentioned before, this does not affect
the Logic and Model), and Logic actions, as adding or removing items.

Figure 35: The detailed design of the View package

57 Chapter 8 - Implementation

8 IMPLEMENTATION

This chapter describes the implementation of the tool that was designed in chapter 7 -
Detailed design, along with testing of the requirements. A user manual for the tool is also
added as part of chapter 8.

8.1 CLASSES

This section shows the final classes of the implementation, with comments on
implementation choices made. The details of the classes that were explained in the design
are not elaborated here.

8.1.1 MODEL

The classes for the Model package are shown in Figure 36, and are based on the design in
Figure 33. The fields are left out, since they are not important for understanding the
implementation, and are so many that it would overload the diagram. The class Model was
renamed to Tools to avoid confusion between the class and the package. In Tools, the
methods LoadTree and SaveTree are equivalent with LoadModel and SaveModel in the
design. LoadTree creates an empty TreeView, fills it with the items from the serialized file,
and returns it. SaveTree saves the content of both TreeViews to a file; hence it does not
differentiate on which TreeViews the items are in. For the NodeModel class, there are some
additional methods in the implementation compared to the design. ShowChildren is used to
show or hide the children of an Input item, since they should not be shown in the left tree
and should be shown in the right tree. This method uses the field _children, which is
discussed in section 8.4 - Discussion.

UpdateNode uses ShowChildren to update an item when a new child has been added.
CheckChildren sets the status of all children of an item to checked or un-checked, based on
the Boolean input parameter. This method is used for instance when an item is un-checked;
all the children should then also be un-checked.

GetObjectData is a method inherited from ISerializable interface, and defines the fields that
are included in the serialized file. There is also a constructor for the serialization, where the
fields are de-serialized.

58 Robustness in Early Phase Software Development

Figure 36: The class diagram for the Model package

59 Chapter 8 - Implementation

8.1.2 VIEW

The class diagram for the View package is shown in Figure 37. The difference between the
designed class diagram in Figure 35 and the final class diagram is noticeable, as only the
most important events and methods were included in the design. This was because many of
the events and methods needed for the implementation were difficult to indentify during
the design.

The EventBtnCancelChange_Click event and other similar button events are triggered when
the buttons are clicked, and most of them have simple calls to the Logic. Some of the user
controls use the same event, for instance the event EventDeleteItem is used by the delete
button in the upper right menu, the right click menu and when pushing the delete button on
the keyboard. All the EventTree events are related to the TreeViews, and these events have
intuitive behavior according to their names. For instance EventTreeViewLeft_DoubleClick is
fired when an item in the leftmost tree is double-clicked. The SelectedNode property is the
item that is highlighted in the program in either of the TreeViews, as only one node in the
program can be highlighted at any time. The Set methods are used to configure the buttons
and text boxes depending on the highlighted item in the TreeViews, while SaveData tells the
Logic to save changes made to the Model.

Figure 37: The class diagram for the View package

60 Robustness in Early Phase Software Development

8.1.3 CONTROLLERS

The class diagram for the Controllers package is shown in Figure 38. The implementation of
the Logic class was close to the design; the only difference was the implementation of two
AddInputItem methods, one for each tree. This was done to ease the use of the methods for
the View. The XML methods are used by the method PrintResults, the same goes for the
fields xDoc, htmlLoc and xmlLoc.

Figure 38: The class diagram for the Controllers package

61 Chapter 8 - Implementation

8.2 GRAPHICAL USER INTERFACE

The final GUI is shown in Figure 39. On the left hand side there is a walkthrough for the tool.
For a regular user it is unnecessary in the long run, and overlapping with the user manual in
section 8.4 - User manual. Our experiences were that the walkthrough was not used much
by the testers as they started using the program immediately in a way they found intuitive. It
was kept nevertheless, as it is good to have for a user that is stuck.

The leftmost tree Input items database contains every Input items in the database. The
rightmost tree Selected items contains the Input items which the user has selected as
relevant for his design. The Input items can be moved between the trees in several ways:

• Checking and un-checking the checkbox on the Input item

• Double-click the Input item

• Right click and select Move item to Selection tree

• Use the Move buttons beneath the trees

• Click the arrows “>>” and “<<” between the trees

• Drag and drop the Input items

Right click move and double-click only works when the Input items are in the leftmost tree.
Since they are more often moved from left to right than from right to left, there are more
options for the left to right scenario. The user only moves an Input item from right to left
when he regrets choosing it for his requirements. The checkboxes on the items are used to
select the items that the user finds relevant for his design. When an Input item in the
rightmost tree is un-checked it is moved back to the leftmost tree. The child items of an
Input item can be un-checked if the user finds the Input item relevant, but not the child
item.

When an item is highlighted the tool provides several options. The information of the item is
shown in the group box Item information; the description of the item is also shown as tool
tip10 when the mouse cursor is hovered above the item. Changes to the item can be made in
Item information, and saved either by using the Save button or by clicking the keyboard
button Enter when you are done. The Cancel button removes all unsaved changes made to
an item. If changes are made, and the user attempts to select another item without saving,
he is prompted on whether he wants to save or discard the changes made.

The group box Menu in the upper right corner is customized to the highlighted item. The
upper button Add Input item is always enabled; it adds a new Input item to the leftmost

10 A small box that appears with information regarding the item being that is being hovered
over, see example in Figure 43.

62 Robustness in Early Phase Software Development

tree. The middle button changes according to the highlighted item. When an Input item in
the left tree is highlighted, the button is disabled since you need to move the Input items to
the right tree to add child items to it. When an item in the right tree is highlighted, the
button is called Add <child item>, for instance when a Failure mode is highlighted the button
is called Add Barrier. The last button in the menu; Delete item, is enabled whenever an item
in any of the trees is highlighted. Deleting an item can also be done using the keyboard
button Delete.

The lower group box Model shows the data model with the relationships between the items
in the data model. This group box has no other functionality than to show the data model to
the user. The Quit button shuts down the program, while the Finish button saves the items
in the right tree to an html file and launches it. We experienced some problems with the
launching of the htm file; launching a program can be prohibited by some systems.
Therefore, an information box pops up describing that the html has been created and that it
should be launched in a browser window. The user can then launch it if the system does not
do so.

63 Chapter 8 - Implementation

Figure 39: The final GUI

64 Robustness in Early Phase Software Development

8.3 TESTING

The testing of the tool was performed by the authors. The purpose of this activity was to
confirm the realization of the requirements in chapter 2 - Requirements specification, and to
check for errors in the implementation. The tests are functional simple tests, not following a
standard as for instance IEEE-829 (IEEE 1998). This standard was considered, but found
overkill for this implementation. All errors found in the tests were corrected immediately.
The tests of the requirements are shown in Table 5 through Table 9.

