

18 CHAPTER 3. IMPLEMENTATION

3.2 Parsing statistics

To quickly determine different statistics from the log files produced by RocksDB’s
db_bench a log file parser was implemented in python for this purpose. The
complete source code is available open-source under the MIT Licence[20] at
Github[21] and in Appendix A.

3.2.1 Log file format

The output from RocksDB’s db_bench is piped directly to the terminal. The
statistics output is piped to stderr and captured to log files using UNIX shell 2>
operator, which redirects stderr to a designated file.

An example excerpt of the log files are given below.

Cumulative compaction: 2.09 GB write, 106.48 MB/s write, 1.19 GB read,
60.66 MB/s read, 14.4 seconds

Interval compaction: 1.85 GB write, 130.27 MB/s write, 1.19 GB read, 83.86
MB/s read, 13.2 seconds

Cumulative writes: 10K writes, 10K keys, 10K commit groups, 1.0 writes per
commit group, ingest: 0.93 GB, 47.57 MB/s

Cumulative WAL: 10K writes, 0 syncs, 10000.00 writes per sync, written:
0.93 GB, 47.57 MB/s

Cumulative stall: 00:00:0.000 H:M:S, 0.0 percent
Interval writes: 7201 writes, 7201 keys, 7201 commit groups, 1.0 writes

per commit group, ingest: 686.97 MB, 47.36 MB/s
Interval WAL: 7201 writes, 0 syncs, 7201.00 writes per sync, written: 0.67

MB, 47.36 MB/s
Interval stall: 00:00:0.000 H:M:S, 0.0 percent

3.2.2 Retrieving statistics

The parser uses regular expressions[22] to match the different values in the log
files. Example code used to retrieve values for Interval writes is given below.

interval_regex = ’Interval\swrites.*?(\d*\.\d*)\sMB\/s’
compiled_regex = re.compile(interval_regex)
matches = compiled_regex.findall(file)

This code returns a list of the values matched by the group (\d\.\d*). The regex
searches for lines starting with ’Interval writes’ and the last occurrence of digits
with a . between them with a MB/s suffix. We use these values to automatically
generate coordinates for pgfplots[23] used in this thesis.

3.3. IMPLEMENTING AUTO-TUNER 19

3.3 Implementing Auto-Tuner

Implementing auto-tuning compactions for RocksDB felt initially like a daunting
task, especially given the magnitude of the database project. Containing tens of
thousands of code lines written in C++, a low-level language working close to the
metal for optimal performance.

3.3.1 Compaction parameters

During preliminary research of RocksDB, it became clear that RocksDB uses an
internal option, disable_auto_compactions, to decide whether to do compac-
tions or not. In addition to disable_auto_compactions, the other parameters
in the PrepareForBulkLoad()[24] function were subject to evaluation, since the
function’s intention is to configure optimal insertion rate for bulk loads. Most of
the parameters set in PrepareForBulkLoad() are evaluated for the Auto-tuner
in Section 3.5. The obvious parameter to change dynamically for this proposed
auto-tuner is the disable_auto_compactions, but should the auto-tuner work
properly it would require increasing the level0-slowdown parameters, as done in
PrepareForBulkLoad(). This because we want to disable compactions, but we
also need to avoid stalling writes when having a high number of files in level-0.

Additionally, we figured that level0_file_num_compaction_trigger should also
be dynamically changed. PrepareForBulkLoad() increases the trigger since the
trigger is used in slowdown calculations. However, since it is used to determine
the compaction score and set a trigger threshold for compactions including Level-0
→ Level-0 compactions (Section 2.3.2), it should be lower when compactions are
enabled.

3.3.2 Design choices

The disable_auto_compactions flag is exposed through RocksDB’s SetOptions-
API[25], and thus this API seemed like the appropriate way to toggle compactions.
However, when trying to access this API, it became clear that it is a method only
accessible through the database instance. Meaning one would have to have access
to the database instance to set new options – db->SetOptions(). This led to a
design assessment:

20 CHAPTER 3. IMPLEMENTATION

1. Should we implement a higher-order plugin that runs above RocksDB,
that can access the database instance and toggle compactions using the
SetOptions-API?

2. Should we pass a reference to the SetOptions API further down to the core
and call the SetOptions function from within the core itself?

3. Or should we create a new interface for getting and setting the compaction
flags and in a shared environment?

db Environment

Auto-Tuner

ColumnFamilyData

env->EnableCompactions()
env->DisableCompactions()

env->disable_auto_compactions

Figure 3.2: Design of getter and setters within RocksDB core using shared
environment

Alternative one proved difficult to accomplish regarding detection of background
I/O, with less access to database internals. The second alternative was strenuous
because having to pass a reference to the function through all the complex
initialisation layers of RocksDB. The last option turned out to be the easiest to
implement since RocksDB already provided a shared environment for all threads
and database instances in the running process.

3.3.3 Environment

Interface
The compaction interface implementation is shown in Fig. 3.3. It is located in
the env.h header file, and holds different compaction related variables (Sec-
tion 3.3.1). To trigger the disable/enable compactions, we simply execute
the related method DisableCompactions() or EnableCompactions() then the
variables are updated accordingly. For the DisableCompactions() we set the
disable_auto_compactions variable to false, and the level0_file_num_compaction_trigger
very high to 1<<30. The reason we used 1<<30, 1 bitshifted 30 times to the left,
is because it is done in PrepareForBulkLoad() (Section 3.3.1). Still, this does
only update the variables so the next step is to make RocksDB use them instead
of the default options.

3.3. IMPLEMENTING AUTO-TUNER 21

bool disable_auto_compactions;
int prev_level0_file_num_compaction_trigger;
int level0_file_num_compaction_trigger;

void DisableCompactions() {
if (!disable_auto_compactions) {
prev_level0_file_num_compaction_trigger =

level0_file_num_compaction_trigger;
disable_auto_compactions = true;
level0_file_num_compaction_trigger = (1<<30);

}
};

void EnableCompactions() {
if (disable_auto_compactions) {
disable_auto_compactions = false;
level0_file_num_compaction_trigger =

prev_level0_file_num_compaction_trigger;
}

}

Figure 3.3: Compaction interface implementation in the shared environment

Column Family Data
ColumnFamilyData is the class that handles the compaction trigger and stalling
factors within RocksDB. As mentioned, the disable_auto_compactions flag was
read from initialised options. Having created the interface, we wanted to make
RocksDB use this interface instead of the options. The issue was that the
RecalculateWriteStallConditions method in ColumnFamilyData (Fig. 3.5)
did not have a reference to this environment. By latching the Env::Default()
provided from env.h onto the ColumnFamilyData class (Fig. 3.4), we were able to
read the compaction variables directly in the RecalculateWriteStallConditions
method. Despite being functioning, the environment is shared across multiple
database instances in the same process, meaning that this implementation will
disable compactions for every instance – even if not opting into tuning. It should,
however, not be a big issue for a proof-of-concept.

ColumnFamilyData* new_cfd = new ColumnFamilyData(
id, name, dummy_versions, table_cache_, write_buffer_manager_, options,
*db_options_, env_options_, this, Env::Default());

Figure 3.4: Extending ColumnFamilyData with a reference to the shared environ-
ment

22 CHAPTER 3. IMPLEMENTATION

This implementation was not the preferred way of achieving the result. The
intention was actually to pass a pointer from the mutable_cf_options, which
hold all the options, to the environment instead of duplicating the specific options.
When pursuing this approach, circular imports posed issues when importing the
cf_options-type from its header file. Despite having pragma once[26], it still
was not able to compile. This could have been circumvented by refactoring the
files, but since the files had a lot of dependencies and 100-1000+ lines in each, we
chose a pragmatic solution to duplicate them for this proof-of-concept.

Fig. 3.5 shows how we use the environment to retrieve and sets the environment
variables to the mutable_cf_options variable. the disable_auto_compactions
flag for every calculation of write stalls, the function that evaluates

-WriteStallCondition ColumnFamilyData::RecalculateWriteStallConditions(
- const MutableCFOptions& mutable_cf_options) {
+WriteStallCondition ColumnFamilyData::RecalculateWriteStallConditions() {

auto write_stall_condition = WriteStallCondition::kNormal;
if (current_ != nullptr) {

+ if (mutable_cf_options_.auto_tuned_compactions) {
+ mutable_cf_options_.level0_file_num_compaction_trigger =
+ env_->level0_file_num_compaction_trigger;
+ mutable_cf_options_.disable_auto_compactions =
+ env_->disable_auto_compactions;
+ }
+ const MutableCFOptions& mutable_cf_options = mutable_cf_options_;

Figure 3.5: Retrieval of environment compaction variables when determining write
stalls and compactions

3.3.4 Existing rate-limiter

Despite rate-limiting RocksDB not being the purpose of this project, the rate
limiter can be used to efficiently determine disk I/O based on write requests to
the database. RocksDB features a generic rate limiter used to manage throttling
of maximum write speeds. It uses a classic token bucket technique[27] to perform
the actual rate-limiting, by draining a bucket of tokens which gets refilled in
a specified interval. If the drains the bucket empty, the following requests are
rejected until it is refilled.

This rate limiter is configured with three different flags:

As described by the RocksDB wiki[28]:

• rate_limit_bytes_per_sec: this is the only parameter you want to set
most of the time. It controls the total write rate of compaction and flush
in bytes per second. Currently, RocksDB does not enforce rate limit for
anything other than flush and compaction, e.g. write to WAL.

3.3. IMPLEMENTING AUTO-TUNER 23

• refill_period_us: this controls how often tokens are refilled. For example,
when rate_bytes_per_sec is set to 10MB/s and refill_period_us is set
to 100ms, then 1MB is refilled every 100ms internally. Larger value can lead
to burst writes while smaller value introduces more CPU overhead. The
default value 100,000 should work for most cases.

