
June 2008
Trond Aalberg, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Combining Audio Fingerprints

Vegard Andreas Larsen

Problem Description
The thesis will investigate the possibility of combining two or more existing acoustic fingerprinting
solutions into a common solution, to generate a more universal fingerprint. By combining the
probabilities from each fingerprinting solution in various ways into a combined score, the solution
will be more adept at finding equivalent recordings than a single solution will be. The thesis will
test the fingerprinting systems accuracy separately, and then combine them in different ways to
see if a better set of matches can be found.

Assignment given: 15. January 2008
Supervisor: Trond Aalberg, IDI

Abstract

Large music collections are now more common than ever before. Yet, search
technology for music is still in its infancy. Audio �ngerprinting is one method
that allows searching for music.

In this thesis several audio �ngerprinting solutions are combined into a single
solution to determine if such a combination can yield better results than any of
the solutions can separately. The solution is used to �nd duplicate music �les
in a personal collection.

The results show that applying the weighted root-mean square (WRMS) to
the problem most e�ectively ranked the results in a satisfying manner. It was
notably better than the other approaches tried. The WRMS produced 61%
more correct matches than the original FDMF solution, and 49% more correct
matches than libFooID.

ii

Contents

Contents iii

List of Figures v

List of Tables vii

Acknowledgments ix

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 1
1.3 Approach . 2
1.4 Results . 2
1.5 Structure . 2

2 Pre-study 5

2.1 Sound theory . 5
2.2 Music Information Retrieval . 10
2.3 Audio �ngerprinting . 12
2.4 State of the art . 16
2.5 Software . 17

3 Method 21

3.1 Music collection . 21
3.2 Descriptor architecture . 26
3.3 Software . 26
3.4 System architecture . 28
3.5 Combining results . 29

4 Results 39

4.1 Evaluating results . 39
4.2 Individual descriptors . 39
4.3 Combined solutions . 50
4.4 Examples . 56
4.5 Improving search speed . 56

iv CONTENTS

5 Conclusion 59
5.1 Results . 59
5.2 Evaluation . 59
5.3 Further work . 60

Bibliography 61

Index 65

A Software used 69

B Source code 71
B.1 fdmf . 71
B.2 libFooID . 81
B.3 Gunderson's descriptors . 88
B.4 Combining descriptors . 93
B.5 Licenses . 109

C Music collection 123

List of Figures

2.1 Features of waves illustrated. 6
2.2 Combination of three sine waves results in complex wave. 7
2.3 Example of audio sampling . 9
2.4 Example of audio wave . 14
2.5 Example frequency spectrum . 15

3.1 FRBR terminology . 22
3.2 Illustration of clustered duplicate pairs 24
3.3 Euclidean distance for the mfcc_avg descriptor 28
3.4 Database architecture . 29
3.5 The �ow of data through the system. 30
3.6 Weights by count, score, average and performance 36
3.7 Three sets of manual weights. 36

4.1 Results from descriptors . 40
4.2 False positive rate for individual descriptors 42
4.3 False positive rate from simple individual descriptors 43
4.4 Simple overview of false positive rate in individual descriptors . . 44
4.5 False positive rate in combined solutions 51
4.6 False positive rate in combined solutions (close-up) 52
4.7 Simple overview of false positive rate in combined solutions . . . 53
4.8 Potential index performance . 58

vi LIST OF FIGURES

List of Tables

2.1 The chromatic scale . 8
2.2 MD5 hashes of three similar text strings. 12
2.3 Failure modes. 13

3.1 Thresholds for various descriptors by Gunderson. 27
3.2 Weights used . 37

4.1 First three erroneous duplicate pairs from fdmf_0. 41
4.2 First three erroneous duplicate pairs from fdmf_1. 45
4.3 First three erroneous duplicate pairs from fdmf_2. 45
4.4 First three erroneous duplicate pairs from libFooID. 46
4.5 First three erroneous duplicate pairs from the centroid descriptor. 46
4.6 First three erroneous duplicate pairs from using track length as

a descriptor. 47
4.7 First three erroneous duplicate pairs from the mean/square ratio

descriptor. 47
4.8 First three erroneous duplicate pairs from the steepness descriptor. 48
4.9 First three erroneous duplicate pairs from the mfcc_avg descriptor. 48
4.10 First three erroneous duplicate pairs from the mfcc_delta_avg

descriptor. 49
4.11 First three erroneous duplicate pairs from the f1cc_avg descriptor. 49
4.12 First three erroneous duplicate pairs from the f1cc_delta_avg

descriptor. 49
4.13 False positive rate of combinations 54
4.14 Weights by performance for various descriptors. 56
4.15 Scores for example 1 . 56
4.16 Scores for example 2 . 57
4.17 Scores for example 3 . 57
4.18 Performance characteristics of scalar descriptors as index 58

viii LIST OF TABLES

Acknowledgments

Thanks to Trond Aalberg for supervising me throughout the semester with this
thesis.

Thanks to Gian-Carlo Pascutto for providing me with helpful hints regarding
libFooID, even though he no longer actively maintains the project. Thanks to
Kurt Rosenfeld for giving me insight into the inner workings of fdmf. Thanks to
Steinar Gunderson for providing helpful pointers on how to modify his system.

Thanks to (in alphabetical order) Trond Aalberg, Anne Cecilie Burhol, Hilde
Halland, Francis Rath and Frode Sandholtbråten for proof-reading drafts of this
thesis.

Vegard Andreas Larsen

Trondheim, June 3rd 2008

x LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Music is everywhere. In the 150 years since its invention recorded music has
come into everyday use. Music players are now so compact that mobile phone
producers include them in almost every phone they sell.

It is now normal to have large digital music collections that were unfeasible
even ten years ago. When computers became a commodity, it was mostly used
for textual documents. It took many years before it was also used for music.
Music is di�erent in fundamental ways from text in that it is not easily search-
able without associated metadata. In the extreme case of a music collection
without any associated metadata it can be very di�cult to locate a song in that
collection.

With a large music collection it is not uncommon to have multiple copies of
songs or even entire albums. Without even knowing it, you may have copies of
a certain album in two di�erent formats, meaning that the size of the �les, or
even the quality, may be di�erent.

Audio �ngerprinting systems are in use today for a variety of di�erent uses,
such as automatically �nding metadata for a given recording, intellectual prop-
erty rights management or clustering of similar music to �nd music suggestions.
When you listen to a song on your car stereo, a modern �ngerprinting system
could tell you the performing artist and the song title if it has the �ngerprint
of the song in its database. Broadcast monitoring could be made easier if there
were �ngerprinting systems in place to automatically transcribe a list of music
being played on the radio or on TV. This thesis con�nes the area of study to
�nding such duplicates in a music collection.

1.2 Objectives

This thesis focuses on �nding audibly similar music in a collection. The main
objective is better performing �ngerprint solutions that correctly identi�es audi-
bly similar music. Statistical and probabilistic combination methods are applied
to audio �ngerprints from di�erent systems to increase recognition rates.

This thesis seeks to answer the following questions:

2 CHAPTER 1. INTRODUCTION

• Can combining multiple descriptors from separate authors produce a bet-
ter �ngerprint?

• Which methods of combining descriptors produce consistently better re-
sults?

• How do the descriptors tested rank in performance?

1.3 Approach

This thesis uses a music collection with 9536 music �les. The music collection
is a real-world example of what might be in someone's personal music collec-
tion. The music collection consists mainly of MP3 and WMA �les in a ratio of
approximately 8:1.

This thesis uses the fdmf and libFooID software, and in addition includes
�ngerprinting software from a masters thesis. fdmf and libFooID (in the form
of Foosic) are both projects that can quickly be tested by downloading them
of the Internet. An individual audio �ngerprint, known as a descriptor, for a
�le can be compared to the same descriptor for another �le. The result is a
percentage that indicates the similarity between the two �les. Outputs from
multiple systems are combined using several approaches, e.g. the average and
a naïve Bayes classi�er, to give a combined score for how similar the two �les
being combined are.

The �rst 1000 matches are compared to a reference list of veri�ed equiv-
alent �les, and the failure rate is used as a measure to compare performance
characteristics of a given combination.

1.4 Results

This thesis has proven that combining descriptors from multiple sources is a
viable way to create a better �ngerprint. It �nds that a weighted root-mean
square (WRMS) of a given set of 8 descriptors gives the best results with the
given music collection. When picking descriptors carefully, other combination
methods can be used with results nearly as good as the WRMS.

Among the tested descriptors it is found that libFooID is the most reli-
able, followed closely by fdmf_0, two of the MFCC descriptors, F1CC average,
fdmf_2 and fdmf_1. This thesis also found that several of the descriptors
cannot be used to reliably identify recordings, amongst them are song length,
centroid, steepness, mean/square ratio and the rate of zero crossings.

1.5 Structure

The report is divided into the following chapters.

• Chapter 2 presents basic sound theory, examines previous work in the
�eld, and presents the software solutions to be tested.

• Chapter 3 presents the methods used to test and combine the various solu-
tions into a working system. It shows how �ngerprints are compared, how
the results are combined, and how the accuracy of a system is measured.

1.5. STRUCTURE 3

• Chapter 4 presents the results of this thesis, and discusses any discrepan-
cies seen.

• Chapter 5 presents the conclusion to this thesis, and outlines improve-
ments that could be made to the system.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Pre-study

This chapter examines the basis for audio �ngerprints, and looks at previous
work in the area of music information retrieval (MIR). It then looks at the
individual descriptors that will be combined into a single solution.

2.1 Sound theory

Sound is physical waves moving through a medium such as air with a frequency
between approximately 20 Hz and 20 kHz. The physical waves can be de-
scribed as sequential compression and decompression of adjacent molecules in
the medium. Sound waves are mostly started by vibration in a physical object,
setting the medium into motion.

Interactions between waves grows complex very quickly. As can be seen in
�gure 2.2, the combination of three simple waves result in a wave that is very
unpredictable. In the real world several hundred single waves combine to make
the sound of a violin.

2.1.1 Waves and interactions

Pure sound waves are characterized by two main properties; the frequency and
the amplitude. The frequency measures how often the wave repeats itself, and
is measured in Hertz (Hz). 1 Hz indicates an event occurring once every second.
Figure 2.1(a) shows two sine waves, one with a frequency of 1

2Π , the other with
a frequency of 1

Π . Waves with a higher frequency has a shorter distance between
two local maxima, a distance known as the cycle or period of a wave.

The amplitude of the wave is a measurement of how much of the medium
the wave can displace during one period. When talking about amplitude, one
usually means the peak amplitude, which is the distance from neutral to the
maxima. The waves presented in �gure 2.1(b) has peak amplitudes of 1 (sinx)
and 2 (2 sinx). A single sine wave will sound like a clear, steady tone.

Waves interact in very complex ways, which produce di�erent sounds to
the human ear. Waves can collide, and provide positive and negative feedback
that either neutralizes the sound wave, or increases its amplitude. In extreme
cases where two waves with the same frequency collide and maxima line up, the
amplitude is added together for the two waves. This is known as the waves being

6 CHAPTER 2. PRE-STUDY

0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sin x sin 2x

Time

A
m

p
lit

u
d

e

(a) Sine waves of di�erent frequency

0 1 2 3 4 5 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

sin x 2sin x

Time

A
m

p
lit

u
d

e

(b) Sine waves of di�erent amplitude.

Figure 2.1: Features of waves illustrated.

2.1. SOUND THEORY 7

0 1 2 3 4 5 6 7 8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a(x) = sin (x + 0.5) b(x) = sin (4x) c(x) = 0.5sin (9x + 0.5) a(x) + b(x) + c(x)

Time

A
m

p
lit

u
d

e

Figure 2.2: Combination of three sine waves results in complex wave.

in phase. When the waves are out of phase they cancel each other out. The
combined wave is always the sum of the displacement of the individual waves
at any given point.

Waves are de�ned by the wave equation, a second-order linear partial dif-
ferential equation. It gives the propagation of waves with a given speed v, with
∇2 being the Laplacian. For a detailed explanation of the wave equation, the
reader is referred to an article in MathWorld [38].

∇2 =
1
v2

∂2ψ

∂t2
(2.1)

2.1.2 Humans and sound

Sound is perceived by humans through the ears, where the sound waves hit
the tympanic membrane1. The tympanic membrane transfers the sound waves'
kinetic energy to the ossicles in the middle ear, which again transfers the energy
to the cochlea. Inside the cochlea �uids are set in motion, and tiny hairs in the
Organ of Corti register the movements and signals the brain. The brain then
interprets these signals as sound. For more details, see [29].

The human auditory system does not perceive sound linearly, and the sound
pressure level, the volume, is often quoted in decibel (dB). The sound pressure
level is logarithmic, and measures the root-mean square change from the ambient
pressure caused by a sound wave (equation 2.2). The reference sound pressure
pref is 20µPa. Human perception of sound loudness roughly follows the sound
pressure level on the decibel scale, meaning that a doubling of the sound pressure
will be perceived as a constant increase, no matter what the previous sound
pressure.

Lp = 10 log10

(
p2

rms

p2
ref

)
= 20 log10

(
prms

pref

)
(2.2)

1Colloquially known as the eardrum.

8 CHAPTER 2. PRE-STUDY

Note Frequency n

G 392Hz -2
G] / A4[415Hz -1

A4 440Hz 0
A4] / B[466Hz 1

B 494Hz 2
C 523Hz 3

C] / D[554Hz 4
D 587Hz 5

D] / E[622Hz 6
E 659Hz 7
F 698Hz 8

F] / G[740Hz 9
G 784Hz 10

G] / A5[831Hz 11
A5 880Hz 12

Table 2.1: The chromatic scale around A4, with frequencies and n-values (see
equation 2.3).

Pitch is another facet of sound that the human auditory system perceives
roughly logarithmically [10]. It is the perceived frequency of sound, and the
perception can be changed by playing other frequencies simultaneously. Pitch
is close to the fundamental frequency of a sound, yet the perceived pitch can
change subtly when harmonics are introduced.

Harmonics and pitch are closely related. Harmonics are the e�ects produced
when multiple sound waves, all with frequencies that are multiples of a common
fundamental frequency, occur concurrently. The canonical example is the mu-
sical note A4, which in current Western music is de�ned to have a frequency of
440 Hz. The 440 Hz A4 note is considered the �rst harmonic for itself. The 880
Hz overtone is called the second harmonic, and corresponds to the musical note
A5. 1320 Hz is the third harmonic (A6). Those familiar with music notation
will notice that moving from A4 to A5 is the same as moving up an octave.

For Western music the range between two harmonics is usually divided into
12 half-steps, of which seven are assigned one-letter names [20]. When only
using these seven denotations (A, B, C, D, E, F, G), you are using the diatonic
scale. When also looking at the half-steps between some of these notes, you are
using the chromatic scale. It is worth noting that notes in the diatonic scale
is not evenly spaced. The frequency of a note is calculated as in equation 2.3,
where n is the number of half-steps away from A4. The equation has been used
to generate table 2.1.

f = 2n/12 × 440 (2.3)

2.1.3 Digital sound

For sound to be stored in a computer it must be digitized. Since computers
operate using discrete numbers � contrasted to the continuous spectrum of
sound � digitizing sound carries an inherent degradation. Sound is sampled at

2.1. SOUND THEORY 9

Figure 2.3: The line shows a continuous line, representing the continuous audio
signal in the medium, and the vertical bars representing the sampled values.

regular intervals, and the computer stores the sound pressure. The sampling
frequency is also measured in Hz, or samples per second, and speci�es how often
the samples are taken. Due to the Nyquist-Shannon sampling theorem2 , the
sampling frequency has to be at least twice the highest frequency of the signal
you are trying to capture. Speci�cally;

If a function f(t) contains no frequencies higher than W cps3, it is
completely determined by giving its ordinates at a series of points
spaced 1

2W seconds apart.[23]

Since human hearing is limited upwards at around 20kHz, most sound today is
sampled at 44.1kHz or 48kHz using 16 bits to represent the sound pressure in
each sample. Because of the high number of samples required, digitally stored
sound has high storage requirements. For a single CD, which can contain up to
74 minutes of sound, a staggering 650 megabytes is required. This results in a
bit rate of approximately 1411kbps; or around 172 kB

sec .

There is an alternative way to store music using a discrete computer encod-
ing. The best known is MIDI (Musical Instrument Digital Interface), where the
individual notes and pauses are stored using a compact digital encoding. It can
be thought of as a computer equivalent to sheet music, with instructions as to
which instrument should be played at what time, using a given volume and pitch.
A three minute song may therefore be encoded in as little as a few kilobytes
of data, but cannot contain lyrics and can only use the instruments speci�ed
in the MIDI standard. Music encoded as MIDI is therefore perceptually very
di�erent to a human listener. Headway is being made in this kind of compact
representation, using three-dimensional models of instruments and implement-
ing physical laws to synthesize the sound [4]. This thesis is only concerned with
the representation of sound as sampled audio.

2sometimes referred to as the Shannon sampling theorem, or simply the sampling theorem
3cycles per second

10 CHAPTER 2. PRE-STUDY

2.1.4 Compressing digital sound

Because of the high storage requirements for raw digital sound, several methods
for compressing the sound has emerged. Traditional compression techniques,
used for e.g. text documents, can also be used for compressing sound. The
compression ratio gained from traditional compression techniques as applied to
sound is inadequate for enabling storage of large amounts of digital sound.

Other techniques evolved as a response, with the two main branches being
lossless and lossy compression techniques. With lossless compression, it is guar-
anteed that a �le that has been compressed and then decompressed is bit for
bit identical to the original. With lossy encoding, the compression algorithm
can throw away non-signi�cant data to decrease size. If the algorithm is pro-
grammed to discard data that is hard for humans to perceive, it the loss of data
can be acceptable to human listeners. A lossy algorithm works very badly with
text, as letters, words or sentences may disappear completely from the text.
Traditional text compression techniques are therefore lossless.

The most famous audio codec is MP3 (MPEG-1 Audio Layer 3), a lossy
compression that was designed for the MPEG video encoding format to store
audio [5]. Before it was chosen as an audio layer in the MPEG-1 standard, it
was known as ASPEC (Adaptive Spectral Perceptual Entropy Coding) [6]. The
most common MP3 �le format has a bit rate of 128kbps, which is approximately
10 percent of the original �le, assuming the original was from a CD. The MP3
format discards data or reduces precision in data that cannot be easily perceived
by humans, based on psycho-acoustic models. Several other lossy formats, such
as Ogg Vorbis, Windows Media Audio and AAC exist.

Lossless formats only look at e�cient ways of storing the sound data, such
as �nding recurring patterns, and do not reduce precision in or discard data.
These formats typically reduce the �les size to 40 to 50 percent of the original
�le's size. Formats here include FLAC, Windows Media Audio Lossless and
ATRAC.

2.2 Music Information Retrieval

The �eld of music information retrieval (MIR) is very broad, and encompasses
a wide range of possible uses. The �eld is mainly concerned with extracting
information from music contents, without relying on human-supplied metadata.
Various research areas include:

Speech recognition Systems that automatically extract lyrics from a song
could help index large amounts of audio recordings for search using stan-
dard information retrieval techniques. Problems with this approach in-
clude large amounts of background noise4, variations in speech patterns
and the large amount of languages used in music.

Automated transcription Producing sheet music from any piece of music,
suitable for an orchestra or soloist to play. The current models for un-
derstanding sound waves � the models that are used for extracting the
individual notes for an individual instrument � are not adequate to under-
stand the complex interactions between sound waves produced by multiple

4Noise in the context of extracting the spoken word.

2.2. MUSIC INFORMATION RETRIEVAL 11

instruments playing in unison. It can be hard for untrained humans to
di�erentiate between di�erent types of instruments in a sound recording.

Query by humming (QBH) Allows searching through a database of music
by humming or whistling a song to the computer. The computer then
identi�es the fundamental frequencies of the humming, and looks them up
in the indexed music. The music indexed by current QBH systems has to
be in structured form and not as sampled audio.

Audio �ngerprinting Automatically �nds the identifying characteristics in
a piece of music. Some audio �ngerprint systems allow nearest neigh-
bor searches for music, others concentrate solely on identifying a speci�c
recording of a song. Audio �ngerprint systems can e.g. be used to identify
the currently playing song on the radio or to �nd duplicates in a personal
music collection.

Feature extraction Used for identifying the features of a musical track, such
as e.g. beats per minute. The Echo Nest has a free API that can be used
to extract various features from audio, and has an example that allows a
user to put together a seamless mix of several songs automatically [7].

Genre classi�cation A wide variety of music genres is represented in present-
day music. A lot of work has gone into producing a system that can
automatically classify music into genres, and that can compare similarities
between di�erent genres of music.

2.2.1 Properties of music

Describing music is a very hard task, and attempts to reduce the complexity of
this task is usually done by splitting the music into di�erent aspects. Downie
presents seven facets that can be used to describe music, listed here for conve-
nience [9]:

Pitch facet The perceived frequency of a sound. Hard to determine from a
recording.

Temporal facet Duration of a musical event, i.e. the length of holding a given
note.

Harmonic facet Several instruments playing at once with pitch frequencies
that are multiples of a given fundamental frequency for that instrument.

Timbral facet The property that di�erentiates the sound from two di�erent
instruments, i.e. how a clarinet and a trumpet is di�erent.

Editorial facet Instructions given to the performers that may change between
recordings.

Textual facet Lyrics of a song.

Bibliographic facet Any metadata, such as title, artist and composer. Usu-
ally textual.

Most MIR software only concern themselves with a subset of these facets. The
techniques used in this thesis do not at all rely on the editorial, textual or
bibliographic facets.

12 CHAPTER 2. PRE-STUDY

String MD5

A MD5 hash value changes quickly. eb0583fed3abca7103419cfce517046e

A MD5 hash changes quickly. 0e04f19f5c76bce72cf68e0c007346a0

A MD5 hash value changes drastically. 6cabee6499ab39254ae765dde785c7a9

Table 2.2: MD5 hashes of three similar text strings.

2.3 Audio �ngerprinting

Audio �ngerprinting can be loosely de�ned as a process that produces a small
data sequence that uniquely can identify a speci�c piece of sound. Contrasted
to a human �ngerprint, an audio �ngerprint can be thought of as a severely one-
way compressed copy of the sound. Some features are desirable in �ngerprints,
and these features are highly interconnected. Some features are:

Compactness The �ngerprints should be small, so they can be easily stored
and searched through.

Spatial placement Fingerprints of songs that are related should be less di�er-
ent than �ngerprints of songs that are not related using a given distance
measure, such as Euclidean distance. This allows for the �ngerprints to
be used to �nd similar music, not only identical music, or clustering music
into genres.

Robustness A small or medium amount of noise should not a�ect the gen-
erated �ngerprint signi�cantly. This also applies to transformations that
might occur when using various di�erent compression algorithms. If the
�ngerprint is not robust, this results in false negatives.

Reliability Songs should preferably never be mislabeled as other songs, an
event known as a false positive.

Granularity How much audio is needed to construct a �ngerprint. For appli-
cations where you have a recording of an entire song, the entire song can
be used. In other cases you might only have a few seconds of audio.

Destructiveness An audio �ngerprint does not have to be reconstructable into
the original, or perceptually similar, audio.

Audio �ngerprints are sometimes mistakenly compared to hashes, because hashes
by de�nition produce a small �ngerprint for a large amount of data. For ex-
ample, a very common hash function is MD5, which can be used to verify the
integrity of a downloaded �le. Hash functions meant for use in cryptography
� such as MD5 � produce completely di�erent outputs if even a single bit is
changed in the input value. As can be seen in table 2.2, a small change in the
text string, changes the MD5 hash completely. This is a property that is unde-
sirable in audio �ngerprinting, as it has to be resistant to small changes in the
output. Ideally, a small change in the audio will only result in a correspondingly
small change in the audio �ngerprint.

2.3. AUDIO FINGERPRINTING 13

Actual condition
Same song Di�erent song

Fingerprint
indicates

Same song True positive False positive
Di�erent song False negative True negative

Table 2.3: Failure modes.

2.3.1 Use cases

Audio �ngerprints can be used in a wide variety of situations, both by consumers
and corporations. Consumers may want to �gure out if they have a song in their
music library, or if they have to purchase it. They may want to search through
their music library for songs that are similar to the song they are listening to,
or eliminate duplicates in their library. Consumers will also be interested in
identifying music that is played on the radio, and there exists several solutions
for cell phones. New SonyEricsson cell phones are delivered with a software
called TrackID, which allows you to record a few seconds of a song using your
cell phone, and send the sample �ngerprint to an online service. SonyEricsson
has partnered with Gracenote for the �ngerprint identi�cation. According to
their website, Gracenote has a database of over 80 million tracks [12].

Corporations have di�erent uses. The music industry will be interested in
verifying that music shared on �le-sharing networks are not copyrighted, and can
use audio �ngerprints to test against their entire music library. Google wants
to choose advertisements based on the music it can identify from background
noise in the room you are sitting in [1].

2.3.2 Misclassi�cations

When comparing two �ngerprints from two tracks, there are four possible out-
comes. Note that equivalence is context-sensitive.

1. The two �ngerprints are from the same track, and the comparison indicates
that the tracks are equivalent. This is known as a true positive.

2. The two �ngerprints are from di�erent tracks, and the comparison indi-
cates that the tracks are not equivalent. This is known as a true negative.

3. The two �ngerprints are from di�erent tracks, but the comparison indi-
cates that the tracks are equivalent. This is known as a false positive5.

4. The two �ngerprints are from the tracks song, but the comparison indi-
cates that the tracks are not equivalent. This is known as a false negative6.

Table 2.3 shows these failure modes in relation to each other. False negatives
and false positives are the failure modes of a classi�cation. False positives and
false negatives can be said to be errors of equal magnitude when looking at
audio �ngerprints. In the domain of spam �ltering a false positive (classifying a
non-spam mail as spam) is much worse than a false negative (classifying a spam
mail as non-spam) [13].

5False positives are called type I or α errors by statisticians.
6False negatives are called type II or β errors by statisticians.

14 CHAPTER 2. PRE-STUDY

(a) First 30 seconds

(b) 120ms extract

Figure 2.4: Time-based representation of the �rst 30 seconds and a 120ms ex-
tract of �deLillos - Fullstendig oppslukt av frykt�. Y-axis is power scale, X-axis
is time.

The error analysis in this thesis concerns itself mainly with false positives
for two main reasons:

1. Since the output is ranked according to probability, false positives will be
very easy to spot in the top results.

2. Because this thesis operates on a real life music collection, the false nega-
tives will be very hard to �nd in such a large collection.

2.3.3 Analyzing audio

There are multiple ways in which an audio �ngerprint can be constructed.
Three methods are outlined here: time-based representation, frequency spec-
trum-based representation and wavelets.

When looking at audio using a normal editor, one usually looks at the time-
based representation in the shape of a waveform. In such a representation the
power is represented on the Y-axis, while the time runs along the X-axis. This
representation allows you to see features such as rhythm and beats per minute,
BPM, by counting peaks. An example can be seen in �gure 2.4.

2.3. AUDIO FINGERPRINTING 15

0 5000 10000 15000 20000 25000

-140

-120

-100

-80

-60

-40

-20

0

20

deLillos Amy Winehouse

Figure 2.5: The frequency spectrum of the �rst 23.8 seconds of �deLillos - Full-
stendig oppslukt av frykt� vs. �Amy Winehouse - Rehab� using a Hann window
function. X-axis is frequency in Hz, Y-axis is power in dB.

The frequency spectrum-based representation is usually found using a short-
time Fourier transform (STFT), and shows which frequencies are used at what
power levels. The STFT is applied to short sequences of sound, depending
on the size of the features one attempts to extract. The frequency spectrum
can then be reduced using various algorithms to be used as a descriptor. One
common algorithm is to establish frequency ranges called bins, and sum the
power levels for frequencies in that bin.

The wavelet representation uses a wavelet transform to create a range of
wavelets that allows examination of frequency components on a suitable scale
[14]. Wavelets are also easier to compute than the Fourier transform, with
an asymptotic run time of O (n), compared to the fast Fourier transform's
O (n log n).

How? Construct a function, shift it by some amount, and change its
scale. Apply that structure in approximating a signal. Now repeat
the procedure. Take that basic structure, shift it, and scale it again.
Apply it to the same signal to get a new approximation. And so
on. It turns out that this sort of scale analysis is less sensitive to
noise because it measures the average �uctuations of the signal at
di�erent scales.[14]

16 CHAPTER 2. PRE-STUDY

2.3.4 Intellectual property

The ownership of music is considered under the broad term intellectual property
(IP). Buying a CD does not mean that you own the music, but that you own
a license to play that music. IP law covers the legal aspects and varies from
country to country. Most countries' copyright laws include a term known as
fair use, which speci�es under which conditions one can use a copyrighted work
without paying royalty fees.

Audio �ngerprints are usually destructive, and is therefore not covered by
copyright law, as the result can not be used to infringe on the original work.
Non-destructive �ngerprints may be covered, and could probably not be shared
freely. However, this thesis focuses solely on destructive audio �ngerprints.

Several of the audio codecs mentioned and used in this thesis are patented.
Norway does not recognize software patents, and such issues are therefore not
considered [24].

2.4 State of the art

The �eld of music information retrieval progresses quickly, and there exists
several solutions that are use di�erent descriptors than the ones used in this
thesis.

Several solutions have been based directly on the work of Ke, Hoiem and
Sukthankar [18], which concentrates on applying computer vision techniques on
the spectrogram of audio �les. By using a STFT, the spectrogram contains the
power of logarithmically spaced frequency bands, much like the process used
in Gunderson [15]. Using machine learning they identify a set of �lters that
perform well. The implementation is freely available under the GPL, and this
work has formed the basis for at least two systems. libFingerprint from last.fm
is an adaptation of the work presented by Ke et. al., with improvements mainly
in the speed of lookups and featuring a cleaner API [17].

Google released a set of papers that details Waveprint, which do not rely on
machine learning but rather on wavelets [8, 2]. Wavelets are introduced easily in
[14], and allows examination of both the small and large features of a signal, and
is considered an alternative to Fourier analysis. None of the software solutions
examined in this thesis use wavelets.

Another type of audio �ngerprinting models the audio signal by using a
sinusoid generated by parameters such as amplitude, phase and frequency, and
takes into account the residual noise. The sinusoidal models are extracted using
Fourier analysis. Some sinusoidal peaks are selected, mainly those that have
high amplitudes and conforms to the sinusoidal model. Betser et. al. details
the selection process, and �nds an increased recall compared to Haitsma [16].
The system can recognize segments as short as 1 second [28].

Some papers state the goal of �nding audio recordings that descend from the
same musical work, such as Miotto and Larsen [22, 19]. Larsen demonstrates
that systems such as fdmf and libFooID cannot be used to identify a more
abstract recording reliably. Miotto builds a statistical model of a performance
that predicts possible alternative performances. The original performance is
segmented and various audio features are extracted from the segments. Hidden
Markov models are applied to enable identi�cation.

2.5. SOFTWARE 17

MIRtoolbox � a package built for Matlab � can be used as an introduction
to MIR [35]. It allows easy processing of many common MIR methods, such as
�nding the mean/square ratio, spectral measures such as MFCC and cepstrum,
skewness and centroid. It also has an extensive �lter bank, and can quickly be
used to test the e�ects of �lters. It can also be used to analyze the pitch of a
song, resulting in a range of key candidates, or to �nd the rhythm in a song.

2.5 Software

For testing our hypothesis that several descriptors can be used to produce a more
accurate �ngerprint, a set of existing software is used. Throughout this thesis
these are referred to as the individual descriptors. The choice of descriptors
were made based on the availability of the software.

2.5.1 fdmf

The fdmf (�nd duplicate music �les) package is a small software package de-
signed explicitly to �nd duplicate music �les in a collection. It is written mostly
in GNU C, with parts written in Perl. fdmf consists of a program that �nger-
prints all the audio �les, and stores it in an internal database. This database is
then used by a second program that matches all �ngerprints against all other
�ngerprints in the database, and prints out the results.

2.5.1.1 Fingerprints

fdmf generates a combined �ngerprint of 768 bits, that is in fact three separate
descriptors of 256 bits. The �rst 256 �ngerprint-bits are a summary of the
energy spectrum of the audio �le. The following 256 bits are a summary of
the ratio spectrum, a mathematical equivalent to the power spectrum [32]. The
�nal 256 bits are a summary of the twist spectrum.

Rosenfeld details the generation of the descriptors [31, 30]. The descriptors
are generated from 250 ms segments of a mono-channel version of the original
audio. After applying the STFT, four band energies are calculated for each
segment. Equations 2.4 - 2.6 show how these band energies are converted into
chunk metrics [31]:

cm1 = be1 + be2 + be3 + be4 (2.4)

cm2 = (be3+be4)/(be1+be2) (2.5)

cm3 = (be1+be3)/(be2+be4) (2.6)

A second STFT is applied to the chunk metrics, to limit the time misalign-
ment that might occur in di�erent recordings of �les. 256 frequencies are chosen
uniformly across the resulting spectra. These values are used to quantize the
three chunk metrics into a 768 bit �ngerprint.

2.5.1.2 Comparing �ngerprints

When comparing two audio �ngerprints, fdmf looks at the three descriptors
separately. For each of the three descriptors it calculates the Hamming distance

18 CHAPTER 2. PRE-STUDY

between the parts. If the Hamming distance is less than the threshold for that
descriptor, the score for those two audio �les matching is increased. If all three
descriptors has a di�erence smaller than their threshold, the �les are considered
to be equivalent. The thresholds are speci�ed at startup as a vector, and if not
given, a default threshold vector is used.

2.5.2 libFooID

libFooID has not been documented in any research papers, but its website details
the �ngerprinting process [27]. The audio is normalized, and combined to a
mono recording. Starting silence is skipped, and the �rst 100 seconds of the
audio is processed. The audio is resampled to 8000Hz, and only 90 seconds of
the audio is used.

A Hann-windowed discrete Fourier transform is applied to 8192 sample
blocks, resulting in 87 frequency spectra frames. The frequency spectrum is
partitioned into the Bark scale using a modi�ed version of Traunmüller's for-
mula [34]:

z =
[

26.81f
1960 + f

]
− 0.53 (2.7)

The �rst Bark band is ignored, and the �nal band is enlarged, which leaves
16 Bark bands.

z2 =


z + 0.15× (2− z) z < 2
z 2 ≤ z ≤ 20.1
z + 0.22× (z − 20.1) z > 20.1

(2.8)

A least square regression line �t is used on the spectral data, and the cor-
relation coe�cient and the dominant spectral line per frame is stored using 2
and 6 bits, respectively. The �ngerprint is stored using 424 bytes, and includes
some metadata, such as the length of the song.

2.5.2.1 Comparing �ngerprints

Comparing �ngerprints is done by using a simple Hamming distance for the
dominant spectral lines, and uses a quadratically weighted Hamming distance
for the correlation coe�cient.