Requirements F7 through F10 were not tested, as these requirements could be confirmed
through observation of our model in Figure 36, and thus did not need functional tests. These
requirements stated that the model should implement a one-to-many relationship for the
items, meaning that each item can have:

1. Only one parent
2. Multiple children.

These requirements were realized through the inheritance of the TreeNode class, which has
these requirements implemented.

65 Chapter 8 - Implementation

Table 5: Test 1

Test ID Test 1

Test name Item presentation

Requirements affected F1, F2, F4

Test description Expected results Results

Start the program in an empty folder. Check
that the Input items are presented in the
left tree after selecting OK to the database
question.

The Input items are
shown in the left tree.

OK

Check the Input item Name in the left tree.

Name is moved to the
right tree, Failure
modes and other
items are shown
beneath it

OK

Select Name and some of the child items.

The name and
description of the
items should be
displayed

OK

66 Robustness in Early Phase Software Development

Table 6: Test 2

Test ID Test 2

Test name Add Input items

Requirements affected F3

Test description Expected results Results

Add a new Input item to the leftmost tree
by right clicking and selecting Add Input
item from the menu.

An Input item is
added to the left tree.

OK

Add a new Input item to the rightmost tree
by right clicking and selecting Add Input
item from the menu.

An Input item is
added to the right
tree.

OK

Add a new Input item to the leftmost tree
by using the menu button Add Input item in
the upper right corner.

An Input item is
added to the right
tree.

OK

67 Chapter 8 - Implementation

Table 7: Test 3

Test ID Test 3

Test name Add child items

Requirements affected F5

Test description Expected results Results

Add a new Input item to the rightmost
tree, name it Input1. Right click Input1 and
chose Add Failure mode from the menu.

A Failure mode called
New failure mode is
added to Input1

OK

Highlight Input1 in the right tree. Click the
button Add Failure mode in the upper right
menu. Name it FM1.

A Failure mode called
New failure mode is
added to Input1. The
name changes to
FM1 when you save.

OK

Right click FM1 and chose Add Barrier from
the menu.

A Barrier called New
Barrier is added to
FM1

OK

Mark FM1 in the right tree. Click the
button Add Barrier in the upper right
menu. Name it B1.

A Barrier called New
Barrier is added to
FM1. The name
changes to B1 when
you save.

OK

Right click B1 and chose Add Action from
the menu.

An Action called New
Action is added to B1

OK

Mark B1 in the right tree. Click the button
Add Action in the upper right menu. Name
it A1.

An Action called New
Action is added to B1.
The name changes to
A1 when you save.

OK

Right click A1 and chose Add Test from the
menu.

A Test called New
Test is added to A1

OK

Mark A1 in the right tree. Click the button
Add Test in the upper right menu. Name it
T1.

A Test called New
Test is added to A1.
The name changes to
T1 when you save.

OK

68 Robustness in Early Phase Software Development

Table 8: Test 4

Test ID Test 4

Test name Delete item

Requirements affected F6

Test description Expected results Results

Use Input1 from Test 3 in
Table 7, or redo the tasks there to create it.
Select Test T1 under Input1. Click Delete.

A window pops up
asking if you are sure
of your choice to
delete the item

OK

Click Cancel

The window
disappears, and the
item remains in the
tree

OK

Use the upper right corner button Delete
item on T1. Click OK on the window when it
appears

The window
disappears and T1 is
removed.

OK

Quit the program, and start it from the
same location.

T1 is not present in
the trees.

OK

Comments

This test tests some of the program functionality not mentioned in the requirements, but
elements that should be tested nevertheless.

69 Chapter 8 - Implementation

Table 9: Test 5

Test ID Test 5

Test name Results

Requirements affected F11

Test description Expected results Results

Use Input1 from Test 3 in
Table 7, or redo the tasks there to create it.
Make sure that Input1 is in the right tree.
Click the button Finish.

Your browser pops up
showing the left tree.
Results.htm is put in
the program folder.

OK

Comments

This test tests some of the program functionality not mentioned in the requirements, but
elements that should be tested nevertheless.

70 Robustness in Early Phase Software Development

8.4 DISCUSSION

8.4.1 THE CHILDREN FIELD

The _children field in the NodeModel was an implementation decision which was regretted.
Since the child items of an Input item sometimes are shown and sometimes not, a list of the
child items was needed in addition to the field Nodes inherited from TreeNode. Nodes
contain all child nodes that are shown beneath a node in a tree, and at the time of
implementation we could not find a way to hide the children when they were in the left tree.
Therefore, _children was implemented, and when the Input items were moved between the
trees, the items were moved in and out of Nodes from _children. This solution was not ideal,
and there are probably better solutions to this problem. When this solution was discovered,
it was decided to not change it for two reasons:

1. The quality of the code was not a main priority for this project
2. For any further work with this project, as described in chapter 9.2 - Further work, we

recommended a new design and implementation. Thus, spending time on fixing poor
implementation decisions such as this was not prioritized in the latter part of the
project

We have no suggestions for alternative solutions.

8.4.2 USING THE RESULTS

The results from our system can be used by developers when handling robustness issues
during designing and implementation of the software. Figure 40 shows how the user can first
use our system and then use the results to design and implement the software.

Figure 40: The results can be used in the user’s software development process

Use case

Results (Actions,
tests etc.)Our systemUser

71 Chapter 8 - Implementation

When the developer has chosen all his Input items and child items, the Finish button in the
program shall be clicked. The developer is shown the results as an overview of Failure modes
and information of how to prevent these Failure modes, i.e. Barriers and Actions. The Tests
will help the developer to verify that the Failure modes preventions are correctly
implemented.

Figure 41 shows the htm result page. This example is a continuation of the example in
Appendix E.1.6 – Data structure. The user in this example has chosen the Input items Name
and Zip code. This result page gives the user an overview over which Failure modes, Barriers
and Actions that should be considered when designing and implementing the software. For
this example we have chosen the Failure modes Illegal characters and Empty name for
Name. The developer is now aware of these threats in an earlier phase than before, and this
allows him to improve the design and implementation cheaper than a correction in a later
phase. The same goes for the Failure modes Wrong input size and Illegal characters for the
Input item Zip code. In addition to Failure modes, Barriers and Actions, the developer is also
shown Test suggestions. If test-driven development is preferred, our results make it easy to
develop the Tests extracted from the tool before writing the code. Even though Tests are not
developed early it is useful to be aware of these in an early phase.