• fairness: RateLimiter accepts high-pri requests and low-pri requests. A
low-pri request is usually blocked in favor of hi-pri request. Currently,
RocksDB assigns low-pri to request from compaction and high-pri to request
from flush. Low-pri requests can get blocked if flush requests come in
continuously. This fairness parameter grants low-pri requests permission
by 1/fairness chance even though high-pri requests exist to avoid starvation.
You should be good by leaving it at default 10.

3.3.5 Auto-tuned Rate Limiter

In December 2017, RocksDB core developer Andrew Kryczka released an auto-
tuned rate-limiter[2] that tunes the configuration of the rate limiter based on the
background I/O demand. The release of an auto-tuned rate limiter relying on the
background I/O to tune was very convenient and interesting to explore in terms
of this project.

The auto-tuned rate-limiter uses a MIMD-algorithm, Multiplicative Increase Mul-
tiplicative Decrease, typically used for congestion control in network protocols[29].
Background I/O is detected using upper and lower threshold for the rate-limiter
to kick in. Auto-tuning happens when the time since the last tuning is higher
than kRefillsPerTune timed with the refill_period_us. Meaning auto-tuning
happens every 100th refill_period_us, shown in Fig. 3.6.

if (auto_tuned_) {
static const int kRefillsPerTune = 100;
std::chrono::microseconds now(NowMicrosMonotonic(env_));
if (now - tuned_time_ >=

kRefillsPerTune * std::chrono::microseconds(refill_period_us_))
{

Tune();
}

}

Figure 3.6: Code executed for every write request determining when to Tune()
intervally

The Tune() method in the RateLimiter recalculates and sets a new rate limit and
causes too much overhead to be run for every write request. Therefore it is only

24 CHAPTER 3. IMPLEMENTATION

re-evaluated intervally to reduce the amount of overhead, without an affecting
the rate-limiting appreciably. It works by first determining four constant factors:

1. kLowWatermarkPct = 50

• A threshold determining background I/O below 50%.

2. kHighWatermarkPct = 90

• A threshold determining background I/O above 90%.

3. kAdjustFactorPct = 5

• A factor used to adjust potential rate limit value by 5%.

4. kAllowedRangeFactor = 20

• A factor used to determine lowest rate limit value in the range
[max_bytes_per_sec/kAllowedRangeFactor, max_bytes_per_sec]

To determine the I/O percentages, the number of rate limiter bucket drains and
elapsed rate limit intervals are used. The number of drains increments for every
write request, which means the previous number of drains have to be subtracted
to get the drain difference between the previous tune. Additionally, we need the
total number of refill periods carried out to calculate a percentage.

drained_pct =
(num_drains− prev_num_drains) · 100

elapsed_intervals
(3.1)

The elapsed_intervals is determined similarly to the drains, by taking the
current time, subtracting it with the time at the previous tune and dividing it
with the refill period. Lastly, by timing the drain difference with 100 and dividing
on the elapsed_intervals – we get an acceptable I/O estimate. Both the I/O
percentage and elapsed intervals are calculated in Fig. 3.7.

3.3. IMPLEMENTING AUTO-TUNER 25

Status GenericRateLimiter::Tune() {
const int kLowWatermarkPct = 50;
const int kHighWatermarkPct = 90;
const int kAdjustFactorPct = 5;
// computed rate limit will be in
// ‘[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]‘.
const int kAllowedRangeFactor = 20;

std::chrono::microseconds prev_tuned_time = tuned_time_;
tuned_time_ = std::chrono::microseconds(NowMicrosMonotonic(env_));

int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
std::chrono::microseconds(refill_period_us_) -
std::chrono::microseconds(1)) /
std::chrono::microseconds(refill_period_us_);

// We tune every kRefillsPerTune intervals, so the overflow and division
// by-zero conditions should never happen.
int64_t drained_pct =

(num_drains_ - prev_num_drains_) * 100 / elapsed_intervals;

int64_t prev_bytes_per_sec = GetBytesPerSecond();
int64_t new_bytes_per_sec;
if (drained_pct == 0) {
new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;

} else if (drained_pct < kLowWatermarkPct) {
// sanitize to prevent overflow
int64_t sanitized_prev_bytes_per_sec = std::min(prev_bytes_per_sec,

port::kMaxInt64 / 100);
new_bytes_per_sec = std::max(max_bytes_per_sec_ / kAllowedRangeFactor,

sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
} else if (drained_pct > kHighWatermarkPct) {
// sanitize to prevent overflow
int64_t sanitized_prev_bytes_per_sec = std::min(

prev_bytes_per_sec, port::kMaxInt64 / (100 + kAdjustFactorPct));
new_bytes_per_sec = std::min(max_bytes_per_sec_,

sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
} else {
new_bytes_per_sec = prev_bytes_per_sec;

}
if (new_bytes_per_sec != prev_bytes_per_sec) {
SetBytesPerSecond(new_bytes_per_sec);

}
num_drains_ = prev_num_drains_;
return Status::OK();

}

Figure 3.7: Tune() method for the auto-tuned rate-limiter, where total background
I/O is used to determine a new rate limit

26 CHAPTER 3. IMPLEMENTATION

3.3.6 I/O detection

Foundation for efficient I/O detection had already been laid in the auto-tuned rate
limiter. This made the process to achieve similar behaviour in the compaction
tuner easier. However since the I/O determined was the total background I/O
this encompassed both flush and compaction requests, meaning it was not possible
to differentiate between flushes and compactions. For the rate-limiter, this was
ok since its purpose is to throttle new requests regardless what kind of request it
is. However, for a compaction tuner how can one determine when to enable or
disable compactions using this percentage value? With a watermark to disable at
90% and enable at 50%, it works for disabling compactions when increasing. But
once compactions are enabled below 50% compactions jobs starts and increases
I/O substantially, and once over 90% it disables compactions again. Thus high
compaction pressure disables compactions.

To differentiate flushes and compaction requests, RocksDB makes it quite easy
for us. Compactions are considered low-priority requests and flushes high-priority
requests. By exploiting this priority we can hold a drain variable for both of
the priority levels and using these to avoid the issue with compactions disabling
compactions. The code splitting up num_drains to low and high is provided in
Fig. 3.8

The TuneCompaction() method used to auto-tune compactions is shown in Fig. 3.9.
It uses a similar I/O detection approach as the rate limiter’s Tune() method
(Fig. 3.7). The disparities is the differentiation between high and low prior-
ity requests, the trigger conditions and the usage of the environment interface
(Fig. 3.3).

3.3.7 Trigger conditions

Having taken inspiration from RocksDB’s rate limiter, it was natural to consider
the same watermarks from the rate-limiter for the compaction tuner. However, we
needed to factor in having both high and low priority drain variables. After some
experimentation and issues with compactions disabling compactions (Section 3.3.6),
we figured that it was most natural to disable compactions when the flush I/O
is above 50% and total I/O is above 90%. If flush I/O increase above 50%, we
then assume that it is subject to further increase. We enable when we see that
total I/O is below 90% and flush I/O is below 50%. These assumptions are not
optimal; a workload could potentially disable compactions with flush I/O just
above 50% and continue hovering at that percentage. In this case it would never
enable compactions and waste potential resources that could have been used to
compact the database. Though, for a proof-of-concept tuner, these assumptions
will suffice to show the potential.

3.3. IMPLEMENTING AUTO-TUNER 27

bool timedout = false;
// Leader election, candidates can be:
// (1) a new incoming request,
// (2) a previous leader, whose quota has not been not assigned yet

due
// to lower priority
// (3) a previous waiter at the front of queue, who got notified by
// previous leader

- if (leader_ == nullptr &&
- ((!queue_[Env::IO_HIGH].empty() &&
- &r == queue_[Env::IO_HIGH].front()) ||
- (!queue_[Env::IO_LOW].empty() &&
- &r == queue_[Env::IO_LOW].front()))) {
+ bool leader_isnull = leader_ == nullptr;
+ bool io_high = leader_isnull ? (!queue_[Env::IO_HIGH].empty() && &r ==

queue_[Env::IO_HIGH].front()) : false;
+ bool io_low = !io_high ? (!queue_[Env::IO_LOW].empty() && &r == queue_

[Env::IO_LOW].front()) : false;
+ if (leader_isnull && (io_high || io_low)) {

leader_ = &r;
int64_t delta = next_refill_us_ - NowMicrosMonotonic(env_);
delta = delta > 0 ? delta : 0;
if (delta == 0) {
timedout = true;

} else {
int64_t wait_until = env_->NowMicros() + delta;

+ if (io_high) {
+ ++num_high_drains_;
+ RecordTick(stats, NUMBER_RATE_LIMITER_HIGH_PRI_DRAINS);
+ } else if (io_low) {
+ ++num_low_drains_;
+ RecordTick(stats, NUMBER_RATE_LIMITER_LOW_PRI_DRAINS);
+ }
+ num_drains_ = num_high_drains_ + num_low_drains_;

RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
- ++num_drains_;

timedout = r.cv.TimedWait(wait_until);
}

Figure 3.8: Request election extended with high and low priority rate limiter
drains

28 CHAPTER 3. IMPLEMENTATION

Status GenericRateLimiter::TuneCompaction(Statistics* stats) {
const int kLowWatermarkPct = 50;
const int kHighWatermarkPct = 90;

std::chrono::microseconds prev_tuned_time = tuned_time_;
tuned_time_ = std::chrono::microseconds(NowMicrosMonotonic(env_));

int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
std::chrono::microseconds(refill_period_us_) -
std::chrono::microseconds(1)) /
std::chrono::microseconds(refill_period_us_);

// We tune every kRefillsPerTune intervals, so the overflow and division
-by-

// zero conditions should never happen.
assert(num_drains_ - prev_num_drains_ <= port::kMaxInt64 / 100);
assert(elapsed_intervals > 0);
int64_t drained_high_pct =

(num_high_drains_ - prev_num_high_drains_) * 100 /
elapsed_intervals;

int64_t drained_low_pct =
(num_low_drains_ - prev_num_low_drains_) * 100 /

elapsed_intervals;
int64_t drained_pct = drained_high_pct + drained_low_pct;

if (drained_pct == 0) {
// Nothing

} else if (drained_pct <= kHighWatermarkPct && drained_high_pct <
kLowWatermarkPct) {

env_->EnableCompactions();

} else if (drained_pct >= kHighWatermarkPct && drained_high_pct >=
kLowWatermarkPct) {

env_->DisableCompactions();
RecordTick(stats, COMPACTION_DISABLED_COUNT, 1);

}
num_low_drains_ = prev_num_low_drains_;
num_high_drains_ = prev_num_high_drains_;
num_drains_ = prev_num_drains_;
return Status::OK();

}

Figure 3.9: TuneCompaction() method for the compaction auto-tuner that differ-
entiates between flushes and compactions to toggle compactions

3.4. EXTENDING DB_BENCH 29

3.4 Extending db_bench

db_bench is the provided benchmarking tool for RocksDB; it features default
benchmarks for many different operations like filling random data, overwriting
existing data, compacting, deletions and more.