2.5.3 Gunderson's descriptors

A set of descriptors as presented in Gunderson's master thesis was also used
in this thesis [15]. The thesis implements a variety of basic descriptors, such
as the spectral centroid, play time, rate of zero crossings (with and without
Schmitt triggering), steepness, and the mean/square ratio. Gunderson also
implements mel frequency cepstral coe�cients (MFCC) and �oor-1 cepstral co-
e�cients (F1CC), that are included in this thesis.

The descriptors implemented by Gunderson are brie�y explained below, and
are explained in depth in this thesis itself. Common to all of the descriptors
implemented, with the exception of song length, is that they only look at the
�rst 30 seconds of a song.

2.5. SOFTWARE 19

2.5.3.1 Centroid

A spectral measure that �nds the �center of mass� for the audio signal. The audio
signal is transformed to the frequency domain by a discrete Fourier transform.

2.5.3.2 Song length

The song length was implemented as the length of the track in seconds, but
could also be the number of samples if the sample rate is equal in all songs.

When using lossy compression methods with variable bit rates, the entire
track may have to be decoded to be able to determine the song length, if this
is not given in any of the metadata. The very common MP3 �le format, when
encoded using a variable bit rate, does not store the song length automatically
as metadata, and as such the song length can only be estimated until the entire
�le has been decoded.

2.5.3.3 Mean/square ratio

The mean/square ratio measures the average distance from zero, calculated after
the audio signal has been normalized. Equation 2.9 is from [15].

r =
avg (|x|)
RMS

=

∑
|xi|
N√∑

x2
i

N

=
∑
|xi|√

N
∑
x2

i

(2.9)

2.5.3.4 Steepness

Steepness is a frequency measure that is less a�ected by noise than the zero
crossing rate. It is computed by taking the mean of the numerical derivative of
the audio signal, as in equation 2.10, again from [15].

s =
1

N − 1

N−1∑
i=1

|xi − xi−1| (2.10)

2.5.3.5 Rate of zero crossings (with and without Schmitt triggering)

The rate of zero crossings counts the number of times the signal changes sign
divided by the number of samples. Schmitt triggering de�nes a guard band
around the x-axis that needs to be crossed for a zero crossing to be counted.
Schmitt triggering increases the resilience to noise.

2.5.3.6 Mel frequency cepstral coe�cients

Mel frequency cepstral coe�cients (MFCC) is based on the mel scale that at-
tempts to mimic the human auditory system's perception of varying pitches
at constant loudness. The frequency is transformed to the mel scale using the
following equation:

B (x) = 1127 ln
(
1 +

x

700

)
(2.11)

Related frequencies are linearly grouped into spectral bands on the mel scale.
MFCC outputs several sets of individual descriptors, of which the important

20 CHAPTER 2. PRE-STUDY

ones are mfcc_avg and mfcc_delta_avg. mfcc_avg is titled the �rst zero mo-
ment, and is calculated separately for the 32 coe�cients:

µ̂m =
1
N

N−1∑
i=0

cm,i (2.12)

mfcc_delta_avg is calculated as the average (as in equation 2.12) of the �rst
derivative of the coe�cients.

4cm,i = |cm,i+1 − cm,i| (2.13)

2.5.3.7 Floor-1 cepstral coe�cients

Floor-1 cepstral coe�cients (F1CC) is the descriptor tested by Gunderson to de-
termine if audio masking techniques used in lossy compression could be reliably
used when creating �ngerprints. Floor-1 is based on the Ogg Vorbis psycho-
acoustical model, which models how certain weak tones are hidden by louder
nearby tones [11, 36].

The calculation of �ngerprints is otherwise equivalent to MFCC, and the
descriptors named f1cc_avg and f1cc_delta_avg are considered by Gunderson
to be the most accurate.

2.5.3.8 Comparing �ngerprints

Gunderson's descriptors outputs a vector of �oating point values. To compare
two �ngerprints to each other Gunderson experiments with using both the Eu-
clidean distance and Mahalanobis distance, the latter of which is scale-invariant.
For this thesis, only the Euclidean distance has been used. For details about
how the distance measure is converted to a probability of match, see 3.3.3.1.

Chapter 3

Method

This chapter describes the work that was done to combine the three solutions
chosen for this thesis. It outlines the structure of the value-added software that
was written for this thesis.

3.1 Music collection

The music collection used consists of two merged personal collections, with
contents in WMA, MP3 and Ogg Vorbis formats, using high bit rates. The
collection contains in total 9536 music �les, of which an estimated 2200 com-
binations of two �les (see 3.1.3) are considered duplicates. In total, the �les
consume 57GB of disk space. It would take 26 days and nights to play at nor-
mal speed. The collection is strongly biased to contain MP3 �les over WMA
�les, with 8429 MP3 �les, 1027 WMA �les and 80 Ogg Vorbis �les.

The sample collection is meant to mimic an average personal collection, and
no attempts were made to remove duplicate songs or albums when combining
the two separate music collections. A listing of the albums in the collection can
be found in appendix C. The collection is stored in a folder hierarchy with the
naming scheme <artist>/<album>/<song>, but this naming scheme is not
strictly enforced throughout the collection.

An alternative music collection could be created by using perfectly preserved
originals, encoded in a lossless format, and re-encoding these into several popular
formats. This approach was not used for two main reasons:

1. No access to a large lossless music collection.

2. In the real world, a collection does not usually contain several copies of
the same song in di�erent formats. The results would be skewed towards
how resistant an algorithm is at ignoring encoding artifacts.

3.1.1 Equivalent music

The question of what de�nes two songs as being equivalent has never been
settled, and is usually considered to be a matter of personal preference, context
and usage scenario. To examine this more closely, a terminology is needed to

22 CHAPTER 3. METHOD

Work

Expression

Manifestation

Item

MP3 file WMA file

Digital recording

Concert

Analog recording

MP3 on your disk WMA on your disk

Music idea in composer's head

Studio session

Master tape

Single publication

CD

V
ariance

Figure 3.1: Simplistic illustration of the FRBR terminology as applied to the
lifespan of a �ctional song.

describe music. IFLA presents the FRBR1 model, which can be used as such a
terminology [25, 19]. It de�nes four entities that can be used to describe music.
Originally it was intended to be used for more general bibliographic records to
describe relationships between any items that can be stored in a library.

Behind every piece of music is the intellectual idea of the music, as imagined
by the composer. This is the essence of that song, and is referred to as the
work. The work can be expressed in a variety of ways, i.e. the composer might
write sheet music for the song, or performing the song using an instrument.
These are both considered expressions of that work. If someone uses a micro-
phone to record the composer performing the song, the recording constitutes a
manifestation of the expression.

The entity de�ned as manifestation encompasses a wide range of
materials, including manuscripts, books, periodicals, maps, posters,
sound recordings, �lms, video recordings, CD-ROMs, multimedia
kits, etc. As an entity, manifestation represents all the physical
objects that bear the same characteristics, in respect to both intel-
lectual content and physical form. [25]

This means that our composer might write down the sheet music for the song,
but if the sheet music is printed into many copies, those copies as a collection
is the manifestation. A single copy is known as an item. The model also allows
for works that are derivatives of each other, or when the changes are smaller,
as di�erent expressions of the same work.

In music a remix of a song can be said to be a derived expression of the
original expression. In much the same way, a live performance of a song is
a di�erent expression than the original studio recording of a song. For the
purposes of this thesis, live performances and remixes are considered as di�erent
enough to be nonequivalent with the original recording.

In several genres of music it is common to issue remastered versions of a song.
When remastering, a sound technician has gone back to the original recording
and removed noise or otherwise enhanced the audio. A remastering of a song is

1Functional Requirements for Bibliographic Records

3.1. MUSIC COLLECTION 23

considered a di�erent manifestation of a song, and the audible di�erence from
the original is sometimes hard for a human to detect. In this thesis such a
remastered version is considered equivalent with the original. When digitally
storing music, di�erent encodings can be used. These encodings usually intro-
duce various artifacts into the audio. Di�erent encodings are also considered
di�erent manifestations of a song, and are considered to be equivalent in this
thesis.

In �gure 3.1 the FRBR hierarchy is illustrated with an example. The song
is thought of by the composer, who plays it at a concert. At the concert it
is recorded in both digital and analog format. For some reason, the analog
recording gets ignored, while the digital recording is encoded into two formats
(MP3 and WMA) and is distributed. The composer also records the song in
a recording studio, resulting in a master tape, which subsequently is produced
into a CD, which you can purchase copies of in your local record store.

When determining equivalence in this thesis, where the songs are not related
in any of the ways mentioned above, the deciding factor for determining equiv-
alence has been whether or not a human would say that the songs sound the
same after having listened to the song once.

3.1.2 What are duplicate pairs?

For this thesis we de�ne a duplicate pair as two tracks that cannot be easily
distinguished from each other by a human listener. This de�nition might vary
from study to study, and our de�nition is dependent on that this thesis chose a
real-life music collection. In FRBR terminology, this will usually mean that the
tracks are the same or derived manifestations. Yet in some cases, they might
not be related manifestations, but still the same expression.

Because some of the descriptors used do not analyze more than 30 seconds of
a track, a decision was made that two tracks will also be considered equivalent
if they are audibly equivalent to a human for the �rst 30 seconds, as long as
their total length is approximately equal.

This de�nition of a duplicate pair does not consider the fact that three or
four tracks may be indistinguishable from each other, and that such clusters will
in fact signi�cantly impact the numbers of duplicate pairs. Assuming a cluster
of four tracks that are related to each other, a total of 6 duplicate pairs can be
found, as illustrated in �gure 3.2. The number of duplicate pairs found for a
cluster of n equivalent tracks is given by

(
n
2

)
, a number that increases quickly

for large clusters.

3.1.3 Estimating duplicate pair count

A very simple process was used to estimate the number of duplicate pairs in
the collection. The �les in the collection have names that roughly corresponds
to the title of the song. The �le name is split into individual words, ignoring
everything but letters and punctuation that naturally occurs within a word.
Words shorter than three letters are ignored.

The tokenized version of two �le names are then compared to each other,
and the number of tokens found in both �le names is counted. This value is then
divided by the number of tokens in the longest �le name, and if the result is

24 CHAPTER 3. METHOD

2 9

843 451

1 4

39

880

Figure 3.2: The edges represent a single duplicate pair, while the circles repre-
sent a track. The numbers indicate the identi�er of the song, and note that the
arrows always direct to a larger identi�er. Left: the 6 combinations found when
4 identical songs are found. Right: the 10 combinations found when 5 identical
songs are found.

Algorithm 1 Pseudo-code for checking if two �le names are close enough to be
considered a potential duplicate pair.

1 i f art i s tname1 <> art i s tname2 :
2 return f a l s e ;
3 tokens1 = token i z e (f i l ename1)
4 tokens2 = token i z e (f i l ename2)
5 a l l_tokens = merge (tokens1 , tokens2)
6 common_tokens_count = 0
7 for token in a l l_tokens :
8 i f token in tokens1 and token in tokens2 :
9 i n c r e a s e (common_tokens_count)
10 tokens_count = max(count (tokens1) , count (tokens2))
11 i f tokens_count < 1 :
12 return f a l s e ;
13 r a t i o = common_tokens_count / tokens_count
14 return r a t i o > 0 .6

3.1. MUSIC COLLECTION 25

greater than 0.6, and the �les are from the same artist (indicated by the folder
they are located in), the two �le names are considered a match.

The number gained from this method is likely to be grossly over-dimensioned
because songs might have the same �le name even though they are not audi-
bly similar. For example, a signi�cant number of music �les in the collection
contains live versions of songs which are not counted as duplicates of a studio
recording. This error is compounding, as it will increase the count greatly when
there are clusters of matching songs. This method of estimation resulted in 6991
combinations of two �les listed as duplicate pairs.

It is also very likely that the comparison of just �le names will produce
a number of false positives. To estimate the amount of false positive, 500000
random combinations of �le names were sampled. Using the method above
produced 129 combinations that it believed to be the same song. When verifying
these 129 combinations by hand, only 47 were likely to be equivalent based on
the �le name. We can therefore conclude that the actual number of hits is less
than 35 percent of the number of hits, ergo around 2400 combinations.

When sampling all the combinations were the �le names match and checking
for the word �live� in the two �le paths in the combination, around 10 percent
of the combinations turned out to contain one song from a live recording and
one from a studio recording. After this very simple check, we are left with an
estimate of 2200 duplicate pairs.

3.1.4 Verifying duplicate pairs

Since the test is based around a non-controlled, real life collection of music,
knowing in advance how many and which combinations should be considered
duplicate pairs is not trivial. Verifying the identi�ed duplicate pairs therefore
becomes a highly labor-intensive manual process. However, since we know that
we have approximately 2200 duplicate pairs (see 3.1.3), the amount of work is
somewhat reduced.

When the various averages had been computed, an administration interface
was set up to verify each duplicate pair. To aid in the process, the same code that
was used in 3.1.3 to �nd duplicate pairs was used to highlight combinations that
based on their �le names could be actual duplicates. The �rst2 few thousand
potential duplicate pairs were then read through, and a human indicated to the
system which were actual duplicate pairs.

This process might be error prone, and surely some of the duplicate pairs
veri�ed by a human will be wrong. The administration interface showed po-
tential duplicate pairs with high rankings from both separate descriptors and
the combined solutions, so the duplicate pairs that were veri�ed is concentrated
heavily in the top ranked results for each combined solution.

An assumption was made that perceived equality when talking about music
is transitive. That is, given that song A is a duplicate of song B, and song
B is a duplicate of song C, we can say that A is a duplicate of song C. This
assumption might not hold in all cases, where subtle changes may make song C
more di�erent from A than B was. For a more concrete, yet �ctional example,
take three di�erent recordings of the Billie Holiday song �Georgia On My Mind�,
titled �Take 1�, �Take 2� and �Take 3�. The �Take 1� and �Take 2� recordings

2as ranked by the individual descriptors

26 CHAPTER 3. METHOD

might be similar enough that they can be listed as duplicate pairs, and likewise
for �Take 2� and �Take 3�, while the �Take 1� and �Take 3� might be di�erent
enough for them not to be considered a duplicate pair. Please note that the
example is �ctional, and that no examples of non-transitive duplicates are known
to exists in our collection.

In total 2057 duplicate pairs were veri�ed.

3.2 Descriptor architecture

The combined solution should be able to quickly �nd equivalent audio �les in
a large collection. Several aspects have to be taken into consideration when
designing the solution.

Decoding The most time-consuming process when creating the �ngerprints is
decoding the audio, and as such, the solution is designed to only decode the
audio once and keep the audio data in memory. Then all the �ngerprinting
solutions can fetch the data from main memory. Once the �ngerprints has
been generated, the decoded audio can be discarded.

Output The systems should all be able to compare two �ngerprints and pro-
duce a probability that the �les are equivalent. This makes it possible to
average the probabilities from multiple engines.

3.3 Software

Three di�erent software packages where combined to form a single software
system, that in one pass generates �ngerprints for a set of audio �les. The
combined solution needs every system to output a probability of two songs
being equivalent, and some of the systems had to be modi�ed to output such a
probability.

3.3.1 fdmf

By examination of the source code, fdmf in its original version returns only
a list of the audio �les that has a Hamming distance less than the threshold
vector. The Hamming distance counts the number of positions in which two
signals di�er. We used the Hamming distance di and the threshold value ti for
each �ngerprint part i to generate a probability P according to equation 3.1.

Pi(di, ti) = 1− di

ti
(3.1)

The probability measure thus has a resolution of ti, and ensures that the
entire range will be used. The threshold values are used since a threshold of 255
would mean that the �ngerprints are complete inverses of each other. fdmf's
default threshold values were used.

3.3. SOFTWARE 27

Descriptor ti

Centroid 50
Song length 5

Mean/square ratio 0.005
Steepness 25.0

Rate of zero crossings 2000
Rate of zero crossings (w/ Schmitt triggering) 1000

MFCC average 40
MFCC delta average 3.0

F1CC average 20
F1CC delta average 5

Table 3.1: Thresholds for various descriptors by Gunderson.

3.3.2 libFooID

Software was written around libFooID to create �ngerprints from PCM audio
data, since such software was not available for Linux with source code. Source
code for our software can be found in appendix B. The software stores the
�ngerprints in the database table tblFingerprint, as described in section 3.4.1.

The software supplied with libFooID to compare �ngerprints was adapted to
automatically compare all the �ngerprints in the database against each other,
in much the same way as with fdmf.

3.3.3 Gunderson's descriptors

The �ngerprinting software was used without modi�cations to generate �nger-
prints for all of the audio �les. A separate parser was then written to read
the �les produced into our �ngerprint table (see 3.4.1). A script compares all
of these �ngerprints to each other, generating a probability that the two �les
match. The probability is calculated as in equation 3.2, where d (f1, f2) is the
Euclidean distance between the �ngerprints f1 and f2, and ti is the minimum
Euclidean distance required for that descriptor according to table 3.1.

Pi(f1, f2) = 1− d (f1, f2)
ti

(3.2)

3.3.3.1 Determining thresholds

The thresholds presented in table 3.1 was determined by pulling a random sam-
ple of 10 000 Euclidean distances for a given descriptor, and then sort the
distances ascendingly. Due to the enormous amount of combinations we are
only interested in Euclidean distances that are signi�cantly smaller than the
rest. With 9536 songs in our database, there are

(
9536

2

)
= 9536×9535

2 = 45462880
possible ways to combine two �les, and we are only interested in identifying the
duplicate pairs in our collection, which we have estimated to be around 2200.
We are therefore only interested in 0.005 percent of the combinations presented.

Figure 3.3 shows a plot of the samples taken from the mfcc_avg descriptor.
By looking at similar plots for the di�erent descriptors, we determined appropri-

28 CHAPTER 3. METHOD

0

200

400

600

800

1000

1200

Combination number

D
is

ta
n

ce

Figure 3.3: 10000 random Euclidean distances sampled from the mfcc_avg
descriptor.

ate thresholds that at would result in around 50000 matches for each descriptor.
50000 was chosen to allow for a large safety margin.

3.4 System architecture

The system uses a MySQL database to store intermediate data, and several
processing steps to combine the data in meaningful ways.

3.4.1 Database architecture

The �ngerprints and scores from the various descriptors are fed into a common
database to allow for easy querying. The database structure is presented in
Figure 3.4.

It consists of four tables. Every �le that is �ngerprinted is present in tblFile,
where the path to the �le is stored, along with the size of the �le. A unique
identi�er is assigned to each �le. For quick lookups the MD5 sum of the �le's
path is used as the index. Since all of the paths have a common pre�x and a
MD5 causes a shorter pre�x lookup in the index.

tblType contains a list of the di�erent descriptors used. Since fdmf produces
three separate �ngerprints, it has three entries in this table. tblFingerprint
contains the �ngerprints for �les for those descriptors that do not have their
own internal �ngerprint database. tblScore contains the likelihood that two
�les are equivalent when comparing with a given descriptor. If a descriptor
�nds no similarity between two �les, it will not insert a row into tblScore to
save calculation time and space. The subsequent calculation will account for
missing 0-score rows. tblSummedScore is used for storing the �nal likelihood

3.5. COMBINING RESULTS 29

tblFingerprint
ixFile
ixType
sFingerprint

tblType
ixType
sType

tblScore
ixFile1
ixFile2
ixType
dblScore

tblSummedScore
ixFile1
ixFile2
ixScoreMethod
dblScore tblScoreMethod

ixScoreMethod
sTitle

tblVerifiedMatch
ixFile1
ixFile2

tblFile
ixFile
sPath
md5Path
cbFile

Figure 3.4: Database architecture of the combined solution. Primary keys are
marked with a bold font.

that two �les are equivalent, using di�erent combination methods, as outlined
in section 3.5.

It is worth noting that for all the tables that contain the two identi�ers
ixFile1 and ixFile2, it is always the case that ixFile1 is smaller than ixFile2.
This assertion holds as long as all descriptor matching is guaranteed to be
symmetric. All the descriptor matching is done using the Euclidean distance.
The Euclidean distance is a metric, and metrics are symmetric by de�nition
[37].

3.4.2 Data �ow

The combined system modi�es the software packages used to input data in
several processing steps. There are three separate �ngerprint processes that are
run on the audio data; fdmf, libFooID and Gunderson's descriptors. fdmf uses
it's own internal database to store the �ngerprint data, while both libFooID and
Gunderson's descriptors relies on our MySQL database.

There are three comparison processes, that compares �ngerprints for all �les
against each other using their descriptors, and stores the results in tblScore. A
single process combines these results (as presented in 3.5), and enters the results
into tblSummedScore. The entire process is outlined in �gure 3.5.

3.5 Combining results

Several methods exists for �nding a central tendency among a range of values,
and the goal of this thesis is to highlight the merits of each of these methods.
In the following, the likelihood for two songs matching as given by descriptor i
is designated pi.

30 CHAPTER 3. METHOD

File

ScoreSummed
Score

Finger-
print

Fingerprinter Comparison

SummationDisplay

Files on disk

DB
table

Process

Legend:

Multiple
processes

Figure 3.5: The �ow of data through the system.

3.5. COMBINING RESULTS 31

In addition to a likelihood measure given by various averages, the standard
deviation is calculated when we are dealing with statistical measures. The
standard deviation using average x is given in equation 3.3, where Px is the
probability given by e.g. the arithmetic mean or the truncated mean. It is
worth noting that calculating the standard deviation is very similar to taking
the root-mean square, except that you sum the squares of deviation. Also worth
noting is that the standard deviation can not be compared directly unless the
same averaging method is used.

σx =

√√√√1
I

I∑
i=0

(pi − Px)2 (3.3)

Results are then sorted by descending values of probability, and then by
ascending values of standard deviation. This ensures that high-probability du-
plicate pairs are sorted �rst, and when two duplicate pairs have the same prob-
ability, the standard deviation is the tie-breaker. If both the probability and
standard deviation match, the �les are sorted according to which duplicate pair's
�rst �le was �rst entered into the system.

Some of these methods are highly a�ected by outliers, and some descriptors
produces lots of outliers. Therefore, in addition to running on the full set of data,
some where also run on a set of the top performing descriptors, while ignoring
the other descriptors. These were the arithmetic mean, the root-mean square,
the truncated arithmetic mean and the Bayesian classi�er. The descriptors
that were chosen for this set was fdmf_0, fdmf_1, fdmf_2, libfooid, mfcc_avg,
mfcc_delta_avg, mfcc_f1_avg and mfcc_f1_delta_avg. The median was used
only for the top performing descriptors.

3.5.1 Arithmetic mean

The arithmetic mean (AM), commonly referred to as the mean, is the simplest
and most common averaging method. It is one of several methods to indicate
the central tendency of a range of numbers, and is calculated as in equation 3.4
.

Pam =
1
I

I∑
i=0

pi (3.4)

The arithmetic mean is a good measure for distributions that have a small
number of outliers. Outliers can signi�cantly impact the result. A high standard
deviation would usually indicate that the arithmetic mean is unsuitable.

3.5.2 Root-mean square

The root-mean square (RMS) of a set of values is the square root of the mean
of values squared. It is most useful when values shift from positive to negative,
and is well known in electrical engineering and with audio enthusiasts under the
abbreviation RMS.

Prms =

√√√√1
I

I∑
i=0

p2
i (3.5)

32 CHAPTER 3. METHOD

3.5.3 Weighted arithmetic mean

The weighted arithmetic mean (WAM) is an averaging method used when dif-
ferent values are assigned di�erent weights. If we know that one �ngerprinting
method has a higher likelihood of producing false positives, we can reduce it's
weight, and thus reduce it's �nal impact on the score. For the weighted arith-
metic mean, each likelihood pi has an associated weight wi.

Pwam =
∑I

i=0 wipi∑I
i=0 wi

(3.6)

The arithmetic mean is a special case of the weighted mean, where all the
weights are equal. The weights were adjusted manually for some runs, based on
the reputation of individual descriptors.

3.5.4 Weighted root-mean square

A weighted version of the root-mean square measure was derived from the or-
dinary RMS measure after seeing the performance of the weighted arithmetic
mean. Using the weights from weighing by performance and the second set
of manual weights, equation 3.7 was used to computed a weighted root-mean
square (WRMS).

Prms =

√√√√∑I
i=0 wip2

i∑I
i=0 wi

(3.7)

The formula was adapted from the root-mean square for this thesis, but has
been used in a similar form in e.g. [3].

3.5.5 Truncated mean

A truncated mean discards some data values to get rid of outliers. The truncated
arithmetic mean was used to get rid of the worst outliers, by removing an equal
number of values on each end of the input data, and calculating the arithmetic
mean of the remaining data. We only truncated two values, one from each side
of the data set.

3.5.6 Median

The median is a simplistic measure that does not work well at all when all the
descriptors are present. With a large number of descriptors returning perfect
matches for non-related songs, the median will be more or less random in many
situations.

When working with the set of known good descriptors, it could very well in-
dicate a tendency among the values. The median is not a�ected as considerably
by outliers as other averages.

3.5.7 Naïve Bayes

Bayesian analysis lends itself elegantly to the classi�cation problem and is used
with a high degree of success in spam �lters. By starting with Bayes theorem,

3.5. COMBINING RESULTS 33

a formula for calculating the probability that two songs match given a set of
clues will be derived. This approach is called naïve Bayes (NB) [21].

A prerequisite for using Bayesian analysis is that the scores returned by the
varying engines is the actual probability of the two songs matching. It is a
well known fact that this assumption does not hold for many of the descriptors,
and as such, the Bayesian analysis has been limited to only encompass the 8
best-ranked descriptors from weighing by performance (see 3.5.9).

In the following, P (M) is the probability of a correct match. P (Ci) is the
probability for the two songs matching given by descriptor i. The formulas
assume only two clues, while the �nal formula is easily expandable.

P (M |C1 ∩ C2) =
P (C1 ∩ C2|M)P (M)

P (C1 ∩ C2)
(3.8)

=
P (C1 ∩ C2|M)P (MS)

P (M)P (C1 ∩ C2|M) + P (¬M)P (C1 ∩ C2|¬M)
(3.9)

Bayes' theorem was used to get to 3.8, and use the usual expanded form of
Bayes' to get 3.9. To continue the assumption that our clues are independent is
needed, which turns the algorithm into a naïve Bayes algorithm. We can now
substitute P (C1 ∩ C2|M) = P (C1|M)P (C2|M):

=
P (C1|M)P (C2|M)P (M)

P (M)P (C1|M)P (C2|M) + P (¬M)P (C1|¬M)P (C2|¬M)
(3.10)

Applying Bayes' theorem three times gives, after some calculation:

=
P (M |C1)P (M |C2)

P (M)

P (M |C1)P (M |C2)
P (M) + P (¬M |C1)P (¬M |C2)

P (¬M)

(3.11)

Substituting a = P (M |C1), b = P (M |C2) and S = P (M) leaves a simpler
formula:

L (F1, F2) =
ab
S

ab
S + (1−a)(1−b)

1−S

(3.12)

This formula expands as you might expect:

L (F1, F2) =
abc
S

abc
S + (1−a)(1−b)(1−c)

1−S

(3.13)

Depending on the number of clues, a generalized formula is presented below:

L (F1, F2) =

∏
Ci

S∏
Ci

S +
∏

1−Ci

1−S

(3.14)

In our database, a total of 31 million potential duplicate pairs will be evalu-
ated using this algorithm. An estimated 2200 correct duplicate pairs exist. This
means P (M) = S ≈ 2200

31000000 = 8 × 10−5, and that the probability for pick-
ing a correct duplicate pair from the potential duplicate pairs is 0.008 percent.
However, when using this value, the formula proved to be to extremely sensitive

34 CHAPTER 3. METHOD

to outliers. After repeated experimentation the value was therefore manually
adjusted to 0.8. The value had to be adjusted because otherwise a tremendous
amount of evidence would be required for the naïve Bayes algorithm to classify
two songs as a match. A value of 0.8 results in the values being more spread
out across the available spectrum.

3.5.7.1 Problems with naïve Bayes

There are two main problems with Bayesian analysis as applied to our system.
The �rst is the reason for excluding descriptors. As an example, assume that
we have three descriptor scores, length with a probability of 1.0, fdmf_0 with
a score of 0.2 and mfcc_avg with a score of 0.1. Since the probability of the
two songs being similar is 1 as given by the length descriptor, the combined
probability is also 1. This means that any descriptor producing a perfect score
will completely distort the result. Inversely, if any descriptor returns zero, the
combined score will also be zero.

Two solutions can be used to prevent this problem. First, the scores are
capped at both ends, and is always between 0.01 and 0.99. This ensures that
a single descriptor cannot override the rest of the results. Second, one can
pick scores from accurate descriptors liberally, which we are doing when we are
selecting the top performing descriptors.

The second problem lies with the assumption that the scores from all the
descriptors are statistically independent. This assumption is likely not to hold,
as the algorithms used by the various descriptors are similar. This problem is
frequently ignored when writing Bayesian classi�ers and is why this is considered
a naïve Bayes algorithm.

3.5.8 Discarded approaches

Several averaging methods were not selected for this approach, mostly due to
the the large quantity of zero values in the data set. For example, the harmonic
mean, de�ned as in equation 3.15 will result in division by zero, and distort the
result. The harmonic mean is therefore not applicable in our tests.

Phm =
I∑I

i=0
1
pi

(3.15)

The geometric mean is another average where the I-th root of the product
of values is taken. Equation 3.16 shows the calculation, but due to the multi-
plication of probabilities, we will always get zero probability if only one of the
results is zero.

Pgm = I

√√√√ I∏
i=0

pi (3.16)

3.5.9 Determining weights

Some of the descriptors tested produced a larger number of potential duplicate
pairs than others. Some even two orders of magnitude apart. It is likely that a
potential duplicate pair from a descriptor that produces few potential duplicate

3.5. COMBINING RESULTS 35

pairs, will be more likely to be correct than a potential duplicate pair from a
descriptor that produces one hundred times as many.

By this assumption, four di�erent ways of calculating the weights were de-
vised. In one run, the weight wi was calculated using the number of non-zero
scores ni, compared to the maximum number of non-zero scores produced by a
single descriptor nmax. It is shown as equation 3.17. The multiplication by 2,
is to ensure that the lowest assigned weight is 0.5, instead of 0.

wi = 1− ni

2× nmax
(3.17)

This method, referred to as weighing by count, only looks at the number of
potential duplicate pairs found to determine which descriptors are trustworthy.
So, if a descriptor produces a lot of very low-ranked potential duplicate pairs
(e.g. with a score of 0.01 for 99% of the comparisons), it will be ranked as
unreliable, even if it is not. Another weighing scheme looks at the sum of the
of scores instead, so that a descriptor that produces very many low-ranking
results will not be penalized as harshly, while a descriptor that produces many
high-ranking results compared to the amount of results will be penalized harder.

More speci�cally, the weight for a given descriptor i was calculated using the
sum of scores si, as presented in equation 3.18, where smax is the highest si.

wi = 1− si

2× smax
(3.18)

The third method uses the arithmetic mean of the scores given by one de-
scriptor. A high average is assumed to indicate that the descriptor is less trust-
worthy. Equation 3.19 shows the calculation, where sj,i is the j-th score for
descriptor i, and Ji is the number of scores for descriptor i.

wi = 1−
∑Ji

j=0 sj,i

Ji
(3.19)

The most accurate way to get a measure of the usefulness of a descriptor, is
to look at its actual performance. After having �nished the database of veri�ed
duplicate pairs, the performance was measured using the false positive rate in
the highest-ranked one thousand matches. This method was titled weighing by
performance.

Using these equations on the �ngerprint database produced weights as can
be seen in �gure 3.6. It is apparent from weighing by performance that a set of
the descriptors are nearly useless, an indication that weighing by average also
seems to support. Only weighing by performance recognizes mfcc_delta_avg
as a good indicator, with the exception of weighing by average. Almost all of
these methods seem to agree that fdmf_1 is a bad estimator as well.

In addition to the automatically computed weights, several sets of weights
were created manually, based on the performance of the di�erent weighing
schemes. These weights are shown in �gure 3.7. The �rst set of manual weights
was chosen before the relative merits of the di�erent descriptors were known,
and was based on their reputation. Manual weights method 2 and 3 are based
on weighing by performance, where weights less than 0.05 and 0.1 respectively
are ignored. This makes the manual weights comparable to the other means
when only a chosen set of descriptors is used, as it is the same set of descriptors
that is used.

36 CHAPTER 3. METHOD

fd
m

f_
0

fd
m

f_
1

fd
m

f_
2

lib
fo

o
id

c
e

n
tr

o
id

le
n

g
th

m
s

ra
tio

s
te

e
p

n
e

s
s

z
e

ro
c

ro
s

s
in

g
s

z
e

ro
c

ro
s

s
in

g
s

_
g

u
a

rd

m
fc

c
_

a
v

g

m
fc

c
_

d
e

lta
_

a
v

g

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t2

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t3

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t4

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t5

m
fc

c
_

f1
_

a
v

g

m
fc

c
_

f1
_

d
e

lta
_

a
v

g

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t2

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t3

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t4

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t5

m
fc

c
_

f1
_

m
o

m
e

n
t2

m
fc

c
_

f1
_

m
o

m
e

n
t3

m
fc

c
_

f1
_

m
o

m
e

n
t4

m
fc

c
_

f1
_

m
o

m
e

n
t5

m
fc

c
_

m
o

m
e

n
t2

m
fc

c
_

m
o

m
e

n
t3

m
fc

c
_

m
o

m
e

n
t4

m
fc

c
_

m
o

m
e

n
t5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight by sum Weight by count Weight by average Weight by performance

Descriptors

W
e

ig
h

t

Figure 3.6: Weights as generated by equation 3.17, 3.18, 3.19 and weighing by
performance. Note that the weights are relative to weights within its series, and
as such, can not be compared directly to weights given by another series.

fd
m

f_
1

fd
m

f_
2

lib
fo

o
id

c
e

n
tr

o
id

le
n

g
th

m
s

ra
tio

s
te

e
p

n
e

s
s

z
e

ro
c

ro
s

s
in

g
s

z
e

ro
c

ro
s

s
in

g
s

_
g

u
a

rd

m
fc

c
_

a
v

g

m
fc

c
_

d
e

lta
_

a
v

g

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t2

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t3

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t4

m
fc

c
_

d
e

lta
_

m
o

m
e

n
t5

m
fc

c
_

f1
_

a
v

g

m
fc

c
_

f1
_

d
e

lta
_

a
v

g

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t2

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t3

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t4

m
fc

c
_

f1
_

d
e

lta
_

m
o

m
e

n
t5

m
fc

c
_

f1
_

m
o

m
e

n
t2

m
fc

c
_

f1
_

m
o

m
e

n
t3

m
fc

c
_

f1
_

m
o

m
e

n
t4

m
fc

c
_

f1
_

m
o

m
e

n
t5

m
fc

c
_

m
o

m
e

n
t2

m
fc

c
_

m
o

m
e

n
t3

m
fc

c
_

m
o

m
e

n
t4

m
fc

c
_

m
o

m
e

n
t5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Manual weights 1 Manual weights 2 Manual weights 3

Descriptor

W
e

ig
h

t

Figure 3.7: Three sets of manual weights.

