
June 2008
Kjetil Nørvåg, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Dokument-klynging (document
clustering)

Magnus Galåen

Problem Description

Klynging (clustering) er ein teknikk som kan brukast for å finne relaterte data.
Det finnest mange algoritmer for klynging av generelle data, men ikkje alle
av desse er eigna for klynging av dokument. Oppg̊ava g̊ar ut p̊a å studere
eigenskaper ved forskjellige algoritmer brukt til dokument-klynging i store
dokumentsamlingar (inkl. web-data) og undersøkje tilhøyrande teknikkar
som kan auke kvalitet p̊a klynginga. Det er ogs̊a ønskjeleg at aspekt rundt
parallellisering/distribuering av klyngingsprosessen vert undersøkt.

i

ii

Abstract

As document searching becomes more and more important with the rapid
growth of document bases today, document clustering also becomes more
important. Some of the most commonly used document clustering algo-
rithms today, are pure statistical in nature. Other algorithms have emerged,
adressing some of the issues with numerical algorithms, claiming to be better.

This thesis compares two well-known algorithms: Elliptic K-Means and
Suffix Tree Clustering. They are compared in speed and quality, and it is
shown that Elliptic K-Means performs better in speed, while Suffix Tree
Clustering (STC) performs better in quality. It is further shown that STC
performs better using small portions of relevant text (snippets) on real web-
data compared to the full document. It is also shown that a threshold value
for base cluster merging is unneccesary.

As STC is shown to perform adequately in speed when running on snip-
pets only, it is concluded that STC is the better algorithm for the purpose
of search results clustering.

iii

iv

Preface

This thesis is the final part of my masters degree on artificial intelligence
in the Department of Computer and Information Science at the Norwegian
University of Science and Technology.

My interest for categorization and clustering techniques began in 2002,
during the course machine learning, in which we used Mitchell’s book
[Mitchell, 1997]. One specific memory is the day we read section 6.9: ”Naive
Bayes Classifier”. I was really excited, and had many ideas. Like, how
about automatic spam detection? At the time, spam was usually detected
by handwritten rules, while today, spam learning techniques like the bayes
classifier are considered a bare minimum of any spam filter.

One day, in another class, we were asked for new ideas regarding search
engines. At once I raised my hand and suggested the use of automatic clas-
sification or clustering. Little did I know that this has been a part of infor-
mation retrieval science since the earliest implementations. Today I am part
of a start-up company specializing in information retrieval, where are lucky
enough to be able to implement our ideas from the field.

I would like to thank my colleagues in SearchDaimon AS, my previous
teachers at NTNU, and my supervisor. Thanks for all the fish!

Magnus Gal̊aen

v

vi

Contents

I Introduction 1

1 Introduction 3

II Theory 5

2 Information Retrieval 7
2.1 History . 7
2.2 Inverted Index . 7
2.3 The Vector Space Model . 8

3 Document Preprocessing 11
3.1 Lexical Analysis . 11

3.1.1 Parsing of HTML . 12
3.2 Stopwords . 12
3.3 Stemming . 13
3.4 Generating Snippets . 13

4 Clustering 15
4.1 History . 15
4.2 Numerical Clustering Algorithms 15

4.2.1 Agglomerative Hierarchical Clustering 15
4.2.2 K-Means . 16
4.2.3 Number of Clusters . 17

4.3 Elliptic K-Means Clustering 17
4.4 Sparse Matrices . 18

5 Suffix Tree Clustering 19
5.1 Introduction . 19
5.2 Theoretical Background . 19

5.2.1 Suffix Trees . 19

vii

5.2.2 Generalized Suffix Trees 20
5.3 The Algorithm . 22

5.3.1 Identifying Base Clusters 22
5.3.2 Combining Base Clusters 24
5.3.3 Presentation . 24

III Implementation 25

6 The Information Retrieval System 27
6.1 Introduction . 27
6.2 The Open Directory Project 28
6.3 Indexing . 28
6.4 Search . 29
6.5 Stemming . 29
6.6 Parsing . 30

6.6.1 process doc . 30
6.6.2 Snippets . 30
6.6.3 Paragraph Filtering . 32

7 Spherical K-Means 33
7.1 Gmeans . 33
7.2 Running . 33

8 STC 35
8.1 Input . 35
8.2 Score . 37
8.3 Threshold . 37

9 Distributed Suffix Tree Clustering 39
9.1 Introduction . 39
9.2 Implementation . 39

IV Results 43

10 Cluster Quality 45
10.1 Quality Measure . 45
10.2 Open Directory . 46
10.3 Human-based Clustering . 46
10.4 Results . 47

10.4.1 Similarity Values . 47

viii

10.4.2 Removal or Keeping of Common Words 49

11 Speed Measure 53
11.0.3 stc net . 54
11.0.4 gmeans . 54

12 Further Discussion and Conclusion 57
12.1 STC and Number of Base Clusters 57
12.2 STC and Hierarchical Clusters 58
12.3 Conclusion . 60

A Programs 61

B Screenshots of Browser Representation 63

ix

x

List of Figures

3.1 Snippet example . 14

4.1 AHC dendrogram . 16
4.2 K-Means visualization of clusters 17

5.1 Suffix tree for the string bananas 20
5.2 Suffix tree with suffix pointers 21
5.3 Generalized suffix tree . 23

10.1 Similarity values, a comparision 50

11.1 Total running time based on document set size. With snippets. 54
11.2 Total running time based on document set size. With para-

graphs. 55

12.1 Similarity values with different thresholds. 59

B.1 Snapshot 1 . 64
B.2 Snapshot 2 . 65

xi

xii

List of Tables

3.1 Stemming example . 13

6.1 Inverted index storage structure 29
6.2 Morphology pseudo-code . 31

8.1 STC document record . 36

9.1 Distributed STC pseudo-code 41

10.1 Manually constructed cluster labels 47
10.2 STC (with snippets) . 48
10.3 STC (with paragraphs) . 49
10.4 Generated cluster labels with common words removed. 51
10.5 Generated cluster labels without common words removed. . . 52

11.1 Number of documents and words 53

12.1 Top clusters for two different threshold values. 58
12.2 Threshold and number of clusters. 58

xiii

xiv

Part I

Introduction

1

Chapter 1

Introduction

Every day new documents are created. The number of digital documents
in the world has a exponential growth. Search engines does a great job by
making these documents easily available to the world population. Documents
get ranked by popularity, which are great, when you know how to define
a good query. But, alas, most people today specify only one term when
querying for information. When searching for general topics, it gets harder
to find what you are searching for.

Automatic Clustering done at search time, aims at identifying groups, or
clusters, of documents, and present the user with a list of possible subqueries
to narrow down the search. In this way, any user can find what they want
in a much easier way. For instance a query for ”car” might give clusters like
”buy car”, ”car rental” or ”comparisons of cars”. The user can then easily pin
down the query.

At least that is how it is supposed to work. Document Clustering to-
day may produce some good clusters, but often present irrelevant ones, too.
Clustering search engines don’t even report which algorithms they use. This
thesis aims at comparing two of the popular clustering algorithms in terms
of quality and speed. Different parameters and input data are tested, to see
if this can improve the quality, and a distributed version of one of them is
implemented, in order to test for speed gains.

To make reading easier, whenever this thesis refers to ”we”, it actually
only refers to the author.

3

4

Part II

Theory

5

Chapter 2

Information Retrieval

2.1 History

Automatic information retrieval as a concept was first introduced in 1945
in the ground breaking article ”As We May Think” (see [Bush, 1996] for a
reprint). Later, the idea of indexing documents into words was described
by [Luhn, 1957]. And in the 1960s, the SMART system was developed
[Salton, 1971]. But until the 1990s, information retrieval systems were only
used on small document collections. Therefore major development was made
when the Text Retrieval Conference introduced large document collections
for use in research [Harman, 1993], and later with the introduction of web
search engines [Lewis, 1995].

For a more detailed overview of the history of Information Retrival, the
reader is encouraged to read [Singhal, 2001].