3.4.1 Auto-tuner flag

To be able to conduct benchmarks using the compaction tuner, db_bench need a
command line flag for this purpose. db_bench uses gflags[30] to process command
line arguments, and allows easy extension by adding a single gflags DEFINE. This
flag is then accessible using a FLAGS prefix, FLAGS_auto_tuned_compactions
which becomes a boolean.

DEFINE_bool(auto_tuned_compactions, false,
"Enable dynamic disabling of compactions when I/O is high");

3.4.2 Sine wave

To benchmark RocksDB in terms of a periodic workload, a sine wave was a natural
choice. Implementing a waveform simulation of write load would, therefore, be
an interesting way of visualising the write performance. To enable the sine wave
write rate limiting, we define a bool sine_write_rate and
sine_write_rate_interval_milliseconds to set a recalculation interval.

DEFINE_bool(sine_write_rate, false,
"Use a sine wave write_rate_limit");

DEFINE_uint64(sine_write_rate_interval_milliseconds, 10000,
"Interval of which the sine wave write_rate_limit is

recalculated");

Sine wave function used to determine the write_rate_limit is provided below.
It has an amplitude of 150, with peaks at 50 and 200 (MB/s). The period is set
to 350seconds by taking 2π

350 = π
175 . The wave is plotted in Fig. 3.10.

S = 75 · sin(π

175
· x+

3π

2
) + 125 (3.2)

Initially this sine function was hard-coded in db_bench for the purpose of this
project, but later made generic by adding flags for the constants of f(x) =
Asin(bx+ c) + d. The flags are accessible in the code using FLAGS_sine_a, b etc.

30 CHAPTER 3. IMPLEMENTATION

0 100 200 300
0

50

100

150

200

250

M
B
/s

Sine Wave

Sine wave

Figure 3.10: Sine wave for benchmark write rate limit

DEFINE_double(sine_a, 1,
"A in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_b, 1,
"B in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_c, 0,
"C in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_d, 1,
"D in f(x) = A sin(bx + c) + d");

Figure 3.11: Flags for sine wave constants

The SineRate function in Fig. 3.12 is making use of these constants and calculates
a new point at the sine wave given a double value X, where X is the number of
seconds after the benchmark was initiated.

3.4. EXTENDING DB_BENCH 31

double SineRate(double x) {
return FLAGS_sine_a*sin((FLAGS_sine_b*x) + FLAGS_sine_c) + FLAGS_sine_d;

}

Figure 3.12: Sine wave function of X seconds used to calculate new rate limit

3.4.3 Benchmark write rate

db_bench executes a DoWrite method when conducting write benchmarks. The
primary purpose of this method is to write and update related statistics. In this
method, we have access to the current write thread and all thread shares some
variables and functions including a write rate limiter used to handle benchmark
writes. Through this rate-limiter, we can set a new rate limit value, chose
a value calculated using the SineRate (Fig. 3.12) function and the number of
seconds since the start. The write_rate_limiter is reset every 10 seconds and
allows a sine_finished bool to opt out of the sine wave rate limiting during the
benchmark, shown in Fig. 3.13.

if (FLAGS_sine_write_rate) {
if (!sine_finished && usecs_since_last > (

FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {
thread->stats.ResetSineInterval();
uint64_t write_rate = static_cast<uint64_t>(

SineRate(static_cast<double>(usecs_since_start) / 1000000.0)
);
thread->shared->write_rate_limiter.reset(

NewGenericRateLimiter(write_rate)
);

}
}

Figure 3.13: Excerpt of dynamic rate limiting in db_bench according to sine wave
function

32 CHAPTER 3. IMPLEMENTATION

For the 700 and 1000sec benchmarks in Chapter 4, we used the sine_finished
flag to set a static write_rate_limit at 10MB/s after an initial sine wave for
350sec. Fig. 3.14 shows the code that executes SetSineFinished() flipping the
sine_finished flag, opting out of the sine wave rate limit.

DEFINE_int32(sine_finished_seconds, 0,
"Number of seconds to opt out of sine wave and use
rate_limiter_bytes_per_second instead");

DEFINE_int32(sine_finished_write_rate_limit, 0,
"Write rate limit when opting out of sine wave");

if (!sine_finished && usecs_since_start > (FLAGS_sine_finished_seconds *
1000000)) {

thread->stats.SetSineFinished();
thread->shared->write_rate_limiter.reset(

NewGenericRateLimiter(FLAGS_sine_finished_write_rate_limit));
}

Figure 3.14: Flags handling opting out of sine wave rate limit

3.5. CONFIGURING THE AUTO-TUNER 33

3.5 Configuring the Auto-Tuner

The following section evaluates multiple existing RocksDB options that influences
performance. Options evaluated are taken from PrepareForBulkLoad()[31] which
is RocksDB’s method to optimise write-insertion for bulk loads. We consider
the flags from this method specifically relevant to this tuner. Additionally, we
consider rate-limiting (Section 3.5.1) and subcompactions (Section 3.5.4). Given
the many factors affecting performance in different ways, we chose an experimental
methodology. Meaning we conducted multiple experiments with different values
for the most relevant options.

3.5.1 Rate-limiting

RocksDB suggest setting the rate_limit_bytes_per_sec to the disk write rate on
dedicated hosts for the auto-tuned rate limiter[2]. The database write-throughput
hovers around the half of the maximum write speed, so the rate limiter internally
halves the rate_limit_bytes_per_sec for configuration. For the compaction
tuner, it is also necessary to set this flag as it is used as the 100% I/O cap per
interval. It calculates the number of bytes allowed to be written per interval, called
refill_bytes. These refill bytes are required to generate the drain variables –
used to determine I/O efficiently. Despite the drain variables, actual rate limiting
of writes is not required for the compaction tuning. However, it makes the proof-
of-concept more stable concerning disabling and enabling compaction triggers,
which also makes the results more stable and reproducible.

Given the benchmarks conducted without any rate-limit cap results in ∼ 190MB/s
flush rate, due to the RateLimiter halving explained above, it was natural to cap
the benchmarks at 380MB/s. This value was chosen instead of the disk write
rate naively since the database is not able to achieve a higher flush rate with
RocksDB compiled in debug mode. Though, this rate limits compactions as well,
and compactions are actually able to achieve higher throughput than flushes – up
to ∼ 225−250MB/s. Benchmarks without the compaction tuner and rate-limiting
are, therefore, able to compact with a higher rate, which influences the results
presented in the Chapter 4.

34 CHAPTER 3. IMPLEMENTATION

3.5.2 Pending compaction bytes

When flushing decreases below ∼100-125MB/s compactions gets enabled, and
post-enabling RocksDB can behave differently using the auto-tuner. By having
soft and hard pending compaction bytes flag set to the default, the flush rate will
decrease close to 0, and the database will compact all the way down to the limit
before continuing allowing further writes. The outcome of this will be that the
database will have better read throughput as quickly as possible after a peak;
however, it spends much time compacting and does somewhat contradicts the
intention of the tuner – increasing write throughput. By setting it unlimited,
flushing can continue as usual. Naturally, then the database will not prioritise
to be as compacted right after the peak. However, the database will continue to
compact for an extended period afterwards – thus having "deferred compactions".
This means that after some time with less load the database will get compacted
similarly. This is the chosen approach for this proof-of-concept. For future work, it
could be interesting to take a more in-depth look at how to handle these post-peak
writes.

Figure 3.15 are excerpts of two benchmarks that shows the different behaviours.
The grey area paints the intervals that have compactions disabled. Once the
compactions are triggered, new writes are stalled for almost 200 seconds by default
until compactions catch up. The writes also struggle once below the compaction
bytes threshold, since it starts accumulating new bytes to compact.

200 300 400 500
0

50

100

150

200

250

M
B
/s

Default pending compaction bytes

Interval Writes
Cumulative Writes

Cumulative Compaction

200 300 400
0

50

100

150

200

250

M
B
/s

Unlimited pending compaction bytes

Interval Writes
Cumulative Writes

Cumulative Compaction

Figure 3.15: Difference between limited and unlimited pending compaction bytes

3.5. CONFIGURING THE AUTO-TUNER 35

3.5.3 Threads

When RocksDB is configured to utilise a high amount of compaction threads,
it queues and starts more compaction jobs. This leads to a delayed ramp of
insertion rate during the peaks, meaning that the compaction threads throttle
flush threads despite having lower priority. Thus to ensure that RocksDB can
quickly respond to increasing load, experimentation has shown that one should
use more flush threads than compaction threads to overcome this throttle. An
interesting observation was that by using 1x flush thread, the compaction disabling
did not trigger at all – hovering around 25% of the max flush rate.