3.5. COMBINING RESULTS 37

Weights
Descriptor Sum Count Avg. Perf. M. 1 M. 2 M. 3

fdmf_0 1 1 0.74 0.6 0.17 0.6 0.6
fdmf_1 0.69 0.5 0.89 0.39 0.17 0.39 0.39
fdmf_2 1 1 0.89 0.52 0.17 0.52 0.52
libfooid 0.64 0.85 0.56 0.64 0.5 0.64 0.64
centroid 0.8 0.93 0.5 0.03 0.5 0 0
length 0.74 0.91 0.5 0 0.3 0 0
msratio 0.61 0.86 0.5 0.03 0.3 0 0
steepness 0.74 0.91 0.5 0.03 0.3 0 0

zerocrossings 0.72 0.9 0.5 0.03 0.1 0 0
zerocrossings_guard 0.74 0.91 0.5 0.03 0.2 0 0

mfcc_avg 0.92 0.91 0.84 0.57 0.8 0.57 0.57
mfcc_delta_avg 0.5 0.64 0.75 0.57 0 0.57 0.57

mfcc_delta_moment2 0.83 0.89 0.72 0.05 0 0.05 0
mfcc_delta_moment3 0.66 0.87 0.55 0.03 0 0 0
mfcc_delta_moment4 0.7 0.89 0.5 0.03 0 0 0
mfcc_delta_moment5 0.63 0.87 0.5 0.03 0 0 0

mfcc_f1_avg 0.98 0.98 0.86 0.53 1 0.53 0.53
mfcc_f1_delta_avg 0.87 0.9 0.76 0.3 0.3 0.3 0.3

mfcc_f1_delta_moment2 0.68 0.88 0.53 0.04 0 0 0
mfcc_f1_delta_moment3 0.63 0.87 0.5 0.03 0 0 0
mfcc_f1_delta_moment4 0.64 0.87 0.49 0.03 0 0 0
mfcc_f1_delta_moment5 0.57 0.85 0.47 0.03 0 0 0

mfcc_f1_moment2 0.66 0.87 0.54 0.05 0 0 0
mfcc_f1_moment3 0.65 0.88 0.5 0.03 0 0 0
mfcc_f1_moment4 0.62 0.87 0.5 0.03 0 0 0
mfcc_f1_moment5 0.64 0.87 0.49 0.03 0 0 0
mfcc_moment2 0.74 0.87 0.65 0.03 0 0 0
mfcc_moment3 0.65 0.88 0.5 0.03 0 0 0
mfcc_moment4 0.6 0.86 0.49 0.03 0 0 0
mfcc_moment5 0.63 0.87 0.49 0.03 0 0 0

Table 3.2: The set of weights used by the weighted arithmetic mean. The
weighted root-mean square only use the sets labeled manual 2 and performance.

38 CHAPTER 3. METHOD

Chapter 4

Results

This chapter presents the results from the experiments done in chapter 3.

4.1 Evaluating results

Several measurements are common when evaluating search results. A very com-
mon approach is to use a precision versus recall curve to outline how the system
performs in retrieving relevant results. Since our system does not have a com-
plete list of which results are relevant, the precision is impossible to compute.
The F-measure, de�ned as 2pr

p+r , where p is precision and r is recall, is excluded
for the same reason.

Instead an approach that measures the number of false positives in the �rst
thousand results were chosen. For each descriptor, we extract the thousand
highest-ranked results, and compare these results to our list of veri�ed duplicate
pairs. By grouping the results into groups of one hundred, we can see roughly
how many trustworthy results a descriptor produces. The descriptors are then
ranked by the percentage of false positives in the �rst thousand positive results.
After the �rst thousand results none of the individual descriptors or combined
solutions produced less than 50% error rates when divided into partitions of one
hundred.

This method of evaluation takes into account the fact that results have lim-
ited use if not sorted correctly. Google became popular because they realized
that the important thing about search was putting relevant results �rst [33, 26].
This also applies to �nding duplicates in a music collection, the most relevant
results should appear �rst.

4.2 Individual descriptors

The results from the individual descriptors were not impressive. To examine
the results closely, the �rst thousand results were ranked and then partitioned
into 10 partitions of 100 results. Figures 4.2 and 4.3 show the results from the
individual descriptors, with the x-axis being the partitions, and the y-axis being
the number of false positives.

As can be seen in the graph, several of the descriptors do reasonably well.
mfcc_avg and mfcc_f1_avg do not produce a single false positive in the �rst 300

40 CHAPTER 4. RESULTS

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Verified correct Verified incorrect First incorrect

File combinations

P
ro

ba
bi

lit
y

o
f m

at
ch

(a) mfcc avg

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Verified correct Verified incorrect First incorrect

File combinations

P
ro

ba
bi

lit
y

o
f m

at
ch

(b) fdmf 2

Figure 4.1: Results from two individual descriptors graphed. Data generated
from list of potential duplicate pairs ordered by the likelihood given by the
individual descriptors. The top line shows veri�ed duplicate pairs, while the
lower line shows the incorrect matches. The middle, straight line highlights the
�rst error.

4.2. INDIVIDUAL DESCRIPTORS 41

ranked results. libfooid, fdmf_0, fdmf_2, mfcc_delta_avg and mfcc_f1_delta_avg
also show promising results, and produced few false positives in the �rst 400 re-
sults.

Several of the descriptors, such as song length, perform badly. The �rst 3
599 results returned by that descriptor all indicate perfect matches, and ranking
results is therefore reduced to which �les were entered �rst into the database.
It is therefore obvious that song length as a descriptor is completely inadequate
for it's intended purpose, and it can at best be used as an optimization detail.

Figure 4.4 shows the total false positive rate for the �rst thousand for each
individual descriptor. These numbers were used to generate the weights by
performance as detailed in section 3.5.9.

The results from a subset of the descriptors were analyzed to determine how
they fail, and if there are patterns in the results that can be exploited. The top
100 erroneous results from each descriptor was, and the three highest ranking
erroneous matches was excerpted for the reader's reference.

4.2.1 fdmf_0

This descriptor represents the energy spectrum of the audio signal, and is one of
the better-performing descriptors. Considering the �rst few erroneous matches,
only two has a probability higher than 0.5.

File 1 File 2 Score

Billie Holiday - Spoken
Introduction

Sound of electric drill 0.86667

Billie Holiday - A Sunbonnet
Blue

Sound of electric drill 0.57333

Billie Holiday - Just One of
Those Things

Taube - Sa länge skutan kan gå 0.44

Table 4.1: First three erroneous duplicate pairs from fdmf_0.

None of these audio recordings are in any way perceptually similar, which
indicates that the energy spectrum does not look at the audio in the same way as
a human would. The electric drill recording is a recording that was inadvertently
included in the collection, but illustrates that music collections very often has
short recordings that might not be music.

Worth noting with this descriptor, is that it has not given a full score to
two �les of di�erent �le formats. This could be because the music collection
contains more MP3 �les than WMA �les, but the absence of WMA �les in the
�rst 50 results is noteworthy, as they appear regularly from that point onwards,
always with a score lower than 0.9.

4.2.2 fdmf_1

Looking at the ratio spectrum �ngerprint generated by fdmf, it is the poorest
performing of the fdmf descriptors, however it does better than some of the
other descriptors.

42 CHAPTER 4. RESULTS

1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000

0

10

20

30

40

50

60

70

80

90

100

fdmf_0 fdmf_1 fdmf_2 libfooid
mfcc_avg mfcc_delta_avg mfcc_f1_avg mfcc_f1_delta_avg

Partition

W
ro

n
g

ly
 id

e
n

tif
ie

d

Figure 4.2: Number of false positives in the �rst 1000 results for the best per-
forming descriptors, divided into partitions of 100 results. x-axis shows partition
number, y-axis shows the number of false positives.

4.2. INDIVIDUAL DESCRIPTORS 43

1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000

70

75

80

85

90

95

100

centroid length msratio
steepness zerocrossings zerocrossings_guard

Partition

W
ro

n
g

ly
 id

e
n

tif
ie

d

Figure 4.3: Number of false positives in the �rst 1000 results for the simple de-
scriptors, divided into partitions of 100 results. x-axis shows partition number,
y-axis shows the number of false positives. Note that the scale varies from �gure
4.2.

44 CHAPTER 4. RESULTS

fdmf_0
fdmf_1
fdmf_2
libfooid

centroid
length

msratio
steepness

zerocrossings
zerocrossings_guard

mfcc_avg
mfcc_delta_avg

mfcc_delta_moment2
mfcc_delta_moment3
mfcc_delta_moment4
mfcc_delta_moment5

mfcc_f1_avg
mfcc_f1_delta_avg

mfcc_f1_delta_moment2
mfcc_f1_delta_moment3
mfcc_f1_delta_moment4
mfcc_f1_delta_moment5

mfcc_f1_moment2
mfcc_f1_moment3
mfcc_f1_moment4
mfcc_f1_moment5

mfcc_moment2
mfcc_moment3
mfcc_moment4
mfcc_moment5

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

40.10%

60.20%

47.40%

35.90%

97.40%

99.70%

97.00%

97.10%

97.40%

97.30%

42.60%

43.10%

94.80%

97.40%

97.40%

97.40%

47.30%

70.10%

96.50%

97.30%

97.20%

97.30%

95.10%

97.30%

97.40%

97.40%

96.70%

97.40%

97.20%

97.40%

False positive rate

D
es

cr
ip

to
r

Figure 4.4: False positive rate from the individual descriptors for the �rst thou-
sand results.

4.2. INDIVIDUAL DESCRIPTORS 45

File 1 File 2 Score

The Doors - Hello, I Love You Taube - Stockholmsmelodi 0.791304
The Doors - Hello, I Love You Vamp - Ingeborg 0.773913
Hugh Cornwell - Snapper Taube - Stockholmsmelodi 0.773913

Table 4.2: First three erroneous duplicate pairs from fdmf_1.

Unlike fdmf_0, fdmf_1 produces a large number of high-probability matches
that are erroneous. Among the wrong results, some songs are repeatedly matched
against a variety of songs, while the songs themselves sound very di�erent to a
human.

The same tendency as for fdmf_0 in detecting duplicate pairs with di�erent
�le types is present in fdmf_1. The �rst cross-match occurs at position 50, with
a score of less than 0.9.

4.2.3 fdmf_2

The twist spectrum �ngerprint from fdmf produces few high-probability erro-
neous matches. Only the �rst 16 erroneous matches have a score higher than
0.4.

File 1 File 2 Score

Billie Holiday - Spoken
Introduction

Sound of electric drill 0.576471

Billie Holiday - Yesterdays Billie Holiday - Our Love Is
Di�erent

0.505882

Billie Holiday - Jeepers
Creepers

Billie Holiday - Our Love Is
Di�erent

0.505882

Table 4.3: First three erroneous duplicate pairs from fdmf_2.

Again we see the same audio matching in number 1 for fdmf_0, and a
predominance for Billie Holiday recordings. Common for those recordings are
the poor quality and the noise level, which may confuse the descriptor.

Again, fdmf_2 seems to match worse on �les with di�erent �le formats. This
might indicate that fdmf's spectrum analysis is sensitive to encoding artifacts
in various �le formats.

4.2.4 libFooID

libFooID produces a range of high-probability erroneous duplicate pairs, while
having the lowest false-positive rate of the tested descriptors. However, the
�rst three erroneous duplicate pairs are all moody, string-heavy music with no
drums, which could indicate that libFooID picks up the lack of percussion as a
similarity.

This descriptor deserves a special mention, as it is the only complete �nger-
printing solution that is used without decomposing it into its internal parts. It
is also the best performing single descriptor tested.

46 CHAPTER 4. RESULTS

File 1 File 2 Score

Keith Jarret - Hymn For Good
Friday

Michael Andrews - Carpathian
Ridge

0.852641

Brian Eno - Harmonic Studies Michael Andrews - Cellar Door 0.851268
Michael Andrews - Carpathian

Ridge
Michael Andrews - The

Tangent Universe
0.505882

Table 4.4: First three erroneous duplicate pairs from libFooID.

Also libFooID seems to rank di�erently encoded �les somewhat lower than
�les in the same �le format.

4.2.5 Centroid

The centroid does not perform well, and a large amount of audio �les produce
very high probability matches. The erroneous duplicate pairs identi�ed by the
centroid do not appear to have anything in common when listened to by a
human.

File 1 File 2 Score

Talking Heads - Listening
Wind

The Tri�ds - Jerdacuttup Man 1

Neil Young - Trans Am Rush - Fly By Night 1
Apoptygma Berzerk - Black

Pawn
The Waterboys - Fisherman's

Blues
0.999999

Table 4.5: First three erroneous duplicate pairs from the centroid descriptor.

4.2.6 Song length

The song length is such an obviously �awed descriptor to use for audio iden-
ti�cation of a single audio �le. It therefore comes as no surprise that it is the
worst performing descriptor.

The usefulness of the track length as a descriptor is highly dependent
on the use case in question: In discerning di�erent tracks from CD,
it can be an excellent measure, in genre classi�cation, it is nearly
useless, and �nally, in some cases (such as when identifying what
music is being played on the radio at a given instant), it might not
be available at all. [15]

It is hard to imagine the song length as a reliable indicator of the contents of
the music, as a lot of the songs produced today is between 3 and 4 minutes long.
It can be useful in detecting outliers, such as quickly skipping a comparison of
two songs if the songs are 10 minutes di�erent in length.

4.2. INDIVIDUAL DESCRIPTORS 47

Song name Length File size

File 1 Björk - Hunter 4:15 6 160 832 bytes
File 2 Hugh Cornwell - Always The Sun (live) 4:15 8 390 786 bytes

File 1 Björk - Venus As A Boy 4:41 6 796 152 bytes
File 2 Enya - Water Shows The Hidden Heart 4:41 6 796 956 bytes

File 1 Björk - Army of Me 3:55 5 695 546 bytes
File 2 The Rolling Stones - It Won't Take Long 3:55 8 330 019 bytes

Table 4.6: First three erroneous duplicate pairs from using track length as a
descriptor.

If the track length is available, using it as an optimization to quickly remove
tracks that vary greatly in length could work, and is done by e.g. libFooID. It
cannot be trusted as an individual descriptor due to the very high likelihood
that other songs fall within the same range.

4.2.6.1 Song length as an optimization

The song length is a descriptor that is very easy to understand, and so are
the reasons for why it will not work as a descriptor for identifying single audio
�les. The average song length in our collection is 230 seconds (3 minutes and
50 seconds). In our collection, a total of 2826 songs are within 30 seconds of the
average song length. 1465 songs are within 15 seconds from the average track
length.

If using the song length as an optimization and automatically failing com-
parisons of two songs with a di�erence in length exceeding 30 seconds; you can
skip approximately 85% of the actual �ngerprint comparisons on average. In
our system, this excluded 231 veri�ed duplicate pairs, as our criteria speci�es
only looking at the �rst minute of audio.

4.2.7 Mean/square ratio

The mean/square ratio performs on an equal level with the centroid, but has a
large number of erroneous duplicate pairs with a perfect score. The erroneous
duplicate pairs found do not carry a perceptual similarity when listened to by
a human.

File 1 File 2 Score

Björk - Joga Led Zeppelin - Moby Dick 1
Billy Idol - Crank Call David Bowie - Strangers When

We Meet
1

Billie Holiday - Romance in the
Dark

Tom Waits - My Baby Left Me
on A Trash Day

1

Table 4.7: First three erroneous duplicate pairs from the mean/square ratio
descriptor.

48 CHAPTER 4. RESULTS

4.2.8 Steepness

Steepness is another badly performing descriptor, and reports many high-probability
erroneous duplicate pairs. The erroneous duplicate pairs again show no dis-
cernible pattern in what triggers a match using that descriptor.

File 1 File 2 Score

Apoptygma Berzerk - More
Serotonin Please

Billie Holiday - Interview 1a 0.999998

Annie Lennox - Loneliness deLillos - Fange i ditt eget bur 0.999997
Kevin Bloody Wilson - Flowers XTC - Knights In Shining

Karma
0.999996

Table 4.8: First three erroneous duplicate pairs from the steepness descriptor.

4.2.9 Rate of zero crossings

Both with and without a guard band, the ratio of zero crossings produce a large
amount of erroneous duplicate pairs with perfect scores. This means the results
are as random as the song length, and no discernible pattern can be found in
the duplicate pairs it �nds.

4.2.10 Mel frequency cepstral coe�cients

mfcc_avg is one of the best performing descriptors for our task, and has an
apparent tendency in its erroneous duplicate pairs to link two songs by the
same artist. In fact, of the top ten erroneous duplicate pairs produced, only two
were di�erent artists. In the eight cases, all the songs matched were found on
the same album.

File 1 File 2 Score

Tom Waits - I'll Shoot The
Moon

Tom Waits - Pony 0.818893

Dane Cook - Someone Shit On
The Coats

Dane Cook - Driveway Intruder 0.806178

Tom Waits - Eyeball Kid Tom Waits - Pony 0.79033

Table 4.9: First three erroneous duplicate pairs from the mfcc_avg descriptor.

This clearly indicates that mfcc_avg identi�es songs using the same instru-
ments and having the same remastering as more similar.

When looking at mfcc_delta_avg, it is apparent that it follows some of the
same pattern. It performs on the same level as mfcc_avg, but produces di�erent
erroneous duplicate pairs.

4.2. INDIVIDUAL DESCRIPTORS 49

File 1 File 2 Score

Johnny Cash - Where We'll
Never Grow Old

Johnny Cash - I'm Bound For
The Promised Land

0.857711

Kevin Bloody Wilson - The
Browneye Medley

Kevin Bloody Wilson -
Australian Anthems

0.851686

Perssons Pack - I all vår tid deLillos - Nå lever den av seg
selv

0.843354

Table 4.10: First three erroneous duplicate pairs from the mfcc_delta_avg
descriptor.

The various mfcc_moment and mfcc_delta_moment descriptors are as in-
accurate as the centroid and the steepness. Examples of how they fail have
therefore not been included.

4.2.11 Floor-1 cepstral coe�cients

f1cc_avg performs slightly worse for our tasks than mfcc_avg. Considering the
improvements made to F1CC over MFCC, it was intended to increase the re-
silience to encoding artifacts. This might have changed the algorithm su�ciently
to make it perform worse on other tasks.

File 1 File 2 Score

Two To Tango - Vision deLillos - Den feite mannen 0.725673
Dane Cook - Struck By A

Vehicle
Dane Cook - Abducted 0.71712

Kevin Bloody Wilson - Take It
Like A Man

Tom Waits - Get Behind The
Mule

0.716681

Table 4.11: First three erroneous duplicate pairs from the f1cc_avg descriptor.

The tendency to identify songs from the same artist as duplicate pairs is de-
creased in f1cc_avg compared to mfcc_avg, but still present. f1cc_avg produces
a signi�cantly di�erent set of erroneous duplicate pairs than does mfcc_avg.

File 1 File 2 Score

Astor Piazolla - Nuevo Tango Nick Cave & The Bad Seeds -
Sleeping Annaleah

0.88834

Billie Holiday - Stars Fell on
Alabama

Billie Holiday - 'Deed I Do 0.882058

Johnny Cash - Where We'll
Never Grow Old

Johnny Cash - If We Never
Meet Again This Side Of

Heaven

0.881461

Table 4.12: First three erroneous duplicate pairs from the f1cc_delta_avg de-
scriptor.

Considering f1cc_delta_avg, it too produces signi�cantly di�erent erroneous
duplicate pairs from mfcc_delta_avg, yet persists in the tendency of identifying
duplicate pairs where both songs are from the same artist.

50 CHAPTER 4. RESULTS

4.3 Combined solutions

When looking at �gure 4.5 it is immediately avident that the applied methods
works as a method of producing more stable results.

The best performing combination was the weighted root-mean square, which
only had a failure rate of 4.6% among the �rst thousand results. This means it
correctly identi�ed 11 more duplicate pairs than the runner-up.

4.3.1 Arithmetic mean

The arithmetic mean is highly a�ected by the large number of always high-
probability descriptors. It therefore has a higher failure rate than many of the
individual descriptors, and can therefore not be used without an algorithm for
choosing reliable descriptors.

When using the arithmetic mean on the chosen descriptors only, the results
markedly improve. The total error rate is now only 8%, and it has no erroneous
results in the �rst �ve hundred. This suggests that it works well as a method
of producing a stable �ngerprint.

4.3.2 Root-mean square

As with the arithmetic mean, the root-mean square produces useless results
when not limiting the set of descriptors. However, when choosing the descriptor
set carefully, the root-mean square performs slightly better than the arithmetic
mean on the same descriptors, with a failure rate of 6.6%.

4.3.3 Weighted arithmetic mean

The weighted arithmetic mean is among the most interesting combination meth-
ods in our set, and produces some of the lowest failure rates when certain sets
of weights are used. First, weighing by the number of results produced by a
descriptor did not provide a signi�cant change in the results, and neither did
weighing by the sum of probabilities. Weighing by the average score did not
produce a large variation in the number of correct results found.

Weighing by performance did produce very interesting results, and is the
sixth best performing method. Our manual weight adjustments, that removed
descriptors with weights less than 0.05 and 0.10 produced a decrease in failure
rates by 1 and 0.9 percentage points respectively.

It is noteworthy that the WAM with manual weights set 2 and 3 did produce
its �rst erroneous duplicate pair later than any of the other methods used.

4.3.4 Weighted root-mean square

The weighted root-mean square (WRMS) measure was introduced after seeing
the success rates of the weighted arithmetic mean.

WRMS in this thesis used the same weights as weighing by performance for
the weighted arithmetic mean, and the second set of manual weights because it
ranked better in the weighted arithmetic mean. When weighing by performance,
WRMS achieved a failure rate of 6.4%, which is 0.5 percentage points lower than

4.3. COMBINED SOLUTIONS 51

1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000
0

10

20

30

40

50

60

70

80

90

100

AM of chosen descriptors Arithmetic mean Median of chosen descriptors Naïve Bayes
NB of chosen descriptors RMS of chosen descriptors Root-mean square TM of chosen descriptors
Truncated mean WAM by average WAM by count WAM by manual weights 1
WAM by manual weights 2 WAM by manual weights 3 WAM by performance WAM by sum
WRMS by manual weights 2 WRMS by performance

Partition

W
ro

ng
ly

 id
en

tif
ie

d

Figure 4.5: Number of false positives in the �rst 1000 results from the combined
solutions, divided into partitions of 100 results. x-axis shows partitions, y-axis
shows the number of false positives.

52 CHAPTER 4. RESULTS

501-600 601-700 701-800 801-900 901-1000
0

10

20

30

40

50

60

WRMS by manual weights 2 WAM by manual weights 2 WAM by manual weights 3 WRMS by performance
RMS of chosen descriptors WAM by performance AM of chosen descriptors TM of chosen descriptors

Partition

W
ro

ng
ly

 id
en

tif
ie

d

Figure 4.6: Zoomed in view of the lower right part of �gure 4.5 for a subset of
the combination methods.

4.3. COMBINED SOLUTIONS 53

WRMS by manual weights 2

WAM by manual weights 2

WAM by manual weights 3

WRMS by performance

RMS of chosen descriptors

WAM by performance

AM of chosen descriptors

TM of chosen descriptors

WAM by manual weights 1

NB of chosen descriptors

WAM by average

WAM by sum

Truncated mean

Arithmetic mean

WAM by count

Root-mean square

Median of chosen descriptors

Naïve Bayes

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

4.60%

5.90%

6.00%

6.20%

6.40%

6.90%

8.00%

9.30%

23.60%

32.70%

44.00%

48.30%

53.20%

53.40%

53.70%

58.80%

70.80%

72.80%

False positive rate

C
o

m
b

in
e

d
 s

o
lu

tio
n

s

Figure 4.7: False positive rate from the combined solutions for the �rst thousand
results.

54 CHAPTER 4. RESULTS

P
artitions

N
am

e
1

2
3

4
5

6
7

8
9

10
F
alse

p
ositive

rate
F
irst

error
at

result
#

W
R
M
S
using

m
anual

w
eights

2
0

0
0

0
0

1
3

3
13

26
4.60%

596
W
A
M

using
m
anual

w
eights

2
0

0
0

0
0

0
4

2
17

36
5.90%

603
W
A
M

using
m
anual

w
eights

3
0

0
0

0
0

0
4

1
16

39
6.00%

624
W
R
M
S
by

p
erform

ance
0

0
0

0
0

4
8

8
10

32
6.20%

513
R
M
S
of

chosen
descriptors

0
0

0
0

0
2

4
7

20
31

6.40%
560

W
A
M

by
p
erform

ance
0

0
0

0
0

3
3

6
18

39
6.90%

525
A
M

of
chosen

descriptors
0

0
0

0
0

1
3

5
26

45
8.00%

583
T
M

of
chosen

descriptors
0

0
0

0
0

2
2

13
23

53
9.30%

547
W
A
M

using
m
anual

w
eights

1
0

0
0

0
1

10
34

54
63

74
23.60%

448
N
B
of

chosen
descriptors

0
0

0
0

2
21

58
80

80
86

32.70%
489

W
A
M

by
average

0
4

19
25

34
47

67
84

77
83

44.00%
168

W
A
M

by
sum

0
7

20
29

38
61

71
79

87
91

48.30%
161

T
M

0
16

27
35

56
70

80
77

83
88

53.20%
136

A
M

0
16

28
33

57
72

79
80

81
88

53.40%
128

W
A
M

by
count

0
16

29
34

58
73

77
81

82
87

53.70%
124

R
M
S

1
29

26
36

65
76

86
85

92
92

58.80%
96

M
edian

of
chosen

descriptors
0

18
61

86
83

86
94

94
94

92
70.80%

113
N
B

44
48

47
84

96
81

64
70

98
96

72.80%
1

T
able

4.13:
T
he

false
p
ositive

rate
of

com
binations,

sorted
from

low
est

to
highest.

T
he

p
osition

of
the

�rst
erroneous

duplicate
pair

w
as

included
for

reference.

4.4. EXAMPLES 55

WAM. When weighing using the second manual set of weights, it only had a
4.8% error rate, which is clearly the best achieved in this thesis.

4.3.5 Truncated mean

The truncated mean is a small improvement in results over the arithmetic mean
when run on all the descriptors, with a di�erence of only two more correctly
identi�ed results. This is not a statistically signi�cant di�erence from the arith-
metic mean.

When run on the chosen set of descriptors, it performs worse than the arith-
metic mean, with a failure rate of 9.3%. Discarding values therefore seems to
be a bad idea when working with a carefully chosen set of descriptors.

4.3.6 Median

Of the combination methods working on the reduced set of descriptors, the me-
dian performs worst of all. It is simply not a good indicator of central tendency
for this use, with a failure rate of 70.8%.

4.3.7 Naïve Bayes

Results-wise, the naïve Bayes approach does not perform as well as its competi-
tors. Even when considering only the top descriptors, it had a failure rate of
32.8%, which is worse than most other methods. When used on all descriptors,
it has a failure rate of 72.8%.

It does have one redeeming feature, that can come in handy in certain cases.
By changing the value of P (M) manually, you can adjust how much a negative
or positive probability a�ect the �nal score, and this allows you to produce a
smaller number of high-probability matches that are almost guaranteed to be
correct. This is a trade-o� that will limit the number of false positives, but it
will dramatically increase the number of false negatives as well.

Because of the results seen, it is likely that the assumption that the score
given by a descriptor can be interpreted as a measure of probability is false.

4.3.8 Original FDMF

The results from the original FDMF package was easy to reproduce using the
new architecture. FDMF does not provide any ranking of its results, and simply
lists them in the order the �les are encountered by the �ngerprinter. The same
conditions were applied here.

FDMF found 627 duplicate pairs, of which 593 were veri�ed to be correct.
This means that compared to the best combined solutions presented, FDMF
results in 38% fewer correct results.

Because of the lack of a sorting algorithm in FDMF, a simple arithmetic
mean was applied to the scores given by the three descriptors to give it a ranked
score. When using this sorting, FDMF had only 1 erroneous match in the �rst
500 scores.

56 CHAPTER 4. RESULTS

Descriptor Weight

fdmf_0 0.6
fdmf_1 0.39
fdmf_2 0.52
libfooid 0.64
mfcc_avg 0.57

mfcc_delta_avg 0.57
mfcc_f1_avg 0.53

mfcc_f1_delta_avg 0.3

Table 4.14: Weights by performance for various descriptors.

4.4 Examples

Some examples of potential duplicate pairs were picked from our collection, so
the properties of the various methods in di�erent situations can be examined.
Only a subset of the averaging methods are presented here for the sake of read-
ability. Only the top 8 best performing descriptors are considered. For reference,
the weights used are found in table 4.14.

(a) Scores

Descriptor Score

fdmf_0 0.63
fdmf_1 0.81
fdmf_2 0.88
libfooid 0.85
mfcc_avg 0.98

mfcc_delta_avg 0.84
mfcc_f1_avg 0.98

mfcc_f1_delta_avg 0.48

(b) Combined scores

Method Score SD

Truncated mean 0.8307 0.1894
Weighted arithmetic mean 0.7790 0.5147

Arithmetic mean 0.8054 0.1620
Root-mean square 0.8216 0.1628

Bayesian 0.9999 -
Median 0.8436 0.1665

Weighted RMS 0.8313 0.2272

Table 4.15: Scores for �Dido - Do You Have A Little Time� in MP3 and WMA
encodings. The system correctly scores this as a good match.

4.5 Improving search speed

The analyzed system is not in any way optimized for quick searches. In fact,
the calculations required to perform a search that matches all �les against each
other takes several hours on a fairly up to date computer. An indexing scheme
is needed.

A very simplistic approach is to use any one of the scalar descriptors. A
small script (see B.4.5) was created to assess the viability of these descriptors
automatically. For each descriptor the range of the distances between veri�ed
duplicate pairs was found. Only �ngerprints within the range [v − δ, v + δ] were
examined as candidate matches, where v is the scalar descriptor value for the
query �le, and δ is two times the average distance between veri�ed duplicate
pair �ngerprints for that descriptor.

4.5. IMPROVING SEARCH SPEED 57

(a) Scores

Descriptor Score

fdmf_0 0
fdmf_1 0.10
fdmf_2 0
libfooid 0.65
mfcc_avg 0.63

mfcc_delta_avg 0.81
mfcc_f1_avg 0.41

mfcc_f1_delta_avg 0.81

(b) Combined scores

Method Score SD

Truncated mean 0.4158 0.2909
Weighted arithmetic mean 0.4201 0.7753

Arithmetic mean 0.4248 0.2480
Root-mean square 0.5358 0.2172

Bayesian 0.5035 -
Median 0.6379 0.2243

Weighted RMS 0.5260 0.3024

Table 4.16: Scores for two separate recordings of �Billie Holiday - Solitude�.
The songs are so di�erent they were not considered a match when veri�ed by a
human listener. Most combinations score this as a low-probability match, yet
still sees the similarity in the songs.

(a) Scores

Descriptor Score

fdmf_0 0
fdmf_1 0
fdmf_2 0
libfooid 0
mfcc_avg 0.53

mfcc_delta_avg 0.73
mfcc_f1_avg 0.30

mfcc_f1_delta_avg 0.77

(b) Combined scores

Method Score SD

Truncated mean 0.21051 0.3429
Weighted arithmetic mean 0.2705 0.5862

Arithmetic mean 0.2932 0.2460
Root-mean square 0.4353 0.1701

Bayesian 0.5425 -
Median 0.6315 0.1362

Weighted RMS 0.4030 0.1618

Table 4.17: Scores for �David Bowie - Ricochet� and �Vamp - Svin på skog�.
Despite some similarities reported by the mfcc-series of descriptors, fdmf and
libfooid correctly sees no match in these two songs. Yet, the both the median
and the naïve Bayes classi�er reports higher scores than wanted.

The length descriptor is the clear winner, as it results in both the lowest
number of candidate �les on average, and �nds a higher percentage of the veri�ed
duplicate pairs than any other descriptor.

When trying multiple combinations for descriptors, one expects a sharp drop
in the number of combinations that has to be tried, and an increase in the
number of veri�ed matches that was removed. An attempt was made were
combinations of one or more scalar descriptors were used as an index, to see
that no combination of descriptors produced any kind of �magic index�.

58 CHAPTER 4. RESULTS

Descriptor Avg. # of comp. % found Avg. distance

Centroid 3538 84.71% 370
Track length 2487 87.71% 18.2

Mean/square ratio 3595 86.27% 0.017
Steepness 3465 84.72% 125

Zerocrossings 3463 85.7% 9100
Zerocrossings w/ guard band 3520 85.37% 5049

Table 4.18: Performance characteristics of the six scalar descriptors if they were
to be used as an indexing scheme, when searching for all the veri�ed duplicate
pair �les.

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

Cumulative number of fingerprints matched

N
u

m
b

e
r

o
f v

e
ri

fe
d

 m
a

tc
h

e
s

 fo
u

n
d

Figure 4.8: The number of veri�ed duplicate pairs that were removed versus the
number of �les that would be included in the search when sequentially searching
for all duplicate pairs. An optimum solution would be ranked in the upper left
corner.

Chapter 5

Conclusion

Large music collections are now more common than ever before. Yet, search
technology for music is still in its infancy. Audio �ngerprinting is one method
that allows searching for music.

In this thesis several audio �ngerprinting solutions are combined into a single
solution to determine if such a combination can yield better results than any of
the solutions can separately. The solution is used to �nd duplicate music �les
in a personal collection.

A real-life music collection with 9536 music �les was used. Audio �ngerprints
for all �les were created using three software suites, namely fdmf, libFooID and
Gunderson's master thesis. By combining the likelihood from multiple system
that two �les match, recognition rates were increased.

5.1 Results

This thesis �nds that using di�erent averaging methods to produce a more stable
audio �ngerprint works satisfactorily, and can be used to e�ectively combine
di�erent systems.

Among the methods of combination that was tested, the weighted root-mean
square most e�ectively ranked the results in a satisfying manner. It was notably
better than the other approaches tried. The WRMS produced 61% more correct
matches than the original FDMF solution, and 49% more correct matches than
libFooID.

The individual descriptors can be ranked according to performance in the fol-
lowing order, from best to worst: libfooid, fdmf_0, mfcc_avg, mfcc_delta_avg,
mfcc_f1_avg, fdmf_2, fdmf_1 and mfcc_f1_delta_avg. The remaining de-
scriptors all ranked considerably worse than the ones listed here, and were found
to be too untrustworthy to be included in calculations.

5.2 Evaluation

The implementation of this thesis went smoothly. However, there are certain
aspects that could be attempted for improving the proposed system.