Figure 41: Result page from our program

The results helps the developer handle robustness aspects related to the given use case. For
each Input item the developer has at least one Failure mode, Barrier, Action and Test. In
most cases the Actions are the most important information for the developer regarding

72 Robustness in Early Phase Software Development

implementation. Each of the Actions from this example is shown as pseudo code in Figure
42.

Figure 42: Pseudo code from Actions for the example

73 Chapter 8 - Implementation

8.5 USER MANUAL

8.5.1 INTENTION

The intention of this tool is to collect and save robustness related experiences and choices
made in the development of systems, and use these to increase the robustness in latter
system development. The value of the tool increases each time it is used, as the user
increases the information in the database each time any item is added.

8.5.2 ITEMS DESCRIPTION

8.5.2.1 INPUT ITEMS

An Input item is an input to a system, either coming from the user or from another system.

Example: Phone number.

8.5.2.2 FAILURE MODE

A Failure mode is a mode, way or manner in which an Input item can cause the system under
development to fail during execution.

Example: A letter is entered into the Phone number and causing an exception when the
program is trying to cast the string to an integer.

8.5.2.3 BARRIER

A Barrier prevents a Failure mode from occurring.

Example: Prevent non-integers from being accepted as a Phone number.

8.5.2.4 ACTION

An Action is used to realize the Barrier in your program.

Example: An if-statement checking if the Phone number is an integer.

74 Robustness in Early Phase Software Development

8.5.2.5 TEST

A Test, in this context, is the same as tests in system development in general. It is used to
confirm the functionality of an Action, see section 8.5.2.4 - Action.

Example: Enter “2223222A” in the Phone number field; make sure it gives a useful error
message and that the system can continue execution afterwards.

8.5.3 USING THE TOOL

The first step in using the tool is to identify which Input items your system has. Once this list
of Input items is ready, you can start using the tool. Look for your Input items in the Input
items database, the leftmost tree in the program. Select all Input items that match your
system’s Input items; they are then moved to the rightmost tree. For all additional Input
items you have in your system that were not in the database, add them by right clicking or
using the upper right menu. In Figure 43 the leftmost tree to select Input items from is
shown. In the upper right corner the button Add Input item which can be used to add Input
items is located. The three disabled buttons are activated when an item is highlighted. Add
item is used to add a child item to an item, for instance a Test under an Action. Delete item
removes an item completely from the database. In the down-right corner a description of
the data model of the program is shown. The child item of Input item is Failure mode, which
has Barrier as child item etc.

Figure 43: The first step, selecting input items

75 Chapter 8 - Implementation

The second step is to select and add child items for all your Input items in the rightmost tree
Selected items. If there are items that you find irrelevant for your program, deselect them by
un-checking them and they are left out in the rest of the process. Deleting an item is only
needed if you are sure that an item will never be relevant for any other systems. Remember
that a deletion cannot be undone. For all the Input items you added yourself, relevant child
items must be added. Figure 44 shows the rightmost tree with the selected Input items. As
you see, T1 and T2 under Name are un-checked, which means that these items are not
shown on the result page. A new Input item Phone number is added, with new child items
which need to be specified.

Figure 44: The second step, selecting child item

The final step is to click the Finish button to create the htm-file with the item names and
descriptions for your selected items. It should pop up in your browser, but if it does not you
can find Results.htm in the same folder as your program. Once you have the results, you can
print them and implement the items in your system to increase the robustness.

76 Robustness in Early Phase Software Development

77 Chapter 9 - Conclusions

9 CONCLUSIONS

9.1 COMBINING WITH JACOBSON’S METHOD

Jacobson’s method was presented in section 1.1 - State of the art. We observed that
combining Jacobson’s method with our program could solve some issues and this allowed us
to make some shortcuts. Jacobson’s method describes how the actor should only be able to
communicate with a boundary object. The boundary object takes care of the input
validation, and when combining this with our program we were able to find actions for each
Input item. Figure 45 shows the rules for Jacobson’s method.

Figure 46 shows how our system can be combined with Jacobson’s method. For each Input
item in the use case, the user should apply our tool to find Failure modes, Barriers, Actions
and Tests. It is the Actions and Tests that will be used further. The system provides actions to
the use case on how to secure the input validation. Combining our system with Jacobson’s
method is advantageous for users that previously only used one of them. When using the
Jacobson’s method the actor-boundary object relation are served by our system, and this
means that the use case will be served with Actions to better the robustness regarding the
Input items from the user. When a user only uses our system it could be useful to combine
with Jacobson’s method to provide more benefits to the use case than only robustness
realization.

Figure 45: Jacobson’s rules

78 Robustness in Early Phase Software Development

Figure 46: Our system interacting with Jacobson’s input validation

9.2 COMBINING WITH TEST-DRIVEN DEVELOPMENT

Test-driven development is a software development technique that requires that the tests
are written before the actual program code. This ensures rapid feedback after changes to
the code. An automated unit test that defines the requirements of the code has to written
before the code (Beck 2003). Since our tool support the developer with suggestions for
Tests there is an opportunity of using our program in test-driven development. The results
from our program make it easy to develop the Tests extracted from the tool. This means that
the tests regarding the robustness in the development can be implemented by using our
program in the test-driven development.

Using the tool in test-driven development was not a goal for this thesis, but the opportunity
was realized at the end of the project. Thus there was no time to elaborate on this
possibility, so we briefly scratched the surface when it comes to the possibilities. For any
further development of the tool, the collaboration with test-driven development could be
looked into more thoroughly.

79 Chapter 9 - Conclusions

9.3 FURTHER WORK

This section contains the work which we did not have either time or resources to finish as a
part of this thesis, but were important for further development. As extra work and
requirements came up during our work, evaluations were made to determine which tasks
that would be prioritized in the limited time that was left. The tasks mentioned below were
downgraded, mostly because they were not important to the project, but more of a final
touch.

9.3.1 COPYING NODES

In both the business test and student test, copy functionality for the nodes in the trees was
requested. This could be a part of the right click menus for the trees. It should not be a
difficult task, as the NodeModel class offers methods for copying nodes.

9.3.2 UNDO

Undo functionality is common in most programs, and was requested in both our tests. This
was considered an important task, but found too time consuming to complete. One way of
implementing an undo function is to store many serialized files so that upon undo request,
an older file could be loaded. However, as the Model is specified and implemented, this
causes problems. The Model does not separate between the two trees in the program, it
saves all the nodes without knowledge of which tree they belong to at the time of saving.
This means that if an old file is loaded all the nodes are be put into the same tree, namely
the left one. If this method should be used for implementing undo functionality, the
serialization would have to differentiate between the two trees.