In Fig. 3.16 the Interval Writes denotes different flush rates for different amount
of threads. For the plot with 4x compaction threads disables compaction almost
50 seconds later than with 2x compaction threads. Note that these plots were
configured with 4x flushing threads.

As for future work, one should consider investigating the impact of pending
compactions when compactions are disabled. It might be interesting to clear
the compaction queue and cancel running compactions. In this proof-of-concept,
running compactions are allowed to finish after compactions have been disabled.
RocksDB does not have a straightforward way of clearing the queue nor stopping
running compactions and this has not been prioritised in this thesis. However
in the benchmarks conducted this has not been a significant issue, but it is not
wrong to imagine that this might be a throttling factor for some workloads.

3.5.4 Subcompactions

By default RocksDB allocates only one thread for level-0 −→ level-1 compactions,
despite the number of threads allocated using max_background_compactions or
max_background_jobs. The auto-tuner struggles massively with this compaction
after the number of level-0 files accumulates during a peak. By increasing the
subcompactions flag, we can somewhat increase the parallelism by allowing
RocksDB to range-partition the compaction. This allows multiple level-0 −→
level-1 compactions to happen simultaneously and reduces the time spent for
the compaction by about 30-50seconds. A few quick benchmarks revealed that
increasing the flag did not reduce the time spent further. The efficiency of
compactions could most likely be improved even further, however, given the flush
vs. compaction threads impact on triggering the compaction disabling (Fig. 3.16)
– this was left at 2.

36 CHAPTER 3. IMPLEMENTATION

0 50 100 150
0

50

100

150

200

250

M
B
/s

Disabled Compactions

Sine wave
Interval Writes

0 50 100 150
0

50

100

150

200

250

M
B
/s

2x Compaction threads

Sine wave
Interval Writes

0 50 100 150
0

50

100

150

200

250

M
B
/s

4x Compaction Threads

Sine wave
Interval Writes

0 50 100 150
0

50

100

150

200

250

M
B
/s

Only 1x Flush Thread

Sine wave
Interval Writes

Figure 3.16: Comparison of thread allocation

3.5. CONFIGURING THE AUTO-TUNER 37

3.5.5 Write buffer size

Conducting benchmarks with different write buffer sizes showed a tight correlation
between the number of threads and buffer size. The write rate is exhibiting the
same trend with a buffer size of 4 as with increased compaction threads. When
increasing the buffer to 6, the issue is pretty much gone.

The correlation between the buffer size and the number of threads is a result of
potential starvation[32]. By not having memtables ready for flushing, the flush
threads have to wait for new writes to memory before initiating a new flush.

Increasing the buffer beyond six does not affect the flush rate substantially for
the system used for these benchmarks. Thus, the memory requirement is not
necessarily that high. Smaller devices like smartphones could therefore make use
of an auto-tuner like this.

Figure 3.17 shows the improvement in writes using 6x buffers over 4x. The blue
shaded area shows the difference between optimal and actual writes. The grey
shaded area denotes where compactions gets disabled.

0 50 100 150
0

50

100

150

200

250

M
B
/s

4x write buffers

Sine wave
Interval Writes

0 50 100 150
0

50

100

150

200

250

M
B
/s

6x write buffers

Sine wave
Interval Writes

Figure 3.17: Comparison of 4x and 6x memtable buffers

38 CHAPTER 3. IMPLEMENTATION

3.5.6 Resulting configuration

Through the configuration experimentation, we chose to set a few parameters
initially as default by making a PrepareAutoTunedCompactions() method since
the tuner would not behave correctly without these for any system.

if (env_ && mutable_cf_options_.auto_tuned_compactions) {
env_->disable_auto_compactions =

mutable_cf_options_.disable_auto_compactions;
env_->level0_file_num_compaction_trigger =

mutable_cf_options_.level0_file_num_compaction_trigger;
mutable_cf_options_.PrepareAutoTunedCompactions();

}

void PrepareAutoTunedCompactions() {
level0_slowdown_writes_trigger = (1<<30);
level0_stop_writes_trigger = (1<<30);
soft_pending_compaction_bytes = 0;
hard_pending_compaction_bytes = 0;

}

Figure 3.18: Compaction interface implementation in CFOptions

We did not hard code all parameters since they could depend on the system
running the database. Hence we set the parameters below manually for each
of the auto-tuned benchmarks. Commands for each benchmark conducted is
provided in Chapter 4.

• max_background_flushes = 4

• max_background_compactions = 2

• write_buffer_size = 6

• compression = None

• subcompactions = 2

• sine_a = 75000000

• sine_b = π
175 ≈ 0.017942857

• sine_c = 3π
2 ≈ 4.712388980

• sine_d = 125000000

• rate_limiter_bytes_per_sec = 380000000

Chapter 4

Benchmarks

The following chapter is divided into sections that present and compare results of
the auto-tuned, enabled and disabled compactions for a periodic workload and
maximal throughput using leveled compaction (Section 2.3.2). The benchmarks
are conducted with options determined through experimentation presented in
Section 3.5. Results are evaluated in terms of insertion rate to the database, write
amplification, compaction rate, random read rate and time spent compacting.
In order to a evaluate the different benchmarks conducted using a periodic
workload, a synthetic sine wave workload is used. Since this did not exist in
the benchmarking tool, db_bench, this was implemented for the purpose of this
project. The extension of db_bench is further elaborated in the Section 3.4.

39

40 CHAPTER 4. BENCHMARKS

4.1 System and Installation

System

System specifications:
Ubuntu 17.10 (Artful Aardvark) Kernel 4.13.0-38-generic
Dell OptiPlex 9020
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
16GiB DIMM DDR3 Synchronous 1600 MHz
Lite-On IT LCS-256L9S-11 2.5 7mm 256GB

SSD speed

Lite-On IT LCS-256L9S-11 2.5 7mm 256GB
Sequential Read: 530MB/s and Sequential Write: 430MB/s
Up to 74,000/70,000 IOPS Interface: SATA III 6.0 GB/s

A few benchmarks were conducted to verify the sequential write rate in Fig. 4.1.

time sh -c "dd if=/dev/zero of=testfile bs=100k count=200k && sync"

The commands executed to retrieve statistics for the performance of the internal
SSD is provided in Fig. 4.1. What it does is using dd[33] to write batches of
100KB for 200k times. In total, this gives 20 GiB of data written. The volume
divided on the time spent gives us the average throughput. The command was
run three times, and the results showed an average of 465MB/s, which is a bit
higher than provided by the manufacturer.

1 2 3
425

450

475

500

475

461 459
465

a

M
B
/s

Write Speed

200K average

Figure 4.1: Write Speed of internal SSD

4.2. EXPLANATION OF DATA 41

Installation

RocksDB requires C++11 and gcc should be version 4.8 or higher. This can be
verified by running gcc -v.

1. sudo apt install gcc build-essential

2. sudo apt install libgflags-dev libsnappy-dev zlib1g-dev libbz2-dev
liblz4-dev libzstd-dev

3. git clone git@github.com:hanswilw/rocksdb.git

4. cd rocksdb && git checkout auto-tuned-compactions

5. make db_bench

4.2 Explanation of data

4.2.1 Plots

In the plots we present three different benchmark versions and four different
graphs for each version:

• Enabled is a default configured RocksDB instance, except allowing 2x
compaction threads (Section 3.5.3), 6x write buffers (Section 3.5.5) and
disabled compression (Section 2.6).

• Disabled is similarly configured as the Enabled, with the exception of dis-
abling compactions and increasing level0-slowdown triggers (Section 3.3.1).

• Tuned is the auto-tuned version, it is configured accordingly to the ex-
periments conducted in Section 3.5. The most significant configurations
is of course enabling the tuner, rate limiting at 380MB/s (Section 3.5.1),
slowdown triggers including pending compaction bytes (Section 3.5.2) and
subcompactions (Section 3.5.4).

• Sine wave is the waveform presented in Section 3.4.2, which is the write
rate limit cap.

• Interval writes is the value of the current write rate for new incoming
writes to the database. This means that the statistic tells us at what rate it
ingests new data, without considering any database internals.

• Cumulative writes is the average accumulated write rate statistic for all
the Interval Writes since the start. It is an interesting statistic in addition
to the intervals since it tells us the total write rate combined from start to
end of the benchmarks.

• Cumulative compaction, on the other hand, is the combined sum of
Cumulative Writes and (cumulative) compactions’ write rate. This is a bit

42 CHAPTER 4. BENCHMARKS

ambiguous since one often distinguish between flushes and compactions,
but flushes are included in this statistic. Thus, Cumulative Writes are
considered a part of the Cumulative Compaction rate, and their difference
is data written through the compaction threads.

4.2.2 Statistics

• DB size gives an insight into how much data the database holds, and is
interesting to compare with the total written data.

• Total written is the combined amount of data flushed and data written
through compactions.

• Write Amplification is discussed in greater detail in Section 2.4.2.

• Insertion Rate denotes the rate of new data inserted to the database.

• Compaction Rate is the sum of the Insertion Rate and data written
through compactions. This means that the difference between the Compac-
tion Rate and the Insertion Rate is the write rate of compactions threads
exclusively.

• Leveled Compaction Stats is the hierarchy statistics in leveled compac-
tion explained in Section 2.3.2.

• Random reads: An easy way of determining the compaction efficiency
is to run a random read benchmark on the resulting database left by the
write benchmarks. The read benchmarks are run with compactions disabled
because RocksDB starts to compact while reading by default – if required.
Throughputs by the read benchmarks are closely correlated with the leveled
compaction stats, meaning that well-compacted databases should and will
provide faster reads than less-compacted. Fig. 4.2 shows the command run
to determine the random read rate for the benchmarks presenter later in
this chapter.