The most important improvement is likely to be a strictly controlled music
collection. Constructing a music collection from original CDs, and encoding the

60 CHAPTER 5. CONCLUSION

audio with lossless and lossy encodings, and introducing a certain amount of
noise into the recordings would be helpful. With such a collection it would also
be possible to create precision vs. recall curves for the system.

Writing the glue code using PHP and MySQL seems to have been a mistake,
as it was chosen because of the author's familiarity with the language. A better
choice would have been to use C and a binary database system, as putting
the data into MySQL proved to be slow. Data processing in PHP is very slow
compared to native languages, such as C.

An approach that tries to use averages on all possible combinations of de-
scriptors could potentially improve the solution even further. This approach
could be used to determine whether the results from individual descriptors have
high degrees of overlap, and could potentially exclude some descriptors from the
recommended set.

5.3 Further work

The combination of software used in this thesis has not been optimized for speed,
but for being malleable enough for conducting the tests required to provide
better results. As such, speed has not been a priority, and the system therefore
is very slow, even on a relatively small collection such as the one we tested on.

Most of the �ngerprinting engines are written in C or C++, and it will be
relatively easy to combine these into a modular system that allows plugging in
new �ngerprinting engines easily. By writing the �ngerprint comparer in C or
C++, instead of an interpreted language such as PHP, the system could easily
be made to search for a �ngerprint in an already �ngerprinted collection in O (n)
time.

Bibliography

[1] Michael Fink; Michele Covell;Shumeet Baluja. Social- and interactive-
television applications based on real-time ambient-audio identi�cation.
2007. Accessed on the 24th of March 2008.

[2] S. Baluja and M. Covell. Audio �ngerprinting: Combining computer vision
& data stream processing. Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, 2:II�213�II�216, 15-20
April 2007.

[3] R. H. Blessing. Outlier treatment in data merging. Journal of Applied
Crystallography, 30(4):421�426, 1997.

[4] Mark Bocko. Music �le compressed 1,000 times smaller than mp3, 2008.
Accessed on April 2nd 2008.

[5] K. Brandenburg. MP3 and AAC explained. Proceedings of AES 17th In-
ternational Conference, XP008004053, pages 99�110.

[6] K. Brandenburg, J. Herre, J.D. Johnston, Y. Mahieux, and E. Schroeder.
ASPEC: Adaptive spectral entropy coding of high quality music signals.
Proc. 90th Conv. Aud. Eng. Soc, 1991.

[7] The Echo Nest Corporation. The echo nest. Accessed on the 21st of May
2008.

[8] M. Covell and S. Baluja. Known-audio detection using waveprint: Spec-
trogram �ngerprinting by wavelet hashing. Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on, 1:I�
237�I�240, 15-20 April 2007.

[9] J. Stephen Downie. Music information retrieval (chapter 7). Annual Review
of Information Science and Technology 37, pages 295�340, 2003.

[10] T. Eriksson and H.G. Kang. Pitch quantization in low bit-rate speech
coding. Acoustics, Speech, and Signal Processing, 1999. ICASSP'99. Pro-
ceedings., 1999 IEEE International Conference on, 1, 1999.

[11] Xiph.org foundation. Vorbis i speci�cation, 2004. Accessed on the 21st of
May 2008.

[12] Gracenote. Gracenote: Musicid. Accessed on the 21st of May 2008.

[13] Paul Graham. Hackers & Painters. O'Reilly, 2004. ISBN 059600662-4.

62 BIBLIOGRAPHY

[14] Amara Graps. An introduction to wavelets. IEEE Comput. Sci. Eng., 2
(2):50�61, 1995.

[15] Steinar H. Gunderson. Musical descriptors: An assessment of psychoacous-
tical models in the presence of lossy compression. Master's thesis, 2007.

[16] Jaap Haitsma, Ton Kalker, and Job Oostveen. Robust audio hashing for
content identi�cation. In International Workshop on Content-Based Mul-
timedia Indexing (CBMI'01), Brescia, Italy, September 2001. Accessed on
the 1st of February 2008.

[17] Richard Jones. Audio �ngerprinting for clean metadata, 2007. Accessed on
the 21st of May 2008.

[18] Yan Ke, D. Hoiem, and R. Sukthankar. Computer vision for music iden-
ti�cation. Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, 1:597�604 vol. 1, 20-25 June 2005.

[19] Vegard Andreas Larsen. Determining audio �ngerprint boundaries. Nor-
wegian University of Science and Technology, 2007.

[20] Alison Latham. The Oxford Companion to Music. Oxford University Press,
2002. ISBN 0198662122.

[21] D.D. Lewis. Naive (Bayes) at forty: The independence assumption in in-
formation retrieval. Proceedings of ECML-98, 10th European Conference
on Machine Learning, pages 4�15, 1998.

[22] Ricardo Miotto and Nicola Orio. A methodology for the segmentation and
identi�cation of music works. In ISMIR 2007 - Proceedings of the 8th In-
ternational Conference on Music Information Retrieval, Vienna, Austria,
September 23-27, pages 273�278. Österreichische Computer Gesellschaft,
2007.

[23] H. Nyquist. Certain topics in telegraph transmission theory. Proceedings
of the IEEE, 90(2):280�305, 2002.

[24] Justis og politidepartementet. Lov om patenter. 2007. ISBN 82-504-1193-5.
Accessed on the 4th of February 2008.

[25] IFLA Study Group on the Functional Requirements for Biblio-
graphic Records. Functional Requirements for Bibliographic Records: Final
Report. UBCIM Publications-New Series. K.G.Saur, München. Accessed
on the 21st of May 2008.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web, 1998.

[27] Gian-Carlo Pascutto. foosic - the living music database, 2006. Accessed on
the 3rd of February 2008.

[28] Michaël Betser; Patrice Collen; Jean-Bernard Rault. Audio identi�cation
using sinusoidal modeling and application to jingle detection. In ISMIR

BIBLIOGRAPHY 63

2007 - Proceedings of the 8th International Conference on Music Informa-
tion Retrieval, Vienna, Austria, September 23-27, pages 139�142. Öster-
reichische Computer Gesellschaft, 2007. Accessed on the 30th of March
2008.

[29] Trent D. Stephens Rod R. Seeley, Philip Tate. Essentials of anatomy and
physiology. McGraw-Hill, 6th edition edition, 2006. ISBN 007110746-0.

[30] Kurt Rosenfeld. Merging music collections without redundancy, October
2005. Accessed on the 27th of April 2008.

[31] Kurt Rosenfeld. Learning to recognize duplicate music �les, May 2007.
Accessed on the 27th of April 2008.

[32] J.G. Shao-Jen Lim; Harris. Analog implementation of ratio spectrum com-
putation. Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998
IEEE International Symposium on, 1:277�280 vol.1, 31 May-3 Jun 1998.

[33] Joel Spolsky. Joel on Software: And on Diverse and Occasionally Related
Matters That Will Prove of Interest to Software Developers, Designers, and
Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work
with Them in Some Capacity. Apress, 1 edition, 2004. ISBN 1590593898.
125-130 pp.

[34] Hartmut Traunmuller. Analytical expressions for the tonotopic sensory
scale. The Journal of the Acoustical Society of America, 88(1):97�100,
1990.

[35] University of Jyväskylä. A Matlab toolbox for music feature extraction from
audio, September 2007.

[36] J.M. Valin and C. Montgomery. Improved noise weighting in CELP cod-
ing of speech-applying the Vorbis psychoacoustic model to Speex. Audio
Engineering Society Convention, 2006.

[37] Eric W Weisstein. Metric, 2004. Accessed on the 21st of May 2008.

[38] Eric W Weisstein. Wave equation, 2004. Accessed on the 21st of May 2008.

64 BIBLIOGRAPHY

Index

AAC, 10
advertisment, 13
amplitude, 5, 16
architecture, 26, 28
arithmetic mean, 31, 50, 55
asymptotic, 15
ATRAC, 10
audio �ngerprint, 11, 12

band energy, 17
Bark scale, 18
Bayes, 32, 55
bibliographic facet, 11
bibliographic records, 22
bin, 15
bit rate, 10, 19
BPM, 14

central tendency, 29
centroid, 17�19, 46, 47, 49
chromatic scale, 8
chunk metric, 17
cluster, 23
cochlea, 7
commutative, 29
compactness, 12
compression, 10
computer vision, 16
copyright, 16
correlation coe�cient, 18
cycle, 5

decoding, 26
destructiveness, 12
diatonic scale, 8
duplicate, 23

edit distance, 17, 18
energy spectrum, 17
equivalence, 21, 26
Euclidean distance, 20, 27
evaluation, 39

expressions, 22

F1CC, 18, 20, 49
facet, 11
fair use, 16
false positive, 39
fdmf, 16, 17, 26, 28, 29, 41, 45
feature extraction, 11
�le-sharing, 13
�lter bank, 17
�ngerprint, 11
FLAC, 10
�oor-1 cepstral coe�cients, 18, 20, 49
Fourier transform, 15
FRBR, 22
frequency, 5, 16
frequency spectrum, 14, 18
FT, 15

genre, 11
geometric mean, 34
GNU C, 17
Google, 13, 16
GPL, 16
Gracenote, 13
granularity, 12
guard band, 19, 48
Gunderson's descriptors, 18, 27, 29

Hamming distance, 17, 18, 26
harmonic mean, 34
harmonics, 8, 11
hash, 12
hidden Markov models, 16

intellectual property, 16
IP, 16
item, 22

last.fm, 16
length, 18, 19, 46
libFingerprint, 16

66 INDEX

libFooID, 16, 18, 27, 29, 45, 47
lossless, 21
lossless compression, 10
lossy compression, 10, 20
lyric, 11

Mahalanobis distance, 20
manifestation, 22
Matlab, 17
MD5, 12, 28
mean/square ratio, 18, 19, 47
median, 32, 55
mel frequency cepstral coe�cients, 18,

19, 48
mel scale, 19
metadata, 19
MFCC, 17�19, 48, 49
MIDI, 9
MIRtoolbox, 17
MP3, 10, 19, 21, 41
music collection, 21
MySQL, 28

naïve Bayes, 32, 55
noise, 10
normalize, 18
Nyquist-Shannon sampling theorem, 9

octave, 8
Ogg Vorbis, 10, 20, 21
Organ of Corti, 7
ossicle, 7
overtone, 8

patent, 16
peak amplitude, 5
perceived frequency, 11
period, 5
Perl, 17
phase, 7, 16
pitch, 8, 11, 17
play time, 18
power spectrum, 17
precision, 39
probability, 33

QBH, 11
query by humming, 11

rate of zero crossings, 18, 19, 48
ratio spectrum, 17

recall, 39
reliability, 12
resampling, 18
rhythm, 14
RMS, 31, 50
robustness, 12
root mean square, 31
root-mean square, 50

sample, 8
sampling theorem, 9
Schmitt triggering, 18, 19
sheet music, 9
sinusoidal model, 16
skewness, 17
software patent, 16
song length, 18, 19, 46
SonyEricsson, 13
sound pressure level, 7
spatial placement, 12
spectral, 14
spectral centroid, 18
speech recognition, 10
standard deviation, 31
statistical measure, 31
steepness, 18, 19, 48, 49
STFT, 15, 16

tempo, 11
threshold, 18, 26, 27
timbre, 11
time-based representation, 14
token, 23
TrackID, 13
transcript, 10
Traunmüller's formula, 18
Truncated mean, 32
truncated mean, 31, 55
twist spectrum, 17
tympanic membrane, 7

variable bit rate, 19
veri�cation, 25
volume, 7

WAM, 32, 50
waveform, 14
wavelet, 14�16
wavelet transform, 15
Waveprint, 16

INDEX 67

weighted arithmetic mean, 32, 50
weighted root-mean square, 32, 50
weights, 34
Windows Media Audio, 10
Windows Media Audio Lossless, 10
WMA, 10, 21, 41
WMA lossless, 10
work, 22
WRMS, 32, 50

zero crossings rate, 18, 19, 48

68 INDEX

Appendix A

Software used

GNU GCC GNU's Compiler Collection (GCC) is one of the most widely used
compilers for C code. Available from http://www.gnu.org/.

LYX A free software document processor that uses LATEX. Available from http:

//www.lyx.org/.

Eclipse Programming environment, originally designed for Java development.
Available from http://www.eclipse.org/.

PHP Scripting language originally designed for creating dynamic web pages.
Available from http://www.php.net/.

PHPEclipse Plugin for Eclipse that simpli�es development in PHP. Available
from http://www.phpeclipse.de/.

phpMyAdmin MySQL administration interface written in PHP. Available
from http://www.phpmyadmin.net/.

MySQL Open source DBMS. Available from http://www.mysql.com/.

Ubuntu Free GNU/Linux-based operating system . Available from http://

www.ubuntu.org/.

http://www.gnu.org/
http://www.lyx.org/
http://www.lyx.org/
http://www.eclipse.org/
http://www.php.net/
http://www.phpeclipse.de/
http://www.phpmyadmin.net/
http://www.mysql.com/
http://www.ubuntu.org/
http://www.ubuntu.org/

70 APPENDIX A. SOFTWARE USED

Appendix B

Source code

The source code presented in this appendix is lisenced under the same license
as the software it modi�es.

B.1 fdmf

The original source code and the modi�cations made to fdmf are licensed under
the GPL.

B.1.1 db.h

Database connectivity headers.
1 #ifndef DB_H_
2 #define DB_H_
3
4 #include <std i o . h>
5 #include <f c n t l . h>
6 #include <unis td . h>
7 #include <sys / types . h>
8 #include <sys / s t a t . h>
9 #include <pwd . h>
10 #include <s t r i n g . h>
11 #include <gdbm . h>
12 #include <as s e r t . h>
13 #include </usr / include/mysql/mysql . h>
14
15 int db_setup (void) ;
16 void db_close (void) ;
17 int db_f ind_f i l e (char ∗ , int) ;
18 int db_inse r t_f i l e (char ∗ , int , int) ;
19 void db_inse r t_f ingerpr in t (int , int , char ∗ , int) ;
20 void db_add_score (int , int , int , int , int) ;
21
22 #endif /∗DB_H_∗/

B.1.2 db.c

Database connectivity and functions for inserting data.
1 #include " vector_pai r s . h"
2
3 #define SQL_INSERT_SCORE "INSERT INTO tb lSco r e (i xF i l e 1 , i xF i l e 2 , ixType

, dblScore) VALUES (? , ? , ? , 1 − (? / ?)) "
4 #define SQL_SELECT_FINGERPRINT "SELECT i xF i l e FROM tb lF i ng e rp r i n t WHERE

i xF i l e = ? AND ixType = ?"

72 APPENDIX B. SOURCE CODE

5 #define SQL_INSERT_FINGERPRINT "INSERT INTO tb lF i ng e rp r i n t (i xF i l e ,
ixType , sF inge rp r i n t) VALUES (? , ? , ?) "

6 #define SQL_SELECT_FILE "SELECT i xF i l e FROM tb l F i l e WHERE md5Path = MD5
(?) "

7 #define SQL_INSERT_FILE "INSERT INTO tb l F i l e (sPath , md5Path , cbF i l e)
VALUES (? , MD5(?) , ?) "

8
9 MYSQL ∗db_conn ;
10 MYSQL_STMT ∗ s q l I n s e r t F i l e ;
11 MYSQL_STMT ∗ s q l S e l e c tF i n g e r p r i n t ;
12 MYSQL_STMT ∗ s q l I n s e r tF i n g e r p r i n t ;
13 MYSQL_STMT ∗ s q l S e l e c t F i l e ;
14 MYSQL_STMT ∗ s q l I n s e r t S c o r e ;
15
16 /∗
17 ∗ Lets create a l o c a l cache of every i xF i l e va lue we get from
18 ∗ MySQL, so we won ' t have to query for i t every time .
19 ∗/
20 int ∗ f i l e_cache ;
21 int f i l e_cache_ready = 0 ;
22
23 int db_setup ()
24 {
25 char ∗ s e r v e r = " l o c a l h o s t " ;
26 char ∗user = "master " ;
27 char ∗password = "7aBPK8huJQz3TNQS" ;
28 char ∗database = "master " ;
29
30 db_conn = mysql_init (NULL) ;
31 i f (! mysql_real_connect (db_conn , se rver , user , password , database ,

0 , NULL, 0))
32 {
33 f p r i n t f (s tde r r , "%s\n" , mysql_error (db_conn)) ;
34 e x i t (0) ;
35 }
36 p r i n t f (" database connected \n") ;
37
38 s q l I n s e r t S c o r e = mysql_stmt_init (db_conn) ;
39 mysql_stmt_prepare (s q l I n s e r t S co r e , SQL_INSERT_SCORE, s t r l e n (

SQL_INSERT_SCORE)) ;
40
41 s q l S e l e c tF i n g e r p r i n t = mysql_stmt_init (db_conn) ;
42 mysql_stmt_prepare (s q l S e l e c tF i ng e rp r i n t , SQL_SELECT_FINGERPRINT,

s t r l e n (SQL_SELECT_FINGERPRINT)) ;
43
44 s q l I n s e r tF i n g e r p r i n t = mysql_stmt_init (db_conn) ;
45 mysql_stmt_prepare (s q l I n s e r tF i n g e r p r i n t , SQL_INSERT_FINGERPRINT,

s t r l e n (SQL_INSERT_FINGERPRINT)) ;
46
47 s q l S e l e c t F i l e = mysql_stmt_init (db_conn) ;
48 mysql_stmt_prepare (s q l S e l e c tF i l e , SQL_SELECT_FILE, s t r l e n (

SQL_SELECT_FILE)) ;
49
50 s q l I n s e r t F i l e = mysql_stmt_init (db_conn) ;
51 mysql_stmt_prepare (s q l I n s e r t F i l e , SQL_INSERT_FILE, s t r l e n (

SQL_INSERT_FILE)) ;
52
53 return (0) ;
54 }
55
56 void db_close ()
57 {
58 mysql_close (db_conn) ;
59
60 mysql_stmt_close (s q l I n s e r t S c o r e) ;
61 mysql_stmt_close (s q l S e l e c tF i n g e r p r i n t) ;
62 mysql_stmt_close (s q l I n s e r tF i n g e r p r i n t) ;
63 mysql_stmt_close (s q l S e l e c t F i l e) ;
64 mysql_stmt_close (s q l I n s e r t F i l e) ;
65 }
66
67 void i n i t_ f i l e_cache (int s i z e)
68 {
69 int i ;

B.1. FDMF 73

70 i f (! f i l e_cache_ready)
71 {
72 f i l e_cache = (int ∗) mal loc (s izeof (int) ∗ s i z e) ;
73 for (i = 0 ; i < s i z e ; i++)
74 f i l e_cache [i] = −1;
75 f i le_cache_ready = 1 ;
76 }
77 }
78
79 int db_f ind_f i l e (char ∗ f i l e , int cFi leNo)
80 {
81 int i x F i l e = −1;
82 MYSQL_BIND bind [1] ;
83 unsigned long l ength ;
84 my_bool i s_nu l l ;
85 my_bool e r r o r ;
86
87 i f (f i l e_cache [cFi leNo] != −1)
88 return f i l e_cache [cFi leNo] ;
89
90 memset (bind , 0 , s izeof (bind)) ;
91
92 length = s t r l e n (f i l e) ;
93
94 bind [0] . buf fer_type = MYSQL_TYPE_STRING;
95 bind [0] . bu f f e r = f i l e ;
96 bind [0] . bu f f e r_length = s t r l e n (f i l e) ;
97 bind [0] . i s_nu l l = 0 ;
98 bind [0] . l ength = &length ;
99
100 i f (mysql_stmt_bind_param(s q l S e l e c tF i l e , bind))
101 {
102 f p r i n t f (s tde r r , "mysql_stmt_bind_param () f a i l e d in db_f ind_f i l e

() \n") ;
103 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c t F i l e)) ;
104 e x i t (0) ;
105 }
106 i f (mysql_stmt_execute (s q l S e l e c t F i l e))
107 {
108 f p r i n t f (s tde r r , "mysql_stmt_execute () f a i l e d in db_f ind_f i l e () \n

") ;
109 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c t F i l e)) ;
110 e x i t (0) ;
111 }
112
113 memset (bind , 0 , s izeof (bind)) ;
114
115 bind [0] . buf fer_type= MYSQL_TYPE_LONG;
116 bind [0] . bu f f e r = (char ∗)&i xF i l e ;
117 bind [0] . bu f f e r_length = 4 ;
118 bind [0] . l ength = &length ;
119 bind [0] . i s_nu l l = &i s_nu l l ;
120 bind [0] . e r r o r = &e r r o r ;
121
122 i f (mysql_stmt_bind_result (s q l S e l e c tF i l e , bind))
123 {
124 f p r i n t f (s tde r r , "mysql_stmt_bind_result () f a i l e d in db_f ind_f i l e

() \n") ;
125 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c t F i l e)) ;
126 e x i t (0) ;
127 }
128
129 i f (mysql_stmt_store_result (s q l S e l e c t F i l e))
130 {
131 f p r i n t f (s tde r r , "mysql_stmt_store_result () f a i l e d in

db_f ind_f i l e () \n") ;
132 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c t F i l e)) ;
133 e x i t (0) ;
134 }
135
136 i f (mysql_stmt_num_rows(s q l S e l e c t F i l e) == 0)
137 return −1;
138
139 i f (mysql_stmt_fetch (s q l S e l e c t F i l e))

74 APPENDIX B. SOURCE CODE

140 {
141 f p r i n t f (s tde r r , "mysql_stmt_fetch () f a i l e d in db_f ind_f i l e () \n")

;
142 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c t F i l e)) ;
143 e x i t (0) ;
144 }
145 i f (i xF i l e != −1)
146 f i l e_cache [cFi leNo] = i xF i l e ;
147
148 /∗ f p r i n t f (s tderr , "%s %d %ld %d\n" , f i l e , i xF i l e , length , error) ;

∗/
149 return i x F i l e ;
150 }
151
152 /∗ returns i xF i l e , −1 i f error ∗/
153 int db_inse r t_f i l e (char ∗ f i l e , int cFileNo , int cF i l e s)
154 {
155 struct s t a t f i l e B u f ;
156 int i x F i l e = −1;
157 long cbF i l e = 0 ;
158 MYSQL_BIND bind [3] ;
159 unsigned long s t r_len ;
160
161 in i t_ f i l e_cache (cF i l e s) ;
162
163 i xF i l e = db_f ind_f i l e (f i l e , cFi leNo) ;
164 i f (i xF i l e != −1)
165 return i x F i l e ;
166
167 memset (bind , 0 , s izeof (bind)) ;
168
169 s t a t (f i l e , &f i l e Bu f) ;
170 cbF i l e = f i l e Bu f . s t_s i z e ;
171
172 str_len = s t r l e n (f i l e) ;
173
174 bind [0] . buf fer_type = MYSQL_TYPE_STRING;
175 bind [0] . bu f f e r = (char ∗) f i l e ;
176 bind [0] . bu f f e r_length = s t r l e n (f i l e) ;
177 bind [0] . l ength = &str_len ;
178 bind [0] . i s_nu l l = 0 ;
179
180 // yes , we ' re duping info , l e t mysql handle MD5 hashing
181 bind [1] . buf fer_type = MYSQL_TYPE_STRING;
182 bind [1] . bu f f e r = (char ∗) f i l e ;
183 bind [1] . bu f f e r_length = s t r l e n (f i l e) ;
184 bind [1] . l ength = &str_len ;
185 bind [1] . i s_nu l l = 0 ;
186
187 bind [2] . bu f f e r = (char ∗)&cbF i l e ;
188 bind [2] . buf fer_type = MYSQL_TYPE_LONG;
189 bind [2] . i s_nu l l = 0 ;
190 bind [2] . l ength = 0 ;
191
192 i f (mysql_stmt_bind_param(s q l I n s e r t F i l e , bind))
193 {
194 f p r i n t f (s tde r r , "mysql_stmt_bind_param () f a i l e d in

db_inse r t_f i l e () \n") ;
195 f p r i n t f (s tde r r , " %s\n" , mysql_stmt_error (s q l I n s e r t F i l e)) ;
196 e x i t (0) ;
197 }
198
199 i f (mysql_stmt_execute (s q l I n s e r t F i l e))
200 {
201 f p r i n t f (s tde r r , "mysql_stmt_execute f a i l e d in db_inse r t_f i l e () ! \

n") ;
202 f p r i n t f (s tde r r , " %s\n" , mysql_stmt_error (s q l I n s e r t F i l e)) ;
203 e x i t (0) ;
204 }
205
206 /∗ return db_find_fi le (f i l e) ; ∗/
207 return mysql_insert_id (db_conn) ;
208 }
209

B.1. FDMF 75

210 int db_has_fingerprint (int i xF i l e , int ixType)
211 {
212 int ixReturn = −1;
213 MYSQL_BIND bind [2] ;
214 unsigned long l ength ;
215 my_bool i s_nu l l ;
216 my_bool e r r o r ;
217
218 memset (bind , 0 , s izeof (bind)) ;
219
220 bind [0] . buf fer_type = MYSQL_TYPE_LONG;
221 bind [0] . bu f f e r = (char ∗)&i xF i l e ;
222 bind [0] . i s_nu l l = 0 ;
223 bind [0] . l ength = 0 ;
224
225 bind [0] . buf fer_type = MYSQL_TYPE_LONG;
226 bind [0] . bu f f e r = (char ∗)&ixType ;
227 bind [0] . i s_nu l l = 0 ;
228 bind [0] . l ength = 0 ;
229
230 i f (mysql_stmt_bind_param(sq l S e l e c tF i ng e rp r i n t , bind))
231 {
232 f p r i n t f (s tde r r , "mysql_stmt_bind_param () f a i l e d in

db_has_fingerprint () \n") ;
233 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c tF i n g e r p r i n t))

;
234 e x i t (0) ;
235 }
236 i f (mysql_stmt_execute (s q l S e l e c tF i n g e r p r i n t))
237 {
238 f p r i n t f (s tde r r , "mysql_stmt_execute () f a i l e d in

db_has_fingerprint () \n") ;
239 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c tF i n g e r p r i n t))

;
240 e x i t (0) ;
241 }
242
243 memset (bind , 0 , s izeof (bind)) ;
244
245 bind [0] . buf fer_type= MYSQL_TYPE_LONG;
246 bind [0] . bu f f e r = (char ∗)&ixReturn ;
247 bind [0] . bu f f e r_length = 4 ;
248 bind [0] . l ength = &length ;
249 bind [0] . i s_nu l l = &i s_nu l l ;
250 bind [0] . e r r o r = &e r r o r ;
251
252 i f (mysql_stmt_bind_result (s q l S e l e c tF i ng e rp r i n t , bind))
253 {
254 f p r i n t f (s tde r r , "mysql_stmt_bind_result () f a i l e d in

db_has_fingerprint () \n") ;
255 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c tF i n g e r p r i n t))

;
256 e x i t (0) ;
257 }
258
259 i f (mysql_stmt_store_result (s q l S e l e c tF i n g e r p r i n t))
260 {
261 f p r i n t f (s tde r r , "mysql_stmt_store_result () f a i l e d in

db_has_fingerprint () \n") ;
262 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l S e l e c tF i n g e r p r i n t))

;
263 e x i t (0) ;
264 }
265
266 i f (mysql_stmt_num_rows(s q l S e l e c tF i n g e r p r i n t) == 0)
267 return 0 ;
268 else
269 return 1 ;
270 }
271
272 void db_inse r t_f ingerpr in t (int i xF i l e , int ixType , char ∗ f i n g e r p r i n t ,

int f i ng e rp r i n t_ l eng th)
273 {
274 char ∗ s q l I n s e r t ;

76 APPENDIX B. SOURCE CODE

275 char ∗ sF inge rp r i n t ;
276
277 i f (db_has_fingerprint (i xF i l e , ixType))
278 return ;
279
280 s q l I n s e r t = (char ∗) mal loc (2048) ;
281 sF inge rp r i n t = (char ∗) mal loc (2048) ;
282 mysql_real_escape_string (db_conn , sF ingerpr in t , f i n g e r p r i n t ,

f i ng e rp r i n t_ l eng th) ;
283
284 s p r i n t f (s q l I n s e r t , "INSERT INTO tb lF i ng e rp r i n t (i xF i l e , ixType ,

sF inge rp r i n t) VALUES (%d , %d , '%s ') " , i xF i l e , ixType ,
sF inge rp r i n t) ;

285 mysql_query (db_conn , s q l I n s e r t) ;
286 }
287
288 void db_add_score (int i xF i l e 1 , int i xF i l e 2 , int ixType , int bDistance ,

int bThreshold)
289 {
290 MYSQL_BIND bind [5] ;
291 int i ;
292
293 memset (bind , 0 , s izeof (bind)) ;
294
295 for (i = 0 ; i < 5 ; i++)
296 {
297 bind [i] . buf fer_type = MYSQL_TYPE_LONG;
298 bind [i] . i s_nu l l = 0 ;
299 bind [i] . l ength = 0 ;
300 }
301
302 i f (i xF i l e 1 < i xF i l e 2)
303 {
304 bind [0] . bu f f e r = (char ∗)&i xF i l e 1 ;
305 bind [1] . bu f f e r = (char ∗)&i xF i l e 2 ;
306 }
307 else
308 {
309 bind [0] . bu f f e r = (char ∗)&i xF i l e 2 ;
310 bind [1] . bu f f e r = (char ∗)&i xF i l e 1 ;
311 }
312 bind [2] . bu f f e r = (char ∗)&ixType ;
313 bind [3] . bu f f e r = (char ∗)&bDistance ;
314 bind [4] . bu f f e r = (char ∗)&bThreshold ;
315
316 i f (mysql_stmt_bind_param(sq l I n s e r t S co r e , bind))
317 {
318 f p r i n t f (s tde r r , "mysql_stmt_bind_param f a i l e d in db_add_score ()

! \ n") ;
319 f p r i n t f (s tde r r , " %s \n" , mysql_stmt_error (s q l I n s e r t S c o r e)) ;
320 e x i t (0) ;
321 }
322
323 i f (mysql_stmt_execute (s q l I n s e r t S c o r e))
324 {
325 /∗ f a i l i n g t h i s i n s e r t i s p e r f e c t l y l eg i t imate , as t h i s comparison

may already
326 ∗ e x i s t somewhere in the database , so we won ' t do any error

repor t ing .
327 ∗/
328 /∗
329 f p r i n t f (s tderr , "mysql_stmt_execute f a i l e d in db_add_score () !\n

") ;
330 f p r i n t f (s tderr , " %s\n" , mysql_stmt_error (sq l Inse r tScore)) ;
331 e x i t () ;
332 ∗/
333 }
334 }

B.1. FDMF 77

B.1.3 run_tests.c

Modi�cations for inserting music �les into the database, along with potential
duplicate pairs.

1 #include " vector_pai r s . h"
2
3 int run_tests (char ∗dblk , int ∗hashes , char ∗∗names ,
4 int vecs , int ∗ thres , char delim) {
5 /∗ compare a l l pa irs of vec tors for po s s i b l e matches ∗/
6 int i , j , k , b i t count [2 5 6] , type1_err=0, type2_err=0;
7 #ifde f INSERT_INTO_DB
8 int i x F i l e = 0 ;
9 int i xF i l e 2 = 0 ;
10 char ∗temp ;
11 #endif
12 char terminator ;
13 struct s t a t s t a t_r e su l t s ;
14 i f (del im == ' \0 ')
15 {
16 terminator = ' \0 ' ;
17 }
18 else
19 {
20 terminator = ' \n ' ;
21 }
22 setup_bitcount_tbl (b i tcount) ;
23 for (i = 0 ; i < vecs ; i++)
24 {
25 /∗ code for mysql database inse r t i on ∗/
26
27 #ifde f INSERT_INTO_DB
28 i xF i l e = db_inse r t_f i l e (names [i] , i , vecs) ;
29 temp = (char ∗) mal loc (VECTOR_BYTES) ;
30 strncpy (temp , dblk + i ∗ MULTI_VEC_LEN + 0 ∗ VECTOR_BYTES,

VECTOR_BYTES) ;
31 db_inse r t_f inge rpr in t (i xF i l e , 1 , temp , VECTOR_BYTES) ; /∗ fdmf_0

∗/
32 strncpy (temp , dblk + i ∗ MULTI_VEC_LEN + 1 ∗ VECTOR_BYTES,

VECTOR_BYTES) ;
33 db_inse r t_f inge rpr in t (i xF i l e , 2 , temp , VECTOR_BYTES) ; /∗ fdmf_1

∗/
34 strncpy (temp , dblk + i ∗ MULTI_VEC_LEN + 2 ∗ VECTOR_BYTES,

VECTOR_BYTES) ;
35 db_inse r t_f inge rpr in t (i xF i l e , 3 , temp , VECTOR_BYTES) ; /∗ fdmf_2

∗/
36 f r e e (temp) ;
37 #endif
38
39 for (j = i + 1 ; j < vecs ; j++) {
40 #ifde f INSERT_INTO_DB
41 i xF i l e 2 = db_inse r t_f i l e (names [j] , j , vecs) ;
42 #endif
43 int d i s t ance [NUM_TESTS] , score , t e s t ;
44 char ∗ptr_a = dblk + i ∗ MULTI_VEC_LEN;
45 char ∗ptr_b = dblk + j ∗ MULTI_VEC_LEN;
46 int basenames_match , content s_s imi la r ;
47 /∗ ca l cu l a t e d is tance between two vec tors for each t e s t ∗/
48 for (s co r e = t e s t = 0 ; t e s t < NUM_TESTS; t e s t++) {
49 for (d i s t ance [t e s t] = k = 0 ; d i s t ance [t e s t] <= thre s [

t e s t] && k < VECTOR_BYTES; k++) {
50 unsigned char c = ∗(ptr_a + k) ^ ∗(ptr_b + k) ;
51 d i s t ance [t e s t] += bitcount [c] ;
52 }
53 ptr_a += VECTOR_BYTES;
54 ptr_b += VECTOR_BYTES;
55
56 i f (d i s t ance [t e s t] < th r e s [t e s t])
57 {
58 s co r e++;
59 #ifde f INSERT_INTO_DB
60 db_add_score (i xF i l e , i xF i l e 2 , t e s t +1, d i s t ance [t e s t

] , t h r e s [t e s t]) ;
61 #endif

78 APPENDIX B. SOURCE CODE

62 }
63 } /∗ post : score contains the number of t e s t s tha t passed ∗/
64 content s_s imi la r = (s co r e >= SCORE_THRESHOLD) ? 1 : 0 ;
65 basenames_match = (hashes [i] == hashes [j]) ? 2 : 0 ;
66 #ifde f IGNORE_GHOST_FILES
67 /∗ I f e i t h e r f i l e of a pair does not ex i s t , ignore the pair

∗/
68 i f (content s_s imi la r + basenames_match) {
69 i f (s t a t (names [i] , &s t a t_r e su l t s)) continue ;
70 i f (s t a t (names [j] , &s t a t_r e su l t s)) continue ;
71 }
72 # endif
73 switch (content s_s imi la r + basenames_match) {
74 case 0 : /∗ d i f f e r e n t contents , d i f f e r e n t basenames ∗/
75 /∗ do nothing ∗/
76 break ;
77 case 1 : /∗ s imi lar contents , d i f f e r e n t basenames ∗/
78 p r i n t f ("%s%c%s%c" , names [i] , delim , names [j] ,

t e rminator) ;
79 type1_err++;
80 break ;
81 case 2 : /∗ d i f f e r e n t contents , same basenames ∗/
82 /∗ p r i n t f (" type 2: %s%c%s%c" , names [i] , delim ,
83 names [j] , terminator) ; ∗/
84 type2_err++;
85 break ;
86 case 3 : /∗ s imi lar contents , same basenames ∗/
87 p r i n t f ("%s%c%s%c" , names [i] , delim , names [j] ,

t e rminator) ;
88 break ;
89 }
90 i f (content s_s imi la r + basenames_match == 1 | |
91 content s_s imi la r + basenames_match == 3)
92 {
93 p r i n t f ("%d%c%d%c%d%c" , d i s t ance [0] , delim , d i s t ance [1] ,

delim , d i s t ance [2] , del im) ;
94 }
95
96 }
97 }
98 f p r i n t f (s tde r r , "%d\ t%d\ t%d\ t " , th r e s [0] , t h r e s [1] , t h r e s [2]) ;
99 f p r i n t f (s tde r r , "%d\ t%d\n" , type1_err , type2_err) ;
100 return (0) ;
101 }

B.1.4 fdmf

Software that runs fdmf and fooid on all the �les in a speci�c folder. Modi�ed
to run fooid.