9.3.3 PROJECTS

The tool has no functionality for saving info on which items the user has moved to the right
tree from time to time, as only changes made to the items are saved. In the business test it
was requested that the choices made (the right tree of selected items) could be saved. The
developers imagined that one would use the tool several times in a development project,
and thus saving the trees would be needed. The main reason for not implementing this was
the amount of work needed. Some major changes would have to be made to the tool, and
the design and time-frame did not allow these changes. Our suggestion for this functionality
is to use a separate serialized file for each project, and allowing loading and saving project in
the tool. One common database of items would exist, but instead of moving the items
between the trees they would be copied. The user could then make changes to the items
that would only apply to the current project and not the common database.

80 Robustness in Early Phase Software Development

9.3.4 CHECKBOXES AND DELETION OF NODES

The checkboxes next to the items have been an issue. As mentioned in section 7.2 -
Graphical user interface, they are used to select which items are relevant for the user’s
design. During the experiments, however, it became clear that these checkboxes were not
intuitive to use. When asked to remove the items that were irrelevant for the design, the
users chose to delete the items instead of un-check them, even if the walkthrough explained
the proper way to do it. Hence, the use of checkboxes has to be reconsidered; as the users
seem to use deletion for the purpose the checkboxes were meant for. A solution of this
problem can be to remove the checkboxes and separate between the database and the
items in the rightmost tree, like suggested in section 9.3.3 - Projects.

9.3.5 DESIGN OF THE PROTOTYPE

This is the most important part of the further work in our opinion. Much of the work done in
this project was to implement good GUI and functionality for the tool. The requirements for
the project were created by the authors, and as this work has been research driven, there
has been some trying and failing, leading to a design and implementation that is not ideal.
Hence, for further work regarding the tool, we suggest starting over with the design phase
and create a new design and implementation. This should not be too time consuming, and
will, in our opinion, pay off in the long run. Implementing all functionality mentioned in this
chapter would easier if it was included in the original design. The new design can benefit
from the experiences and results of this thesis, and elements from the current design and
implementation can probably be used. Some of the other suggestions for further work
would create some issues with the current design and implementation, e.g. saving progress
from time to time as mentioned in section 9.3.3 - Projects.

81 Chapter 9 - Conclusions

9.4 FINAL THOUGHTS

9.4.1 PROCESS

Our work process throughout this thesis has been iterative, changing between development
and user tests. We started by developing a prototype of the tool, and then tested it on a
group of students for input on usability and errors in the implementation. This was followed
by a new phase of development before testing the updated prototype on developers in a
software development company. Finally, we implemented the changes suggested and
extracted from the last test, which resulted in the tool delivered with this report.

We have few regrets about our work process. The tool was developed for use in the
industry, which we included during the entire development, from requirement specification
through testing. During the early stages of the thesis we had a somewhat vague idea of how
the tool would look in the end. Our mental model evolved throughout the development, and
this led to a good result. However, if we had spent more time elaborating on how the tool
would end up, we could have discussed our ideas with the industry and made changes
correspondingly. Instead, we got this input during testing, and thus some suggestions we got
were too late to incorporate into the system.

9.4.2 EXPERIMENTAL THREATS

In our experiments there were some threats that we could not prevent before the
experiments started. The threats we revealed were the following:

• Selection of participants

• Hypothesis guessing

The selection of participants was done by advertising to students participating in the course
TDT4140 Software Engineering11. They were offered a wage corresponding to NTNU’s policy
to participate, and the students that were interested volunteered for the experiment. People
volunteering for experiments may be more positive in their answers than a non-volunteer,
because they take an interest in the experiment. However, since the students collected a
reward it was not necessarily the interest in the experiment that made them participate in
the experiment. We therefore conclude that the volunteering for the experiment did not
affect the results significantly.

It is hard to prevent people from guessing the experiment’s hypothesis. The participants
were asked to provide their opinions, and it was made clear that the qualitative descriptions

11 http://www.idi.ntnu.no/emner/tdt4140/

82 Robustness in Early Phase Software Development

were more important than the multiple choice answers. This may have prevented them from
trying to guess the hypothesis. There were no answers that we suspected as guessing, and
some of the participants did not answer all the written questions since they probably did not
have a strong opinion or comment. There is no reason to believe that the participants were
not sincere in their answers in any of the two test sessions.

9.4.3 RESULTS

The developed tool is the foundation of the thesis, and all requirements in chapter 2 -
Requirements specification were fulfilled. Our expectations for this prototype were high, but
as mentioned in section 9.4.1 - Process, we did not know how the tool would end up. Our
hope during the early development phases was that it could be useful for the industry when
we had completed the development. Later we realized that this was unrealistic goal, and we
began considering the tool as a prototype instead of as a final product. Hence, the
documentation of the tool has as high value as the tool itself. However, the potential for the
tool is in our opinion high, and we got good response from the company that tested the tool.
Since they previously had expressed some skepticism to the tool and its usefulness, we were
satisfied with feedback after they tested it.

The design of the tool is good, but in retrospect some changes will be advantageous. These
changes are needed to fulfill some of the tasks in section 9.3 – Further work to increase the
quality of the design and to make the code more efficient. The code, or at least parts of it,
can be reused in a new design if it does not divert too much from the current design. Our
test results have high value, as they state what the users think of the tool as it stands. When
creating a new design, these test results should be taken into consideration.

The research questions in chapter 4 - Experiment execution were used to guide our
experiments. RQ1 looked to determine if the tool was easy to use. In section 5.1.1 -
Quantitative results the student test results show that none of the students answered the
most negative alternative in the questionnaire, while 50 % of the system developers did, see
section 5.2.2 - Quantitative results. Still, 91 % of the total answers were above the most
negative alternative, and hence we conclude with a positive answer to RQ1.

RQ2 looked to determine if the tool had utility value for the industry. To conclude upon this
the answers to question 7 in Figure 27 was considered. One participant answered that it
would not be useful, one that it could be and two participants that it would probably be
interesting to use. We were satisfied with these results, especially since we also had several
positive remarks regarding the value of the tool during the interview. The company has after
the experiment shown interest in further development of the tool, which indicates that they
see potential in the prototype. Thus we conclude that the tool is valuable for the industry.

