
Scalable Region Query Processing in
Spatial and Spatiotemporal Databases

Vigleik Lund

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

In recent years, there has been an increased focus on providing support for large spa-
tial and spatiotemporal point data by using locality-preserving linearization techniques
to transform multi-dimensional data into one-dimensional data and store the trans-
formed data in scalable key-value NoSQL stores. Spatial and spatiotemporal region
queries are then executed by decomposing the query into multiple linear range scans
on the linearized system and processing the range scans in a filter-and-refine man-
ner. The process of decomposing a multi-dimensional region query into a number of
smaller linear range scans and reduce the number of false hits is essential for achieving
efficient query processing in these systems. However, there exists a trade-off between
the overhead due to creating additional range scans and the overhead due to removing
false positives.

We have, in this thesis, studied various existing methods of decomposing spatial and
spatiotemporal region queries into linear range scans. Based on the research, we have
proposed a cost-driven approach that decomposes a query according to the data dis-
tribution, which is estimated by a histogram. The proposed method has been imple-
mented in a simple database prototype and evaluated with real-world test data, and
compared against a popular and more space-driven decomposition approach.

The experiments show that our method is able to outperform the baseline approach
for both spatial and spatiotemporal point data with most improvement for the latter.
One of the main strengths of the proposed method over the baseline is the capability to
create an accurate decomposition with a relatively few range scans when dealing with
skewed data. The downside is having to maintain a histogram over the data, which can
be prohibitively expensive when dealing with large datasets. However, measures such
as sampling were found to reduce this cost significantly with minimal impact on per-
formance.

i

Sammendrag

I de senere år har det vært et økt fokus på å gi støtte til behandling av store mengder
romlig og romlig-temporale punktdata ved å bruke lokalitetsbevarende lineæringstek-
nikker til å transformere flerdimensjonal data til endimensjonal data og lagre den trans-
formerte dataen i skalerbare og nøkkelbaserte NoSQL databaser. Den lineariserte dataen
kan da hentes ut med romlig og romlig-temporale region-spørringer ved å dekomponere
spørringene til et sett med lineære intervall-spørringer og prosessere disse intervall-
spørringene med filter-og-rense teknikk. Dekomponeringsprosessen som dekomponerer
en region-spørring til intervall-spørringer og reduseres antall falske treff er essensiell
for å oppnå høy ytelse i disse systemene. Men det eksisterer en avveiing mellom kost-
nadene knyttet til å generere intervall-spørringer og å fjerne falske treff.

Vi har i denne avhandlingen undersøkt de ulike metodene som brukes til å dekom-
ponere romlig og romlig-temporale region spørringer til lineære intervall-spørringer.
Basert på denne undersøkelsen så har vi forslått en kostnadsdreven dekomponeringsme-
tode som dekomponerer spørringer med hensyn til datadistribusjonen ved å bruke his-
togrammer. Denne metoden har vi implementert i en enkel databaseprototype og eval-
uert med reelle testdata, og videre sammenlignet resultatene mot en populær og romlig
styrt dekomponeringsmetode.

Eksperimentene våre viser at vår metode yter bedre enn baseline mot både romlig og
romlig-temporale punktdata. Vår metode demonstrerte størst ytelsesforbedring mot
romlig-temporal punktdata. En av de store fordelene med vår metode er at den er
i stand til å generere en nøyaktig dekomponering med forholdsvis få antall intervall-
spørringer når dataen er ikke-uniform. Ulempen med vår metode er at vi må vedlike-
holde et histogram over dataen. Dette kan være uoverkommelig dyrt når man arbeider
med store datamengder. Vi klarte å redusere denne kostnaden betraktelig uten å nevn-
everdig påvirke ytelsen med tiltak som sampling.

ii

Preface

This master thesis was written during the spring of 2018 at the Norwegian University of
Science and Technology (NTNU). It is assumed that the reader has a basic knowledge
of database systems, algorithms, and data structures.

I would like to thank my supervisor Professor Svein Erik Bratsberg for the support through-
out this period and giving me the flexibility to shape the project as I saw fit. I would also
like to thank the contributors to the various libraries that have been used throughout
the project.

iii

Contents

Summary i

Sammendrag ii

Preface iii

Contents vi

List of Tables vii

List of Figures ix

1 Introduction and Motivation 1
1.1 Problem Description . 1
1.2 Project Goal . 2
1.3 Scope . 2
1.4 Structure . 2

2 Background 4
2.1 Geometric Data Types . 4

2.1.1 Spatial Points . 4
2.1.2 Spatiotemporal Points . 4
2.1.3 Characteristics of Spatial and Spatiotemporal Point Data 5
2.1.4 Polygons . 5

2.2 Queries . 6
2.2.1 Spatial Region Queries . 6
2.2.2 Spatiotemporal Region Queries . 6

2.3 Index Structures . 7
2.3.1 B-tree . 7
2.3.2 B+tree . 8
2.3.3 R-tree . 9
2.3.4 Quadtree . 9
2.3.5 Other Approaches . 10

2.4 Space-Filling Curves . 11

iv

2.4.1 Z-order Curve . 12
2.4.2 Indexing Using Space-Filling Curves 13
2.4.3 Region Queries and Space-Filling Curves 14

2.5 Related Work . 17
2.5.1 GeoMesa . 18
2.5.2 MD-HBase . 19
2.5.3 Cassandra . 20

3 Region Decomposition Method 21
3.1 Motivation . 21
3.2 Requirements . 21
3.3 Best-first Decomposition . 22

4 Methodology and Implementation 24
4.1 Database Layer . 24

4.1.1 Approach . 24
4.1.2 MapDB . 24

4.2 Access Structures . 25
4.2.1 Z-address Calculation . 25
4.2.2 Encoding of Space and Time . 29
4.2.3 Indexes . 31
4.2.4 Insertion Procedure . 32

4.3 Query Handling . 33
4.3.1 Decomposition Stage . 35
4.3.2 Filter Stage . 42
4.3.3 Refinement Stage . 42

4.4 Parallelization . 43
4.4.1 Multi-threaded Decomposition . 43
4.4.2 Multi-threaded Refinement . 44

5 Experiments, Results, and Discussions 46
5.1 Baseline . 46
5.2 Dataset . 47
5.3 Queries . 47

5.3.1 Spatial Region Queries . 47
5.3.2 Spatiotemporal Region Queries . 48

5.4 System Configuration . 48
5.5 Metrics . 49
5.6 Insertion Performance . 50
5.7 Breadth-first Decomposition . 52

5.7.1 Maximum Number of Ranges . 52
5.8 Best-first Decomposition . 54

5.8.1 Maximum Prefix Length of the Histogram 55
5.8.2 Sampling Size of the Histogram . 58
5.8.3 Detailed Performance Comparison to the Baseline 59
5.8.4 Query Size . 63
5.8.5 Polygon Complexity . 64

5.9 Parallelization . 66

v

5.10 Validation . 68

6 Conclusion and Further Work 70
6.1 Conclusion . 70
6.2 Further Work . 71

vi

List of Tables

4.1 List of successive bit shifts and bit masks that are used to encode 64-bit
2D and 3D Z-addresses. 29

5.1 System configuration. 48
5.2 The various index sizes. 51
5.3 Parameter values used for the best-first decomposition method. 59
5.4 Parameter values used for the breadth-first decomposition method. 59
5.5 Average speedup by using multiple threads. 68
5.6 The number answer points returned from the best-first decomposition

method compared to true number of answer points. 69

vii

List of Figures

2.1 Spatial and spatiotemporal point data. 5
2.2 Spatial and spatiotemporal region queries. 7
2.3 B-tree of order 4. 8
2.4 B+tree of order 4. 9
2.5 Variants of the quadtree. 10
2.6 Different types of space-filling curves. 11
2.7 Various three-dimensional space-filling curves [29]. 12
2.8 The recursive construction principle of the Z-order curve. 13
2.9 The data are partitioned into 6 disjoint Z-regions with the UB-tree. 14
2.10 A UB-tree of order 4. The data within a Z-region is stored in a single leaf

node. 14
2.11 A region query and its minimum covering Z-range. 15
2.12 Example of a quadtree-based decomposition. 17

4.1 The specific distances we want to move the different bits in coordinate a1 28
4.2 First pass is a 24 = 16 distance shift. Only bit b8 and b9 in a1 needs to move

this far. The bit mask ensures that rest of the bits in a1 stays unshifted. . . 28
4.3 Second pass is a 23 = 8 distance shift. Bit b4, b5, b6 and b7 in a1 are shifted

while rest of the bits stays in their position. 28
4.4 Third pass is a 22 = 4 distance shift. 28
4.5 Fourth and last pass is a 21 = 2 distance shift. All bits in a1 are now spread

out correctly. 28
4.6 A more detailed representation of the index keys used in the prototype. . . 31
4.7 Overview of the insertion procedure. 32
4.8 Overview of the query processing procedure. 34
4.9 Calculating the root node of quadtree . 37
4.10 The Z-addresses for a two-dimensional Z-order curve with 3 bits per di-

mension. 37
4.11 Expanding the example root node into 22 = 4 sub-quadrants. 38
4.12 Calculating the Z-bounds zlower and zupper by setting the bits after the

prefix to zero and one, respectively. 38

viii

4.13 The priority queue after the first iteration. The priority value reflects the
amount of data contained in the quadrant 39

4.14 The priority queue after the first iteration. The priority value reflects the amount

of data contained in the quadrant. 40
4.15 Updating the histogram with an index key. 40
4.16 The complete decomposition of the example query. Notice that the hyper-

quadrants zpr e f i x = 0000 and zpr e f i x = 0001 are not expanded since their
priority value equals zero. 41

4.17 The number of ranges in the decomposition in figure 4.16 can be reduced
from nine ranges to five ranges by merging adjacent ranges. The quality
of the decomposition remains the same. 42

4.18 Simple multi-threaded decomposition. 44

5.1 Distribution of data in Beijinig [34] . 47
5.2 Two example polygons. 48
5.3 Insertion performance. 51
5.4 The effect of increasing the maximum number of ranges on the average

response time with the breadth-first decomposition method. 53
5.5 The effect of increasing the maximum number of ranges on the average

false discovery rate with the breadth-first decomposition method. 53
5.6 The effect of the maximum prefix length of the histogram on the average

response time. 56
5.7 The effect of the maximum prefix length of the histogram on the average

false discovery rate. 56
5.8 The effect of sampling size on the average response time. 58
5.9 The effect of sampling size on the average false discovery rate. 59
5.10 The performance of the breadth-first decomposition method and the best-

first decomposition method. 60
5.11 Average false discovery rate versus number of ranges created by the best-

first decomposition method and the breadth-first decomposition method. 62
5.12 The relationship between the size of the query region and the result set size. 63
5.13 The relationship between the result size and the response time. 63
5.14 The relationship between the measured polygon complexity and the false

discovery rate. 65
5.15 The response time of the best-first decomposition method with increas-

ing number of threads. 67
5.16 The decomposition time of best-first decomposition method with increas-

ing number of threads. 67

ix

Chapter 1
Introduction and Motivation

The rate of spatiotemporal and spatial data generated around the globe has increased
immensely during the past decade due to advancements in hardware and the expanded
use of GPS-enabled smartphones [37]. This has resulted in an increasing number of
location-based services that rely on user-generated location data, such as Google Real-
time Traffic, which monitors the current traffic situations [6], and Snapchat, which pro-
vides location-sharing of users [14].

This growth is expected to continue, especially as the Internet of Things era arrives,
which is introducing a need for new and efficient database methods for handling vast
quantities of spatial and spatiotemporal data.

1.1 Problem Description

Traditional relational database management systems (RDBMS) handle spatial or spa-
tiotemporal data by using some variation of the R-tree index. The capabilities of an
RDBMS to handle an enormous amount of data found in spatial and spatiotemporal
applications remain limited, however, as these systems resort to vertical scaling. Hori-
zontal scaling, on the other hand, is necessary to keep up with the growth of data with-
out overwhelming the system. Distributed NoSQL databases emerged in response to
the need for scalable databases [22]. However, R-trees and its variants tend to not as
efficient in a distributed context as they must be centrally maintained and degrade as
the structure grows. The need for rebalancing R-tree index structures can also be pro-
hibitively expensive in many applications.

An alternative approach is to use space-filling curves to linearize multi-dimensional
data into the one-dimensional key-space of key-value NoSQL stores. Linearization tech-
niques with locality-preserving properties are used to map spatial and spatiotempo-
ral data directly into one-dimensional cells without information from prior inserted
records. This space-driven indexing technique ensures the insertion performance re-
mains constant as more data is inserted and eliminates the need for index rebalanc-

1

1.2 Project Goal

ing. The spatial and spatiotemporal index can then scale with the underlying NoSQL
store. Examples of recently developed systems leveraging space-filling curves to sup-
port spatial and spatiotemporal data in scalable NoSQL systems include GeoMesa [7]
and MD-HBase [31]. These systems, however, present other unique challenges. For
instance, the strategy used to process and transform multi-dimensional queries into
linear queries supported by the underlying one-dimensional index of the NoSQL store
can significantly impact the query performance.

1.2 Project Goal

The goal of this project is to improve the performance of spatial and spatiotemporal
query processing in one-dimensional databases. An experimental prototype will be
built and evaluated with real-world data, which will be capable of indexing and retriev-
ing spatial and spatiotemporal point data and will implement a proposed method of
decomposing multi-dimensional region queries into sets of linear range queries. The
proposed method attempts to address limitations found in similar systems with the ex-
pectation to develop an improved method of decomposing spatial and spatiotemporal
region queries for implementation into existing database systems.

1.3 Scope

The following restrictions on the scope of this project are in place as our time is limited
to complete this project.

• The implemented prototype will only deal with spatial and spatiotemporal point
data. It will not store spatial objects, such as polygons and linestrings.

• The prototype will only support the retrieval of indexed point data with spatial
and spatiotemporal region queries. Features such as visualization or analysis of
retrieved data are out of scope.

• The prototype implemented will be an embedded database system without sup-
port for distributed indexing and processing.

• The focus of this project is not to develop a database system that can directly
compete with existing systems, but to demonstrate a proposed method.

1.4 Structure

The rest of the project is structured in the following manner:

• Chapter 2 provides the theoretical background and discusses some of the related
work.

• Chapter 3 describes our proposed method for optimizing the performance of re-
gion queries.

• Chapter 4 gives the implementation details of the prototype.

2

1.4 Structure

• Chapter 5 presents the experiments, results and the discussions.

• Chapter 6 sums up the work and presents suggestions for further work.

3

Chapter 2
Background

This chapter provides the theoretical background for the thesis. The first part intro-
duces relevant data types, queries, and index structures. The second part covers space-
filling curves and how they can be employed to retrieve and manage spatial and spa-
tiotemporal point data. The final section discusses related spatial and spatiotemporal
NoSQL systems that rely on space-filling curves to handle large datasets.

2.1 Geometric Data Types

Geometric data types found in spatial and spatiotemporal databases can be divided
into two categories of raster and vector data. Raster data represents features with a reg-
ular grid of pixels where each pixel has an associated value. Vector data represent points
and polygons as discrete features. This project deals with vector data where objects are
stored as spatial and spatiotemporal point data, and polygons define areas of interests
in our queries.

2.1.1 Spatial Points

Spatial point data is multi-dimensional data that represent points defined in a geomet-
ric space such that the location of a point is represented by two geographical coordi-
nates (latitude and longitude). Spatial point data may include additional attributes
providing information about the represented entities. Spatial points can be recorded
in the following record format:

Pspati al = (Longitude, Latitude, Identifier, At tr1, At tr2, .. , At trn)

2.1.2 Spatiotemporal Points

Spatiotemporal point data is spatial point data with an additional temporal compo-
nent used to describe the evolution of an entity’s position over time. When an entity
changes location, its new recorded position in space creates a new snapshot that in-
cludes a timestamp. Spatiotemporal points can be recorded in the following record

4

2.1 Geometric Data Types

format:

Pspati otempor al = (Timestamp, Longitude, Latitude, Identifier, At tr1, At tr2, .. , At trn)

2.1.3 Characteristics of Spatial and Spatiotemporal Point Data

Several important characteristics of spatial and spatiotemporal point data must be con-
sidered when designing spatial and spatiotemporal indexing structures:

• Both the temporal and spatial components are inherently skewed. For instance,
certain places at specific times, such as cities at daytime, will be denser compared
to rural regions at nighttime.

• The spatial component has no a priori ordering required for lexicographical or-
dering.

• The temporal component is potentially unbounded.

An additional important note when dealing with spatiotemporal point data is that any
assumption about the movement between the snapshots may lead to incorrect infor-
mation. It is common to assume an entity remains stationary at the position given its
last stored snapshot. If we use linear interpolation for building entity trajectories, then
movements along these trajectory segments may falsely suggest an entity has entered a
restricted area when it has moved around it.

longitude

latitude

(a) Example of spatial point data.

time

longitude

latitude

(b) Example of spatiotemporal point data.

Figure 2.1: Spatial and spatiotemporal point data.

2.1.4 Polygons

A polygon is a spatial region bounded by line segments, and is defined with an ordered
set of spatial points representing the vertices of the polygon:

R = (Long i tude1,Lati tude1,Long i tude2,Lati tude2, ...,Long i tuden ,Lati tuden)

The consecutive pairs of points define the line segments that bounds the interior of
the polygon. A polygon must have at least three vertices, and the line segments join-
ing two vertices must not intersect (except for complex polygons, which are used in this
thesis).

5

2.2 Queries

2.2 Queries

Indexing and storing spatial and spatiotemporal point data enable responding to loca-
tion and time-based queries. Typical query types used in spatial and spatiotemporal
point databases include the nearest neighbour, point, and region queries. In this thesis,
we focus the latter. Region queries are a traditional problem in spatial and spatiotem-
poral databases and are useful in the domain of analyzing spatial and spatiotemporal
data over areas and time as well as for generating maps and models.

2.2.1 Spatial Region Queries

A spatial region query is specified by a polygonal region R. The output is the set of all
points P that intersect with region R. A two-dimensional visualization of a spatial region
query is shown in Figure 2.2a. The range query is a special case of the region query. The
region R in a spatial range query is specified as an interval over the spatial dimensions,
i.e., a box-shaped region defined by its lower-left and upper-right corners.

An example of a relevant spatial region query is "find all entities within Trondheim
City." The query would return a list of all the stored entities contained by the polygon
of Trondheim City.

2.2.2 Spatiotemporal Region Queries

A spatiotemporal region query is an extension of the spatial region query with a tempo-
ral component. In addition to a spatial query region R, a time range T is included. The
output of a spatiotemporal region query is all the points that intersect with the query
region R and the time interval T. A spatiotemporal region query can be visualized as a
polyhedral in three-dimensional space, as shown in Figure 2.2b.