1 #!/ usr/bin/ per l −w
2 # Kurt Rosenfeld 2004 , 2005 , 2006
3 # GPL
4 use s t r i c t ;
5 use GDBM_File ;
6 use Digest : :MD5 qw(md5 md5_hex) ;
7 use Encode qw(encode_utf8) ;
8 use F i l e : : Copy ;
9 use F i l e : : Basename ;
10 use Cwd;
11
12 my $db_f i l e = glob ' ~/. fdmf ' ;
13 my $musicd i r = $ARGV[0] or die "RTFM" ;
14 my $NUM_BANDS = 4 ;
15
16 my $SONICREDUCER = find_sr () or die "Can ' t f i nd good sonic_reducer " ;
17 # $SONICREDUCER = "cat /mnt/ramdisk/audio . raw | ".$SONICREDUCER;
18
19 die "Unable to run s p l i n e . I s i t in your path?" i f ` s p l i n e /dev/ nul l ` ;
20
21 # We cache the t a b l e of f i lenames and t h e i r envelope spectra .

B.1. FDMF 79

22 i f (stat $db_f i l e) { # keep the o ld db f i l e j u s t in case
23 F i l e : : Copy : : copy " $db_f i l e " , " $db_f i l e . o ld " or die "copy : $! " ;
24 }
25
26 t ie my %DB, 'GDBM_File ' , glob (" $db_f i l e ") , &GDBM_WRCREAT|&GDBM_SYNC,

0640 ;
27 # I f your per l /GDBM can ' t do SYNC mode , comment the l i n e above and use

t h i s :
28 #t i e my %DB, 'GDBM_File ' , g lob (" $db_fi le ") , &GDBM_WRCREAT, 0640;
29
30 # Recurse through the directory , searching for mp3s
31 my @ f i l e l i s t = recurse_from_dir ($musicd i r) ;
32
33 # Compare tha t f i l e l i s t to the already−cached f i l e s in the database .
34 my @uncached = grep ((not $DB{"$_"}) , @ f i l e l i s t) ;
35
36 my $ f i l e c o un t = 0 ;
37
38 print STDERR "Found " ,$# f i l e l i s t +1," f i l e s , " ,$#uncached+1," uncached . \ n

" ;
39
40 # th i s loop w i l l add any uncached f i l e s to the database
41 FILE : for my $ f i l e (@uncached) {
42 open(FILE , $ f i l e) or die "Can ' t open $ f i l e : $! " ;
43 my $file_md5 = Digest : :MD5−>new−>add f i l e (∗FILE)−>d i g e s t ;
44 print STDERR $ f i l e c o un t++, "/" , $#uncached , " wai t ing on $ f i l e \n" ;
45 # I f an i d en t i c a l f i l e i s a lready indexed , reuse i t s summary .
46 foreach my $k (keys %DB) {
47 my $db_file_md5 = substr $DB{$k } , 100 , 16 ;
48 i f ($fi le_md5 eq $db_file_md5) {
49 print STDERR " I d e n t i c a l f i l e s (us ing cached summary) : \ n" ;
50 print STDERR "\ t $ f i l e \n\ t \tAND\n\ t$k\n" ;
51 my $cached_summary = substr $DB{$k } , 0 , 96 ;
52 $DB{ $ f i l e } = $cached_summary . base_hash ($ f i l e) . $fi le_md5 ;
53 next FILE ;
54 }
55 }
56 my $summary ;
57 next FILE i f sonic_reduce ($ f i l e , \$summary) ;
58 $DB{ $ f i l e } = $summary . base_hash ($ f i l e) . $fi le_md5 ;
59 } # post : %DB i s complete
60
61 untie %DB;
62
63 ###
64 ########################## THE END ##################################
65 ###
66
67 sub base_hash {
68 substr md5(encode_utf8 (basename (sh i f t ()))) , 0 , 4 ;
69 }
70
71
72 sub recurse_from_dir {
73 my ($d i r) = @_;
74 my @ f i l e l i s t ;
75 my $ f i l e_pt rn = ' ^ [^ .] ' ; # ignore dot f i l e s
76
77 unless (opendir (PARSEDIR, " $d i r ")) {
78 printf STDERR " sk ipp ing $d i r because $! \ n" ;
79 return ;
80 }
81
82 foreach my $ f i l e (sort (readdir (PARSEDIR))) {
83 my $fu l lname = $d i r . "/" . $ f i l e ;
84 $fu l lname =~ s/\/+/\//g ;
85 i f (−d $ful lname && $ f i l e !~ /^\ . .∗/) {
86 push @ f i l e l i s t , recurse_from_dir ($fu l lname) ;
87 }
88 e l s i f ($ f i l e =~ / $ f i l e_pt rn / i && −r $ fu l lname) {
89 $ f i l e l i s t [++$# f i l e l i s t] = $ful lname ;
90 }
91 }
92 closedir (PARSEDIR) ;

80 APPENDIX B. SOURCE CODE

93 return @ f i l e l i s t ;
94 }
95
96
97 sub sonic_reduce {
98 # ARGUMENT: fi lename of music f i l e
99 # RETURN by REFERENCE: 768− b i t s t r i n g for fdmf database
100 # RETURN VALUE: 0 for success , nonzero for nonsuccess .
101 my $ f = sh i f t ;
102 my $summary_ref = sh i f t ;
103 my @SR;
104 my @DECODE_CMD;
105 return −1 i f decode_cmd($f , \@DECODE_CMD) ;
106
107 pipe PIPE1_OUT, PIPE1_IN ;
108
109 my $pid1 = fork ;
110 i f ($pid1 == 0) { # we are ch i l d 1 (the decoder)
111 close (PIPE1_OUT) or die "$! " ;
112 open(STDOUT, ">&PIPE1_IN") or die "$! " ;
113 exec @DECODE_CMD or die "$! " ;
114 }
115 else { # we are s t i l l the parent (having had one ch i l d of two)
116 close (PIPE1_IN) or die ; # ch i l d 1 w i l l wr i te on t h i s
117 pipe PIPE2_OUT, PIPE2_IN ;
118 # we w i l l wait for the decode to be done
119 # the o r i g i na l fdmf did not do th i s , as i t got input from
120 # stdin , tha t was produced in rea l time by the decoder
121 # we now need a l l tha t input for l a t e r sof tware
122 waitpid $pid1 , 0 ;
123 my $pid2 = fork ;
124 i f ($pid2 == 0) { # we are ch i l d 2 (the sonic_reducer process)
125 close (PIPE2_OUT) or die "$! " ;
126 open(STDIN, "<&PIPE1_OUT") or die "$! " ;
127 open(STDOUT, ">&PIPE2_IN") or die "$! " ;
128 exec $SONICREDUCER. " /mnt/ ramdisk/ audio . raw" or die "$! " ;
129 }
130 else { # we are s t i l l the parent (having had both ch i ldren)
131 close (PIPE2_IN) or die "$! " ;
132 @SR = <PIPE2_OUT>;
133 }
134 # waitpid $pid1 , 0;
135 waitpid $pid2 , 0 ;
136 }
137
138 i f ($#SR != 767) {
139 print STDERR " sonic_reduce had t roub l e with $ f . Corrupt audio

f i l e ?\n" ;
140 return −2;
141 }
142 my @e = @SR[0 . . 2 5 5] ; # energy spectrum summary
143 my @r = @SR[256 . . 5 1 1] ; # rat i o (high/low) spectrum summary
144 my @t = @SR[512 . . 7 6 7] ; # tw i s t (odd/even ra t i o) spectrum summary
145 my $ j = join ("" , quant ize (@e) , quant ize (@r) , quant ize (@t)) ;
146 $$summary_ref = pack ("b∗" , $ j) ;
147
148 system ("/home/vegard/Masteroppgave/Kode/ fdmf/ f oo i d " , "/mnt/ ramdisk/

audio . raw" , $ f) ;
149 my $md5 = md5_hex($ f) ;
150 system ("/home/vegard/Masteroppgave/Kode/ fdmf/ d e s c r i p t o r /mnt/

ramdisk/ audio . raw > /home/vegard/Masteroppgave/Kode/ r e s u l t s /
d e s c r i p t o r s /$md5") ;

151 system (" echo \"$md5\" >> /home/vegard/Masteroppgave/Kode/ r e s u l t s /
d e s c r i p t o r s / f i l e l i s t . txt ") ;

152
153 return 0 ;
154 }
155
156 sub decode_cmd {
157 # This rout ine looks at the f i lename extension of a music f i l e .
158 # I t returns the s h e l l command for decoding i t .
159 # These a l so work , i f you don ' t want to use mplayer :
160 # @$cmd_ref = ("mpg123" , "−s " , "−q" , " $f ") ;
161 # @$cmd_ref = ("ogg123 " , "−d" , "raw" , "− f " , "−", "$f ") ;

B.2. LIBFOOID 81

162 my $ f = sh i f t ;
163 my $cmd_ref = sh i f t ;
164 my $f i l ename_extens ion = l c substr $f , −3;
165 i f ($ f i l ename_extens ion =~ /mp3 | ogg |m4a |wma|wav | \ . ra /) {
166 # @$cmd_ref = ("mplayer " , "−nortc " , "−ao" , "pcm" ,
167 # "−a o f i l e " , "/dev/ s tdout " , " $f ") ;
168 # @$cmd_ref = ("mplayer " , "−ao" , "pcm: f i l e=/dev/ stdout " , " $f ") ;
169 @$cmd_ref = ("mplayer" , "−r e a l l y−qu i e t " , "−msgleve l " , " a l l=1" , "

−no j oy s t i c k " , "−n o l i r c " , "−ao" , "pcm : f a s t : f i l e =/mnt/ ramdisk
/ audio . raw" , " $ f ") ;

170 return 0 ;
171 }
172 else {
173 print STDERR "Filename $ f doesn ' t have an extens i on that we

handle . \ n" ;
174 return −1;
175 }
176 }
177
178
179 sub f ind_sr {
180 my $sr_path ;
181 $sr_path = dirname ($0) . "/ sonic_reducer " ; # look in same dir as

fdmf
182 return $sr_path i f −x $sr_path ;
183 $sr_path = getcwd () . "/ sonic_reducer " ; # look in the current

d i rec tory
184 return $sr_path i f −x $sr_path ;
185 return 0 ; # we f a i l e d to f ind sonic_reducer
186 }
187
188 sub quant ize {
189 # one b i t quant ize with median value as thresho ld
190 my @s ;
191 my $median = median (@_) ;
192 foreach my $ i (0 . . $#_) {
193 $s [$ i] = ($_[$ i] > $median) ? 1 : 0 ;
194 }
195 return @s ;
196 }
197
198 sub median {
199 my $ s i z e ;
200 my $median ;
201 my @sorted = sort {$a <=> $b} @_;
202 $ s i z e = scalar @sorted ;
203 i f ($ s i z e % 2) {
204 $median = $sor ted [($ s i z e −1) / 2] ;
205 }
206 else {
207 $median = ($sor ted [$ s i z e /2] + $sor ted [($ s i z e /2) −1]) /2 ;
208 }
209 }

B.2 libFooID

libFooID also uses db.h and db.c from fdmf. The source code is available under
the GPL.

B.2.1 foo.h

Headers.
1 #ifndef FOO_H
2 #define FOO_H
3
4 #include <as s e r t . h>
5 #include <s t d l i b . h>
6 #include <s t r i n g . h>

82 APPENDIX B. SOURCE CODE

7 #include <std i o . h>
8 #include <math . h>
9 #include <l im i t s . h>
10 #include <foo id . h>
11 #include <sys / s t a t . h>
12 #include "db . h"
13
14 #endif /∗FOO_H∗/

B.2.2 foo.c

Console tool that reads WAVE �les from disk, generates �ngerprints (using
libFooID), and writes them to the database.

1 #include " foo . h"
2
3 #define SAMPLE_RATE 44100
4 #define CHANNELS 2
5 #define N_BLOCKS 1024
6
7 t_fooid ∗ f o o i d ;
8
9 int f s i z e (char ∗name)
10 {
11 struct s t a t s tbu f ;
12
13 i f (s t a t (name , &stbu f) == −1)
14 {
15 f p r i n t f (s tde r r , " f s i z e : can ' t a c c e s s %s \n" , name) ;
16 return 0 ;
17 }
18 return s tbu f . s t_s i z e ;
19 }
20
21 int main (int argc , char ∗argv [])
22 {
23 FILE ∗ fp ;
24 signed short ∗data ;
25 int fp_more = 1 ;
26 int fp_data_size ;
27 unsigned long f p_ f inge rp r i n t_s i z e ;
28 unsigned char ∗ f p_ f i ng e rp r i n t ;
29 int f i l e _ s i z e ;
30 int audio_length ;
31 int whereami , i xF i l e ;
32
33 i f (argc == 1 | | argc > 3)
34 {
35 f p r i n t f (s tde r r , "Usage : \ n") ;
36 f p r i n t f (s tde r r , "\ t%s <raw−aud i o f i l e > [< o r i g i n a l−f i l ename >]:\n" ,

argv [0]) ;
37 e x i t (1) ;
38 }
39 else
40 {
41 i f ((fp = fopen (argv [1] , " rb")) == NULL)
42 {
43 f p r i n t f (s tde r r , "Can ' t open %s\n" , argv [1]) ;
44 e x i t (1) ;
45 }
46 else
47 {
48 data = (signed short ∗) mal loc (s izeof (signed short) ∗

N_BLOCKS) ;
49 f oo i d = fp_in i t (SAMPLE_RATE, CHANNELS) ;
50 i f (f e r r o r (fp))
51 {
52 f p r i n t f (s tde r r , "Error %d !\ n" , f e r r o r (fp)) ;
53 }
54
55 /∗

B.2. LIBFOOID 83

56 ∗ Lets sk ip the header (we know we get 44100 Hz , 16 b i t , 2
channel)

57 ∗/
58 f s e e k (fp , 44 , SEEK_SET) ;
59 whereami = 44 ;
60
61 while ((! f e o f (fp)) && (fp_more == 1) && ! f e r r o r (fp))
62 {
63 fp_data_size = f r ead (data , s izeof (signed short) ,

N_BLOCKS, fp) ;
64 whereami += fp_data_size ;
65 fp_more = fp_feed_short (foo id , data , fp_data_size) ;
66 }
67 f c l o s e (fp) ;
68
69 fp_f inge rp r i n t_s i z e = fp_get s i z e (f o o i d) ;
70
71 f i l e _ s i z e = f s i z e (argv [1]) ;
72
73 /∗
74 ∗ The ∗ 2 i s because i t i s 16 b i t s , whi le the f i l e s i z e i s

in 8 b i t s
75 ∗/
76 audio_length = (f i l e _ s i z e / (f loat) (SAMPLE_RATE ∗ CHANNELS

∗ 2)) ∗ 100 ;
77
78 fp_f i ng e rp r i n t = (unsigned char ∗) mal loc (s izeof (unsigned

char) ∗ f p_ f inge rp r i n t_s i z e) ;
79 i f (fp_ca l cu la t e (foo id , audio_length , f p_ f i ng e rp r i n t) < 0)
80 {
81 f p r i n t f (s tde r r , " fp_ca l cu la t e f a i l e d ! \ n") ;
82 }
83
84 i f (argc == 3)
85 {
86 db_setup () ;
87
88 i xF i l e = db_inse r t_f i l e (argv [2] , 0 , 1) ;
89
90 db_inse r t_f ingerpr in t (i xF i l e , 4 , (char ∗) fp_f inge rpr in t

, f p_ f inge rp r i n t_s i z e) ;
91
92 db_close () ;
93 }
94
95 fp_free (f o o i d) ;
96 f r e e (data) ;
97 f r e e (f p_ f i ng e rp r i n t) ;
98 }
99 }
100
101 return 0 ;
102 }

B.2.3 Database.java

Database connectivity for Java.

1 import java . s q l . ∗ ;
2
3 public c lass Database {
4 public Connection conn ;
5 public Database ()
6 {
7 try {
8 Class . forName ("com . mysql . jdbc . Dr iver ") . newInstance () ;
9 conn = DriverManager . getConnect ion (
10 " jdbc : mysql : // l o c a l h o s t /master ?" +
11 " user=master&password=didyouth inkyouwould f ind i there ") ;
12 } catch (Exception ex) {
13 // handle any errors
14 System . out . p r i n t l n ("SQLException : " + ex . getMessage ()) ;

84 APPENDIX B. SOURCE CODE

15 ex . pr intStackTrace () ;
16 }
17 }
18 }

B.2.4 FingerPrint.java

Compares a number of �ngerprints to each other, and stores the comparison
data in the database.

1 import java . i o . ByteArrayInputStream ;
2 import java . i o . DataInputStream ;
3 import java . i o . Fi le InputStream ;
4 import java . s q l . ∗ ;
5 import java . u t i l . ∗ ;
6
7 /∗∗
8 ∗ User : Gian−Carlo Pascutto
9 ∗ Date : 28−apr−2006
10 ∗ Time : 18:14:20
11 ∗
12 ∗ Modified to a l low for database in s e r t s by Vegard Andreas Larsen .
13 ∗/
14 public c lass FingerPr int {
15 private int ve r s i on ;
16 private int l ength ;
17 private int avg_dom ;
18 private int avg_f it ;
19 private int [] [] r ;
20 private int [] dom;
21
22 public stat ic void main (St r ing [] a rgs)
23 {
24 Database db = new Database () ;
25 try {
26 PreparedStatement s e l e c t F i l e l i s t = db . conn . prepareStatement (

"SELECT ixF i l e , sF inge rp r i n t FROM tb lF ing e rp r i n t WHERE
ixType = 4") ;

27 Resu l tSet f i l e s = s e l e c t F i l e l i s t . executeQuery () ;
28 ArrayList<Fi l e> r gF i l e s = new ArrayList<Fi l e >() ;
29 f i l e s . f i r s t () ;
30 while (f i l e s . next ())
31 {
32 F i l e f = new F i l e () ;
33 f . i x F i l e = f i l e s . g e t In t (1) ;
34 f . sF inge rp r i n t = f i l e s . getBinaryStream (2) ;
35 r gF i l e s . add (f) ;
36 }
37
38 PreparedStatement i n s e r t S c o r e = db . conn . prepareStatement ("

INSERT IGNORE INTO tb lSco r e (i xF i l e 1 , i xF i l e 2 , ixType ,
dblScore) VALUES (? , ? , 4 , ?) ") ;

39
40 for (int i = 0 ; i < r gF i l e s . s i z e () ; i++)
41 {
42 FingerPr int ofp1 = new FingerPr int () ;
43 r gF i l e s . get (i) . sF inge rp r i n t . r e s e t () ;
44 ofp1 . read (new DataInputStream (r gF i l e s . get (i) .

sF inge rp r i n t)) ;
45 for (int j = i + 1 ; j < r gF i l e s . s i z e () ; j++)
46 {
47 FingerPr int ofp2 = new FingerPr int () ;
48 r gF i l e s . get (j) . sF inge rp r i n t . r e s e t () ;
49 ofp2 . read (new DataInputStream (r gF i l e s . get (j) .

sF inge rp r i n t)) ;
50 f loat value = ofp1 .Match (ofp2) ;
51 i f (va lue != 0 . 0)
52 {
53 i n s e r t S c o r e . s e t I n t (1 , r gF i l e s . get (i) . i x F i l e) ;
54 i n s e r t S c o r e . s e t I n t (2 , r gF i l e s . get (j) . i x F i l e) ;
55 i n s e r t S c o r e . s e tF l oa t (3 , va lue) ;

B.2. LIBFOOID 85

56 i n s e r t S c o r e . execute () ;
57 }
58 }
59 System . out . p r i n t l n (" Fin i shed " + r gF i l e s . get (i) . i x F i l e +

" ! ") ;
60 }
61
62 }
63 catch (Exception e) {
64 e . pr intStackTrace () ;
65 }
66 }
67
68 public FingerPr int () {
69 r = new int [8 7] [1 6] ;
70 dom = new int [8 7] ;
71 }
72
73 public void read (DataInputStream fds) throws java . i o . IOException ,

Exception {
74 byte bu f f [] = new byte [4 2 4] ;
75 int read = fds . read (bu f f) ;
76
77 ByteArrayInputStream ds = new ByteArrayInputStream (bu f f) ;
78
79 ve r s i on = Se rve rUt i l . readLEShort (ds) ;
80
81 i f (v e r s i on != 0 | | read != 424) {
82 throw new Exception (" F inge rp r in t ve r s i on not supported . \ n") ;
83 }
84
85 length = Se rve rUt i l . readLEInt (ds) ;
86 avg_f it = Se rve rUt i l . readLEShort (ds) ;
87 avg_dom = Se rve rUt i l . readLEShort (ds) ;
88
89 for (int i = 0 ; i < 87 ; i++) {
90 for (int j = 0 ; j < 16 ; j += 4) {
91 int temp = ds . read () ;
92
93 r [i] [j + 0] = (temp >>> 6) & 0x3 ;
94 r [i] [j + 1] = (temp >>> 4) & 0x3 ;
95 r [i] [j + 2] = (temp >>> 2) & 0x3 ;
96 r [i] [j + 3] = temp & 0x3 ;
97 }
98 }
99
100 int dompos = 0 ;
101
102 for (int i = 0 ; i < (66 / 3) ; i++) {
103 int temp = ds . read () ;
104 int temp2 = ds . read () ;
105 int temp3 = ds . read () ;
106
107 // 3 ∗ 8 b i t s = 24 b i t s = 4 ∗ 6 b i t doms
108 dom[dompos++] = ((temp >>> 2) & 0x3F) ;
109 dom[dompos++] = (((temp & 0x03) << 4) | ((temp2 >>> 4) & 0

x0F)) ;
110 dom[dompos++] = (((temp2 & 0x0F) << 2) | ((temp3 >>> 6) & 0

x3)) ;
111 i f (dompos < 87) {
112 dom[dompos++] = (temp3 & 0x3F) ;
113 }
114 }
115
116 ds . c l o s e () ;
117 }
118
119 public void readFrom (St r ing s) throws java . i o . FileNotFoundException ,
120 java . i o . IOException , Exception

{
121 read (new DataInputStream (new Fi leInputStream (s))) ;
122 }
123
124 public void displaySummary () {

86 APPENDIX B. SOURCE CODE

125 System . out . p r i n t l n ("\ tLength : " + length) ;
126 System . out . p r i n t l n ("\tAVG DOM: " + avg_dom) ;
127 System . out . p r i n t l n ("\tAVG FIT : " + avg_fit) ;
128 }
129
130 public void d i s p l ayFu l l () {
131 displaySummary () ;
132
133 for (int i = 0 ; i < 87 ; i++) {
134 S t r i ngBu f f e r l i n e = new St r i ngBu f f e r (2 ∗ 16 + 1) ;
135
136 for (int j = 0 ; j < 16 ; j++) {
137 int t r = r [i] [j] ;
138 switch (t r) {
139 case 0 :
140 l i n e . append ("0 ") ;
141 break ;
142 case 1 :
143 l i n e . append ("1 ") ;
144 break ;
145 case 2 :
146 l i n e . append ("2 ") ;
147 break ;
148 case 3 :
149 l i n e . append ("3 ") ;
150 break ;
151 default :
152 l i n e . append ("X ") ;
153 break ;
154 }
155 }
156
157 System . out . p r i n t l n (l i n e + " DOM: " + dom[i]) ;
158 }
159 }
160
161 public f loat Match (FingerPr int fp) {
162 i f (quickMatch (fp)) {
163 return fu l lMatch (fp) ;
164 } else {
165 return 0 .0 f ;
166 }
167 }
168
169 public boolean quickMatch (FingerPr int fp) {
170 /∗
171 l eng th within 30 seconds
172 ∗/
173 i f (l ength + 100 ∗ 30 < fp . l ength) {
174 return fa l se ;
175 }
176 i f (l ength − 100 ∗ 30 > fp . l ength) {
177 return fa l se ;
178 }
179
180 /∗
181 average FIT within 0.4
182 ∗/
183 i f (avg_f it + 400 < fp . avg_f it) {
184 return fa l se ;
185 }
186 i f (avg_f it − 400 > fp . avg_f it) {
187 return fa l se ;
188 }
189 /∗
190 average DOM within 6 uni t s
191 ∗/
192 i f (avg_dom + 600 < fp . avg_dom) {
193 return fa l se ;
194 }
195 i f (avg_dom − 600 > fp . avg_dom) {
196 return fa l se ;
197 }
198

B.2. LIBFOOID 87

199 return true ;
200 }
201
202
203 // XXX: ear ly e x i t here
204 public f loat fu l lMatch (FingerPr int fp) {
205 /∗
206 determine max s en s i b l e frame
207 ∗/
208 int maxframe = Math . round ((l ength ∗ 0.9765625 f) / 100 .0 f) ;
209 maxframe = Math . min (maxframe , 87) ;
210
211 /∗
212 s e t up ' f law ' counters
213 ∗/
214 int [] r f = new int [4] ;
215 int [] d f = new int [6 4] ;
216 int tdf , t r f ;
217
218 r f [0] = 0 ;
219 r f [1] = 0 ;
220 r f [2] = 0 ;
221 r f [3] = 0 ;
222 td f = 0 ;
223 t r f = 0 ;
224
225 for (int i = 0 ; i < 64 ; i++) {
226 df [i] = 0 ;
227 }
228
229 for (int f = 0 ; f < maxframe ; f++) {
230 for (int b = 0 ; b < 16 ; b++) {
231 int r d i f f = Math . abs (r [f] [b] − fp . r [f] [b]) ;
232 r f [r d i f f]++;
233 t r f += r d i f f ;
234 }
235 int dd i f f = Math . abs (dom[f] − fp . dom[f]) ;
236 df [d d i f f]++;
237 td f += dd i f f ;
238 }
239
240 /∗
241 DOM flaws are l inear , pena l i t y points = how far we ' re o f f
242
243 FIT f laws are nonlinear
244 1−o f f : 1 penal ty point
245 2−o f f : 3 penal ty points
246 3−o f f : 9 penal ty points
247 ∗/
248
249 f ina l int maxrflaw = 9 ∗ 16 ∗ maxframe ;
250 f ina l int maxdflaw = (63 ∗ maxframe) / 4 ;
251
252 int w_trf = r f [1] + r f [2] ∗ 4 + r f [3] ∗ 9 ;
253 int w_tdf = td f / 4 ;
254
255 int t o t a l f l aw s = w_trf + w_tdf ;
256 f ina l int maxflaws = maxrflaw + maxdflaw ;
257
258 /∗
259 percentage i s ra t i o of our
260 f l aws to max t h eo r e t h i c a l f l aws
261 ∗/
262 f loat perc = ((f loat) (t o t a l f l aw s)) / ((f loat) (maxflaws)) ;
263 /∗
264 we expect a random track to get
265 about halfway there , so confidence
266 of 50% −> 0%, and a match to get
267 nowhere , so confidence of 0% −> 100%
268 ∗/
269 f loat conf = ((1 . 0 f − perc) − 0 .5 f) ∗ 2 .0 f ;
270
271 /∗
272 l im i t to sane va lues

88 APPENDIX B. SOURCE CODE

273 ∗/
274 conf = Math . min (conf , 1 . 0 f) ;
275 conf = Math .max(conf , 0 . 0 f) ;
276
277 return conf ;
278 }
279
280 public int getVers ion () {
281 return ve r s i on ;
282 }
283
284 public int getAvg_dom() {
285 return avg_dom ;
286 }
287
288 public void setAvg_dom(int avg_dom) {
289 this . avg_dom = avg_dom ;
290 }
291
292 public int getAvg_fit () {
293 return avg_f it ;
294 }
295
296 public void setAvg_fit (int avg_f it) {
297 this . avg_f it = avg_f it ;
298 }
299
300 public int getLength () {
301 return l ength ;
302 }
303
304 public void setLength (int l ength) {
305 this . l ength = length ;
306 }
307 }

B.3 Gunderson's descriptors

The software is licensed under the GPL.

B.3.1 wave.h

Headers for reading WAVE �les from disk.

1 #ifndef _WAVE_H
2 #define _WAVE_H 1
3
4 #include "common . h"
5
6 void read_wave_file (Sample &s , char ∗ f i l ename) ;
7
8 #endif /∗ ! de f ined (_WAVE_H) ∗/

B.3.2 wave.cpp

Functions for reading WAVE �les from disk.

1 #include <std i o . h>
2 #include <as s e r t . h>
3
4 #include "wave . h"
5
6 #define READ_BLOCKS 1024
7 #define WAVE_HEADER_SIZE 44
8
9 void read_wave_file (Sample &s , char ∗ f i l ename)
10 {

B.3. GUNDERSON'S DESCRIPTORS 89

11 unsigned f i l e_pos = 0 ;
12 long f i l e_ l e n ;
13 long data_size ;
14 signed short ∗data ;
15 FILE ∗ fp ;
16
17 fp = fopen (f i l ename , " rb") ;
18 a s s e r t (fp != NULL) ;
19 f s e e k (fp , 0 , SEEK_END) ;
20 f i l e_ l e n = f t e l l (fp) ;
21 a s s e r t (f i l e_ l e n > FEATURE_SAMPLES ∗ 2 + WAVE_HEADER_SIZE) ;
22
23
24 long samples = (f i l e_ l e n − WAVE_HEADER_SIZE) / (2 ∗ 2) ;
25 s . samples . r e s e r v e (FEATURE_SAMPLES) ;
26
27 f s e e k (fp , 44 , SEEK_SET) ;
28 data = (signed short ∗) mal loc (s izeof (signed short) ∗ READ_BLOCKS) ;
29 while ((! f e o f (fp)) && f i l e_pos < FEATURE_SAMPLES ∗ 2)
30 {
31 data_size = f r ead (data , s izeof (signed short) , READ_BLOCKS, fp) ;
32 // data_size − 1 because we need to be ab l e to read at l e a s t 2

samples
33 for (int i = 0 ; i < data_size − 1 ; i += 2)
34 {
35 signed short l , r ;
36 l = data [i] ;
37 r = data [i + 1] ;
38
39 #i f 0
40 /∗
41 ∗ There ' s a l o t of codec de lay in MP3. This sk ip s
42 ∗ the f i r s t 1105 samples (LAME' s est imate of the
43 ∗ delay for our t e s t MP3s) to make l i n i n g up p l o t s
44 ∗ eas i e r .
45 ∗/
46 stat ic unsigned delayed = 0 ;
47 i f (++delayed < 1105)
48 continue ;
49 #endif
50
51 s . samples . push_back (0 . 5 ∗ (double (r) + double (l))) ;
52 }
53 f i l e_po s += data_size ;
54 }
55 s . l ength = (samples / 44100 .0) ;
56 f r e e (data) ;
57 }

B.3.3 read_descriptors.php

Reads the output from Gunderson's descriptors into the database.

1 <?php
2 /∗∗
3 ∗ This f i l e reads a l i s t of f i l e s produced by Gunderson ' s descr ip tors ,
4 ∗ and in s e r t s a l l the f i n g e r p r i n t s into t b lF inge rp r in t .
5 ∗
6 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
7 ∗/
8 require_once (' i n c lude / inc lude . php ') ;
9
10 // where do we f ind our f i l e s ?
11 define ('PATH_RESULTS' , ' /home/vegard/Masteroppgave/Kode/ r e s u l t s /

d e s c r i p t o r s / ') ;
12
13 $oDB = CDatabase : : Get () ;
14
15 // Let ' s have a lookup l i s t of the index of a f i n g e rp r in t type .
16 // E. g . $rgixType [' centro id '] == 6
17 $ sq l = "SELECT sType , ixType FROM tblType" ;

90 APPENDIX B. SOURCE CODE

18 $rgixType = $oDB−>extended−>GetAssoc ($sq l , nu l l , nu l l , nu l l ,
MDB2_FETCHMODE_ASSOC, fa l se) ;

19
20 // Read the l i s t o f f i l e s and remove exces s i ve f a t
21 $ r gF i l e s = f i l e (PATH_RESULTS. ' f i l e l i s t . txt ') ;
22 $ r gF i l e s = array_map(' tr im ' , $ r gF i l e s) ;

23
24 // Our quer ies
25 $ s q l I n s e r t = "INSERT IGNORE INTO tb lF ing e rp r i n t (i xF i l e , ixType ,

sF inge rp r i n t) VALUES (? , ? , ?) " ;
26 $sq lFind = "SELECT i xF i l e FROM tb l F i l e WHERE md5Path LIKE ?" ;
27
28 $ i = 0 ;
29 echo " Sta r t i ng . . . \ n" ;
30 // Loop through f i l e s
31 foreach ($ r gF i l e s as $md5Path)
32 {
33 $ rgDes c r i p to r s = f i l e (PATH_RESULTS. $md5Path) ;
34 $ rgDes c r i p to r s = array_map(' tr im ' , $ r gDes c r i p to r s) ;

35 $ i xF i l e = $oDB−>extended−>GetOne($sqlFind , nu l l , array ($md5Path) ,
array (' t ext ')) ;

36 foreach ($ rgDes c r i p to r s as $ l i n e)
37 {
38 // Line s t ruc ture as . i n i f i l e s
39 l i s t ($sDescr iptor , $sValues) = explode ('=' , $ l i n e) ;
40
41 /∗
42 ∗ Some of the f i n g e r p r i n t s have very large values , and t h i s
43 ∗ i s something Gunderson does in h i s Voronoi program . I t should
44 ∗ have been done when the f i n g e r p r i n t s were generated .
45 ∗
46 ∗ We are tak ing the Y−th root of any moments named ∗_momentY.
47 ∗/
48 i f (preg_match("/^(_moment) (\d) $/" , $sDescr iptor , $matches))

49 {
50 $rgValues = explode (' , ' , $sValues) ;
51 foreach ($rgValues as $k => $dbl)
52 {
53 i f ($dbl < 0 . 0)
54 $rgValues [$k] = −pow(−$dbl , 1 . 0 / $matches [2]) ;
55 else
56 $rgValues [$k] = pow($dbl , 1 . 0 / $matches [2]) ;
57 }
58 $sValues = implode (' , ' , $rgValues) ;
59 }
60 // Do we know what kind of descr ip tor t h i s i s ?
61 // The f i n g e rp r i n t f i l e s a l so have a bunch of non−necesary data .
62 i f (i s set ($rgixType [$ sDesc r ip to r]))
63 {
64 $ixType = $rgixType [$ sDesc r ip to r] ;
65 // Inser t data into t b lF inge rp r in t
66 $oDB−>extended−>execParam ($ sq l I n s e r t , array ($ i xF i l e , $ixType

, $sValues) , array (' i n t e g e r ' , ' i n t e g e r ' , ' t ex t ')) ;
67 }
68 }
69 $ i++;
70 i f ($ i % 100 == 0)
71 echo "\ t [" . date ('H: i : s ') . "] Processed $ i f i l e s \n" ;
72 }
73 echo "Done ! \ n" ;
74
75 ?>

B.3.4 process_descriptor_scores.php

Compares the �ngerprints and generates the scores for potential duplicate pairs.