./db_bench -benchmarks="readrandom,stats" --num=100000 -statistics -
use_existing_db=1 -disable_auto_compactions=true

Figure 4.2: Random read benchmark

4.3. SINE WAVE 43

4.3 Sine wave

The benchmark conducted for the following sections are db_bench’s fillrandom.
It is described as "write N values in random key order in async mode"[34].

4.3.1 350sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=10000 -disable_auto_compactions=

true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

The auto-tuner was evaluated in terms of the sine wave presented in Section 3.4.2
for three different configurations; a pretty standard with enabled compactions,
with disabled compactions and using the auto-tuner. Benchmarks conducted for
the following sections are done using the commands given above, and the plots
are presented in Fig. 4.3.

44 CHAPTER 4. BENCHMARKS

In the first plot showing the Enabled Compactions, we see that the write rate
is not able to cope with the sine wave write rate limit. Interval Writes, being
the red plot with squares, starts diverging already at 50 seconds after start. At
X = 270 seconds, we see that the Interval Writes drops substantially. This is
due to level-0 files exceeding level0_slowdown_writes_trigger at 20, combined
with the increasing amount of pending compaction bytes. That means RocksDB
slows down new writes until these files are compacted to level-1 (or level-0). The
compaction threads have at this point already started compacting a part of level-0,
but new level-0 → level-1 compactions are waiting for the running compaction to
finish. It will, however, be selected first once available, due to the compaction
score for level-0 is way higher than the other levels given the write-pressure. As a
side note, RocksDB could benefit from a higher number of compaction threads, a
thread per processor core is often recommended. However, to compare the results
with similar conditions, we chose two (Section 3.5.3). Also, experiments with
enabled compactions with increased slowdown triggers are provided in Section 4.5.

By disabling compactions entirely and increasing the slowdown triggers never to
occur, we achieve a pretty much optimal write rate. The second plot shows a
close to perfect correlation between the sine wave write cap and the actual write
rate. In comparison to enabled compactions, this plot results a Cumulative Write
rate at 116MB/s while the enabled results in 62MB/s. So we can conclude that
by disabling compactions we can almost double the write rate for this workload,
at the expense of not compacting the database.

Thirdly, the Auto-tuned Compactions results are presented. As explored through-
out Chapter 3, the goal is to exploit the best of both worlds. The plot shows that
the auto-tuned version can cope with write rate better than the enabled up to
∼100MB/s, and this is partly due to the rate limiting affecting the compaction
rate, as well as having increased the slowdown triggers – similarly to the disabled
version. Indications from the rate-limiting were that it stabilised the writes at the
cost of throttling the max compaction rate, making the tuner toggling compactions
more reliably. The grey area shows where the compactions are disabled, and here
is where the tuner shows its strength. It can toggle compactions both when it
is increasing and decreasing, making it able to handle higher write throughput
during the peak and toggling compactions back on afterwards.

As discussed in Section 3.5.1, the compaction rate with compactions enabled is
higher than with the auto-tuned compactions due to the rate limiting. Since the
rate limiting is unnecessary for the tuner, the potential is not fully exploited.
However, it gives a clear indication that it is possible to improve write-performance
by toggling compactions based on I/O since the combined flush and compaction
rate is ∼40MB/s higher for the auto-tuner.

4.3. SINE WAVE 45

Plots 350sec

0 50 100 150 200 250 300 350
0

50

100

150

200

250

M
B
/s

Enabled Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

0 50 100 150 200 250 300 350
0

50

100

150

200

250

M
B
/s

Disabled Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

0 50 100 150 200 250 300 350
0

50

100

150

200

250

M
B
/s

Auto-tuned Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

Figure 4.3: Plots of enabled, disabled and tuned compactions for 350 second sine
wave

46 CHAPTER 4. BENCHMARKS

Statistics 350sec

Statistics from the 350sec sine wave peak benchmarks are presented in Fig. 4.4.

The random read rate shows the fundamental requirement of compactions for
LSM-based databases. When compactions are disabled, the random read rate is
about 3.4MB/s but enabled it is 74.3MB/s. That is a ridiculous factor of 2185%,
and even 74.3MB/s is a bit slow in this context. Even though the level hierarchy
for Enabled Compactions is far off the target, it was still compacting at the end
of the benchmark. The reason that compactions provides such an improvement
in terms of reads are discussed in better detail in Section 2.3.2, but the primary
reason is avoiding many linear seeks when having many files in level-0.

The performance achieved by the auto-tuner is satisfying, despite the low read
rate. The read rate is expected since we continuously insert a lot of data >50MB/s
and most of the data is inserted while compactions are disabled during the peak.
However it initiates compactions on basically all files in level-0 once enabled, but
it does not have time to finish. The write results, on the other hand, are great; the
insertion rate is similar to the disabled version, while the Cumulative Compaction
rate is 40MB/s higher. These 40MB/s are accumulated in the small windows
where compactions are enabled. Hence being able to exploit the disk speed
better, prioritising new writes and compacting when able to. In total it allows
1− 423K

222K = 90.5% more writes than the Enabled Compactions over a 350second
period and just 3K writes off the "write-optimal" Disabled Compactions.

4.3. SINE WAVE 47

DB size Total Written
0

20

40

60

80

100

20

79.7

39.7 39.739.3

53.2

M
B
/s

Database stats

Enabled Disabled Tuned

Write Amplification
0

2

4

6

8

10

3.9

1 1.4

Amplification stats

Enabled Disabled Tuned

Insertion RateCompaction Rate
0

50

100

150

200

250

61.9

238.5

116.3 116.2116.3

157

Write rate stats

Enabled Disabled Tuned

0 20 40

Tuned

Enabled

Disabled

36.04

8.66

39.66

2.14

9.01

0

1.06

2.37

0

0

0

0

Level hierarchies

Level-0 Level-1 Level-2 Level-3

Number of writes
0

200

400

222

426 423

Write stats

Enabled Disabled Tuned

Read random
0

20

40

60

80 74.3

3.4 4.5

Read rate stats

Enabled Disabled Tuned

Figure 4.4: Statistics post 350sec

48 CHAPTER 4. BENCHMARKS

4.3. SINE WAVE 49

4.3.2 700sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=10000 -disable_auto_compactions=

true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

50 CHAPTER 4. BENCHMARKS

Plots 700sec

Similar to 350sec benchmarks, the plots in Fig. 4.5 shows the different write
performance during the sine wave for the three different versions.

The benchmarks were run first with a similar 350second peak, then with a
capped sine_finished_write_rate_limit of 10MB/s continuing from 350 to
700seconds. Thus giving RocksDB time and resources to do compactions, despite
having the small rate limit for the tuned version (Section 3.3.4 and 3.5.1).

With Enabled Compactions, we see that after the sine wave, the compaction rate
sustains a similar rate of 200-250MB/s, despite having 10MB/s Interval Writes.
This indicates that it still has many compaction jobs queued up throughout the
whole run.

Having disabled compactions entirely, we see no unique information despite
inserting the 10MB/s cap after the sine wave. The auto-tuner shows a bit different
behaviour. It bumps the Cumulative Compaction rate from 100 to 150MB/s at
X=575sec, at that point a major Level-0 → Level-1 compaction finishes. At this
point, the read performance increases significantly, presented in the following
Statistics section. In total, we see that the Cumulative Writes for the Auto-tuned
Compactions is similar Disabled Compactions, but at the same time utilising free
system resources to do compactions at a rate of ∼ 95MB/s. The Cumulative
Compaction rate is, however, ∼ 75MB/s lower than the enabled, due to rate-
limiting and the tuning overhead (Section 3.5.1).

4.3. SINE WAVE 51

0 150 300 450 600
0

50

100

150

200

250

M
B
/s

Enabled Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

0 150 300 450 600
0

50

100

150

200

250

M
B
/s

Disabled Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

0 150 300 450 600
0

50

100

150

200

250

M
B
/s

Auto-tuned Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

Figure 4.5: Plots of enabled, disabled and tuned compactions for 350 second sine
wave, followed by 350sec of low load

52 CHAPTER 4. BENCHMARKS

Statistics 700sec

Having presented the statistics for the 350second peak, it was natural to identify
compaction stats and read rates for the same configurations after the period of
low load. Questions like how much time RocksDB uses to catch up compacting
after a period with disabled compactions should prove helpful in terms of verifying
the usefulness of the auto-tuner.

The results after 700seconds were satisfying. In comparison to the 350sec bench-
mark the write results were similar, but the random read rate of Auto-tuned
Compactions vastly improved and achieved 53.6MB/s which is about 20% of the
enabled with 35% more data. It should be noted that since the tuned version
inserts more data, it subsequently increases the need for compactions. This means
that it need use more time than the enabled to achieve the same read performance.
Another interesting observation is that the read rate for Enabled Compactions at
this point was over three times higher than after 350sec.

Since the sine_finished_write_rate_limit was capped at 10MB/s, the enabled
benchmarks were able to cope with the new writes meaning that the percentage
difference between the tuned, disabled and enabled was reduced. The tuned
version managed to ingest 462K writes, only 2K less than disabled. Enabled did
only manage 291K, which is the reason for the DB size being 13.3GB smaller than
the auto-tuned. Despite the auto-tuned having improvements in most areas, the
level hierarchy was not completely optimal. As discussed earlier (Section 2.3.2)
the level-1 target size is 300MB, level-2 3GB and level-3 30GB, and the tuned
was not able to compact down to level-3. However, it is order-of-magnitude better
than the completely disabled version, where files just keep accumulating in level-0
and random read rate is catastrophic 3.3MB/s.