An example of a relevant spatiotemporal region query is "find all entities within Trond-
heim City between 2/5/2016 5:00:00 and 4/6/2016 5:00:00." This query would return a list
of all the entities having an indexed snapshot with spatial coordinates and a timestamp
that intersect with the spatial region of Trondheim City and the time range 2/5/2016
5:00:00–4/6/2016 5:00:00.

6

2.3 Index Structures

latitude

longitude

(a) Example of a spatial region query.

time

longitude

latitude

(b) Example of a spatiotemporal region query.

Figure 2.2: Spatial and spatiotemporal region queries.

2.3 Index Structures

Indexing enables efficient retrieval of data at the cost of building and maintaining an
index structure. Without indexes, we would have to perform complete table scans to
retrieve the desired data. Full table scans are prohibitively expensive in most applica-
tions, especially when dealing with extensive data sets found in spatial and spatiotem-
poral databases.

2.3.1 B-tree

The B-tree is a self-organizing and high-performing index commonly found in database
systems. The B-tree index structure stores the data sorted and provides a logarithmic
performance guarantee for all basic operations, such as insert, delete, and lookup. This
allows the structure to handle large data sets as offers fast retrieval and insertion speed
independent of the data set size. Additionally, very little main memory is required to
cache the upper levels of the tree or a search path to a leaf node. Each insertion or
delete operation in the B-tree results in a reorganization of the tree structure. This self-
organization property enables continuous operation without interruptions for period-
ical reorganizations, and makes the index robust against highly dynamic data.

Each node in the B-tree index may contain more than two keys. Internal nodes with
K keys has K + 1 child nodes. The keys within a node are stored in sorted order with
alternating pointers to its child nodes: poi nter1,ke y1, poi nter2,ke y2, and poi nter3.
The child represented by poi nter1 contains key values less than ke y1. The child node
of poi nter2 contains keys between ke y1 and ke y2, and the last child of poi nter3 con-
tains keys greater than ke y2. Data is retrieved by performing a top-to-bottom search
until the desired key and the associated value is found. At each level, the child node
with a key range that includes the search key is accessed. For a B-tree with a height of
five levels, the worst-case scenario for a lookup operation accesses five nodes, although
disk accesses can be reduced by caching the upper levels of the B-tree. In practical
situations, B-trees typically provide a guaranteed access time of less than 10 ms for ex-
tremely large datasets [2].

7

2.3 Index Structures

The key idea to understanding the B-tree structure is the split procedure that reorga-
nizes the tree during insertion. The interior nodes, except the root, of a B-tree of order
m has at least dm

2 e children and dm
2 e−1 keys. Also, each node has at most m children

and m −1 keys. When trying to insert an object into a full node, the node is split into
two half-full nodes with m

2 elements. The middle of the two new nodes is inserted into
their common parent node in sorted order, and the splitting can propagate recursively
upwards to the root node. The depth of the tree will only increase when splitting the
root node, which results in the creation of a new root node with a single middle ele-
ment and pointers to its two child nodes. The number of split operations performed
during insertion is bound by the height of the tree, which gives the insertion operation
a logarithmic complexity.

10

5

1 3 4 6

15 20

12 16 18 25

Figure 2.3: B-tree of order 4.

2.3.2 B+tree

A variant of the B-tree is the B+tree with its main difference being that the interior nodes
in the B+tree contain only keys and not values, and data is only associated with the leaf
nodes. Additionally, the leaf nodes in a B+tree are linked. This makes sequential access
very efficient in B+trees compared to B-trees, which requires a separate traversal from
root to each leaf node. A range scan in a B+tree is performed with a single traversal from
root to leaf node followed with a linear pass through the linked leaf nodes. Otherwise,
the behaviour of the B+tree is mostly the same as the B-tree, except during the split-
ting of a leaf node, where the middle element remains in the right child node, and only
the key (not the value) is transferred to the parent node. Fewer data in the intermedi-
ate interior nodes allow for a higher branching factor and a potentially shallower tree.
The large fanout usually outweighs the disadvantage of not being able to access data in
internal nodes directly as most of the accessed data are found at the bottom of the tree.

8

2.3 Index Structures

6

5

1 3 4 5

15 18

6 10 12 15 16 18 20 25

Figure 2.4: B+tree of order 4.

2.3.3 R-tree

The R-tree index is a spatial version of the B+tree index where nodes are represented
as minimum bounding rectangles (MBR). R-trees store data in leaf nodes and uses in-
ternal nodes to group and enclose leaf nodes (or internal child nodes) that are nearby
spatially with MBRs. The data become more aggregated by the internal nodes further
up in the tree, and the MBR of the root node encloses the entire data set. This can be
thought of as an increasingly coarse approximation of the data set. A region search is
performed top-down in an R-tree. The idea is to recursively traverse child nodes with
an MBR that intersects with the query region. Data within the reached leaf nodes are
validated against the exact query geometry and returned if found to be fully contained
by the query region.

The main difficulty with the R-tree is the construction of an efficient tree structure that
provides good worst-case performance, especially when dealing with dynamic data sets
with random inserts [13]. Contrary to the B-tree index, the R-tree does not come with
logarithmic worst-case performance guarantees for the basic operations. To obtain the
best performance, the tree should be balanced and contain MBRs that neither overlap
too much nor contain too much empty space, which restricts the number of subtrees to
be searched. A popular variant of the R-tree that tries to reduce MBR overlap is the R*-
tree [19], which provides better search performance at the cost of a significant insertion
overhead.

Even though R-trees are used mostly for spatial data, they can be extended to support
spatiotemporal data. An example of this scenario addresses time as a third and sepa-
rate dimension with nesting of the data in minimum bounding cuboids instead of rect-
angles. Spatiotemporal R-tree structures based on this approach include 3D R-trees,
RT-trees, and STR-trees [30].

2.3.4 Quadtree

A quadtree is a tree data structure that recursively decomposes space into subspaces
called quadrants. Each internal node in a quadtree has four children, and the child
nodes partition the space enclosed by the parent. The root node covers the entire
space, and the leaf nodes contain the indexed points. There exist various types of

9

2.3 Index Structures

quadtrees, which are categorized into trie-based or point-based approaches. The trie-
based quadtree partitions space into equal-sized quadrants while point-based quadtrees
adjust the quadrant sizes to the data distribution. This thesis deals with trie-based
quadtrees. Spatial point data can be stored in a quadtree by recursively partitioning
quadrants until the leaf nodes contain a maximum of one point. The maximum preci-
sion of the quadtree is defined by the maximum tree depth or the minimum size of the
leaf nodes. Region queries are processed in quadtrees in a similar manner as R-trees.
The tree structure is traversed top-to-bottom along the nodes that intersect with the
query geometry. Data within reached leaf nodes are returned in the result set.

The N-dimensional analogue (or generalization) of the quadtree is the hyper-quadtree,
which divides an N-dimensional hyper-quadrant into 2N hyper-quadrants.

(a) A trie-based quadtree. (b) Octree [15]: A three-dimensional equivalent
of the quadtree, where space is recursively sub-
divided into eight octants.

Figure 2.5: Variants of the quadtree.

2.3.5 Other Approaches

Scaling is a challenge with traditional spatial and spatiotemporal indexes based on
quadtrees and R-trees used in relational databases. The performance of these struc-
tures tends to degrade as the index grows and needs periodic re-balancing. They are
also difficult to build and maintain as distributed indexes. In response to the scal-
ing issues related to the growth in spatial and spatiotemporal data, a significant effort
has been devoted in recent years to implement spatial and spatiotemporal support in
BigTable-style NoSQL systems [23].

NoSQL systems are proven to handle extremely large dataset efficiently [24]. However,
these systems are often restricted to a simple data model with data access over primary
key, which makes multi-attribute access impossible without full scans. The idea has
been to use locality preserving linearization techniques that map multi-dimensional
attributes into one-dimensional space. Keeping a total ordering of points in space while
preserving locality makes it possible to support efficient multi-dimensional query pro-

10

2.4 Space-Filling Curves

cessing with sorted one-dimensional indexes used in key-value NoSQL stores. The use
of space-filling curves is a popular approach to linearize multi-dimensional data.

2.4 Space-Filling Curves

A space-filling curve (SFC) is a locality preserving method of mapping N-dimensional
data to a one-dimensional space. The mapping can be visualized as a continuous line
passing through every cell in a high-dimensional space exactly once, which imposes
a linear ordering of the cells it visits. The quality of the linear ordering given a space-
filling curve is defined by its ability to preserve locality. In other words, points close in
the initial high-dimensional space should also be close in the mapped one-dimensional
space. This property is essential for efficient retrieval of multi-dimensional data in SFC
indexes.

There exist various types of space-filling curves, and the differences are in how the
curve traverses the high-dimensional space. The different mapping schemes can be
categorised into recursive space-filling curves (RSFC) and non-recursive space-filling
curves [28]. RSFCs are based on decomposing the space recursively into four equal-
sized fragments to a preferred level of precision and traversing the fragments in a pre-
determined order. A fragment is traversed one-at-a-time exhaustively at any level of
refinement. Two well-known recursive space-filling curves are the Z-order curve (also
called Morton order) and the Hilbert curve. Non-RSFCs also traverse the space in a pre-
determined order but are not fractal-based and more straightforward to implement. An
example is the Sweep curve, which is a one-way traversal of space, that traverses a two-
dimensional space horizontally bottom-up and one row at a time. Sweep curves are,
however, not optimal in terms of locality-preserving mapping [28].

(a) Sweep curve (b) Z-order curve (c) Hilbert curve

Figure 2.6: Different types of space-filling curves.

11

2.4 Space-Filling Curves

(a) Sweep curve (b) Z-order curve (c) Hilbert curve

Figure 2.7: Various three-dimensional space-filling curves [29].

2.4.1 Z-order Curve

The Z-order curve, which also goes by the names Peano curve or Morton curve, is a
recursive construction with locality-preserving properties and is one of the most com-
monly used SFC along with the Hilbert curve. The Z-order curve is one of the simplest
RSFCs as the encoding procedure consists of bit-interleaving a point’s coordinate val-
ues to obtain its position on the curve.

A simple two-dimensional example can demonstrate the concept of the Z-order curve.
The space in Figure 2.8a is first split into four quadrants. The integer values defining
the position along the axis is converted into a binary representation. Each quadrant
is then represented by doing a pairwise interleaving of its binary-represented coordi-
nate values. The x-coordinate gives the most significant digit of the quadrant, and the
y-coordinate gives the least significant digit. The number of quadrants depends on the
number of bits representing the possible coordinate values and defines the resolution
of the mapping scheme. If the number of bits used to represent the possible coordi-
nates is incremented by one, then each of four existing quadrants is partitioned into
four smaller, equal-sized quadrants, as seen in Figure 2.8b. When a smaller quadrant is
contained within a coarser quadrant, then the coarser quadrant is a prefix of the smaller
quadrant. Common prefixes imply closeness between quadrants even though there are
exceptions, which can be seen by the occurrences of long diagonal jumps. These jumps,
which are absent in the more computationally-expensive Hilbert curve, occurs between
consecutive connected points across quadrants and become larger as the curve resolu-
tion increases.

The Z-order curve visits the quadrants in lexicographical order according to their binary
representation. As shown in Figure 2.8, space is traversed in a ’Z’-like pattern, hence
the name Z-order curve. Based on the given example, the Z-values for spatiotemporal
point data can be calculated directly by bit-interleaving the binary-representation of
the latitude, longitude, and timestamp values. Sorting the Z-values generates a three-
dimensional Z-order curve. The bit-interleaving procedure can be generalized trivially
to any number of dimensions. Furthermore, a data point is known to be within a given
quadrant if the Z-value of the given quadrant a prefix of the data point’s Z-value.

12

2.4 Space-Filling Curves

0

1

0 1

00

01 11

10

(a)

00 01 10 11

00

01

10

11

0000 0010

0001 0011

0100 0110

0101 0111

1000 1010

1001 1011

1100 1101

1110 1111

(b)

Figure 2.8: The recursive construction principle of the Z-order curve.

2.4.2 Indexing Using Space-Filling Curves

Once the multi-dimensional data has been linearized with a space-filling curve, any
one-dimensional index structure can be used to store and retrieve the data. A promi-
nent example is the Universal B-tree (UB-tree) [18], which combines the Z-order curve
with the B+tree index.

UB-tree

The UB-tree is an extension of the B+tree for organizing and accessing multi-dimensional
point data and leverages the Z-order curve to index multi-dimensional data in a tradi-
tional B+tree. The idea is to reduce the problem of searching multi-dimensional data to
a problem of searching data in linearly ordered sets using Z-values as keys. The UB-tree
retains the logarithmic performance guarantees of the B+tree for all basic operations of
insertions, deletion, and lookup. This also includes a guarantee of 50% page utilization,
and the logarithmic performance guarantee makes the structure particularly scalable,
robust, and suitable for handling large dynamic datasets.

The tree structure of the UB-tree represents a hierarchical partitioning of the Z-order
curve where an inner node encloses the space of its children. Space covered by nodes
at the same depth of the tree will not overlap (see Figures 2.9 and 2.10). Guaranteed
overlap-free partitioning of the data makes the UB-tree more robust against random in-
sertions compared to the R-tree, which tends to degrade due to increased MBR overlap.
A look-up in the UB-tree will always be limited to only one search path. Another impor-
tant advantage of UB-trees over other traditional multi-dimensional index structures
is that it can easily be implemented on top of existing database systems that provide
B+tree indexes by adding a simple preprocessing technique.

13

2.4 Space-Filling Curves

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

Figure 2.9: The data are partitioned into 6 disjoint Z-regions with the UB-tree.

32

4 10

0 3 4 8 10 27 29

36 48

32 34 36 46 48 56 63

Figure 2.10: A UB-tree of order 4. The data within a Z-region is stored in a single leaf node.

The precision of the Z-order curve used to encode the index keys should be high enough
to not cause any overflow by mapping different positioned points to the same key (small-
est quadrant at maximum precision). Increasing the precision beyond this point re-
quires, however, more storage and performance overhead.

2.4.3 Region Queries and Space-Filling Curves

Region queries are processed in space-filling curve indexes (like the UB-tree) by using
a filter and refine strategy. The initial filter step retrieves the set of candidate points
from the one-dimensional index that may overlap with the query region. The filtering
is usually constrained to contain false positives. This guarantees no false negatives, as
the candidate set will always be a superset of the answer set. The refinement step must
inspect the points in the candidate set and remove any potential false positives that are
disjoint with the query region. The refinement step is usually the most expensive stage
as each inspection involves a point-in-polygon test.

14

2.4 Space-Filling Curves

The candidate set is retrieved from the order-preserving linear index by executing one
or more range queries where the total space enclosed by the range queries fully en-
closes the query region. Each range query is specified as a Z-range (interval) on the
space-filling curve, where a minimum and maximum Z-value give the Z-range.

The naive approach to executing a region query is to calculate the minimum segment
of the curve that thoroughly covers the query region. The lower and upper bounds of
the segment are then be executed as a single range query in the filtering step. The issue
with this approach is the potential amount of surplus search space with false positives
that need to be removed in the expensive refinement step, which is illustrated in Figure
2.11b.

(a) Query region.
(b) The minimum covering Z-range of the query
geometry is highlighted in red.

Figure 2.11: A region query and its minimum covering Z-range.

As a single Z-range will rarely provide a good approximation for a query region, a bet-
ter approach is to decompose the query region into a set of smaller, non-overlapping
Z-ranges. Each Z-range from the decomposition can be identified as either contained
within or intersecting with the query region. Data retrieved from contained ranges re-
quire no validation and can be added to the result set directly. Points from intersecting
ranges might be false positives and must be refined. This process is depicted in Algo-
rithm 1.

Algorithm 1 Region query

1: /* QR be the query region. */
2: Z← r eg i onDecomposi t i on(QR) /* Partition QR region into set of Z-ranges. */
3: R←; /* Initialize an empty set to store our result points*/
4: for each range z ∈Z do
5: if z ⊆QR then
6: R∪ (p ∈ s)
7: else if z ∩QR then
8: for each point p ∈ s do
9: if p ⊆QR then

10: R∪p

11: return R

15

2.4 Space-Filling Curves

The procedure of decomposing the query region into a series range can be more intri-
cate. A possible approach is to perform a quadtree-based decomposition of the query
region [33]. The partitioning scheme of the trie-based quadtree shares significant simi-
larities with the partitioning scheme found in the Z-order curve. In fact, a quadtree can
be represented as a linear array of Z-values (of various precision) where each Z-value in
the array corresponds to a leaf node of the quadtree, and this structure is called a linear
quadtree [17]. Scanning the linear quadtree in sorted order will traverse the leaf nodes
of the quadtree in a depth-first manner. The path from the root node to the leaf node
is implicitly preserved in the Z-values as they are calculated by appending a sequence
of directional bits. For example, a leaf node with a Z-value of x1 y1x2 y2x3 y3x4 y4 and
xi , yi ∈ {0,1}, ∀i ∈Zwill have the following path in the quadtree:

enti r e space → x1 y1 → x1 y1x2 y2 → x1 y1x2 y2x3 y3 → x1 y1x2 y2x3 y3x4 y4

The interrelationship between the quadtree and the Z-order curve can be leveraged
by decomposing the query region into a linear quadtree structure. This is performed
by recursively subdividing the space that covers the query region into a set of disjoint
(axis-aligned) quadrants. Space is recursively partitioned into quadrants in a breadth-
first manner, and the Z-value representation of a quadrant can be mapped directly to
a Z-range. Quadrants that are disjoint with the query region are pruned during the de-
composition process. The decomposition stops once all remaining quadrants are fully
contained by the query region or the cell level (maximum curve precision) is reached.

There is a trade-off between the number of ranges generated and the accuracy of the
region represented by the ranges. More ranges introduce additional overhead but also
fewer false positives. This can be partially solved by either limiting the maximum pre-
cision of the quadtree or the number of ranges created.

The quadtree-based breadth-first decomposition is depicted in Algorithm 2, which works
as follows. First, starting with the root node of the quadtree, check if the area covered by
the node is either (1) disjoint with the query region, (2) completely covered within the
query region or (3) intersects with the query region. In the first case, the node is pruned.
In the second case, the Z-range of the node is added to the list of ranges scans. In the
third case, the node is expanded, and all its children are rechecked as in the first step.
The splitting process continues recursively until some maximum depth is reached or a
maximum number of ranges are generated. An example of a decomposition using this
method is shown in Figure 2.12b. Various strategies can be used to reduce the size of
the generated set of ranges further. Two possible strategies include merging neighbour-
ing ranges and merging ranges that are close together in space. The quadtree-based
decomposition method can be trivially extended to any number of dimensions with a
hyper-quadtree, e.g., by using a three-dimensional hyper-quadtree (octree) for the spa-
tiotemporal data.