1 <?php
2 /∗∗
3 ∗ This f i l e compares the f i n g e rp r i n t s produced by Gunderson ' s

de sc r i p to r s using

B.3. GUNDERSON'S DESCRIPTORS 91

4 ∗ Euclidean distance , and generates a score for each f i n g e rp r i n t
comparison .

5 ∗
6 ∗ Outputs SQL inse r t statements to descr ip tor_inser t s . s q l tha t should
7 ∗ processed by MySQL at a l a t e r s tage .
8 ∗
9 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
10 ∗/
11 require_once (' i n c lude / inc lude . php ') ;
12 ob_end_flush () ;
13
14 $rgMax = array (
15 6 => 50 .0 , // centroid
16 7 => 5 .0 , // time
17 8 => 0.005 , // msratio
18 9 => 25 .0 , // steepness
19 10 => 2000 .0 , // zerocross ings
20 11 => 1000 .0 , // zerocrossing_guard
21 12 => 40 .0 , // mfcc_avg
22 13 => 3 .0 , // mfcc_delta_avg
23 18 => 20 .0 , // mfcc_f1_avg
24 19 => 5 .0 , // mfcc_f1_delta_avg
25
26 14 => 50 , // mfcc_delta_moment2
27 15 => 12500 , // mfcc_delta_moment3
28 16 => 6000000 , // mfcc_delta_moment4
29 17 => 4350000000 , // mfcc_delta_moment5
30
31 20 => 1500 , // mfcc_f1_delta_moment2
32 21 => 1250000 , // mfcc_f1_delta_moment3
33 22 => 1175000000 , // mfcc_f1_delta_moment4
34 23 => 1410000000000 , // mfcc_f1_delta_moment5
35
36 24 => 6000 , // mfcc_delta_moment2
37 25 => 6100000 , // mfcc_delta_moment3
38 26 => 10000000000 , // mfcc_delta_moment4
39 27 => 12800000000000 , // mfcc_delta_moment5
40
41 28 => 2000 , // mfcc_moment2
42 29 => 1700000 , // mfcc_moment3
43 30 => 2900000000 , // mfcc_moment4
44 31 => 4100000000000 , // mfcc_moment5
45) ;
46
47
48 $oDB = CDatabase : : Get () ;
49
50 // we can ignore the _delta_ moments of we need to
51 //$rgTypes = array (14 , 15 , 16 , 17 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 ,

29 , 30 , 31) ;
52 $rgTypes = array_keys ($rgMax) ;

53
54 foreach ($rgTypes as $ixType)
55 {
56 i f (! i s set ($rgMax [$ixType]))
57 continue ;
58
59 $fp = fopen (" i n s e r t s 3 . s q l " , "w") ;
60
61 fw r i t e ($fp , "INSERT DELAYED IGNORE INTO tb lSco r e (i xF i l e 1 , i xF i l e 2 ,

ixType , dblScore) VALUES ") ;
62 $fCommaFirst = fa l se ;
63
64 $ s q l S e l e c tF i n g e r p r i n t s = "SELECT ixF i l e , sF inge rp r i n t FROM

tb lF i ng e rp r i n t WHERE ixType = ? ORDER BY i xF i l e " ;
65 $cbBefore = memory_get_usage (true) ;
66 foreach ($rgTypes as $ixType)
67 {
68 // So we don ' t have to do sq r t () a few mi l l i on times , we cache
69 // the maximum Euclidean dis tance squared
70 $dblMaxDistance [$ixType] = $rgMax [$ixType] ∗ $rgMax [$ixType] ;
71 $ rgoF inge rp r in t s [$ixType] = $oDB−>extended−>GetAll (

$ s q l S e l e c tF i ng e rp r i n t s , nu l l , array ($ixType) , array ('
i n t e g e r ') , MDB2_FETCHMODE_ORDERED) ;

92 APPENDIX B. SOURCE CODE

72 foreach ($ rgoF inge rp r in t s [$ixType] as $k => $f)
73 {
74 $ rgoF inge rp r in t s [$ixType] [$k] [1] = explode (' , ' ,

$ r goF inge rp r in t s [$ixType] [$k] [1]) ;
75 }
76 }
77 $cbAfter = memory_get_usage (true) ;
78
79 echo (($cbAfter − $cbBefore) /1024) . "kB memory in use be f o r e s t a r t i n g

\n" ;
80
81 $cF inge rp r i n t s = count ($ rgoF inge rp r in t s [$rgTypes [0]]) ;
82 $ c I n s e r t s = 0 ;
83 for ($ i = 0 ; $ i < $cF inge rp r in t s ; $ i++)
84 {
85 echo "\ t i=$ i \n" ;
86 for ($ j = $ i + 1 ; $ j < $cF inge rp r in t s ; $ j++)
87 {
88 foreach ($rgTypes as $ixType)
89 {
90 $dblSum = 0 ;
91 /∗ Calcu late the Euclidean squared .
92 ∗ This could have been in a method
93 ∗ ca l l , but as we are ins ide our
94 ∗ t h i rd loop already , we ' l l keep the
95 ∗ overhead to a minimum.
96 ∗/
97 foreach ($ rgoF inge rp r in t s [$ixType] [$ i] [1] as $k =>

$dblValue1)
98 {
99 $db lD i f f = $dblValue1 − $ rgoF inge rp r in t s [$ixType] [$ j

] [1] [$k] ;
100 $dblSum += $db lD i f f ∗ $db lD i f f ;
101 }
102
103 // Is the Euclidean dis tance acceptab ly smal l ?
104 i f ($dblSum < $dblMaxDistance [$ixType])
105 {
106 // Only take the s q r t () i f necessary
107 $dblEucl = sqrt ($dblSum) ;
108 $ i xF i l e 1 = $rgoF inge rp r in t s [$ixType] [$ i] [0] ;
109 $ i xF i l e 2 = $rgoF inge rp r in t s [$ixType] [$ j] [0] ;
110 $dblScore = 1 .0 − ($dblEucl / $rgMax [$ixType]) ;
111 i f ($fCommaFirst)
112 $sOut .= " ,\n" ;
113 else
114 $fCommaFirst = true ;
115
116 $ c I n s e r t s++;
117 $sOut .= " ($ ixF i l e1 , $ ixF i l e2 , $ixType , $dblScore) " ;
118 }
119 }
120 }
121 // Let ' s have a maximum of 100 value groups in each INSERT.
122 i f ($ c I n s e r t s >= 100)
123 {
124 fw r i t e ($fp , $sOut) ;
125 $sOut = ' ' ;
126 fw r i t e ($fp , " ; \ n\n") ;
127 fw r i t e ($fp , "INSERT DELAYED IGNORE INTO tb lSco r e (i xF i l e 1 ,

i xF i l e 2 , ixType , dblScore) VALUES ") ;
128 $fCommaFirst = fa l se ;
129 echo "Wrote $ c I n s e r t s i n s e r t s to f i l e . \ n" ;
130 $ c I n s e r t s = 0 ;
131 }
132 }
133
134 // I f we have something more to write , l e t ' s do i t now .
135 fw r i t e ($fp , $sOut) ;
136 $sOut = ' ' ;
137 fw r i t e ($fp , " ; \ n\n") ;
138 fc lose ($fp) ;
139 echo "Done with everyth ing . \ n" ;
140 }

B.4. COMBINING DESCRIPTORS 93

141 ?>

B.4 Combining descriptors

Software listed here is licensed under the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 United States License.

B.4.1 duplicate_functions.php

This script contains functions to check if two �le names are likely to be the same
song.

1 <?php
2 /∗∗
3 ∗ This s c r i p t contains a var i e t y of funct ions for comparing two f i l e
4 ∗ names agains t each other , and determining i f they could be the same
5 ∗ song .
6 ∗
7 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
8 ∗/
9 func t i on token ize_f i l ename ($s)
10 {
11 // remove anything be fore a space−hyphen−space sequence
12 // (of ten a r t i s t or album name)
13 $s = preg_replace (" / .∗ − / i " , ' ' , $s) ;

14 $s = preg_replace ("/[−\ s \d]+/" , ' ' , strtolower ($s)) ;
15 $rgTokens = sp l i t (' ' , $s) ;
16 foreach ($rgTokens as $key => $value)
17 {
18 i f (strlen ($value) <= 2)
19 unset ($rgTokens [$key]) ;
20 }
21 return $rgTokens ;
22 }
23
24 func t i on f i l ename ($s)
25 {
26 return pathinfo ($s , PATHINFO_FILENAME) ;
27 }
28
29 func t i on art i s tname ($s)
30 {
31 $sDir = pathinfo ($s , PATHINFO_DIRNAME) ;
32 $rgDirs = explode (' / ' , $sDir) ;
33 re turn strtolower ($rgDirs [3]) ;
34 }
35
36 func t i on compare_filename ($s1 , $s2 , $rgTokens1 = NULL, $rgTokens2 = NULL

)
37 {
38 i f ($rgTokens1 == NULL)
39 $rgTokens1 = token ize_f i l ename (f i l ename ($s1)) ;
40 i f ($rgTokens2 == NULL)
41 $rgTokens2 = token ize_f i l ename (f i l ename ($s2)) ;
42 $cHits = 0 ;
43 $rgAllTokens = array_unique (array_merge($rgTokens1 , $rgTokens2)) ;

44 foreach ($rgAllTokens as $token)
45 {
46 i f (in_array ($token , $rgTokens1) && in_array ($token , $rgTokens2)

)
47 $cHits++;
48 }
49 $cTokens = max(count ($rgTokens1) , count ($rgTokens2)) ;
50 i f ($cTokens < 1) return fa l se ;
51
52 return ((art i s tname ($s1) == art i s tname ($s2) &&
53 ($cHits / (f l o a t) $cTokens) > 0 . 6)) ;

94 APPENDIX B. SOURCE CODE

54 }
55 ?>

B.4.2 estimate_�lename_accuracy.php

This script attempts to match 500 000 random combinations of �le names in
the database, and prints out the ones that match. See 3.1.3.

1 <?php
2 /∗∗
3 ∗ This s c r i p t p icks 500 000 random f i l e s to compare , and checks
4 ∗ i f they have f i l e names tha t match . The f i l e names tha t match
5 ∗ pr inted to stdout , and was v e r i f i e d by a human.
6 ∗
7 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
8 ∗/
9 require_once (' i n c lude / inc lude . php ') ;
10 $oDB = CDatabase : : Get () ;
11 $oSmarty = CSmarty : : Get () ;
12
13 include (' dup l i ca t e_f inde r . php ') ;
14
15 $ s q l S e l e c t F i l e = "SELECT ixF i l e , sPath FROM tb l F i l e " ;
16 $ r goF i l e s = $oDB−>extended−>GetAssoc ($ s q l S e l e c tF i l e , nu l l , nu l l , nu l l ,

MDB2_FETCHMODE_ASSOC, fa l se) ;
17
18 $rgoTokens = array () ;
19 foreach ($ r g oF i l e s as $ i xF i l e => $sPath)
20 {
21 $rgoTokens [$ i xF i l e] = token ize_f i l ename (f i l ename ($sPath)) ;
22 }
23
24 $cNumMatch = 0 ;
25 for ($ i = 0 ; $ i < 500000; $ i++)
26 {
27 $x = rand (0 , count ($ r g oF i l e s)) ;
28 $y = rand (0 , count ($ r g oF i l e s)) ;
29 while ($x == $y | | ! i s set ($ r g oF i l e s [$x]) | | ! i s set ($ r g oF i l e s [$y]))
30 {
31 $x = rand (0 , count ($ r g oF i l e s)) ;
32 $y = rand (0 , count ($ r g oF i l e s)) ;
33 }
34 i f (compare_filename ($ r goF i l e s [$x] , $ r g oF i l e s [$y] , $rgoTokens [$x] ,

$rgoTokens [$y]))
35 {
36 $cNumMatch++;
37 echo "
\n" . s t r_rep lace ("/mnt/media/" , ' ' , $ r g oF i l e s [$x]) . "<

br/>\n" ;
38 echo s t r_rep lace ("/mnt/media/" , ' ' , $ r g oF i l e s [$y]) . "
\n" ;
39 }
40 }
41
42 echo $cNumMatch . "\n" ;
43 ?>

B.4.3 estimate_duplicate_count.php

This script �nds the number of potential duplicate pairs in the music collection
by looking at their �le names. See 3.1.3.

1 <?php
2 /∗∗
3 ∗ This s c r i p t f inds the number of po t en t i a l dup l i ca t e s
4 ∗ when only look ing at the f i l e names .
5 ∗
6 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
7 ∗/
8 require_once (' i n c lude / inc lude . php ') ;
9 $oDB = CDatabase : : Get () ;

B.4. COMBINING DESCRIPTORS 95

10
11 include (' dup l i ca t e_funct i ons . php ') ;
12
13 $ s q l S e l e c t F i l e = "SELECT ixF i l e , sPath FROM tb l F i l e ORDER BY i xF i l e ASC"

;
14 $ r goF i l e s = $oDB−>extended−>GetAssoc ($ s q l S e l e c tF i l e , nu l l , nu l l , nu l l ,
15 MDB2_FETCHMODE_ASSOC, fa l se) ;
16
17 /∗
18 ∗ Pre−process the f i l e names into tokens , s ince we
19 ∗ w i l l be doing about 45M checks .
20 ∗/
21 $rgoTokens = array () ;
22 $ixFileMax = 0 ;
23 foreach ($ r g oF i l e s as $ i xF i l e => $sPath)
24 {
25 $rgoTokens [$ i xF i l e] = token ize_f i l ename (f i l ename ($sPath)) ;
26 $ixFileMax = $ i xF i l e ;
27 }
28
29 /∗
30 ∗ Star t counting dup l i ca t e s .
31 ∗/
32 $cDupCount = 0 ;
33 $rgoMatch = array () ;
34 for ($ i = 0 ; $ i <= $ixFileMax ; $ i++)
35 {
36 // Progress ind ica tor
37 // echo "$i \t$cDupCount\n";
38
39 i f (! i s set ($ r g oF i l e s [$ i])) continue ;
40
41 for ($ j = $ i + 1 ; $ j <= $ixFileMax ; $ j++)
42 {
43 i f (! i s set ($ r g oF i l e s [$ j])) continue ;
44
45 i f (compare_filename ($ r goF i l e s [$ i] , $ r g oF i l e s [$ j] ,
46 $rgoTokens [$ i] , $rgoTokens [$ j]))
47 {
48 $cDupCount++;
49 }
50 }
51 }
52 echo $cDupCount ;
53 ?>

B.4.4 calculate_summed_score.php

This script combines the scores from individual descriptors into combined scores.

1 <?php
2 /∗∗
3 ∗ This s c r i p t combines match scores for seve ra l de sc r i p to r s using the
4 ∗ methods out l ined in the t h e s i s . I t needs a l o t of memory , probab ly
5 ∗ around 512MB or so .
6 ∗
7 ∗ Inse r t s the r e s u l t s d i r e c t l y into MySQL.
8 ∗
9 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
10 ∗/
11 require_once (' i n c lude / inc lude . php ') ;
12 $oDB = CDatabase : : Get () ;
13
14 define ('C_AM' , 1) ; // ar i thmet ic mean
15 define ('C_RMS' , 2) ; // root−mean square
16 define ('C_WAM_SUM' , 3) ; // weighted ar i thmet ic mean by sum
17 define ('C_TM' , 4) ; // truncated mean
18 define ('C_WAM_COUNT' , 5) ; // weighted ar i thmet ic mean by count
19 define ('C_WAM_MAN1' , 6) ; // weighted ar i thmet ic mean by manual weights 1
20 define ('C_WAM_PERF' , 7) ; // weighted ar i thmet ic mean by performance
21 define ('C_WAM_AVG' , 8) ; // weighted ar i thmet ic mean by average
22 define ('C_WAM_MAN2' , 9) ; // weighted ar i thmet ic mean by manual weights 2

96 APPENDIX B. SOURCE CODE

23 define ('C_WAM_MAN3' , 10) ; // weighted ar i thmet ic mean by manual weights 2
24 define ('C_BAYES' , 11) ; // naÃ	ve Bayes
25 define ('C_WRMS' , 18) ; // weighted root mean square
26 /∗
27 ∗ Methods operat ing on a l imi t ed se t of de sc r i p to r s .
28 ∗/
29 define ('C_BAYES_CHOSEN' , 12) ; // naÃ	ve Bayes
30 define ('C_AM_CHOSEN' , 14) ; // ar i thmet ic mean
31 define ('C_RMS_CHOSEN' , 15) ; // root mean square
32 define ('C_TM_CHOSEN' , 16) ; // truncated mean
33 define ('C_MEDIAN_CHOSEN' , 17) ; // median
34 define ('C_WRMS_CHOSEN' , 19) ; // weighted RMS
35
36 define ('BAYES_PROB' , 0 . 8) ;
37
38 define ('CUTOFF_SCORE' , 0 . 2) ;
39
40 define ('FILES_IN_PASS ' , 25) ;
41
42
43 /∗∗
44 ∗ Root mean square
45 ∗/
46 func t i on calculate_rms ($rgValues , $cCount)
47 {
48 $dblSum = 0 ;
49 foreach ($rgValues as $dblValue)
50 $dblSum += ($dblValue ∗ $dblValue) ;
51 re turn sqrt ($dblSum / (f l o a t) $cCount) ;
52 }
53
54 /∗∗
55 ∗ Arithmetic mean
56 ∗/
57 func t i on calculate_am ($rgValues , $cCount)
58 {
59 return array_sum($rgValues) / (f l o a t) $cCount ;

60 }
61
62 /∗∗
63 ∗ Weighted ar i thmet ic mean
64 ∗/
65 func t i on calculate_wam ($rgValues , $rgWeight , $dblSumWeights)
66 {
67 i f ($dblSumWeights == 0) return 0 ;
68 $dblSum = 0 ;
69 foreach ($rgValues as $ ix => $dbValue)
70 {
71 $dblSum += ($dbValue ∗ $rgWeight [$ ix]) ;
72 }
73 return $dblSum / $dblSumWeights ;
74 }
75
76 /∗∗
77 ∗ Weighted root mean square
78 ∗/
79 func t i on calculate_wrms ($rgValues , $rgWeight , $dblSumWeights)
80 {
81 $dblSum = 0 ;
82 foreach ($rgValues as $ ix => $dblValue)
83 $dblSum += $rgWeight [$ ix] ∗ ($dblValue ∗ $dblValue) ;
84 re turn sqrt ($dblSum / (f l o a t) $dblSumWeights) ;
85 }
86
87 /∗∗
88 ∗ Median
89 ∗/
90 func t i on calculate_median ($rgValues , $cCount)
91 {
92 array_pad($rgValues , $cCount , 0) ;

93 sort ($rgValues) ;
94 while (count ($rgValues) > 2)
95 {

B.4. COMBINING DESCRIPTORS 97

96 array_pop($rgValues) ;

97 array_shift ($rgValues) ;

98 }
99 i f (count ($rgValues) == 1)
100 return array_pop($rgValues) ;

101 else
102 return array_sum($rgValues) / count ($rgValues) ;

103 }
104
105 /∗∗
106 ∗ Truncated ar i thmet ic mean .
107 ∗/
108 func t i on calculate_truncated_mean ($rgValues , $cCount)
109 {
110 // make sure 0−va lues are counted
111 array_pad($rgValues , $cCount , 0) ;

112 // sor t
113 sort ($rgValues) ;
114 // remove l a s t and f i r s t
115 array_pop($rgValues) ;

116 array_shift ($rgValues) ;

117 return calculate_am ($rgValues , $cCount − 2) ;
118 }
119
120 /∗∗
121 ∗ Naive Bayes
122 ∗/
123 func t i on ca lcu late_bayes ($rgValues)
124 {
125 $dblProd = 1 ; $dblInvProd = 1 ;
126 foreach ($rgValues as $dblValue)
127 {
128 $dblValue = max(0 . 0 1 , min (0 . 9 9 , $dblValue)) ;
129 $dblProd ∗= $dblValue ;
130 $dblInvProd ∗= (1 − $dblValue) ;
131 }
132 $dblProd /= BAYES_PROB;
133 $dblInvProd /= (1 − BAYES_PROB) ;
134 $dblSum = $dblProd + $dblInvProd ;
135 i f ($dblSum != 0)
136 return $dblProd / $dblSum ;
137 else
138 return 0 ;
139 }
140
141 /∗∗
142 ∗ Standard dev ia t ion
143 ∗/
144 func t i on ca l cu la te_sd ($dblMean , $rgValues , $cCount)
145 {
146 $dblSum = 0 ;
147 foreach ($rgValues as $ ix => $dblValue)
148 {
149 $dblSum += ($dblValue − $dblMean) ∗ ($dblValue − $dblMean) ;
150 }
151 return sqrt ($dblSum / (f l o a t) $cCount) ;
152 }
153
154 /∗
155 ∗ Which weights do we need?
156 ∗/
157 $rgWAMs = array (C_WAM_SUM, C_WAM_COUNT, C_WAM_AVG, C_WAM_MAN1,

C_WAM_PERF, C_WAM_MAN2, C_WAM_MAN3) ;
158
159 /∗
160 ∗ Let ' s f i gu r e out the weights for the weighted ar i thmet ic means .
161 ∗/
162 $sq lSe l ec tWeight = "SELECT ixType , dblWeightSum , dblWeightCount ,

dblWeightAvg , " .
163 "dblWeightMan1 , dblWeightMan2 , dblWeightMan3 , dblWeightPerformance " .
164 "FROM tblType" ;
165 $rW =& $oDB−>query ($sq lSe l ec tWeight) ;
166 $rgWeight = array () ;

98 APPENDIX B. SOURCE CODE

167 $cCount = 0 ;
168 while ($r = $rW−>fetchRow ())
169 {
170 $rgWeight [C_WAM_SUM] [$r−>ixType] = $r−>dblWeightSum ;
171 $rgWeight [C_WAM_COUNT] [$r−>ixType] = $r−>dblWeightCount ;
172 $rgWeight [C_WAM_MAN1] [$r−>ixType] = $r−>dblWeightMan1 ;
173 $rgWeight [C_WAM_MAN2] [$r−>ixType] = $r−>dblWeightMan2 ;
174 $rgWeight [C_WAM_MAN3] [$r−>ixType] = $r−>dblWeightMan3 ;
175 $rgWeight [C_WAM_PERF] [$r−>ixType] = $r−>dblWeightPerformance ;
176 $rgWeight [C_WAM_AVG] [$r−>ixType] = $r−>dblWeightAvg ;
177 $cCount++;
178 }
179 /∗
180 ∗ Build an array of weight sums , indexed by which se t of weights we are

using
181 ∗ This i s used l a t e r on for the weighted ar i thmet ic mean, we ' l l j u s t

cache
182 ∗ t h i s for l a t e r use .
183 ∗/
184 foreach ($rgWAMs as $ixWAM)
185 {
186 $rgSumWeights [$ixWAM] = array_sum($rgWeight [$ixWAM]) ;

187 }
188 $rW−>f r e e () ;
189
190 /∗
191 ∗ Determine the number of f i l e s . (Or more accurate ly , the range of

i xF i l e)
192 ∗/
193 $cNumFiles = $oDB−>extended−>GetOne("SELECT MAX(i xF i l e) FROM tb l F i l e ") ;
194
195 /∗
196 ∗ This sec t ion a l lows us to automat ica l l y s t a r t mu l t ip l e subprocesses
197 ∗ of t h i s scr ip t , to use more than one processor , and automat ica l ly
198 ∗ d i v id ing the work load .
199 ∗
200 ∗ Examples :
201 ∗ $ php calculate_summed_score . php 4
202 ∗ Runs 4 subprocesses . Output in output . t x t .
203 ∗ $ php calculate_summed_score . php
204 ∗ Runs in 1 subprocess . Output to s tdout .
205 ∗ $ php calculate_summed_score . php 40 50 "one"
206 ∗ Runs one process , c a l cu l a t i n g for f i l e s 40−90, using the
207 ∗ process i d e n t i f i e r "one ".
208 ∗/
209 $ixRow = 0 ;
210 $sProces s = ' ' ;
211 i f ($argc == 4 && is_numeric ($argv [1]) && is_numeric ($argv [2]))
212 {
213 // use parameters as range to use
214 $ixRow = (in t) $argv [1] ;
215 $cNumFiles = (i n t) $argv [2] ;
216 $sProces s = $argv [3] ;
217 }
218 else i f ($argc == 2 && is_numeric ($argv [1]))
219 {
220 // we are being asked to use mu l t ip l e processes
221 $cNumProc = (i n t) $argv [1] ;
222
223 $cFi l e sPerProc = (i n t) ($cNumFiles / $cNumProc) ;
224 // make sure we are a mul t ip l e of FILES_IN_PASS
225 $cFi l e sPerProc += FILES_IN_PASS − ($cF i l e sPerProc % FILES_IN_PASS) ;
226
227 exec ('rm output . txt ') ;
228
229 $cmd = "php calculate_summed_score . php %d %d '%s ' >> output . txt &" ;
230 $n = 1 ;
231 for ($ i = 0 ; $ i < $cNumFiles ; $ i += $cFi l e sPerProc)
232 {
233 $max = min($ i + ($cFi l e sPerProc − 1) , $cNumFiles) ;
234 echo "Launching subproces s ($ i −> $max) . . . \ n" ;
235 exec (sprintf ($cmd , $i , $max , $n)) ;
236 $n++;
237 }

B.4. COMBINING DESCRIPTORS 99

238
239 die () ;
240 }
241
242 echo " [$sProces s] S ta r t i ng to sum ($cNumFiles f i l e s in t o t a l) . . . \ n" ;
243
244 /∗
245 ∗ Star t ca l cu l a t i n g everyth ing .
246 ∗/
247
248 $rgSe lectedTypes = array (1 , 2 , 3 , 4 , 12 , 13 , 18 , 19) ;
249 $cSelectedCount = count ($rgSe lectedTypes) ;
250 while ($ixRow <= $cNumFiles)
251 {
252 $ s q l S e l e c t S c o r e s = "SELECT ixF i l e 1 , i xF i l e 2 , ixType , dblScore " .
253 "FROM tb lSco r e WHERE i xF i l e 1 BETWEEN $ixRow AND " .
254 ($ixRow + FILES_IN_PASS − 1) . " ORDER BY ixF i l e 1 , i xF i l e 2 " ;
255 $re s =& $oDB−>query ($ s q l S e l e c t S c o r e s) ;
256
257 while ($row = $res−>fetchRow ())
258 {
259 $sKey = $row−>ixF i l e 1 . '− ' . $row−>ixF i l e 2 ;
260 i f ($sPrevKey != $sKey && !empty($sPrevKey))
261 {
262 // remember tha t $row has changed , so we can ' t look at those

va lues
263 l i s t ($ ixF i l e1 , $ i xF i l e 2) = sp l i t ('− ' , $sPrevKey) ;
264
265 /∗
266 ∗ Firs t run everyth ing on the se t of a l l d e sc r ip to r s
267 ∗/
268 $dblRMS = calculate_rms ($rgValues , $cCount) ;
269 i f ($dblRMS > CUTOFF_SCORE)
270 {
271 $dblRMS_SD = ca lcu late_sd ($dblRMS , $rgValues , $cCount) ;
272 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .C_RMS. ' , '

. $dblRMS . ' , ' . $dblRMS_SD. ') ' ;
273 }
274
275 $dblWRMS = calculate_wrms ($rgValues , $rgWeight [C_WAM_MAN2] ,

$rgSumWeights [C_WAM_MAN2]) ;
276 i f ($dblWRMS > CUTOFF_SCORE)
277 {
278 $dblWRMS_SD = ca lcu late_sd ($dblWRMS, $rgValues ,

$rgSumWeights [C_WAM_MAN2]) ;
279 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .C_WRMS. ' ,

' . $dblWRMS. ' , ' .$dblWRMS_SD. ') ' ;
280 }
281
282 $dblAM = calculate_am ($rgValues , $cCount) ;
283 i f ($dblAM > CUTOFF_SCORE)
284 {
285 $dblAM_SD = ca lcu la te_sd ($dblAM , $rgValues , $cCount) ;
286 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .C_AM. ' , ' .

$dblAM . ' , ' . $dblAM_SD. ') ' ;
287 }
288
289 foreach ($rgWAMs as $ixWAM)
290 {
291 $dblWAM = calculate_wam ($rgValues , $rgWeight [$ixWAM] ,

$rgSumWeights [$ixWAM]) ;
292 i f ($dblWAM > CUTOFF_SCORE)
293 {
294 $dblWAM_SD = ca lcu late_sd ($dblWAM, $rgValues ,

$rgSumWeights [$ixWAM]) ;
295 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .$ixWAM

. ' , ' .$dblWAM. ' , ' .$dblWAM_SD. ') ' ;
296 }
297 }
298
299 $dblTM = calculate_truncated_mean ($rgValues , $cCount) ;
300 i f ($dblTM > CUTOFF_SCORE)
301 {

100 APPENDIX B. SOURCE CODE

302 $dblTM_SD = ca lcu la te_sd ($dblTM , $rgValues , $cCount − 2)
;

303 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .C_TM. ' , ' .
$dblTM . ' , ' . $dblTM_SD. ') ' ;

304 }
305
306 $dblBayes = ca lcu late_bayes ($rgValues)
307 i f ($dblBayes > CUTOFF_SCORE)
308 {
309 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .C_BAYES. ' ,

' . $dblBayes . ' , 0) ' ;
310 }
311
312 /∗
313 ∗ Lets bu i l d a separate value array for the se t of chosen

desc r i p to r s .
314 ∗ This a l lows using the same funct ions to ca l cu l a t e summed

scores .
315 ∗/
316 $rgSe l e c tedVa lues = array () ;
317 foreach ($rgSe lectedTypes as $ixType)
318 {
319 $rgSe l e c t edVa lues [$ixType] = $rgValues [$ixType] ;
320 }
321
322 /∗
323 ∗ Calcu la t ions for the chosen desc r ip to r s .
324 ∗/
325 $dblMed = calculate_median ($rgSe lectedValues ,

$cSelectedCount) ;
326 i f ($dblMed > CUTOFF_SCORE)
327 {
328 $dblMed_SD = ca lcu la te_sd ($dblMed , $rgSe lectedValues ,

$cSelectedCount) ;
329 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_MEDIAN_CHOSEN. ' , ' . $dblMed . ' , ' . $dblMed_SD . ') ' ;
330 }
331
332 $dblRMS = calculate_rms ($rgSe lectedValues , $cSelectedCount) ;
333 i f ($dblRMS > CUTOFF_SCORE)
334 {
335 $dblRMS_SD = ca lcu late_sd ($dblRMS , $rgSe lectedValues ,

$cSelectedCount) ;
336 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_RMS_CHOSEN. ' , ' . $dblRMS . ' , ' . $dblRMS_SD. ') ' ;
337 }
338
339 /∗
340 ∗ Why i s the WRMS here , yet not the WAM? Because the WAM

was ca l cu l a t ed using
341 ∗ a l l s e t s of weights , but we only chose one se t of weights

for the WRMS.
342 ∗ This means tha t when l im i t i n g the se t of descr ip tors , yet

using the same weights
343 ∗ we e f f e c t i v e l y ge t the th i rd se t of manual weights . Weird

, yet correc t .
344 ∗/
345 $dblWRMS = calculate_wrms ($rgSe lectedValues , $rgWeight [

C_WAM_MAN2] , $rgSumWeights [C_WAM_MAN2]) ;
346 i f ($dblWRMS > CUTOFF_SCORE)
347 {
348 $dblWRMS_SD = ca lcu late_sd ($dblWRMS, $rgSe lectedValues ,

$rgSumWeights [C_WAM_MAN2]) ;
349 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_WRMS_CHOSEN. ' , ' . $dblWRMS. ' , ' .$dblWRMS_SD. ') ' ;
350 }
351
352 $dblAM = calculate_am ($rgSe lectedValues , $cSelectedCount) ;
353 i f ($dblAM > CUTOFF_SCORE)
354 {
355 $dblAM_SD = ca lcu late_sd ($dblAM , $rgSe lectedValues ,

$cSelectedCount) ;
356 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_AM_CHOSEN. ' , ' . $dblAM . ' , ' . $dblAM_SD. ') ' ;

B.4. COMBINING DESCRIPTORS 101

357 }
358
359 $dblTM = calculate_truncated_mean ($rgSe lectedValues ,

$cSelectedCount) ;
360 i f ($dblTM > CUTOFF_SCORE)
361 {
362 $dblTM_SD = ca lcu la te_sd ($dblTM , $rgSe lectedValues ,

$cSelectedCount − 2) ;
363 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_TM_CHOSEN. ' , ' . $dblTM . ' , ' . $dblTM_SD. ') ' ;
364 }
365
366 $dblBayes = ca lcu late_bayes ($ rgSe l ec t edVa lues)
367 i f ($dblBayes > CUTOFF_SCORE)
368 {
369 $ r g I n s e r t [] = ' (' . $ i xF i l e 1 . ' , ' . $ i xF i l e 2 . ' , ' .