83

PART IV
BIBLIOGRAPHY AND

APPENDICES

84 Robustness in Early Phase Software Development

85

BIBLIOGRAPHY

1. Bass, L., P. Clements, et al. (2003). Software architecture in practice. Boston, Addison-Wesley.

2. Beck, K. (2003). Test-driven development: by example. Boston, Mass., Addison-Wesley.

3. Braude, E. J. (2001). Software engineering: an object-oriented perspective. Hoboken, N.J., Wiley.

4. Huhns, M. N., V. T. Holderfield, et al. (2003). "Robust Software Via Agent-Based Redundancy."

5. IEEE (1998). "IEEE standard for software test documentation." IEEE Computer Society.

6. Kruchten, P. (1995). "The 4+1 View Model of Architecture." IEEE Softw. 12(6): 42-50.

7. Reenskaug, T. (1979). Models - Views - Controllers: 2.

8. Ringdal, K. (2007). Enhet og mangfold: samfunnsvitenskapelig forskning og kvantitativ metode.
Bergen, Fagbokforl.

9. Rosenberg, D. and K. Scott (1999). Use case driven object modeling with UML: a practical
approach. Reading, Mass., Addison-Wesley.

10. Skjervold, Ø. and H. Haga (2007). "Robustness in Software Development."

11. Turlapati, R. and M. N. Huhns (2005). "Multiagent Reputation Management to Achieve Robust
Software Using Redundancy."

12. Wohlin, C., P. Runeson, et al. (2000). "Experimentation in software engineering."

13. Zhou, J. and T. Stålhane (2004). "A Framework for Early Robustness Assessment."

86 Robustness in Early Phase Software Development

87 Appendix A : Business experiment document

APPENDIX A BUSINESS EXPERIMENT DOCUMENT

We are two master students that are developing a support application that will be useful for
the software industry. Our main focus is to discover problems earlier than it is possible with
today’s practice. Textual use case is a known documentation of requirements, and will be
used as the source of the users input in our program.

The experiments will be used to determine how user-friendly our program is and how
useful this tool might be for your company.

Textual use case contains a sequence of tasks that shall be performed. The parts of the
textual use case that are input from the user in our users system are the parts that are of
interest to our application. We will first show small example.

A.1 EXAMPLE

The example shows how our application can be used. A textual use case describing the
insertion of person data is elaborated, with focus on the input of zip codes. The following is a
description of how the system shall handle this textual use case.

A.1.1 TEXTUAL USE CASE

The textual use case describes how the user inputs data and is presented Table 10. A step in
this use case is register zip code, which is the part this experiment will elaborate on. Zip
code is referred to as an input item in the application, and the application will extract failure
modes for this item. The system will identify this input item, either automatically or
manually through a user action. When the system has registered zip code as an input item, it
displays the failure modes currently connected to this input item.

88 Robustness in Early Phase Software Development

Table 10: Textual use case example

Register person information

Standard scenario

1. Register name

2. Register address

3. Register personal id number

4. Register zip code

5. Update database

6. User gets message whether the registration was successful or not

Exceptions

3a: Illegal personal id number

 .1: System alerts user

 .2: User returns to step 3 or aborts the session

4a: Illegal zip code

 .1: System alerts user

 .2: User returns to step 4 or aborts the session

89 Appendix A : Business experiment document

A.1.2 FAILURE MODE FOR ZIP CODE

A failure mode describes how the input item can create a failure in a system. A failure mode
is a possible way to fail, it is not necessary a failure. The application presents the user with
failure modes that fit the input item zip code. In our case the application finds two failure
modes:

FM1 (Too long) – The input length is wrong
FM2 (Illegal characters) – The input is not an integer

Also, the user chooses to insert a new failure mode:

FM3 (Not valid) - The input is not a valid zip code.

FM1 and FM2 are general failure modes that can be used for many kinds of input items, not
only zip codes. This also applies for the barriers, actions and tests.

A.1.3 BARRIERS

These are the elements that should prevent the failures from the taking place. The following
barriers are suggested by the system:

B1 (FM1) – The input length should be of length n
B2 (FM2) – The input should be an integer
In addition, the user inserts a barrier for FM3.

B3 (FM3) – The zip code should be a valid zip code.

A.1.4 ACTIONS

Next the system presents the actions connected to B1 and B2. These are:

A1 (B1) – An if-statement checking that the length of the input is n.
A2 (B2) – A check that the input is an integer.

In addition, the user creates a new action A3 suited for B3. This action can for instance be a
check towards postal systems that the zip code is valid.

A.1.5 TESTS

The system then present the user with tests to validate that the failure modes are taken care
of through the barriers and actions. The system presents the following tests:

T1 – Input a number of length > n. This should fail.
T2 – Input a number of length < n. This should fail.
T3 – Input a number of length n. This should pass
T4 – Input a non-integer. This should fail.

9

90 Robus

In addit
inserts:

T4 – Ins
T5 – Ent

A.1.6

The dat

The firs
whethe
usability
use. Ple
for your

A.2 T

Your ta
questio
locate t

• CAS
dev
mod

stness in Ear

tion, the us

sert a valid z
ter an inval

DATA STRU

a structure

t four steps
r our syste
y of handlin

ease answer
r choices.

TASKS

asks are lis
ns. First of
he main fun

SE: The follo
veloping. Fin
des, barrier

rly Phase So

ser must e

zip code. Th
id zip code.

UCTURE

s are shown

Figure 4

s in the scen
em in your
ng the inpu
r the questi

sted below
f all we wa
nctionalities

owing textu
nd the inpu
rs, actions a

oftware Dev

nter new t

his should p
. This should

n below in F

7: Relations

nario will be
r opinion is
ut items, fa
ons at the e

. Please tr
nt you to n
s in the pro

ual use case
ut items in

and tests.

velopment

tests to val

ass.
d fail.

Figure 47.

hips betwee

e useful inp
s user-frien
ailure mode
end as prec

ry to perfo
navigate ar

ogram.

e is one of t
 the use ca

idate that

en example e

put to our s
ndly or not
es, barriers,
cise as possi

orm all the
round in th

the use cas
ase and us

FM3 is han

elements

ystem. You
. You shall
, actions an
ible, and ar

 tasks befo
he program

ses for the a
e our prog

ndled corre

 shall now c
l also cons
nd tests for
gument tho

ore answe
to make s

application
ram to find

ectly. He

consider
ider the
r further
oroughly

ring the
sure you

you are
d failure

91 Appendix A : Business experiment document

Table 11: Textual use case for business test

Register person information

Standard scenario

1. Register name

2. Register phone number

3. Register personal id number

4. Register zip code

5. Update database

6. User gets message whether the registration was successful or not

Exceptions

3a: Illegal personal id number

 .1: System alerts user

 .2: User returns to step 3 or aborts the session

4a: Illegal zip code

 .1: System alerts user

 .2: User returns to step 4 or aborts the session

92 Robustness in Early Phase Software Development

• Edit the failure mode called “Too long” for the input item zip code. The description
should be: “The number contains fewer digits than allowed” and the name should be
“Too short”.