16

2.5 Related Work

(a) Quadtree representation of the query geom-
etry.

Intersecting range

Contained range

(b) Set of Z-ranges from the quadtree decompo-
sition.

Figure 2.12: Example of a quadtree-based decomposition.

Algorithm 2 Quadtree-based breadth-first decomposition of a query region

1: /* QR be the query region. */
2: S←; /* Initialize an empty set to store result ranges.*/
3: R ←; /* Initialize an empty set to store remaining quadrants to process. */
4: level ← 0 /* Level of recursion. */
5: qr ← r oot (QR) /* Root quadrant enclosing whole search space. */
6: if qr ⊆QR then return zOrderRange(qr)

7: E NQU EU E(R, qr) */ Queue up the root quadrant for processing. */
8: while level < maximumDepth and R 6= ; and |R|+|S| < maximumRanges do
9: if level is fully processed and then

10: l evel ← level +1
11: else
12: q ← DEQU EU E(R)
13: for each subquadrant qs in q do
14: if qs ⊆QR then
15: S∪ zOr der Rang e(qs)
16: else if qs ∩QR then
17: E NQU EU E(R, qs)

/* Add partially overlapping ranges that did not get fully processed because the re-
cursion limit was hit. */

18: while R 6= ; do
19: q ← DEQU EU E(R)
20: S∪ zOr der Rang e(q)

21: return S

2.5 Related Work

The following section presents and discusses some of the recent approaches of using
space-filling curves to support spatial and spatiotemporal point data with NoSQL sys-
tems. The primary focus is on the different query processing strategies used to support
region queries.

17

2.5 Related Work

2.5.1 GeoMesa

GeoMesa [7] is an Apache-licensed open-source project created by CCRi that provides
indexes for large spatial and spatiotemporal data on top of BigTable-style NoSQL key-
value stores, such as Accumulo. GeoMesa is under active development and, according
to its authors, can store petabytes of spatial and spatiotemporal data to serve millions
of points in seconds with horizontal scaling [8]. GeoMesa utilizes a Z-order curve to lin-
earize spatial and spatiotemporal point data. The data are stored sorted across multiple
servers with Z-values as primary keys. Within a server, the key-value pairs are typically
indexed with a B-tree style index [1].

Region queries are executed in GeoMesa by partitioning the queries into a series of
interval queries or range scans by using a quadtree-based, breadth-first decomposi-
tion strategy. GeoMesa decomposes the minimum bounding rectangle of the query
region instead of the region itself. The hyper-quadtree is searched recursively for Z-
ranges covering the MBR of the query region until either a maximum number of ranges
or a recursive limit is reached. Decomposing the MBR makes the process of creating
ranges cheaper as the intersection and containment tests of hyper-quadrants consist
of rectangle-in-rectangle tests instead of the more complicated rectangle-in-polygon
tests. The goal of the decomposition is to reduce false positives due to poor locality
preservation in the Z-order curve, which can be seen in the naive minimum covering
Z-range example described in the previous section (Figure 2.11b). The breadth-first
decomposition does not consider skewness in the data, and the maximum number of
ranges for spatial queries is a pre-defined property value that must be tuned for the
cluster and the expected query pattern and data sets.

A drawback with the approach of decomposing and filtering the minimum bounding
rectangle of the query region is the number of false positives to be scanned. This ap-
plies particularly to irregularly shaped query regions as the space difference between
query region and its minimum bounding rectangle box is likely to contain a significant
amount of data. GeoMesa does not make any distinction between contained and inter-
secting ranges. Instead, they rely on push-down predicates to filter and refine all ranges
in a distributed manner. The ranges in Accumulo, for example, are processed in parallel
across the cluster by initiating a BatchScanner job. Even though GeoMesa mitigates
the cost of removing false positives to some degree by utilizing parallelism during re-
finement, the average throughput is shown to degrade significantly with query regions
of high complexity compared to box-shaped queries [25].

Partitioning the query regions into intersecting and contained ranges would likely re-
duce the overall stress on the cluster and throughput of high volume and complex-
shaped queries. The cost, however, will be a slower execution time of low volume
queries due to increased overhead from a more complex decomposition procedure and
the need to execute two different BatchScanner jobs. Experiments performed with
GeoMesa show that the time spent on decomposition and issuing a query already tends
to dominate the overall response time with low volume queries [25], so the potential
improvement in performance will depend on the query pattern and the data set.

18

2.5 Related Work

2.5.2 MD-HBase

MD-HBase [31] is an extended version of the NoSQL key-value HBase that provides scal-
able performance for storing and querying spatial and spatiotemporal point data. Like
GeoMesa, MD-HBase relies on a Z-order curve to linearize multi-dimensional data into
a one-dimensional and lexicographical ordered key space. The underlying data stor-
age layer of HBase stores the linearized key-value pairs across multiple servers. Within
a server, the data is stored in B+tree indexes. MD-HBase implements an overlying in-
dex layer on top of HBase to provide efficient multi-dimensional query processing. The
overlaying index layer consists of two possible indexes: a linear trie-based quadtree and
a kD-tree. Both indexes are directly coupled with the Z-order curve and are built with
the inserted linearized data. Each leaf node in the quadtree and the kD-tree index cor-
responds to a Z-order range and are stored in separate tables in HBase. A leaf node in
the quadtree and the kD-tree index is split when the number of points it covers in space
exceeds a specified maximum capacity. Dense regions will be split frequently and cov-
ered by smaller and more precise leaf nodes compared to sparse regions, which will be
covered by a few large leaf nodes. This allows the overlying indexes to capture the data
distribution of the stored data.

The MD-HBase paper does not describe any support for region queries and covers
only range queries. The axis-aligned box represented by a query range is decomposed
into several Z-ranges. Contrary to GeoMesa, MD-HBase does not use a quadtree-based
breadth-first decomposition. Instead, it directly retrieves a candidate set of Z-ranges
for the decomposition from the linear quadtree index (or the optional kD-tree index).
The decomposition process of MD-HBase starts by calculating the minimum covering
Z-range of the query range (see Figure 2.11b), which is used to query the quadtree in-
dex structure with a linear range scan. This range query returns the minimum set of
non-overlapping leaf nodes in the quadtree index that completely covers the minimum
covering Z-range of the query range. Since the Z-order curve preserves locality loosely,
portions of the minimum covering Z-range may be disjoint with the query range. This
means some of the leaf nodes may also be disjoint with the query range. The next step
checks each of the returned leaf nodes and determines by using rectangle-in-rectangle
checks if they intersect, are contained within or are disjoint with the query range.

Z-ranges of intersecting and contained leaf nodes are executed in parallel as linear
range queries in HBase, where points from intersecting Z-ranges are post-refined, and
points from contained Z-ranges are retrieved directly. The set of disjoint Z-ranges are
then pruned. The split rule of the overlying quadtree index restricts the amount of data
returned from a single Z-range. The result is that the decomposition will adapt to data
skewness by creating more precise Z-ranges for dense regions.

Selecting the maximum capacity of the leaf nodes in the overlying index structures is
described as a trade-off between insertion and query performance. Lowering the ca-
pacity will increase the pruning power, and the number of false positives as the quadtree
index and the decomposition will be more fine-grained. Lowering the capacity will also
increase the split frequency of the quadtree index, which will affect ingestion perfor-
mance negatively. Experiments performed with MD-HBase shows that the mainte-
nance of an overlying quadtree index layer reduces the insertion performance signif-

19

2.5 Related Work

icantly compared to the cost of only linearizing the data. Additionally, the decomposi-
tion time tends to dominate the total response time with high selectivity queries. Re-
ducing the maximum capacity of the leaf nodes in the quadtree index too much may
also degrade query performance of large-sized queries due to the significant increase
in the number of candidates ranges returned from the overlying index.

As mentioned earlier, MD-HBase does not support region queries. The following are
two possible ways to extend the approach of using an overlying quadtree index during
decomposition.

1. Calculate the minimum covering Z-range of the query region and perform rectangle-
in-polygon tests to determine if the candidate Z-ranges from the overlying quadtree
index intersects, are disjoint or are fully contained by the query region.

2. Perform breadth-first decomposition of the query region and only expand quad-
rants with Z-values that match a prefix in the quadtree index.

2.5.3 Cassandra

Brahim, et al.[20] demonstrates a spatial framework for Cassandra, which is a fully-
distributed, wide-column NoSQL store that uses hash partitioning on the primary key
to distribute the data across servers. The data is sorted lexicographically within a server
by one or more clustering keys, also called columns. The framework relies on geohashes
to linearize spatial data, which is based on the Z-order curve. A geohash value is a Z-
value with arbitrary precision represented as an ASCII string. Calculating the geohash
value of a point is performed by bit-interleaving the coordinate value to the desired pre-
cision and storing the result with base32 encoding. The geohash is used in the frame-
work as a clustering key.

Region queries are executed by first decomposing the region into a set of geohash ranges.
The exact implementation of the method is not given in detail but seems to be based
on a static breadth-first-like decomposition of a quadtree. The decomposition starts by
computing the largest quadrant, which is represented by a geohash value, that is fully
contained by the region. The remaining space of the query region is filled with increas-
ingly smaller quadrants (i.e., increasing geohash precision) until the entire region is
covered or a maximum geohash precision is reached. Adjacent and overlapping ranges
are then merged before being finally executed as range queries in Cassandra. The pa-
per does not mention a distinction between overlapping and intersecting ranges or the
removal of false positives.

Based on the experimental results from the paper, it can be assumed that the method
relies on a very precise decomposition of the region to retrieve the desired data and only
creates fully contained ranges. A maximum precision parameter restricts the precision
of the decomposition. A low precision limit is likely to make the result set of irregular
shaped, and small-sized region queries inaccurate. On the other hand, increasing the
precision limit makes the performance very sensitive to large, complex shaped regions
due to many ranges generated. The sensitivity towards large and complex-shaped re-
gions is demonstrated with the experiments performed in the paper.

20

Chapter 3
Region Decomposition Method

In this chapter, we propose a method for decomposing a region query into a set of Z-
ranges.

3.1 Motivation

As described in the previous chapter, several frameworks have been recently developed
for handling a large collection of spatial and spatiotemporal point data in NoSQL sys-
tems by using space-filling curves. A key factor in executing spatial and spatiotemporal
region queries efficiently in these systems is pruning subspaces and reducing the num-
ber of false positives scans. This is achieved by decomposing the region query into a
series of smaller linear range queries. However, there is a trade-off between the reduced
overhead from filtering less false positives and the overhead due to an increase in range
queries. The decomposition method needs to balance the benefit of scanning less false
positives and the cost of creating more ranges. The method we propose in this chapter
improves some of the identified flaws in these approaches, and the primary goal is to
optimize the query performance of region queries against space-filling curve indexes.

3.2 Requirements

It is assumed that the data is indexed by their Z-value and stored lexicographically, and
the underlying storage layer supports basic one-dimensional range queries.

Query Types
The method should support spatial and spatiotemporal region queries for point
data, the spatial predicate should be a simple polygon (not self-intersecting or
with holes) of arbitrary shape, and the temporal predicate should be a time inter-
val.

Performance
Both spatial and spatiotemporal queries should be executed fast and the response
time should depend on the amount of data in the result set and not the index size.

21

3.3 Best-first Decomposition

Scalability
The method should have minimal effect on the insertion performance of the sys-
tem, and it should not cause query performance and insertion performance to
degrade as more data is inserted into the database.

Data skew
The method should adjust for skewness in the data when performing the decom-
position.

Geometrical properties
The size and the shape of the query region should have minimal impact on the
response time when the size of the result set remains constant.

Number of ranges
The method should not generate more ranges than necessary to reduce the over-
all response time.

3.3 Best-first Decomposition

The proposed method is a quadtree-based, best-first decomposition of the query re-
gion. The query region is decomposed recursively with a hyper-quadtree to prune as
much space as possible. The region is decomposed into intersecting and contained
Z-ranges with rectangle-in-polygon tests. Points within contained ranges are added di-
rectly to the result set while points within contained ranges are refined. The refine-
ment process validates each fetched point with a point-in-polygon test. To handle
data skew, our method stores unprocessed intersecting hyper-quadrants in a priority
queue instead of a normal queue (see the pseudocode of the breadth-first decomposi-
tion Algorithm 2 in the previous chapter). The priority value assigned to an intersecting
hyper-quadrant is an estimate of how much data is stored within the range of the hyper-
quadrant. The next hyper-quadrant to expand is determined to be the hyper-quadrant
that contains the most data. The decomposition stops when either a maximum num-
ber of ranges are created, or the highest priority value in the priority queue is below a
specific threshold.

Using a best-first decomposition allows us to create exact ranges for complexly shaped
query regions and skewed data without overwhelming the system. By restricting the
decomposition procedure to create precise ranges for the dense portions and coarser
ranges for sparse portions of the query region, we can both reduce the total number of
ranges significantly and achieve a higher range precision compared to a breadth-first
decomposition when dealing with skewed data. This method also makes it possible to
short-circuit the decomposition of low volume queries.

Estimating the priority value of the intersecting hyper-quadrants can be done in various
ways. A possible approach is to use an overlying linear quadtree index like MD-HBase.
Data within a hyper-quadrant can then be estimated accurately by counting the num-
ber of times its Z-value representation is a prefix match in the linear quadtree index.
However, this approach comes with the cost of storing and maintaining an overlying in-
dex, which was seen to reduce insertion performance significantly in MD-HBase. Since
we want to reduce the overhead of estimating the distribution, we instead use a sam-
pled histogram over the stored Z-value keys and their prefixes. The reason for using a

22

3.3 Best-first Decomposition

histogram-based method is for its simplicity and the non-uniform nature of spatial and
spatiotemporal data sets, which makes it more challenging to use precise parametric
estimators, which place assumptions on the underlying distribution of the data.

The structure of the histogram will be similar to the structure of the linear quadtree
with internal nodes in addition to the leaf nodes. Each node is associated with a counter
that tells the number of points contained by the space covered by the node. The prior-
ity value of a hyper-quadrant can be estimated by looking up its Z-value representation
directly with its associated counter in the histogram. Since the histogram needs only
to provide an approximate representation of the data distribution to detect data skew
and guide the decomposition, the histogram is built with sampling saving a significant
amount of resources. Additionally, if the underlying distribution of the data changes
slowly enough, then the construction and maintenance processes of the histogram can
be decoupled entirely from the ingestion process, and instead be performed as a peri-
odic background task. Therefore, the effect on the insertion performance is minimal.

23

Chapter 4
Implementation

This chapter describes the implementation details of our prototype for the proposed
method described in the previous chapter and is developed in Java.

4.1 Database Layer

The database layer comprises the basic data structures to store and retrieve key-value
pairs. The spatial and spatiotemporal access structure and query processing methods
are implemented on top of the database layer.

4.1.1 Approach

The requirements for our database layer is simple, which is to provide a B+tree in-
dex structure supporting arbitrary key-value pairs and range scans. The data structure
should support persistence of large data collections, and the database system should
be embedded as it will always run on the same machine as the application. A possible
approach is to implement a B+tree structure from scratch. However, supporting persis-
tence and re-balancing millions of objects can prove non-trivial and time-consuming.
The focus of this thesis is the query planning stage, and as there exist multiple fast, sim-
ple persistence database engines for Java with B+tree structures, the natural choice is
to use an existing database solution.

4.1.2 MapDB

The prototype uses MapDB [10] as the underlying database engine, which is an open
source embedded Java database engine that provides a series of efficient concurrent ac-
cess structures backed by disk storage or off-heap memory. The original goal of MapDB
was to provide a fast and simple alternative to existing SQL databases. According to
its author, it is one of the fastest Java databases available today and is used by compa-
nies, such as Twitter, Linkedin, and HP Labs [16]. Our reason for choosing MapDB is

24

4.2 Access Structures

its simplicity, performance, and it offers all the features needed for our prototype. Ad-
ditionally, MapDB is not limited to JVM memory, which makes it easier to handle large
datasets.

BTreeMap

The data structure of interest provided by MapDB is the BTreeMap collection, which is
a lock-free concurrent variant of the B+tree, called B-Linked-Tree, based on the work of
Lehman and Yao [26]. The same data structure can be found in popular databases, such
as Postgres [12]. The data structure offers high performance and good scalability for a
large number of small keys. All the basic operations, such as insertion, removal, update,
and access, can be executed concurrently by multiple threads. The BTreeMap class
and its iterators implement all the methods of the Java Iterator and Map interfaces.
The support for delete operations is limited in this access structure as a delete will not
collapse nodes and cause fragmentation. Removing all entries in a full tree only releases
about 60% of the used space. However, this will not present an issue for our use case.

Memory-mapped Files

The underlying database engine MapDB uses memory-mapped files to store and access
data, which contains stored data in virtual memory and makes it appear as the entire
database is loaded into memory. This permits applications to read and modify data
directly through the primary memory. Memory-mapped files enable lazy loading by
the operating system as accessed data is loaded into memory with demand paging. The
operating system will also manage and keep recently accessed pages in memory. The
result is increased I/O performance, especially in the case of larger files. However, 32-
bit operating systems will be limited to 4GB of virtual memory by the addressing space.
As our prototype will be used on a 64-bit operating system, which allows petabytes of
virtual memory, this will not be an issue. Trashing may occur if the working set (i.e., the
data set that is constantly requested) cannot fit into primary memory, which severely
degrades performance since the operating system will continuously be swapping pages
between memory and the disk.

4.2 Access Structures

To store and access spatial and spatiotemporal data efficiently with a B+tree index, we
must first implement a preprocessor that linearizes our data with a space-filling curve.

4.2.1 Z-address Calculation

The data is linearized by use of Z-address keys, which are Z-values of maximum preci-
sion, i.e., cell level.

Definition 1. (Z-address). Let the object o ∈ n-dimensional space ω be represented with
the coordinate attributes ai and let the binary representation of each coordinate attribute
ai be denoted as ai = ai ,s−1ai ,s−2...ai ,0 where 1 ≤ i ≤ n. The Z-address of object o equals

25

4.2 Access Structures

then the function value

Z (o) =
s−1∑
j=0

n∑
i=1

ai , j 2 j n+i−1 (4.1)

The Z-address, Z (o), is stored in various data types or formats, such as a long primitive,
as a byte[] or a BigInteger object. Objects such as byte[] and BigInteger
can store Z-addresses with arbitrary precision while a long primitive restricts the key to
64-bit, which affects the accuracy of the space-filling curve. However, the long primi-
tive uses significantly less memory compared to BigIntger or byte[] since it has
no class or object overhead. The combination of less waste of cache space and having a
modern CPU supporting a word size of 64-bit makes the execution with long primitives
faster. Since encoding and decoding Z-addresses is such a common operation in our
prototype, we rely upon the long primitive to store the Z-addresses.