4.3. SINE WAVE 53

DB size Total Written
0

20

40

60

80

100

120

140

160

24.2

157.7

43.2 43.237.5

107.7

M
B
/s

Database stats

Enabled Disabled Tuned

Write Amplification
0

2

4

6

8

10

5.8

1

2.5

Amplification stats

Enabled Disabled Tuned

Insertion RateCompaction Rate
0

50

100

150

200

250

40

232.9

63.4 63.363

157.5

Write rate stats

Enabled Disabled Tuned

0 20 40

Tuned

Enabled

Disabled

8.76

0.12

43.23

10.84

0.38

0

17.92

4.13

0

0

19.62

0

Level hierarchies

Level-0 Level-1 Level-2 Level-3

Number of writes
0

200

400

291

464 462

Write stats

Enabled Disabled Tuned

Read random
0

100

200

300
295.5

3.3

53.6

Read rate stats

Enabled Disabled Tuned

Figure 4.6: Statistics post 700sec

54 CHAPTER 4. BENCHMARKS

4.3.3 1000 sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=10000 -disable_auto_compactions=

true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

4.3. SINE WAVE 55

Plots 1000 sec

Fig. 4.7 presents plots after 1000sec, which basically is just an extended version
of the 700sec run (Fig. 4.5) with additional 300sec with a write rate at 10MB/s.

0 175 350 525 700 875 1,050
0

50

100

150

200

250

M
B
/s

Enabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 175 350 525 700 875 1,050
0

50

100

150

200

250

M
B
/s

Disabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 175 350 525 700 875 1,050
0

50

100

150

200

250

M
B
/s

Auto-tuned Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

Figure 4.7: Plots of enabled, disabled and tuned compactions for 350 sec sine
wave load following a 650seconds of low load

56 CHAPTER 4. BENCHMARKS

Statistics 1000sec

The statistics for the 1000sec run are consistent with the 700sec run, and as
expected the level hierarchy for the auto-tuned and enabled is better distributed.
However, the tuned does not have a completely optimal hierarchy since Level-2
consists of 11.55GB data with a target at 3GB.

As with the prior benchmarks, the random read rate is improved. At this
point we achieve 200MB/s with auto-tuned compactions, which is a satisfying
throughput rate. Having enabled compaction and optimal level hierarchy we
achieve almost 400MB/s. Despite the better read rate, it still has a much higher
write amplification.

In total, these results live up to the intention of the project and prove that this
proof-of-concept has merit. These benchmarks show that it provides overall disk
efficiency improvements for periodic write-intensive workloads, but it could most
likely be applied to many other workloads.

On a side note; when performing benchmarks it is important to ensure that
they are reproducible, and thus we conducted them multiple times. With the
auto-tuner, the compaction trigger points are not identical for every benchmark
run. It generally triggers at similar points (∼100-120MB/s), but each run is
always a bit different and some discrepancies are observed. This means that for
a small portion of the runs the Number of writes were lower, due to different
compaction trigger points, but that had the effect that the read rate was better
since more time was spent doing compactions – and vice versa.

4.3. SINE WAVE 57

DB size Total Written
0

50

100

150

200

250

26

199.4

46 4638.9

146.5

M
B
/s

Database stats

Enabled Disabled Tuned

Write Amplification
0

2

4

6

8

10

6.7

1

3.2

Amplification stats

Enabled Disabled Tuned

Insertion RateCompaction Rate
0

50

100

150

200

30.4

204.6

47.2 47.247

150.9

Write rate stats

Enabled Disabled Tuned

0 20 40 60

Tuned

Enabled

Disabled

2.81

0.12

46.02

2.13

0.2

0

11.55

2.6

0

22.36

23.1

0

Level hierarchies

Level-0 Level-1 Level-2 Level-3

Number of writes
0

200

400
318

494 490

Write stats

Enabled Disabled Tuned

Read random
0

200

400
394.3

3.3

200.2

Read rate stats

Enabled Disabled Tuned

Figure 4.8: Statistics for sine wave after 1000sec

58 CHAPTER 4. BENCHMARKS

4.4 Bloom filters

As discussed in Section 2.5, using bloom filters increases the read performance
despite having many files in the levels. Also, Siying Dong, a RocksDB core
developer, mentions the possibility to rely on bloom filters for acceptable read
performance for insert heavy workloads with compactions disabled[35]. Since our
random read rates for the auto-tuner and disabled compactions was ∼3-4MB/s, it
was interesting to see what performance gain we could achieve by enabling them.

We configured RocksDB to use bloom filters by adding -bloom_bits=10. The
benchmarks conducted are identical to the 350sec in Section 4.3.1 and the read
benchmark in Fig. 4.2, only with this bloom bits flag added.

Fig. 4.9 reveals that the read improvements are quite impressive and that bloom
filters are very advantageous. The auto-tuner achieves a read performance of
108.9MB/s, which only strengthens the value of auto-tuning compactions. Even
with compactions disabled entirely, the bloom filters shows acceptable read through-
puts – achieving 79.7MB/s. This means that by using bloom filters, we can get
both great read performance during the periods of high write load and performing
compactions when the load is low.

Statistics

Number of writes
0

200

400

222

429 424

Fillrandom

Enabled Disabled Tuned

Default Bloom
0

100

200

74.3

186.5

3.4

79.7

4.5

108.9

Read random

Enabled Disabled Tuned

Figure 4.9: Statistics 350sec with bloom filters enabled

4.5. ENABLED COMPACTION SLOWDOWNS 59

4.5 Enabled Compaction slowdowns

Since the Enabled Compaction configuration was without the increased level0
parameters and pending compaction bytes, two quick benchmarks were performed
to compare how much they affect the performance. The intention of this section
is to show that the improvements in the auto-tuner is not because of these
parameters.

As shown in Fig. 4.10, the primary difference lies in the the write rate X =
250sec. With the level0 stalling parameters increased, it is able to avoid the
slowdown which results in cumulative write rate at 81.38MB/s, with stalling it is
61.92MB/s. An improvement, however, still less than the 116.34 MB/s achieved
by the auto-tuner (Fig. 4.4). The slowdown parameters’ intention is to throttle
incoming writes to allow better read performance while writing, meaning that
increasing these reduces the expected read performance.

0 100 200 300
0

50

100

150

200

250

M
B
/s

Enabled Compactions

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

0 100 200 300
0

50

100

150

200

250

M
B
/s

Enabled Compactions w/o stalling

Sine wave
Interval Writes

Cumulative Writes
Cumulative Compaction

Figure 4.10: Benchmarks that shows how level-0 and pending compaction bytes
stalls

60 CHAPTER 4. BENCHMARKS

4.6 Max throughput

4.6.1 250K fillrandom

Benchmark commands:

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics
-writes=500000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval

=1
-max_background_flushes=4 -max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics
-writes=500000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=5 -stats_per_interval=1
-max_background_flushes=4 -max_background_compactions=2
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=10000 -disable_auto_compactions=

true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics
-writes=500000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval

=1
-max_background_flushes=4 -max_background_compactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

Benchmarks were also conducted using maximal throughput for 250K fillrandom
writes. As shown in Fig. 4.11, especially with Disabled Compactions we are able
to continuously hold a stable high write rate of ∼200MB/s.

Enabled Compactions is more unstable, due to the stalling mechanisms like
level-0 slowdowns described in Section 3.3.1. It does maintain a high Cumulative
Compaction rate at ∼250MB/s, which is ∼50MB/s higher than the compaction
rate for the disabled. Still, it has issues with its own Cumulative Write rate.

For the Auto-tuned Compactions, it starts similar to the Enabled Compactions
when compactions are enabled initially. This is visible in the grey shaded area of
the Fig. 4.11. Afterwards it converges against the same pattern like the Disabled
Compactions, only differing with a few MB/s due to rate-limiting and tuning
overhead.

4.6. MAX THROUGHPUT 61

0 100 200 300
0

50

100

150

200

250

300

M
B
/s

Enabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 50 100
0

50

100

150

200

250

300

M
B
/s

Disabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 50 100
0

50

100

150

200

250

300

M
B
/s

Auto-tuned Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

Figure 4.11: 500K random writes at max throughput

62 CHAPTER 4. BENCHMARKS

4.6.2 250K overwrite

Benchmark commands:

Command used for filling DB with 250K entries:

./db_bench -benchmarks="fillseq" -statistics
-writes=250000 --value_size=100000 --max_write_buffer_number=6
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=4 -compression_type=None
-max_background_flushes=4 -disable_auto_compactions=true

Enabled Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics
-writes=250000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval

=1
-max_background_flushes=4 -max_background_compactions=2
-use_existing_db=true

Disabled Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics
-writes=250000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval

=1
-max_background_flushes=4 -max_background_compactions=2
-level0_slowdown_writes_trigger=10000 -level0_stop_writes_trigger

=10000
-level0_file_num_compaction_trigger=10000 -disable_auto_compactions=

true
-use_existing_db=true

Auto-tuned Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics
-writes=250000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval

=1
-max_background_flushes=4 -max_background_compactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000
-use_existing_db=true

We also conducted benchmarks where the database is filled with 250K writes
without compacting anything. The primary intention is to see whether the auto-
tuner is able to disable compactions when the compaction pressure is very high
initially.

4.6. MAX THROUGHPUT 63

In the Enabled Compactions it is very unstable since different stalling factors
are affecting the write rate. It does not insert anything new into the database
until after 142 seconds, due to the compaction pressure from level-0. It allows
new writes once the compactions have caught up, but drops quickly once the
compaction pressure increases again. Hence, new writes suffers massively when
having a lot of data to compact.

Disabled Compactions and Auto-tuned Compactions shows similar behaviour to
the 250K fillrandom in Fig. 4.11. The positive result here is that the tuner ignores
stalling factors and lets the flushes continue without prioritising compactions.
Our tuner would not be able to trigger if it stalled writes.