2.2 Inverted Index

An inverted index is a sorted list of words, with the list of corresponding
documents attached to each word. Given documents d0 = ”Jupiter and Mars
are gods from ancient greece”, d1 = ”Venus and Jupiter are the brightest
planets in the night sky” and d2 = ”The sky is dark in the night”, one might
construct an inverted index as follows:

7

token list of occurences
ancient d0[6]

and d0[1], d1[1]
are d0[3], d1[3]

brightest d1[5]
dark d2[3]
from d0[5]
gods d0[4]

greece d0[7]
in d1[7], d2[4]
is d2[2]

jupiter d0[0], d1[2]
mars d0[2]
night d1[9], d2[6]

planets d1[6]
sky d1[10], d2[1]
the d1[4], d1[8], d2[0], d2[5]

venus d1[0]
If the user wants all documents containing the word ”jupiter”, it’s only a

matter of looking up ”jupiter” in the table and collect the documents (d0 and
d1). Or, if the user wants all documents containing both words ”dark” and
”night”, the system will look up both words and merge them together. Only
documents occuring in both lists will be kept (the union of documents). In
the latter example, only document d2 will be retrieved. Document positions
are often kept for phrase or proximity searches. For example, only d1 contains
the words ”night sky” in sequence (called a phrase).

Words occuring in many documents, such as ”the”, are usually removed
and marked as stopwords. Stopwords take up a lot of space, and don’t give
much meaning to a document.

2.3 The Vector Space Model

The Vector Space Model was introduced in [Salton et al., 1975]. Documents
are represented as vectors in a multidimensional Euclidean space, where each
axis corresponds to a term [Chakrabarti, 2003]. The model has been criti-
cized for being ad hoc [Raghavan and Wong, 1986]. It has been, and is still
widely used in information retrieval.

For the purpose of information retrieval and document clustering, a term
or token refers to a word. The weight for term ti in document dj is defined
as:

8

wi,j = tf · idf (2.1)

Where tf is the term frequency, and idf is the inverse document fre-
quency. Different formulas may be applied to calculate these values. In our
implementation, we ended up using the formulas from the SMART system
(where the Vector Space Model was first implemented), as these seemed to
give the best results at the time. ni,j is the number of times term ti occurs
in document dj, and Di is the set of documents containing ti.

tfi,j =

{
0 if ni,j = 0
1 + log(1 + log(ni,j)) otherwise

(2.2)

idfi = log
1 + |D|
|Di|

(2.3)

Given a query q, we construct a vector ~q. The degree of similarity between
document dj and query q may be calculated, for instance, by the cosine of
the angle between the two vectors [Baeza-Yates et al., 1999]:

sim(dj, q) =
~dj · ~q
|~dj| × |~q|

=

∑t
i=1wi,j × wi,q√∑t

i=1w
2
i,j ×

√∑t
j=1w

2
i,q

(2.4)

The same similarity measure may be used to calculate the similarity be-
tween two documents.

9

10

Chapter 3

Document Preprocessing

This chapter presents several key issues in document preprocessing.
[Baeza-Yates et al., 1999] have divided document preprocessing into several
text operations. Here are some of them:

1. Lexical analysis with the objective to transform raw data into seqences
of letters (words).

2. Marking of stopwords with the objective to filter out very common
words from subsequent processing.

3. Stemming/lemmatization of the remaining words with the objective to
recognize similar words in different tenses.

The result can be a list of keywords for indexing. Or it can be a snippet
for the user to view. Context defines the use.

3.1 Lexical Analysis

Lexical analysis is the process of transforming a sequence of characters into
a sequence of words. Given a document d, different uses of lexical analysis
may be:

1. Transforming document d into the sequence of all words contained in
the document.

2. Transforming document d into the sequence of all text paragraphs con-
tained in the document.

3. Given a query q, transforming d into a snippet containing as many as
possible of the words in q.

11

3.1.1 Parsing of HTML

Most documents available for the public today, can be found on the world
wide web. And most of these follow the HTML or XHTML standards
[Raggett et al., 1999].

A näıve parser implementation is to remove all tags and keep all words.
A more advanced parser has several additional considerations:

1. How to handle different codesets. Languages such as japanese and rus-
sian use different encodings. Even the latin alfabet may be represented
using several codesets. A solution is to convert all characters into utf-8.

2. Html escapes, such as å, may also represent characters. These
should also be converted to utf-8.

3. Html comments should be removed.

4. Some text might be invisible, and should be removed. This is mostly
needed in the case of spam-websites.

5. Partition text into headers, paragraphs, subparagraphs, and mark end-
of-sentences.

Web documents contains much noise in forms of hypertext links, tables,
menus, and listing of non-english tokens. [Chudnovsky, 2005] suggests several
methods to filter out this noise. One way to do this, is only keeping text
paragraphs that contain meaningful words and few links. Linktext (anchored
text) are usually more relevant to the document they point to, rather than
the document in which they are contained1.

3.2 Stopwords

There are several ways to create a list of stopwords. One way is to get hold
of a list of common words defined in the english dictionary. Another strategy
is to build one by taking the n most common words from the inverted index.
The latter will contain words specific for the document base. For internet
documents this might include words as: copyright, information, home and
web.

It is not always an advantage to remove stopwords completely. Although
they are seldom included in the inverted index, documents with stopwords

1in fact, several search engines make an index over linktext, so that even if the keyword
isn’t explicitly contained in the document, it may be in the linktext of pages linking to it

12

Table 3.1: Stemming: Some words and their resulting base forms using Word-
Net’s morphological function.

angels → angel crawling → crawl went → go
running → run brainier → brainy goes → go

ran → run better → good chairs → chair
indices → index explore → explore

removed make strange snippets. Stopwords are rather kept in a separate list,
and marked when encountered. Algorithms running calculations will then
ignore them unless they are needed.

3.3 Stemming

Stemming and lemmatization are two related processes of word simplification.
Lemmatization is the process of reducing the different senses of a word to a
common lemma. Stemming is the process of reducing a word to its stem. But
while lemmatization requires an advanced dictionary to ensure correctness,
the stem doesn’t need to be identical with the morphological root. In fact,
the stem can be practically anything as long as all inflections of the word are
reduced to the same stem.

A stemmer can be implemented with a simple algorithm, such as the
Porter Stemming Algorithm [Porter, 1980]. But it is not always correct.
Both ”university” and ”universal” are transformed to ”univers” when using
Porter. An hybrid approach is to use dictionaries for exceptions from the
rules (ran → run). WordNet uses this approach [Fellbaum et al., 1998].

3.4 Generating Snippets

A snippet is defined as a window or a glimpse into the text, which will give
the user an idea about the document contents. The snippet is not a part of
document preprocessing itself, but combined with a query, a product of it.
Figure 3.1 gives an example of a snippet generated by our IR (Information
Retrieval) system.

Given a document d and a query q, finding the best snippet s(d, q) may
be seen as the process of calculating all possible snippets, giving each of them
a score, and picking the best one. The score can be calculated based on the
following criteria:

1. Should contain as many query keywords as possible.

13

Figure 3.1: Snippet example

2. Should give meaningful sentences.

3. Preferably at beginning of a paragraph or a meaning.

4. If several snippets give the same score, pick the first one.

If it is difficult to fullfill the first criteria, is is possible to generate two
queries of half the size, and concatenate them with ”...”. Snippet generation
may be implemented efficiently using dynamic programming.

14

Chapter 4

Clustering

4.1 History

Clustering algorithms in Information Retrieval can be traced back to
[Jardine and van Rijsbergen, 1971] and even [Broffit et al., 1966]. The Clus-
ter Hypothesis states that similar documents tend to be relevant to the same
queries. [Van Rijsbergen, 1979] suggest that clusters be computed once for
the entire corpora, so that documents from the precomputed clusters get in-
cluded in the retrieval phase. However, [Hearst and Pedersen, 1996] revises
this view, and states that if two documents d1 and d2 are both relevant or not
relevant for a given query, they must not be both relevent or nonrelevant for
a different query. Today, clustering techniques are usually applied at search
time.