In addition to the various formats that can be used to store the Z-address keys, there
also exist various strategies to encode the Z-address. Just as choosing the right data for-
mat can heavily affect the performance of the system, choosing the right algorithm is
often even more important, particularly when choosing between algorithms of different
complexity classes.

For-loop–based method

The for-loop–based method is the most straightforward implementation and the most
obvious way of encoding Z-addresses. The algorithm works by looping over and bitwise
shifting the input coordinates to obtain the Z-address, which is similar to the encoding
procedure described in Chapter 2. This method offers the benefit of being simple to
implement and understand. However, the number of steps required to calculate the
Z-address equals N ×S, where S is the number of bits used to represent the coordinate
attributes and N is the number of dimensions.

Algorithm 3 For-loop–based method for encoding M-bits Z-addresses

1: /* o be the n-dimensional point described by its attributes ai where 1 ≤ i ≤ n */
2: s ← si zeo f (a1) /* Number of bits used to represent the coordinate values */
3: z ← 0
4: for j ← 0, s do
5: for i ← 1,n do
6: z ← z ∨ (ai ∧1 ¿ j) ¿ j + i −1

7: return z

"Magic Bits" method

The encoding and decoding procedure used in the prototype is based on the "magic
bits" method [11], which is significantly faster than the for-loop–based method while
being harder to understand and implement. The idea is to use a combination of bit
shifts and certain bit patterns or masks, called "magic bits", to split bits from the coor-
dinate values into the Z-address. The magic bits are special constants or masks that are
commonly used to enhance performance in various computer operations. In our case,

26

4.2 Access Structures

the masks remove bits that are shifted to incorrect positions. A thorough explanation of
the "magic bits" method, which is depicted in Algorithm 4, is provided here due to its
importance in the prototype.

Algorithm 4 "Magic Bits" based method for encoding M-bits Z-addresses

1: /* o be the n-dimensional point described by its attributes ai where 1 ≤ i ≤ n */
2: m ← {m1,m2, ...,mk } /* Loads set of predefined bit masks */
3: s ← {s1, s2, ..., sk } /* Loads set of shift constants */
4: for each attribute ai ∈ o do
5: for j ← k,1 do
6: ai ← (ai ∨ai ¿ s j)∧m j

7: z ← 0
8: for i ← 1,n do
9: z ← z ∨ai ¿ i −1

10: return z

For each iteration, line 6 of Algorithm 4 shifts the bits of a coordinate attribute with a
logical left shift operator and copies them into empty space with an OR operator. The
masks m remove extraneous bits positioned in places to be used by the other coordi-
nate attributes. The bits of each coordinate attribute are moved to their correct position
by using successive power-of-two distance shifts. After the bits are spread correctly, the
coordinate attributes are interleaved into the final Z-address.

This algorithm is best demonstrated through an example as shown in Figures 4.1 through
4.5 in which we encode three 10-bit coordinate attributes into a 32-bit 3D Z-address.
Starting with the coordinate attribute a1 = [b9,b8,b7,b6,b5,b4,b3,b2,b1,b0], we spread
its bits out to every third bit of a 32-bit address. The specific distances we spread the
different bits in a1 to are shown in Figure 4.1. The first pass of line 6 is a 16-distance
shift. Looking at Figure 4.1, we observe that only bit b9 and b8 in a1 need to move this
far. Thus, bit b9 and b8 move 16 positions left while the mask ensures the other bits re-
main in their original position. Bit b8 is now in its final position, so the remaining masks
make sure that bit b8 stays fixed during the remaining iterations. Bit b9 must, however,
travel two additional left positions, which is performed in the last iteration, which is a
2-distance shift. Now, looking at bit b7 in Figure 4.1, it needs to move 14 positions left
to reach its final position. Since we are only applying power-of-two distance shifts, we
must move bit b7 three times with an 8-distance shift (second iteration), a 4-distance
shift (third iteration), and a 2-distance shift (last iteration). The same procedure is ap-
plied to the rest of the bits, as seen in the evolution from Figure 4.2 to Figure 4.5.

27

4.2 Access Structures

0 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ai

Figure 4.1: The specific distances we want to move the different bits in coordinate a1

0 0 0 0 0 0 b9 b8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b7 b6 b5 b4 b3 b2 b1 b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.2: First pass is a 24 = 16 distance shift. Only bit b8 and b9 in a1 needs to move this far.
The bit mask ensures that rest of the bits in a1 stays unshifted.

0 0 0 0 0 0 b9 b8 0 0 0 0 0 0 0 0 b7 b6 b5 b4 0 0 0 0 0 0 0 0 b3 b2 b1 b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.3: Second pass is a 23 = 8 distance shift. Bit b4, b5, b6 and b7 in a1 are shifted while rest
of the bits stays in their position.

0 0 0 0 0 0 b9 b8 0 0 0 0 b7 b6 0 0 0 0 b5 b4 0 0 0 0 b3 b2 0 0 0 0 b1 b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.4: Third pass is a 22 = 4 distance shift.

0 0 0 0 b9 0 0 b8 0 0 b7 0 0 b6 0 0 b5 0 0 b4 0 0 b3 0 0 b2 0 0 b1 0 0 b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.5: Fourth and last pass is a 21 = 2 distance shift. All bits in a1 are now spread out cor-
rectly.

Once all the coordinate values are spread out like this, they can easily be interleaved
into the final Z-address. The Z-address is obtained in line 9 by shifting the coordinate
values, so their bits fall into the empty space of each other. In other words, the bits in
a2 and a3 are shifted one and two positions to the left, respectively, and combined with
a1.

28

4.2 Access Structures

The set of shift values, s, which are successive power-of-two values, and set of bit masks,
m, which define the bits we want to keep after every shift, depend on the number of
dimensions and bit precision. The bit masks and shift values used to encode 64-bit 2D,
and 3D Z-addresses are given in Table 4.1.

Shift distance Bit mask
2D 3D 2D 3D
1 2 0x5555555555555555 0x1249249249249249
2 4 0x3333333333333333 0x10C30C30C30C30C3
4 8 0x0F0F0F0F0F0F0F0F 0x100F00F00F00F00F
8 16 0x00FF00FF00FF00FF 0x1F0000FF0000FF

16 32 0x0000FFFF0000FFFF 0x1F00000000FFFF

Table 4.1: List of successive bit shifts and bit masks that are used to encode 64-bit 2D and 3D
Z-addresses.

Decoding a Z-address with "magic bits" is performed by executing the Algorithm 4 in
reverse where the left shift operator is changed with a right shift operator, and the or-
der of the shifts and the masks are changed. Computing the Z-address using the "magic
bits" method takes at most N×dlog2Se+N steps, which makes the "magic bits" method
significantly faster than the for-loop–based method. Given the benchmark result pre-
sented by [11], it is an order of magnitude faster when encoding 64-bit random 3D Z-
addresses compared to the for-loop–based method. There exists a slightly more effi-
cient divide-and-conquer method that uses pre-computed tables that contain the cor-
rect splits for certain bit inputs. The performance improvement is, however, too low to
justify the additional implementation effort.

4.2.2 Encoding of Space and Time

Before we calculate Z-addresses, we need to consider the encoding of the spatial input
coordinates and the timestamp. Choosing the appropriate encoding is essential to uti-
lize the space-filling curve efficiently. First, the dimensions of the space-filling curve
should be of similar significance during decomposition. In other words, the queried
dimensions should be of similar length. Second, the dimensions should be scaled with
respect to the available bits. This prevents us from wasting large portions of the space-
filling curve and making the decomposition more inefficient.

Space

The spatial coordinates of the data points are presented as a latitude and longitude pair
with the ranges [-90, 90] and [-180, 180], respectively. The spatial coordinates are read
from the data point and converted to the appropriate format to be used for calculating
the Z-address. The conversion is done by applying the following linear transformation:

xs = (x +90)

90
×2bi t s per di mensi on (4.2)

29

4.2 Access Structures

ys = (y +180)

180
×2bi t s per di mensi on (4.3)

, where x is the latitude and y is the longitude. The spatial index uses 31 bits per dimen-
sion while the spatiotemporal index uses 21 bits per dimension. The reason for using
31 instead of 32 bits per dimension is because Java does not support unsigned number
types, so the last bit is used for the sign. A precision of 21 bits gives a latitudinal gran-
ularity of 0.000087 degrees and a longitudinal granularity of 0.00017 degrees, which is
roughly equivalent to a precision of 100 meters. The precision of the spatial index is
roughly 10 centimetres.

Time

The timestamps of the data points are represented in the format y y y y/M M/dd−hh/mm/ss.
Choosing the appropriate format for the timestamp is not as trivial as with the spatial
coordinates as the main issue is that we are working with an unbounded dimension.
The temporal dimension needs to be restricted to an interval of fixed length as the
length of the space-filling curve is fixed. Thus, all the encoded timestamps need to fall
within some specified interval [tst ar t , tend], this size of which defines the range of allow-
able timestamps. A possible approach is to pick a very wide range that allows storing
data in all the foreseeable future (e.g., 1,000 years). This approach, however, will waste
large portions of the space-filling curve and only allow for a very coarse time resolution,
which makes queries over small time windows inefficient. A narrow range allows for a
higher time resolution and utilizes the curve better, but may cause overflow problems
for future data.

Another approach that avoids the issue of having an unbounded dimension uses a con-
cept called periodicity, which is employed by GeoMesa. The idea is to bin the space-
filling curve into a period block, which can be a day, a week or a year, for example. Time
in the space-filling curve is then the offset into the period block. Our B+tree index stores
multiple space-filling curves one for each period block indexed. This approach comes
with more overhead but allows a very fine temporal resolution without having to worry
about possible overflow. The period block should ideally not be larger than the time size
of the query. If the data is partitioned into day-sized blocks and we query a week-long
interval, then we would execute a separate query for each day of the queried week.

The following two approaches are employed and tested in this thesis.

1. Integrated approach. This approach has all data inserted into a single space-
filling curve. For performance reasons, we set the temporal range of the curve
equal to that of the test data. This solution is not ideal for applications that in-
clude unbounded dynamic data sets. The timestamps are converted by applying
the following linear transformation:

zs = z

tmax
×2bi t s per di mensi on

(4.4)

, where z is the number of minutes between the inserted data point and the min-
imum timestamp in the test data set, and tmax is the maximum timestamp in the
test data set.

30

4.2 Access Structures

2. Semi-integrated approach. This approach relies on periodicity where the index
key includes a period number, which is also called the epoch, with the Z-address.
It is chosen to partition the data into year-long space-filling curves as it demon-
strates the best performance in our initial testing. The epoch is defined to be
the number of years passed since the Java Epoch (1970-01-01T00:00:00), then
the timestamps are converted by applying a similar linear transformation as the
integrated approach. The difference is that tmax is now the maximum number
of minutes in a year and z is the number of minutes between the inserted data
point and the date yyyy-01-01T00:00:00, where yyyy is the year of the inserted data
point.

4.2.3 Indexes

Three difference indexes are used in this thesis. The first is the spatial index used for
spatial queries, which is also called the x y index. The next two indexes are the spa-
tiotemporal indexes, which both support the same spatiotemporal queries. The dif-
ference is how time is incorporated into the space-filling curve. The integrated spa-
tiotemporal index, which is called the x y z index, integrates time fully in the space-
filling curve. The semi-integrated spatiotemporal index, which is called the t − x y z in-
dex, creates a separate space-filling curve for each year indexed where time in the curve
is the offset into the year. Within the B+tree structure, keys are first sorted by the epoch
and then by the Z-address. The different key formats are depicted in Figure 4.6.

2D Z-address ID

Long Long

xy

3D Z-address ID

Long Long

xyz

Epoch 3D Z-address ID

Long Long Long

t-xyz

Figure 4.6: A more detailed representation of the index keys used in the prototype.

The keys also contain a unique ID, which is a sequence number that prevents the exis-
tence of duplicate keys. Duplicates are not allowed by the underlying database engine,
MapDB, and there exists a chance that data points in proximity in space and time are
mapped to the same Z-address.

31

4.2 Access Structures

4.2.4 Insertion Procedure

The insertion procedure of a data point is schematically depicted in Figure 4.7. The
preprocessing stages are summarized as follows:

1. Extract. The space (latitude and longitude) and time (timestamp) attributes are
extracted from the data point.

2. Encode space and time. The encoding procedure depends on the index. The lat-
itude and longitude are scaled to use 31 bits for the spatial index and 21 bits for
the spatiotemporal index. The time is converted into the offset of the temporal
range of the space-filling curve before scaled to 21 bits.

3. Calculate Z-address. The Z-address is calculated with the encoded space and time
attributes.

4. Create key. The key is generated by concatenating the Z-address and the sequence
number, which is incremented during each insertion. For the semi-integrated
index, we concatenate the epoch with the Z-address and the sequence number.

Extract Encode space
and time

Calculate
Z-address Create key

Pre-processing

- Number of dimensions
- Bits per dimension
- Temporal range
- Integration of time

- Number of dimensions
- Bits per dimension

- Integration of time
- Sequence number

Parameters

Data points

BTreeMap

......

...

Insertion

Figure 4.7: Overview of the insertion procedure.

32

4.3 Query Handling

4.3 Query Handling

As the access method provided by the underlying database layer is not sufficient to
support efficient retrieval of spatial and spatiotemporal data, we must implement an
additional query processor on top of the database layer. This includes our proposed
method of decomposing region queries into sets of one-dimensional range scans. Be-
fore describing the implementation details, the supported region queries are specified
in more detail in the following.

Spatial Region Queries. A spatial region query returns all the points contained within
a simple polygon. The simple polygon must be represented as a set of coordinate ver-
tices. The polygon cannot contain self-intersecting line segments or holes.

Spatiotemporal Region Queries. A spatiotemporal region query returns the points
contained within a simple polygon and a bounded time range.

The process of executing a spatial or spatiotemporal region query is divided into three
steps. First, we find Z-ranges that intersect or overlap with the query region in space
and time, which is also known as the decomposition stage. The second stage is the fil-
ter where the Z-ranges from the previous stage are executed as range scans against the
linearized B+tree index. Points retrieved from ranges that are fully covered by the query
region are added to the result set. Points retrieved from ranges that intersect with the
query region are sent to the next stage. The third refinement stage validates all points
retrieved from intersecting ranges. Points that pass the validation test are added to the
result set, and false positives are discarded. The complete process is schematically de-
picted in Figure 4.8.

The next sections describe the three stages in more detail.

33

4.3 Query Handling

Intersecting ranges

Contained ranges

Decompose the

Query

Index

query geometry into
SFC ranges

Candidate set

Validate using the exact
geometry

False positives True positives

Query result

Decomposition stage

Filter stage

Refinement stage

Figure 4.8: Overview of the query processing procedure.

34

4.3 Query Handling

4.3.1 Decomposition Stage

The decomposition stage is the first stage of executing a region query. As mentioned
earlier, processing region queries efficiently require first decomposing the query region
in N -dimensional space into a set of one-dimensional ranges on the space-filling curve.
The goal of the decomposition process is to minimize the response time by efficiently
reducing the amount of data that needs to be checked and removed in the refinement
stage.

The query processor takes an array of coordinate vertices and a time interval as input
parameters. The first parameter is required for both spatial and spatiotemporal. The
second parameter is optional and used for spatiotemporal queries. Before running the
decomposition algorithm, the following preparation steps must be performed.

1. The coordinate vertices are encoded with the same encoding scheme applied
during the insertion process to calculate Z-address keys.

2. (Optional) The time interval is encoded and converted to a minimum and maxi-
mum offset value.

3. (Optional) If a query is executed against the semi-integrated spatiotemporal in-
dex and the time range of the query spans multiple epochs, then we execute a
separate decomposition for each epoch.

The set of encoded coordinate vertices are used to instantiate a geometry object pquer y

from the package org.locationtech.jts.geom. The prototype relies heavily on
the JTS Topology Suite library [9] for the spatial data operations. The instantiated ge-
ometry object is used to test if the hyper-quadrants spatially intersect or are covered by
the query region. The fact that the same geometry object is repeatedly used allows us to
optimize the performance significantly. When JTS performs a predicate test, it creates
an index structure, called an edge graph, for the geometry. To avoid building the same
edge graph repeatedly, it can be computed once and cached for reuse. Caching the edge
graph is enabled by explicitly creating aPreparedGeometry on the geometry object,
which additionally enables detection of certain situations where the predicate test can
be short-circuited.

The pseudocode of the implemented best-first decomposition algorithm is presented
below. The algorithm is based on the proposed method in Chapter 3 and is explained
in depth below.

35

4.3 Query Handling

Algorithm 5 Quadtree-based best-first decomposition of a query region.

1: /* QN is the scaled and encoded query region, where N = 2 means the query is spatial
and N = 3 is spatiotemporal. */

2: S←; /* Initialize an empty set to store result ranges.*/
3: R ←; /* Initialize an empty PriorityQueue to store h-quadrants to process. */
4: pquer y ← j t s_spati al_pol y g on(QN)
5: pMBR ← j t s_spati al_envelope(pquer y)
6: {xlower,quer y , ylower,quer y , xupper,quer y , yupper,quer y } ← coor di nates(pMBR)
7: if N = 3 then
8: {tl ower,quer y , tupper,quer y } ← tempor al_o f f set_bound s(QN)

9: zlower ← z_addr ess_encode(xlower,quer y , ylower,quer y , tlower,quer y)
10: zupper ← z_addr ess_encode(xupper,quer y , yupper,quer y , tupper,quer y)
11: zpr e f i x,r oot ← common_pr e f i x(zlower , zupper) /* root hyper-quadrant */
12: E NQU EU E(R, zpr e f i x,r oot ,max_pr i or i t y)
13: while pr i or i t y(PEEK (R)) > thr eshol d and |S|+ |R| < maxi mum_r ang es do
14: zpr e f i x ← DEQU EU E(R)
15: for each sub-h-quadrant zpr e f i x,sub in zpr e f i x do
16: {zlower , zupper } ← zpr e f i x,sub

17: {xlower , ylower , tlower } ← z_addr ess_decode(zl ower)/* t = ; if N = 2*/
18: {xupper , yupper , tupper } ← z_addr ess_decode(zupper)
19: pquadr ant ← j t s_spati al_pol y g on(xlower , ylower , xupper , yupper)
20: if CON T AI N S(tl ower , tupper , tupper,quer y , tl ower,quer y

21: , pquadr ant , pquer y) then
22: S∪ {zl ower , zupper }Cont ai ned

23: else if I N T ERSEC T S(tl ower , tupper , tupper,quer y , tl ower,quer y

24: , pquadr ant , pquer y) then
25: E NQU EU E(R, zpr e f i x,sub , pr i or i t y(zpr e f i x,sub))

26: while R 6= ; do
27: zpr e f i x ← DEQU EU E(R)
28: {zlower , zupper } ← zpr e f i x

29: S∪ {zlower , zupper }Inter sect i ng

30: return S

To start the quadtree-based decomposition of the query region, we first calculate the
initial root node of the hyper-quadtree. The root node is set to be the minimum cover-
ing hyper-quadrant of the query region and provides an initial restriction of the space
to be decomposed. As described in Chapter 2, the relationship between the Z-order
curve and the hyper-quadtree lets us represent a hyper-quadrant as a Z-address pre-
fix (zpr e f i x). The minimum covering hyper-quadrant of the query region is the longest
common Z-address prefix of the Z-addresses that represents the lower-left and upper-
right vertices of the minimum bounding hyper-rectangle of the query geometry in N -
dimensional space. The process of calculating the root node for a spatial region query
is depicted in Figure 4.9.