C_BAYES_CHOSEN. ' , ' . $dblBayes . ' , 0) ' ;
370 }
371
372 /∗
373 ∗ Reset the value array for the next run .
374 ∗/
375 unset ($rgValues) ;
376 $rgValues = array () ;
377 }
378 $rgValues [$row−>ixType] = $row−>dblScore ;
379 $sPrevKey = $sKey ;
380 }
381 $res−>f r e e () ;
382
383 /∗
384 ∗ Inser t a l l our cumulated r e s u l t s . Uses INSERT DELAYED since we

don ' t need
385 ∗ to inspec t t h i s r i g h t away .
386 ∗/
387 $ sq l = "INSERT DELAYED INTO tblSummedScore (i xF i l e 1 , i xF i l e 2 ,

ixScoreMethod , dblScore , dblSD) VALUES " ;
388 $ sq l .= implode (' , ' , $ r g I n s e r t) ;
389 $oDB−>query ($ sq l) ;
390
391 $ i += count ($ r g I n s e r t) ;
392 $ r g I n s e r t = array () ;
393 $ixRow += FILES_IN_PASS ;
394 echo "\ t [" . date ('H: i : s ') . "] [$ sProces s] Processed f i l e s s t a r t i n g

from $ixRow ($ i cumulat ive database i n s e r t s) . \ n" ;
395 }
396
397 echo " [$sProces s] Done ! \ n" ;
398
399 echo " [$sProces s] Entered $ i s c o r e s in to tblSummedScore ! \ n" ;
400 echo " [$sProces s] F in i shed ! \ n" ;
401 ?>

B.4.5 �nd_index.php

This script �nds the average distance within veri�ed duplicate pairs for the
simple descriptors song length, centroid, steepness, mean/square ratio and the
rate of zero crossings. These are all scalar descriptors that can be indexed by.
See 4.5 for motivation.

1 <?php
2 /∗∗
3 ∗ This s c r i p t f inds the average −− and the minimum and maximum −−
4 ∗ dis tance for v e r i f i e d dup l i ca t e s with the simple de sc r i p to r s
5 ∗ song length , centroid , msratio , s teepness and zerocross ings .
6 ∗ I t a l so l i s t s the percentage of v e r i f i e d dup l i ca t e s tha t w i l l
7 ∗ be found when searching within 2 times the average dis tance
8 ∗ for a given descr ip tor .
9 ∗
10 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>

102 APPENDIX B. SOURCE CODE

11 ∗/
12 require_once (' i n c lude / inc lude . php ') ;
13 $oDB = CDatabase : : Get () ;
14
15 /∗
16 ∗ Get a l i s t of de scr ip tor names .
17 ∗/
18 $ sq l = "SELECT ixType , sType FROM tblType" ;
19 $rgsTypes = $oDB−>extended−>GetAssoc ($sq l , nu l l , nu l l , nu l l ,
20 MDB2_FETCHMODE_ASSOC, fa l se) ;
21
22 /∗
23 ∗ Find a l l the v e r i f i e d matches .
24 ∗/
25 $ sq l = "SELECT ∗ FROM tblVer i f i edMatch " ;
26 $ r goVe r i f i e d = $oDB−>extended−>GetAll ($ sq l) ;
27 $ r gVe r i f i e d = array () ;
28 foreach ($ r goVe r i f i e d as $o)
29 {
30 $ r gVe r i f i e d [$o−>ixF i l e 1] [$o−>ixF i l e 2] = true ;
31 $ r gVe r i f i e d [$o−>ixF i l e 2] [$o−>ixF i l e 1] = true ;
32 }
33 $ r goVe r i f i e d = nu l l ;
34 unset ($ r goVe r i f i e d) ;
35
36 func t i on array_average ($rg)
37 {
38 return (array_sum($rg) / (f l o a t) count ($rg)) ;
39 }
40
41 /∗
42 ∗ The desc r ip to r s to look at .
43 ∗/
44 $rgixType = array (6 , 7 , 8 , 9 , 10 , 11) ;
45 foreach ($rgixType as $ixType)
46 {
47 /∗
48 ∗ Find a l l the f i n g e rp r i n t s for the v e r i f i e d matches .
49 ∗/
50 $ sq l =
51 "SELECT f1 . sF inge rp r i n t AS fp1 , f 2 . sF inge rp r i n t AS fp2 , i xF i l e 1

" .
52 "FROM tblVer i f i edMatch v , t b lF i ng e rp r i n t f1 , t b lF i ng e rp r i n t f2 "

.
53 "WHERE f1 . i xF i l e = v . i xF i l e 1 AND f2 . i xF i l e = v . i xF i l e 2 AND " .
54 " f1 . ixType = ? AND f2 . ixType = f1 . ixType" ;
55 $rgoF inge rpr in t = $oDB−>extended−>GetAll ($sq l , nu l l ,
56 array ($ixType) , array (' i n t e g e r ')) ;
57
58 /∗
59 ∗ Find the dis tance for each v e r i f i e d match .
60 ∗ This cannot be done in MySQL, because the column
61 ∗ tha t s to re s the f i n g e r p r i n t s i s in binary format ,
62 ∗ to accomodate s tor ing of a l l types of f inge rpr in t s ,
63 ∗ and MySQL wouldn ' t know what to do with a
64 ∗ sub t rac t ion of binary data .
65 ∗/
66 $ r gD i f f = array () ;
67 foreach ($ rgoF inge rpr in t as $oF)
68 {
69 $ r gD i f f [] = abs ($oF−>fp1 − $oF−>fp2) ;
70 }
71 sort ($ r gD i f f) ;
72 $avg = array_average ($ r gD i f f) ;
73 $min = $rgD i f f [0] ;
74 $max = round($ r gD i f f [count ($ r gD i f f) −1] , 2) ;
75
76 /∗
77 ∗ Now l e t s f i gu r e out how many f i n g e r p r i n t s we would
78 ∗ need to search (on average) when l im i t i n g our search
79 ∗ to f i n g e r p r i n t s within +− 2 ∗ $avg , and how many of
80 ∗ the r e s u l t s we f ind are v e r i f i e d .
81 ∗/

B.4. COMBINING DESCRIPTORS 103

82 $ sq l = "SELECT ixF i l e , sF inge rp r i n t FROM tb lF i ng e rp r i n t WHERE ixType
= ?" ;

83 $ rgF inge rp r in t = $oDB−>extended−>GetAll ($sq l , nu l l ,
84 array ($ixType) , array (' i n t e g e r ')) ;
85 $rg ixSearchFor = array_keys ($ rgoF inge rpr in t) ;
86 $rgValues = array () ;
87 $rgNumVerif ied = array () ;
88 $de l ta = $avg ∗ 2 ;
89 foreach ($rg ixSearchFor as $ ix)
90 {
91 $dblValue = $rgoF inge rpr in t [$ ix]−>fp1 ;
92 $ i xF i l e = $rgoF inge rpr in t [$ ix]−>ixF i l e 1 ;
93 $c = 0 ;
94 $cNumVerified = 0 ;
95 foreach ($ rgF inge rp r in t as $oF ingerpr in t)
96 {
97 $db lF inge rpr in t = (f l o a t) $oFingerpr int−>sF inge rp r i n t ;
98 i f ($db lF inge rpr in t < ($dblValue + $de l ta) &&
99 $db lF inge rp r in t > ($dblValue − $de l ta))
100 {
101 $c++;
102 $ i xF i l e 2 = (f l o a t) $oFingerpr int−>i xF i l e ;
103 i f (i s set ($ r gVe r i f i e d [$ i xF i l e] [$ i xF i l e 2]))
104 $cNumVerified++;
105 }
106 }
107 $rgValues [] = $c ;
108 $rgNumVerif ied [] = $cNumVerified / count ($ r gVe r i f i e d [$ i xF i l e]) ;
109 }
110 $c = round(array_average ($rgValues) , 0) ;
111 $dblFindRate = round(array_average ($rgNumVerif ied) , 4) ;
112
113 echo "avg : $avg\tmin : $min\tmax : $max\ t s ea r ch : $c\ t "
114 . " f i nd ra t e : $dblFindRate\ t \ t " . $rgsTypes [$ixType] . "\n" ;
115
116 ?>

B.4.6 �nd_num_correct.php

This script �nds the number of veri�ed duplicate pairs in partitions of 100
duplicates, for all the individual descriptors and all the combined solutions.

1 <?php
2 /∗∗
3 ∗ This s c r i p t f inds the number of correc t dup l i ca tes ,
4 ∗ div ided into pa r t i t i on s of 100 dup l i ca tes , for each
5 ∗ i nd i v i dua l descr ip tor and each combined so lu t i on .
6 ∗
7 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
8 ∗/
9 require_once (' i n c lude / inc lude . php ') ;
10 $cNumRows = 1000 ;
11
12 /∗
13 ∗ HTML tab l e headers
14 ∗/
15 ?>
16 <tab l e border="1">
17 <tr>
18 <th>Type/method</th>
19 <th>Name</th>
20 <?php
21 for ($ i = 1 ; $ i <= 10 ; $ i++)
22 {
23 echo "<th>" . (($i −1)∗100+1) . "−" . ($ i ∗100) . "</th>\n" ;
24 }
25 ?>
26 <th>%</th>
27 <th>Errors in f i r s t <?= $cNumRows ?></th>
28 <th>F i r s t e r r o r at #</th>
29 </tr>

104 APPENDIX B. SOURCE CODE

30 <?php
31 $oDB = CDatabase : : Get () ;
32
33 $cNumFetchRows = $cNumRows ;
34
35
36 /∗
37 ∗ Get a l i s t of the v e r i f i e d dup l i ca t e s .
38 ∗/
39 $ sq l = "SELECT ∗ FROM tblVer i f i edMatch " ;
40 $ r goVe r i f i e d = $oDB−>extended−>GetAll ($ sq l) ;
41 $ r gVe r i f i e d = array () ;
42 foreach ($ r goVe r i f i e d as $o)
43 {
44 $ r gVe r i f i e d [$o−>ixF i l e 1] [$o−>ixF i l e 2] = true ;
45 }
46 $ r goVe r i f i e d = nu l l ;
47 unset ($ r goVe r i f i e d) ;
48
49 func t i on d i sp l ay ($ixMethod , $ sT i t l e , $ rgoScores)
50 {
51 g l oba l $ r gVe r i f i e d ;
52 g l oba l $cNumRows ;
53 ?>
54 <tr>
55 <td><?= $ixMethod ?></td>
56 <td><?= $sT i t l e ?></td>
57 <?php
58
59 $ r goSco r e sVe r i f i e d = array () ;
60 $rgoScoresWrong = array () ;
61 $ i = 0 ;
62 $cWrong = 0 ;
63 $ixFirstWrong = 0 ;
64 $g = 0 ; // counter
65 $cWrongInPartit ion = 0 ;
66 for ($z = 0 ; $z < $cNumRows ; $z++)
67 {
68 $o = $rgoScores [$z] ;
69 i f (i s set ($rgoScores [$z]) &&
70 $ r gVe r i f i e d [$o−>ixF i l e 1] [$o−>ixF i l e 2])
71 {
72 $ r goSco r e sVe r i f i e d [] = $o ;
73 }
74 else
75 {
76 $rgoScoresWrong [] = $o ;
77 i f (empty($ixFirstWrong))
78 $ixFirstWrong = $ i ;
79 i f ($ i < $cNumRows)
80 {
81 $cWrong++;
82 $cWrongInPartit ion++;
83 }
84 }
85 unset ($rgoScores [$k]) ;
86 $ i++;
87 i f ($ i % 100 == 0)
88 {
89 $g++;
90 echo "<td>$cWrongInPartit ion</td>\n" ;
91 $cWrongInPartit ion = 0 ;
92 }
93 }
94
95 ?>
96 <td><?= $cWrong / $cNumRows ?></td>
97 <td><?= $cWrong ?></td>
98 <td><?= $ixFirstWrong ?></td>
99 </tr>
100 <?php
101 }
102
103 /∗

B.4. COMBINING DESCRIPTORS 105

104 ∗ A l i s t of the names of a l l the scor ing methods .
105 ∗/
106 $ s q l S e l e c tT i t l e s = "SELECT ixScoreMethod , sT i t l e FROM tblScoreMethods " ;
107 $ r g sT i t l e = $oDB−>extended−>GetAssoc ($ s q l S e l e c tT i t l e s , nu l l , nu l l , nu l l ,
108 MDB2_FETCHMODE_ASSOC, fa l se) ;
109 // Get scores for a l l the scor ing methods
110 $rgixScoreMethods = array_keys ($ r g sT i t l e) ;

111
112 /∗
113 ∗ Now l e t ' s examine them .
114 ∗/
115 $ sq l = "SELECT dblScore , dblSD , i xF i l e 1 , i xF i l e 2 " .
116 "FROM tblSummedScore " .
117 "WHERE ixScoreMethod = ? " .
118 "ORDER BY dblScore DESC, dblSD ASC " .
119 "LIMIT 0 , $cNumFetchRows" ;
120
121 foreach ($rgixScoreMethods as $ixScoreMethod)
122 {
123 $ sT i t l e = $ r g sT i t l e [$ixScoreMethod] ;
124 $rgoScores = $oDB−>extended−>GetAll ($sq l , nu l l ,
125 array ($ixScoreMethod) , array (' i n t e g e r ')) ;
126 d i sp l ay ('C ' . $ixScoreMethod , $ sT i t l e , $ rgoScores) ;
127 }
128
129 /∗
130 ∗ Let ' s look at the ind i v i dua l de sc r ip to r s
131 ∗/
132
133 $sq lSe l e c tTypes = "SELECT ixType , sType FROM tblType" ;
134 $rgoTypes = $oDB−>extended−>GetAssoc ($sq lSe l ec tTypes , nu l l , nu l l , nu l l ,
135 MDB2_FETCHMODE_ASSOC, fa l se) ;
136
137 $ sq l = "SELECT ixF i l e 1 , i xF i l e 2 , dblScore " .
138 "FROM tb lSco r e WHERE ixType = ? " .
139 "ORDER BY dblScore DESC LIMIT 0 , $cNumFetchRows" ;
140
141 foreach ($rgoTypes as $ixType => $sType)
142 {
143 $rgoScores = $oDB−>extended−>GetAll ($sq l , nu l l ,
144 array ($ixType) , array (' i n t e g e r ')) ;
145 d i sp l ay (' I ' . $ixType , $sType , $rgoScores) ;
146 }
147
148 ?>
149 </table>

B.4.7 display_duplicates.php

This script displays the potential duplicate pairs, and allows for basic �ltering
based on whether the �le names match, or if the duplicate pair have been
veri�ed.

1 <?php
2 /∗∗
3 ∗ This s c r i p t d i sp l ay po t en t i a l dup l i ca t e s in the database ,
4 ∗ and h i g h l i g h t s the dup l i ca t e s tha t match by f i l e name,
5 ∗ or have been v e r i f i e d to be correc t .
6 ∗
7 ∗ Options :
8 ∗ fVer i f i e d=1 −− show only v e r i f i e d dup l i ca t e s
9 ∗ fVer i f i e d=0 −− show only non−v e r i f i e d dup l i ca t e s
10 ∗ fMatch=1 −− show only matching f i l e names
11 ∗ fMatch=0 −− show only non−matching f i l e names
12 ∗ ixPage=<page> −− sk ip <page> ∗ 1000 r e s u l t s
13 ∗
14 ∗ I f fVer i f i e d and fMatch i s not spec i f i ed , no r e s t r i c t i o n s
15 ∗ are placed on the dup l i ca t e s s ta tu s .
16 ∗
17 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
18 ∗/

106 APPENDIX B. SOURCE CODE

19 require_once (' i n c lude / inc lude . php ') ;
20 $oDB = CDatabase : : Get () ;
21
22 $cResultsPerPage = 1000 ;
23 $ixPage = 0 ;
24 $ i xS ta r t = 0 ;
25 $ixScoreMethod = 1 ;
26
27 require_once (' dup l i ca t e_funct i ons . php ') ;
28
29 /∗∗
30 ∗ Get a l i s t of the v e r i f i e d dup l i ca t e s .
31 ∗/
32 $ sq l = "SELECT ∗ FROM tblVer i f i edMatch " ;
33 $ r goVe r i f i e d = $oDB−>extended−>GetAll ($ sq l) ;
34 $ r gVe r i f i e d = array () ;
35 foreach ($ r goVe r i f i e d as $o)
36 {
37 $ r gVe r i f i e d [$o−>ixF i l e 1] [$o−>ixF i l e 2] = true ;
38 }
39 $ r goVe r i f i e d = nu l l ;
40 unset ($ r goVe r i f i e d) ;
41
42 $ s q l S e l e c t F i l e = "SELECT ixF i l e , sPath FROM tb l F i l e " ;
43 $ r goF i l e s = $oDB−>extended−>GetAssoc ($ s q l S e l e c tF i l e , nu l l , nu l l , nu l l ,
44 MDB2_FETCHMODE_ASSOC, fa l se) ;
45 $ r goF i l e s = st r_rep lace (' /home/vegard/Music/ ' , ' ' , $ r g oF i l e s) ;
46 $ r goF i l e s = st r_rep lace (' /mnt/media/ ' , ' ' , $ r g oF i l e s) ;
47
48
49 /∗∗
50 ∗ Now l e t s ge t a l l the scores from the database
51 ∗/
52
53 // Lower bound for va lues ex t rac ted .
54 $dblScoreLimit = 0 . 0 5 ;
55 i f (i s set ($_GET[' ixType ']))
56 {
57 $ixType = (in t) $_GET[' ixType '] ;
58 $ s q l S e l e c t S c o r e s = "SELECT ixF i l e 1 , i xF i l e 2 , dblScore " .
59 "FROM tb lSco r e WHERE " .
60 " dblScore > $dblScoreLimit AND ixType = $ixType " .
61 "ORDER BY dblScore DESC LIMIT ? , ?" ;
62 }
63 e l s e i f ($_GET[' ixScoreMethod '])
64 {
65 $ixScoreMethod = (in t) $_GET[' ixScoreMethod '] ;
66 $ s q l S e l e c t S c o r e s = "SELECT ixF i l e 1 , i xF i l e 2 , dblScore " .
67 "FROM tblSummedScore " .
68 "WHERE dblScore > $dblScoreLimit " .
69 "AND ixScoreMethod = $ixScoreMethod " .
70 "ORDER BY dblScore DESC LIMIT ? , ?" ;
71 }
72 else
73 {
74 /∗∗
75 ∗ No type spec i f i ed , d i sp l ay a menu of choices .
76 ∗/
77 echo '<h1>Combined methods</h1>' ;
78 $ sq l = "SELECT ixScoreMethod , sT i t l e FROM tblScoreMethods " ;
79 $r = $oDB−>extended−>GetAll ($ sq l) ;
80 foreach ($r as $row)
81 {
82 echo '<a h r e f="?ixScoreMethod=' . $row−>ixScoreMethod . '"> ' .
83 $row−>sT i t l e . '
 ' ;
84 }
85
86 echo '<h1>Ind iv i dua l d e s c r i p t o r s </h1>' ;
87 $ sq l = "SELECT ixType , sType FROM tblType" ;
88 $r = $oDB−>extended−>GetAll ($ sq l) ;
89 foreach ($r as $row)
90 {
91 echo '<a h r e f="?ixType=' . $row−>ixType . '"> ' .
92 $row−>sType . '
 ' ;

B.4. COMBINING DESCRIPTORS 107

93 }
94 die () ;
95 }
96
97 /∗∗
98 ∗ Allow parameters to change what i s f e tched .
99 ∗/
100 i f ($_GET[' ixPage '])
101 {
102 $ixPage = (i n t) $_GET[' ixPage '] ;
103 i f ($ixPage < 0) $ixPage = 0 ;
104 $ i xS ta r t = $cResultsPerPage ∗ $ixPage ;
105 }
106
107 /∗∗
108 ∗ Go fe t ch !
109 ∗/
110 $re s = $oDB−>extended−>GetAll ($ s q l S e l e c tS co r e s , nu l l ,
111 array ($ ixStar t , $cResultsPerPage) ,
112 array (' i n t e g e r ' , ' i n t e g e r ')) ;
113
114 /∗
115 ∗ Output the HTML page headers
116 ∗/
117 ?>
118 <!DOCTYPE html PUBLIC "−//W3C//DTD XHTML 1.0 Tran s i t i ona l //EN"
119 "http ://www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd">
120 <html xmlns="http ://www.w3 . org /1999/ xhtml" xml : lang="no" lang="no">
121 <head>
122 <t i t l e >Master th e s i s </ t i t l e >
123 <l ink r e l=" s t y l e s h e e t " type=" text / c s s " h r e f=" c s s /main . c s s " />
124 </head>
125 <body>
126 <form method="post " ac t i on=" save_ve r i f i ed . php">
127 <input type="hidden" name=" red i r e c t_to "
128 value=" d i sp lay_unver i f i ed_score s . php<?php
129 echo (i s s e t ($ixType) ? "? ixType=$ixType" : "? ixScoreMethod=

$ixScoreMethod") ;
130 ?>" />
131 <input type="submit" value="Save v e r i f i e d " />
132 <table>
133 <tr>
134 <th><abbr t i t l e="Match number">M#</abbr></th>
135 <th><abbr t i t l e="Do f i l e names match?">M?</abbr></th>
136 <th><abbr t i t l e=" I s t h i s match v e r i f i e d ">V?</abbr></th>
137 <th><abbr t i t l e="Check to v e r i f y ">?</abbr></th>
138 <th><abbr t i t l e=" F i l e numbers (i xF i l e) ">F#</abbr></th>
139 <th>Fi l e s </th>
140 <th>Score</th>
141 </tr>
142 <?
143
144 $ j = $ ixS ta r t ;
145 foreach ($ r e s as $row)
146 {
147
148 $ fV e r i f i e d = i s set ($ r gVe r i f i e d [$row−>ixF i l e 1] [$row−>ixF i l e 2]) ;
149
150 $fCompares = compare_filename (
151 $ r goF i l e s [$row−>ixF i l e 1] ,
152 $ r goF i l e s [$row−>ixF i l e 2]) ;
153
154 i f ((! i s set ($_GET[' fV e r i f i e d ']) | |
155 ($_GET[' fV e r i f i e d '] == 1 && $ fV e r i f i e d) | |
156 ($_GET[' fV e r i f i e d '] == 0 && ! $ fV e r i f i e d))
157 &&
158 (! i s set ($_GET[' fMatch ']) | |
159 ($_GET[' fMatch '] == 1 && $fCompares) | |
160 ($_GET[' fMatch '] == 0 && ! $fCompares)))
161 {
162 /∗
163 ∗ Output ug ly HTML tab l e data .
164 ∗/
165 echo '<t r c l a s s=" ' . ($ j % 2 == 0 ? ' co l o r ed ' : ' ') . '"> ' ;

108 APPENDIX B. SOURCE CODE

166 echo '<td rowspan="2"> ' . ($ j+1) . '</td>' ;
167 echo '<td rowspan="2"><img s r c="images / ' .
168 ($fCompares ? " green " : " red ") . ' " /></td>' ;
169 echo '<td rowspan="2"><img s r c="images / ' .
170 ($ fV e r i f i e d ? " green " : " red ") . ' . png" /></td>' ;
171 echo '<td rowspan="2"><input type="checkbox" ' .
172 'name="match [] " value=" ' . $row−>ixF i l e 1 . '− ' .
173 $row−>ixF i l e 2 . ' " /></td>' ;
174 echo '<td>' . $row−>ixF i l e 1 . '</td>' ;
175 echo '<td a l i g n="r i gh t"> ' . $ r g oF i l e s [$row−>ixF i l e 1] . '</td>' ;
176 echo '<td rowspan="2"> ' . ($row−>dblScore) . '</td>' ;
177 echo '</tr>' ;
178 echo '<t r c l a s s="bottom ' . ($ j % 2 == 0 ? ' co l o r ed ' : ' ') . '"> ' ;
179 echo '<td>' . $row−>ixF i l e 2 . '</td>' ;
180 echo '<td a l i g n="r i gh t"> ' . $ r g oF i l e s [$row−>ixF i l e 2] . '</td>' ;
181 echo '</tr>' ;
182 $ j++;
183 }
184 }
185
186 ?>
187 </table>
188 <input type="submit" value="Save v e r i f i e d " />
189 </form>
190
191 </body>
192 </html>

B.4.8 save_veri�ed.php

This script saves veri�ed duplicate pairs to the database.
1 <?php
2 /∗∗
3 ∗ Simple support s c r i p t tha t saves two f i l e s as a v e r i f i e d
4 ∗ dup l i ca t e .
5 ∗
6 ∗ @author Vegard Andreas Larsen <vegarl@stud . ntnu . no>
7 ∗/
8 require_once (' i n c lude / inc lude . php ') ;
9
10 $oDB = CDatabase : : Get () ;
11
12 $s t = $oDB−>prepare (
13 'INSERT IGNORE INTO tblVer i f i edMatch (i xF i l e 1 , i xF i l e 2) VALUES (? ,

?) ' ,
14 array (' i n t e g e r ' , ' i n t e g e r ') , MDB2_PREPARE_MANIP) ;
15
16 /∗
17 ∗ We get mu l t ip l e va lues as an array of s t r i n g s .
18 ∗/
19 i f (i s set ($_POST['match ']))
20 {
21 $rgMatch = $_POST['match '] ;
22 foreach ($rgMatch as $value)
23 {
24 // The s t r i n g s are s p l i t t a b l e by a hyphen
25 l i s t ($ ixF i l e1 , $ i xF i l e 2) = sp l i t ('− ' , $value) ;
26 $st−>execute (array ($ ixF i l e1 , $ i xF i l e 2)) ;
27 }
28 }
29
30 /∗
31 ∗ Someone might want us to send the user back af terwards .
32 ∗/
33 i f (i s set ($_POST[' r ed i r e c t_to ']))
34 {
35 header (' Locat ion : ' .$_POST[' r ed i r e c t_to ']) ;
36 die () ;
37 }
38 ?>

B.5. LICENSES 109

B.5 Licenses

B.5.1 The GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

B.5.1.1 Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software�to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the soft-
ware, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
o�er you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modi�ed by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not re�ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in e�ect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation
follow.

110 APPENDIX B. SOURCE CODE

B.5.1.2 Terms and Conditions For Copying, Distribution and Mod-
i�cation

0. This License applies to any program or other work which contains a no-
tice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The �Program�, below, refers
to any such program or work, and a �work based on the Program� means
either the Program or any derivative work under copyright law: that is
to say, a work containing the Program or a portion of it, either verbatim
or with modi�cations and/or translated into another language. (Here-
inafter, translation is included without limitation in the term �modi�ca-
tion�.) Each licensee is addressed as �you�.

Activities other than copying, distribution and modi�cation are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modi�cations or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modi�ed �les to carry prominent notices stating
that you changed the �les and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

(c) If the modi�ed program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to
print an announcement.)

B.5. LICENSES 111

These requirements apply to the modi�ed work as a whole. If identi�able
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written o�er, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the o�er to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an o�er, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modi�cations to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface de�nition �les, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to
copy from a designated place, then o�ering equivalent access to copy the

112 APPENDIX B. SOURCE CODE

source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distribut-
ing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients' exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

B.5. LICENSES 113

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may di�er in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
speci�es a version number of this License which applies to it and �any
later version�, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are di�erent, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foun-
dation, write to the Free Software Foundation; we sometimes make excep-
tions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no
warranty for the program, to the extent permitted by ap-
plicable law. Except when otherwise stated in writing the
copyright holders and/or other parties provide the program
�as is� without warranty of any kind, either expressed or im-
plied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The en-
tire risk as to the quality and performance of the program
is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to
in writing will any copyright holder, or any other party
who may modify and/or redistribute the program as permitted
above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of
the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such

114 APPENDIX B. SOURCE CODE

holder or other party has been advised of the possibility of
such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source �le to most e�ectively convey the exclusion of
warranty; and each �le should have at least the �copyright� line and a pointer
to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Founda-
tion, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for de-
tails type `show w'.
This is free software, and you are welcome to redistribute it under
certain conditions; type `show c' for details.

The hypothetical commands show w and show c should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than show w and show c; they could even be
mouse-clicks or menu items�whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a �copyright disclaimer� for the program, if necessary.
Here is a sample; alter the names:

B.5. LICENSES 115

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-
gram
`Gnomovision' (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the li-
brary. If this is what you want to do, use the GNU Library General Public
License instead of this License.

B.5.2 Creative Commons Attribution-Noncommercial-Share
Alike 3.0 United States

B.5.2.1 Short text

You are free:

to Share to copy, distribute, display and perform the work

to Remix to make derivative works

Under the following conditions:

Attribution. You must attribute the work in the manner speci�ed by the
author or licensor (but not in any way that suggests that they endorse
you or your use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may dis-
tribute the resulting work only under the same or similar license to this
one.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web
page.

• Any of the above conditions can be waived if you get permission from the
copyright holder.

• Apart from the remix rights granted under this license, nothing in this
license impairs or restricts the author's moral rights.

B.5.2.2 Full license

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS
OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LI-
CENSE"). THEWORK IS PROTECTED BY COPYRIGHT AND/OROTHER

116 APPENDIX B. SOURCE CODE

APPLICABLE LAW. ANY USE OF THEWORKOTHER THAN AS AUTHO-
RIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE,
YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO
BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CON-
TAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

1. De�nitions

(a) "Collective Work" means a work, such as a periodical issue, anthol-
ogy or encyclopedia, in which the Work in its entirety in unmodi�ed
form, along with one or more other contributions, constituting sep-
arate and independent works in themselves, are assembled into a
collective whole. A work that constitutes a Collective Work will not
be considered a Derivative Work (as de�ned below) for the purposes
of this License.

(b) "Derivative Work" means a work based upon the Work or upon
the Work and other pre-existing works, such as a translation, musi-
cal arrangement, dramatization, �ctionalization, motion picture ver-
sion, sound recording, art reproduction, abridgment, condensation,
or any other form in which the Work may be recast, transformed,
or adapted, except that a work that constitutes a Collective Work
will not be considered a Derivative Work for the purpose of this Li-
cense. For the avoidance of doubt, where the Work is a musical
composition or sound recording, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered
a Derivative Work for the purpose of this License.

(c) "Licensor" means the individual, individuals, entity or entities that
o�er(s) the Work under the terms of this License.

(d) "Original Author" means the individual, individuals, entity or enti-
ties who created the Work.

(e) "Work" means the copyrightable work of authorship o�ered under
the terms of this License.

(f) "You" means an individual or entity exercising rights under this Li-
cense who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from
the Licensor to exercise rights under this License despite a previous
violation.

(g) "License Elements" means the following high-level license attributes
as selected by Licensor and indicated in the title of this License:
Attribution, Noncommercial, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or
restrict any rights arising from fair use, �rst sale or other limitations on
the exclusive rights of the copyright owner under copyright law or other
applicable laws.

B.5. LICENSES 117

3. License Grant. Subject to the terms and conditions of this License, Licen-
sor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual
(for the duration of the applicable copyright) license to exercise the rights
in the Work as stated below:

(a) to reproduce the Work, to incorporate the Work into one or more
Collective Works, and to reproduce the Work as incorporated in the
Collective Works;

(b) to create and reproduce Derivative Works provided that any such
Derivative Work, including any translation in any medium, takes
reasonable steps to clearly label, demarcate or otherwise identify that
changes were made to the original Work. For example, a translation
could be marked "The original work was translated from English to
Spanish," or a modi�cation could indicate "The original work has
been modi�ed.";

(c) to distribute copies or phonorecords of, display publicly, perform pub-
licly, and perform publicly by means of a digital audio transmission
the Work including as incorporated in Collective Works;

(d) to distribute copies or phonorecords of, display publicly, perform pub-
licly, and perform publicly by means of a digital audio transmission
Derivative Works;

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modi�cations as are technically necessary to exercise the rights in
other media and formats. All rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in
Sections 4(e) and 4(f).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

(a) You may distribute, publicly display, publicly perform, or publicly
digitally perform the Work only under the terms of this License,
and You must include a copy of, or the Uniform Resource Identi�er
for, this License with every copy or phonorecord of the Work You
distribute, publicly display, publicly perform, or publicly digitally
perform. You may not o�er or impose any terms on the Work that
restrict the terms of this License or the ability of a recipient of the
Work to exercise the rights granted to that recipient under the terms
of the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of
warranties. When You distribute, publicly display, publicly perform,
or publicly digitally perform the Work, You may not impose any
technological measures on the Work that restrict the ability of a
recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies
to the Work as incorporated in a Collective Work, but this does not
require the Collective Work apart from the Work itself to be made
subject to the terms of this License. If You create a Collective Work,

118 APPENDIX B. SOURCE CODE

upon notice from any Licensor You must, to the extent practicable,
remove from the Collective Work any credit as required by Section
4(d), as requested. If You create a Derivative Work, upon notice from
any Licensor You must, to the extent practicable, remove from the
Derivative Work any credit as required by Section 4(d), as requested.

(b) You may distribute, publicly display, publicly perform, or publicly
digitally perform a Derivative Work only under: (i) the terms of
this License; (ii) a later version of this License with the same Li-
cense Elements as this License; or, (iii) either the unported Creative
Commons license or a Creative Commons license for another juris-
diction (either this or a later license version) that contains the same
License Elements as this License (e.g. Attribution-NonCommercial-
ShareAlike 3.0 (Unported)) ("the Applicable License"). You must
include a copy of, or the Uniform Resource Identi�er for, the Ap-
plicable License with every copy or phonorecord of each Derivative
Work You distribute, publicly display, publicly perform, or publicly
digitally perform. You may not o�er or impose any terms on the
Derivative Works that restrict the terms of the Applicable License or
the ability of a recipient of the Work to exercise the rights granted to
that recipient under the terms of the Applicable License. You must
keep intact all notices that refer to the Applicable License and to
the disclaimer of warranties. When You distribute, publicly display,
publicly perform, or publicly digitally perform the Derivative Work,
You may not impose any technological measures on the Derivative
Work that restrict the ability of a recipient of the Derivative Work
from You to exercise the rights granted to that recipient under the
terms of the Applicable License. This Section 4(b) applies to the
Derivative Work as incorporated in a Collective Work, but this does
not require the Collective Work apart from the Derivative Work itself
to be made subject to the terms of the Applicable License.

(c) You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed to-
ward commercial advantage or private monetary compensation. The
exchange of the Work for other copyrighted works by means of digital
�le-sharing or otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary compen-
sation, provided there is no payment of any monetary compensation
in connection with the exchange of copyrighted works.