4.2 Numerical Clustering Algorithms

Agglomerative Hierarchical Clustering (AHC) has been widely used in docu-
ment clustering and other IR applications for a long time [Rasmussen, 1992,
Willett, 1988]. Today AHC and K-Means clustering are regarded as the two
main approaches to document clustering in literature [Steinbach et al., 2000].
The Scatter/Gather document browsing system implements a combination
of both to ”get the best of both worlds” [Cutting et al., 1992].

4.2.1 Agglomerative Hierarchical Clustering

Also called bottom-up clustering, AHC begins with n clusters, where n is the
number of documents. Clusters are then compared, and the clusters closest
to eachother are merged. This is done in several steps, until all clusters are

15

Figure 4.1: This type of graph is called a dendrogram, and displays the
merging of clusters a-g from bottom to top.

a b c d e f g

bc de

def

abc defg

abcdefg

HH�����

XX00000

FF�����

VV.....

OO [[6666666666666666

GG������������������������

OO OO \\9999999999999999999999999999

??������

``AAAAAAA

merged into one. See Figure 4.1. To get the desired number of clusters, the
user will cut the tree at a given height. The comparison between clusters
are performed using a similarity function s(d1, d2), usually the tf · idf cosine
measure [Chakrabarti, 2003].

4.2.2 K-Means

AHC is fairly easy to implement, but uses a total running time of O(n2 log n).
It is not practical for large document sets. A common alternative is the
K-Means algorithm, first presented in [MacQueen, 1967]. The algorithm de-
pends on the user to choose the number k different clusters in advance. As
opposed to AHC, K-Means is a flat non-hierarchical algorithm, and runs in
O(kn) time.

Documents are represented as vectors. k initial centroids , one for each
cluster, are either picked randomly, or generated from a heuristic. All doc-
ument vectors are then compared to the centroids, and documents are as-
signed to the cluster of the nearest (most similar) centroid. The centroids are
then recalculated to be the best possible representation of it’s current clus-
ter, and clusters are regenerated according to the new centroid values. This
continues iteratively until the clusters or centroids doesn’t change (much)
[Chakrabarti, 2003].

16

Figure 4.2: A 2-dimensional representation of a clustergraph. Centroids are
marked with an ×.

•

��	�
��

•

��	�
��

•×

��	�
��
•

��	�
��×

•
��	�
��
• ��	�
��× ��	�
��

��	�
��
•
•

��	�
�� •
×

4.2.3 Number of Clusters

Both AHC and K-Means depends on the user to choose the number of desired
clusters. A common choice is k =

√
N , where N is the number of documents.

Another approach is the elbow criterion, which says that you should choose
a number of clusters so that adding another cluster doesn’t add sufficient
information.

4.3 Elliptic K-Means Clustering

In the original K-Means algorithm, similarity between the centroid and a
document is calculated simply using euclidean distance. However, for high-
dimensional data such as text documents, represented as tf · idf vectors, co-
sine similarity has been shown to be a superior measure [Strehl et al., 2000].
This suggest that the direction of a document vector is more important than
the magnitude [Zhong, 2005].

According to [Dhillon et al., 2001], elliptic K-Means has the property of
being able to exploit the sparsity of the vector space model, and can use
sparse matrices, as described in the next section. Elliptic K-Means runs in
time and space linear to the number of documents.

17

4.4 Sparse Matrices

An ordinary matrix can be refered to as a dense matrix . All values are stored,
column by column. Huge matrices takes up a lot of memory. Sparse matrices
on the other hand, only store the non-zero values and the corresponding
column and row indices. Dense matrices use m × n space, while sparse
matrices use 3× nz, where nz is the number of non-zero values.

This works well for document vectors. The total number of unique terms
is at least an 6-digit order of magnitude, while a typical web-document sel-
dom have more than a couple of thousand words. This means a lot of zeros
that can be skipped.

In a matrix m× n, with nz non-zero values, we define three arrays:

int col[n+1];

int row[nz];

double val[nz];

Column i starts at col[i], and ends at col[i+ 1]− 1. col[n] equals nz.

row[col[i]] is the row index of the 1st non-zero element in the i-th
column.

val[col[i]] is the value of the 1st non-zero element in the i-th column.

For example, consider the following matrix:
0 0.25 0 0 0 0 0

0.25 0 0 0 0 0 0
0 0 3.0 3.43 3.5 0 0
0 4.78 4.0 0 0 2.72 0

1.33 0 0 0 0 7.8 6.05

It may be stored as a sparse matrix in three arrays as follows:
col 0 2 4 6 7 8 10 11
row 1 4 0 3 2 3 2 2 3 4 4
val 0.25 1.33 0.25 4.78 3.0 4.0 3.43 3.5 2.72 7.8 6.05

18

Chapter 5

Suffix Tree Clustering

5.1 Introduction

In the traditional approach to document clustering, documents are treated as
sets of words, disregarding word sequences. [Zamir et al., 1997] argues word
proximity may be valuable in some cases, and furthermore that phrases makes
cluster labels more human readable. Based on these findings, Suffix Tree
Clustering (STC) was presented in [Zamir and Etzioni, 1998]. The assump-
tion is that common topics often share identical phrases, and that phrases
usually are more informative than unorganized sets of keywords. If two doc-
uments contain the phrase ”Ben and Jerry’s ice cream”, it can be assumed
they are somehow relevant to eachother [Stefanowski and Weiss, 2003].

5.2 Theoretical Background

In this section, we present the basics of suffix trees and generalized suffix
trees.

5.2.1 Suffix Trees

The suffix tree was first introduced by [Weiner, 1973]. It is a data structure
which contains all the suffixes of a given string, so as to run many important
string operations more efficiently. The string may be a string of characters
(”c”,”a”,”t”), which we use in the following examples. In the STC implemen-
tation, however, we will use string of words (”cat”,”ate”,”fish”). The suffix
tree for the string S is defined as a tree such that [Gusfield, 1997]:

• the paths from the root to the leaves have a one-to-one relationship
with the suffixes of S.

19

Figure 5.1: The suffix tree for the string bananas.

07162534123412341234

07162534123412341234 07162534123412341234 07162534123412341234 07162534123412341234

07162534123412341234 07162534123412341234 07162534123412341234 07162534123412341234

07162534123412341234 07162534123412341234

bananas
wwwwwwwwwww

{{wwwwwwwwwww
a

�������

�������
na

66666666

��66666666 s
JJJJJJJJJJJJJ

$$JJJJJJJJJJJJJ

na
�������

�������
s

��******* nas
�������

�������
s

��*******

nas
�������

�������
s

��*******

• all edges are labeled with non-empty strings.

• all internal nodes (except perhaps the root) have at least two children.

In this project we implemented suffix trees with Ukkonen’s algorithm
[Ukkonen, 1995]. Ukkonen’s algorithm has linear time complexity in the
length of the string. It also has the property of being on-line, which means
it processes the string from left to right. Since leaf nodes never will become
internal nodes, we only have to update the internal nodes for each element of
the string. Each node represent a string S[i..j]. For each internal node, we
assign a suffix pointer pointing to the last node of the suffix string S[i+1..j].
When adding a new element to the suffix tree, we only have to traverse the
internal nodes through the suffix pointers, and thus the algorithm is linear
in time [Nelson, 1996].

5.2.2 Generalized Suffix Trees

Ordinary suffix trees has the disadvantage of being able to only hold one
string of elements. To be able to hold several strings, we have to construct a

20

Figure 5.2: The suffix tree for the string bananas with suffix pointers added.

07162534123412341234

07162534123412341234 07162534123412341234 07162534123412341234 07162534123412341234

07162534123412341234 07162534123412341234 07162534123412341234 07162534123412341234

07162534123412341234 07162534123412341234

bananas
wwwwwwwwwww

{{wwwwwwwwwww
a

�������

�������
na

66666666

��66666666 s
JJJJJJJJJJJJJ

$$JJJJJJJJJJJJJ

na
�������

�������
s

��******* nas
�������

�������
s

��*******

nas
�������

�������
s

��*******

DD
xx

RR

21

data structure called a generalized suffix tree. This is possible in linear time
[Bille, 2005]:

• Append all strings to one big string

C = S1$1...Sn$n (5.1)

• Build a suffix tree from C using Ukkonen’s algorithm.