36

4.3 Query Handling

(a) The query region. (b) MBR of the query region.

(c) The Z-addresses (see figure 4.9) of the
lower-left (000000) and upper-right (001111)
vertices of the MBR.

(d) The quadrant represented by the longest
common Z-address prefix (00) of the lower-
left and upper-right vertices of the MBR.

Figure 4.9: An example of how the root node is calculated for a spatial region query.

010101 010111 011101 011111 110101 110111 111101 111111

010100 010110 011100 011110 110100 110110 111100 111110

010001 010011 011010 011011 110001 110011 111001 111011

010000 010010 011000 011001 110000 110010 111000 111010

000100 000111 001101 001111 100101 100111 101101 101111

000100 000110 001100 001110 100100 100110 101100 101110

000001 000011 001001 001011 100001 10011 101001 101011

000000 000010 001000 001010 100000 100010 101000 101010

Figure 4.10: The Z-addresses for a two-dimensional Z-order curve with 3 bits per dimension.

37

4.3 Query Handling

The algorithm picks the next hyper-quadrant to expand from a priority queue. The first
hyper-quadrant to expand is the root node, which is expanded into 2N smaller hyper-
quadrants by appending all possible N -bit combinations to the Z-address prefix (where
N is the number of dimensions). Each sub-hyper-quadrant is evaluated by testing if it
is contained or intersects with the query region.

p q

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 1

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 2

0 0 1 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 3

0 0 1 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 4

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 1

0 0 0 1 0 0
5 4 3 2 1 0

Figure 4.11: Expanding the example root node into 22 = 4 sub-quadrants.

Contained Hyper-quadrants

To determine if a hyper-quadrant intersects or is contained by the query region, we first
calculate its lower bound zl ower and upper bound zupper . The lower bound zlower is
the zpr e f i x followed by trailing bits of zeros, and the upper bound zupper is the zpr e f i x

followed by trailing bits of ones.

zpref i x

0 0 0 1 0 0
5 4 3 2 1 0

zlower

0 0 0 1 1 1
5 4 3 2 1 0

zupper

rest of thebits in ai staysunshifted.

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x

0 0 0 1 0 0
5 4 3 2 1 0

0 0 0 1 0
5 4 3 2 1

zpref i x sub-quadran

0 0 1 0 0
5 4 3 2 1

zpref i x sub-quadran

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x

0 0 0 1 0 0
5 4 3 2 1 0

zlower

0 0 0 1 1 1
5 4 3 2 1 0

zupper

rest of thebits in ai staysunshifted.

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x

0 0 0 1 0 0
5 4 3 2 1 0

0 0 0 1 0
5 4 3 2 1

zpref i x sub-quadran

0 0 1 0 0
5 4 3 2 1

zpref i x sub-quadran

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

Figure 4.12: Calculating the Z-bounds zlower and zupper by setting the bits after the prefix to
zero and one, respectively.

38

4.3 Query Handling

The Z-addresses zlower and zupper are decoded to their coordinate values in N -dimensional
space, which represent the lower-left and upper-right vertices, respectively, of the hyper-
quadrant in N -dimensional space. A geometry object pquadr ant of the hyper-quadrant
in the spatial plane is instantiated with the spatial coordinates xl ower , ylower , xupper

and yupper .

The contained test includes temporal and spatial tests. The temporal test is performed
first for spatiotemporal queries, and checks if the temporal coordinates tl ower ,tupper of
the hyper-quadrant are contained by the time interval of the query: [tlower , tupper] ⊆
[tlower,quer y , tupper,quer y]. If it passes the temporal test or if the query is spatial, then a
more computationally expensive spatial test is performed. Thecontains(geometry)
method from the JTS geometry class is used to determine if the spatial geometry ob-
ject pquadr ant is contained by the geometry object pquer y . JTS will automatically detect
if the pquadr ant geometry is a rectangle and perform a rectangle-in-polygon test instead
of a more expensive polygon-in-polygon test. If it passes the spatial intersection test,
then the range of the hyper-quadrant, {zl ower , zuppper }, is marked as contained and
added to the result set of ranges. Hyper-quadrants that are not contained by the query
are passed on to the intersection test.

Intersecting Hyper-quadrants

The intersection test checks first if either tlower or tupper is within the interval
[tlower,quer y , tupper,quer y]. If the hyper-quadrant temporally overlaps with the query or
the query is spatial only, then the intersects(geometry) method from the JTS
geometry class is used to check if the hyper-quadrant geometry spatially intersects
with the query geometry. Hyper-quadrants determined to intersect with the query re-
gion are stored in the priority queue for further expansion. Intersecting hyper-quadrants
are assigned a priority value according to the estimated data distribution when inserted
into the priority queue. Hyper-quadrants estimated to contain a significant amount
of data are assigned a higher priority value than hyper-quadrants containing less esti-
mated data. The hyper-quadrant with the highest priority value is selected in the next
iteration of the decomposition algorithm.

Figure 4.13: The red color shows the data distribution in the example space.

39

4.3 Query Handling

0 0

zpref i x sub

0 0
5 4

zpref i x sub

Figure1:Firs
rest of thebit

0 0 0 0 0 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 1

0 0 0 1 0 0
5 4 3 2 1 0

5 4 3 2 1 0

0 0 0 0 0 0

zpref i x sub-quadrant 1

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 2

0 0 1 0 0 0
5 4 3 2 1 0

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

5 4 3 2 1 0

0 0 0 1 0 0

zpref i x sub-quadrant 2

0 0 1 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 3

0 0 1 1 0 0
5 4 3 2 1 0

b d

0 0 1 0 0 0

zpref i x sub-quadrant 3

0 0 1 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 4

Figure1:First pass isa24 =16distanceshift. Onlybit 8and 9in distancein ai ne
rest of thebits in ai staysunshifted.

drant

0 0 0 0
3 2 1 0

quadrant 1

0 1 0 0
3 2 1 0

quadrant 2

3 2 1 0

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 2

0 0 1 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 3

0 0 1 1 0 0
5 4 3 2 1 0

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

z f i sub quadrant 1

0 0 0 1 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 2

0 0 1 0 0 0
5 4 3 2 1 0

zpref i x sub-quadrant 3

0 0 1 1 0 0
5 4 3 2 1 0

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

z f i sub quadrant 1

zpref i x

zpref i x

0 0 0 0 0 0
5 4 3 2 1 0

zpref i x quadrant

0 0 0 0 0 0
5 4 3 2 1 0

z sub quadrant 1

0 0 0 0 0
5 4 3 2 1

zpref i x quadrant

0 0 0 0 0
5 4 3 2 1

z sub quadran
Priority values

89 5 0 0

Figure 4.14: The priority queue after the first iteration. The priority value reflects the amount of
data contained in the quadrant.

Hyper-quadrant Priority

The priority value of intersecting hyper-quadrants is determined by a histogram, which
is implemented by using a hash table that provides linear complexity in terms of con-
structing cost and memory. The lookup time is, however, constant. Hash tables make it
possible to construct and update the histogram incrementally. Updating the histogram
with new data will, however, increase the size, and, thus, the memory cost of the hash
table. This problem can be mitigated by rebuilding the hash table with sampling. Our
implementation relies on theLong2LongOpenHashMap class provided by the fastutil
library, which is built specifically for speed and a low memory footprint [3]. A separate
histogram is built for each index, and each histogram is constructed using a sample of
index keys. The entry of the hash table is a Z-address prefix (hash key) representing
a hyper-quadrant and a frequency counter (hash value). The histogram is constructed
incrementally with one sampled index key available at the time. The Z-address of the in-

dex key is partitioned into bM

N
c prefixes of increasing length, where M is the Z-address

bit-length, and N is the number of dimensions. The partitioning process is performed
by increasing the prefix of the Z-address with N bits at the time until the root (base) is
empty. The histogram is then updated by incrementing the frequency counter of each
prefix in the hash table by one.

pref i x q

Figure1:First pass isa24 =16distanceshift. Onlybit 8and 9in distancein ai needsto movethis far. T
rest of thebits in ai staysunshifted.

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

Figure2:First pass isa24 =16distanceshift. Onlybit 8and 9in

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

0 0 1 0 0 1
5 4 3 2 1 0

Z-address

h(n)

94 + 1

89 + 1

75 + 1

BucketsHash functionPrefix keys

Figure 4.15: Updating the histogram with an index key.

40

4.3 Query Handling

The histogram can be thought of as a linear quadtree with interior nodes where each
node is associated with a counter that tells how many points are contained within a
hyper-quadrant. The process of updating the histogram with an index key is then equal
to traversing a hyper-quadtree top-down to the leaf node that contains the index key
while incrementing the counter to each of the visited nodes (only one node per level in
the tree is updated).

If no entry is found in the hash table for an intersecting hyper-quadrant during de-
composition, it will be assigned a priority value of zero. The decomposition stops when
the priority value of the next hyper-quadrant in the priority queue is below a specific
threshold or a maximum number of ranges is created 1. The remaining hyper-quadrants
in the priority queue will be added to the result set as intersecting ranges. The priority
threshold value must be tuned to balance the overhead from creating and executing
additional range scans against the overhead from additional refinement.

Intersecting range

Contained range

Figure 4.16: The complete decomposition of the example query. Notice that the hyper-quadrants
zpr e f i x = 0000 and zpr e f i x = 0001 are not expanded since their priority value equals zero.

Merging Adjacent Ranges

A final post-processing step of merging adjacent ranges is applied to reduce the number
of ranges in the result set S. The idea is to join multiple consecutive ranges into larger
continuous ranges resulting in fewer range scans during the filter stage. The merging
procedure is the following with the ranges in the result set S first sorted in increasing
order where

{zi ,lower , zi ,uppper } < {z j ,lower , z j ,uppper } when
zi ,lower < z j ,lower∨
zi ,lower = z j ,lower ∧ zi ,upper < z j ,upper

{zi ,lower , zi ,uppper } > {z j ,lower , z j ,uppper } when
zi ,lower > z j ,lower∨
zi ,lower = z j ,lower ∧ zi ,upper > z j ,upper

{zi ,l ower , zi ,uppper } = {z j ,lower , z j ,uppper } when
zi ,lower = z j ,lower∧
zi ,upper = z j ,upper

1The best-first decomposition procedure will mainly be stopped by reaching the priority threshold.

41

4.3 Query Handling

The merging procedure is then performed by iterating over the sorted set and merg-
ing the current range Zcur r with the next range Znext in the set if the next lower bound
and current upper bound are consecutive numbers:

Zcur r =
{

{zcur r,l ower , znext ,uppper } if (zcur r,upper +1) = znext ,lower

Znext otherwise
(4.5)

The merging process starts by setting Zcur r = Z0 and performs a total of |S| iterations.
The time complexity of the algorithm is, however, O(|S| log |S|) due to the sorting. Inter-
secting ranges are only merged with other intersecting ranges while contained ranges
are only merged with other contained ranges. If an intersecting range were merged with
a contained range, then the result would be a larger intersecting range that requires ad-
ditional refinement for false positives. The final merging step is meant to reduce the
overhead of searches in the B+tree index and will not affect the accuracy of the decom-
position and the number of false positives retrieved.

Intersecting range

Contained range

Figure 4.17: The number of ranges in the decomposition in figure 4.16 can be reduced from nine
ranges to five ranges by merging adjacent ranges. The quality of the decomposition remains the
same.

4.3.2 Filter Stage

The filter stage executes a series of range queries against the B+tree index by using the
generated ranges from the decomposition step. A range query is executed by creat-
ing an interval submap with the subMap(lower, upper) method provided by the
Java NavigableMap interface implemented by the BTreeMap class. The submaps
(ranges) are partitioned into two separate sets of contained submaps and intersecting
submaps. The objects fetched from the contained ranges are stored directly in the re-
sult set while objects fetched from the intersecting ranges are stored in a candidate set.
The objects in the candidate set may contain false hits and need to be validated. The
objects are loaded lazily as the data itself are accessed, and the objects in the candidate
set are first fetched during the refinement stage.

4.3.3 Refinement Stage

The refinement stage inspects the exact representation of each object in the candidate
set from the filter stage. The coordinates and the timestamp information are extracted

42

4.4 Parallelization

from the retrieved object and tested against the exact spatial query geometry and po-
tential time interval. The spatial test is a point-in-polygon (PIP) test provided by JTS.
Only objects that pass the spatial and the potential temporal test are stored in the re-
sult set. The refinement stage is usually the most computationally expensive step of the
query execution because of the potential number of PIP operations required. The PIP
implementation in JTS is based on the well-known ray-casting algorithm that draws
a line from the point and counts how many times the line intersects with the poly-
gon. The point is determined to be inside the polygon if the drawn line intersects with
the polygon an odd number of times. Otherwise, if it intersects an even number of
times, then the point is outside. The original algorithm usually runs with linear com-
plexity. However, logarithmic performance is possible in cases of the repeated testing
with the same polygon, which applies in our application. This performance increase is
achieved by using the PreparedGeometry class to build and cache a pre-computed
edge graph for the query polygon.

4.4 Parallelization

The query handling algorithm described in this chapter has a high potential for paral-
lelization, which can be exploited on modern multi-core processing systems to increase
query performance. Parallel processing is employed in the decomposition and refine-
ment stages.

4.4.1 Multi-threaded Decomposition

The fact that the space covered by intersecting hyper-quadrants in the priority queue
are not overlapping makes it trivial to parallelize the decomposition to a nearly arbitrary
level. A possible approach for parallelization is partitioning the root node of the hyper-
quadtree into multiple intersecting hyper-quadrants and assigning each thread one of
the intersecting hyper-quadrant as a root node, as seen in Figure 4.18. Each thread
decomposes a separate portion (a sub-hyper-quadtree) of the query region. The range
sets created from each thread are merged at the end, which includes merging adjacent
ranges. No synchronization is required between the threads during decomposition.

43

4.4 Parallelization

Thread 1 Thread 2 Thread 3 Thread 4

Figure 4.18: Simple multi-threaded decomposition.

This approach does, however, have shortcomings. Specifically, there is a significant
chance of load imbalance between the threads. This can be seen in threads that are
assigned hyper-quadrants that intersect only a small portion of the query region and
covers sparse regions. These threads are likely to finish early compared to threads that
are decomposing dense regions that require significantly more ranges to reduce the
number of false positives. To alleviate this issue, we perform an initial shallow decom-
position of the query region. The intersecting hyper-quadrants in the priority queue
are then partitioned into sets of approximately equal priority value sum. Each thread is
assigned a set of intersecting hyper-quadrants, which are decomposed in parallel. The
priority value sum of a set proves to be a good indicator of how many ranges are likely to
be created for the specific set. The load balance is, thus, improved at the cost of a minor
reduction in concurrency. The initial decomposition is very shallow, so the potential
loss in concurrency is expected to be insignificant in most use cases. The problem of
partitioning the priority queue into subsets with the equal priority value sum can be re-
duced to the well-known NP-complete partitioning problem. This problem is partially
solved by assigning every nth hyper-quadrant in the priority queue, which is sorted by
the priority value, to the nth thread. This simple approach demonstrates sufficient load
balancing in our initial tests.

4.4.2 Multi-threaded Refinement

Parallelization is implemented in the refinement stage by queuing up each of the in-
tersecting ranges as a separate refinement task. A Java ExecutorService is instan-
tiated with a fixed number of threads to reduce overhead due to thread creation. The
number of instantiated threads should equal the number of processor cores available
so each core can be fully utilized.

44

4.4 Parallelization

The refinement tasks are executed concurrently by calling invokeAll() on the list
of tasks, and the results from each task are added to the final result set once all tasks
are complete. The initial results show a high utilization of the available cores with this
approach. Good load balance is achieved as the job queue consists of many short tasks,
although the tasks are large enough to be worth the overhead of executing on a thread
pool. Attempts were made to reduce overhead further by batching the tasks into larger
tasks, but no performance improvements were identified.

45

Chapter 5
Experiments, Results, and
Discussions

In this chapter, we design and execute a complete benchmark for our prototype. The
purpose of the benchmark is to measure the performance in terms of scalability, re-
sponse time, resource use and false positives.

5.1 Baseline

To analyze the performance of our prototype, it is necessary to establish a baseline sys-
tem. For this purpose, we implemented the quadtree-based, breadth-first decomposi-
tion strategy introduced in Chapter 2, which is chosen as it is one of the most popular
approaches of decomposing region queries into SFC ranges. Our implementation of
the breadth-first decomposition method is based on the one provided by the Location-
Tech SFCurve library [5], on which GeoMesa relies. However, instead of partitioning the
MBR of the query region into intersecting ranges with rectangle-in-rectangle tests, like
GeoMesa, we partition the query region into intersecting and contained ranges with
rectangle-in-polygon tests.

The breath-first decomposition method is static compared to the best-first decomposi-
tion method as it creates approximately the same number of ranges for each query. The
exception is for particularly small polygons or axis-aligned boxes where the decompo-
sition procedure hits the recursive limit imposed by the precision of the Z-address keys.
The maximum number of ranges that will be created for a query is given by a parameter
value.

46

5.2 Dataset

5.2 Dataset

For all experiments performed in this chapter, the GeoLife dataset from Microsoft is
used [36][35][34], which consists of real-life GPS trajectory data recorded from 178 dif-
ferent users with GPS-enabled devices. The data spans a four-year period, and each
recording is stored as a timestamped point with latitude and longitude coordinates.
The sampling rate is approximately [1,5] seconds or [5,10] meters, and the set contains
a total of 20,283,945 points. The data set is primarily recorded from users in China, and
most of the data is located within Beijing. A heat map that shows the distribution of the
recorded data is shown in Figure 5.1.

Figure 5.1: Distribution of data in Beijinig [34]

This dataset is chosen for our experiments as it represents real-world data over wide
spatial and temporal ranges. It is likely to provide an accurate view of how our proposed
method will perform in real use cases compared to using a computer-generated data
set.