0 200 400 600 800
0

50

100

150

200

250

M
B
/s

Enabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 50 100
0

50

100

150

200

250

300
M
B
/s

Disabled Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

0 50 100 150
0

50

100

150

200

250

M
B
/s

Auto-tuned Compactions

Interval Writes
Cumulative Writes

Cumulative Compaction

Figure 4.12: Overwriting 250K values

64 CHAPTER 4. BENCHMARKS

Chapter 5

Conclusion and Future Work

The following chapter evaluates the research goals presented in Section 1.2, the
outcome of the implementation and discusses potential areas of improvement for
future work.

65

66 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

The purpose of this thesis was to enable RocksDB to tune compactions automat-
ically and use it to achieve better write throughput. We presented two research
goals and a research question in Section 1.2 that concretised the project. In
addition, the hypothesis (Section 3.1) postulated the performance potential of
auto-tuning compactions.

G1: Make RocksDB able to disable and enable compactions auto-
matically.

G2: Increase RocksDB’s write performance and provide a tuning
baseline for other LSM-based databases.

RQ1: How can we implement a compaction auto-tuner that dy-
namically toggles compaction, how does it benefit RocksDB and
at what cost does it come?

Throughout the project we have answered RQ1; the Implementation Chapter 3
presents an implementation of a proof-of-concept auto-tuner – achieving G1, and
the Benchmark Chapter 4 shows the results and discusses the pros and cons –
achieving G2. In total, we are able to conclude that write-intense workloads can
benefit from auto-tuning compactions, and with bloom filters we can avoid bad read
performance when compactions are disabled as well. Improving write performance
was a presumed outcome since we knew that compactions were resource demanding.
On the other hand, we could not assume that we would be able to implement
a proof-of-concept that gave such satisfying results. Nevertheless, the proof-of-
concept is by no means a perfect implementation. There are a lot of areas that
can be improved; especially the trigger conditions (Section 3.3.7), the rate-limiting
(Section 3.5.1) and thread allocation (Section 3.5.3).

After finishing the implementation, I posted an excerpt of this thesis including the
benchmarks and implementation details at the RocksDB Developer Forum[18].
The post attracted interest from multiple people, including many of the RocksDB
core developers at Facebook. Siying Dong, one of the core developers, commented
that the adaptive compactions and smooth write throttling were something they
prioritised, and that the research gave a good perspective and could be an
inspiration into solving the problem (Fig. 5.1). He also asked me to contribute the
sine-wave benchmarking code from Section 3.4.2 to RocksDB, which was reviewed
and approved 31. May 2018[36]. Being able to contribute to a major database
system, combined with the positive feedback, is an accomplishment I am proud
of.

5.1. CONCLUSION 67

Figure 5.1: Feedback from RocksDB Developer Public

68 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work

Rate-limiting Compactions

An especially interesting idea stumbled upon while working with compactions
and rate-limiter was to rate-limit the compactions exclusively. By calculating a
compaction rate-limit based on the flush rate, one could potentially gain better I/O
usage than a static disable/enable threshold. The idea is somewhat similar to how
active noise control works, but instead of cancelling sound to zero – we sum the
rates to the maximum rate write rate. This could be done by intervally calculate
the optimal compaction rate using determined flush rate and the maximum write
rate. This way one could possibly optimise the I/O efficiency even more, and
sustain a higher write rate combined with better read throughput.

Revisit rate-limiting

This proof-of-concept rate-limits the max cap (Section 3.5.1), achieving better
write throughput. This is the case because the max rate limit is set to the max
flush rate. However, the max compaction rate can utilise the I/O better than
the flushes, meaning that the compactions are throttled since the cap is too low.
This is shown in the plots where the Cumulative Compaction rate is much higher
with enabled compactions than tuned compactions (Fig. 4.5). There are multiple
approaches to tweak and avoid this from happening; one could lower the disable
compaction trigger watermark and increase the rate-limiter, or drop the actual
rate limiting and mimic the drain variables exclusively for the I/O detection. The
main issue encountered in terms of further improvements was the stability of the
compaction vs flush priority I/O percentages; thus the rate limiting proved useful
to gain more stable results.

Regarding rate-limiting, the fairness variable (Section 3.3.4) could also be
interesting to further evaluate since it is used to allow low priority requests to
be completed. Our intention is to prioritise flushes over compactions, hence the
fairness variable could be increased to reduce the amount of low-pri requests
(compactions) being accepted above high-pri (flushes).

Cancel Compactions

An idea to improve the reaction time of the insertion rate when disabling compac-
tions is to cancel initiated compactions. This way the insertion rate will be able
to utilise I/O for flushes without waiting for the compactions to finish.

5.2. FUTURE WORK 69

Manual Compactions

In the proof-of-concept implemented in this project, we enable compactions and
let RocksDB handle the compaction picking itself. It could be applicable to tailor
the compaction strategy post peak, and potentially determine a more optimal
compaction to perform when enabling compactions again.

70 CHAPTER 5. CONCLUSION AND FUTURE WORK

References

[1] Facebook. Dynamic Level Size. url: https://rocksdb.org/blog/2015/
07/23/dynamic-level.html (visited on 05/05/2018).

[2] Andrew Kryczka. RocksDB: Auto-tuned Rate Limiter. url: https : / /
rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
(visited on 05/05/2018).

[3] Wikipedia: Horizontal Scaling. url: https://en.wikipedia.org/wiki/
Scalability#Horizontal_and_vertical_scaling (visited on 29/05/2018).

[4] Michael Stonebreaker. It’s Time for a Complete Rewrite. url: http://nms.
csail.mit.edu/~stavros/pubs/hstore.pdf (visited on 01/06/2018).

[5] CMU: Carnegie Mellon University. Peloton. url: https://github.com/
cmu-db/peloton (visited on 05/05/2018).

[6] Oracle. Autonomous Database. url: https://www.oracle.com/database/
autonomous-database/feature.html (visited on 05/05/2018).

[7] Hans-Wilhelm Kirsch Warlo. TDT4501: Tuning RocksDB for peak perform-
ance.

[8] Redis Labs. Redis. url: https://redis.io/ (visited on 01/12/2017).
[9] Google. LevelDB. url: https://github.com/google/leveldb (visited on

01/11/2017).
[10] Facebook. RocksDB. url: http://rocksdb.org/ (visited on 01/11/2017).
[11] Facebook. MyRocks. url: http://myrocks.io/ (visited on 08/12/2017).
[12] Patrick O’Neill. LSM Tree. url: https://www.cs.umb.edu/~poneil/

lsmtree.pdf (visited on 01/06/2018).
[13] Andrew Kryczka. Level0-Level0 compactions. url: https : / / rocksdb .

org/blog/2017/06/26/17- level- based- changes.html (visited on
20/05/2018).

[14] Facebook. RocksDB: Leveled Compaction Strategy. url: https://github.
com/facebook/rocksdb/wiki/Leveled-Compaction (visited on 11/05/2017).

[15] Datastax. Apache Cassandra: Compaction configuration. url: https://
docs . datastax . com / en / cassandra / 3 . 0 / cassandra / operations /
opsConfigureCompaction.html (visited on 08/12/2017).

[16] Facebook. RocksDB Wiki: Universal Compaction level issue. url: https:
//github.com/facebook/rocksdb/wiki/Universal-Compaction#db-
column-family-size-if-num_levels1 (visited on 08/12/2017).

71

https://rocksdb.org/blog/2015/07/23/dynamic-level.html
https://rocksdb.org/blog/2015/07/23/dynamic-level.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
https://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
http://nms.csail.mit.edu/~stavros/pubs/hstore.pdf
http://nms.csail.mit.edu/~stavros/pubs/hstore.pdf
https://github.com/cmu-db/peloton
https://github.com/cmu-db/peloton
https://www.oracle.com/database/autonomous-database/feature.html
https://www.oracle.com/database/autonomous-database/feature.html
https://redis.io/
https://github.com/google/leveldb
http://rocksdb.org/
http://myrocks.io/
https://www.cs.umb.edu/~poneil/lsmtree.pdf
https://www.cs.umb.edu/~poneil/lsmtree.pdf
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsConfigureCompaction.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsConfigureCompaction.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsConfigureCompaction.html
https://github.com/facebook/rocksdb/wiki/Universal-Compaction#db-column-family-size-if-num_levels1
https://github.com/facebook/rocksdb/wiki/Universal-Compaction#db-column-family-size-if-num_levels1
https://github.com/facebook/rocksdb/wiki/Universal-Compaction#db-column-family-size-if-num_levels1

72 REFERENCES

[17] Google. Snappy performance. url: https://github.com/google/snappy#
performance (visited on 01/12/2017).

[18] RocksDB Developer Public. url: https://www.facebook.com/groups/
rocksdb.dev/ (visited on 22/03/2018).

[19] Mark Callaghan. Small Datum. url: http://smalldatum.blogspot.com/
(visited on 05/05/2018).

[20] MIT License rocksdb-statistics. url: https://github.com/hanswilw/
rocksdb-statistics/blob/master/LICENSE.

[21] Hans-Wilhelm Kirsch Warlo. RocksDB statistics parser. url: https://
github.com/hanswilw/rocksdb-statistics (visited on 26/04/2018).

[22] Wikipedia. Regular Expressions. url: https://en.wikipedia.org/wiki/
Regular_expression (visited on 31/05/2018).

[23] Christian Feuersänger. Pgfplots. url: http://pgfplots.sourceforge.
net/ (visited on 31/05/2018).

[24] Facebook. RocksDB: PrepareForBulkLoad(). url: https://github.com/
facebook/rocksdb/blob/04c11b867df9190da204e38357a14d20296fb244/
options/options.cc#L342 (visited on 05/05/2018).