• Label all leaves by their positions in C.

• Remove all suffixes that span multiple strings.

• Convert leaf labels to include all strings containing the suffix.

5.3 The Algorithm

The STC algorithm consists of two major phases: the identifying and com-
bining of base clusters.

5.3.1 Identifying Base Clusters

After the documents have been cleaned and transformed into strings of words,
they are all inserted into a generalized suffix tree. All nodes (both internal
and external) in the tree with two or more documents, represent phrases
common to all documents in the node. Therefore all such nodes are base
clusters. Each base cluster is assigned a score

s(B) = |B| · f(|P |) (5.2)

where |B| is the number of documents in the base cluster, and |P | is the
number of words in phrase P that have a non-zero score. [Zamir and Etzioni, 1998]
states simply that words appearing in the stoplist, or that appear in too few
(3 or less) or too many (more than 40%) of the documents, receive a score
of zero, and all other words are not. <somebody> suggest each word can
have a score according to it’s df (document frequency) value. The function
f penalizes phrases consisting of one word, gives an linear increasing value
to phrases from two to six words, and a constant value for longer phrases.

22

Figure 5.3: The generalized suffix tree for the strings ”to do or not to do”
and ”do not do or not do”

root

1 1,2 φ φ

1 φ 2

1

1 1 2

2

2 2

to do
oooooooooooooooo

wwooooooooooooooooo
do

{{{{{{{{{{

}}{{{{{{{{{{{
or not

��

not
IIIIIIIIIIII

$$IIIIIIIIIIIII

or not to do

��

or not
�����

���������

not do or not do

((((((((((

��((((

to do
�������

�������

to do
�������

�������

to do

��

do or not do

��

do

(((((((

��(((((((

do

(((((((

��(((((((
do

111111

��1111111111

23

5.3.2 Combining Base Clusters

In this step, identical or similar base clusters are combined to form final
clusters. Base clusters Bm and Bn are similar if and only if equation 5.3 and
equation 5.4 holds. |Bm ∩Bn| represents the number of documents common
to both base clusters.

|Bm ∩Bn|
|Bm|

> 0.5 (5.3)

|Bm ∩Bn|
|Bn|

> 0.5 (5.4)

This forms a graph of connected components. Coherent subgraphs are
merged into final clusters. To preserve the time linear property of the al-
gorithm, [Zamir and Etzioni, 1998] perform this phase with only the k best
base clusters (k = 500 in their experiments). Several other authors however,
define a score threshold instead. [Stefanowski and Weiss, 2003] observes that
the choice of threshold strongly affects the number of discovered clusters.

5.3.3 Presentation

[Zamir and Etzioni, 1998] show only the top 10 base clusters, and labels it
with all of the phrases. They don’t say, however, how they rate the clusters.
It has been suggested using the combined score of all base clusters for this
rating.

STC produces a flat structure of possibly overlapping clusters. Docu-
ments may share more than one phrase with each other, and may therefore
belong to more than one cluster. This acknowledges the fact that documents
may have more than one topic.

The STC algorithm has a theoretically linear time complexity on the
number of words: O(|W |).

24

Part III

Implementation

25

Chapter 6

The Information Retrieval
System

6.1 Introduction

This chapter describes the implementation of the Information Retrieval Sys-
tem.

When reading reports on comparing or implementing clustering algo-
rithms for the use in document clustering, usually two different forms of
document collections are used. One is to use carefully crafted document
sets, like the TREC Collections. These sets are built from newswire reports,
abstracts of scientific articles from certain fields, journal articles, or even
internet blogs. Each set has a strict structure which all documents follow,
and are usually stored i XML or SGML format. One drawback of using this
method, is that even if algorithms may perform well on these document sets,
they may have major problems when facing real unstructured data.

The other form of document sets widely used, is simply to use or build
a meta-search engine. Meta-search engines sends out queries to a number of
internet search engines, and collocates the result snippets to form the data
sets. But when grouping the top ten or twenty results from a number of
internet search engines, the snippets may have an unusually high quality
when compared to ordinary web-documents.

Part of this assignment was to run the clustering algorithms on web-
data. We want to see how the clustering algorithms perform on ordinary,
unstructured web-content. For this we built our own information retrieval
system.

For convenience, the system has been split in several programs. This is
because when doing research, we sometimes want to run the same subprocess

27

over and over again, on the same data. The most important programs are:
build Processes all files, and builds the inverted index.
makeidf Calculates and stores the idf value for each word for

efficient lookup.
stoplist Extracts the n most common words from the inverted

index.
search Performs a search and returns a list of document id’s.
process_doc Retrieves a list of documents, and does the necessary

preprocessing.
showclusters Visualizes the documents in their

corresponding clusters for easy browsing.
See Appendix A for a closer look at each program. Pictures from the

resulting graphical view can be found in Appendix B.

6.2 The Open Directory Project

Web Crawlers are subject to a number of issues. They might follow loop-
ing links (documents refering to eachother), overwhelm servers with rapid
requests, and download huge amounts of unwanted data. The internet is
literally filled with spam. Web directories contain only manually added
URLs, and they are even categorized according to topic. We downloaded ap-
proximately 600.000 documents referred to from the Open Directory Project
(www.dmoz.org). By this, we avoided the potential problems of using a
crawler, and did not have to worry about spam pages.

6.3 Indexing

After downloading the documents, we built an inverted index. All documents
were parsed accoring to the rules in section 3.1.1. Words were extracted, and
we built a dictionary containing all unique words. Each word in the dictionary
contained a link to an static address in another file, listing the document id’s
for documents containing the word. See Table 6.1 for details.

HTML Parser Dictionaryword extraction //

At first we performed stemming, document cleaning, etc. at this stage
(building time), but this soon turned out to be unflexible. The complete
database had to be rebuilt even after minimal changes in the parser or stop-
word handling. These parts were moved to search time instead.

28

6.4 Search

Search System Document Cleaning
query // retrieved documents //

The clustering algorithms were tested with several kinds of input data.
This was handled by the search system. When retrieving documents from a
given query, the users has to specify the whether to:

• Extract the full document, paragraphs only, or snippet only.

• Return results according to the vector space model (for G-Means) or
as a list of words (for STC).

• Filter out numbers.

• Apply stemming.

• Use stopwords, and which sets of stopwords to use.

6.5 Stemming

Stemming was implemented with basis in WordNet’s [Fellbaum et al., 1998]
morphology function. Since WordNet is not optimized for this kind of use,
it performed badly in terms of speed. So we did some changes:

1. All words defined in the WordNet corpora were extracted to build a
simple and clean dictionary, containing only the words.

2. All words defined in the exception lists for the morphing functions were
merged into one file, containing only one lemma and one tense per line.

3. The complete dictionary and exception list is read into memory at
execution time.

Table 6.1: Structure of the database files used in the inverted index

dictionary

string word
pointer ii ptr

ii

int size
list<pointer> id ptr

id

string title
string url
string path
string category

29

WordNet treats nouns, verbs, adjectives and adverbs separately. As our
system does not know which class a word belongs to, we assume it’s the first
one that fits. The stemmer function morph(), and the related defined()
function are shown in table 6.2.

6.6 Parsing

Lexical analysis was done using an HTML parser written in lex and yacc.
After a search, the documents are retrieved using process_doc.

6.6.1 process doc

process_doc takes as input a list of document id’s. This program does a lot
of the magic before the clustering process takes place. process_doc has the
following parameter flags:

flags
-means <prefix> Notifies process_doc to create a sparse matrix in the

CCS format as output (for gmeans). When not specified,
the program will generate lists of words instead (for STC).

-snippet (default) Only tokens in the snippet will be used.
-paragraph Only tokens appearing in text paragraphs will be used.

The ’-snippet’ and ’-paragraph’-flags may not be used at the same time.