• For the action called “Letter check” for the input item “name” you will not include more
than test “T1” and “T3” to your set.

• Delete the barrier called “Unknown symbols” for the input item “Name”.

1) How easy was it to select input items from the leftmost list?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

2) How easy was it to add input items?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ This was hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

3) How easy was it to select the wanted failure modes, barriers, actions and tests
under the input item?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

93 Appendix A : Business experiment document

4) How easy was it to add failure modes, barriers, actions and input items?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

5) Was the difference between un-checking and deleting objects clear to you?

□ The difference was intuitive

□ It was pretty easy to understand, but not intuitive

□ It was pretty hard to understand, but I saw the difference after all

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

6) Did you notice the redundant options in the program?

□ I did not notice because I mostly got it all by first try

□ I missed some options to perform operations in the program

□ I noticed this gradually and was happy about it

□ I noticed this and found it confusing.

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

7) Do you think this tool could be a useful attachment to your software
development in your company?

□ Absolutely

□ It will probably be very interesting to use this tool

□ With some modifications this tool could be quite useful

□ I do not think so

94 Robustness in Early Phase Software Development

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

95 Appendix B : Business experiement results

APPENDIX B BUSINESS EXPERIEMENT RESULTS

In this appendix all the answers from the professional test is written down. Since the
participants were allowed to write in either English or Norwegian most of the answers are in
Norwegian. This is because we do not want to modify any of the answers, but rather keep
the originals.

QUESTION 1

“How easy was it to select input items from the leftmost list?” This question had following
specified answers:

1. “Standard” virkemåte som gjør at det er enkelt å kjenne seg igjen
2. Prøvde først å få over elementene ved å klikke på de to pilene imellom listene.

Oppdaget i etterkant at det var en egen knapp for dette lenger ned
3. Ikke normal standard arbeidsmåte. Pilene i skjermbildet gjør også at en forventer

standard oppførsel (velge items, overføre mellom listene).
4. Intuitive due to previous learned behavior in other programs

QUESTION 2

”How easy was it to add input items?” This question had following specified answers:

1. Kan være vanskelig å se hvilken Input Item etc man jobber med
2. Bra med ikoner på knappene
3. The mix of input items/templates and actual items used is hard to understand
4. Hadde litt problemer med å se hvilken del av treet jeg befant meg på, men etter å ha

gjort en feil ble det lettere

QUESTION 3

”How easy was it to select the wanted failure modes, barriers, actions and tests under the
input item?” This question had following specified answers:

1. Foreslår at mer synlig bakgrunnsfarge enn lys grå benyttes
2. Blank
3. Easy, but was hard to get the concept difference between template and you were

working on.
4. Selecting was no problem

96 Robustness in Early Phase Software Development

QUESTION 4

”How easy was it to add failure modes, barriers, actions and tests?” This question had
following specified answers:

1. Blank
2. Dersom man høyreklikker på et element og forsøker å adde, skjer det ingenting. Og

når man derimot klikker på en addknapp rett etterpå, så addes det to stk elementer.
Gjelder alle nivå.

3. Quite easy to understand, but the reuse of the same button was not a good choice. It
was way to hard/cumbersome to do the actual work

4. This was no problem

QUESTION 5

”Was the difference between un-checking and deleting objects clear to you?” This question
had following specified answers:

1. Det var intuitivt, men må ha undo
2. Blank
3. Blank
4. Hvis checking var “enabling” og deleting sletting

QUESTION 6

”Did you notice the redundant options in the program?” This question had following
specified answers:

1. Blank
2. Som nevnt allerede. To matter å adde elementer på, men kun en funker.
3. Forstår ikke spørsmålet
4. Edit item knappen ble ikke brukt på grunn av redundans

QUESTION 7

”Did you think this tool could be a useful attachment to your software development in your
company?” This question had following specified answers:

1. Skulle gjerne ha forsøkt det I et prosjekt. Integrasjon mot NUnit/Junit? Kopiere tester
2. Vanskelig å svare på forhånd. Hadde vært interessant å ta i bruk for å se hvor nyttig

det er i praksis/i en reell case.
3. Slik det er nå er det altfor arbeidssomt
4. Burde være bra for å generere test prosedyre for UI validering

97 Appendix C : Business interview

APPENDIX C BUSINESS INTERVIEW

This is the interview guide that was used in the interviews with the employees at the
company in Trondheim which participated in the experiment. The questions were used as
guidance, and if some questions proved unnecessary they would be skipped. Also, follow-up
questions were added during the interviews when the employees gave answers that opened
areas that we wanted to go deeper into.

C.1 QUESTIONS

The questions were divided into two parts: GUI considers the usability of the tool, while tool
value will help determine if the developer found the tool valuable. For each question that
gives a yes or no answer, remember to follow up by asking for reasons.

C.1.1 GUI

1. Were there any GUI options that you missed in our program?

2. Did you understand the intention of using two lists?

3. Do you have suggestions for improvements to the GUI?

4. What are you opinion on the presentation of the results?

5. Do you have other comments to the GUI?

6. Did you like the looks of the GUI?

C.1.2 TOOL VALUE

1. Do you consider the tool useful for developers?

2. Would you use the tool if it was available for you?

3. Do you think the database should be common for everyone, or personal for each

developer?

4. What can be done to improve the tool?

5. Do you know or use competitive tools?

98 Robustness in Early Phase Software Development

99 Appendix D : Information before business test

APPENDIX D INFORMATION BEFORE BUSINESS TEST

Vi er to femteklassestudenter ved NTNU, retning Datateknikk, som skriver en
masteroppgave om robusthet i systemutvikling. Vi utvikler et verktøy som er tenkt brukt av
utviklere for å øke robustheten i systemene de utvikler. Programmet tar utgangspunkt i
input (Input items) til systemet som skal utvikles, og lar utvikleren bruke verktøyet for å få
oversikt over hvilke robusthetsvalg han gjorde sist han hadde de samme Input item. Om et
Input item ikke eksisterer i databasen, kan utvikleren legge det til selv. Vi ønsker å teste
dette verktøyet på systemutviklere, både med tanke på brukervennlighet og bruksverdien.