[25] Facebook. RocksDB SetOptions() API. url: https://github.com/facebook/
rocksdb/wiki/Basic-Operations#rocksdb-options (visited on 05/05/2018).

[26] pragma once. url: https://en.wikipedia.org/wiki/Pragma_once
(visited on 05/05/2018).

[27] Wikipedia. Token Bucket rate-limiting. url: https://en.wikipedia.org/
wiki/Token_bucket (visited on 31/05/2018).

[28] Facebook. RocksDB Rate-Limiter Wiki. url: https : / / github . com /
facebook/rocksdb/wiki/Rate-Limiter (visited on 05/05/2018).

[29] et al E. Altman K. Avrachenkov. Multiplicative Increase Multiplicative De-
crease. url: https://pdfs.semanticscholar.org/98e1/cce52f4c927bd2d2bd1a7c8a8dd6d9a303e9.
pdf (visited on 05/05/2018).

[30] Google. gflags. url: https://github.com/gflags/gflags (visited on
05/07/2018).

[31] Facebook. RocksDB: PrepareForBulkLoad. url: https://github.com/
facebook/rocksdb/blob/492ab7c7d9425408b05b338eae5c581165af3463/
options/options.cc#L336 (visited on 20/05/2018).

[32] Wikipedia. Starvation (Computer Science). url: https://en.wikipedia.
org/wiki/Starvation_(computer_science) (visited on 31/05/2018).

[33] dd. url: https : / / en . wikipedia . org / wiki / Dd _ (Unix) (visited on
31/05/2018).

[34] Facebook and Google. RocksDB’s benchmarking tool: db_bench. url: https:
//github.com/facebook/rocksdb/wiki/Benchmarking-tools (visited
on 24/05/2018).

[35] Reddit AMA: RocksDB. url: https://www.reddit.com/r/IAmA/comments/
3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/ (visited
on 24/05/2018).

[36] Pull Request: Benchmark sine wave write limit. url: https://github.com/
facebook/rocksdb/pull/3914 (visited on 02/06/2018).

https://github.com/google/snappy#performance
https://github.com/google/snappy#performance
https://www.facebook.com/groups/rocksdb.dev/
https://www.facebook.com/groups/rocksdb.dev/
http://smalldatum.blogspot.com/
https://github.com/hanswilw/rocksdb-statistics/blob/master/LICENSE
https://github.com/hanswilw/rocksdb-statistics/blob/master/LICENSE
https://github.com/hanswilw/rocksdb-statistics
https://github.com/hanswilw/rocksdb-statistics
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
http://pgfplots.sourceforge.net/
http://pgfplots.sourceforge.net/
https://github.com/facebook/rocksdb/blob/04c11b867df9190da204e38357a14d20296fb244/options/options.cc#L342
https://github.com/facebook/rocksdb/blob/04c11b867df9190da204e38357a14d20296fb244/options/options.cc#L342
https://github.com/facebook/rocksdb/blob/04c11b867df9190da204e38357a14d20296fb244/options/options.cc#L342
https://github.com/facebook/rocksdb/wiki/Basic-Operations#rocksdb-options
https://github.com/facebook/rocksdb/wiki/Basic-Operations#rocksdb-options
https://en.wikipedia.org/wiki/Pragma_once
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://pdfs.semanticscholar.org/98e1/cce52f4c927bd2d2bd1a7c8a8dd6d9a303e9.pdf
https://pdfs.semanticscholar.org/98e1/cce52f4c927bd2d2bd1a7c8a8dd6d9a303e9.pdf
https://github.com/gflags/gflags
https://github.com/facebook/rocksdb/blob/492ab7c7d9425408b05b338eae5c581165af3463/options/options.cc#L336
https://github.com/facebook/rocksdb/blob/492ab7c7d9425408b05b338eae5c581165af3463/options/options.cc#L336
https://github.com/facebook/rocksdb/blob/492ab7c7d9425408b05b338eae5c581165af3463/options/options.cc#L336
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/Dd_(Unix)
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://www.reddit.com/r/IAmA/comments/3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/
https://www.reddit.com/r/IAmA/comments/3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/
https://github.com/facebook/rocksdb/pull/3914
https://github.com/facebook/rocksdb/pull/3914

Appendix A

rocksdb-statistics: Statistics
Parser

#!/usr/bin/env python3
import re, argparse
import os
from itertools import accumulate

class Statistics:
def __init__(self):

self.uptime = ’Uptime\(secs\).*?(\d*\.\d*)\stotal’
self.interval = {

’name’: ’Interval step’,
’regex’: ’Uptime\(secs\).*?(\d*\.\d*)\sinterval’,
’suffix’: ’_intervals’

}
self.interval_stall = {

’name’: ’Interval Stall’,
’regex’: ’Interval\sstall.*?(\d*\.\d*)\spercent’,
’suffix’: ’_interval_stall’

}
self.cumulative_stall = {

’name’: ’Cumulative Stall’,
’regex’: ’Cumulative\sstall.*?(\d*\.\d*)\spercent’,
’suffix’: ’_cumulative_stall’

}
self.interval_writes = {

’name’: ’Interval Writes’,
’regex’: ’Interval\swrites.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_interval_writes’

}

73

74 APPENDIX A. ROCKSDB-STATISTICS: STATISTICS PARSER

self.cumulative_writes = {
’name’: ’Cumulative Writes’,
’regex’: ’Cumulative\swrites.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_cumulative_writes’

}
self.cumulative_compaction = {

’name’: ’Cumulative Compaction’,
’regex’: ’Cumulative\scompaction.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_cumulative_compaction’

}
self.interval_compaction = {

’name’: ’Interval Compaction’,
’regex’: ’Interval\scompaction.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_interval_compaction’

}

self.legend_list = []
self.base_filename = ’’

def coordinates_filename(self):
return self.base_filename + ’_coordinates.log’

def save_statistic(self, d, log, steps=None):
matches = self.get_matches(d[’regex’], log)
new_filename = self.base_filename + f’{d["suffix"]}.csv’
self.save_to_file(matches, new_filename)

coordinates = self.generate_coordinates(matches, steps)
self.save_coordinates_to_file(coordinates, self.

coordinates_filename())
self.legend_list.append(d["name"])

def clean_log(self, log):
regex = re.compile(’(2018\S+).*\(([\d,\.]*)\).*\(([\d,\.]*)\)

.*\(([\d,\.]*)\)’)
path = os.path.join(os.getcwd(), ’output’, log)
with open(path, ’r’) as f:

matches = regex.findall(f.read())
return [’,’.join(match) for match in matches]

def get_matches(self, regex, log):
regex = re.compile(regex)
path = os.path.join(os.getcwd(), log)
with open(path, ’r’) as f:

matches = regex.findall(f.read())
return matches

def generate_coordinates(self, matches, steps):
if not steps:

75

return [f’({i*1},{match})’ for i, match in enumerate(matches)]
return [f’({key},{value})’ for key, value in zip(steps, matches)]

def save_to_file(self, data, filename):
os.makedirs(’output’, exist_ok=True)
with open(f’output/{filename}’, ’w’) as f:

f.writelines(’\n’.join(data))

def save_coordinates_to_file(self, data, filename, last=False):
os.makedirs(’output’, exist_ok=True)
with open(f’output/{filename}’, ’a’) as f:

str_data = ’’.join(data)
f.write(’\\addplot\n\tcoordinates {{ {0} }};\n’.format(str_data

))
if last:

legend = ’, ’.join(self.legend_list)
f.write(f’\\legend{{{legend}}}\n’)

def append_legend(self, filename):
with open(f’output/{filename}’, ’a’) as f:

legend = ’, ’.join(self.legend_list)
f.write(f"""

\\legend{{{legend}}}
\\end{{axis}}

\\end{{tikzpicture}}
\\end{{subfigure}}

""")

def initialize_coordinate_file(self, filename):
axis = f""" \\begin{{subfigure}}[t]{{0.5\\textwidth}}

\\begin{{tikzpicture}}
\\begin{{axis}}[

title={self.base_filename},
xlabel={{}},
ylabel={{MB/s}},
ymin=0,
ymax=250,
ytick={{0,50,...,300}},
width=\\textwidth,
legend style={{

at={{(0.5,-0.2)}},
anchor=north,legend columns=1

}},
ymajorgrids=true,
grid style=dashed,

]
"""

with open(f’output/{filename}’, ’w’) as f:
f.write(axis)

76 APPENDIX A. ROCKSDB-STATISTICS: STATISTICS PARSER

def get_steps(self, regex, log):
interval_steps = self.get_matches(regex, log)[::2]
accumulated_steps = list(accumulate([float(step) for step in

interval_steps]))
rounded_steps = [round(step, 2) for step in accumulated_steps]
return rounded_steps

def save_all(self, log):
self.base_filename = log.split(’.’)[0]
interval_steps = self.get_steps(self.interval[’regex’], log)
uptime_steps = [float(step) for step in self.get_matches(self.

uptime, log)[::2]]
min_interval_step = uptime_steps[0] - interval_steps[0]
steps = [round(step - min_interval_step, 2) for step in

uptime_steps]
s.initialize_coordinate_file(self.coordinates_filename())
s.save_statistic(self.interval_writes, log, steps)
s.save_statistic(self.cumulative_writes, log, steps)
s.save_statistic(self.interval_stall, log)
s.save_statistic(self.cumulative_stall, log)
s.save_statistic(self.interval_compaction, log, steps)
s.save_statistic(self.cumulative_compaction, log, steps)
s.append_legend(self.coordinates_filename())

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument("log", type=str, help="logfile")
args = parser.parse_args()
s = Statistics()
log = args.log
s.save_all(log)

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	
	

	
	
	

	
	