6.6.2 Snippets

Snippets are generated in the following way:

1. The document is scanned for all words contained in the query.

2. Paragraph and sentence boundaries are marked positive.

3. Anchor text is marked negative.

For each possible snippet, points are given according the above criterias.
The best snippet is returned. In some cases the snippet is split into two
smaller snippets separated with ’...’. Internet Search Engines usually calcu-
late snippets of approximately 160 characters. For the purpose of clustering,
more relevant information can be gained by increasing this size. Therefore
snippet size has been set to be 320 characters wide.

30

Table 6.2: Pseudo C++-code for the morph() and defined() function.

bool defined(string s)

{

if (Dictionary.find(s))

return true;

else

return false;

}

string morph(string s)

{

if (s.length()<=2) return s;

if (it=ExceptionList.find(s))

return (*it).second;

string sufx[20] = {

/* Noun suffixes */

"s", "ses", "xes", "zes", "ches", "shes", "men", "ies",

/* Verb suffixes */

"s", "ies", "es", "es", "ed", "ed", "ing", "ing",

/* Adjective suffixes */

"er", "est", "er", "est"

};

string addr[20] = {

/* Noun endings */

"", "s", "x", "z", "ch", "sh", "man", "y",

/* Verb endings */

"", "y", "e", "", "e", "", "e", "",

/* Adjective endings */

"", "", "e", "e"

};

string stem, suffix;

if (is_suffix(s, "ful"))

{

stem.assign(s, 0, s.length()-3);

suffix = "ful";

}

else

{

stem = s;

suffix = "";

}

for (int i=0; i<20; i++)

{

if (is_suffix(stem, sufx[i]))

{

string ret;

ret.assign(stem, 0, stem.length() - sufx[i].length());

ret+= addr[i];

if (defined(ret))

{

ret+= suffix;

return ret;

}

}

}

return s;

}
31

6.6.3 Paragraph Filtering

Paragraphs, or blocks of text within the document, are recognized by sepa-
rating the stream of words with paragraph boundaries. To do this, we use the
information already contained in the HTML. Tags like <p>, <div>, <table>
and <tr>, marks local boundaries of text. For each paragraph, tokens are
matched against the dictionary. If a paragraph contains 40 words or more,
and at least 60% of the words exists in the dictionary, it is regarded it a
informative paragraph and kept. All other text is filtered out.

32

Chapter 7

Spherical K-Means

7.1 Gmeans

For running the Spherical K-Means algorithm, the gmeans package was used.
This package is freely available from
http://www.cs.utexas.edu/users/dml/Software/gmeans.html. Gmeans is avail-
able under the GNU General Public License, and was written by Yuqiang
Guan. Also see [Dhillon and Modha, 2001]. Some minor adjusting was done
to the source code in order to make it work with the gcc 4.1 compiler.

Gmeans uses the sparse matrix as described in section 4.4. Following the
CCS format, the matrix itself is spread among three files: matrix_col_ccs,
matrix_row_ccs, and matrix_tfn_nz. In addition, matrix_docs lists the
full document id’s, and matrix_words lists the words.

After a succesful run, the results are written to files
matrix_tfn_doctoclus.X and matrix_tfn_wordtoclus.X. The first file lists
clusters and document id’s. The latter lists the cluster each word belongs to.
The big X is replaced by a number indicating the final number of clusters.

7.2 Running

When running gmeans, the user has to specify the number of clusters gmeans
should generate. This can be a range. As default, gmeans will try to pick the
1st initializing centroids as far from the center of the data set as possible, and
well separate all centroids. This is not always a good choice when dealing
with document sets, so we used randomly picked vectors as centroids instead.

When running gmeans, we used the following command:

gmeans -i c -c <#clusters> -W -w -1 <prefix>

33

Where prefix is the prefix of the input files, and
√
|N | was inserted as

the clustersize. gmeans will not necessarily return the specified number of
clusters, it is merely a suggestion.

34

Chapter 8

STC

Suffix Tree Clustering was implemented using the algorithms described in
chapter 5.

8.1 Input

The input file (generated by process_doc) contains all the necessary doc-
ument information needed. For each document, there is a record of the
following format:

docid Docid of the retrieved document.

url Internet URL.

path Local path and filename.

category Category as listed in dmoz.

title Document title.

snippet Generated snippet.

data Sequence of words and idf values.

Table 8.1 shows a sample document. If, when running process_doc, the
paragraph flag was specified, the ’data’-field will include all the paragraphs.
The only restriction is that the field will be truncated if its size exceeds 1MB
(which is a lot for a stripped html-file).

35

Table 8.1: A sample document retrieved from the query ”1929”. Each word
in the ’data’-field is followed by its idf value. Stopwords recieve a score of
zero.

docid 22577

url http://econ161.berkeley.edu/TCEH/Slouch Crash14.html

path GX000/DIR98/GX000-98-23998

category Top/Society/History

title Sliding into the Great Depression

snippet The stock market did crash in October of 1929; ”Black Tuesday”;,
October 29, 1929, saw American common stocks lose something like a
tenth of their value. That it was ripe for a bursting of the bubble is well
known; the exact reasons why the bubble burst then are unknowable;
more important are the consequences of ...

data the 0 stock 1.14465 market 2.63389 do 0 crash 0.629546 october
0.238003 quot 0 black 0.0881097 tuesday 0.0997683 quot 0 october
0.238003 see 0 american 0.191818 common 0.110997 stock 1.14465 lose
0.675898 something 0 like 0 tenth 0 their 0 value 0 that 0 be 0 ripe 0
for 0 burst 0.61328 the 0 bubble 0.472029 well 0 know 0 the 0 exact 0
reason 0.245312 why 0 the 0 bubble 0.472029 burst 0.61328 then 0 be
0 unknowable 0 more 0 important 0.281325 be 0 the 0 consequence 0

36

8.2 Score

Two base cluster score schemes were tested. The first follows the scheme of
the original article [Zamir and Etzioni, 1998]:

• Phrases of size 1 were given a score of 0.30.

• Phrases of sizes 2 to 6 were given a score of 1.75 + size
2

.

• Longer phrases were given a score of 4.75.

Additionaly, each stopword was rewarded with a score of 0.001, as phrases
like ”the planet mars”are more descriptive than ”planet mars”. The score was
finally multiplied with the number of documents the base cluster occured in.

[Stefanowski and Weiss, 2003] uses a variation, and includes the tf · idf
score for each word. We slightly modified this, and made the following
scheme:

• Let x =
∑

w idf(w) for all words w in the phrase that is not a stopword.

• Phrases of size 1 were given a score of 0.30 + x
10

.

• Phrases of sizes 2 to 6 were given a score of 1.75 + size
2

+ x
size·10

.

• Longer phrases were given a score of 4.75 + x·6
size·10

.

As before, stopwords were rewarded with 0.001 score, and the final score
was multiplied with the number of documents. The tf score was not included,
as the term frequency of a random document containing the phrase of the
basecluster should be irrelevant.

8.3 Threshold

Only the top base clusters are chosen for cluster calculation. The program
supports both picking the top 500 (or any other value) base clusters, as in
the original article, or the use of a threshold. When using a score threshold,
every base cluster scoring above the threshold will be picked.

37

38

Chapter 9

Distributed Suffix Tree
Clustering

9.1 Introduction

For this experiment we chose the STC algorithm. The on-line property of
the algorithm and the way base clusters are found and combined, makes this
a good candidate for an distributed implementation.

The documents are equally divided among the nodes. Each node performs
the identifying phase, and score calculations independent of eachother. The
master node does the final clustering, which is fast. All the time-consuming
parts are distributed among the nodes.

9.2 Implementation

The STC source code was expanded to include server and client networking.
When executing the server (or the master node), a prompt like this will
appear:

Waiting for connections. Enter ’start’ to begin.

New connection(0)

New connection(1)

New connection(2)

The client program can be run from any computer. No data files are
necessary. Everything is transferred through the master node.

The user initializes the clustering process by typing start into the termi-
nal. The master node will then read all document data according to Section

39

8.1. The data is split in equal sizes for all nodes. As the STC algorithm has
a running time based on number of words, and not number of documents (as
elliptic K-Means), this split will be performed based on document lengths.