Vi kommer til å gi dere en enkel case, og la dere teste verktøyet uten mye introduksjon eller
opplæring, for å se hvor intuitivt programmet er for en førstegangsbruker. Det vil følge med
en brukermanual som blir distribuert sammen med programmet. I etterkant av casen vil vi
be dere besvare et enkelt spørsmålsskjema og delta på et kort intervju for å få deres
meninger om programmet.

Har dere noen spørsmål før vi kommer ned til dere så ikke nøl med å ta kontakt på e-post <e-
post> eller telefon <telefonnummer>.

Mvh,

Øyvind Skjervold

Håkon Haga

100 Robustness in Early Phase Software Development

101 Appendix E : Student experiment document

APPENDIX E STUDENT EXPERIMENT DOCUMENT

We are two master students that are developing a support application that will be useful for
the software industry. Our main focus is to discover problems earlier than it is possible with
today’s practice. Textual use case is a known documentation of requirements, and will be
used as the source of the users input in our program.

The experiments purpose is to determine whether how user-friendly our program is. Textual
use case contains a sequence of tasks that shall be performed. The parts of the textual use
case that are input from the user in our users system are the parts that are interesting for our
application. We will first show an example.

E.1 EXAMPLE

The example shows how our application can be used. A textual use case describing the
insertion of person data is elaborated, with focus on the input of zip codes. The following is a
description of how the system shall handle this textual use case.

E.1.1 TEXTUAL USE CASE

The textual use case describes how the user inputs data and is presented in Table 12. A step
in this use case is register zip code, which is the part this experiment will elaborate on. Zip
code is referred to as an input item in the application, and the application will extract failure
modes for this item. The system will identify this input item, either automatically or
manually through a user action. When the system has registered zip code as an input item, it
displays the failure modes connected to this input item.

102 Robustness in Early Phase Software Development

Table 12: Textual use case for student test

Register person information

Standard scenario

1. Register name

2. Register address

3. Register personal id number

4. Register zip code

5. Update database

6. User gets message whether the registration was successful or not

Exceptions

3a: Illegal personal id number

 .1: System alerts user

 .2: User returns to step 3 or aborts the session

4a: Illegal zip code

 .1: System alerts user

 .2: User returns to step 4 or aborts the session

103 Appendix E : Student experiment document

E.1.2 FAILURE MODE

A failure mode describes how the input item can create a failure in a system. The application
presents the user with failure modes that fit the input item zip code. In our case the
application finds two failure modes:

FM1 (Too long) – The input length is wrong
FM2 (Illegal characters) – The input is not an integer

Also, the user chooses to insert a new failure mode:

FM3 (Not valid) - The input is not a valid zip code.

FM1 and FM2 are general failure modes that can be used for many kinds of input items, not
only zip codes. This applies for the barriers, actions and tests as well.

E.1.3 BARRIERS

These are the elements that should prevent the failure modes from the taking place. The
following barriers are suggested by the system:

B1 (FM1) – The input length should be of length n
B2 (FM2) – The input should be an integer
In addition, the user inserts a barrier for FM3.

B3 (FM3) – The zip code should be a valid zip code.

E.1.4 ACTIONS

Next the system presents the actions connected to B1 and B2. These are:

A1 (B1) – An if-statement checking that the length of the input is n.
A2 (B2) – A check that the input is an integer.

In addition, the user creates a new action A3 suited for B3. This action can for instance be a
check towards postal systems that the zip code is valid.

E.1.5 TESTS

The system then present the user with tests to validate that the failure modes are taken care
of through the barriers and actions. The system presents the following tests:

T1 – Input a number of length > n. This should fail.
T2 – Input a number of length < n. This should fail.
T3 – Input a number of length n. This should pass
T4 – Input a non-integer. This should fail.

10

04 Robus

In addit
inserts:

T4 – Ins
T5 – Ent

E.1.6

The dat

The firs
whethe
usability
use. Ple
for your

E.2 T

Your ta
questio
termina

• Nav

• Add

• Add
has
this
yet

stness in Ear

tion, the us

sert a valid z
ter an inval

DATA STRU

a structure

t four steps
r our syste
y of handlin

ease answer
r choices.

TASKS

asks are lis
ns. When

ate.

vigate in the

d a test und
o Test

d an input i
the same a

s manually b
possible to

rly Phase So

ser must e

zip code. Th
id zip code.

UCTURE

s are shown

Figure 4

s in the scen
em in your
ng the inpu
r the questi

sted below
finishing t

e program b

er the inpu
t name: “T2

tem called
abilities as “
because we
 add alread

oftware Dev

nter new t

his should p
. This should

n below in F

8: Relations

nario will be
r opinion is
ut items, fa
ons at the e

. Please tr
he tasks y

by using the

t item “Add
22”, Test de

“Personal i
“Zip code” d
e do not hav
dy existing a

velopment

tests to val

ass.
d fail.

Figure 47.

hips betwee

e useful inp
s user-frien
ailure mode
end as prec

ry to perfo
you may cl

e example d

dress”
scription: ”

id number”
described in
ve a databa

abilities to th

idate that

en example e

put to our s
ndly or not
es, barriers,
cise as possi

orm all the
ick “ok”, b

data

String testin

” and add fa
n the exam
ase connect
he input ite

FM3 is han

elements

ystem. You
. You shall
, actions an
ible, and ar

 tasks befo
but the ap

ng”

ailure mode
ple above.
ted yet, and

ems.

ndled corre

 shall now c
l also cons
nd tests for
gument tho

ore answe
plication w

es, actions
You will ha
d it is there

ectly. He

consider
ider the
r further
oroughly

ring the
will then

etc so it
ve to do
fore not

105 Appendix E : Student experiment document

• Edit the failure mode called “Too long” for the input item zip code. The description
should be: “The number contains fewer digits than allowed” and the name should be
“Too short”.

• For the action called “Letter check” for the input item name you will not include more
than test “T1” and “T3”.

• Delete the barrier called “” for the failure mode “”.

1) How easy was it to select input items from the leftmost list?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

2) How easy was it to add input items?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ This was hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

3) How easy was it to select the wanted failure modes, barriers, actions and tests
under the input item?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

106 Robustness in Early Phase Software Development

4) How easy was it to add failure modes, barriers, actions and tests?

□ This was intuitive

□ It was pretty easy, but not intuitive

□ It was pretty hard, but got it right

□ This was hard to understand

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

5) Did you notice the redundant options in the program?

□ I did not notice because I mostly got it all by first try

□ I missed some options to perform operations in the program

□ I noticed this gradually and was happy about it

□ I noticed this and found it confusing.

Specify why it was easy or hard. Was there some functionality that you missed that
would have made it easier for you?