5.3 Queries

To test the performance of our prototype, a set of spatial and spatiotemporal queries is
developed.

5.3.1 Spatial Region Queries

A total of 120 random generated polygons of different complexity and sizes within Bei-
jing were used for the spatial query set. To determine if there is a significant differ-
ence between the baseline and the proposed method in our prototype, we ensured each
polygon contains at least 10,000 data points. The spatial queries are meant to give us
an insight into how the prototype behaves with different geometries and sizes.

47

5.4 System Configuration

Figure 5.2: Two example polygons.

5.3.2 Spatiotemporal Region Queries

The spatiotemporal query set consists of 30 different polygons where each polygon has
a total of 15 different temporal predicates giving a total of 450 spatiotemporal queries.
Three different time sizes — day, week, and month — were used for the temporal pred-
icates. The time predicates for each spatial predicate were selected mostly randomly
across the time range of the GeoLife test set, and it was ensured that none of the spa-
tiotemporal queries was empty.

The queries are executed sequentially in our experiments. To keep the results con-
sistent and to normalize cache side-effects, we presented each query five times in a
random order and averaged the results.

5.4 System Configuration

The specifications of the hardware used for all the experiments are listed in Table 5.1.
In addition to the implementation details described in the previous chapter, there are
configuration parameters for the underlying database layer. Most importantly, nodes
in the B+tree are serialized, and each node contains at most 32 pointers. This is the
default node size in MapDB and proved to provide acceptable performance in our ini-
tials tests. As changing the node size will predominantly affect random lookups and not
sequential range scans, it was decided that it not be worth tuning the node size. Write-
A-Head logging is also disabled as atomicity and durability are not of any concern in
our experiments.

Operating System Windows 10 64bit
Processor Intel Core i5-3750k CPU @ 4.2 GHz
Logical Cores 4
Primary Storage 16GB
Secondary Storage 500GB (SSD)

Table 5.1: System configuration.

48

5.5 Metrics

The amount of free physical memory in our system is greater than the total memory
size of the indexes and data sets used in our experiments. This means that page reuse
will be especially effective when using memory-mapped files as the entire dataset can
be copied to memory as it is touched, and the operating system will not be forced to
start aggressive unmapping of files because of page faulting. The consequence is that
query processing is eventually going to be CPU-bound in our experiments.

5.5 Metrics

To evaluate the performance of our experiments, we defined a set of quantitative mea-
sures for the different performance aspects of the system.

Number of Ranges

The number of ranges is the number of Z-ranges returned from the decomposition
stage, which includes merging of adjacent ranges. More ranges will give a more ac-
curate approximation of the query region, and less false hits. However, an increase in
the number of ranges also increases the overhead during query execution, which may
cause a decrease in overall performance. The optimal number of ranges depends on the
query, the data set, and the system. Generally, a beefier system will be able to handle
more ranges.

The number of ranges is of great importance since it allows for the measurement of
how well the best-first decomposition method adapts to non-uniform data compared
to the breadth-first decomposition method by looking at the number of ranges needed
by the two methods to avoid a similar amount of false positives.

Response Time

The response time is the primary metric used to evaluate the performance of our ex-
periments and is defined as the time taken to execute a query. This includes the time
spent on decomposition, fetching, and refinement. Ideally, the response should be as
quick as possible and independent of the sizes of the index and data set. The response
time should depend on the size of the result set of a query.

Decomposition Time

This decomposition time is the time spent on creating ranges for a query and should
increase linearly with the number of ranges created. It is important that the additional
time spent on decomposition not exceed the reduction in response time due to less
refinement. Creating too many ranges can make the decomposition stage dominate
the response time. Ideally, we want the decomposition time as low as possible while
still achieving a low number of false positive hits.

False Discovery Rate

Another important metric is the percentage of false positive (FP) hits in the refinement
stage compared to the total number of fetched objects during query processing. This

49

5.6 Insertion Performance

includes false positives during refinement and true positives (TP) in the result set. The
false discovery rate (FDR) tells us the proportion of objects from the filter step that is
removed in the refinement step.

F DR = F P

F P +T P
(5.1)

The false discovery rate indicates how well the ranges created by the decomposition
method can approximate the query region given the data distribution. A low false dis-
covery rate is desired as it represents less time spent on retrieving unwanted objects.
The simplest solution to lower the false discovery rate is to create more ranges, but this
comes at the cost of increased overhead and greater decomposition time. A goal of our
proposed decomposition method is to achieve a low false discovery rate while limiting
the number of ranges created.

5.6 Insertion Performance

High and scalable ingest performance is a necessity when dealing with the large dy-
namic datasets found in spatial and spatiotemporal applications. Our index structures
are essentially B+tree indexes with some pre-calculations incorporated meaning that
we should maintain the logarithmic scalability of the B+tree.

To compare the insertion performance of our indexes, we measure how long they take
to construct compared to a normal B+tree.

Results

The insertion performance of the different index structures is presented in Figure 5.3.
The data is inserted into the indexes sequentially, and they are then built entirely in-
memory before committed to disk. Only the in-memory loading phase is shown in the
figure. Each index is loaded with the entire data set. The spatiotemporal (t − x y z and
x y z) indexes have the slowest insertion speed while the B+tree index is fastest. The
overall performance is high with an average of 105,000 points per second for the spatial
(x y) index and an average of 80,700 and 83,500 points per second for the spatiotempo-
ral indexes (t − x y z and x y z, respectively). The insertion time for the spatiotemporal
and spatial indexes are approximately 83% (t − x y z), 77% (x y z), and 41% higher (x y)
compared to the B+tree. The insertion performance does not degrade for any of the
indexes.

50

5.6 Insertion Performance

0 0.5 1 1.5 2

·107

0

50

100

150

200

250

Number of points

T
im

e
[s

ec
o

n
d

s]

t-xyz
xyz
xy
B+tree

Figure 5.3: Insertion performance.

Index Size
t-xyz 3.519 GB
xyz 3.320 GB
xy 2.891 GB

Table 5.2: The various index sizes.

Discussion

The worse insertion performance observed in the spatiotemporal indexes can be ex-
plained with the following: 1) The spatiotemporal encoding procedure is more compu-
tationally expensive as it includes an additional temporal encoding step to the spatial
encoding step found in the spatial index. This includes extracting the timestamp from
the data point and calculating the temporal offset. 2) The time complexity of the "magic
bits" method used to encode the Z-address keys increase linearly with respect to the
number of dimensions. 3) The 2D SFC component of the spatial index key is smaller
with less serialization overhead compared to the 3D SFC component of the spatiotem-
poral index key (see Table 5.2).

Given the minor difference in insertion performance between the semi-integrated (t −
x y z) and integrated (x y z) spatiotemporal indexes, it can be deemed that the overhead
of serializing a larger index key is negligible compared to the effort of calculating the
index key. The semi-integrated index key is significantly larger than the integrated in-
dex key as it contains an additional epoch component to the SFC address and the ID
number.

51

5.7 Breadth-first Decomposition

5.7 Breadth-first Decomposition

This section tests the breadth-first decomposition method with a two-fold purpose of
the experiments. First, we want to investigate the relationship of response time, de-
composition time, and false discovery rate to the number of ranges created with the
method. Second, given the results in this section, we want to determine the optimal
parameter value for the maximum number of ranges for the breadth-first decomposi-
tion method in our test environments. The best-first decomposition method will be
tested and compared against the tuned breadth-first decomposition method.

5.7.1 Maximum Number of Ranges

The effect of using a finer decomposition is obtained by measuring the average re-
sponse time, decomposition time, and false discovery rate over the query set while
gradually increasing the maximum number of ranges. The global minimum gives this
optimal parameter value for the maximum number of ranges in the result graphs.

Results

Figure 5.4 shows how the average response time is affected by the maximum number
of ranges for the different query sets. All the indexes show a clear inverse curvilinear
relationship between the number of ranges and average response time where the ben-
efits of a more fine-grained decomposition increase drastically to a certain point. The
average response time for the spatial query set remains stable at 1100ms as the maxi-
mum number of ranges continuous to increase. However, for the spatiotemporal query
set, the decomposition time starts to dominate the response time soon after the ini-
tial drop. When comparing the semi-integrated approach (t − x y z) with the integrated
approach (x y z), the spatiotemporal queries are executed faster with the integrated ap-
proach than the semi-integrated approach (230ms versus 300ms, respectively).

Again, the number of range scans used to execute a region query is not the same as
the (maximum) number of ranges returned from the breadth-first decomposition pro-
cedure. The ranges from the decomposition procedure are passed to the merging step,
which merges adjacent ranges, before being executed as range scans. The range set is
on average halved during the merging phase.

Figure 5.5 shows the relationship between the average false discovery rate and the maxi-
mum number of ranges. The average false discovery rate starts, as expected, to decrease
when the number of ranges increases. The sudden drop in the false discovery rate re-
flects the same drop in response time in Figure 5.4. The average false discovery rate
continues to decrease, although less drastically, throughout the range of the curve. This
is contrary to the average response time, which starts to increase (or flat out for spatial
queries) shortly after the knee of the curve.

The breadth-first decomposition method can achieve a much lower average false dis-
covery rate for spatial queries compared to spatiotemporal queries given the same max-
imum number of ranges. Between the spatiotemporal indexes, the integrated approach
appears to perform better.

52

5.7 Breadth-first Decomposition

0 1 2 3 4 5 6 7

·104

0

500

1,000

1,500

2,000

Maximum number of ranges

T
im

e
[m

il
li

se
co

n
d

s]
Average t-xyz response time
Average t-xyz decomposition time

0 1 2 3 4 5 6 7

·104

0

500

1,000

1,500

2,000

Maximum number of ranges

T
im

e
[m

il
li

se
co

n
d

s]

Average xyz response time
Average xyz decomposition time

0 1 2 3 4 5 6 7

·104

0

1,000

2,000

3,000

4,000

5,000

Maximum number of ranges

T
im

e
[m

il
li

se
co

n
d

s]

Average xy response time
Average xy decomposition time

Figure 5.4: The effect of increasing the maximum number of ranges on the average response time
with the breadth-first decomposition method.

0 1 2 3 4 5 6 7

·104

0

0.2

0.4

0.6

0.8

1

Maximum number of ranges

Fa
ls

e
d

is
co

ve
ry

ra
te

t-xyz
xyz
xy

Figure 5.5: The effect of increasing the maximum number of ranges on the average false discovery
rate with the breadth-first decomposition method.

53

5.8 Best-first Decomposition

Discussion

The worst average false discovery rate seen with spatiotemporal queries can be partly
explained by the issue of scaling and the curse of dimensionality. First, the query re-
gion is decomposed more efficiently when the dimensions of the space-filling curve
are of equal significance, i.e., the spatial and temporal predicates of the query fill the
dimensions of the space-filling curve equally. The spatial predicates are of approxi-
mately equal length in our query set as the minimum bounding rectangles of the spa-
tial query regions are approximately square. The sizes of the temporal predicates are,
however, significantly different from the spatial predicates, which means that the min-
imum bounding cuboids of the spatiotemporal query regions will not be cube-shaped.
Also, this issue cannot be trivially solved by fine-tuning the scaling of the curve dimen-
sions as the optimal scaling depends on the query pattern. Second, decomposing a spa-
tiotemporal query region with an octree accurately requires substantially more ranges
than decomposing a spatial query region with a quadtree due to the increasing volume
of space. The higher fanout of the octree will limit the precision of the decomposition.
However, it is interesting to see that scaling used in our indexes causes the coarse hyper-
quadrants created with the integrated approach to fit the spatiotemporal query regions
better than the coarse hyper-quadrants created with the semi-integrated approach.

In addition to the poorer false discovery rate, the spatiotemporal queries are particu-
larly sensitive towards the decomposition stage. After the initial drop in the false dis-
covery rate, any benefit in reduced refinement time from its further reduction is out-
weighed by the increase in the decomposition time. The response time of the spatial
queries remains, on the other hand, relatively stable as the maximum number of ranges
increases. This behaviour may be explained first, and most importantly, by the spatial
queries are of much higher volume than the spatiotemporal queries, which means that
time spent on fetching and validating the points has a larger impact on the response
time. The large difference in volume between the spatial and spatiotemporal queries
can be observed by looking at the difference in average response time. Second, the de-
composition procedure for spatiotemporal queries is on average 50% more expensive
than for spatial queries. By increasing the number of dimensions, we also increase the
average ratio between the number of disjoint and overlapping hyper-quadrants dur-
ing the decomposition. The consequence is that more hyper-quadrants need to be
checked to create a specific quantity of ranges for spatiotemporal queries than for spa-
tial queries. Additionally, the cost of decoding Z-addresses during the decomposition
increases with the number of dimensions.

5.8 Best-first Decomposition

In this section, we test and compare the best-first and breadth-first decomposition
methods. Before we begin with the comparison, we construct a histogram for the best-
first decomposition method. The datasets found in spatial and spatiotemporal applica-
tions are typically huge, and the construction and resource costs of the histogram may
in many applications become prohibitively significant. Thus, we want to construct a
histogram that provides sufficient accuracy with a minimum amount of resources. The
resource cost of our histogram depends on the two parameters of the maximum prefix

54

5.8 Best-first Decomposition

length and sample size.

5.8.1 Maximum Prefix Length of the Histogram

As described in the previous chapter, the histogram is constructed incrementally with
the index keys. The Z-address of a key is partitioned into prefixes of increasing length
where each prefix is an entry in the hash table (i.e., a bucket in the histogram). The
structure of the histogram can be thought of as a linear quadtree with interior nodes
in addition to the leaf nodes, which together represent a sparse hyper-quadtree struc-
ture. An issue with this approach is that there will be many very small nodes (hyper-
quadrants) at the bottom of the hyper-quadtree that is represented by the histogram.
These nodes will usually contain very little data and are not worth expanding during
query decomposition. Thus, resources can be saved by restricting the maximum pre-
fix length of the hash table entries when constructing the histogram. This reduces the
number of small buckets in the histogram and can be compared to restricting the depth
of the hyper-quadtree. To determine the effect of adjusting the maximum prefix length
of the histogram, we measure the performance over the query sets with histograms of
increasing maximum prefix length. The prefix length is increased by N (number of di-
mensions) bits in each measurement, which is the same as increasing the height of the
hyper-quadtree by one.

Results

Figure 5.6 presents how the performance of the best-first decomposition method is af-
fected by the maximum prefix length of the histogram. The maximum prefix length is
represented as the zoom level on the space-filling curve (maximum depth of the hyper-
quadtree). The average response time remains relatively stable in the plots until a cer-
tain level where it starts to drop drastically. This applies particularly to the spatial query
set, where the average response time drops from 30 seconds to 850 milliseconds. Con-
trary to the results from the previous experiments with breadth-first decomposition
method, the semi-integrated spatiotemporal index achieves significantly better aver-
age response time here compared to the integrated spatiotemporal index (90ms versus
165ms for the integrated approach). The drop is also significantly steeper with the semi-
integrated approach.

The average response time remains stable after the knee of curves. The decomposition
time starts to increase for the semi-integrated spatiotemporal index while the response
time remains flat. This indicates a balance between the time spent on less refinement
and that of creating more ranges.

Figure 5.7 presents the relationship between the maximum prefix length of the his-
togram and the average false discovery rate over the query sets. The behaviour of the
plots is, as expected, nearly identical to the behaviour seen in the plots for the average
response time. Again, the average false discovery rate for the spatial query set drops
more drastically than for the spatiotemporal query set. Comparing the semi-integrated
approach with the integrated approach, we observe the drop in average false discovery
rate for spatiotemporal queries is more significant for the semi-integrated approach,
which is also reflected in the response time.

55

5.8 Best-first Decomposition

0 5 10 15 20
0

200

400

600

Zoom [levels]

T
im

e
[m

il
li

se
co

n
d

s]
Average t-xyz response time
Average t-xyz decomposition time

0 5 10 15 20
0

200

400

600

Zoom [levels]

T
im

e
[m

il
li

se
co

n
d

s]

Average xyz response time
Average xyz decomposition time

0 5 10 15 20 25 30
0

10

20

30

40

Zoom [levels]

T
im

e
[s

ec
o

n
d

s]

Average xy response time
Average xy decomposition time

Figure 5.6: The effect of the maximum prefix length of the histogram on the average response
time.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Zoom [levels]

Fa
ls

e
d

is
co

ve
ry

ra
te

t-xyz
xyz
xy

Figure 5.7: The effect of the maximum prefix length of the histogram on the average false discov-
ery rate.

56

5.8 Best-first Decomposition

An interesting observation is a sudden bump in the false discovery rate right before the
knee of the curve, which is more evident for the spatial query set. This is an artefact and
is due to how to short circuit mechanism in the algorithm is implemented.

Overall, we reduce the construction cost of the histogram without degrading the per-
formance by adjusting the maximum prefix length of the histogram according to the
knees of the curves in Figure 5.6.

Discussion

The sudden drop in the false discovery rate and response time can be explained by the
size of the minimum covering hyper-quadrant of the query region. Before the drop, the
minimum covering hyper-quadrant is smaller than the smallest hyper-quadrant repre-
sented in the histogram. In other words, the Z-address prefix length of the minimum
covering hyper-quadrant of the query region is larger than the maximum prefix length
of the histogram. The consequence of this is that the search space will be considered
empty by the histogram and the best-first decomposition method will start to short-
circuit the decomposition procedure, which result is a coarse decomposition consist-
ing of relatively few ranges that are likely to be passed to the expensive refinement step.
This causes the high average response time and false discovery rate seen in Figure 5.6
and Figure 5.7. As soon as the maximum prefix length of the histogram surpasses the
Z-address prefix length of the average minimum covering hyper-quadrant of the query
set, the response time and the false discovery rate begin to drop drastically.

The effect of using different scaling on the temporal dimension is becoming more ev-
ident with the best-first decomposition method. The semi-integrated spatiotempo-
ral index is superior to the integrated spatiotemporal index when the precision of the
decomposition method (reachable depth of the hyper-quadtree) is not implicitly re-
stricted due to branching. The limits on the decomposition precision imposed by the
scaling of the space-filling curve dimensions are not evident with the breadth-first de-
composition method as the method is unable to traverse the lower levels of the hyper-
quadtree without overwhelming the system with ranges. The best-first decomposition
method is, on the other hand, able to reach the lower levels of the hyper-quadtree and
leverage the finer temporal resolution of the semi-integrated spatiotemporal index to
create more precise ranges. In this experiment, the best-first decomposition method
creates on average five times more ranges with the semi-integrated approach than with
the integrated approach. However, it is interesting that the coarse temporal resolution
of the integrated approach also prevents the best-first decomposition method from
achieving a lower average false discovery rate than the breadth-first decomposition
method due to rather aggressive short-circuiting.