The data is then sent to all client nodes, and each node (including the
master) immediately starts processing. Each node goes through the inden-
tifying phase on its own. Then they will all calculate base cluster score
independent of each other (the first part of the second phase). The best base
clusters will be sent back to the master node, which merges all the baseclus-
ters. When the best base clusters of the merged list are chosen, requests are
sent to all nodes to return the list of documents for all phrases contained in
these. The final merging to clusters will be performed at the master node.
The full data flow between the nodes can be seen in Table 9.1.

It is the users choice if the top 500 baseclusters should be picked, or if
a threshold should be followed. In the case of a threshold value, each node
will use the threshold value divided by the number of nodes. Because if a
final base cluster scores above the threshold, at least one node should have
the same base cluster scoring above the reduced threshold.

40

Table 9.1: C++ pseudo-code for the server-side client/server communication.

int n = server->numConnections();

for each client[c]

client[c] << threshold / n;

for each document[d]

for each {client[c], master node}

if this node has recieved fewest words so far

{

if this node is a client

client[c] << document[d];

else

SuffixTree.add_document(document[d]);

break;

}

for each client[c]

client[c] << signal_no_more_documents;

base_clusters bc = SuffixTree.calculate_base_clusters();

for each client[c]

{

base_clusters c_bc;

client[c] >> c_bc;

merge c_bc into bc;

}

base_clusters top = pick_best_baseclusters(b);

for each client[c]

client[c] << top;

final_base_clusters fbc = SuffixTree.get_base_clusters(top);

for each client[c]

{

final_base_clusters c_fbc;

client[c] >> c_fbc;

merge c_fbc into fbc;

}

results r = calculate_clusters(fbc);

print_results(r);

41

42

Part IV

Results

43

Chapter 10

Cluster Quality

How can we measure the quality of clusters? Evaluation of results is perhaps
the most difficult part when testing search results clustering algorithms, ac-
cording to [Stefanowski and Weiss, 2003]. [Macskassy et al., 1998] studied
human based clustering, and found little similarity between different sub-
jects. Nevertheless, a common approach is to use predefined collections and
measure the quality with information-theoretic entropy .

10.1 Quality Measure

[Dom, 2001] has proposed a measure of quality between two partitions of a
set of objects. In clustering algorithms we refer to the ground truth as the
wanted partition. Several formulas are given for different cases. We need
one which doesn’t require the algorithmically generated partition to have the
same number of clusters as the ground truth partition.

We applied the same measures as in [Stefanowski and Weiss, 2003]. From
Byron Dom [Dom, 2001]:

Q0 = −
|C|∑
c=1

|K|∑
k=1

h(c, k)

n
log

h(c, k)

h(k)
+

1

n

|K|∑
k=1

log

(
h(k) + |C| − 1

|C| − 1

)
(10.1)

C represents the ground truth partition, and K represents the partition
generated by the cluster algorithm. c and k are the clusters of C and K
respectively. h(c, k) is the number of documents labeled cluster c that are
assigned to k. h(k) is h(c, k) for all c ∈ C. n is the number of documents.

45

10.2 Open Directory

Since we only used documents from the Open Directory Project, all doc-
uments are already precategorized. However, when given a specific search
query, we found that topics tended to be spread over several categories. For
instance, the cluster ”artificial intelligence” belongs to
Computers/Artificial Intelligence, Games/Video Games and Society/Philosophy.
And some categories are found in nearly all clusters, like Regional/North America.

First, instead of formulating a query, we extracted 3500 random docu-
ments from 7 categories (500 from each). These were then clustered using
both gmeans and STC. Immediately this was shown to not be a good ap-
proach. Why? The most common phrases were phrases such as ”this page
has moved” and ”copyright 2007”. Even with a big list of stopwords (3500
words) extracted from the inverted index, most clusters were based on sim-
ilarities in structure, not in content. An even bigger list of stopwords may
have been used, but then useful words started to disappear too.

This problem might be avoided by using document sets like the TREC
collection, which has pure content. It is also possible to give negative score to
all paragraphs which contain an sufficient amount of stopwords, and remove
complete paragraphs. In either way, this is not really search results cluster-
ing (it is performed before search time), and is out of the scope for this thesis.

When using search and queries, content-free documents will (usually) not
appear at all. And the documents will be more similar in general, giving more
weight to topic-specific words, which in turn make the clusters. In addition,
when using queries and snippets only, snippets only give words in proximity
to the search query. Such words will seldom be of an unrelated topic. That is
why the problems discussed in the previous paragraph seldom affect normal
search results clustering.

10.3 Human-based Clustering

What we did was to conduct a series of queries, and manually cluster them
based on 10-15 keyword phrases (subqueries). Several queries were used.
Example queries shown in this thesis are:

• Harry Potter (673 documents).

• Prime Minister (1531 documents).

• Intelligence (4733 documents).

46

Table 10.1: Manually constructed cluster labels
Harry Potter
lord of the rings
philosopher’s stone
chamber of secrets
prisoner of azkaban
goblet of fire
order of the phoenix
half-blood prince
deathly hallows
(harry potter) movie
j.k. rowling
daniel radcliffe
hogwarts

Prime Minister
tony blair
gordon brown
election
parliament
kevin rudd
stephen harp
ehud olmert
british
deputy prime minister
ariel sharon

Examples of the handpicked clusters are presented in table 10.1.

10.4 Results

The STC algorithm, with snippets as input, produced the clusters presented
in table 10.2 when given queries ”Harry Potter” and ”Prime Minister”. The
clusters are represented by the phrase with the highest base cluster score.
As the reader might notice, the words have been subject to stemming, and
small words like ”of” are not included at all.

As we can see, the cluster names give an good indication on the clusters
produced. Several of the names suggest they represent the same clusters as
the manually labeled ones.

However, STC with all text paragraphs as input, seems to produce clus-
ters based on more general terms, as can be seen in the table below. While
snippets only contains words in proximity of the query, the complete doc-
ument might discuss the broader topic in general. Such as politics or the
european union in the case of the query ”Prime Minister” (in table 10.3).

10.4.1 Similarity Values

All queries were run through both the gmeans and the STC algorithm. Figure
10.1 show the similarity values between the produced clusters, and the ground
truth. As we can see, STC produces more similar clusters given snippets only,
while gmeans running elliptic K-Means produces more similar values when

47

Table 10.2: STC (with snippets)

Harry Potter
lord the ring
deathly hallow
chamber secret
half blood prince
prison azkaban
warn bros
mario matchmaking mariah
pirate the caribbean
the sorcerer’s stone
philosopher’s stone
clich philosophy plato’s
the train layout
john harry grainger
phoenix
the goblet fire
relate topic biografi
rowling bloomsbury
harry potter character

Prime Minister
tony blair
constitution executive judicial
gordon brown
universit bern institut
kevin rudd
elect direct popular
stephen harp
ehud olmert
british
deputy
judicial court
universit bern institut
constitution
ariel sharon
appoint
manmohan singh
unicameral seat member
elect the president
israeli
cambodia nov cambodian
nawaz sharif
jawaharlal nehru
follow joint meet
pakistan continue concern
judicial court supreme
datebook november kyrgyz
relate taha ramadan’s
call fax the
ben gurion
tony blair’s
prime minister kevin
saxe coburg gotha
and imperil spokeswoman
freedom party announce
canadian prime minister
nov that form
look for right
israeli prime minister
there be pressure

48

Table 10.3: STC (with paragraphs)
Prime Minister
political
comoros congo brazzaville
soviet union
supreme court
bush administration
democratic
fund
europe
european union

given the bigger portion of information (paragraphs).
Several articles, among them [Zamir and Etzioni, 1998], have reported

that using snippets for the clustering process, is ”good enough”. In our tests,
we found that STC actually performs better using snippets, when used on
real web-data.