107 Appendix F : Student test results

APPENDIX F STUDENT TEST RESULTS

These are the answers from the student test. Since the students were allowed to write in
either English or Norwegian most of the answers are here stored in Norwegian. This is
because we did not want to modify any of the answers, but rather keep the originals.

QUESTION 1

“How easy was it to select input items from the leftmost list?” This question had following
specified answers:

1. Eneste som var å trykke på, så det var relativt enkelt å starte.
2. Det var enkelt å forstå hvordan dette skulle gjøres.
3. Veldig fin måte. Ble litt forvirret ved første trykk. Ingen forbedringer trengs. Vanesak.
4. Visste ikke hva meningen med programmet var, så koblingen mellom ”Input items”

og ”Selection tree” var ikke intuitiv. Vanskelig å flytte elementer fra høyre til venstre
liste.

5. Det er en tom boks, og man har ikke mange valgmuligheter å klikke på. Hvorfor er
”Root” hektet av? Bør ikke ha hake i det hele tatt. Hva menes med ”Root”? Trengs
den?

6. Det var intuitivt, men mildt irriterende at jeg ikke fikk se under haken deres før etter
at de var valgt.

7. I had a hard time understanding the difference between the two lists.
8. Vanskelig å forstå trestrukturen før man får prøvd seg litt frem. Ellers greit. Personlig

liker jeg ikke at funksjoner kun er tilgjengelig med høyreklikk.
9. Tok et par minutter før jeg skjønte hvordan programmet fungerte. Men gikk veldig fin

så fort jeg kom inn i det. Kanskje en litt lettere introduksjon på starten. Fikk ikke så
mye ut av walkthrough som var der. Si hvilken tabell (venstre eller høyre) ting ligger i
for eksempel.

10. Når du velger/”checker” av et item i venstre kolonne kan den forbli i kolonnen?
11. Skjønte ikke helt forskjellen på ”input item list” og ”selection tree”, men å velge

items var ganske selvforklarende.

QUESTION 2

”How easy was it to add input items?” This question had following specified answers:

1. Gikk greit å legge til når jeg klarte å markere rett boks.
2. Dette var også enkelt og greit.
3. Var bare å trykke på knappen. Kunne vel ikke vært lettere å lagd ny. Kanskje

automatisk lagring?
4. Stor enkel knapp med selvforklarende tekst.
5. Det er mulig å klikke på ”Add input items” helt til knappen endrer seg. Da har man

forstått funksjonaliteten.

108 Robustness in Early Phase Software Development

6. Er ikke mer å si her. Eneste er vel kanskje at du ikke bør ha fokus på noe annet enn
”Root” uten at knappen blir til noe annet.

7. Somehow I assumed that highlighting one input item would allow me to add another,
so it took a few seconds before I realized I had to go up one level (But once I realized,
it was fine).

8. Lett å skjønne når jeg fan tut at jeg måtte høyreklikke. Savner en Generell meny i
programmet med ”edit” etc.

9. Dette gikk fint, men på dette tidspunktet hadde jeg allerede fått en god flyt i
programmet. Kanskje nevne i instruksjonene at ”Root” må være markert?

10. Kopiering av deler eller hele trær for så å kunne redigere dem.
11. Når man først hadde skjønt modellen og lagt til fra input items list var add input

items enkelt.

QUESTION 3

”How easy was it to select the wanted failure modes, barriers, actions and tests under the
input item?” This question had following specified answers:

1. Dette gikk greit. Veldig oversiktlig og enkelt å navigere til ønsket felt.
2. Blank
3. Syntes fargene på ikonene gjorde det ganske uoversiktlige. Mer nøytrale farger

hadde kanskje gjort seg?
4. Blank
5. Bare å klikke. +/- gjør det enkelt for Windows-brukere.
6. Vanskelig å komme med noen kommentar med tanke på at det bare gikk ut på å

trykke på dem.
7. Blank
8. Veldig greit å bare klikke på + så kommer ting frem.
9. Programmet var veldig enkelt å forståelig så fort man kom inn i det, men kunne

kanskje bli litt uoversiktlig i lengden. Muligens noe som skapte et skille mellom input
items i den høyre tabellen? For eksempel en tykk strek.

10. Enkel nivåstruktur gir god oversikt.
11. Blir fort litt rotete med alle trærne nedover, men siden det nettopp er en trefunksjon

var det greit å minimere for å rydde opp.

QUESTION 4

”How easy was it to add failure modes, barriers, actions and tests?” This question had
following specified answers:

1. Var greit å legge til det som var ønskelig, men jeg brukte noen sekunder på å forstå
hvor jeg måtte stå for å legge til det jeg ville.

2. Dette var greit. Fint at hele systemet er konsist slik at alt gjøres på samme måte.

109 Appendix F : Student test results

3. Var bare å trykke på knappen. Kunne vel ikke vært lettere å lagd ny.
4. Ikke intuitivt at ”barriers” og ”actions” må opprettes før ”tests”.
5. Knappen som endret seg gjorde det enkelt
6. Er ikke mer å si her.
7. Easy when I realized that I had to go up one level first.
8. Lett å skjønne det, men det var noe vanskelig å finne ut HVA failure mode er.
9. Enkelt å forstå. Kunne bli litt uoversiktlig.
10. Greit med knappene som endrer tilstand/navn
11. Når man hadde skjønt modellen var dette enkelt.

QUESTION 5

”Did you notice the redundant options in the program?” This question had following
specified answers:

1. Til å utføre den oppgaven vi ble tildelt var programmet enkelt å bruke. Fikk bruk for
alle menyene. Disse var enkel å forstå å bruke.

2. La merke til høyreklikk på nodene, samt avkryssing + dobbelklikk for å legge til input
item.

3. Brukte aldri ”edit item”.
4. En knapp for å flytte elementene mellom listene.
5. ”Edit item” knappen ble ikke brukt. Er sikkert kjekk for noobs (red. nybegynnere).

Slettet test istedenfor å fjerne hake. Kan bedres ved å fremheve funksjonaliteten til
haken.

6. Eneste er at undo-effekten har litt kort hukommelse.
7. Only noticed that I could add input items from both lists, which I liked (but I still don’t

see why there are two lists. Wouldn’t it be the same to just leave them in the same
list where you select them?).

8. Ja, fargekoding var nyttig og oversiktlig.
9. Skapte ingen problemer, så de var ikke i veien, var heller bare et pluss. Kan kanskje

bli forvirrende med flere options.
10. Kopiering som nevnt tidligere.
11. ”Edit item”-knappen virker overflødig…?

	Title Page
	Problem Description
	Microsoft Word - _MAIN.docx

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