(d) If You distribute, publicly display, publicly perform, or publicly digi-
tally perform the Work (as de�ned in Section 1 above) or any Deriva-
tive Works (as de�ned in Section 1 above) or Collective Works (as
de�ned in Section 1 above), You must, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices for
the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if appli-
cable) if supplied, and/or (ii) if the Original Author and/or Licensor
designate another party or parties (e.g. a sponsor institute, publish-
ing entity, journal) for attribution ("Attribution Parties") in Licen-
sor's copyright notice, terms of service or by other reasonable means,

B.5. LICENSES 119

the name of such party or parties; the title of the Work if supplied;
to the extent reasonably practicable, the Uniform Resource Identi-
�er, if any, that Licensor speci�es to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing
information for the Work; and, consistent with Section 3(b) in the
case of a Derivative Work, a credit identifying the use of the Work
in the Derivative Work (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by Original
Author"). The credit required by this Section 4(d) may be imple-
mented in any reasonable manner; provided, however, that in the case
of a Derivative Work or Collective Work, at a minimum such credit
will appear, if a credit for all contributing authors of the Derivative
Work or Collective Work appears, then as part of these credits and in
a manner at least as prominent as the credits for the other contribut-
ing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner
set out above and, by exercising Your rights under this License, You
may not implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the Original
Author, Licensor and/or Attribution Parties.

(e) For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor re-
serves the exclusive right to collect whether individually or, in
the event that Licensor is a member of a performance rights so-
ciety (e.g. ASCAP, BMI, SESAC), via that society, royalties for
the public performance or public digital performance (e.g. web-
cast) of the Work if that performance is primarily intended for
or directed toward commercial advantage or private monetary
compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves
the exclusive right to collect, whether individually or via a mu-
sic rights agency or designated agent (e.g. Harry Fox Agency),
royalties for any phonorecord You create from the Work ("cover
version") and distribute, subject to the compulsory license cre-
ated by 17 USC Section 115 of the US Copyright Act (or the
equivalent in other jurisdictions), if Your distribution of such
cover version is primarily intended for or directed toward com-
mercial advantage or private monetary compensation.

(f) Webcasting Rights and Statutory Royalties. For the avoidance of
doubt, where the Work is a sound recording, Licensor reserves the
exclusive right to collect, whether individually or via a performance-
rights society (e.g. SoundExchange), royalties for the public digital
performance (e.g. webcast) of the Work, subject to the compulsory
license created by 17 USC Section 114 of the US Copyright Act (or the
equivalent in other jurisdictions), if Your public digital performance
is primarily intended for or directed toward commercial advantage or
private monetary compensation.

120 APPENDIX B. SOURCE CODE

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES
INWRITING, LICENSOR OFFERS THEWORKAS-IS ANDONLY TO
THE EXTENT OF ANY RIGHTS HELD IN THE LICENSED WORK
BY THE LICENSOR. THE LICENSOR MAKES NO REPRESENTA-
TIONS ORWARRANTIES OF ANYKIND CONCERNING THEWORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MARKETABIL-
ITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ER-
RORS, WHETHERORNOTDISCOVERABLE. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIEDWARRANTIES, SO
SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LE-
GAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUEN-
TIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF
THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will terminate au-
tomatically upon any breach by You of the terms of this License.
Individuals or entities who have received Derivative Works (as de-
�ned in Section 1 above) or Collective Works (as de�ned in Section
1 above) from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in
full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under di�erent license terms or to stop distributing the Work
at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
License will continue in full force and e�ect unless terminated as
stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perform the Work (as
de�ned in Section 1 above) or a Collective Work (as de�ned in Section
1 above), the Licensor o�ers to the recipient a license to the Work on
the same terms and conditions as the license granted to You under
this License.

B.5. LICENSES 121

(b) Each time You distribute or publicly digitally perform a Derivative
Work, Licensor o�ers to the recipient a license to the original Work
on the same terms and conditions as the license granted to You under
this License.

(c) If any provision of this License is invalid or unenforceable under ap-
plicable law, it shall not a�ect the validity or enforceability of the
remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and
enforceable.

(d) No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

(e) This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not speci�ed
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not
be modi�ed without the mutual written agreement of the Licensor
and You.

122 APPENDIX B. SOURCE CODE

Appendix C

Music collection

Due to space constraints only the albums are listed in this appendix. A complete
list of songs can be found in the accompanying database. All of the songs were
in a folder structure: <artist>/<album>/<song>. This list was generated by
parsing the <artist>/<album>-structure, and cleaning the list manually.

A

• ACDC

◦ ACDC - High Voltage

◦ Back In Black

◦ Dirty Deeds Done Dirt Cheap

◦ For Those About To Rock

◦ High Voltage

◦ Highway to Hell

◦ If You Want Blood You've Got
It

◦ Let There Be Rock

◦ Powerage

• ATB

◦ Addicted To Music

◦ Dedicated

◦ No Silence

• Aerosmith

◦ Aerosmith 1973

◦ Get Your Wings 1974

◦ Toys In The Attic 1975

◦ Rocks 1976

◦ Draw the Line 1978

◦ Night In The Ruts 1980

◦ Rock In A Hard Place 1982

◦ Done With Mirrors 1985

◦ Permanent Vacation 1987

◦ Pump 1989

◦ Get A Grip 1993

◦ Nine Lives 1998

◦ Just Push Play 2001

• Al Di Meola

◦ 1976 - Elegant Gypsy

◦ 1976 - Land Of The Midnight
Sun

◦ 1977 - Casino

◦ 1979 - Splendido Hotel

◦ 1981 - Electric Rendevous

◦ 1983 - Scenario

◦ 1987 - Tirami Su

◦ 1988 - Kiss My Axe

◦ 1990 - World Sinfonia

◦ 1993 - World Sinfonia - Heart Of
Immigrant

◦ 1994 - Orange And Blue

• Al Stewart

◦ Year of the Cat (remastered)

• Alanis Morissette

◦ Jagged Little Pill

◦ Jagged Little Pill Acoustic

◦ Supposed Former Infatuation
Junkie

• Allan Edwall

124 APPENDIX C. MUSIC COLLECTION

◦ Den lilla bäcken

◦ Edwalls Blandning 1979-84

◦ Mina Visor 1 - Färdknäpp

◦ Mina Visor 1 - Grovdoppa

◦ Mina Visor 3 - Aftonro

◦ Mina Visor 2 - Gnällspik

◦ Mina Visor 2 - Vetahuteri

◦ Ramsor om Dom och Oss

• Alphaville

◦ First Harvest 1984-1992

• Amalia

◦ Com Que Voz

• Amy Winehouse

◦ Back To Black

◦ Frank

• Annie Lennox

◦ Bare

• Apoptygma Berzerk

◦ 7

◦ APBL2000 (Live 2000 Version)

◦ Black

◦ Harmonizer

◦ Kathy's Song (6-Track Maxi-
Single)

◦ The Apopcalyptic Manifesto

◦ Welcome To Earth

◦ You And Me Against The World

• Arctic Monkeys

◦ Favourite Worst Nightmare

• Astor Piazolla

◦ Armaguedon (1977)

◦ In Concert (1983)

◦ La Camorra (1989)

◦ Libertango (1981)

◦ Tanguedia de Amor (1984)

◦ The Rough Dancer And The
Cyclical Night (1989)

◦ Astor Piazzola & Gary Burton
'The New Tango' (1986)

◦ Tango Sensations (1994)

◦ Astor Piazalla & David Tonon-
baum - El Porteno (1994)

◦ Tango - Zero Hour (1986)

◦ Eight Seasons (1996)

◦ Musicues De Films (Tango,
Henri IV) (1986)

◦ Gidon Kremer - Hommage a Pi-
azzolla (1996)

◦ The Lausanne Concert (1989)

◦ El Nuevo Tango de Buenos Aires
(1989)

◦ El Tango (1997)

◦ Bandoneon Sinfonico (1990)

◦ Maria De Buenos Aires Tango
Operita CD1 (1998)

◦ Ballet Tango (1992)

◦ Maria De Buenos Aires Tango
Operita CD2 (1998)

◦ Concierto De Nacar (1997)

◦ Tres tangos - concierto (1999)

◦ Live At The 'Bou�es Du Nord'
(1998)

B

• BT

◦ Emotional Technology

• Beatles

◦ Let It Be... Naked

◦ Revolver & Magical Mystery
Tour

◦ White Album (disc 1)

◦ White Album (disc 2)

• Beethoven

◦ Violin Sonatas

• Ben Webster

◦ Jazz Ballads CD2

◦ Jazz Ballads CD1

• Billie Holiday

◦ 1949-52 Radio & TV Broadcasts

◦ 1953-56 Radio and TV Broad-
casts

◦ A Fine Romance

◦ Anthology 1944-1959 Disc 1

◦ Anthology 1944-1959 Disc 2

◦ At Monterey

125

◦ Billie Holiday as Stratford '57

◦ Billie Holiday at Storyville

◦ Billie's Best

◦ Billie's Blues

◦ Broadcaast Performances Vol-
ume 4

◦ Broadcast Performances Volume
3 (1956 - 58)

◦ Compact Jazz: Billie Holiday

◦ Control Booth Series, Vol. 1
1940-1941

◦ Control Booth Series, Vol. 2

◦ Greatest Hits

◦ I Loves You Porgy

◦ Jazz at the Philharmonic

◦ Lady Day & Prez 1937-1941

◦ Lady Day - The Best Of Billie
Holiday (Disc 1)

◦ Lady Day - The Best Of Billie
Holiday (Disc 2)

◦ Lady Day - The Storyville Con-
certs (Disc 2 of 2)

◦ Lady Day - The Storyville Con-
certs (Disk 1 of 2)

◦ Lady Day: The Complete Bil-
lie Holiday on Columbia (1933-
1944) - Disc 1 through 10

◦ Lady Live!

◦ Lady Sings the Blues

◦ Lady in Satin

◦ My Man

◦ New Orleans

◦ Remixed Hits

◦ Solitude

◦ Songs for Distingué Lovers

◦ Storyville - Masters of Jazz

◦ The Best of Billie Holiday

◦ The Commodore Master Takes

◦ The Complete 1951 Storyville
Club Sessions

◦ The Complete Billie Holiday On
Verve, 1945-1959

◦ The Complete Billie Holiday on
Verve 1945-1959 (1 through 10)

◦ The Complete Commodore
Recordings (1 of 2)

◦ The Complete Commodore
Recordings (2 of 2)

◦ The Complete Decca Recordings
(1 of 2)

◦ The Complete Decca Recordings
(2 of 2)

◦ The Complete Decca Recordings
(US Release)

◦ The Complete Verve Studio
Master Takes (Disc 1 through 6)

◦ The Quintessential Billie Holi-
day Volume 9 (1940-1942)

◦ The Quintessential Billie Holi-
day, Vol. 1 through 9

◦ The Sensitive Billie Holiday
1940-1949

◦ Vdisc Musical Contribution For
Our Armed Forces Overseas

◦ Volume 10: 1940-1941

• Billy Idol

◦ Greatest Hits

◦ Rebel Yell (Expanded Edition)

• Björk

◦ Greatest Hits

• Björk Gudmundsdóttir & Trió Gud-
mundar Ingólfssonar

◦ Gling-Gló

• Black Eyed Peas

◦ Elephunk

◦ Monkey Business

• Bowie, David

◦ Reality Bonus CD

• Brian Eno

◦ Ambient 1

◦ Another Day On Earth

◦ Another Green World

◦ Before and after Science

◦ Nerve Net

• Brian Eno & David Byrne

◦ My Life In The Bush Of Ghosts
(Remastered)

◦ My Life in the Bush of Ghosts

• Brian Eno & John Cale

◦ Wrong Way Up

• Bryan Ferry

◦ As Time Goes By

126 APPENDIX C. MUSIC COLLECTION

C

• Charlie Haden

◦ Land of the Sun

• Craig David

◦ Born To Do It

• Crash Test Dummies

◦ God Shu�ed His Feet

• Creedence Clearwater Revival

◦ Chronicle- 24-Karat Gold Disc

◦ The Concert

D

• DJ Bobo

◦ Just For You

◦ The Ultimate Megamix 99

• Dalbello

◦ whomanfoursays

• Damien Rice

◦ O

• Dane Cook

◦ Retaliation

• David Bowie

◦ David Bowie (1969)

◦ Station To Station (1976)

◦ Low (1977)

◦ Space Oddity (1969)

◦ Heroes (1977)

◦ The Man Who Sold The World
(1970)

◦ Hunky Dory (1971)

◦ Lodger (1979)

◦ Scary Monsters (1980)

◦ The Rise and Fall of Ziggy Star-
dust (1972)

◦ Aladdin Sane (1973)

◦ Let's Dance (1983)

◦ Pin Ups (1973)

◦ Tonight (1984)

◦ Diamond Dogs (1974)

◦ Never Let Me Down (1987)

◦ David Live

◦ Young Americans (1975)

◦ 1.Outside

◦ Singles

◦ Stage

◦ Heathen (Bonus Disc)

◦ Heathen (Disc 1)

◦ Reality

◦ Reality (CD 1)

• David Byrne

◦ David Byrne

◦ Feelings

◦ Grown Backwards

◦ Look Into The Eyeball

◦ Rei Momo

◦ Uh-Oh

• Dido

◦ Life For Rent

◦ No Angel

• Don McLean

◦ American Pie

• Doors

◦ Waiting For The Sun

• Dr Hook & The Medicine Show

◦ The Very Best Of

• Dune

◦ Dune

◦ Forever

• deLillos

◦ Festen er ikke over... det er kake
igjen Disc 1

◦ Festen er ikke over... det er kake
igjen Disc 2

◦ Før Var Det Morsomt Med Sne

◦ Ikke gå

◦ Kast Alle Papirene

◦ Kjerringvik-demoen del 1

127

◦ Kjerringvik-demoen del 2

◦ Mere Disc 1

◦ Mere Disc 2

◦ Midt i begynnelsen

◦ Suser Avgårde

◦ Varme Mennesker

• deLillos'85

◦ Suser videre

◦ evig forelsket da

E

• Echo And The Bunnymen

◦ Heaven Up Here

• Ei�el 65

◦ Europop

• Enya

◦ A Day Without Rain

◦ Amarantine

◦ Paint The Sky With Stars

◦ Shepherd Moons

◦ The Celts

◦ The Memory Of Trees

◦ Watermark

• Erik Satie

◦ Gymnopedies

F

• Faithless

◦ Forever Faithless- The Greatest
Hits

• Fragma

◦ Embrace

◦ Toca

• Franz Ferdinand

◦ Franz Ferdinand

◦ Franz Ferdinand (Special Edi-
tion)

◦ Remixes

◦ This F�re

◦ You Could Have It So Much Bet-
ter

G

• Gary Numan

◦ Documents

◦ Replicas

◦ Telekon

◦ The Pleasure Principle

◦ Tubeway Army

◦ Warriors

• Gina G

◦ Fresh

• Glenn Miller

◦ The Glenn Miller Story

• Green Day

◦ International Superhits!

• Grinderman

◦ Grinderman

• Gwen Stefani

◦ Love Angel Music Baby

◦ The Sweet Escape

• Gåte

◦ Jygri

H

• Hampton The Hampster

◦ The Hampsterdance Song

• Hugh Cornwell

◦ Beyond Elysian Fields

◦ Footprints In The Desert

◦ Guilty

◦ Hi Fi

128 APPENDIX C. MUSIC COLLECTION

I

• Ian Dury

◦ Reasons To Be Cheerful - The
Best Of Ian Dury (Disc1)

◦ Reasons To Be Cheerful - The
Best Of Ian Dury (Disc2)

• Ibrahim Ferrer

◦ Buena Vista Social Club
Presents Ibrahim Ferrer

• Iggy Pop

◦ Blah-Blah-Blah

◦ Brick By Brick

◦ Lust For Life

◦ New Values

◦ Pop Music

• Imperiet

◦ Alltid Rött Alltid Rätt: en sam-
ling 1983-88

• Infernal

◦ From Paris To Berlin

• iio

◦ Poetica

J

• James Blunt

◦ All The Lost Souls (Bonus
Track)

◦ Back To Bedlam (Edited)

• Jan Johansson

◦ Folkvisor

◦ Jazz på svenska

• Japan

◦ Gentlemen Take Polaroids

◦ Tin Drum

• Jerry Harrison

◦ Casual Gods

• Jethro Tull

◦ Aqualung

• John Cale

◦ 5 tracks

◦ Black Acetat

◦ Fragments Of A Rainy Season

◦ Hobosapiens

◦ Island Years (Disc 1)

◦ Island Years (Disc 2)

◦ Walking On Locusts

• John Legend

◦ Get Lifted

• Johnny Cash

◦ American III - Solitary Man

◦ American IV The Man Comes
Around

◦ American V: A Hundred High-
ways

◦ Unchained

◦ Unearthed Volume 4: My
Mother's Hymn Book

K

• K.C. & the Sunshine Band

◦ Shake Your Booty

• Kaizers Orchestra

◦ Død manns tango

◦ Evig Pint

◦ Maestro

◦ Mann Mot Mann [EP]

◦ Ompa Til Du Dør

• Karin Krog

◦ Where you at?

• Keith Jarret

◦ 1977 - Byablue

◦ 1980 - Sacred Hymns

◦ 1980 - The Celestial Hawk

◦ 1981 - Concerts

◦ 1983 - Changes

◦ 1983 - Standards Vol 1

◦ 1983 - Standards Vol 2

◦ 1987 - Changeless

129

◦ 1990 - Paris Concert

◦ 1991 - Bye Bye Blackbird

◦ 1991 - Vienna Concert

◦ 1999 - The Melody At Night
With You

• Keith Jarrett

◦ My Song

◦ Personal Mountains

• Ketil Bjornstad and David Darling

◦ The River

• Kevin Bloody Wilson

◦ 20 Years Of Kev

◦ Born again piss tank

◦ Kalgoorlie Love Songs

◦ Kev's back (The Return of the
Yobbo)

◦ Kev's Kristmas

◦ Let's call him ... Kev!

◦ Let Loose Live In The Outback

◦ My Australian roots

◦ The second kumin of Kev

◦ The worst of Kevin Bloody Wil-
son

◦ Youre average Australian yobbo

• Kevin Coyne

◦ Marjory Razorblade

◦ Pointing the Finger

◦ Sign Of The Times

• Kraftwerk

◦ Autobahn

◦ The Man - Machine

• Kylie Minogue

◦ Body Language

L

• Laila Dalseth

◦ one of a kind - CD1

◦ one of a kind - CD2

• Lars Winnerbäck

◦ Daugava

• Led Zeppelin

◦ Houses Of The Holy

◦ Led Zeppelin (Remaster 1994)

◦ Led Zeppelin II

◦ Led Zeppelin IV

• Linkin Park

◦ Dirt O� Your Shoulder-Lying
From You- MTV Ultimate
Mash-Ups Presents Collision
Course (Parental Advisory)

◦ Hybrid Theory (Bonus Tracks)

◦ Live In Texas

◦ Meteora (Bonus Tracks)

◦ Minutes To Midnight (Parental
Advisory)

◦ Reanimation (Bonus Tracks)

• Lisa Ekdahl

◦ En Samling Sånger

• Lloyd Cole

◦ Antidepressant

◦ Bad Vibes

◦ Don't Get Weird On Me Baby

◦ Love Story

◦ Rattlesnakes

• Lomsk

◦ Amerikabrevet

• Lou Reed

◦ New York

◦ Songs For Drella

◦ The Very Best of Lou Reed

130 APPENDIX C. MUSIC COLLECTION

M

• Madison Avenue

◦ The Polyester Embassy

• Madonna

◦ American Life (Edited)

◦ GHV2

◦ Get Together (Maxi-Single)

◦ Hung Up (DJ Version)

◦ I'm Going To Tell You A Secret
(Live)

◦ Jump (6-Track Maxi-Single)

◦ Like A Virgin

◦ Like A Virgin (Remastered-
Bonus Tracks)

◦ Music [Import Box Set]

◦ Ray Of Light

◦ Sorry (CD Maxi-Single)

◦ The Confessions Tour (Live)
(Parental Advisory)

• Madrugada

◦ Grit

◦ Industrial Silence

◦ The Deep End

• Magga Stína

◦ syngur Megas

• Mari Boine

◦ Gula Gula (1989)

◦ Goaskinviellja - Eagle Brother
(1993)

◦ Leahkastin (Unfolding) (1994)

◦ Eallin - Live (1996)

◦ Balvvoslatjna (Room of Wor-
ship) (1998)

◦ Winter In Moscow (2001)

◦ Eight Seasons (2001)

• Mariah Carey

◦ #1's

• Mark Lanegan

◦ Bubblegum

◦ Whiskey for the Holy Ghost

• Michael Andrews

◦ Donnie Darko (Score)

• Michael Jackson

◦ Essential Michael Jackson

◦ HIStory- Past, Present And Fu-
ture, Book I

◦ Number Ones

• Mike Scott

◦ Bring 'em all in

◦ Still Burning

• Miles Davis

◦ Porgy and Bess

◦ So What

◦ Tutu

• Modern Talking

◦ The Final Album- The Ultimate
Best Of Modern Talking

• Morrissey

◦ Bona Drag

• Mr. President

◦ Space Gate

• Muse (UK)

◦ Black Holes And Revelations

131

N

• N-Trance

◦ Happy Hour

• Natacha Atlas

◦ Something dangerous

• Neil Young

◦ Everybody's Rockin'

◦ Freedom

◦ Rust Never Sleeps

◦ Sleeps With Angels

• Nena

◦ 99 Luftballons

• New Order

◦ Get Ready

◦ International

◦ Republic

◦ Technique

◦ Waiting For The Sirens' Call

• New York Philharmonic

◦ Adagio For Strings-Violin
Concerto-In Praise Of Shahn
(Expanded Edition)

• Nick Cave & The Bad Seeds

◦ Abattoir Blues

◦ Acoustic Versions of Songs from
"Tender Prey"

◦ As I Sat Sadly By Her Side (CD
Single)

◦ B-Sides & Rarities - Volume I

◦ B-Sides & Rarities - Volume II

◦ B-Sides & Rarities - Volume III

◦ Do You Love Me?

◦ Henry's Dream

◦ Here Comes the Sun

◦ Kicking Against the Pricks

◦ Let Love In

◦ Love Letter

◦ Murder Ballads

◦ No More Shall We Part

◦ Nocturama

◦ Tender Prey

◦ The Boatman's Call

◦ The Good Son

◦ The Lyre Of Orpheus

◦ The Mercy Seat

◦ The Ship Song

◦ What A Wonderful World

◦ Where The Wild Roses Grow

• No Doubt

◦ No Doubt

◦ Return Of Saturn

◦ Rock Steady

◦ The Beacon Street Collection

◦ The singles 1992 - 2003

◦ Tragic Kingdom

O

• Oscar Peterson

◦ Jazz Ballads 8 - Disc 1

◦ Jazz Ballads 8 - Disc 2

◦ Night Train

• Oslo Kammerkor - Sondre Bratland -
Berit Opheim

◦ Dåm

P

• Patti Smith

◦ Trampin'

• Paul Oakenfold

◦ Bunkka

• Paul Simon

◦ The Rhythm of the Saints

• Paul Van Dyk

◦ Global

◦ Re�ections

• Paul Weller

◦ Illumination

◦ Stanley Road

◦ Wild Wood

132 APPENDIX C. MUSIC COLLECTION

• Pepito Ross

◦ Vamos A La Playa

• Perssons Pack

◦ Diamanter

◦ Diamanter (cd 2)

◦ Kanoner och små, små saker

◦ Kärlek och dynamit

◦ Nyårsafton i New York

◦ Sekunder i Sverige

◦ Svenska hjärtan

◦ Äkta Hjärtan

• Pet Shop Boys

◦ Actually (Remastered)

◦ Popart- The Hits

• Peter Gabriel

◦ Hit (CD 1)

◦ Hit (CD 2)

◦ III

◦ Up

• Pink Floyd

◦ Dark Side of the Moon

◦ The Wall (Disc 1)

◦ The Wall (Disc 2)

◦ Wish You Were Here

• Pixies

◦ Surfer Rosa & Come On Pilgrim

Q

• Queen

◦ A Day At The Races

◦ A Night At The Opera

◦ Jazz

◦ News of the World

R

• R.E.M

◦ In Time- The Best Of R.E.M.
1988-2003 Rarities And B-Sides

◦ What's The Frequency,
Kenneth-

• R.E.M.

◦ In Time 1988-2003

◦ Lifes Rich Pageant

• Raga Rockers

◦ Forbudte Følelser

• Rage Against the Machine

◦ Rage Against The Machine

• Ramones

◦ Anthology (Disc 2)

◦ Ramones - Anthology - Hey Ho
Let's Go 1

• Rednex

◦ Cotton Eye Joe (Sex & Violins)

• Robbie Williams

◦ Escapology

• Robert Miles

◦ Dreamland

• Roxy Music

◦ Flesh + Blood

• Rufus Wainwright

◦ Poses

◦ Rufus Wainwright

◦ Want One

◦ Want two

• Rush

◦ Rush 1974

◦ Caress of Steel 1975

◦ Fly By Night 1975

◦ All The World's A Stage 1976

◦ 2112 1976

133

◦ A Farewell To Kings 1977

◦ Hemispheres 1978

◦ Permanent Waves 1980

◦ Exit...Stage Left 1981

◦ Moving Pictures 1981

◦ Signals 1982

◦ Grace Under Pressure 1984

◦ Hold Your Fire

◦ Retrospective, Vol. 1 (1974-
1980)

• Ry Cooder

◦ Paris Texas

S

• Scooter

◦ 24 Carat Gold

• Seu Jorge

◦ The Life Aquatic Studio Sessions

• Sex Pistols

◦ Never Mind The Bollocks

• Sharon Jones and the Dap-Kings

◦ 100 Days, 100 Nights

• Slade

◦ Nobody's fool

◦ Slade in �ame

◦ Whatever Happened To Slade

• Smiths

◦ Singles

• Some Like It Hot

◦ Some Like It Hot

• Sophie Ellis Bextor

◦ Murder On The Dance�oor

• Stefan Sundström

◦ Sundström spelar Allan

• Stephen Lynch

◦ A Little Bit Special

◦ Superhero

◦ The Craig Machine

• System of a Down

◦ Toxicity

T

• Talking Heads

◦ Naked

◦ Remain In Light

• Teenage Fanclub

◦ Bandwagonesque

◦ Grand Prix

• Television

◦ Adventure

◦ Marquee Moon (2003 Remaster)

• The Aller Værste

◦ Disniland I De Tusen Hjem

◦ Materialtretthet

◦ The Aller Værste

• The Clash

◦ London Calling

• The Countdown Quartet

◦ Hits Of The 80's

• The Cure

◦ Disintegration

◦ Galore (The Singles 1987-1997)

◦ Kiss Me Kiss Me Kiss Me (Delux
Edition - CD1)

◦ Staring At The Sea The Singles

◦ The Head On The Door

◦ The Top

◦ Wish

• The Doors

◦ Strange Days

◦ Waiting for the Sun

• The Dukes of Stratosphear

◦ Chips from the Chocolate Fire-
ball

134 APPENDIX C. MUSIC COLLECTION

• The Jam

◦ All Mod Cons

◦ Setting Sons

◦ Sound A�ects

◦ The Gift

• The Killers

◦ Hot Fuss

◦ Sam's Town

• The Lime Spiders

◦ Nine Miles High

• The Prodigy

◦ Music For The Jilted Generation

◦ Out Of Space

◦ The Fat Of The Land (Parental
Advisory)

• The Raconteurs

◦ Broken Boy Soldiers

• The Real McCoy

◦ Platinum & Gold Collection-
The Best Of Real McCoy

• The Rolling Stones

◦ A Bigger Bang

◦ Bridges To Babylon

◦ Emotional Rescue

◦ Exile On Main Street

◦ Forty Licks (CD ONE)

◦ Forty Licks (disc 2)

◦ Goats Head Soup

◦ It's Only Rock 'N Roll

◦ Some Girls

◦ Steel Wheels

◦ Sticky Fingers

◦ Tattoo You

◦ The Very Best 1962 - 1975

◦ Under Cover

◦ Voodoo Lounge

• The Stranglers

◦ 10

◦ Aural Sculpture

◦ Dreamtime

◦ Feline - Extended Edition (incl.
6 Bonus Tracks)

◦ La Folie (Remastered)

◦ No More Heroes [Bonus Tracks]

◦ Rattus Norvegicus

◦ Sweet Smell Of Success Best Of
The Epic Years

◦ Sweet Smell of Success

◦ The Best of the Epic Years

◦ The Raven

• The Streets

◦ A Grand Don't Come For Free

◦ Original Pirate Material

◦ The Hardest Way To Make An
Easy Living

• The Style Council

◦ Our Favourite Shop

◦ The Sound Of

• The The

◦ 45 RPM

• The Tri�ds

◦ Born Sandy Devotional

◦ Born Sandy Devotional (origi-
nal)

◦ Calenture

◦ Calenture (bonus disc)

◦ Calenture (original)

◦ In The Pines (original)

◦ In The Pines [2007 Remastered
& Expanded]

◦ The Black Swan

• The Waterboys

◦ Book Of Lightning

◦ Dream Harder

◦ Fisherman's Blues

◦ Room To Roam

◦ This Is The Sea [1 of 2]

◦ This Is The Sea: Additional
Recordings [2 of 2]

◦ Universal Hall

• Tiesto

◦ Elements Of Life

◦ Parade Of The Athletes

135

• Tom Robinson Band

◦ Power in the Darkness

◦ TRB TWO

• Tom Waits

◦ Bounced Checks

◦ One From The Heart OST (Tom
Waits and Crystal Gayle)

◦ Sword�shtrombones 1983

◦ Rain Dogs 1985

◦ Franks Wild Years 1987

◦ Bone Machine 1992

◦ Night On Earth (Soundtrack)
1992

◦ The Black Rider 1993

◦ Mule Variations 1999

◦ Alice (2002)

◦ Blood Money (2002)

◦ Big Time 1988 (Part2)

◦ Orphans: Bastards (d3)

◦ Orphans: Bawlers (d2)

◦ Orphans: Brawlers (d1)

◦ Tales From The Underground
(1994) Volume 1 through 6

◦ Tom Waits (Gavin Bryars with
Tom Waits) - (1993) Jesus'
Blood Ne

◦ Tom Waits - 'Alice' (The Origi-
nal Demos)

◦ Tom Waits - (1977) Everytime I
Hear T., Live in Hamburg, Ger-
many

◦ TomWaits - (1977) Invitation To
The Blues, April 26, Germany

◦ Tom Waits - (1979) Cold Beer
On A Hot Night

◦ Tom Waits - (1979) Cold Beer
and Warm Women (live Sydney)

◦ Tom Waits - (1979) Fast Women
& Slow Horses (live) (128)

◦ Tom Waits - (1979) On Broad-
way

◦ Tom Waits - (1982) Shadow of
intolerance, Ontario

◦ Tom Waits - (1998) Dead Man
Walking, March 29, Los Angeles

◦ Tom Waits - (1999) Hold On
(EP)

◦ Tom Waits - (1999) VH1 Story-
tellers

◦ Tom Waits - (2000) May 26,
Warsaw, Sala Kongresawa

◦ Tom Waits - (2000) May 30,
Paris, Le Grans Rex

◦ Tom Waits - (2004) Amster-
damned, November 21, Amster-
dam

◦ Tom Waits - Miscellaneous

◦ Tom Waits Live

◦ Tom Waits Not - Released Stu-
dio Records

• Toni Braxton

◦ Ultimate Toni Braxton

• Touch & Go

◦ I Find You Very Attractive

• Toy Dolls

◦ We're Mad (the anthology) - disc
2

◦ we're mad! the anthology
(Disc.1)

• Travis

◦ 12 Memories

◦ Good Feeling

◦ The Boy With No Name

◦ The Invisible Band (Bonus
Tracks)

◦ The Man Who

• Two to Tango

◦ Two To Tango (1)

◦ Two To Tango (2)

136 APPENDIX C. MUSIC COLLECTION

U

• U2

◦ 1980 Boy

◦ 1981 October

◦ 1983 Under A Blood Red Sky

◦ 1983 War

◦ 1984 The Unforgettable Fire

◦ 1985 Wide Awake In America

◦ 1987 The Joshua Tree

◦ 1988 Rattle And Hum

◦ 1991 Achtung Baby

◦ 1993 Zooropa

◦ 1997 Pop

◦ 1998 The Best Of 1980-1990 &
B-sides Disc 1

◦ 1998 The Best Of 1980-1990 &
B-sides Disc 2

◦ 2000 All That You Can't Leave
Behind

◦ 2002 The Best And The B-Sides
Of 1990-2000 CD1

◦ 2002 The Best And The B-Sides
Of 1990-2000 CD2

◦ Achtung Baby

◦ How To Dismantle An Atomic
Bomb

◦ The Best Of 1980 - 1990

◦ The Best Of 1990-2000 (A Sides
US Version)

◦ Who's Gonna Ride Your Wild
Horses

• U96

◦ Heaven

◦ Replugged

• Ultravox

◦ 77 Ha-ha-ha

◦ 77 Ultravox

• Perssons Pack

◦ Nyårsafton i New York

V

• VNV Nation

◦ Empires

◦ Genesis.2

◦ Matter + Form

• Vamp

◦ 13 humler

◦ En annen sol

◦ Flua på veggen

◦ Godmorgen, søster

◦ Horisonter

◦ Månemannen

◦ Vamp i full symfoni med
kringkastingsorkesteret

◦ siste stikk

• Various

◦ Bu�y The Vampire Slayer - The
Album

◦ Donnie Darko (Original Sound-
track)

◦ I'm Your Fan (Tribute to
Leonard Cohen)

◦ McMusic 21

◦ Suuret suomalaiset tangot : Sat-
umaa

◦ Taube 1

◦ Taube 2

◦ Until the End of the World

◦ Viva Cuba!

◦ Done Again (In The Style Of The
Beatles)- The Beatles, Vol.8

• Vladimir Vissotsky

◦ 1

◦ 2

• Vladimir Vissotsky & Marina Vlady

◦ Vlady Vissotsky

• Vømmøl Spellmannslag

◦ Vømlingen

◦ Vømmølmusikken

137

W

• William Orbit

◦ Pieces In A Modern Style

• Wolfgang Amadeus Mozart

◦ 4 Hornkonzerte - Concertos for
Horn and Orchestra

• World mix

◦ Deep Forest

X

• XTC

◦ Apple Venus Volume 1

◦ English Settlement [Remastered
2001]

◦ Homegrown

◦ Homespun The Apple Venus Vol-
ume One Home Demos

◦ Mummer (remastered)

◦ Nonsuch

◦ Oranges & Lemons

◦ Skylarking

◦ The Big Express (remastered)

◦ The Compact XTC The Singles
1978-1985

◦ Wasp Star [Apple Venus Volume
2]

	Title Page
	Problem Description
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation
	Objectives
	Approach
	Results
	Structure

	Pre-study
	Sound theory
	Music Information Retrieval
	Audio fingerprinting
	State of the art
	Software

	Method
	Music collection
	Descriptor architecture
	Software
	System architecture
	Combining results

	Results
	Evaluating results
	Individual descriptors
	Combined solutions
	Examples
	Improving search speed

	Conclusion
	Results
	Evaluation
	Further work

	Bibliography
	Index
	Software used
	Source code
	fdmf
	libFooID
	Gunderson's descriptors
	Combining descriptors
	Licenses

	Music collection