10.4.2 Removal or Keeping of Common Words

We now remove words that occur more than 40% in the query-produced
document set (in addition to stopwords). But what if we didn’t? Given the
query ”Intelligence”, STC produces the clusters in tables 10.4 and 10.5. As
we can see, when the common words are kept, the description labels are more
informative, and several of the top clusters (the lists are sorted) appears to
be more relevant. But if we do the same test with ”Harry Potter”, it has a
partial opposite effect. For instance, the top cluster is ”harry potter and”.
The second cluster is ”the harry potter”, and the list includes seven more
clusters of the form ”harry potter and <something>”.

49

Figure 10.1: Similarity values, a comparision

50

Table 10.4: Generated cluster labels with common words removed.
Intelligence (common words removed)
dept state chief
artificial
agency
nuclear weapon
weapon
emotional
handbook latin american
site route plan
library congress december
challenge read more
competitive
gunnar anzinger
weapon mass destruction
smiley central nhl
napolitano red eye
bin lade
universe
and artificial
and sarai mitnick
library congress january
that quot iran
december iaea director
world factbook
interrogation war congress
our wide range

51

Table 10.5: Generated cluster labels without common words removed.
Intelligence (common words kept)
artificial intelligence
intelligence agency
emotional intelligence
nuclear weapon
competitive intelligence
and artificial intelligence
intelligence estimate
weapon
extraterrestrial intelligence
handbook latin american
site route plan
library congress december
divine intelligence
read more help
defense intelligence
republic central intelligence
gunnar anzinger
the field artificial
weapon mass destruction
central intelligence agency
smiley central nhl
the follow map
napolitano red eye
intelligence laboratory
aka artificial intelligence
universe
library congress january
and sarai mitnick
that quot iran
world factbook
december iaea director
interrogation war congress
our wide range

52

Chapter 11

Speed Measure

The clustering algorithms were also compared in speed. 6 collections of dif-
ferent sizes, were generated by random chosen documents from the query
”Computer”. Document size, number of words contained, and the number of
baseclusters generated for each collection, can be seen below in table 11.1.
The tables show only the values for documents processed with the paragraph
option. The observant reader might notice that the table only show 5 collec-
tions. The 6th was of size 15000, and had to be removed from the paragraph
set (it is retained in the snippet set) because the test-computer ran out of
memory when running STC.

Benchmarking was done using gmeans, STC and the distributed version
of STC (from now on referred to as stc_net). The main computer used was a
dual processor, dual core intel cpu of 2.13GHz each, with 3GB RAM running
on the linux operating system. stc_net was run on four nodes. Two of the
nodes were run on the main computer itself, to exploit both it’s processors,
the other two were run on two computers, both with the same specifications
as the main computer, but with only one processor each.

Figures 11.1 and 12.1 shows the time used by each program, measured in
seconds. All programs are theoretically time linear. However, none of them
appear completely linear. This is especially evident in STC. Reasons might

Table 11.1: Number of documents and words
Documents Words Baseclusters
10000 6689940 7904383
5000 3228589 3814591
2500 1549639 1833148
1000 636529 758747
500 286993 341772

53

Figure 11.1: Total running time based on document set size. With snippets.

be related to memory caching or a high algorithmically constant. We should
also consider the possibility that there are elements in STC which doesn’t
run in constant time.

11.0.3 stc net

As can be seen, stc_net using the hardware described, performs at approxi-
mately 2

5
of the speed of STC running on only one processor on one computer.

Substantially gain in speed can therefore be gained by running STC on sev-
eral computers.

11.0.4 gmeans

gmeans uses slightly less time without the ”-w -1”-option. But then it would
for several document sets run into a loop, and never terminate. This happens
when gmeans get empty clusters after clustering. The ”-w -1”-option prevents
this by trying to reduce the number of clusters. However, at one occation it

54

Figure 11.2: Total running time based on document set size. With para-
graphs.

55

ran into a loop even with this option enabled. This shows that gmeans in it’s
original form, can’t be trusted to always return a set of clusters1.

1Hopefully it might be possible to build a workaround by altering the gmeans source
code

56

Chapter 12

Further Discussion and
Conclusion

12.1 STC and Number of Base Clusters

The original article [Zamir and Etzioni, 1998] suggests using k = 500 base
clusters for the final merging. [Stefanowski and Weiss, 2003] uses a prede-
fined threshold, in which all base clusters scoring above the threshold are
included in the final merging. They further state: ”We observed that the
choice of base cluster score threshold of the STC algorithm is a crucial issue
as it strongly affects the number of discovered clusters.”

We tested both methods, and found that even if the number of clusters
varies dramatically, the top clusters don’t. While threshold values have to
be changed according to the size of the document set, k = 500 always gives
a useful amount of base clusters. On the other hand, an optimal threshold
value for one document set, might be inadequate for another. For example
when one is larger than the other.

Table 12.1 shows the top ten clusters on the query ”intelligence”. Figure
12.1 shows the similarity values for threshold values ranging from 10 to 35,
using all clusters and only top ten clusters. Number of clusters generated for
each threshold can be seen in table 12.2.

As can be seen, the top ten clusters gives a constant value until the thresh-
old produces less than 500 base clusters at the end. The reason similarity
values when all clusters are included is much higher, is because many small
clusters tend to have high similarity. In either way, only the top clusters are
relevant for the user.

Since we have showed that top clusters doesn’t vary much, a constant
value k is the better candidate. The threshold value score is an unecessary

57

Table 12.1: Top clusters for two different threshold values.
Threshold value=10
artificial intelligence
intelligence agency
emotional intelligence
nuclear weapon
competitive intelligence
and artificial intelligence
intelligence estimate
the central intelligence
weapon
intelligence agency the

Threshold value=35
artificial intelligence
intelligence agency
emotional intelligence
nuclear weapon
competitive intelligence
and artificial intelligence
intelligence estimate
weapon
extraterrestrial intelligence
handbook latin american

Table 12.2: Threshold and number of clusters.
threshold clusters
10 210
15 136
20 110
25 70
30 36
35 27

variable, and can be removed from the algorithm completely.

12.2 STC and Hierarchical Clusters

This is best described by an example. For a search on planets in the solar
system, ”jupiter saturn” and ”saturn jupiter” will be clustered into different
clusters. Since ”jupiter” and ”saturn” also are base clusters, a solution will be
to merge the former baseclusters with the latter. However, a base cluster like
”jupiter” will be much larger than ”jupiter saturn”. This might be prevented
by adding a rule when merging base clusters: all base clusters contained fully
in another, should be merged.

But this is not always wanted. For instance might ”tony blair”, ”gordon
brown”, etc. be merged into a base cluster ”prime minister”. The problem
might also be fixed by stating that phrases which are palindromes of each
other is equal, but this is not compatible with the STC per definition. What
we want is some hierarchical form of clustering (not flat). Humans also tends
to cluster in overlapping hierarchies, according to [Macskassy et al., 1998].

58

Figure 12.1: Similarity values with different thresholds.

59

12.3 Conclusion

We compared the Suffix Tree Clustering algorithm with Elliptic K-Means.
We proved that the latter is superior in speed, while the former performs
generally better in quality. When using snippets only, STC are only slightly
slower than elliptic K-Means for document sets up to 1000 documents in our
experiments.

We also created a distributed version of STC. We showed that a sub-
stantial speed increase can be gained by running the algorithms on several
computers. stc_net is never outperformed by gmeans in our experiments
with snippets, only in the experiments with text paragraphs (full document
filtered by a heurestic).

The algorithms were tested by varying the input data, stemming and
stopwords were tested with nothing substantial to report. The biggest differ-
ences were shown when varying the size of the input data. A snippet of 320
characters gave good results with STC, while giving the full textual content
with some simple heurestic employed to filter out garbage data, made Elliptic
K-Means perform slightly better.

Clustering algorithms were tested on real web-data. Other reported tests
are usually performed on top ranked (good quality) documents, or pure con-
tent document sets, such as TREC. STC has been reported to perform ”good
enough” with snippets only. We show that on real web-data, STC actually
gives better quality using snippets only, and is more than ”good enough”.

As it is not necessary to cluster more than, perhaps, the 500 best ranked
documents in a modern search engine, we conclude that STC would be the
better choice over Elliptic K-Means. It performs adequately in speed, and
better in terms of quality.