57

5.8 Best-first Decomposition

5.8.2 Sampling Size of the Histogram

To determine how much sampling is sufficient for the histogram, we measure the av-
erage response time and false discovery rate over the query sets with a gradually in-
creasing sampling size. There exists a variety of different sampling techniques, such as
simple random sampling, systematic sampling, and stratified sampling, and the tech-
nique used in this experiment is the simple random sampling without replacement.

Results

Figures 5.8 and 5.9 show the how the average response time and average false discov-
ery rate are affected by increasing sample sizes. The average response time converges
shortly after the initial drop for all the indexes while the average false discovery rate con-
tinues to decrease more slowly. The following decrease in average false discovery rate
after the initial drop is greatest for the semi-integrated spatiotemporal index. However,
the decrease in response time becomes marginal due to the increase in decomposition
time from creating more ranges. However, since the additional created ranges are likely
to contain a substantial amount of data, the decomposition stage will never start to
dominate the response time like with the breadth-first decomposition method, which
tends to create many empty and coarse, intersecting ranges.

1 2 3 4 5 6 7 8 9 10
0

200

400

600

Sample size [%]

T
im

e
[m

il
li

se
co

n
d

s]

Average t-xyz response time
Average t-xyz decomposition time

1 2 3 4 5 6 7 8 9 10
0

200

400

600

Sample size [%]

T
im

e
[m

il
li

se
co

n
d

s]

Average xyz response time
Average xyz decomposition time

1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

Sample size [%]

T
im

e
[m

il
li

se
co

n
d

s]

Average xy response time
Average xy decomposition time

Figure 5.8: The effect of sampling size on the average response time.

58

5.8 Best-first Decomposition

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Sample size [%]

Fa
ls

e
d

is
co

ve
ry

ra
te

t-xyz
xyz
xy

Figure 5.9: The effect of sampling size on the average false discovery rate.

Discussion

Based on these results, there appear to be very little or no benefits to increasing the
sample size beyond the knees of the curves in Figure 5.8. This suggests we can reduce
the constructing cost of the histogram significantly with sampling without having to
sacrifice the performance.

5.8.3 Detailed Performance Comparison to the Baseline

In this section, we provide a more detailed comparison of the performance difference
between the best-first decomposition method and the breadth-first decomposition method.
The parameters used for the two decomposition methods are listed in Tables 5.3 and
5.4, which were selected based on the results from the previous experiments. For the
histogram, we want minimize the memory cost without compromising the performance.

Histogram [index] Zoom [levels] Sample size [%] Memory size [MB]
t-xyz 18 2 16.8
xyz 16 2 16.8
xy 23 2 16.8

Table 5.3: Parameter values used for the best-first decomposition method.

Index Maximum number of ranges
t-xyz 10000
xyz 10000
xy 50000

Table 5.4: Parameter values used for the breadth-first decomposition method.

59

5.8 Best-first Decomposition

Results

The box plots of the response times for the two decomposition methods are shown in
Figure 5.10. For the semi-integrated spatiotemporal index, we see the median line is
lower for the best-first decomposition. The size of the first quartile is almost identi-
cal for the two decomposition methods, but the third quartile is much larger for the
breadth-first decomposition method. The improvement in response time is significant
according to the Wilcoxon signed rank test (p < 0.05).

For the integrated spatiotemporal index, the median of the best-first decomposition
method is also lower than the median of breadth-first decomposition method. How-
ever, there is substantially more variation in the box plot of the best-first decomposi-
tion, which is seen by the larger first and third quartiles. However, the results are signif-
icant according to the Wilcoxon’s test, so the best-first decomposition method is better.

For the spatial index, the median of the best-first decomposition method is lower than
the median of the breadth-first decomposition method. Both the first and third quar-
tiles are also larger for the best-first decomposition method. Again, the significance of
the results is verified with Wilcoxon’s test.

To conclude, according to the results of our experiments, the best-first decomposition
method performs better than the breadth-first decomposition method for both spatial
and spatiotemporal queries in our experiments. The largest improvement in perfor-
mance is seen when processing spatiotemporal queries with the semi-integrated ap-
proach.

Breadth-first Best-first

0

100

200

300

R
es

p
o

n
se

ti
m

e
[m

il
lis

ec
o

n
d

s]

t-xyz

Breadth-first Best-first

0

100

200

300

xyz

Breadth-first Best-first

0

500

1,000

1,500

2,000

2,500

xy

Figure 5.10: The performance of the breadth-first decomposition method and the best-first de-
composition method.

60

5.8 Best-first Decomposition

Discussion

The best-first decomposition was thought to perform better than the breath-first de-
composition, and the results of our experiments confirm these initial expectations. The
observed performance difference between the two approaches is due to two reasons.
First, the breadth-first decomposition creates approximately the same amount of ranges
for each query if the query region is not particularly small or an axis-aligned box. This
means that the decomposition time of the breadth-first approach is relatively constant
for similar query types (spatial or spatiotemporal) when the maximum number of ranges
is fixed. The decomposition time of the best-first decomposition method depends,
however, on the data distribution within the search region. The method stops the de-
composition process when none of the remaining intersecting hyper-quadrants in the
priority queue contains enough estimated data to be worth expanding. The ability to
stop the decomposition process early enables us to execute low volume queries with
extremely low response time (< 40ms). This is reflected by the lower whiskers in the box
plots for the best-first decomposition method, which nearly reaches 0ms for spatiotem-
poral queries. The short-circuit mechanism is also seen to reduce the decomposition
time for larger spatial queries by 150ms.

The second reason for the better performance of the best-first decomposition method
is due to the capability of achieving a low false discovery rate with relatively few ranges.
During the decomposition process, the best-first decomposition method will prioritize
on partitioning intersecting hyper-quadrants that contain a large amount of data and
will avoid expanding empty hyper-quadrants. The breadth-first decomposition will,
on the other hand, not differentiate between intersecting hyper-quadrants in terms of
how much data they are likely to contain and can waste a significant amount of time on
creating ranges over empty regions. This behaviour is demonstrated by restricting the
maximum number of ranges created by the best-first and breadth-first decomposition
method. Figure 5.11 shows the relationship between the number of ranges created and
the average false discovery rate for the two methods. The breadth-first decomposition
method achieves an average false discovery rate of approximately 0.40 with 3,500 ranges
for spatiotemporal queries and 0.04 with 3,500 ranges for spatial queries. The best-first
decomposition method needs only 300 and 1,500 ranges to achieve similar average false
discovery rate for spatiotemporal queries and spatial queries, respectively.1

The large difference in average false discovery rate between the two methods for spa-
tiotemporal queries in Figure 5.11a indicates that the data is skewed within the spa-
tiotemporal query regions. At the same time, the small difference in average false dis-
covery rate between the two methods for spatial queries in Figure 5.11b indicates that
the data is more uniformly distributed within the spatial query regions. This is likely to
be the result of having the spatial query regions located within the densely populated
areas of Beijing (see the heat map of the dataset in Figure 5.1).

1Both methods return approximately the same number of ranges for the spatiotemporal query set up to
a maximum number of 2,000 ranges (this number is much higher for the spatial query set). Beyond that,
the short-circuit mechanism of the best-first decomposition method begins to kick in and affect the average
number of ranges returned.

61

5.8 Best-first Decomposition

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.2

0.4

0.6

0.8

1

Number of ranges

Fa
ls

e
d

is
co

ve
ry

ra
te

Best-first
Breadth-first

(a) Semi-integrated spatiotemporal index

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.2

0.4

0.6

Number of ranges

Fa
ls

e
d

is
co

ve
ry

ra
te

Best-first
Breadth-first

(b) Spatial index

Figure 5.11: Average false discovery rate versus number of ranges created by the best-first de-
composition method and the breadth-first decomposition method.

It should be mentioned again that the breadth-first decomposition method used in
these experiments is static. A possible approach to making it more dynamic without
relying on statistical data is to let the maximum number of ranges be defined as a func-
tion of the area of the query region and its shape. The primary assumption would be
that the result size is proportional to the geometric size of the query, which is mostly
correct for our experiments (see Figure 5.12) since all queries are located within the city
boundaries of Beijing. However, this assumption is likely to break as soon we start to
query less dense or rural areas. We may end up with a response time that will be domi-
nated by the decomposition stage when the query regions consist of large remote areas,
and by the refinement stage when the query regions enclose small and very dense areas.
The potential of this approach will also likely be reduced for spatiotemporal queries,
even when the assumption on the spatial distribution holds, as the data will likely be
skewed in regards to the temporal dimension.

Earlier versions of GeoMesa, which used a now deprecated geohash index, did con-
sider the geometrical properties of the query region during decomposition. The prior
decomposition method used was based on a best-first decomposition strategy where
the intersecting hyper-quadrant to be selected for further expansion is the one with the
most area outside of the query region [4]. The specific maximum number of ranges to
be created for a query was based on the ratio between the area of the query region and
the area of the minimum bounding rectangle.

62

5.8 Best-first Decomposition

10−3 10−2
0

1

2

3
·106

Log of spatial area (square degrees)

Q
u

er
y

re
su

lt
si

ze

(a) Result size by query area.

monthweekday
0

2

4

6
·105

Temporal width

Q
u

er
y

re
su

lt
si

ze

(b) Result size by temporal width.

Figure 5.12: The relationship between the size of the query region and the result set size.

5.8.4 Query Size

This section examines the relationship between the response time and the result size.

Results

Figure 5.13 shows the relationship between the response time and the number of points
in the result set. The upward trend shows that the response time depends mostly on the
size of the result set. However, the variation in the response time is particularly large for
medium and high volume queries (>104 points). This can be observed for both decom-
position methods. However, the response time and variation are seen to be generally
lower with the best-first decomposition method. By zooming in on the graph, we ob-
serve the difference between the lower bounds for the best-first decomposition (> 0ms)
method and the breadth-first decomposition (> 40ms).

100 101 102 103 104 105 106
0

1,000

2,000

3,000

4,000

5,000

Log of query result size

T
im

e
[m

il
li

se
co

n
d

s]

Response time by query count

100 101 102 103 104 105 106
0

1,000

2,000

3,000

4,000

5,000

Log of query result size

T
im

e
[m

il
li

se
co

n
d

s]

Response time by query count

(a) Breadth-first decomposition

100 101 102 103 104 105 106
0

1,000

2,000

3,000

4,000

5,000

Log of query result size

T
im

e
[m

il
li

se
co

n
d

s]

Response time by query count

100 101 102 103 104 105 106
0

1,000

2,000

3,000

4,000

5,000

Log of query result size

T
im

e
[m

il
li

se
co

n
d

s]
Response time by query count

(b) Best-first decomposition

Figure 5.13: The relationship between the result size and the response time.

63

5.8 Best-first Decomposition

Discussion

The variation in response time seen between similarly sized queries is the result of hav-
ing a CPU-bound workload (by using memory-mapped files and having enough physi-
cal memory to copy the entire dataset into memory). The point-in-polygon tests make
the refinement stage very expensive, and a reduction in false discovery rate can sub-
stantially decrease the response time when the amount of data to be returned is large.
Thus, queries of relatively high volume (106 points) can be executed with a relatively
low response time (< 500ms) if the false discovery rate is low and the decomposition is
fast. The lower variation in response time between medium volume queries in Figure
5.13b compared to Figure 5.13a are due to spatiotemporal queries, which are executed
with a significantly lower average false discovery rate with the best-first decomposition
method than with the breadth-first decomposition method.

5.8.5 Polygon Complexity

This section measures the impact of polygon complexity on the false discovery rate.
The polygon complexity measure is a quantitative description of the polygon shape and
describes the degree of difference between a regular shaped polygon, which is taken
from [21]. The advantage of this measure over other complexity measures, like fractal
dimension [27], is that it takes the global shape of the polygons into consideration. The
complexity model consists of three different parameters: frequency of local vibration,
the amplitude of the local variation, and deviation from the convex hull. The frequency
of local vibration (f r eq) describes the variability of the boundary and the measure is
based on the ratio between the number of polygon notches (concave vertices) and the
total number of polygon vertices.

f r eq(p) = 16× (notchesnor m(p))4 −8× (notchesnor m(p)−0.5)2 +1 (5.2)

notchesnor m(p) = notches(p)

ver t i ces(p)−3
(5.3)

The amplitude of the local vibration (ampl) describes the intensity of the local vibra-
tion and is measured as the relative length difference between the boundary of the poly-
gon and the boundary of its convex hull (i.e., its smallest enclosing convex polygon).

ampl (p) = bound ar y(p)−bound ar y(pcovex hul l)

bound ar y(p)
(5.4)

Deviation from the convex hull (conv) describes the global complexity of the polygon
and is measured as the relative difference between the area of the polygon and the area
of its convex hull.

conv(p) = ar ea(pcovex hul l)−ar ea(p)

ar ea(pcovex hul l)
(5.5)

The three parameters f r eq, ampl and conv are combined into a single measure of
complexity (comp) with the range of [0,1], such that

comp(p) = 0.8×ampl (p)× f r eq(p)+0.2× conv(p) (5.6)

64

5.8 Best-first Decomposition

Results

Figure 5.14 shows how the false discovery rate varies with the measured polygon com-
plexity of spatial query regions when the decomposition methods are restricted to cre-
ate a maximum number of 5,000 ranges. For clarity reasons, we omit spatiotemporal
queries as the impact of the temporal dimension on the false discovery rate tends to
overshadow the impact of spatial polygon complexity on the false discovery rate.

Both methods show nearly exponential growth in the false discovery rate as the poly-
gon complexity increases. However, the polygon complexity affects the false discovery
rate of the breadth-first decomposition method nearly twice as much compared to the
best-first decomposition method when the number of ranges is restricted.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Complexity

Fa
ls

e
d

is
co

ve
ry

ra
te

xy

(a) Breadth-first decomposition

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Complexity

Fa
ls

e
d

is
co

ve
ry

ra
te

xy

(b) Best-first decomposition

Figure 5.14: The relationship between the measured polygon complexity and the false discovery
rate.

Discussion

The worse false discovery rate seen with breadth-first decomposition method was ex-
pected as it becomes more difficult to fit larger quadrants within complex polygons.
Additionally, the increasing difference in area between the polygon and its convex hull
will increase the amount of the surplus space within the intersecting quadrants when
the precision of the decomposition is restricted. The best-first decomposition will be
more robust against complex polygons as the quadrant precision of the method is not
severely restricted due to branching.

However, the polygon complexity has still a large impact on the false discovery rate of
the best-first decomposition method in this experiment. As mentioned earlier, the data
appears to be relatively uniformly distributed within the spatial query regions. This
causes the best-first decomposition method to decompose the spatial queries in a more
breadth-first manner and must, therefore, generate a large number of ranges to achieve
a low false discovery rate for polygons of high complexity. The difference in false dis-
covery rate between the two methods is expected to be larger if most of the retrieved

65

5.9 Parallelization

data were located along smaller portions of the polygon boundary.

It is worth noting that the model we have used to measure polygon complexity has
the property of reflecting the cost of answering a point-in-polygon test when a pre-
computed spatial-hierarchy index is created for the polygon (in the paper, a TR*-tree
[32] is used, which usually provides logarithmic PIP performance). This means that the
refinement process is likely to become more expensive as the polygon complexity in-
creases, which gives the best-first decomposition method an additional performance
advantage over the breadth-first decomposition method when querying highly irregu-
lar shaped polygons.

5.9 Parallelization

In the experiments performed so far, we used only a single thread to execute queries.
We now look at the performance of the best-first decomposition method and how it is
affected by incorporating parallelization. We are expecting to see a significant speed
up as our system is CPU bound. The ideal case is a linear performance increase by
the number of threads. However, there exist multiple factors that can have a large im-
pact on scalabilities, such as memory bandwidth saturation and false sharing of cache
lines. Also, several stages of the query processing are not parallelized, such as merging
adjacent ranges and fetching objects from the result set, which will affect the potential
performance increase. The experiment performed here focuses on query execution and
not on indexing as the concurrency potential of the indexing procedure is likely bound
to the implementation of the underlying B+tree.

Our hardware restricts us to use a maximum number of four threads. The test setup
is identical to previous experiments, and the queries are executed as before one at a
time, but a single query is now executed in parallel using multiple threads.

Results

The box plots in Figures 5.15 and 5.16 examine the effect of using multiple threads for
query processing. The average speedup is shown in Table 5.5 where the gain from using

i threads over a single thread is given by Si =
T1

Ti
.

As expected, parallelization improves both the overall response and decomposition
times. There is little improvement in the median of the box plots in Figures 5.15 and
5.16 compared to the average speed up in Table 5.5. This is due to the largest speedup
is found in large volume queries, which can be observed by the reduction in the upper
third quartile and the upper whisker in the box plots when increasing the number of
threads.

The integrated spatiotemporal index has the greatest overall average speedup (S4 =
2.43) while the spatial index has the lowest overall average speedup (S4 = 1.25). On the
other hand, the integrated spatiotemporal index has the worst average decomposition
speedup (S4 = 1.56). The average decomposition time with four threads are roughly cut

66

5.9 Parallelization

in half compared to one thread with the spatial (S4 = 2.03) and semi-integrated spa-
tiotemporal (S4 = 2.04) indexes .

1 2 3 4

0

50

100

150

Threads

R
es

p
o

n
se

ti
m

e
[m

il
li

se
co

n
d

s]

t-xyz

1 2 3 4

0

100

200

300

Threads

xyz

1 2 3 4

0

500

1,000

1,500

2,000

2,500

Threads

xy

Figure 5.15: The response time of the best-first decomposition method with increasing number
of threads.

1 2 3 4

0

10

20

30

40

Threads

D
ec

o
m

p
o

si
ti

o
n

ti
m

e
[m

il
lis

ec
o

n
d

s]

t-xyz

1 2 3 4

0

5

10

15

20

Threads

xyz

1 2 3 4

0

20

40

60

80

100

120

Threads

xy

Figure 5.16: The decomposition time of best-first decomposition method with increasing num-
ber of threads.

67

5.10 Validation

Table 5.5: Average speedup by using multiple threads.

(a) Response Time

Si t-xyz xyz xy
S1 1.00 1.00 1.00
S2 1.57 1.69 1.15
S3 1.94 2.17 1.19
S4 2.10 2.43 1.25

(b) Decomposition Time

Si t-xyz xyz xy
S1 1.0 1.0 1.0
S2 1.48 1.44 1.56
S3 1.87 1.46 1.79
S4 2.04 1.56 2.03

Discussion

The largest contributing factor to the overall speedup is the number of false positives.
Spatiotemporal queries executed with the integrated approach experiences the largest
overall performance gain because of the parallelized refinement stage. The integrated
approach has the highest average false discovery rate, which explains the improved per-
formance from parallelizing the refinement stage. Spatial queries, on the other hand,
have a very precise decomposition with a very low average false discovery rate, which
means the refinement stage has less of an effect on the overall response time (fetching
objects from the result set is not parallelized). However, the spatial index and semi-
integrated spatiotemporal index benefit more than the integrated spatiotemporal in-
dex from parallelizing the decomposition stage as they tend to create significantly more
ranges.