STC was also compared with varying base cluster score thresholds, and
the constant number of k = 500 top base clusters. Although the threshold
has a great impact on the number of clusters generated, the top clusters vary
little. We conclude that using a constant number of base clusters for base
cluster merging, is more useful than using a defined threshold. The threshold
value score is an unecessary variable, and can be removed from the algorithm
completely.

There is still room for improvement, however. We adressed STC’s in-
ability to cope with hierarchical structures. Clusters produced are far from
optimal in terms of quality. But document clustering is an exciting field, and
we hope to see more improvements in the future.

60

Appendix A

Programs

build

Input A list of documents and their paths.

Output dictionary, ii, id

Reads and parses each document. All tokens (words or numbers) are
extracted, and converted to lowercase. No stemming is performed at this
stage. Builds an inverted index. Format of the output files are described in
Table 6.1.

makeidf

Input Stemmer, dictionary, ii

Output idf

Traverses all words in the dictionary, and calculates the idf score for each
term based on its document count. The score values are then saved for later
efficient lookups.

stoplist

Input n, dictionary, ii

Output A list of all words that occur in more than n documents.

Iterates the inverted index, and prints all words occuring in more than
the given number of documents.

61

search

Input Query q, dictionary, ii

Output A list of all documents matching query q.

Parses the query q. Looks up all keywords in the dictionary, and merges
the corresponding lists of documents. Returns the list of documents.

process doc

Input Format flags, list of documents, query q, id, idf

Output Retrieved documents, either as sparse matrix or list of terms.

Retrieves and processes all documents based on the given flags. Described
in more detail in Section 6.6.

showclusters

Input List of documents and corresponding clusters, query q, id

Output Snippets of all documents sorted in clusters, written to a HTML-
file.

Visualizes clusters and documents for easy browsing.

62

Appendix B

Screenshots of Browser
Representation

63

Figure B.1: Snapshot from the browser view. Clusters are listed in the menu.

64

Figure B.2: Snapshot from the browser view of cluster #14.

65

66

Bibliography

[Baeza-Yates et al., 1999] Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999).
Modern information retrieval. Addison-Wesley Harlow, England.

[Bille, 2005] Bille, P. (2005). Suffix trees and applications.

[Broffit et al., 1966] Broffit, J., Morgan, H., and Soden, J. (1966). On Some
Clustering Techniques for Information Retrieval. Report ISR, 1(11).

[Bush, 1996] Bush, V. (1996). As we may think. interactions, 3(2):35–46.

[Chakrabarti, 2003] Chakrabarti, S. (2003). Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan Kaufmann.

[Chudnovsky, 2005] Chudnovsky, A. (2005). Indexing good content – not
junk.

[Cutting et al., 1992] Cutting, D., Karger, D., Pedersen, J., and Tukey, J.
(1992). Scatter/Gather: a cluster-based approach to browsing large docu-
ment collections. Proceedings of the 15th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
318–329.

[Dhillon et al., 2001] Dhillon, I. S., Fan, J., and Guan, Y. (2001). Efficient
clustering of very large document collections. In R. Grossman, C. Kamath,
V. K. and Namburu, R., editors, Data Mining for Scientific and Engineer-
ing Applications, pages 357–381. Kluwer Academic Publishers. Invited
book chapter.

[Dhillon and Modha, 2001] Dhillon, I. S. and Modha, D. S. (2001). Con-
cept decompositions for large sparse text data using clustering. Machine
Learning, 42(1):143–175.

[Dom, 2001] Dom, B. (2001). An information-theoretic external cluster-
validity measure. Research Report RJ, 10219.

67

[Fellbaum et al., 1998] Fellbaum, C. et al. (1998). WordNet: an electronic
lexical database. Cambridge, Mass: MIT Press.

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on strings, trees, and se-
quences. Cambridge University Press New York.

[Harman, 1993] Harman, D. (1993). Overview of the first TREC conference.
Proceedings of the 16th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 36–47.

[Hearst and Pedersen, 1996] Hearst, M. A. and Pedersen, J. O. (1996). Re-
examining the cluster hypothesis: scatter/gather on retrieval results. In
SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 76–84,
New York, NY, USA. ACM.

[Jardine and van Rijsbergen, 1971] Jardine, N. and van Rijsbergen, C.
(1971). The Use of Hierarchic Clustering in Information Retrieval. In-
formation Storage and Retrieval, 7(5):217–240.

[Lewis, 1995] Lewis, P. H. (1995). Digital equipment offers web browsers its
‘super spider’. The New York Times.

[Luhn, 1957] Luhn, H. (1957). A statistical approach to mechanized encod-
ing and searching of literary information. IBM Journal of Research and
Development, 1(4):309–317.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1(281-297):14.

[Macskassy et al., 1998] Macskassy, S., Banerjee, A., Davison, B., and Hirsh,
H. (1998). Human Performance on Clustering Web Pages. Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM Press, New York, pages 264–268.

[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. McGraw-Hill.

[Nelson, 1996] Nelson, M. (1996). Fast String Searching With Suffix Trees.
Dr. Dobbś Journal, pages 115–119.

[Porter, 1980] Porter, M. (1980). An Algorithm for Suffix Stripping Program.
Program, 14(3):130–137.

68

[Raggett et al., 1999] Raggett, D., Le Hors, A., and Jacobs, I. (1999). HTML
4.01 Specification. W3C Recommendation REC-html401-19991224, World
Wide Web Consortium (W3C), Dec.

[Raghavan and Wong, 1986] Raghavan, V. and Wong, S. (1986). A critical
analysis of vector space model for information retrieval. Journal of the
American Society for Information Science, 37(5):279–287.

[Rasmussen, 1992] Rasmussen, E. (1992). Clustering algorithms.

[Salton, 1971] Salton, G. (1971). The SMART Retrieval System — Experi-
ments in Automatic Document Processing.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C. (1975). A vec-
tor space model for automatic indexing. Communications of the ACM,
18(11):613–620.

[Singhal, 2001] Singhal, A. (2001). Modern Information Retrieval: A Brief
Overview. Bulletin of the Technical Committee on Data Engineering.

[Stefanowski and Weiss, 2003] Stefanowski, J. and Weiss, D. (2003). Carrot2
and language properties in web search results clustering. Proceedings of
the International Atlantic Web Intelligence Conference.

[Steinbach et al., 2000] Steinbach, M., Karypis, G., and Kumar, V. (2000).
A comparison of document clustering techniques. KDD Workshop on Text
Mining, 34:35.

[Strehl et al., 2000] Strehl, A., Ghosh, J., and Mooney, R. (2000). Impact of
similarity measures on web-page clustering. Proc. AAAI Workshop on AI
for Web Search (AAAI 2000), Austin, pages 58–64.

[Ukkonen, 1995] Ukkonen, E. (1995). On-line construction of suffix trees.
Algorithmica, 14(3):249–260.

[Van Rijsbergen, 1979] Van Rijsbergen, C. (1979). Information Retrieval.
Butterworth-Heinemann Newton, MA, USA.

[Weiner, 1973] Weiner, P. (1973). Linear pattern matching algorithms. Pro-
ceedings of the 14th IEEE Symposium on Switching and Automata Theory,
pages 1–11.

[Willett, 1988] Willett, P. (1988). Recent trends in hierarchic document clus-
tering: a critical review. Information Processing and Management: an
International Journal, 24(5):577–597.

69

[Zamir and Etzioni, 1998] Zamir, O. and Etzioni, O. (1998). Web document
clustering: a feasibility demonstration. In SIGIR ’98: Proceedings of the
21st annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 46–54, New York, NY, USA. ACM.

[Zamir et al., 1997] Zamir, O., Etzioni, O., Madani, O., and Karp, R. (1997).
Fast and intuitive clustering of web documents.

[Zhong, 2005] Zhong, S. (2005). Efficient online spherical K-means cluster-
ing. Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE Interna-
tional Joint Conference on, 5.

70

	Title Page
	masteroppgave.pdf