Parallelization benefits also high volume queries more than low volume queries due to
less impact from the overhead involved with creating and managing multiple threads.
This includes the job of performing a shallow decomposition and distributing the in-
tersecting hyper-quadrants to the threads, and perform additional decompositions in
parallel and merge the results.

Even though the response time decreases significantly by parallelization in this experi-
ment, it is the speedup of decomposition procedure that is of most interest. First, time
spent on decomposing the query into subqueries was, as in several cases in the related
works [31], [20], and [25], found to degrade the response time. Second, the refinement
stage would naturally be highly parallelized in NoSQL systems that support server-side
filtering. Both MD-HBase and GeoMesa leverage push-down predicates to parallelize
the refinement stage through the notion of server-side iterators and co-processors in
Accumulo and HBase, respectively. By parallelizing the decomposition procedure, we
reduce the latency between issuing a region query and receiving the first results.

5.10 Validation

Our space-filling curve indexes rely on lossy encoding and are not designed to encode
and decode coordinate positions perfectly, but instead to efficiently narrow down the
search space into a set of one-dimensional range queries. The consequence of using a

68

5.10 Validation

lossy encoding scheme with our decomposition method is that we may lose some data
that lies at the boundary of the query region. The expected loss of information depends
on the curve precision and will decrease when the number of bits used to encode the
Z-addresses increases. The spatiotemporal index is expected to be more inaccurate
than the spatial index as it uses 21 bits per dimension, which gives it a precision of
approximately 100 meters, compared to 31 bits per dimension, which gives the spatial
index a precision of roughly 10 centimetres.

Index Total points returned Points missed Average loss
t-xyz 7,954,933 535 6.7×10−5 %
xyz 7,955,447 21 2.6×10−6 %
xy 246,556,706 17 6.9×10−8 %

Table 5.6: The number answer points returned from the best-first decomposition method com-
pared to true number of answer points.

Table 5.6 shows the average retrieval loss for the different indexes when using best-first
decomposition method. The spatial index is in the order of magnitudes more accu-
rate than the spatiotemporal indexes. Between the spatiotemporal indexes, the semi-
integrated approach displays significantly larger retrieval loss than the integrated ap-
proach.

A more fine-grained decomposition is likely to have a higher retrieval loss compared
to a coarse-grained decomposition as the coarser decomposition will include a larger
buffer around the query region to be processed in the refinement stage. The semi-
integrated approach experiences a larger retrieval loss than the integrated approach
as it decomposes the query region more precisely.

The problem of retrieval loss can be reduced by using larger Z-addresses to index the
points or by restricting the maximum allowable range-precision and include an addi-
tional buffer to the query region during decomposition. These approaches will, how-
ever, significantly affect the performance so that the optimal solution will depend on
the specific use-case.

69

Chapter 6
Conclusion and Further Work

This chapter contains the conclusion of our work and presents ideas that could be
worth investigating further.

6.1 Conclusion

An increasingly popular approach to support large spatial and spatiotemporal data in
key-value NoSQL systems is to use locality-preserving space-filling curves to linearize
multidimensional data. Region queries are executed efficiently in these systems by de-
composing them into sets of linear ranges scans supported by the underlying storage
model. In this thesis, we have investigated the common approaches of decomposing
region queries into linear space-filling curve ranges in NoSQL systems. Based on this
research, we have proposed a quadtree-based decomposition method that decomposes
spatial and spatiotemporal region queries in a best-first manner by using a prefix fre-
quency histogram over the index keys as a cost function. The method has been imple-
mented in a simple database prototype and evaluated with real-world data.

To evaluate the performance of our method, we have implemented and used the pop-
ular quadtree-based breadth-first decomposition method as a baseline. In the per-
formed experiments, our method was able to outperform the baseline in terms of re-
sponse time and variability for both spatial and spatiotemporal queries. The observed
difference in performance between the baseline and our proposed method can mainly
be attributed to the ability to adjust the decomposition dynamically to the data distri-
bution and density, and implicitly to the shape of the query region. For instance, the
capability to short-circuit the decomposition early enabled our method to execute low
volume queries with significantly lower response time than the baseline method, which
creates approximately the same number of ranges for each query. This data-driven
adaptability makes our method especially robust against different query patterns and
data sets.

We experienced that our method was more effective against spatiotemporal queries

70

6.2 Further Work

than spatial queries compared with our baseline. This was attributed to several factors:
decomposing a spatiotemporal query accurately with the baseline method requires on
average substantially more ranges than decomposing a spatial query due to the addi-
tional temporal dimension, which greatly increases the volume of the query region. In
addition, the small difference in false discovery rate between our method and the base-
line when executing spatial queries with a similar amount of ranges indicated a rel-
atively uniform data distribution within the spatial query regions, which was not the
ideal when it came to demonstrating the efficiency of our method. However, in general,
our method has demonstrated to be capable of reducing the number of ranges needed
to avoid false hits and, thus, reduce the cost associated with creating and issuing range
scans.

An interesting challenge we ran into during the thesis was how the different ways of
integrating time into the space-filling curve affect the query performance. By integrat-
ing the entire time range of the data set into a single curve, the performance of our
method degraded significantly due to a coarse temporal resolution. However, better
results were found when we partitioned time into year-long blocks and having a sep-
arate Z-order curve for each block, which resulted in a fixed high temporal resolution
and more precise decompositions. The cost of this approach is storage and insertion
overhead. However, the additional overhead is well-worth the improvement in query
performance and the fact that it allows us to avoid any overflow issues when dealing
with dynamic datasets.

Overall, we showed in this thesis that the performance of spatial and spatiotemporal
region queries against space-filling curve indexes can be improved by leveraging sta-
tistical data during the decomposition process. The proposed decomposition method
is yet to be tested in a distributed context with a NoSQL system. Even though modern
NoSQL systems can mitigate the impact of pruning false positives by using server-side
filters, we believe our method will allow us to reduce the overall load on the cluster and
response time while still retaining high insertion performance and scalability. The cost
of maintaining the histogram can also be reduced significantly with negligible perfor-
mance cost by taking measures such as sampling and removing small-sized buckets.

6.2 Further Work

In this section, we present some further aspects worth investigating.

• There exist space-filling curves that preserve locality better than the Z-order curve.
An example is the Hilbert curve. By using a Hilbert curve instead of a Z-order
curve, we would likely decrease the false discovery rate further. However, the ad-
ditional overhead from encoding and decoding more computationally complex
Hilbert addresses might outweigh the benefit of a more accurate decomposition.

• In addition to statistical data, we could also include the current system context
when determining the next hyper-quadrant to expand during the decomposition
process. When dealing with very large datasets, it is likely that only portions of
the index will fit into main memory. The decomposition procedure can then min-

71

6.2 Further Work

imize expensive disk access due to false positives by decomposing portions of the
query region that are not already in memory more precisely.

• The relatively low bit precision used to encode the Z-addresses in this thesis in-
troduced some minor retrieval loss. For use-cases that depend more on exact
results than performance, it might be worth the additional overhead of using a
format with unrestricted precision, e.g., byte[], to store the Z-address keys.

• By investigating how fast the underlying distribution of dynamic spatial and spa-
tiotemporal datasets changes, we can determine the need for keeping the his-
togram up-to-date. If the distribution were to remain relatively stable over time
we may decrease the update frequency of the histogram without affecting the per-
formance. We may also try to use more complex techniques to estimate the data
distribution, e.g., with kernel density estimation.

• Space-filling curve indexes have an inherent lack of support for efficient nearest-
neighbor queries. For instance, a k-nearest-neighbor query is executed in Ge-
oMesa by iteratively expanding and processing the target space in a spiral until
k neighbors are found or to confirm the current found points are actually the
nearest neighbors. A problem with this approach is that the granularity of the
search (how many meters outwards the target space is to be expanded per itera-
tion) must be guessed by the client beforehand. By using a histogram similar to
the one used in this thesis, we could automatically estimate the ideal expansion
ratio during query processing.

• Our prototype is relatively simple and does not support distributed processing.
To support and test our proposed method against very large spatial and spa-
tiotemporal datasets, it would be necessary to implement it on top of a NoSQL
system.

• If we were to implement the method on top of the NoSQL store Accumulo, we
would have to execute two separate BatchScanner jobs — one for intersecting
ranges and one for contained ranges. Because the additional overhead of exe-
cuting two scanner jobs instead of one might degrade the performance of low
volume queries, it would be interesting to see if it is worth using the histogram to
determine if a query is likely to be a low volume query. All ranges generated from
decomposing a low volume query can then be marked as intersecting and only a
single scanner job is executed.

• The technique used in this thesis can trivially be generalized to support N -dimensional
range queries. Thus, it would interesting to see if our proposed method can be
used efficiently in applications that handle data with more than three dimen-
sions.

72

Bibliography

[1] Apache accumulo 1.6.6. https://accumulo.apache.org/release/
accumulo-1.6.6/. (Accessed on 05/11/2018).

[2] B trees. http://www.cs.gordon.edu/courses/cs321/lectures/
Btrees. (Accessed on 05/08/2018).

[3] fastutil. http://fastutil.di.unimi.it/. (Accessed on 05/19/2018).

[4] geomesa/GeohashUtils.scala · locationtech/geomesa · GitHub. https:
//github.com/locationtech/geomesa/blob/geomesa_2.11-1.
3.0-m0/geomesa-utils/src/main/scala/org/locationtech/
geomesa/utils/geohash/GeohashUtils.scala#. (Accessed on
05/20/2018).

[5] GitHub - locationtech/sfcurve: LocationTech SFCurve is a Scala library for the cre-
ation, transformation, and querying of space-filling curves. https://github.
com/locationtech/sfcurve. (Accessed on 05/19/2018).

[6] Google support - view traffic. https://support.google.com/maps/
answer/3092439?visit_id=1-636463496461694935-1097629522&
rd=1. (Accessed on 06/06/2018).

[7] Home · GeoMesa. http://www.geomesa.org/. (Accessed on 05/05/2018).

[8] Introduction — GeoMesa 2.0.0 Manuals. http://www.geomesa.org/
documentation/user/introduction.html#what-is-geomesa. (Ac-
cessed on 05/11/2018).

[9] JTS Topology Suite - OSGeo. https://www.osgeo.org/projects/jts/.
(Accessed on 06/09/2018).

[10] MapDB. http://www.mapdb.org/. (Accessed on 05/18/2018).

[11] Morton encoding/decoding through bit interleaving: Implementations
– Jeroen Baert’s Blog. http://www.forceflow.be/2013/10/07/
morton-encodingdecoding-through-bit-
interleaving-implementations/. (Accessed on 05/19/2018).

73

https://accumulo.apache.org/release/accumulo-1.6.6/
https://accumulo.apache.org/release/accumulo-1.6.6/
http://www.cs.gordon.edu/courses/cs321/lectures/Btrees
http://www.cs.gordon.edu/courses/cs321/lectures/Btrees
http://fastutil.di.unimi.it/
https://github.com/locationtech/geomesa/blob/geomesa_2.11-1.3.0-m0/geomesa-utils/src/main/scala/org/locationtech/geomesa/utils/geohash/GeohashUtils.scala#
https://github.com/locationtech/geomesa/blob/geomesa_2.11-1.3.0-m0/geomesa-utils/src/main/scala/org/locationtech/geomesa/utils/geohash/GeohashUtils.scala#
https://github.com/locationtech/geomesa/blob/geomesa_2.11-1.3.0-m0/geomesa-utils/src/main/scala/org/locationtech/geomesa/utils/geohash/GeohashUtils.scala#
https://github.com/locationtech/geomesa/blob/geomesa_2.11-1.3.0-m0/geomesa-utils/src/main/scala/org/locationtech/geomesa/utils/geohash/GeohashUtils.scala#
https://github.com/locationtech/sfcurve
https://github.com/locationtech/sfcurve
https://support.google.com/maps/answer/3092439?visit_id=1-636463496461694935-1097629522&rd=1
https://support.google.com/maps/answer/3092439?visit_id=1-636463496461694935-1097629522&rd=1
https://support.google.com/maps/answer/3092439?visit_id=1-636463496461694935-1097629522&rd=1
http://www.geomesa.org/
http://www.geomesa.org/documentation/user/introduction.html#what-is-geomesa
http://www.geomesa.org/documentation/user/introduction.html#what-is-geomesa
https://www.osgeo.org/projects/jts/
http://www.mapdb.org/
http://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-
http://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-
 interleaving-implementations/

BIBLIOGRAPHY

[12] postgres/README· postgres/postgres · GitHub. https://github.com/
postgres/postgres/blob/master/src/backend/access/nbtree/
README. (Accessed on 05/18/2018).

[13] R-trees. http://cglab.ca/~cdillaba/comp5409_project/R_
Trees.html. (Accessed on 06/06/2018).

[14] Snap Map FAQ. https://support.snapchat.com/en-US/a/
snap-map-faq. (Accessed on 05/16/2018).

[15] View frustum culling of point clouds using octrees in SimpleEXR
- Benjamin Weißer. http://benjaminweisser.com/blog/
20170328-view-frustum-culling-of-point-clouds-using-
octrees-in-simpleexr. (Accessed on 06/06/2018).

[16] Who is using MapDB - MapDB. http://www.mapdb.org/success/. (Ac-
cessed on 05/18/2018).

[17] Ashraf Aboulnaga and Walid G Aref. Window query processing in linear quadtrees.
Distributed and Parallel Databases, 10(2):111–126, 2001.

[18] Rudolf Bayer. The universal b-tree for multidimensional indexing. 1996.

[19] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: an efficient and robust access method for points and rectangles. In Acm
Sigmod Record, volume 19, pages 322–331. ACM, 1990.

[20] Mohamed Ben Brahim, Wassim Drira, Fethi Filali, and Noureddine Hamdi. Spatial
data extension for cassandra nosql database. Journal of Big Data, 3(1):11, 2016.

[21] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Alexander Braun. Mea-
suring the complexity of polygonal objects. In ACM-GIS, page 109, 1995.

[22] Rick Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–27,
2011.

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[24] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Pervasive
computing and applications (ICPCA), 2011 6th international conference on, pages
363–366. IEEE, 2011.

[25] Andrew Hulbert, Thomas Kunicki, James N Hughes, Anthony D Fox, and Christo-
pher N Eichelberger. An experimental study of big spatial data systems. In Big
Data (Big Data), 2016 IEEE International Conference on, pages 2664–2671. IEEE,
2016.

[26] Philip L Lehman et al. Efficient locking for concurrent operations on b-trees. ACM
Transactions on Database Systems (TODS), 6(4):650–670, 1981.

74

https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
http://cglab.ca/~cdillaba/comp5409_project/R_Trees.html
http://cglab.ca/~cdillaba/comp5409_project/R_Trees.html
https://support.snapchat.com/en-US/a/snap-map-faq
https://support.snapchat.com/en-US/a/snap-map-faq
http://benjaminweisser.com/blog/20170328-view-frustum-culling-of-point-clouds-using-
http://benjaminweisser.com/blog/20170328-view-frustum-culling-of-point-clouds-using-
octrees-in-simpleexr
http://www.mapdb.org/success/

BIBLIOGRAPHY

[27] Benoit B Mandelbrot. The fractal geometry of nature, volume 173. WH freeman
New York, 1983.

[28] Mohamed F Mokbel and Walid G Aref. On query processing and optimality using
spectral locality-preserving mappings. In International Symposium on Spatial and
Temporal Databases, pages 102–121. Springer, 2003.

[29] Mohamed F Mokbel, Walid G Aref, and Ibrahim Kamel. Analysis of multi-
dimensional space-filling curves. GeoInformatica, 7(3):179–209, 2003.

[30] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal ac-
cess methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

[31] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Md-hbase:
A scalable multi-dimensional data infrastructure for location aware services. In
Mobile Data Management (MDM), 2011 12th IEEE International Conference on,
volume 1, pages 7–16. IEEE, 2011.

[32] Ralf Schneider and Hans-Peter Kriegel. The tr*-tree: A new representation of
polygonal objects supporting spatial queries and operations. In Workshop on
Computational Geometry, pages 249–263. Springer, 1991.

[33] Peter van Oosterom and Tom Vijlbrief. The spatial location code. In Proceedings of
the 7th international symposium on spatial data handling, Delft, The Netherlands,
1996.

[34] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife gps tra-
jectory dataset-user guide, july 2011. URL: https://www. microsoft. com/en-
us/research/publication/geolife-gps-trajectory-dataset-user-guide.

[35] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding
mobility based on gps data. In Proceedings of the 10th international conference on
Ubiquitous computing, pages 312–321. ACM, 2008.

[36] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations
and travel sequences from gps trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791–800. ACM, 2009.

[37] Kathryn Zickuhr. Three-quarters of smartphone owners use location-based ser-
vices. Pew Internet & American Life Project, 2012.

75

	Summary
	Sammendrag
	Preface
	Contents
	List of Tables
	List of Figures
	Introduction and Motivation
	Problem Description
	Project Goal
	Scope
	Structure

	Background
	Geometric Data Types
	Spatial Points
	Spatiotemporal Points
	Characteristics of Spatial and Spatiotemporal Point Data
	Polygons

	Queries
	Spatial Region Queries
	Spatiotemporal Region Queries

	Index Structures
	B-tree
	B+tree
	R-tree
	Quadtree
	Other Approaches

	Space-Filling Curves
	Z-order Curve
	Indexing Using Space-Filling Curves
	Region Queries and Space-Filling Curves

	Related Work
	GeoMesa
	MD-HBase
	Cassandra

	Region Decomposition Method
	Motivation
	Requirements
	Best-first Decomposition

	Methodology and Implementation
	Database Layer
	Approach
	MapDB

	Access Structures
	Z-address Calculation
	Encoding of Space and Time
	Indexes
	Insertion Procedure

	Query Handling
	Decomposition Stage
	Filter Stage
	Refinement Stage

	Parallelization
	Multi-threaded Decomposition
	Multi-threaded Refinement

	Experiments, Results, and Discussions
	Baseline
	Dataset
	Queries
	Spatial Region Queries
	Spatiotemporal Region Queries

	System Configuration
	Metrics
	Insertion Performance
	Breadth-first Decomposition
	Maximum Number of Ranges

	Best-first Decomposition
	Maximum Prefix Length of the Histogram
	Sampling Size of the Histogram
	Detailed Performance Comparison to the Baseline
	Query Size
	Polygon Complexity

	Parallelization
	Validation

	Conclusion and Further Work
	Conclusion
	Further Work

